code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _lowerCAmelCase : List[str] = '\\n@inproceedings{snover-etal-2006-study,\n title = "A Study of Translation Edit Rate with Targeted Human Annotation",\n author = "Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John",\n booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",\n month = aug # " 8-12",\n year = "2006",\n address = "Cambridge, Massachusetts, USA",\n publisher = "Association for Machine Translation in the Americas",\n url = "https://aclanthology.org/2006.amta-papers.25",\n pages = "223--231",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _lowerCAmelCase : List[str] = '\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n' _lowerCAmelCase : List[Any] = '\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n \'score\' (float): TER score (num_edits / sum_ref_lengths * 100)\n \'num_edits\' (int): The cumulative number of edits\n \'ref_length\' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}\n\n Example 2:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}\n\n Example 3:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}\n\n Example 4:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}\n\n Example 5:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): def __magic_name__ ( self ): '''simple docstring''' if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install \"sacrebleu>=1.4.12\"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='http://www.cs.umd.edu/~snover/tercom/' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#ter'] , reference_urls=[ 'https://github.com/jhclark/tercom', ] , ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case = False , __snake_case = False , __snake_case = False , __snake_case = False , ): '''simple docstring''' __a =len(references[0] ) if any(len(__snake_case ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) __a =[[refs[i] for refs in references] for i in range(__snake_case )] __a =TER( normalized=__snake_case , no_punct=__snake_case , asian_support=__snake_case , case_sensitive=__snake_case , ) __a =sb_ter.corpus_score(__snake_case , __snake_case ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
353
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Any = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right _lowerCAmelCase : List[Any] = 256_047 _lowerCAmelCase : Dict = 256_145 @require_sentencepiece @require_tokenizers class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = NllbTokenizer SCREAMING_SNAKE_CASE = NllbTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = {} def __magic_name__ ( self ) -> int: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __a =NllbTokenizer(__snake_case , keep_accents=__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self ) -> int: '''simple docstring''' __a =NllbTokenizer(__snake_case , keep_accents=__snake_case ) __a =tokenizer.tokenize('This is a test' ) self.assertListEqual(__snake_case , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __a =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __a =tokenizer.convert_tokens_to_ids(__snake_case ) self.assertListEqual( __snake_case , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __a =tokenizer.convert_ids_to_tokens(__snake_case ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-nllb', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __a =self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __a =self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) __a =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=True __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=False __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) @require_torch def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' if not self.test_seqaseq: return __a =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Longer text that will definitely require truncation. __a =[ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for' ' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons' ' will only worsen the violence and misery for millions of people.', ] __a =[ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al' ' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi' ' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] try: __a =tokenizer.prepare_seqaseq_batch( src_texts=__snake_case , tgt_texts=__snake_case , max_length=3 , max_target_length=10 , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='ron_Latn' , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified __a =tokenizer.prepare_seqaseq_batch( __snake_case , tgt_texts=__snake_case , max_length=3 , return_tensors='pt' ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) __a =tokenizer.prepare_seqaseq_batch( src_texts=__snake_case , max_length=3 , max_target_length=10 , return_tensors='pt' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn('decoder_input_ids' , __snake_case ) @unittest.skip('Unfortunately way too slow to build a BPE with SentencePiece.' ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' pass def __magic_name__ ( self ) -> Tuple: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __a =[AddedToken('<special>' , lstrip=__snake_case )] __a =self.rust_tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case ) __a =tokenizer_r.encode('Hey this is a <special> token' ) __a =tokenizer_r.encode('<special>' , add_special_tokens=__snake_case )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: __a =self.rust_tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case , ) __a =self.tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case ) __a =tokenizer_p.encode('Hey this is a <special> token' ) __a =tokenizer_cr.encode('Hey this is a <special> token' ) self.assertEqual(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class __magic_name__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = 'facebook/nllb-200-distilled-600M' SCREAMING_SNAKE_CASE = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] SCREAMING_SNAKE_CASE = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] SCREAMING_SNAKE_CASE = [ 2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 8_1_6_5, 2_4_8_0_6_6, 1_4_7_3_4, 9_5_0, 1_1_3_5, 1_0_5_7_2_1, 3_5_7_3, 8_3, 2_7_3_5_2, 1_0_8, 4_9_4_8_6, 2, ] @classmethod def __magic_name__ ( cls ) -> Tuple: '''simple docstring''' __a =NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang='eng_Latn' , tgt_lang='ron_Latn' ) __a =1 return cls def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Arab'] , 25_6001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Latn'] , 25_6002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['fra_Latn'] , 25_6057 ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' self.assertIn(__snake_case , self.tokenizer.all_special_ids ) # fmt: off __a =[RO_CODE, 4254, 9_8068, 11_2923, 3_9072, 3909, 713, 10_2767, 26, 1_7314, 3_5642, 1_4683, 3_3118, 2022, 6_6987, 2, 25_6047] # fmt: on __a =self.tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) __a =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertNotIn(self.tokenizer.eos_token , __snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , __snake_case ) __a =10 __a =self.tokenizer(__snake_case , max_length=__snake_case , truncation=__snake_case ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , __snake_case ) self.assertEqual(len(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_6203, 3] ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =tempfile.mkdtemp() __a =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__snake_case ) __a =NllbTokenizer.from_pretrained(__snake_case ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __snake_case ) @require_torch def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) __a =shift_tokens_right( batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['ron_Latn'] ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) __a =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) self.assertEqual(__snake_case , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =self.tokenizer(self.src_text , padding=__snake_case , truncation=__snake_case , max_length=3 , return_tensors='pt' ) __a =self.tokenizer( text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=10 , return_tensors='pt' ) __a =targets['input_ids'] __a =shift_tokens_right( __snake_case , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( nested_simplify(__snake_case ) , { # A, test, EOS, en_XX 'input_ids': [[25_6047, 70, 7356, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_6057, } , ) @require_torch def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =True __a =self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2, 25_6047] ) __a =False __a =self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [25_6047, 1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2] )
308
0
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _lowerCAmelCase : str = Lock() def UpperCamelCase_( _snake_case : List[str] , _snake_case : Tuple , _snake_case : Union[str, Any] , _snake_case : int , _snake_case : List[Any] , _snake_case : Tuple , _snake_case : str ): """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(_lowerCAmelCase ) process_lock.release() # receive your right neighbor's value process_lock.acquire() __a =rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left __a =min(_lowerCAmelCase , _lowerCAmelCase ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(_lowerCAmelCase ) process_lock.release() # receive your left neighbor's value process_lock.acquire() __a =lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right __a =max(_lowerCAmelCase , _lowerCAmelCase ) # after all swaps are performed, send the values back to main result_pipe[1].send(_lowerCAmelCase ) def UpperCamelCase_( _snake_case : Any ): """simple docstring""" __a =[] __a =[] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop __a =Pipe() __a =Pipe() process_array_.append( Process( target=_lowerCAmelCase , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) __a =temp_rs __a =temp_rr for i in range(1 , len(_lowerCAmelCase ) - 1 ): __a =Pipe() __a =Pipe() process_array_.append( Process( target=_lowerCAmelCase , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) __a =temp_rs __a =temp_rr process_array_.append( Process( target=_lowerCAmelCase , args=( len(_lowerCAmelCase ) - 1, arr[len(_lowerCAmelCase ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(_lowerCAmelCase ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(_lowerCAmelCase ) ): __a =result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCamelCase_( ): """simple docstring""" __a =list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*_lowerCAmelCase ) __a =odd_even_transposition(_lowerCAmelCase ) print('Sorted List\n' ) print(*_lowerCAmelCase ) if __name__ == "__main__": main()
354
def UpperCamelCase_( _snake_case : str , _snake_case : int ): """simple docstring""" return [sentence[i : i + ngram_size] for i in range(len(_snake_case ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
308
0
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = (DPMSolverSDEScheduler,) SCREAMING_SNAKE_CASE = 1_0 def __magic_name__ ( self , **__snake_case ) -> Any: '''simple docstring''' __a ={ 'num_train_timesteps': 1100, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'noise_sampler_seed': 0, } config.update(**lowerCamelCase_ ) return config def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=lowerCamelCase_ ) def __magic_name__ ( self ) -> str: '''simple docstring''' for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCamelCase_ , beta_end=lowerCamelCase_ ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCamelCase_ ) def __magic_name__ ( self ) -> str: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase_ ) def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =self.scheduler_classes[0] __a =self.get_scheduler_config() __a =scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(self.num_inference_steps ) __a =self.dummy_model() __a =self.dummy_sample_deter * scheduler.init_noise_sigma __a =sample.to(lowerCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): __a =scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ ) __a =model(lowerCamelCase_ , lowerCamelCase_ ) __a =scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) __a =output.prev_sample __a =torch.sum(torch.abs(lowerCamelCase_ ) ) __a =torch.mean(torch.abs(lowerCamelCase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875 ) < 1e-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406 ) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652 ) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1e-3 def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =self.scheduler_classes[0] __a =self.get_scheduler_config(prediction_type='v_prediction' ) __a =scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(self.num_inference_steps ) __a =self.dummy_model() __a =self.dummy_sample_deter * scheduler.init_noise_sigma __a =sample.to(lowerCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): __a =scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ ) __a =model(lowerCamelCase_ , lowerCamelCase_ ) __a =scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) __a =output.prev_sample __a =torch.sum(torch.abs(lowerCamelCase_ ) ) __a =torch.mean(torch.abs(lowerCamelCase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453 ) < 1e-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703 ) < 1e-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297 ) < 1e-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125 ) < 1e-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621 ) < 1e-3 def __magic_name__ ( self ) -> int: '''simple docstring''' __a =self.scheduler_classes[0] __a =self.get_scheduler_config() __a =scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase_ ) __a =self.dummy_model() __a =self.dummy_sample_deter.to(lowerCamelCase_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __a =scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ ) __a =model(lowerCamelCase_ , lowerCamelCase_ ) __a =scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) __a =output.prev_sample __a =torch.sum(torch.abs(lowerCamelCase_ ) ) __a =torch.mean(torch.abs(lowerCamelCase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938 ) < 1e-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312 ) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771 ) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1e-3 def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =self.scheduler_classes[0] __a =self.get_scheduler_config() __a =scheduler_class(**lowerCamelCase_ , use_karras_sigmas=lowerCamelCase_ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase_ ) __a =self.dummy_model() __a =self.dummy_sample_deter.to(lowerCamelCase_ ) * scheduler.init_noise_sigma __a =sample.to(lowerCamelCase_ ) for t in scheduler.timesteps: __a =scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ ) __a =model(lowerCamelCase_ , lowerCamelCase_ ) __a =scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) __a =output.prev_sample __a =torch.sum(torch.abs(lowerCamelCase_ ) ) __a =torch.mean(torch.abs(lowerCamelCase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188 ) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125 ) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1e-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672 ) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1e-2
355
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class __magic_name__ ( pl.LightningModule ): def __init__( self , __snake_case ) -> List[Any]: '''simple docstring''' super().__init__() __a =model __a =2 __a =nn.Linear(self.model.config.hidden_size , self.num_labels ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' pass def UpperCamelCase_( _snake_case : str , _snake_case : str , _snake_case : str ): """simple docstring""" __a =LongformerModel.from_pretrained(_snake_case ) __a =LightningModel(_snake_case ) __a =torch.load(_snake_case , map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model __a =LongformerForQuestionAnswering.from_pretrained(_snake_case ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(_snake_case ) print(F'Conversion successful. Model saved under {pytorch_dump_folder_path}' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowerCAmelCase : Optional[int] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
308
0
import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class __magic_name__ : def __init__( self , __snake_case , __snake_case=3 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=False , __snake_case=True , __snake_case=99 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=37 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=512 , __snake_case=16 , __snake_case=2 , __snake_case=0.02 , __snake_case=3 , __snake_case=4 , __snake_case=None , ) -> Dict: '''simple docstring''' __a =parent __a =batch_size __a =seq_length __a =is_training __a =use_input_mask __a =use_token_type_ids __a =use_labels __a =vocab_size __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =intermediate_size __a =hidden_act __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =max_position_embeddings __a =type_vocab_size __a =type_sequence_label_size __a =initializer_range __a =num_labels __a =num_choices __a =scope def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a =None if self.use_input_mask: __a =random_attention_mask([self.batch_size, self.seq_length] ) __a =None __a =None __a =None __a =None if self.use_labels: __a =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a =ids_tensor([self.batch_size] , self.num_choices ) __a =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=lowercase_ , ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> Tuple: '''simple docstring''' __a =FalconModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() __a =model(lowercase_ , attention_mask=lowercase_ ) __a =model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> str: '''simple docstring''' __a =True __a =FalconModel(lowercase_ ) model.to(lowercase_ ) model.eval() __a =model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , ) __a =model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , ) __a =model(lowercase_ , attention_mask=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Optional[int]: '''simple docstring''' __a =FalconForCausalLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() __a =model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Dict: '''simple docstring''' __a =True __a =True __a =FalconForCausalLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() # first forward pass __a =model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , use_cache=lowercase_ , ) __a =outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __a =ids_tensor((self.batch_size, 3) , config.vocab_size ) __a =ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __a =torch.cat([input_ids, next_tokens] , dim=-1 ) __a =torch.cat([input_mask, next_mask] , dim=-1 ) __a =model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] __a =model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , past_key_values=lowercase_ , output_hidden_states=lowercase_ , )['hidden_states'][0] # select random slice __a =ids_tensor((1,) , output_from_past.shape[-1] ).item() __a =output_from_no_past[:, -3:, random_slice_idx].detach() __a =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-3 ) ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) =config_and_inputs __a ={'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __magic_name__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = (FalconForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE = ( { 'feature-extraction': FalconModel, 'text-classification': FalconForSequenceClassification, 'text-generation': FalconForCausalLM, 'question-answering': FalconForQuestionAnswering, 'token-classification': FalconForTokenClassification, 'zero-shot': FalconForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =FalconModelTester(self ) __a =ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a , *__a =self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: __a =alibi self.model_tester.create_and_check_model(lowercase_ , *lowercase_ ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a , __a =self.model_tester.prepare_config_and_inputs_for_common() __a =3 __a =input_dict['input_ids'] __a =input_ids.ne(1 ).to(lowercase_ ) __a =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __a =FalconForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() __a =model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a , __a =self.model_tester.prepare_config_and_inputs_for_common() __a =3 __a ='single_label_classification' __a =input_dict['input_ids'] __a =input_ids.ne(1 ).to(lowercase_ ) __a =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __a =FalconForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() __a =model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a , __a =self.model_tester.prepare_config_and_inputs_for_common() __a =input_dict['input_ids'] __a =FalconForCausalLM(lowercase_ ) model.to(lowercase_ ) model.eval() __a =model(lowercase_ , use_cache=lowercase_ ) __a =input_ids.shape[0] __a =model._convert_to_rw_cache(result.past_key_values ) __a =model._convert_cache_to_standard_format(lowercase_ , lowercase_ ) for layer in range(len(lowercase_ ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def __magic_name__ ( self ) -> int: '''simple docstring''' __a , __a =self.model_tester.prepare_config_and_inputs_for_common() __a =3 __a ='multi_label_classification' __a =input_dict['input_ids'] __a =input_ids.ne(1 ).to(lowercase_ ) __a =ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __a =FalconForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() __a =model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __magic_name__ ( self ) -> int: '''simple docstring''' # Falcon can have different numbers of KV-heads than the number of query heads, so we need # to override this test to use the right head counts. for model_class in self.all_generative_model_classes: __a , __a =self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(lowercase_ , 'use_cache' ): return __a =model_class(lowercase_ ).to(lowercase_ ) if "use_cache" not in inputs: __a =True __a =model(**lowercase_ ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return __a =( getattr(lowercase_ , 'decoder_layers' , lowercase_ ) or getattr(lowercase_ , 'num_decoder_layers' , lowercase_ ) or config.num_hidden_layers ) __a =getattr(lowercase_ , 'num_kv_heads' , config.num_attention_heads ) __a =getattr(lowercase_ , 'd_model' , config.hidden_size ) __a =embed_dim // num_attention_heads __a =outputs['past_key_values'] self.assertEqual(len(lowercase_ ) , lowercase_ ) __a , __a =inputs['input_ids'].shape for i in range(lowercase_ ): if config.new_decoder_architecture: __a =config.num_attention_heads elif config.multi_query: __a =1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class __magic_name__ ( unittest.TestCase ): @slow def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =AutoTokenizer.from_pretrained('Rocketknight1/falcon-rw-1b' ) __a =FalconForCausalLM.from_pretrained('Rocketknight1/falcon-rw-1b' ) model.eval() model.to(lowercase_ ) __a =tokenizer('My favorite food is' , return_tensors='pt' ).to(lowercase_ ) __a =( 'My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.' ) __a =model.generate(**lowercase_ , do_sample=lowercase_ , max_new_tokens=19 ) __a =tokenizer.batch_decode(lowercase_ )[0] self.assertEqual(lowercase_ , lowercase_ ) @slow def __magic_name__ ( self ) -> Tuple: '''simple docstring''' # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: __a =AutoTokenizer.from_pretrained(lowercase_ ) __a =FalconForCausalLM.from_pretrained(lowercase_ ) model.eval() model.to(lowercase_ ) __a =tokenizer('My favorite food is' , return_tensors='pt' ).to(lowercase_ ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**lowercase_ , do_sample=lowercase_ , max_new_tokens=4 ) model.generate(**lowercase_ , do_sample=lowercase_ , max_new_tokens=4 ) model.generate(**lowercase_ , num_beams=2 , max_new_tokens=4 ) @slow def __magic_name__ ( self ) -> str: '''simple docstring''' # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: __a =AutoTokenizer.from_pretrained(lowercase_ ) __a =FalconForCausalLM.from_pretrained(lowercase_ ) model.eval() model.to(device=lowercase_ ) __a =tokenizer('My favorite food is' , return_tensors='pt' ).to(lowercase_ ) # Test results are the same with and without cache __a =model.generate(**lowercase_ , do_sample=lowercase_ , max_new_tokens=20 , use_cache=lowercase_ ) __a =model.generate(**lowercase_ , do_sample=lowercase_ , max_new_tokens=20 , use_cache=lowercase_ ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
356
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") _lowerCAmelCase : Optional[Any] = logging.getLogger(__name__) @dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) SCREAMING_SNAKE_CASE = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) SCREAMING_SNAKE_CASE = field( default=1_0_2_4 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the training data.'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the validation data.'} ) SCREAMING_SNAKE_CASE = field(default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the test data.'} ) def __magic_name__ ( self ) -> str: '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: __a =self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __a =self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) SCREAMING_SNAKE_CASE = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def UpperCamelCase_( ): """simple docstring""" __a =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __a , __a , __a =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __a , __a , __a =parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) __a =training_args.get_process_log_level() logger.setLevel(_snake_case ) datasets.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __a =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __a =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __a =load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __a ={'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __a =data_args.train_file.split('.' )[-1] __a =data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __a =data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(F'load a local file for {key}: {data_files[key]}' ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files __a =load_dataset('csv' , data_files=_snake_case , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __a =load_dataset('json' , data_files=_snake_case , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __a =raw_datasets['train'].features['label'].names __a =len(_snake_case ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __a =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __a =TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=_snake_case , ) __a =BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __a ='max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __a =False # Some models have set the order of the labels to use, so let's make sure we do use it. __a ={'Refused': 0, 'Entailed': 1} __a ={0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __a =min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(_snake_case : Tuple ): # Tokenize the texts def _convert_table_text_to_pandas(_snake_case : Optional[Any] ): __a =[_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] __a =pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __a =examples['statement'] __a =list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) __a =tokenizer(_snake_case , _snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case ) __a =examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): __a =raw_datasets.map( _snake_case , batched=_snake_case , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) __a =raw_datasets['train'] if data_args.max_train_samples is not None: __a =train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) __a =raw_datasets['validation'] if data_args.max_eval_samples is not None: __a =eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) __a =raw_datasets['test'] if data_args.max_predict_samples is not None: __a =predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(_snake_case ) ) , 3 ): logger.info(F'Sample {index} of the training set: {train_dataset[index]}.' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_snake_case : EvalPrediction ): __a =p.predictions[0] if isinstance(p.predictions , _snake_case ) else p.predictions __a =np.argmax(_snake_case , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __a =default_data_collator elif training_args.fpaa: __a =DataCollatorWithPadding(_snake_case , pad_to_multiple_of=8 ) else: __a =None # Initialize our Trainer __a =Trainer( model=_snake_case , args=_snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_snake_case , tokenizer=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: __a =None if training_args.resume_from_checkpoint is not None: __a =training_args.resume_from_checkpoint elif last_checkpoint is not None: __a =last_checkpoint __a =trainer.train(resume_from_checkpoint=_snake_case ) __a =train_result.metrics __a =( data_args.max_train_samples if data_args.max_train_samples is not None else len(_snake_case ) ) __a =min(_snake_case , len(_snake_case ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , _snake_case ) trainer.save_metrics('train' , _snake_case ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __a =trainer.evaluate(eval_dataset=_snake_case ) __a =data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_snake_case ) __a =min(_snake_case , len(_snake_case ) ) trainer.log_metrics('eval' , _snake_case ) trainer.save_metrics('eval' , _snake_case ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __a =predict_dataset.remove_columns('label' ) __a =trainer.predict(_snake_case , metric_key_prefix='predict' ).predictions __a =np.argmax(_snake_case , axis=1 ) __a =os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(_snake_case , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(_snake_case ): __a =label_list[item] writer.write(F'{index}\t{item}\n' ) __a ={'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**_snake_case ) else: trainer.create_model_card(**_snake_case ) def UpperCamelCase_( _snake_case : Union[str, Any] ): """simple docstring""" main() if __name__ == "__main__": main()
308
0
from __future__ import annotations import math def UpperCamelCase_( _snake_case : list , _snake_case : list ): """simple docstring""" if len(lowercase_ ) != 2 or len(a[0] ) != 2 or len(lowercase_ ) != 2 or len(b[0] ) != 2: raise Exception('Matrices are not 2x2' ) __a =[ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def UpperCamelCase_( _snake_case : list , _snake_case : list ): """simple docstring""" return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowercase_ ) ) ] def UpperCamelCase_( _snake_case : list , _snake_case : list ): """simple docstring""" return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowercase_ ) ) ] def UpperCamelCase_( _snake_case : list ): """simple docstring""" if len(lowercase_ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('Odd matrices are not supported!' ) __a =len(lowercase_ ) __a =matrix_length // 2 __a =[[a[i][j] for j in range(lowercase_ , lowercase_ )] for i in range(lowercase_ )] __a =[ [a[i][j] for j in range(lowercase_ , lowercase_ )] for i in range(lowercase_ , lowercase_ ) ] __a =[[a[i][j] for j in range(lowercase_ )] for i in range(lowercase_ )] __a =[[a[i][j] for j in range(lowercase_ )] for i in range(lowercase_ , lowercase_ )] return top_left, top_right, bot_left, bot_right def UpperCamelCase_( _snake_case : list ): """simple docstring""" return len(lowercase_ ), len(matrix[0] ) def UpperCamelCase_( _snake_case : list ): """simple docstring""" print('\n'.join(str(lowercase_ ) for line in matrix ) ) def UpperCamelCase_( _snake_case : list , _snake_case : list ): """simple docstring""" if matrix_dimensions(lowercase_ ) == (2, 2): return default_matrix_multiplication(lowercase_ , lowercase_ ) __a , __a , __a , __a =split_matrix(lowercase_ ) __a , __a , __a , __a =split_matrix(lowercase_ ) __a =actual_strassen(lowercase_ , matrix_subtraction(lowercase_ , lowercase_ ) ) __a =actual_strassen(matrix_addition(lowercase_ , lowercase_ ) , lowercase_ ) __a =actual_strassen(matrix_addition(lowercase_ , lowercase_ ) , lowercase_ ) __a =actual_strassen(lowercase_ , matrix_subtraction(lowercase_ , lowercase_ ) ) __a =actual_strassen(matrix_addition(lowercase_ , lowercase_ ) , matrix_addition(lowercase_ , lowercase_ ) ) __a =actual_strassen(matrix_subtraction(lowercase_ , lowercase_ ) , matrix_addition(lowercase_ , lowercase_ ) ) __a =actual_strassen(matrix_subtraction(lowercase_ , lowercase_ ) , matrix_addition(lowercase_ , lowercase_ ) ) __a =matrix_addition(matrix_subtraction(matrix_addition(lowercase_ , lowercase_ ) , lowercase_ ) , lowercase_ ) __a =matrix_addition(lowercase_ , lowercase_ ) __a =matrix_addition(lowercase_ , lowercase_ ) __a =matrix_subtraction(matrix_subtraction(matrix_addition(lowercase_ , lowercase_ ) , lowercase_ ) , lowercase_ ) # construct the new matrix from our 4 quadrants __a =[] for i in range(len(lowercase_ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(lowercase_ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def UpperCamelCase_( _snake_case : list , _snake_case : list ): """simple docstring""" if matrix_dimensions(lowercase_ )[1] != matrix_dimensions(lowercase_ )[0]: __a =( 'Unable to multiply these matrices, please check the dimensions.\n' F'Matrix A: {matrixa}\n' F'Matrix B: {matrixa}' ) raise Exception(lowercase_ ) __a =matrix_dimensions(lowercase_ ) __a =matrix_dimensions(lowercase_ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] __a =max(*lowercase_ , *lowercase_ ) __a =int(math.pow(2 , math.ceil(math.loga(lowercase_ ) ) ) ) __a =matrixa __a =matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , lowercase_ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , lowercase_ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , lowercase_ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) __a =actual_strassen(lowercase_ , lowercase_ ) # Removing the additional zeros for i in range(0 , lowercase_ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , lowercase_ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": _lowerCAmelCase : Any = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] _lowerCAmelCase : Tuple = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
357
from __future__ import annotations import time import numpy as np _lowerCAmelCase : List[str] = [8, 5, 9, 7] _lowerCAmelCase : List[str] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] _lowerCAmelCase : List[Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class __magic_name__ : def __init__( self , __snake_case , __snake_case , __snake_case , ) -> None: '''simple docstring''' __a =claim_vector __a =allocated_resources_table __a =maximum_claim_table def __magic_name__ ( self ) -> list[int]: '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def __magic_name__ ( self ) -> list[int]: '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def __magic_name__ ( self ) -> list[list[int]]: '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__snake_case ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def __magic_name__ ( self ) -> dict[int, list[int]]: '''simple docstring''' return {self.__need().index(__snake_case ): i for i in self.__need()} def __magic_name__ ( self , **__snake_case ) -> None: '''simple docstring''' __a =self.__need() __a =self.__allocated_resources_table __a =self.__available_resources() __a =self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: __a =False for each_need in need_list: __a =True for index, need in enumerate(__snake_case ): if need > available_resources[index]: __a =False break if execution: __a =True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __a =original_need_index print(f'Process {process_number + 1} is executing.' ) # remove the process run from stack need_list.remove(__snake_case ) # update available/freed resources stack __a =np.array(__snake_case ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(__snake_case ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( f'P{self.__allocated_resources_table.index(__snake_case ) + 1}' + ' '.join(f'{it:>8}' for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( f'P{self.__maximum_claim_table.index(__snake_case ) + 1}' + ' '.join(f'{it:>8}' for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(__snake_case ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(__snake_case ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
308
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) class __magic_name__ ( a_ ): def __init__( self , *__snake_case , **__snake_case ) -> Tuple: '''simple docstring''' warnings.warn( 'The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DonutImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
358
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency _lowerCAmelCase : Tuple = { "E": 12.70, "T": 9.06, "A": 8.17, "O": 7.51, "I": 6.97, "N": 6.75, "S": 6.33, "H": 6.09, "R": 5.99, "D": 4.25, "L": 4.03, "C": 2.78, "U": 2.76, "M": 2.41, "W": 2.36, "F": 2.23, "G": 2.02, "Y": 1.97, "P": 1.93, "B": 1.29, "V": 0.98, "K": 0.77, "J": 0.15, "X": 0.15, "Q": 0.10, "Z": 0.07, } _lowerCAmelCase : Optional[int] = "ETAOINSHRDLCUMWFGYPBVKJXQZ" _lowerCAmelCase : Any = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a ={letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def UpperCamelCase_( _snake_case : tuple ): """simple docstring""" return x[0] def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =get_letter_count(_snake_case ) __a ={ freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(_snake_case ) __a ={} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=_snake_case ) __a =''.join(freq_to_letter[freq] ) __a =list(freq_to_letter_str.items() ) freq_pairs.sort(key=_snake_case , reverse=_snake_case ) __a =[freq_pair[1] for freq_pair in freq_pairs] return "".join(_snake_case ) def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =get_frequency_order(_snake_case ) __a =0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
308
0
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def UpperCamelCase_( _snake_case : Optional[int] , _snake_case : Any , _snake_case : int ): """simple docstring""" __a =('dense.weight', 'attention.self.query', 'attention.self.key', 'attention.self.value') __a =( ('layer.', 'layer_'), ('word_embeddings.weight', 'word_embeddings'), ('position_embeddings.weight', 'position_embeddings'), ('token_type_embeddings.weight', 'token_type_embeddings'), ('.', '/'), ('LayerNorm/weight', 'LayerNorm/gamma'), ('LayerNorm/bias', 'LayerNorm/beta'), ('weight', 'kernel'), ) if not os.path.isdir(_lowercase ): os.makedirs(_lowercase ) __a =model.state_dict() def to_tf_var_name(_snake_case : int ): for patt, repl in iter(_lowercase ): __a =name.replace(_lowercase , _lowercase ) return F'bert/{name}' def create_tf_var(_snake_case : Tuple , _snake_case : Dict , _snake_case : Dict ): __a =tf.dtypes.as_dtype(tensor.dtype ) __a =tf.get_variable(dtype=_lowercase , shape=tensor.shape , name=_lowercase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(_lowercase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: __a =to_tf_var_name(_lowercase ) __a =state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): __a =torch_tensor.T __a =create_tf_var(tensor=_lowercase , name=_lowercase , session=_lowercase ) tf.keras.backend.set_value(_lowercase , _lowercase ) __a =session.run(_lowercase ) print(F'Successfully created {tf_name}: {np.allclose(_lowercase , _lowercase )}' ) __a =tf.train.Saver(tf.trainable_variables() ) saver.save(_lowercase , os.path.join(_lowercase , model_name.replace('-' , '_' ) + '.ckpt' ) ) def UpperCamelCase_( _snake_case : List[str]=None ): """simple docstring""" __a =argparse.ArgumentParser() parser.add_argument('--model_name' , type=_lowercase , required=_lowercase , help='model name e.g. bert-base-uncased' ) parser.add_argument( '--cache_dir' , type=_lowercase , default=_lowercase , required=_lowercase , help='Directory containing pytorch model' ) parser.add_argument('--pytorch_model_path' , type=_lowercase , required=_lowercase , help='/path/to/<pytorch-model-name>.bin' ) parser.add_argument('--tf_cache_dir' , type=_lowercase , required=_lowercase , help='Directory in which to save tensorflow model' ) __a =parser.parse_args(_lowercase ) __a =BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=_lowercase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
359
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : int = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'swin2sr' SCREAMING_SNAKE_CASE = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , __snake_case=64 , __snake_case=1 , __snake_case=3 , __snake_case=180 , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=8 , __snake_case=2.0 , __snake_case=True , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.1 , __snake_case="gelu" , __snake_case=False , __snake_case=0.02 , __snake_case=1e-5 , __snake_case=2 , __snake_case=1.0 , __snake_case="1conv" , __snake_case="pixelshuffle" , **__snake_case , ) -> Dict: '''simple docstring''' super().__init__(**__snake_case ) __a =image_size __a =patch_size __a =num_channels __a =embed_dim __a =depths __a =len(__snake_case ) __a =num_heads __a =window_size __a =mlp_ratio __a =qkv_bias __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =drop_path_rate __a =hidden_act __a =use_absolute_embeddings __a =layer_norm_eps __a =initializer_range __a =upscale __a =img_range __a =resi_connection __a =upsampler
308
0
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCamelCase_( _snake_case : List[Any] , _snake_case : int ): """simple docstring""" __a =old_name if "patch_embed" in old_name: __a =old_name.split('.' ) if layer == "0": __a =old_name.replace('0' , 'convolution1' ) elif layer == "1": __a =old_name.replace('1' , 'batchnorm_before' ) elif layer == "3": __a =old_name.replace('3' , 'convolution2' ) else: __a =old_name.replace('4' , 'batchnorm_after' ) if "network" in old_name and re.search(r'\d\.\d' , _snake_case ): __a =R"""\b\d{2}\b""" if bool(re.search(_snake_case , _snake_case ) ): __a =re.search(r'\d\.\d\d.' , _snake_case ).group() else: __a =re.search(r'\d\.\d.' , _snake_case ).group() if int(match[0] ) < 6: __a =old_name.replace(_snake_case , '' ) __a =trimmed_name.replace('network' , match[0] + '.meta4D_layers.blocks.' + match[2:-1] ) __a ="""intermediate_stages.""" + trimmed_name else: __a =old_name.replace(_snake_case , '' ) if int(match[2] ) < num_meta4D_last_stage: __a =trimmed_name.replace('network' , 'meta4D_layers.blocks.' + match[2] ) else: __a =str(int(match[2] ) - num_meta4D_last_stage ) __a =trimmed_name.replace('network' , 'meta3D_layers.blocks.' + layer_index ) if "norm1" in old_name: __a =trimmed_name.replace('norm1' , 'layernorm1' ) elif "norm2" in old_name: __a =trimmed_name.replace('norm2' , 'layernorm2' ) elif "fc1" in old_name: __a =trimmed_name.replace('fc1' , 'linear_in' ) elif "fc2" in old_name: __a =trimmed_name.replace('fc2' , 'linear_out' ) __a ="""last_stage.""" + trimmed_name elif "network" in old_name and re.search(r'.\d.' , _snake_case ): __a =old_name.replace('network' , 'intermediate_stages' ) if "fc" in new_name: __a =new_name.replace('fc' , 'convolution' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): __a =new_name.replace('norm1' , 'batchnorm_before' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): __a =new_name.replace('norm2' , 'batchnorm_after' ) if "proj" in new_name: __a =new_name.replace('proj' , 'projection' ) if "dist_head" in new_name: __a =new_name.replace('dist_head' , 'distillation_classifier' ) elif "head" in new_name: __a =new_name.replace('head' , 'classifier' ) elif "patch_embed" in new_name: __a ="""efficientformer.""" + new_name elif new_name == "norm.weight" or new_name == "norm.bias": __a =new_name.replace('norm' , 'layernorm' ) __a ="""efficientformer.""" + new_name else: __a ="""efficientformer.encoder.""" + new_name return new_name def UpperCamelCase_( _snake_case : int , _snake_case : Any ): """simple docstring""" for key in checkpoint.copy().keys(): __a =checkpoint.pop(_snake_case ) __a =val return checkpoint def UpperCamelCase_( ): """simple docstring""" __a ="""http://images.cocodataset.org/val2017/000000039769.jpg""" __a =Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return image def UpperCamelCase_( _snake_case : Path , _snake_case : Path , _snake_case : Path , _snake_case : bool ): """simple docstring""" __a =torch.load(_snake_case , map_location='cpu' )["""model"""] __a =EfficientFormerConfig.from_json_file(_snake_case ) __a =EfficientFormerForImageClassificationWithTeacher(_snake_case ) __a ="""_""".join(checkpoint_path.split('/' )[-1].split('.' )[0].split('_' )[:-1] ) __a =config.depths[-1] - config.num_metaad_blocks + 1 __a =convert_torch_checkpoint(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) model.eval() __a ={ """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } # prepare image __a =prepare_img() __a =256 __a =224 __a =EfficientFormerImageProcessor( size={'shortest_edge': image_size} , crop_size={'height': crop_size, 'width': crop_size} , resample=pillow_resamplings['bicubic'] , ) __a =processor(images=_snake_case , return_tensors='pt' ).pixel_values # original processing pipeline __a =Compose( [ Resize(_snake_case , interpolation=pillow_resamplings['bicubic'] ), CenterCrop(_snake_case ), ToTensor(), Normalize(_snake_case , _snake_case ), ] ) __a =image_transforms(_snake_case ).unsqueeze(0 ) assert torch.allclose(_snake_case , _snake_case ) __a =model(_snake_case ) __a =outputs.logits __a =(1, 1000) if "l1" in model_name: __a =torch.Tensor( [-0.1_312, 0.4_353, -1.0_499, -0.5_124, 0.4_183, -0.6_793, -1.3_777, -0.0_893, -0.7_358, -2.4_328] ) assert torch.allclose(logits[0, :10] , _snake_case , atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: __a =torch.Tensor( [-1.3_150, -1.5_456, -1.2_556, -0.8_496, -0.7_127, -0.7_897, -0.9_728, -0.3_052, 0.3_751, -0.3_127] ) assert torch.allclose(logits[0, :10] , _snake_case , atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: __a =torch.Tensor( [-1.0_283, -1.4_131, -0.5_644, -1.3_115, -0.5_785, -1.2_049, -0.7_528, 0.1_992, -0.3_822, -0.0_878] ) assert logits.shape == expected_shape else: raise ValueError( F'Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7' ) # Save Checkpoints Path(_snake_case ).mkdir(exist_ok=_snake_case ) model.save_pretrained(_snake_case ) print(F'Checkpoint successfuly converted. Model saved at {pytorch_dump_path}' ) processor.save_pretrained(_snake_case ) print(F'Processor successfuly saved at {pytorch_dump_path}' ) if push_to_hub: print('Pushing model to the hub...' ) model.push_to_hub( repo_id=F'Bearnardd/{pytorch_dump_path}' , commit_message='Add model' , use_temp_dir=_snake_case , ) processor.push_to_hub( repo_id=F'Bearnardd/{pytorch_dump_path}' , commit_message='Add image processor' , use_temp_dir=_snake_case , ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to EfficientFormer pytorch checkpoint.", ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for EfficientFormer model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) parser.set_defaults(push_to_hub=True) _lowerCAmelCase : Optional[int] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
360
import os def UpperCamelCase_( _snake_case : str = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(_snake_case ) , _snake_case ) ) as input_file: __a =[ [int(_snake_case ) for element in line.split(',' )] for line in input_file.readlines() ] __a =len(_snake_case ) __a =len(matrix[0] ) __a =[[-1 for _ in range(_snake_case )] for _ in range(_snake_case )] for i in range(_snake_case ): __a =matrix[i][0] for j in range(1 , _snake_case ): for i in range(_snake_case ): __a =minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _snake_case ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
308
0
def UpperCamelCase_( _snake_case : int ): """simple docstring""" __a =[0] * len(_a ) __a =[] __a =[] __a =0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_a ) ): if indegree[i] == 0: queue.append(_a ) while queue: __a =queue.pop(0 ) cnt += 1 topo.append(_a ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_a ) if cnt != len(_a ): print('Cycle exists' ) else: print(_a ) # Adjacency List of Graph _lowerCAmelCase : Union[str, Any] = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
361
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _lowerCAmelCase : Any = logging.get_logger(__name__) class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , *__snake_case , **__snake_case ) -> None: '''simple docstring''' warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
308
0
import requests from bsa import BeautifulSoup def UpperCamelCase_( _snake_case : Tuple = "https://www.worldometers.info/coronavirus" ): """simple docstring""" __a =BeautifulSoup(requests.get(__lowerCAmelCase ).text , 'html.parser' ) __a =soup.findAll('h1' ) __a =soup.findAll('div' , {'class': 'maincounter-number'} ) keys += soup.findAll('span' , {'class': 'panel-title'} ) values += soup.findAll('div' , {'class': 'number-table-main'} ) return {key.text.strip(): value.text.strip() for key, value in zip(__lowerCAmelCase , __lowerCAmelCase )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(f'''{key}\n{value}\n''')
362
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : int = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
0
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def UpperCamelCase_( ): """simple docstring""" __a =HfArgumentParser(_lowercase ) __a =parser.parse_args_into_dataclasses()[0] __a =TensorFlowBenchmark(args=_lowercase ) try: __a =parser.parse_args_into_dataclasses()[0] except ValueError as e: __a ="Arg --no_{0} is no longer used, please use --no-{0} instead." __a =" ".join(str(_lowercase ).split(' ' )[:-1] ) __a ="" __a =eval(str(_lowercase ).split(' ' )[-1] ) __a =[] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(_lowercase ) if len(_lowercase ) > 0: __a =full_error_msg + begin_error_msg + str(_lowercase ) raise ValueError(_lowercase ) benchmark.run() if __name__ == "__main__": main()
363
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'yolos' def __init__( self , __snake_case=768 , __snake_case=12 , __snake_case=12 , __snake_case=3072 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.02 , __snake_case=1e-12 , __snake_case=[512, 864] , __snake_case=16 , __snake_case=3 , __snake_case=True , __snake_case=100 , __snake_case=True , __snake_case=False , __snake_case=1 , __snake_case=5 , __snake_case=2 , __snake_case=5 , __snake_case=2 , __snake_case=0.1 , **__snake_case , ) -> str: '''simple docstring''' super().__init__(**__snake_case ) __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =intermediate_size __a =hidden_act __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =initializer_range __a =layer_norm_eps __a =image_size __a =patch_size __a =num_channels __a =qkv_bias __a =num_detection_tokens __a =use_mid_position_embeddings __a =auxiliary_loss # Hungarian matcher __a =class_cost __a =bbox_cost __a =giou_cost # Loss coefficients __a =bbox_loss_coefficient __a =giou_loss_coefficient __a =eos_coefficient class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = version.parse('1.11' ) @property def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __magic_name__ ( self ) -> float: '''simple docstring''' return 1e-4 @property def __magic_name__ ( self ) -> int: '''simple docstring''' return 12
308
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class __magic_name__ ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE = "speech_to_text_2" SCREAMING_SNAKE_CASE = ["past_key_values"] SCREAMING_SNAKE_CASE = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self , __snake_case=1_0000 , __snake_case=6 , __snake_case=2048 , __snake_case=4 , __snake_case=0.0 , __snake_case=True , __snake_case="relu" , __snake_case=256 , __snake_case=0.1 , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.02 , __snake_case=2 , __snake_case=True , __snake_case=1 , __snake_case=0 , __snake_case=2 , __snake_case=1024 , **__snake_case , ) -> Optional[int]: '''simple docstring''' __a =vocab_size __a =d_model __a =decoder_ffn_dim __a =decoder_layers __a =decoder_attention_heads __a =dropout __a =attention_dropout __a =activation_dropout __a =activation_function __a =init_std __a =decoder_layerdrop __a =use_cache __a =decoder_layers __a =scale_embedding # scale factor will be sqrt(d_model) if True __a =max_target_positions super().__init__( pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , decoder_start_token_id=a__ , **a__ , )
364
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def UpperCamelCase_( _snake_case : Optional[Any] ): """simple docstring""" __a =model.config __a =DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) __a =MBartConfig( is_decoder=_snake_case , is_encoder_decoder=_snake_case , add_cross_attention=_snake_case , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=_snake_case , add_final_layer_norm=_snake_case , ) return encoder_config, decoder_config def UpperCamelCase_( _snake_case : Tuple ): """simple docstring""" if "encoder.model" in name: __a =name.replace('encoder.model' , 'encoder' ) if "decoder.model" in name: __a =name.replace('decoder.model' , 'decoder' ) if "patch_embed.proj" in name: __a =name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __a =name.replace('patch_embed.norm' , 'embeddings.norm' ) if name.startswith('encoder' ): if "layers" in name: __a ='encoder.' + name if "attn.proj" in name: __a =name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "mask" not in name: __a =name.replace('attn' , 'attention.self' ) if "norm1" in name: __a =name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __a =name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __a =name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __a =name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": __a ='encoder.layernorm.weight' if name == "encoder.norm.bias": __a ='encoder.layernorm.bias' return name def UpperCamelCase_( _snake_case : Tuple , _snake_case : str ): """simple docstring""" for key in orig_state_dict.copy().keys(): __a =orig_state_dict.pop(_snake_case ) if "qkv" in key: __a =key.split('.' ) __a =int(key_split[3] ) __a =int(key_split[5] ) __a =model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __a =val[:dim, :] __a =val[dim : dim * 2, :] __a =val[-dim:, :] else: __a =val[:dim] __a =val[dim : dim * 2] __a =val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: __a =val return orig_state_dict def UpperCamelCase_( _snake_case : Tuple , _snake_case : Union[str, Any]=None , _snake_case : List[Any]=False ): """simple docstring""" __a =DonutModel.from_pretrained(_snake_case ).eval() # load HuggingFace model __a , __a =get_configs(_snake_case ) __a =DonutSwinModel(_snake_case ) __a =MBartForCausalLM(_snake_case ) __a =VisionEncoderDecoderModel(encoder=_snake_case , decoder=_snake_case ) model.eval() __a =original_model.state_dict() __a =convert_state_dict(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) # verify results on scanned document __a =load_dataset('hf-internal-testing/example-documents' ) __a =dataset['test'][0]['image'].convert('RGB' ) __a =XLMRobertaTokenizerFast.from_pretrained(_snake_case , from_slow=_snake_case ) __a =DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) __a =DonutProcessor(_snake_case , _snake_case ) __a =processor(_snake_case , return_tensors='pt' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": __a ='<s_docvqa><s_question>{user_input}</s_question><s_answer>' __a ='When is the coffee break?' __a =task_prompt.replace('{user_input}' , _snake_case ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": __a ='<s_rvlcdip>' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: __a ='<s_cord>' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": __a ='s_cord-v2>' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": __a ='<s_zhtrainticket>' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt __a ='hello world' else: raise ValueError('Model name not supported' ) __a =original_model.decoder.tokenizer(_snake_case , add_special_tokens=_snake_case , return_tensors='pt' )[ 'input_ids' ] __a =original_model.encoder.model.patch_embed(_snake_case ) __a , __a =model.encoder.embeddings(_snake_case ) assert torch.allclose(_snake_case , _snake_case , atol=1e-3 ) # verify encoder hidden states __a =original_model.encoder(_snake_case ) __a =model.encoder(_snake_case ).last_hidden_state assert torch.allclose(_snake_case , _snake_case , atol=1e-2 ) # verify decoder hidden states __a =original_model(_snake_case , _snake_case , _snake_case ).logits __a =model(_snake_case , decoder_input_ids=_snake_case ).logits assert torch.allclose(_snake_case , _snake_case , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(_snake_case ) processor.save_pretrained(_snake_case ) if push_to_hub: model.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) processor.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) _lowerCAmelCase : List[Any] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
308
0
from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _lowerCAmelCase : int = logging.get_logger(__name__) def UpperCamelCase_( _snake_case : List[Any] , _snake_case : List[Any] , _snake_case : Union[str, Any] ): """simple docstring""" return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def UpperCamelCase_( _snake_case : np.ndarray , _snake_case : Optional[str] , _snake_case : Optional[str] = None ): """simple docstring""" __a =tesseract_config if tesseract_config is not None else '' # apply OCR __a =to_pil_image(snake_case__ ) __a , __a =pil_image.size __a =pytesseract.image_to_data(snake_case__ , lang=snake_case__ , output_type='dict' , config=snake_case__ ) __a , __a , __a , __a , __a =data['text'], data['left'], data['top'], data['width'], data['height'] # filter empty words and corresponding coordinates __a =[idx for idx, word in enumerate(snake_case__ ) if not word.strip()] __a =[word for idx, word in enumerate(snake_case__ ) if idx not in irrelevant_indices] __a =[coord for idx, coord in enumerate(snake_case__ ) if idx not in irrelevant_indices] __a =[coord for idx, coord in enumerate(snake_case__ ) if idx not in irrelevant_indices] __a =[coord for idx, coord in enumerate(snake_case__ ) if idx not in irrelevant_indices] __a =[coord for idx, coord in enumerate(snake_case__ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __a =[] for x, y, w, h in zip(snake_case__ , snake_case__ , snake_case__ , snake_case__ ): __a =[x, y, x + w, y + h] actual_boxes.append(snake_case__ ) # finally, normalize the bounding boxes __a =[] for box in actual_boxes: normalized_boxes.append(normalize_box(snake_case__ , snake_case__ , snake_case__ ) ) assert len(snake_case__ ) == len(snake_case__ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class __magic_name__ ( __lowerCAmelCase ): SCREAMING_SNAKE_CASE = ['''pixel_values'''] def __init__( self , __snake_case = True , __snake_case = None , __snake_case = PILImageResampling.BILINEAR , __snake_case = True , __snake_case = None , __snake_case = "" , **__snake_case , ) -> None: '''simple docstring''' super().__init__(**lowerCAmelCase_ ) __a =size if size is not None else {'height': 224, 'width': 224} __a =get_size_dict(lowerCAmelCase_ ) __a =do_resize __a =size __a =resample __a =apply_ocr __a =ocr_lang __a =tesseract_config def __magic_name__ ( self , __snake_case , __snake_case , __snake_case = PILImageResampling.BILINEAR , __snake_case = None , **__snake_case , ) -> np.ndarray: '''simple docstring''' __a =get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) __a =(size['height'], size['width']) return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def __magic_name__ ( self , __snake_case , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = ChannelDimension.FIRST , **__snake_case , ) -> PIL.Image.Image: '''simple docstring''' __a =do_resize if do_resize is not None else self.do_resize __a =size if size is not None else self.size __a =get_size_dict(lowerCAmelCase_ ) __a =resample if resample is not None else self.resample __a =apply_ocr if apply_ocr is not None else self.apply_ocr __a =ocr_lang if ocr_lang is not None else self.ocr_lang __a =tesseract_config if tesseract_config is not None else self.tesseract_config __a =make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) # All transformations expect numpy arrays. __a =[to_numpy_array(lowerCAmelCase_ ) for image in images] if apply_ocr: requires_backends(self , 'pytesseract' ) __a =[] __a =[] for image in images: __a , __a =apply_tesseract(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) words_batch.append(lowerCAmelCase_ ) boxes_batch.append(lowerCAmelCase_ ) if do_resize: __a =[self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) __a =[flip_channel_order(lowerCAmelCase_ ) for image in images] __a =[to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] __a =BatchFeature(data={'pixel_values': images} , tensor_type=lowerCAmelCase_ ) if apply_ocr: __a =words_batch __a =boxes_batch return data
365
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer SCREAMING_SNAKE_CASE = False def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' super().setUp() __a =['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] __a =dict(zip(__snake_case , range(len(__snake_case ) ) ) ) __a =['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] __a ={'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__snake_case ) ) def __magic_name__ ( self , **__snake_case ) -> Any: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def __magic_name__ ( self , __snake_case ) -> List[Any]: '''simple docstring''' __a ='adapt act apte' __a ='adapt act apte' return input_text, output_text def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __a ='adapt act apte' __a =['adapt', 'act', 'ap@@', 'te'] __a =tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) __a =[tokenizer.bos_token] + tokens + [tokenizer.eos_token] __a =[0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1384] __a ='I am a small frog.' __a =tok([src_text] , padding=__snake_case , truncation=__snake_case )['input_ids'] __a =tok.batch_decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) __a ='I am a small frog .' __a ='.' __a =tok(__snake_case )['input_ids'] __a =tok(__snake_case )['input_ids'] assert encoded[-1] == encoded_dot[0]
308
0
from __future__ import annotations import math def UpperCamelCase_( _snake_case : int ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCamelCase_( _snake_case : int ): """simple docstring""" __a =str(lowerCAmelCase__ ) __a =[n] for i in range(1 , len(lowerCAmelCase__ ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def UpperCamelCase_( _snake_case : int ): """simple docstring""" if len(str(lowerCAmelCase__ ) ) > 3: if not is_prime(int(str(lowerCAmelCase__ )[-3:] ) ) or not is_prime(int(str(lowerCAmelCase__ )[:3] ) ): return False return True def UpperCamelCase_( _snake_case : int = 11 ): """simple docstring""" __a =[] __a =13 while len(lowerCAmelCase__ ) != count: if validate(lowerCAmelCase__ ): __a =list_truncated_nums(lowerCAmelCase__ ) if all(is_prime(lowerCAmelCase__ ) for i in list_nums ): list_truncated_primes.append(lowerCAmelCase__ ) num += 2 return list_truncated_primes def UpperCamelCase_( ): """simple docstring""" return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(f'''{sum(compute_truncated_primes(11)) = }''')
366
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __magic_name__ ( unittest.TestCase , lowerCAmelCase_ ): def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =load_tool('text-to-speech' ) self.tool.setup() def __magic_name__ ( self ) -> Dict: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) __a =self.tool('hey' ) __a =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) __a =self.tool('hey' ) __a =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) )
308
0
def UpperCamelCase_( _snake_case : List[Any] ): """simple docstring""" __a =generate_pascal_triangle(SCREAMING_SNAKE_CASE__ ) for row_idx in range(SCREAMING_SNAKE_CASE__ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=' ' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=' ' ) else: print(triangle[row_idx][col_idx] , end='' ) print() def UpperCamelCase_( _snake_case : Dict ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) __a =[] for current_row_idx in range(SCREAMING_SNAKE_CASE__ ): __a =populate_current_row(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) triangle.append(SCREAMING_SNAKE_CASE__ ) return triangle def UpperCamelCase_( _snake_case : Any , _snake_case : Optional[int] ): """simple docstring""" __a =[-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 __a =1, 1 for current_col_idx in range(1 , SCREAMING_SNAKE_CASE__ ): calculate_current_element( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return current_row def UpperCamelCase_( _snake_case : int , _snake_case : Tuple , _snake_case : List[Any] , _snake_case : List[Any] , ): """simple docstring""" __a =triangle[current_row_idx - 1][current_col_idx - 1] __a =triangle[current_row_idx - 1][current_col_idx] __a =above_to_left_elt + above_to_right_elt def UpperCamelCase_( _snake_case : int ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) __a =[[1]] for row_index in range(1 , SCREAMING_SNAKE_CASE__ ): __a =[0] + result[-1] + [0] __a =row_index + 1 # Calculate the number of distinct elements in a row __a =sum(divmod(SCREAMING_SNAKE_CASE__ , 2 ) ) __a =[ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] __a =row_first_half[: (row_index + 1) // 2] row_second_half.reverse() __a =row_first_half + row_second_half result.append(SCREAMING_SNAKE_CASE__ ) return result def UpperCamelCase_( ): """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(_snake_case : Any , _snake_case : int ) -> None: __a =F'{func.__name__}({value})' __a =timeit(F'__main__.{call}' , setup='import __main__' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'{call:38} -- {timing:.4f} seconds' ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
367
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> int: '''simple docstring''' __a =[] __a =[] for i in range(self.num_layers ): __a =self.in_channels if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =resnets __a =attentions if self.add_downsample: __a =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> Optional[Any]: '''simple docstring''' __a =() for resnet, attn in zip(self.resnets , self.attentions ): __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __a =self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> int: '''simple docstring''' __a =[] for i in range(self.num_layers ): __a =self.in_channels if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets if self.add_downsample: __a =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case=True ) -> Optional[int]: '''simple docstring''' __a =() for resnet in self.resnets: __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __a =self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =[] __a =[] for i in range(self.num_layers ): __a =self.in_channels if (i == self.num_layers - 1) else self.out_channels __a =self.prev_output_channel if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =resnets __a =attentions if self.add_upsample: __a =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[Any]: '''simple docstring''' for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states __a =res_hidden_states_tuple[-1] __a =res_hidden_states_tuple[:-1] __a =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __a =self.upsamplers_a(__snake_case ) return hidden_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =[] for i in range(self.num_layers ): __a =self.in_channels if (i == self.num_layers - 1) else self.out_channels __a =self.prev_output_channel if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets if self.add_upsample: __a =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[Any]: '''simple docstring''' for resnet in self.resnets: # pop res hidden states __a =res_hidden_states_tuple[-1] __a =res_hidden_states_tuple[:-1] __a =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __a =self.upsamplers_a(__snake_case ) return hidden_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # there is always at least one resnet __a =[ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] __a =[] for _ in range(self.num_layers ): __a =FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets __a =attentions def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[str]: '''simple docstring''' __a =self.resnets[0](__snake_case , __snake_case ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) return hidden_states
308
0
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _lowerCAmelCase : List[Any] = logging.get_logger(__name__) class __magic_name__ ( _a ): SCREAMING_SNAKE_CASE = ["""pixel_values"""] def __init__( self , __snake_case = True , __snake_case = None , __snake_case = PILImageResampling.BICUBIC , __snake_case = True , __snake_case = None , __snake_case = True , __snake_case = 1 / 255 , __snake_case = True , __snake_case = IMAGENET_DEFAULT_MEAN , __snake_case = IMAGENET_DEFAULT_STD , **__snake_case , ) -> None: '''simple docstring''' super().__init__(**__snake_case ) __a =size if size is not None else {'shortest_edge': 224} __a =get_size_dict(__snake_case , default_to_square=__snake_case ) __a =crop_size if crop_size is not None else {'height': 224, 'width': 224} __a =get_size_dict(__snake_case , param_name='crop_size' ) __a =do_resize __a =size __a =resample __a =do_center_crop __a =crop_size __a =do_rescale __a =rescale_factor __a =do_normalize __a =image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __a =image_std if image_std is not None else IMAGENET_DEFAULT_STD def __magic_name__ ( self , __snake_case , __snake_case , __snake_case = PILImageResampling.BICUBIC , __snake_case = None , **__snake_case , ) -> np.ndarray: '''simple docstring''' __a =get_size_dict(__snake_case , default_to_square=__snake_case ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: __a =int((256 / 224) * size['shortest_edge'] ) __a =get_resize_output_image_size(__snake_case , size=__snake_case , default_to_square=__snake_case ) __a ={'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f'Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}' ) return resize( __snake_case , size=(size_dict['height'], size_dict['width']) , resample=__snake_case , data_format=__snake_case , **__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case = None , **__snake_case , ) -> np.ndarray: '''simple docstring''' __a =get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(f'Size dict must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(__snake_case , size=(size['height'], size['width']) , data_format=__snake_case , **__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case = None , **__snake_case , ) -> np.ndarray: '''simple docstring''' return rescale(__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case = None , **__snake_case , ) -> np.ndarray: '''simple docstring''' return normalize(__snake_case , mean=__snake_case , std=__snake_case , data_format=__snake_case , **__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = ChannelDimension.FIRST , **__snake_case , ) -> BatchFeature: '''simple docstring''' __a =do_resize if do_resize is not None else self.do_resize __a =resample if resample is not None else self.resample __a =do_center_crop if do_center_crop is not None else self.do_center_crop __a =do_rescale if do_rescale is not None else self.do_rescale __a =rescale_factor if rescale_factor is not None else self.rescale_factor __a =do_normalize if do_normalize is not None else self.do_normalize __a =image_mean if image_mean is not None else self.image_mean __a =image_std if image_std is not None else self.image_std __a =size if size is not None else self.size __a =get_size_dict(__snake_case , default_to_square=__snake_case ) __a =crop_size if crop_size is not None else self.crop_size __a =get_size_dict(__snake_case , param_name='crop_size' ) __a =make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __a =[to_numpy_array(__snake_case ) for image in images] if do_resize: __a =[self.resize(__snake_case , __snake_case , __snake_case ) for image in images] if do_center_crop: __a =[self.center_crop(__snake_case , __snake_case ) for image in images] if do_rescale: __a =[self.rescale(__snake_case , __snake_case ) for image in images] if do_normalize: __a =[self.normalize(__snake_case , __snake_case , __snake_case ) for image in images] __a =[to_channel_dimension_format(__snake_case , __snake_case ) for image in images] __a ={'pixel_values': images} return BatchFeature(data=__snake_case , tensor_type=__snake_case )
368
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_5_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self ) -> int: '''simple docstring''' if self.framework == "pytorch": subprocess.run( f'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding='utf-8' , check=__snake_case , ) assert hasattr(self , 'env' ) def __magic_name__ ( self , __snake_case ) -> int: '''simple docstring''' __a =f'{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}' # distributed data settings __a ={'smdistributed': {'dataparallel': {'enabled': True}}} if self.script != 'run_ddp.py' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__snake_case , instance_count=__snake_case , instance_type=self.instance_type , debugger_hook_config=__snake_case , hyperparameters={**self.env.distributed_hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__snake_case , py_version='py36' , ) def __magic_name__ ( self , __snake_case ) -> Optional[Any]: '''simple docstring''' TrainingJobAnalytics(__snake_case ).export_csv(f'{self.env.test_path}/{job_name}_metrics.csv' ) @parameterized.expand([(2,)] ) def __magic_name__ ( self , __snake_case ) -> Optional[int]: '''simple docstring''' # create estimator __a =self.create_estimator(__snake_case ) # run training estimator.fit() # result dataframe __a =TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __a =list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) __a =list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __a =( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'{estimator.latest_training_job.name}.json' , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , __snake_case )
308
0
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def UpperCamelCase_( _snake_case : str , _snake_case : str ): """simple docstring""" __a =k_size // 2 __a , __a =mgrid[0 - center : k_size - center, 0 - center : k_size - center] __a =1 / (2 * pi * sigma) * exp(-(square(__UpperCamelCase ) + square(__UpperCamelCase )) / (2 * square(__UpperCamelCase )) ) return g def UpperCamelCase_( _snake_case : Any , _snake_case : Any , _snake_case : Optional[int] ): """simple docstring""" __a , __a =image.shape[0], image.shape[1] # dst image height and width __a =height - k_size + 1 __a =width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows __a =zeros((dst_height * dst_width, k_size * k_size) ) __a =0 for i, j in product(range(__UpperCamelCase ) , range(__UpperCamelCase ) ): __a =ravel(image[i : i + k_size, j : j + k_size] ) __a =window row += 1 # turn the kernel into shape(k*k, 1) __a =gen_gaussian_kernel(__UpperCamelCase , __UpperCamelCase ) __a =ravel(__UpperCamelCase ) # reshape and get the dst image __a =dot(__UpperCamelCase , __UpperCamelCase ).reshape(__UpperCamelCase , __UpperCamelCase ).astype(__UpperCamelCase ) return dst if __name__ == "__main__": # read original image _lowerCAmelCase : Optional[Any] = imread(r"../image_data/lena.jpg") # turn image in gray scale value _lowerCAmelCase : Dict = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size _lowerCAmelCase : int = gaussian_filter(gray, 3, sigma=1) _lowerCAmelCase : Union[str, Any] = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("gaussian filter with 3x3 mask", gaussianaxa) imshow("gaussian filter with 5x5 mask", gaussianaxa) waitKey()
369
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _lowerCAmelCase : List[Any] = logging.getLogger(__name__) _lowerCAmelCase : Optional[Any] = "Hello world! cécé herlolip" _lowerCAmelCase : str = namedtuple( "BertAbsConfig", [ "temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout", ], ) def UpperCamelCase_( _snake_case : str , _snake_case : List[Any] ): """simple docstring""" __a =BertAbsConfig( temp_dir='.' , finetune_bert=_snake_case , large=_snake_case , share_emb=_snake_case , use_bert_emb=_snake_case , encoder='bert' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) __a =torch.load(_snake_case , lambda _snake_case , _snake_case : storage ) __a =AbsSummarizer(_snake_case , torch.device('cpu' ) , _snake_case ) original.eval() __a =BertAbsSummarizer(_snake_case , torch.device('cpu' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('convert the model' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('Make sure that the models\' outputs are identical' ) __a =BertTokenizer.from_pretrained('bert-base-uncased' ) # prepare the model inputs __a =tokenizer.encode('This is sample éàalj\'-.' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_snake_case )) ) __a =torch.tensor(_snake_case ).unsqueeze(0 ) __a =tokenizer.encode('This is sample 3 éàalj\'-.' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_snake_case )) ) __a =torch.tensor(_snake_case ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __a =encoder_input_ids __a =decoder_input_ids __a =__a =None __a =None __a =__a =None __a =__a =None __a =None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __a =original(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )[0] __a =original.generator(_snake_case ) __a =new_model( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )[0] __a =new_model.generator(_snake_case ) __a =torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_snake_case ) ) __a =torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_snake_case ) ) __a =torch.allclose(_snake_case , _snake_case , atol=1e-3 ) if are_identical: logging.info('all weights are equal up to 1e-3' ) else: raise ValueError('the weights are different. The new model is likely different from the original one.' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('saving the model\'s state dictionary' ) torch.save( new_model.state_dict() , './bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--bertabs_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model.", ) _lowerCAmelCase : Optional[Any] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
308
0
from numpy import exp, pi, sqrt def UpperCamelCase_( _snake_case : int , _snake_case : float = 0.0 , _snake_case : float = 1.0 ): """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
370
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ : def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=False , __snake_case=False , __snake_case=False , __snake_case=2 , __snake_case=99 , __snake_case=0 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=0.1 , __snake_case=0.1 , __snake_case=512 , __snake_case=2 , __snake_case=0.02 , __snake_case=2 , __snake_case=4 , __snake_case="last" , __snake_case=True , __snake_case=None , __snake_case=0 , ) -> Optional[Any]: '''simple docstring''' __a =parent __a =batch_size __a =seq_length __a =is_training __a =use_input_lengths __a =use_token_type_ids __a =use_labels __a =gelu_activation __a =sinusoidal_embeddings __a =causal __a =asm __a =n_langs __a =vocab_size __a =n_special __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =max_position_embeddings __a =type_sequence_label_size __a =initializer_range __a =num_labels __a =num_choices __a =summary_type __a =use_proj __a =scope __a =bos_token_id def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a =random_attention_mask([self.batch_size, self.seq_length] ) __a =None if self.use_input_lengths: __a =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __a =None if self.use_token_type_ids: __a =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __a =None __a =None __a =None if self.use_labels: __a =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a =ids_tensor([self.batch_size] , 2 ).float() __a =ids_tensor([self.batch_size] , self.num_choices ) __a =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __magic_name__ ( self ) -> Any: '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> List[Any]: '''simple docstring''' __a =XLMModel(config=__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , lengths=__snake_case , langs=__snake_case ) __a =model(__snake_case , langs=__snake_case ) __a =model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Optional[int]: '''simple docstring''' __a =XLMWithLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Dict: '''simple docstring''' __a =XLMForQuestionAnsweringSimple(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) __a =outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> List[Any]: '''simple docstring''' __a =XLMForQuestionAnswering(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , p_mask=__snake_case , ) __a =model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , ) ((__a) , ) =result_with_labels.to_tuple() __a =model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) ((__a) , ) =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Optional[Any]: '''simple docstring''' __a =XLMForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Any: '''simple docstring''' __a =self.num_labels __a =XLMForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Tuple: '''simple docstring''' __a =self.num_choices __a =XLMForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() __a =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) =config_and_inputs __a ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable SCREAMING_SNAKE_CASE = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> int: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __magic_name__ ( self , __snake_case , __snake_case , __snake_case=False ) -> str: '''simple docstring''' __a =super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __a =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) __a =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =XLMModelTester(self ) __a =ConfigTester(self , config_class=__snake_case , emb_dim=37 ) def __magic_name__ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=False , __snake_case=1 ) -> Optional[Any]: '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_attentions in attentions] , [True] * len(__snake_case ) ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__snake_case ): # adds PAD dummy token __a =min_length + idx + 1 __a =min_length + idx + 1 __a =( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__snake_case ) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=False , __snake_case=1 ) -> Dict: '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_hidden_states in hidden_states] , [True] * len(__snake_case ) , ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__snake_case ): # adds PAD dummy token __a =min_length + idx + 1 __a =(batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__snake_case ) , ) pass @slow def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a =XLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class __magic_name__ ( unittest.TestCase ): @slow def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(__snake_case ) __a =torch.tensor([[14, 447]] , dtype=torch.long , device=__snake_case ) # the president __a =[ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __a =model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __snake_case )
308
0
"""simple docstring""" import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def UpperCamelCase_( _snake_case : int , _snake_case : Optional[Any] , _snake_case : Optional[Any] ): """simple docstring""" __a =1.5 __a =int(factor * num_class_images ) __a =ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=a__ , aesthetic_weight=0.1 ) os.makedirs(F'{class_data_dir}/images' , exist_ok=a__ ) if len(list(Path(F'{class_data_dir}/images' ).iterdir() ) ) >= num_class_images: return while True: __a =client.query(text=a__ ) if len(a__ ) >= factor * num_class_images or num_images > 1e4: break else: __a =int(factor * num_images ) __a =ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=a__ , aesthetic_weight=0.1 , ) __a =0 __a =0 __a =tqdm(desc='downloading real regularization images' , total=a__ ) with open(F'{class_data_dir}/caption.txt' , 'w' ) as fa, open(F'{class_data_dir}/urls.txt' , 'w' ) as fa, open( F'{class_data_dir}/images.txt' , 'w' ) as fa: while total < num_class_images: __a =class_images[count] count += 1 try: __a =requests.get(images['url'] ) if img.status_code == 200: __a =Image.open(BytesIO(img.content ) ) with open(F'{class_data_dir}/images/{total}.jpg' , 'wb' ) as f: f.write(img.content ) fa.write(images['caption'] + '\n' ) fa.write(images['url'] + '\n' ) fa.write(F'{class_data_dir}/images/{total}.jpg' + '\n' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def UpperCamelCase_( ): """simple docstring""" __a =argparse.ArgumentParser('' , add_help=a__ ) parser.add_argument('--class_prompt' , help='text prompt to retrieve images' , required=a__ , type=a__ ) parser.add_argument('--class_data_dir' , help='path to save images' , required=a__ , type=a__ ) parser.add_argument('--num_class_images' , help='number of images to download' , default=200 , type=a__ ) return parser.parse_args() if __name__ == "__main__": _lowerCAmelCase : Dict = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
371
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake _lowerCAmelCase : Optional[Any] = numpy.array([0, 0]) _lowerCAmelCase : Dict = numpy.array([0.5, 0.8660254]) _lowerCAmelCase : Any = numpy.array([1, 0]) _lowerCAmelCase : int = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCamelCase_( _snake_case : list[numpy.ndarray] , _snake_case : int ): """simple docstring""" __a =initial_vectors for _ in range(_snake_case ): __a =iteration_step(_snake_case ) return vectors def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =[] for i, start_vector in enumerate(vectors[:-1] ): __a =vectors[i + 1] new_vectors.append(_snake_case ) __a =end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCamelCase_( _snake_case : numpy.ndarray , _snake_case : float ): """simple docstring""" __a =numpy.radians(_snake_case ) __a , __a =numpy.cos(_snake_case ), numpy.sin(_snake_case ) __a =numpy.array(((c, -s), (s, c)) ) return numpy.dot(_snake_case , _snake_case ) def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() __a , __a =zip(*_snake_case ) plt.plot(_snake_case , _snake_case ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : List[Any] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
308
0
def SCREAMING_SNAKE_CASE_( _snake_case : Any , _snake_case : Optional[Any] ): """simple docstring""" _validate_point(__a ) _validate_point(__a ) if len(__a ) != len(__a ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(a - b ) for a, b in zip(__a , __a ) ) ) def SCREAMING_SNAKE_CASE_( _snake_case : str ): """simple docstring""" if point: if isinstance(__a , __a ): for item in point: if not isinstance(__a , (int, float) ): __a =( 'Expected a list of numbers as input, found ' F'{type(__a ).__name__}' ) raise TypeError(__a ) else: __a =F'Expected a list of numbers as input, found {type(__a ).__name__}' raise TypeError(__a ) else: raise ValueError('Missing an input' ) def SCREAMING_SNAKE_CASE_( _snake_case : List[Any] , _snake_case : Union[str, Any] ): """simple docstring""" _validate_point(__a ) _validate_point(__a ) if len(__a ) != len(__a ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(x - y ) for x, y in zip(__a , __a ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
350
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Tuple = { "configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MegatronBertForCausalLM", "MegatronBertForMaskedLM", "MegatronBertForMultipleChoice", "MegatronBertForNextSentencePrediction", "MegatronBertForPreTraining", "MegatronBertForQuestionAnswering", "MegatronBertForSequenceClassification", "MegatronBertForTokenClassification", "MegatronBertModel", "MegatronBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys _lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
0
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): SCREAMING_SNAKE_CASE = LEDTokenizer SCREAMING_SNAKE_CASE = LEDTokenizerFast SCREAMING_SNAKE_CASE = True def __magic_name__ ( self ) -> Tuple: '''simple docstring''' super().setUp() __a =[ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __a =dict(zip(__snake_case , range(len(__snake_case ) ) ) ) __a =["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __a ={"""unk_token""": """<unk>"""} __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__snake_case ) ) def __magic_name__ ( self , **__snake_case ) -> int: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def __magic_name__ ( self , **__snake_case ) -> List[str]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) def __magic_name__ ( self , __snake_case ) -> Dict: '''simple docstring''' return "lower newer", "lower newer" @cached_property def __magic_name__ ( self ) -> int: '''simple docstring''' return LEDTokenizer.from_pretrained('allenai/led-base-16384' ) @cached_property def __magic_name__ ( self ) -> Any: '''simple docstring''' return LEDTokenizerFast.from_pretrained('allenai/led-base-16384' ) @require_torch def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __a =[0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __a =tokenizer(__snake_case , max_length=len(__snake_case ) , padding=__snake_case , return_tensors='pt' ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) __a =batch.input_ids.tolist()[0] self.assertListEqual(__snake_case , __snake_case ) @require_torch def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __a =tokenizer(__snake_case , padding=__snake_case , return_tensors='pt' ) self.assertIn('input_ids' , __snake_case ) self.assertIn('attention_mask' , __snake_case ) self.assertNotIn('labels' , __snake_case ) self.assertNotIn('decoder_attention_mask' , __snake_case ) @require_torch def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =[ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __a =tokenizer(text_target=__snake_case , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def __magic_name__ ( self ) -> str: '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __a =tokenizer( ['I am a small frog' * 1024, 'I am a small frog'] , padding=__snake_case , truncation=__snake_case , return_tensors='pt' ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =["""A long paragraph for summarization."""] __a =[ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __a =tokenizer(__snake_case , return_tensors='pt' ) __a =tokenizer(text_target=__snake_case , return_tensors='pt' ) __a =inputs["""input_ids"""] __a =targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def __magic_name__ ( self ) -> Dict: '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __a =["""Summary of the text.""", """Another summary."""] __a =[[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] __a =tokenizer(__snake_case , padding=__snake_case ) __a =[[0] * len(__snake_case ) for x in encoded_output["""input_ids"""]] __a =tokenizer.pad(__snake_case ) self.assertSequenceEqual(outputs['global_attention_mask'] , __snake_case ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' pass def __magic_name__ ( self ) -> Dict: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __a =self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __a =self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __a ="""A, <mask> AllenNLP sentence.""" __a =tokenizer_r.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case ) __a =tokenizer_p.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case ) self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) __a =tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) __a =tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( __snake_case , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( __snake_case , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
351
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __magic_name__ : @staticmethod def __magic_name__ ( *__snake_case , **__snake_case ) -> List[str]: '''simple docstring''' pass def UpperCamelCase_( _snake_case : Image ): """simple docstring""" __a =hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __magic_name__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def __magic_name__ ( self , __snake_case , __snake_case , __snake_case ) -> Dict: '''simple docstring''' __a =DepthEstimationPipeline(model=__snake_case , image_processor=__snake_case ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __magic_name__ ( self , __snake_case , __snake_case ) -> Tuple: '''simple docstring''' __a =depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , __snake_case ) import datasets __a =datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) __a =depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , __snake_case , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' pass @slow @require_torch def __magic_name__ ( self ) -> int: '''simple docstring''' __a ='Intel/dpt-large' __a =pipeline('depth-estimation' , model=__snake_case ) __a =depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) __a =hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.662 ) @require_torch def __magic_name__ ( self ) -> Any: '''simple docstring''' # This is highly irregular to have no small tests. self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
308
0
def UpperCamelCase_( _snake_case : str , _snake_case : str ): """simple docstring""" __a =len(lowerCAmelCase__ ) __a =[] for i in range(len(lowerCAmelCase__ ) - pat_len + 1 ): __a =True for j in range(lowerCAmelCase__ ): if s[i + j] != pattern[j]: __a =False break if match_found: position.append(lowerCAmelCase__ ) return position if __name__ == "__main__": assert naive_pattern_search("ABCDEFG", "DE") == [3] print(naive_pattern_search("ABAAABCDBBABCDDEBCABC", "ABC"))
352
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _lowerCAmelCase : Optional[int] = logging.getLogger(__name__) _lowerCAmelCase : Any = "pytorch_model.bin" @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co.'} , ) @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field(metadata={'help': 'A csv or a json file containing the training data.'} ) SCREAMING_SNAKE_CASE = dataclasses.field(metadata={'help': 'A csv or a json file containing the data to predict on.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the validation data.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'The name of the task to train on.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'The list of labels for the task.'} ) @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field( metadata={'help': 'The output directory where the model predictions and checkpoints will be written.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default='accuracy' , metadata={'help': 'The evaluation metric used for the task.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default='no' , metadata={ 'help': 'The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]' } , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=1_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0 , metadata={ 'help': 'How much the specified evaluation metric must improve to satisfy early stopping conditions.' } , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the confidence score.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the validation performance.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to fine-tune on labeled data after pseudo training.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0 , metadata={'help': 'Confidence threshold for pseudo-labeled data filtering.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=1_0_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Random seed for initialization.'} , ) def UpperCamelCase_( _snake_case : int , _snake_case : str , _snake_case : Optional[int] , _snake_case : str , _snake_case : Union[str, Any] , _snake_case : List[Any] ): """simple docstring""" __a =datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: __a =dataset.filter(lambda _snake_case : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 __a =int(eval_result * len(_snake_case ) ) print(_snake_case ) __a =dataset.sort('probability' , reverse=_snake_case ) __a =dataset.select(range(_snake_case ) ) __a =dataset.remove_columns(['label', 'probability'] ) __a =dataset.rename_column('prediction' , 'label' ) __a =dataset.map(lambda _snake_case : {"label": idalabel[example["label"]]} ) __a =dataset.shuffle(seed=args.seed ) __a =os.path.join(_snake_case , F'train_pseudo.{args.data_file_extension}' ) if args.data_file_extension == "csv": dataset.to_csv(_snake_case , index=_snake_case ) else: dataset.to_json(_snake_case ) def UpperCamelCase_( _snake_case : List[Any] , _snake_case : str , _snake_case : int , _snake_case : Optional[int] , **_snake_case : List[str] ): """simple docstring""" __a =Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() __a =STModelArguments(model_name_or_path=_snake_case ) __a =STDataArguments(train_file=_snake_case , infer_file=_snake_case ) __a =STTrainingArguments(output_dir=_snake_case ) __a =argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(_snake_case ).items(): setattr(_snake_case , _snake_case , _snake_case ) for key, value in kwargs.items(): if hasattr(_snake_case , _snake_case ): setattr(_snake_case , _snake_case , _snake_case ) # Sanity checks __a ={} __a =None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None __a =args.train_file __a =args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None __a =args.eval_file for key in data_files: __a =data_files[key].split('.' )[-1] assert extension in ["csv", "json"], F'`{key}_file` should be a csv or a json file.' if args.data_file_extension is None: __a =extension else: assert extension == args.data_file_extension, F'`{key}_file` should be a {args.data_file_extension} file`.' assert ( args.eval_metric in datasets.list_metrics() ), F'{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('Creating the initial data directory for self-training...' ) __a =F'{args.output_dir}/self-train_iter-{{}}'.format __a =data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=_snake_case ) os.makedirs(_snake_case , exist_ok=_snake_case ) accelerator.wait_for_everyone() __a =None __a =None __a =0 __a =False # Show the progress bar __a =tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): __a =data_dir_format(_snake_case ) assert os.path.exists(_snake_case ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 __a =os.path.join(_snake_case , 'stage-1' ) __a ={ 'accelerator': accelerator, 'model_name_or_path': args.model_name_or_path, 'cache_dir': args.cache_dir, 'do_train': True, 'train_file': data_files['train'] if iteration == 0 else data_files['train_pseudo'], 'do_eval': True if args.eval_file is not None else False, 'eval_file': data_files['eval'], 'do_predict': True, 'infer_file': data_files['infer'], 'task_name': args.task_name, 'label_list': args.label_list, 'output_dir': current_output_dir, 'eval_metric': args.eval_metric, 'evaluation_strategy': args.evaluation_strategy, 'early_stopping_patience': args.early_stopping_patience, 'early_stopping_threshold': args.early_stopping_threshold, 'seed': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(_snake_case , _snake_case ): arguments_dict.update({key: value} ) __a =os.path.join(_snake_case , 'best-checkpoint' , _snake_case ) if os.path.exists(_snake_case ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.' , _snake_case , _snake_case , ) else: logger.info('***** Running self-training: iteration: %d, stage: 1 *****' , _snake_case ) finetune(**_snake_case ) accelerator.wait_for_everyone() assert os.path.exists(_snake_case ) logger.info('Self-training job completed: iteration: %d, stage: 1.' , _snake_case ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data __a =os.path.join(_snake_case , 'best-checkpoint' ) __a =os.path.join(_snake_case , 'stage-2' ) # Update arguments_dict __a =model_path __a =data_files['train'] __a =current_output_dir __a =os.path.join(_snake_case , 'best-checkpoint' , _snake_case ) if os.path.exists(_snake_case ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.' , _snake_case , _snake_case , ) else: logger.info('***** Running self-training: iteration: %d, stage: 2 *****' , _snake_case ) finetune(**_snake_case ) accelerator.wait_for_everyone() assert os.path.exists(_snake_case ) logger.info('Self-training job completed: iteration: %d, stage: 2.' , _snake_case ) __a =iteration __a =data_dir_format(iteration + 1 ) __a =AutoConfig.from_pretrained(os.path.join(_snake_case , 'best-checkpoint' ) ) __a =config.idalabel __a =os.path.join(_snake_case , 'eval_results_best-checkpoint.json' ) __a =os.path.join(_snake_case , 'test_results_best-checkpoint.json' ) assert os.path.exists(_snake_case ) with open(_snake_case , 'r' ) as f: __a =float(json.load(_snake_case )[args.eval_metric] ) __a =os.path.join(_snake_case , 'infer_output_best-checkpoint.csv' ) assert os.path.exists(_snake_case ) # Loading the dataset from local csv or json files. __a =load_dataset(args.data_file_extension , data_files={'data': data_files['infer']} )['data'] __a =load_dataset('csv' , data_files={'data': infer_output_file} )['data'] if accelerator.is_main_process: os.makedirs(_snake_case , exist_ok=_snake_case ) shutil.copy(_snake_case , os.path.join(_snake_case , F'eval_results_iter-{iteration}.json' ) ) if os.path.exists(_snake_case ): shutil.copy(_snake_case , os.path.join(_snake_case , F'test_results_iter-{iteration}.json' ) ) create_pseudo_labeled_data(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) accelerator.wait_for_everyone() __a =os.path.join(_snake_case , F'train_pseudo.{args.data_file_extension}' ) if args.evaluation_strategy != IntervalStrategy.NO.value: __a =eval_result if best_iteration is None: __a =new_iteration __a =new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: __a =new_iteration __a =new_eval_result __a =0 else: if new_eval_result == best_eval_result: __a =new_iteration __a =new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: __a =True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('Best iteration: %d' , _snake_case ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , _snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_snake_case , F'eval_results_iter-{iteration}.json' ) , os.path.join(_snake_case , 'eval_results_best-iteration.json' ) , ) else: # Assume that the last iteration is the best logger.info('Best iteration: %d' , args.max_selftrain_iterations - 1 ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , _snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_snake_case , F'eval_results_iter-{args.max_selftrain_iterations - 1}.json' ) , os.path.join(_snake_case , 'eval_results_best-iteration.json' ) , )
308
0
import pytest _lowerCAmelCase : Any = """__dummy_dataset1__""" _lowerCAmelCase : Union[str, Any] = """ import json import os import datasets REPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\" URLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { \"tokens\": datasets.Sequence(datasets.Value(\"string\")), \"ner_tags\": datasets.Sequence( datasets.features.ClassLabel( names=[ \"O\", \"B-PER\", \"I-PER\", \"B-ORG\", \"I-ORG\", \"B-LOC\", \"I-LOC\", ] ) ), \"langs\": datasets.Sequence(datasets.Value(\"string\")), \"spans\": datasets.Sequence(datasets.Value(\"string\")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}), ] def _generate_examples(self, filepath): with open(filepath, \"r\", encoding=\"utf-8\") as f: for i, line in enumerate(f): yield i, json.loads(line) """ @pytest.fixture def UpperCamelCase_( ): """simple docstring""" return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def UpperCamelCase_( ): """simple docstring""" return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def UpperCamelCase_( _snake_case : int , _snake_case : str , _snake_case : Any ): """simple docstring""" __a =dataset_loading_script_name __a =tmp_path / 'datasets' / script_name script_dir.mkdir(parents=_snake_case ) __a =script_dir / F'{script_name}.py' with open(_snake_case , 'w' ) as f: f.write(_snake_case ) return str(_snake_case )
353
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Any = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right _lowerCAmelCase : List[Any] = 256_047 _lowerCAmelCase : Dict = 256_145 @require_sentencepiece @require_tokenizers class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = NllbTokenizer SCREAMING_SNAKE_CASE = NllbTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = {} def __magic_name__ ( self ) -> int: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __a =NllbTokenizer(__snake_case , keep_accents=__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self ) -> int: '''simple docstring''' __a =NllbTokenizer(__snake_case , keep_accents=__snake_case ) __a =tokenizer.tokenize('This is a test' ) self.assertListEqual(__snake_case , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __a =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __a =tokenizer.convert_tokens_to_ids(__snake_case ) self.assertListEqual( __snake_case , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __a =tokenizer.convert_ids_to_tokens(__snake_case ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-nllb', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __a =self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __a =self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) __a =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=True __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=False __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) @require_torch def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' if not self.test_seqaseq: return __a =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Longer text that will definitely require truncation. __a =[ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for' ' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons' ' will only worsen the violence and misery for millions of people.', ] __a =[ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al' ' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi' ' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] try: __a =tokenizer.prepare_seqaseq_batch( src_texts=__snake_case , tgt_texts=__snake_case , max_length=3 , max_target_length=10 , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='ron_Latn' , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified __a =tokenizer.prepare_seqaseq_batch( __snake_case , tgt_texts=__snake_case , max_length=3 , return_tensors='pt' ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) __a =tokenizer.prepare_seqaseq_batch( src_texts=__snake_case , max_length=3 , max_target_length=10 , return_tensors='pt' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn('decoder_input_ids' , __snake_case ) @unittest.skip('Unfortunately way too slow to build a BPE with SentencePiece.' ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' pass def __magic_name__ ( self ) -> Tuple: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __a =[AddedToken('<special>' , lstrip=__snake_case )] __a =self.rust_tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case ) __a =tokenizer_r.encode('Hey this is a <special> token' ) __a =tokenizer_r.encode('<special>' , add_special_tokens=__snake_case )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: __a =self.rust_tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case , ) __a =self.tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case ) __a =tokenizer_p.encode('Hey this is a <special> token' ) __a =tokenizer_cr.encode('Hey this is a <special> token' ) self.assertEqual(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class __magic_name__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = 'facebook/nllb-200-distilled-600M' SCREAMING_SNAKE_CASE = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] SCREAMING_SNAKE_CASE = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] SCREAMING_SNAKE_CASE = [ 2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 8_1_6_5, 2_4_8_0_6_6, 1_4_7_3_4, 9_5_0, 1_1_3_5, 1_0_5_7_2_1, 3_5_7_3, 8_3, 2_7_3_5_2, 1_0_8, 4_9_4_8_6, 2, ] @classmethod def __magic_name__ ( cls ) -> Tuple: '''simple docstring''' __a =NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang='eng_Latn' , tgt_lang='ron_Latn' ) __a =1 return cls def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Arab'] , 25_6001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Latn'] , 25_6002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['fra_Latn'] , 25_6057 ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' self.assertIn(__snake_case , self.tokenizer.all_special_ids ) # fmt: off __a =[RO_CODE, 4254, 9_8068, 11_2923, 3_9072, 3909, 713, 10_2767, 26, 1_7314, 3_5642, 1_4683, 3_3118, 2022, 6_6987, 2, 25_6047] # fmt: on __a =self.tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) __a =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertNotIn(self.tokenizer.eos_token , __snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , __snake_case ) __a =10 __a =self.tokenizer(__snake_case , max_length=__snake_case , truncation=__snake_case ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , __snake_case ) self.assertEqual(len(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_6203, 3] ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =tempfile.mkdtemp() __a =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__snake_case ) __a =NllbTokenizer.from_pretrained(__snake_case ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __snake_case ) @require_torch def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) __a =shift_tokens_right( batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['ron_Latn'] ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) __a =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) self.assertEqual(__snake_case , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =self.tokenizer(self.src_text , padding=__snake_case , truncation=__snake_case , max_length=3 , return_tensors='pt' ) __a =self.tokenizer( text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=10 , return_tensors='pt' ) __a =targets['input_ids'] __a =shift_tokens_right( __snake_case , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( nested_simplify(__snake_case ) , { # A, test, EOS, en_XX 'input_ids': [[25_6047, 70, 7356, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_6057, } , ) @require_torch def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =True __a =self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2, 25_6047] ) __a =False __a =self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [25_6047, 1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2] )
308
0
from __future__ import annotations import numpy as np def UpperCamelCase_( _snake_case : list[float] ): """simple docstring""" return np.maximum(0 , _snake_case ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
354
def UpperCamelCase_( _snake_case : str , _snake_case : int ): """simple docstring""" return [sentence[i : i + ngram_size] for i in range(len(_snake_case ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
308
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def UpperCamelCase_( _snake_case : Union[str, Any]=None ): """simple docstring""" __a =argparse.ArgumentParser(add_help=_snake_case , allow_abbrev=_snake_case ) # The main config parser __a =config_command_parser(_snake_case ) # The subparser to add commands to __a =config_parser.add_subparsers(title='subcommands' , dest='subcommand' ) # Then add other parsers with the parent parser default_command_parser(_snake_case , parents=[parent_parser] ) update_command_parser(_snake_case , parents=[parent_parser] ) return config_parser def UpperCamelCase_( ): """simple docstring""" __a =get_config_parser() __a =config_parser.parse_args() if not hasattr(_snake_case , 'func' ): config_parser.print_help() exit(1 ) # Run args.func(_snake_case ) if __name__ == "__main__": main()
355
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class __magic_name__ ( pl.LightningModule ): def __init__( self , __snake_case ) -> List[Any]: '''simple docstring''' super().__init__() __a =model __a =2 __a =nn.Linear(self.model.config.hidden_size , self.num_labels ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' pass def UpperCamelCase_( _snake_case : str , _snake_case : str , _snake_case : str ): """simple docstring""" __a =LongformerModel.from_pretrained(_snake_case ) __a =LightningModel(_snake_case ) __a =torch.load(_snake_case , map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model __a =LongformerForQuestionAnswering.from_pretrained(_snake_case ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(_snake_case ) print(F'Conversion successful. Model saved under {pytorch_dump_folder_path}' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowerCAmelCase : Optional[int] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
308
0
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin _lowerCAmelCase : Dict = '\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n' class __magic_name__ ( unittest.TestCase , lowerCamelCase__ ): def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =load_tool('text-question-answering' ) self.tool.setup() __a =load_tool('text-question-answering' , remote=__lowerCamelCase ) def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =self.tool(__lowerCamelCase , 'What did Hugging Face do in April 2021?' ) self.assertEqual(__lowerCamelCase , 'launched the BigScience Research Workshop' ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.remote_tool(__lowerCamelCase , 'What did Hugging Face do in April 2021?' ) self.assertEqual(__lowerCamelCase , 'launched the BigScience Research Workshop' ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.tool(text=__lowerCamelCase , question='What did Hugging Face do in April 2021?' ) self.assertEqual(__lowerCamelCase , 'launched the BigScience Research Workshop' ) def __magic_name__ ( self ) -> str: '''simple docstring''' __a =self.remote_tool(text=__lowerCamelCase , question='What did Hugging Face do in April 2021?' ) self.assertEqual(__lowerCamelCase , 'launched the BigScience Research Workshop' )
356
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") _lowerCAmelCase : Optional[Any] = logging.getLogger(__name__) @dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) SCREAMING_SNAKE_CASE = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) SCREAMING_SNAKE_CASE = field( default=1_0_2_4 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the training data.'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the validation data.'} ) SCREAMING_SNAKE_CASE = field(default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the test data.'} ) def __magic_name__ ( self ) -> str: '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: __a =self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __a =self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) SCREAMING_SNAKE_CASE = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def UpperCamelCase_( ): """simple docstring""" __a =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __a , __a , __a =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __a , __a , __a =parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) __a =training_args.get_process_log_level() logger.setLevel(_snake_case ) datasets.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __a =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __a =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __a =load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __a ={'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __a =data_args.train_file.split('.' )[-1] __a =data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __a =data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(F'load a local file for {key}: {data_files[key]}' ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files __a =load_dataset('csv' , data_files=_snake_case , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __a =load_dataset('json' , data_files=_snake_case , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __a =raw_datasets['train'].features['label'].names __a =len(_snake_case ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __a =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __a =TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=_snake_case , ) __a =BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __a ='max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __a =False # Some models have set the order of the labels to use, so let's make sure we do use it. __a ={'Refused': 0, 'Entailed': 1} __a ={0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __a =min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(_snake_case : Tuple ): # Tokenize the texts def _convert_table_text_to_pandas(_snake_case : Optional[Any] ): __a =[_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] __a =pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __a =examples['statement'] __a =list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) __a =tokenizer(_snake_case , _snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case ) __a =examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): __a =raw_datasets.map( _snake_case , batched=_snake_case , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) __a =raw_datasets['train'] if data_args.max_train_samples is not None: __a =train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) __a =raw_datasets['validation'] if data_args.max_eval_samples is not None: __a =eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) __a =raw_datasets['test'] if data_args.max_predict_samples is not None: __a =predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(_snake_case ) ) , 3 ): logger.info(F'Sample {index} of the training set: {train_dataset[index]}.' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_snake_case : EvalPrediction ): __a =p.predictions[0] if isinstance(p.predictions , _snake_case ) else p.predictions __a =np.argmax(_snake_case , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __a =default_data_collator elif training_args.fpaa: __a =DataCollatorWithPadding(_snake_case , pad_to_multiple_of=8 ) else: __a =None # Initialize our Trainer __a =Trainer( model=_snake_case , args=_snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_snake_case , tokenizer=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: __a =None if training_args.resume_from_checkpoint is not None: __a =training_args.resume_from_checkpoint elif last_checkpoint is not None: __a =last_checkpoint __a =trainer.train(resume_from_checkpoint=_snake_case ) __a =train_result.metrics __a =( data_args.max_train_samples if data_args.max_train_samples is not None else len(_snake_case ) ) __a =min(_snake_case , len(_snake_case ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , _snake_case ) trainer.save_metrics('train' , _snake_case ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __a =trainer.evaluate(eval_dataset=_snake_case ) __a =data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_snake_case ) __a =min(_snake_case , len(_snake_case ) ) trainer.log_metrics('eval' , _snake_case ) trainer.save_metrics('eval' , _snake_case ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __a =predict_dataset.remove_columns('label' ) __a =trainer.predict(_snake_case , metric_key_prefix='predict' ).predictions __a =np.argmax(_snake_case , axis=1 ) __a =os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(_snake_case , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(_snake_case ): __a =label_list[item] writer.write(F'{index}\t{item}\n' ) __a ={'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**_snake_case ) else: trainer.create_model_card(**_snake_case ) def UpperCamelCase_( _snake_case : Union[str, Any] ): """simple docstring""" main() if __name__ == "__main__": main()
308
0
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = """new-model""" if is_tf_available(): class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = NewModelConfig @require_tf class __magic_name__ ( unittest.TestCase ): @slow def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a ='bert-base-cased' __a =AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) __a =TFAutoModel.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def __magic_name__ ( self ) -> str: '''simple docstring''' __a ='bert-base-cased' __a =AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) __a =TFAutoModelForPreTraining.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def __magic_name__ ( self ) -> List[str]: '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a =AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) __a =TFAutoModelForCausalLM.from_pretrained(_A ) __a =TFAutoModelForCausalLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def __magic_name__ ( self ) -> Dict: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a =AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) __a =TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a =AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) __a =TFAutoModelForMaskedLM.from_pretrained(_A ) __a =TFAutoModelForMaskedLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a =AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) __a =TFAutoModelForSeqaSeqLM.from_pretrained(_A ) __a =TFAutoModelForSeqaSeqLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def __magic_name__ ( self ) -> str: '''simple docstring''' # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __a =AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) __a =TFAutoModelForSequenceClassification.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __a =AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) __a =TFAutoModelForQuestionAnswering.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow @require_tensorflow_probability def __magic_name__ ( self ) -> List[str]: '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: __a =AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) __a =TFAutoModelForTableQuestionAnswering.from_pretrained(_A ) __a =TFAutoModelForTableQuestionAnswering.from_pretrained( _A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsInstance(_A , _A ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=_A ) , 1_4410 ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsInstance(_A , _A ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=_A ) , 1_4410 ) def __magic_name__ ( self ) -> str: '''simple docstring''' # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel __a =TFAutoModel.from_pretrained('sgugger/funnel-random-tiny' ) self.assertIsInstance(_A , _A ) __a =copy.deepcopy(model.config ) __a =['FunnelBaseModel'] __a =TFAutoModel.from_config(_A ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A ) __a =TFAutoModel.from_pretrained(_A ) self.assertIsInstance(_A , _A ) def __magic_name__ ( self ) -> int: '''simple docstring''' try: AutoConfig.register('new-model' , _A ) __a =[ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(_A ): auto_class.register(_A , _A ) auto_class.register(_A , _A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): auto_class.register(_A , _A ) # Now that the config is registered, it can be used as any other config with the auto-API __a =BertModelTester(self ).get_config() __a =NewModelConfig(**tiny_config.to_dict() ) __a =auto_class.from_config(_A ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A ) __a =auto_class.from_pretrained(_A ) self.assertIsInstance(_A , _A ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' with self.assertRaisesRegex( _A , 'bert-base is not a local folder and is not a valid model identifier' ): __a =TFAutoModel.from_pretrained('bert-base' ) def __magic_name__ ( self ) -> str: '''simple docstring''' with self.assertRaisesRegex( _A , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): __a =TFAutoModel.from_pretrained(_A , revision='aaaaaa' ) def __magic_name__ ( self ) -> Any: '''simple docstring''' with self.assertRaisesRegex( _A , 'hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin' , ): __a =TFAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def __magic_name__ ( self ) -> Any: '''simple docstring''' with self.assertRaisesRegex(_A , 'Use `from_pt=True` to load this model' ): __a =TFAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' ) def __magic_name__ ( self ) -> Any: '''simple docstring''' # Make sure we have cached the model. __a =TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: __a =TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint __a =TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) with RequestCounter() as counter: __a =TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
357
from __future__ import annotations import time import numpy as np _lowerCAmelCase : List[str] = [8, 5, 9, 7] _lowerCAmelCase : List[str] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] _lowerCAmelCase : List[Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class __magic_name__ : def __init__( self , __snake_case , __snake_case , __snake_case , ) -> None: '''simple docstring''' __a =claim_vector __a =allocated_resources_table __a =maximum_claim_table def __magic_name__ ( self ) -> list[int]: '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def __magic_name__ ( self ) -> list[int]: '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def __magic_name__ ( self ) -> list[list[int]]: '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__snake_case ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def __magic_name__ ( self ) -> dict[int, list[int]]: '''simple docstring''' return {self.__need().index(__snake_case ): i for i in self.__need()} def __magic_name__ ( self , **__snake_case ) -> None: '''simple docstring''' __a =self.__need() __a =self.__allocated_resources_table __a =self.__available_resources() __a =self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: __a =False for each_need in need_list: __a =True for index, need in enumerate(__snake_case ): if need > available_resources[index]: __a =False break if execution: __a =True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __a =original_need_index print(f'Process {process_number + 1} is executing.' ) # remove the process run from stack need_list.remove(__snake_case ) # update available/freed resources stack __a =np.array(__snake_case ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(__snake_case ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( f'P{self.__allocated_resources_table.index(__snake_case ) + 1}' + ' '.join(f'{it:>8}' for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( f'P{self.__maximum_claim_table.index(__snake_case ) + 1}' + ' '.join(f'{it:>8}' for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(__snake_case ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(__snake_case ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
308
0
"""simple docstring""" import unittest from transformers import DonutProcessor _lowerCAmelCase : Optional[int] = 'naver-clova-ix/donut-base' class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =DonutProcessor.from_pretrained(__snake_case ) def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a ={ 'name': 'John Doe', 'age': '99', 'city': 'Atlanta', 'state': 'GA', 'zip': '30301', 'phone': '123-4567', 'nicknames': [{'nickname': 'Johnny'}, {'nickname': 'JD'}], } __a =( '<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>' '<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>' '<s_nicknames><s_nickname>Johnny</s_nickname>' '<sep/><s_nickname>JD</s_nickname></s_nicknames>' ) __a =self.processor.tokenajson(__snake_case ) self.assertDictEqual(__snake_case , __snake_case )
358
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency _lowerCAmelCase : Tuple = { "E": 12.70, "T": 9.06, "A": 8.17, "O": 7.51, "I": 6.97, "N": 6.75, "S": 6.33, "H": 6.09, "R": 5.99, "D": 4.25, "L": 4.03, "C": 2.78, "U": 2.76, "M": 2.41, "W": 2.36, "F": 2.23, "G": 2.02, "Y": 1.97, "P": 1.93, "B": 1.29, "V": 0.98, "K": 0.77, "J": 0.15, "X": 0.15, "Q": 0.10, "Z": 0.07, } _lowerCAmelCase : Optional[int] = "ETAOINSHRDLCUMWFGYPBVKJXQZ" _lowerCAmelCase : Any = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a ={letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def UpperCamelCase_( _snake_case : tuple ): """simple docstring""" return x[0] def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =get_letter_count(_snake_case ) __a ={ freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(_snake_case ) __a ={} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=_snake_case ) __a =''.join(freq_to_letter[freq] ) __a =list(freq_to_letter_str.items() ) freq_pairs.sort(key=_snake_case , reverse=_snake_case ) __a =[freq_pair[1] for freq_pair in freq_pairs] return "".join(_snake_case ) def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =get_frequency_order(_snake_case ) __a =0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
308
0
def UpperCamelCase_( _snake_case : Tuple ): """simple docstring""" __a =1 __a =2 while i * i <= n: __a =0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def UpperCamelCase_( ): """simple docstring""" __a =1 __a =1 while True: i += 1 t_num += i if count_divisors(lowerCAmelCase__ ) > 500: break return t_num if __name__ == "__main__": print(solution())
359
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : int = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'swin2sr' SCREAMING_SNAKE_CASE = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , __snake_case=64 , __snake_case=1 , __snake_case=3 , __snake_case=180 , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=8 , __snake_case=2.0 , __snake_case=True , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.1 , __snake_case="gelu" , __snake_case=False , __snake_case=0.02 , __snake_case=1e-5 , __snake_case=2 , __snake_case=1.0 , __snake_case="1conv" , __snake_case="pixelshuffle" , **__snake_case , ) -> Dict: '''simple docstring''' super().__init__(**__snake_case ) __a =image_size __a =patch_size __a =num_channels __a =embed_dim __a =depths __a =len(__snake_case ) __a =num_heads __a =window_size __a =mlp_ratio __a =qkv_bias __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =drop_path_rate __a =hidden_act __a =use_absolute_embeddings __a =layer_norm_eps __a =initializer_range __a =upscale __a =img_range __a =resi_connection __a =upsampler
308
0
import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __magic_name__ ( __a , unittest.TestCase ): SCREAMING_SNAKE_CASE = PhobertTokenizer SCREAMING_SNAKE_CASE = False def __magic_name__ ( self ) -> str: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __a =['T@@', 'i', 'I', 'R@@', 'r', 'e@@'] __a =dict(zip(a__ , range(len(a__ ) ) ) ) __a =['#version: 0.2', 'l à</w>'] __a ={'unk_token': '<unk>'} __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: for token in vocab_tokens: fp.write(f'{token} {vocab_tokens[token]}\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(a__ ) ) def __magic_name__ ( self , **__snake_case ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **a__ ) def __magic_name__ ( self , __snake_case ) -> List[Any]: '''simple docstring''' __a ='Tôi là VinAI Research' __a ='T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>' return input_text, output_text def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __a ='Tôi là VinAI Research' __a ='T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'.split() __a =tokenizer.tokenize(a__ ) print(a__ ) self.assertListEqual(a__ , a__ ) __a =tokens + [tokenizer.unk_token] __a =[4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ )
360
import os def UpperCamelCase_( _snake_case : str = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(_snake_case ) , _snake_case ) ) as input_file: __a =[ [int(_snake_case ) for element in line.split(',' )] for line in input_file.readlines() ] __a =len(_snake_case ) __a =len(matrix[0] ) __a =[[-1 for _ in range(_snake_case )] for _ in range(_snake_case )] for i in range(_snake_case ): __a =matrix[i][0] for j in range(1 , _snake_case ): for i in range(_snake_case ): __a =minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _snake_case ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
308
0
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated _lowerCAmelCase : List[Any] = collections.namedtuple("_Datasets", ["train", "validation", "test"]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ _lowerCAmelCase : List[Any] = "https://storage.googleapis.com/cvdf-datasets/mnist/" def UpperCamelCase_( _snake_case : Optional[Any] ): """simple docstring""" __a =numpy.dtype(numpy.uintaa ).newbyteorder('>' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=_snake_case )[0] @deprecated(_snake_case , 'Please use tf.data to implement this functionality.' ) def UpperCamelCase_( _snake_case : int ): """simple docstring""" print('Extracting' , f.name ) with gzip.GzipFile(fileobj=_snake_case ) as bytestream: __a =_readaa(_snake_case ) if magic != 2051: raise ValueError( 'Invalid magic number %d in MNIST image file: %s' % (magic, f.name) ) __a =_readaa(_snake_case ) __a =_readaa(_snake_case ) __a =_readaa(_snake_case ) __a =bytestream.read(rows * cols * num_images ) __a =numpy.frombuffer(_snake_case , dtype=numpy.uinta ) __a =data.reshape(_snake_case , _snake_case , _snake_case , 1 ) return data @deprecated(_snake_case , 'Please use tf.one_hot on tensors.' ) def UpperCamelCase_( _snake_case : Dict , _snake_case : Tuple ): """simple docstring""" __a =labels_dense.shape[0] __a =numpy.arange(_snake_case ) * num_classes __a =numpy.zeros((num_labels, num_classes) ) __a =1 return labels_one_hot @deprecated(_snake_case , 'Please use tf.data to implement this functionality.' ) def UpperCamelCase_( _snake_case : Union[str, Any] , _snake_case : List[Any]=False , _snake_case : Dict=10 ): """simple docstring""" print('Extracting' , f.name ) with gzip.GzipFile(fileobj=_snake_case ) as bytestream: __a =_readaa(_snake_case ) if magic != 2049: raise ValueError( 'Invalid magic number %d in MNIST label file: %s' % (magic, f.name) ) __a =_readaa(_snake_case ) __a =bytestream.read(_snake_case ) __a =numpy.frombuffer(_snake_case , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(_snake_case , _snake_case ) return labels class __magic_name__ : @deprecated( __A , 'Please use alternatives such as official/mnist/_DataSet.py' ' from tensorflow/models.' , ) def __init__( self , __snake_case , __snake_case , __snake_case=False , __snake_case=False , __snake_case=dtypes.floataa , __snake_case=True , __snake_case=None , ) -> Dict: '''simple docstring''' __a =random_seed.get_seed(__A ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) __a =dtypes.as_dtype(__A ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('Invalid image dtype %r, expected uint8 or float32' % dtype ) if fake_data: __a =1_0000 __a =one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'images.shape: {images.shape} labels.shape: {labels.shape}' __a =images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 __a =images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. __a =images.astype(numpy.floataa ) __a =numpy.multiply(__A , 1.0 / 255.0 ) __a =images __a =labels __a =0 __a =0 @property def __magic_name__ ( self ) -> Any: '''simple docstring''' return self._images @property def __magic_name__ ( self ) -> Tuple: '''simple docstring''' return self._labels @property def __magic_name__ ( self ) -> Dict: '''simple docstring''' return self._num_examples @property def __magic_name__ ( self ) -> Any: '''simple docstring''' return self._epochs_completed def __magic_name__ ( self , __snake_case , __snake_case=False , __snake_case=True ) -> str: '''simple docstring''' if fake_data: __a =[1] * 784 __a =[1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(__A )], [fake_label for _ in range(__A )], ) __a =self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: __a =numpy.arange(self._num_examples ) numpy.random.shuffle(__A ) __a =self.images[perma] __a =self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch __a =self._num_examples - start __a =self._images[start : self._num_examples] __a =self._labels[start : self._num_examples] # Shuffle the data if shuffle: __a =numpy.arange(self._num_examples ) numpy.random.shuffle(__A ) __a =self.images[perm] __a =self.labels[perm] # Start next epoch __a =0 __a =batch_size - rest_num_examples __a =self._index_in_epoch __a =self._images[start:end] __a =self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size __a =self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(_snake_case , 'Please write your own downloading logic.' ) def UpperCamelCase_( _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : List[str] ): """simple docstring""" if not gfile.Exists(_snake_case ): gfile.MakeDirs(_snake_case ) __a =os.path.join(_snake_case , _snake_case ) if not gfile.Exists(_snake_case ): urllib.request.urlretrieve(_snake_case , _snake_case ) # noqa: S310 with gfile.GFile(_snake_case ) as f: __a =f.size() print('Successfully downloaded' , _snake_case , _snake_case , 'bytes.' ) return filepath @deprecated( _snake_case , 'Please use alternatives such as:' ' tensorflow_datasets.load(\'mnist\')' ) def UpperCamelCase_( _snake_case : Union[str, Any] , _snake_case : str=False , _snake_case : Tuple=False , _snake_case : Union[str, Any]=dtypes.floataa , _snake_case : Union[str, Any]=True , _snake_case : List[Any]=5000 , _snake_case : Optional[Any]=None , _snake_case : Optional[Any]=DEFAULT_SOURCE_URL , ): """simple docstring""" if fake_data: def fake(): return _DataSet( [] , [] , fake_data=_snake_case , one_hot=_snake_case , dtype=_snake_case , seed=_snake_case ) __a =fake() __a =fake() __a =fake() return _Datasets(train=_snake_case , validation=_snake_case , test=_snake_case ) if not source_url: # empty string check __a =DEFAULT_SOURCE_URL __a ='''train-images-idx3-ubyte.gz''' __a ='''train-labels-idx1-ubyte.gz''' __a ='''t10k-images-idx3-ubyte.gz''' __a ='''t10k-labels-idx1-ubyte.gz''' __a =_maybe_download( _snake_case , _snake_case , source_url + train_images_file ) with gfile.Open(_snake_case , 'rb' ) as f: __a =_extract_images(_snake_case ) __a =_maybe_download( _snake_case , _snake_case , source_url + train_labels_file ) with gfile.Open(_snake_case , 'rb' ) as f: __a =_extract_labels(_snake_case , one_hot=_snake_case ) __a =_maybe_download( _snake_case , _snake_case , source_url + test_images_file ) with gfile.Open(_snake_case , 'rb' ) as f: __a =_extract_images(_snake_case ) __a =_maybe_download( _snake_case , _snake_case , source_url + test_labels_file ) with gfile.Open(_snake_case , 'rb' ) as f: __a =_extract_labels(_snake_case , one_hot=_snake_case ) if not 0 <= validation_size <= len(_snake_case ): __a =( '''Validation size should be between 0 and ''' F'{len(_snake_case )}. Received: {validation_size}.' ) raise ValueError(_snake_case ) __a =train_images[:validation_size] __a =train_labels[:validation_size] __a =train_images[validation_size:] __a =train_labels[validation_size:] __a ={'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} __a =_DataSet(_snake_case , _snake_case , **_snake_case ) __a =_DataSet(_snake_case , _snake_case , **_snake_case ) __a =_DataSet(_snake_case , _snake_case , **_snake_case ) return _Datasets(train=_snake_case , validation=_snake_case , test=_snake_case )
361
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _lowerCAmelCase : Any = logging.get_logger(__name__) class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , *__snake_case , **__snake_case ) -> None: '''simple docstring''' warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
308
0
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ : def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=99 , __snake_case=16 , __snake_case=36 , __snake_case=6 , __snake_case=6 , __snake_case=6 , __snake_case=37 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=512 , __snake_case=16 , __snake_case=2 , __snake_case=0.02 , __snake_case=3 , __snake_case=4 , __snake_case=None , ) -> List[str]: '''simple docstring''' __a =parent __a =batch_size __a =seq_length __a =is_training __a =use_input_mask __a =use_token_type_ids __a =use_labels __a =vocab_size __a =embedding_size __a =hidden_size __a =num_hidden_layers __a =num_hidden_groups __a =num_attention_heads __a =intermediate_size __a =hidden_act __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =max_position_embeddings __a =type_vocab_size __a =type_sequence_label_size __a =initializer_range __a =num_labels __a =num_choices __a =scope def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a =None if self.use_input_mask: __a =random_attention_mask([self.batch_size, self.seq_length] ) __a =None if self.use_token_type_ids: __a =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a =None __a =None __a =None if self.use_labels: __a =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a =ids_tensor([self.batch_size] , self.num_choices ) __a =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__ ( self ) -> List[str]: '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> Optional[Any]: '''simple docstring''' __a =AlbertModel(config=__a ) model.to(__a ) model.eval() __a =model(__a , attention_mask=__a , token_type_ids=__a ) __a =model(__a , token_type_ids=__a ) __a =model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> Union[str, Any]: '''simple docstring''' __a =AlbertForPreTraining(config=__a ) model.to(__a ) model.eval() __a =model( __a , attention_mask=__a , token_type_ids=__a , labels=__a , sentence_order_label=__a , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> List[Any]: '''simple docstring''' __a =AlbertForMaskedLM(config=__a ) model.to(__a ) model.eval() __a =model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> Any: '''simple docstring''' __a =AlbertForQuestionAnswering(config=__a ) model.to(__a ) model.eval() __a =model( __a , attention_mask=__a , token_type_ids=__a , start_positions=__a , end_positions=__a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> List[str]: '''simple docstring''' __a =self.num_labels __a =AlbertForSequenceClassification(__a ) model.to(__a ) model.eval() __a =model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> Any: '''simple docstring''' __a =self.num_labels __a =AlbertForTokenClassification(config=__a ) model.to(__a ) model.eval() __a =model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> Any: '''simple docstring''' __a =self.num_choices __a =AlbertForMultipleChoice(config=__a ) model.to(__a ) model.eval() __a =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =model( __a , attention_mask=__a , token_type_ids=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) =config_and_inputs __a ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( { 'feature-extraction': AlbertModel, 'fill-mask': AlbertForMaskedLM, 'question-answering': AlbertForQuestionAnswering, 'text-classification': AlbertForSequenceClassification, 'token-classification': AlbertForTokenClassification, 'zero-shot': AlbertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = True def __magic_name__ ( self , __snake_case , __snake_case , __snake_case=False ) -> Tuple: '''simple docstring''' __a =super()._prepare_for_class(__a , __a , return_labels=__a ) if return_labels: if model_class in get_values(__a ): __a =torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__a ) __a =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a ) return inputs_dict def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =AlbertModelTester(self ) __a =ConfigTester(self , config_class=__a , hidden_size=37 ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def __magic_name__ ( self ) -> int: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__a ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __a =type self.model_tester.create_and_check_model(*__a ) @slow def __magic_name__ ( self ) -> int: '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a =AlbertModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @require_torch class __magic_name__ ( unittest.TestCase ): @slow def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =AlbertModel.from_pretrained('albert-base-v2' ) __a =torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) __a =torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __a =model(__a , attention_mask=__a )[0] __a =torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __a ) __a =torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __a , atol=1e-4 ) )
362
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : int = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
0
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) class __magic_name__ ( _snake_case ): SCREAMING_SNAKE_CASE = ['pixel_values'] def __init__( self , __snake_case = True , __snake_case = 32 , __snake_case=PILImageResampling.BILINEAR , __snake_case = True , **__snake_case , ) -> None: '''simple docstring''' __a =do_resize __a =do_rescale __a =size_divisor __a =resample super().__init__(**UpperCamelCase__ ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case = None , **__snake_case ) -> np.ndarray: '''simple docstring''' __a , __a =get_image_size(UpperCamelCase__ ) # Rounds the height and width down to the closest multiple of size_divisor __a =height // size_divisor * size_divisor __a =width // size_divisor * size_divisor __a =resize(UpperCamelCase__ , (new_h, new_w) , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) return image def __magic_name__ ( self , __snake_case , __snake_case , __snake_case = None , **__snake_case ) -> np.ndarray: '''simple docstring''' return rescale(image=UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def __magic_name__ ( self , __snake_case , __snake_case = None , __snake_case = None , __snake_case=None , __snake_case = None , __snake_case = None , __snake_case = ChannelDimension.FIRST , **__snake_case , ) -> BatchFeature: '''simple docstring''' __a =do_resize if do_resize is not None else self.do_resize __a =do_rescale if do_rescale is not None else self.do_rescale __a =size_divisor if size_divisor is not None else self.size_divisor __a =resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) __a =make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. __a =[to_numpy_array(UpperCamelCase__ ) for img in images] if do_resize: __a =[self.resize(UpperCamelCase__ , size_divisor=UpperCamelCase__ , resample=UpperCamelCase__ ) for image in images] if do_rescale: __a =[self.rescale(UpperCamelCase__ , scale=1 / 255 ) for image in images] __a =[to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] __a ={'pixel_values': images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
363
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'yolos' def __init__( self , __snake_case=768 , __snake_case=12 , __snake_case=12 , __snake_case=3072 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.02 , __snake_case=1e-12 , __snake_case=[512, 864] , __snake_case=16 , __snake_case=3 , __snake_case=True , __snake_case=100 , __snake_case=True , __snake_case=False , __snake_case=1 , __snake_case=5 , __snake_case=2 , __snake_case=5 , __snake_case=2 , __snake_case=0.1 , **__snake_case , ) -> str: '''simple docstring''' super().__init__(**__snake_case ) __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =intermediate_size __a =hidden_act __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =initializer_range __a =layer_norm_eps __a =image_size __a =patch_size __a =num_channels __a =qkv_bias __a =num_detection_tokens __a =use_mid_position_embeddings __a =auxiliary_loss # Hungarian matcher __a =class_cost __a =bbox_cost __a =giou_cost # Loss coefficients __a =bbox_loss_coefficient __a =giou_loss_coefficient __a =eos_coefficient class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = version.parse('1.11' ) @property def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __magic_name__ ( self ) -> float: '''simple docstring''' return 1e-4 @property def __magic_name__ ( self ) -> int: '''simple docstring''' return 12
308
0
from scipy.stats import pearsonr import datasets _lowerCAmelCase : List[str] = "\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n" _lowerCAmelCase : Any = "\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric(\"pearsonr\")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results['pearsonr'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric(\"pearsonr\")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n ['p-value', 'pearsonr']\n >>> print(round(results['pearsonr'], 2))\n -0.74\n >>> print(round(results['p-value'], 2))\n 0.15\n" _lowerCAmelCase : Dict = "\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'] , ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case=False ) -> Dict: '''simple docstring''' if return_pvalue: __a =pearsonr(_A , _A ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(_A , _A )[0] )}
364
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def UpperCamelCase_( _snake_case : Optional[Any] ): """simple docstring""" __a =model.config __a =DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) __a =MBartConfig( is_decoder=_snake_case , is_encoder_decoder=_snake_case , add_cross_attention=_snake_case , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=_snake_case , add_final_layer_norm=_snake_case , ) return encoder_config, decoder_config def UpperCamelCase_( _snake_case : Tuple ): """simple docstring""" if "encoder.model" in name: __a =name.replace('encoder.model' , 'encoder' ) if "decoder.model" in name: __a =name.replace('decoder.model' , 'decoder' ) if "patch_embed.proj" in name: __a =name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __a =name.replace('patch_embed.norm' , 'embeddings.norm' ) if name.startswith('encoder' ): if "layers" in name: __a ='encoder.' + name if "attn.proj" in name: __a =name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "mask" not in name: __a =name.replace('attn' , 'attention.self' ) if "norm1" in name: __a =name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __a =name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __a =name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __a =name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": __a ='encoder.layernorm.weight' if name == "encoder.norm.bias": __a ='encoder.layernorm.bias' return name def UpperCamelCase_( _snake_case : Tuple , _snake_case : str ): """simple docstring""" for key in orig_state_dict.copy().keys(): __a =orig_state_dict.pop(_snake_case ) if "qkv" in key: __a =key.split('.' ) __a =int(key_split[3] ) __a =int(key_split[5] ) __a =model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __a =val[:dim, :] __a =val[dim : dim * 2, :] __a =val[-dim:, :] else: __a =val[:dim] __a =val[dim : dim * 2] __a =val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: __a =val return orig_state_dict def UpperCamelCase_( _snake_case : Tuple , _snake_case : Union[str, Any]=None , _snake_case : List[Any]=False ): """simple docstring""" __a =DonutModel.from_pretrained(_snake_case ).eval() # load HuggingFace model __a , __a =get_configs(_snake_case ) __a =DonutSwinModel(_snake_case ) __a =MBartForCausalLM(_snake_case ) __a =VisionEncoderDecoderModel(encoder=_snake_case , decoder=_snake_case ) model.eval() __a =original_model.state_dict() __a =convert_state_dict(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) # verify results on scanned document __a =load_dataset('hf-internal-testing/example-documents' ) __a =dataset['test'][0]['image'].convert('RGB' ) __a =XLMRobertaTokenizerFast.from_pretrained(_snake_case , from_slow=_snake_case ) __a =DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) __a =DonutProcessor(_snake_case , _snake_case ) __a =processor(_snake_case , return_tensors='pt' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": __a ='<s_docvqa><s_question>{user_input}</s_question><s_answer>' __a ='When is the coffee break?' __a =task_prompt.replace('{user_input}' , _snake_case ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": __a ='<s_rvlcdip>' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: __a ='<s_cord>' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": __a ='s_cord-v2>' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": __a ='<s_zhtrainticket>' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt __a ='hello world' else: raise ValueError('Model name not supported' ) __a =original_model.decoder.tokenizer(_snake_case , add_special_tokens=_snake_case , return_tensors='pt' )[ 'input_ids' ] __a =original_model.encoder.model.patch_embed(_snake_case ) __a , __a =model.encoder.embeddings(_snake_case ) assert torch.allclose(_snake_case , _snake_case , atol=1e-3 ) # verify encoder hidden states __a =original_model.encoder(_snake_case ) __a =model.encoder(_snake_case ).last_hidden_state assert torch.allclose(_snake_case , _snake_case , atol=1e-2 ) # verify decoder hidden states __a =original_model(_snake_case , _snake_case , _snake_case ).logits __a =model(_snake_case , decoder_input_ids=_snake_case ).logits assert torch.allclose(_snake_case , _snake_case , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(_snake_case ) processor.save_pretrained(_snake_case ) if push_to_hub: model.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) processor.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) _lowerCAmelCase : List[Any] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
308
0
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __magic_name__ ( a__ ): SCREAMING_SNAKE_CASE = ["vqvae"] def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case , ) -> List[str]: '''simple docstring''' super().__init__() self.register_modules(unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , mel=SCREAMING_SNAKE_CASE_ , vqvae=SCREAMING_SNAKE_CASE_ ) def __magic_name__ ( self ) -> int: '''simple docstring''' return 50 if isinstance(self.scheduler , SCREAMING_SNAKE_CASE_ ) else 1000 @torch.no_grad() def __call__( self , __snake_case = 1 , __snake_case = None , __snake_case = None , __snake_case = 0 , __snake_case = 0 , __snake_case = None , __snake_case = None , __snake_case = 0 , __snake_case = 0 , __snake_case = None , __snake_case = 0 , __snake_case = None , __snake_case = None , __snake_case=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: '''simple docstring''' __a =steps or self.get_default_steps() self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) __a =step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: __a =(self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: __a =randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=SCREAMING_SNAKE_CASE_ , device=self.device , ) __a =noise __a =None if audio_file is not None or raw_audio is not None: self.mel.load_audio(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __a =self.mel.audio_slice_to_image(SCREAMING_SNAKE_CASE_ ) __a =np.frombuffer(input_image.tobytes() , dtype='uint8' ).reshape( (input_image.height, input_image.width) ) __a =(input_image / 255) * 2 - 1 __a =torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: __a =self.vqvae.encode(torch.unsqueeze(SCREAMING_SNAKE_CASE_ , 0 ) ).latent_dist.sample( generator=SCREAMING_SNAKE_CASE_ )[0] __a =self.vqvae.config.scaling_factor * input_images if start_step > 0: __a =self.scheduler.add_noise(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.scheduler.timesteps[start_step - 1] ) __a =( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) __a =int(mask_start_secs * pixels_per_second ) __a =int(mask_end_secs * pixels_per_second ) __a =self.scheduler.add_noise(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , SCREAMING_SNAKE_CASE_ ): __a =self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )['sample'] else: __a =self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )['sample'] if isinstance(self.scheduler , SCREAMING_SNAKE_CASE_ ): __a =self.scheduler.step( model_output=SCREAMING_SNAKE_CASE_ , timestep=SCREAMING_SNAKE_CASE_ , sample=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , )['prev_sample'] else: __a =self.scheduler.step( model_output=SCREAMING_SNAKE_CASE_ , timestep=SCREAMING_SNAKE_CASE_ , sample=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , )['prev_sample'] if mask is not None: if mask_start > 0: __a =mask[:, step, :, :mask_start] if mask_end > 0: __a =mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance __a =1 / self.vqvae.config.scaling_factor * images __a =self.vqvae.decode(SCREAMING_SNAKE_CASE_ )['sample'] __a =(images / 2 + 0.5).clamp(0 , 1 ) __a =images.cpu().permute(0 , 2 , 3 , 1 ).numpy() __a =(images * 255).round().astype('uint8' ) __a =list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(SCREAMING_SNAKE_CASE_ , mode='RGB' ).convert('L' ) for _ in images) ) __a =[self.mel.image_to_audio(SCREAMING_SNAKE_CASE_ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(SCREAMING_SNAKE_CASE_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(SCREAMING_SNAKE_CASE_ ) ) @torch.no_grad() def __magic_name__ ( self , __snake_case , __snake_case = 50 ) -> np.ndarray: '''simple docstring''' assert isinstance(self.scheduler , SCREAMING_SNAKE_CASE_ ) self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) __a =np.array( [np.frombuffer(image.tobytes() , dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) __a =(sample / 255) * 2 - 1 __a =torch.Tensor(SCREAMING_SNAKE_CASE_ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): __a =t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps __a =self.scheduler.alphas_cumprod[t] __a =( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) __a =1 - alpha_prod_t __a =self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )['sample'] __a =(1 - alpha_prod_t_prev) ** 0.5 * model_output __a =(sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) __a =sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def __magic_name__ ( __snake_case , __snake_case , __snake_case ) -> torch.Tensor: '''simple docstring''' __a =acos(torch.dot(torch.flatten(SCREAMING_SNAKE_CASE_ ) , torch.flatten(SCREAMING_SNAKE_CASE_ ) ) / torch.norm(SCREAMING_SNAKE_CASE_ ) / torch.norm(SCREAMING_SNAKE_CASE_ ) ) return sin((1 - alpha) * theta ) * xa / sin(SCREAMING_SNAKE_CASE_ ) + sin(alpha * theta ) * xa / sin(SCREAMING_SNAKE_CASE_ )
365
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer SCREAMING_SNAKE_CASE = False def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' super().setUp() __a =['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] __a =dict(zip(__snake_case , range(len(__snake_case ) ) ) ) __a =['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] __a ={'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__snake_case ) ) def __magic_name__ ( self , **__snake_case ) -> Any: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def __magic_name__ ( self , __snake_case ) -> List[Any]: '''simple docstring''' __a ='adapt act apte' __a ='adapt act apte' return input_text, output_text def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __a ='adapt act apte' __a =['adapt', 'act', 'ap@@', 'te'] __a =tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) __a =[tokenizer.bos_token] + tokens + [tokenizer.eos_token] __a =[0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1384] __a ='I am a small frog.' __a =tok([src_text] , padding=__snake_case , truncation=__snake_case )['input_ids'] __a =tok.batch_decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) __a ='I am a small frog .' __a ='.' __a =tok(__snake_case )['input_ids'] __a =tok(__snake_case )['input_ids'] assert encoded[-1] == encoded_dot[0]
308
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __magic_name__ ( _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = ['image_processor', 'tokenizer'] SCREAMING_SNAKE_CASE = 'CLIPImageProcessor' SCREAMING_SNAKE_CASE = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , __snake_case=None , __snake_case=None , **__snake_case ) -> Optional[Any]: '''simple docstring''' __a =None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __snake_case , ) __a =kwargs.pop('feature_extractor' ) __a =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__snake_case , __snake_case ) def __call__( self , __snake_case=None , __snake_case=None , __snake_case=None , **__snake_case ) -> str: '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: __a =self.tokenizer(__snake_case , return_tensors=__snake_case , **__snake_case ) if images is not None: __a =self.image_processor(__snake_case , return_tensors=__snake_case , **__snake_case ) if text is not None and images is not None: __a =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__snake_case ) , tensor_type=__snake_case ) def __magic_name__ ( self , *__snake_case , **__snake_case ) -> Dict: '''simple docstring''' return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def __magic_name__ ( self , *__snake_case , **__snake_case ) -> int: '''simple docstring''' return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =self.tokenizer.model_input_names __a =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __magic_name__ ( self ) -> Any: '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __snake_case , ) return self.image_processor_class @property def __magic_name__ ( self ) -> Any: '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __snake_case , ) return self.image_processor
366
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __magic_name__ ( unittest.TestCase , lowerCAmelCase_ ): def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =load_tool('text-to-speech' ) self.tool.setup() def __magic_name__ ( self ) -> Dict: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) __a =self.tool('hey' ) __a =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) __a =self.tool('hey' ) __a =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) )
308
0
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def UpperCamelCase_( _snake_case : Optional[int] , _snake_case : List[Any]=0.999 , _snake_case : Tuple="cosine" , ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(_snake_case : Optional[int] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_snake_case : Dict ): return math.exp(t * -12.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) __a =[] for i in range(_snake_case ): __a =i / num_diffusion_timesteps __a =(i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_snake_case ) / alpha_bar_fn(_snake_case ) , _snake_case ) ) return torch.tensor(_snake_case , dtype=torch.floataa ) class __magic_name__ ( UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE = [e.name for e in KarrasDiffusionSchedulers] SCREAMING_SNAKE_CASE = 2 @register_to_config def __init__( self , __snake_case = 1000 , __snake_case = 0.0_0085 , __snake_case = 0.012 , __snake_case = "linear" , __snake_case = None , __snake_case = "epsilon" , __snake_case = "linspace" , __snake_case = 0 , ) -> Optional[int]: '''simple docstring''' if trained_betas is not None: __a =torch.tensor(__lowercase , dtype=torch.floataa ) elif beta_schedule == "linear": __a =torch.linspace(__lowercase , __lowercase , __lowercase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __a =( torch.linspace(beta_start**0.5 , beta_end**0.5 , __lowercase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __a =betas_for_alpha_bar(__lowercase ) else: raise NotImplementedError(f'{beta_schedule} does is not implemented for {self.__class__}' ) __a =1.0 - self.betas __a =torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(__lowercase , __lowercase , __lowercase ) def __magic_name__ ( self , __snake_case , __snake_case=None ) -> Any: '''simple docstring''' if schedule_timesteps is None: __a =self.timesteps __a =(schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __a =1 if len(__lowercase ) > 1 else 0 else: __a =timestep.cpu().item() if torch.is_tensor(__lowercase ) else timestep __a =self._index_counter[timestep_int] return indices[pos].item() @property def __magic_name__ ( self ) -> Tuple: '''simple docstring''' # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __magic_name__ ( self , __snake_case , __snake_case , ) -> torch.FloatTensor: '''simple docstring''' __a =self.index_for_timestep(__lowercase ) if self.state_in_first_order: __a =self.sigmas[step_index] else: __a =self.sigmas_interpol[step_index] __a =sample / ((sigma**2 + 1) ** 0.5) return sample def __magic_name__ ( self , __snake_case , __snake_case = None , __snake_case = None , ) -> Tuple: '''simple docstring''' __a =num_inference_steps __a =num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __a =np.linspace(0 , num_train_timesteps - 1 , __lowercase , dtype=__lowercase )[::-1].copy() elif self.config.timestep_spacing == "leading": __a =num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __a =(np.arange(0 , __lowercase ) * step_ratio).round()[::-1].copy().astype(__lowercase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __a =num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __a =(np.arange(__lowercase , 0 , -step_ratio )).round().copy().astype(__lowercase ) timesteps -= 1 else: raise ValueError( f'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' ) __a =np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __a =torch.from_numpy(np.log(__lowercase ) ).to(__lowercase ) __a =np.interp(__lowercase , np.arange(0 , len(__lowercase ) ) , __lowercase ) __a =np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __a =torch.from_numpy(__lowercase ).to(device=__lowercase ) # interpolate sigmas __a =sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() __a =torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __a =torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(__lowercase ).startswith('mps' ): # mps does not support float64 __a =torch.from_numpy(__lowercase ).to(__lowercase , dtype=torch.floataa ) else: __a =torch.from_numpy(__lowercase ).to(__lowercase ) # interpolate timesteps __a =self.sigma_to_t(__lowercase ).to(__lowercase , dtype=timesteps.dtype ) __a =torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() __a =torch.cat([timesteps[:1], interleaved_timesteps] ) __a =None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __a =defaultdict(__lowercase ) def __magic_name__ ( self , __snake_case ) -> List[str]: '''simple docstring''' # get log sigma __a =sigma.log() # get distribution __a =log_sigma - self.log_sigmas[:, None] # get sigmas range __a =dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __a =low_idx + 1 __a =self.log_sigmas[low_idx] __a =self.log_sigmas[high_idx] # interpolate sigmas __a =(low - log_sigma) / (low - high) __a =w.clamp(0 , 1 ) # transform interpolation to time range __a =(1 - w) * low_idx + w * high_idx __a =t.view(sigma.shape ) return t @property def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' return self.sample is None def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case = True , ) -> Union[SchedulerOutput, Tuple]: '''simple docstring''' __a =self.index_for_timestep(__lowercase ) # advance index counter by 1 __a =timestep.cpu().item() if torch.is_tensor(__lowercase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __a =self.sigmas[step_index] __a =self.sigmas_interpol[step_index + 1] __a =self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __a =self.sigmas[step_index - 1] __a =self.sigmas_interpol[step_index] __a =self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __a =0 __a =sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __a =sigma_hat if self.state_in_first_order else sigma_interpol __a =sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __a =sigma_hat if self.state_in_first_order else sigma_interpol __a =model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('prediction_type not implemented yet: sample' ) else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __a =(sample - pred_original_sample) / sigma_hat # 3. delta timestep __a =sigma_interpol - sigma_hat # store for 2nd order step __a =sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __a =(sample - pred_original_sample) / sigma_interpol # 3. delta timestep __a =sigma_next - sigma_hat __a =self.sample __a =None __a =sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__lowercase ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , ) -> torch.FloatTensor: '''simple docstring''' # Make sure sigmas and timesteps have the same device and dtype as original_samples __a =self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(__lowercase ): # mps does not support float64 __a =self.timesteps.to(original_samples.device , dtype=torch.floataa ) __a =timesteps.to(original_samples.device , dtype=torch.floataa ) else: __a =self.timesteps.to(original_samples.device ) __a =timesteps.to(original_samples.device ) __a =[self.index_for_timestep(__lowercase , __lowercase ) for t in timesteps] __a =sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __a =sigma.unsqueeze(-1 ) __a =original_samples + noise * sigma return noisy_samples def __len__( self ) -> List[Any]: '''simple docstring''' return self.config.num_train_timesteps
367
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> int: '''simple docstring''' __a =[] __a =[] for i in range(self.num_layers ): __a =self.in_channels if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =resnets __a =attentions if self.add_downsample: __a =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> Optional[Any]: '''simple docstring''' __a =() for resnet, attn in zip(self.resnets , self.attentions ): __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __a =self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> int: '''simple docstring''' __a =[] for i in range(self.num_layers ): __a =self.in_channels if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets if self.add_downsample: __a =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case=True ) -> Optional[int]: '''simple docstring''' __a =() for resnet in self.resnets: __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __a =self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =[] __a =[] for i in range(self.num_layers ): __a =self.in_channels if (i == self.num_layers - 1) else self.out_channels __a =self.prev_output_channel if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =resnets __a =attentions if self.add_upsample: __a =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[Any]: '''simple docstring''' for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states __a =res_hidden_states_tuple[-1] __a =res_hidden_states_tuple[:-1] __a =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __a =self.upsamplers_a(__snake_case ) return hidden_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =[] for i in range(self.num_layers ): __a =self.in_channels if (i == self.num_layers - 1) else self.out_channels __a =self.prev_output_channel if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets if self.add_upsample: __a =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[Any]: '''simple docstring''' for resnet in self.resnets: # pop res hidden states __a =res_hidden_states_tuple[-1] __a =res_hidden_states_tuple[:-1] __a =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __a =self.upsamplers_a(__snake_case ) return hidden_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # there is always at least one resnet __a =[ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] __a =[] for _ in range(self.num_layers ): __a =FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets __a =attentions def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[str]: '''simple docstring''' __a =self.resnets[0](__snake_case , __snake_case ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) return hidden_states
308
0
def UpperCamelCase_( _snake_case : int ): """simple docstring""" __a =n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
368
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_5_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self ) -> int: '''simple docstring''' if self.framework == "pytorch": subprocess.run( f'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding='utf-8' , check=__snake_case , ) assert hasattr(self , 'env' ) def __magic_name__ ( self , __snake_case ) -> int: '''simple docstring''' __a =f'{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}' # distributed data settings __a ={'smdistributed': {'dataparallel': {'enabled': True}}} if self.script != 'run_ddp.py' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__snake_case , instance_count=__snake_case , instance_type=self.instance_type , debugger_hook_config=__snake_case , hyperparameters={**self.env.distributed_hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__snake_case , py_version='py36' , ) def __magic_name__ ( self , __snake_case ) -> Optional[Any]: '''simple docstring''' TrainingJobAnalytics(__snake_case ).export_csv(f'{self.env.test_path}/{job_name}_metrics.csv' ) @parameterized.expand([(2,)] ) def __magic_name__ ( self , __snake_case ) -> Optional[int]: '''simple docstring''' # create estimator __a =self.create_estimator(__snake_case ) # run training estimator.fit() # result dataframe __a =TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __a =list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) __a =list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __a =( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'{estimator.latest_training_job.name}.json' , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , __snake_case )
308
0
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self , __snake_case , __snake_case , __snake_case ) -> Dict: '''simple docstring''' self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) for a, b in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertAlmostEqual(_UpperCAmelCase , _UpperCAmelCase , delta=_UpperCAmelCase ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(_UpperCAmelCase ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2 ) def __magic_name__ ( self ) -> int: '''simple docstring''' __a =None ops.enable_eager_execution_internal() __a =tf.config.list_physical_devices('CPU' ) if len(_UpperCAmelCase ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) __a =tf.config.list_logical_devices(device_type='CPU' ) __a =tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): __a =GradientAccumulator() __a =tf.Variable([4.0, 3.0] ) __a =create_optimizer(5e-5 , 10 , 5 ) __a =tf.Variable([0.0, 0.0] , trainable=_UpperCAmelCase ) def accumulate_on_replica(__snake_case ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(__snake_case , __snake_case ): with strategy.scope(): __a =strategy.experimental_local_results(_UpperCAmelCase ) local_variables[0].assign(_UpperCAmelCase ) local_variables[1].assign(_UpperCAmelCase ) strategy.run(_UpperCAmelCase , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(_UpperCAmelCase ) def _check_local_values(__snake_case , __snake_case ): __a =strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , _UpperCAmelCase , tol=1e-2 ) self.assertListAlmostEqual(values[1].value() , _UpperCAmelCase , tol=1e-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
369
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _lowerCAmelCase : List[Any] = logging.getLogger(__name__) _lowerCAmelCase : Optional[Any] = "Hello world! cécé herlolip" _lowerCAmelCase : str = namedtuple( "BertAbsConfig", [ "temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout", ], ) def UpperCamelCase_( _snake_case : str , _snake_case : List[Any] ): """simple docstring""" __a =BertAbsConfig( temp_dir='.' , finetune_bert=_snake_case , large=_snake_case , share_emb=_snake_case , use_bert_emb=_snake_case , encoder='bert' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) __a =torch.load(_snake_case , lambda _snake_case , _snake_case : storage ) __a =AbsSummarizer(_snake_case , torch.device('cpu' ) , _snake_case ) original.eval() __a =BertAbsSummarizer(_snake_case , torch.device('cpu' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('convert the model' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('Make sure that the models\' outputs are identical' ) __a =BertTokenizer.from_pretrained('bert-base-uncased' ) # prepare the model inputs __a =tokenizer.encode('This is sample éàalj\'-.' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_snake_case )) ) __a =torch.tensor(_snake_case ).unsqueeze(0 ) __a =tokenizer.encode('This is sample 3 éàalj\'-.' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_snake_case )) ) __a =torch.tensor(_snake_case ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __a =encoder_input_ids __a =decoder_input_ids __a =__a =None __a =None __a =__a =None __a =__a =None __a =None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __a =original(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )[0] __a =original.generator(_snake_case ) __a =new_model( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )[0] __a =new_model.generator(_snake_case ) __a =torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_snake_case ) ) __a =torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_snake_case ) ) __a =torch.allclose(_snake_case , _snake_case , atol=1e-3 ) if are_identical: logging.info('all weights are equal up to 1e-3' ) else: raise ValueError('the weights are different. The new model is likely different from the original one.' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('saving the model\'s state dictionary' ) torch.save( new_model.state_dict() , './bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--bertabs_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model.", ) _lowerCAmelCase : Optional[Any] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
308
0
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow _lowerCAmelCase : Dict = logging.getLogger() @unittest.skip('Temporarily disable the doc tests.' ) @require_torch @require_tf @slow class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self , __snake_case , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = True , ) -> Tuple: '''simple docstring''' __a =[file for file in os.listdir(UpperCamelCase__ ) if os.path.isfile(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) )] if identifier is not None: __a =[file for file in files if identifier in file] if n_identifier is not None: if isinstance(UpperCamelCase__ , UpperCamelCase__ ): for n_ in n_identifier: __a =[file for file in files if n_ not in file] else: __a =[file for file in files if n_identifier not in file] __a =ignore_files or [] ignore_files.append('__init__.py' ) __a =[file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , UpperCamelCase__ ) if only_modules: __a =file.split('.' )[0] try: __a =getattr(UpperCamelCase__ , UpperCamelCase__ ) __a =doctest.DocTestSuite(UpperCamelCase__ ) __a =unittest.TextTestRunner().run(UpperCamelCase__ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f'{module_identifier} is not a module.' ) else: __a =doctest.testfile(str('..' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =Path('src/transformers' ) __a ="modeling" __a =[ "modeling_ctrl.py", "modeling_tf_ctrl.py", ] self.analyze_directory(UpperCamelCase__ , identifier=UpperCamelCase__ , ignore_files=UpperCamelCase__ ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =Path('src/transformers' ) __a ="tokenization" self.analyze_directory(UpperCamelCase__ , identifier=UpperCamelCase__ ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =Path('src/transformers' ) __a ="configuration" self.analyze_directory(UpperCamelCase__ , identifier=UpperCamelCase__ ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =Path('src/transformers' ) __a =["configuration", "modeling", "tokenization"] self.analyze_directory(UpperCamelCase__ , n_identifier=UpperCamelCase__ ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =Path('docs/source' ) __a =["favicon.ico"] self.analyze_directory(UpperCamelCase__ , ignore_files=UpperCamelCase__ , only_modules=UpperCamelCase__ )
370
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ : def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=False , __snake_case=False , __snake_case=False , __snake_case=2 , __snake_case=99 , __snake_case=0 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=0.1 , __snake_case=0.1 , __snake_case=512 , __snake_case=2 , __snake_case=0.02 , __snake_case=2 , __snake_case=4 , __snake_case="last" , __snake_case=True , __snake_case=None , __snake_case=0 , ) -> Optional[Any]: '''simple docstring''' __a =parent __a =batch_size __a =seq_length __a =is_training __a =use_input_lengths __a =use_token_type_ids __a =use_labels __a =gelu_activation __a =sinusoidal_embeddings __a =causal __a =asm __a =n_langs __a =vocab_size __a =n_special __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =max_position_embeddings __a =type_sequence_label_size __a =initializer_range __a =num_labels __a =num_choices __a =summary_type __a =use_proj __a =scope __a =bos_token_id def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a =random_attention_mask([self.batch_size, self.seq_length] ) __a =None if self.use_input_lengths: __a =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __a =None if self.use_token_type_ids: __a =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __a =None __a =None __a =None if self.use_labels: __a =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a =ids_tensor([self.batch_size] , 2 ).float() __a =ids_tensor([self.batch_size] , self.num_choices ) __a =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __magic_name__ ( self ) -> Any: '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> List[Any]: '''simple docstring''' __a =XLMModel(config=__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , lengths=__snake_case , langs=__snake_case ) __a =model(__snake_case , langs=__snake_case ) __a =model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Optional[int]: '''simple docstring''' __a =XLMWithLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Dict: '''simple docstring''' __a =XLMForQuestionAnsweringSimple(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) __a =outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> List[Any]: '''simple docstring''' __a =XLMForQuestionAnswering(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , p_mask=__snake_case , ) __a =model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , ) ((__a) , ) =result_with_labels.to_tuple() __a =model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) ((__a) , ) =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Optional[Any]: '''simple docstring''' __a =XLMForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Any: '''simple docstring''' __a =self.num_labels __a =XLMForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Tuple: '''simple docstring''' __a =self.num_choices __a =XLMForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() __a =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) =config_and_inputs __a ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable SCREAMING_SNAKE_CASE = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> int: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __magic_name__ ( self , __snake_case , __snake_case , __snake_case=False ) -> str: '''simple docstring''' __a =super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __a =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) __a =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =XLMModelTester(self ) __a =ConfigTester(self , config_class=__snake_case , emb_dim=37 ) def __magic_name__ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=False , __snake_case=1 ) -> Optional[Any]: '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_attentions in attentions] , [True] * len(__snake_case ) ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__snake_case ): # adds PAD dummy token __a =min_length + idx + 1 __a =min_length + idx + 1 __a =( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__snake_case ) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=False , __snake_case=1 ) -> Dict: '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_hidden_states in hidden_states] , [True] * len(__snake_case ) , ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__snake_case ): # adds PAD dummy token __a =min_length + idx + 1 __a =(batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__snake_case ) , ) pass @slow def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a =XLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class __magic_name__ ( unittest.TestCase ): @slow def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(__snake_case ) __a =torch.tensor([[14, 447]] , dtype=torch.long , device=__snake_case ) # the president __a =[ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __a =model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __snake_case )
308
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowerCAmelCase : List[str] = {'''configuration_encoder_decoder''': ['''EncoderDecoderConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[int] = ['''EncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Any = ['''TFEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Union[str, Any] = ['''FlaxEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys _lowerCAmelCase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
371
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake _lowerCAmelCase : Optional[Any] = numpy.array([0, 0]) _lowerCAmelCase : Dict = numpy.array([0.5, 0.8660254]) _lowerCAmelCase : Any = numpy.array([1, 0]) _lowerCAmelCase : int = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCamelCase_( _snake_case : list[numpy.ndarray] , _snake_case : int ): """simple docstring""" __a =initial_vectors for _ in range(_snake_case ): __a =iteration_step(_snake_case ) return vectors def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =[] for i, start_vector in enumerate(vectors[:-1] ): __a =vectors[i + 1] new_vectors.append(_snake_case ) __a =end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCamelCase_( _snake_case : numpy.ndarray , _snake_case : float ): """simple docstring""" __a =numpy.radians(_snake_case ) __a , __a =numpy.cos(_snake_case ), numpy.sin(_snake_case ) __a =numpy.array(((c, -s), (s, c)) ) return numpy.dot(_snake_case , _snake_case ) def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() __a , __a =zip(*_snake_case ) plt.plot(_snake_case , _snake_case ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : List[Any] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
308
0
import torch from transformers import AutoModel class __magic_name__ ( torch.nn.Module ): def __init__( self , __snake_case="sayef/fsner-bert-base-uncased" ) -> Optional[int]: '''simple docstring''' super(__snake_case , self ).__init__() __a =AutoModel.from_pretrained(__snake_case , return_dict=__snake_case ) __a =torch.nn.CosineSimilarity(3 , 1e-08 ) __a =torch.nn.Softmax(dim=1 ) def __magic_name__ ( self , **__snake_case ) -> Any: '''simple docstring''' return self.bert(**__snake_case ).last_hidden_state def __magic_name__ ( self , __snake_case ) -> Any: '''simple docstring''' return token_embeddings.sum(2 , keepdim=__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case=1 ) -> Optional[Any]: '''simple docstring''' return self.softmax(T * self.cos(__snake_case , __snake_case ) ) def __magic_name__ ( self , __snake_case , __snake_case ) -> Dict: '''simple docstring''' __a =W_supports['sizes'].tolist() __a =W_supports['start_token_id'].item() __a =W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] __a =self.BERT(**__snake_case ) __a =self.BERT(**__snake_case ) __a =None __a =None __a =W_supports['input_ids'] == start_token_id __a =W_supports['input_ids'] == end_token_id for i, size in enumerate(__snake_case ): if i == 0: __a =0 else: __a =support_sizes[i - 1] __a =S[s : s + size][start_token_masks[s : s + size]] __a =S[s : s + size][end_token_masks[s : s + size]] __a =torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) __a =torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: __a =torch.vstack((p_starts, p_start) ) __a =torch.vstack((p_ends, p_end) ) else: __a =p_start __a =p_end return p_starts, p_ends
350
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Tuple = { "configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MegatronBertForCausalLM", "MegatronBertForMaskedLM", "MegatronBertForMultipleChoice", "MegatronBertForNextSentencePrediction", "MegatronBertForPreTraining", "MegatronBertForQuestionAnswering", "MegatronBertForSequenceClassification", "MegatronBertForTokenClassification", "MegatronBertModel", "MegatronBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys _lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
0
def UpperCamelCase_( _snake_case : float , _snake_case : float ): """simple docstring""" return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(100, 0.25) = }''') print(f'''{price_plus_tax(125.50, 0.05) = }''')
351
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __magic_name__ : @staticmethod def __magic_name__ ( *__snake_case , **__snake_case ) -> List[str]: '''simple docstring''' pass def UpperCamelCase_( _snake_case : Image ): """simple docstring""" __a =hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __magic_name__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def __magic_name__ ( self , __snake_case , __snake_case , __snake_case ) -> Dict: '''simple docstring''' __a =DepthEstimationPipeline(model=__snake_case , image_processor=__snake_case ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __magic_name__ ( self , __snake_case , __snake_case ) -> Tuple: '''simple docstring''' __a =depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , __snake_case ) import datasets __a =datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) __a =depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , __snake_case , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' pass @slow @require_torch def __magic_name__ ( self ) -> int: '''simple docstring''' __a ='Intel/dpt-large' __a =pipeline('depth-estimation' , model=__snake_case ) __a =depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) __a =hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.662 ) @require_torch def __magic_name__ ( self ) -> Any: '''simple docstring''' # This is highly irregular to have no small tests. self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
308
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 4_2 SCREAMING_SNAKE_CASE = 4_2 SCREAMING_SNAKE_CASE = 4_2 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
352
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _lowerCAmelCase : Optional[int] = logging.getLogger(__name__) _lowerCAmelCase : Any = "pytorch_model.bin" @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co.'} , ) @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field(metadata={'help': 'A csv or a json file containing the training data.'} ) SCREAMING_SNAKE_CASE = dataclasses.field(metadata={'help': 'A csv or a json file containing the data to predict on.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the validation data.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'The name of the task to train on.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'The list of labels for the task.'} ) @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field( metadata={'help': 'The output directory where the model predictions and checkpoints will be written.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default='accuracy' , metadata={'help': 'The evaluation metric used for the task.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default='no' , metadata={ 'help': 'The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]' } , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=1_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0 , metadata={ 'help': 'How much the specified evaluation metric must improve to satisfy early stopping conditions.' } , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the confidence score.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the validation performance.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to fine-tune on labeled data after pseudo training.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0 , metadata={'help': 'Confidence threshold for pseudo-labeled data filtering.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=1_0_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Random seed for initialization.'} , ) def UpperCamelCase_( _snake_case : int , _snake_case : str , _snake_case : Optional[int] , _snake_case : str , _snake_case : Union[str, Any] , _snake_case : List[Any] ): """simple docstring""" __a =datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: __a =dataset.filter(lambda _snake_case : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 __a =int(eval_result * len(_snake_case ) ) print(_snake_case ) __a =dataset.sort('probability' , reverse=_snake_case ) __a =dataset.select(range(_snake_case ) ) __a =dataset.remove_columns(['label', 'probability'] ) __a =dataset.rename_column('prediction' , 'label' ) __a =dataset.map(lambda _snake_case : {"label": idalabel[example["label"]]} ) __a =dataset.shuffle(seed=args.seed ) __a =os.path.join(_snake_case , F'train_pseudo.{args.data_file_extension}' ) if args.data_file_extension == "csv": dataset.to_csv(_snake_case , index=_snake_case ) else: dataset.to_json(_snake_case ) def UpperCamelCase_( _snake_case : List[Any] , _snake_case : str , _snake_case : int , _snake_case : Optional[int] , **_snake_case : List[str] ): """simple docstring""" __a =Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() __a =STModelArguments(model_name_or_path=_snake_case ) __a =STDataArguments(train_file=_snake_case , infer_file=_snake_case ) __a =STTrainingArguments(output_dir=_snake_case ) __a =argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(_snake_case ).items(): setattr(_snake_case , _snake_case , _snake_case ) for key, value in kwargs.items(): if hasattr(_snake_case , _snake_case ): setattr(_snake_case , _snake_case , _snake_case ) # Sanity checks __a ={} __a =None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None __a =args.train_file __a =args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None __a =args.eval_file for key in data_files: __a =data_files[key].split('.' )[-1] assert extension in ["csv", "json"], F'`{key}_file` should be a csv or a json file.' if args.data_file_extension is None: __a =extension else: assert extension == args.data_file_extension, F'`{key}_file` should be a {args.data_file_extension} file`.' assert ( args.eval_metric in datasets.list_metrics() ), F'{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('Creating the initial data directory for self-training...' ) __a =F'{args.output_dir}/self-train_iter-{{}}'.format __a =data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=_snake_case ) os.makedirs(_snake_case , exist_ok=_snake_case ) accelerator.wait_for_everyone() __a =None __a =None __a =0 __a =False # Show the progress bar __a =tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): __a =data_dir_format(_snake_case ) assert os.path.exists(_snake_case ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 __a =os.path.join(_snake_case , 'stage-1' ) __a ={ 'accelerator': accelerator, 'model_name_or_path': args.model_name_or_path, 'cache_dir': args.cache_dir, 'do_train': True, 'train_file': data_files['train'] if iteration == 0 else data_files['train_pseudo'], 'do_eval': True if args.eval_file is not None else False, 'eval_file': data_files['eval'], 'do_predict': True, 'infer_file': data_files['infer'], 'task_name': args.task_name, 'label_list': args.label_list, 'output_dir': current_output_dir, 'eval_metric': args.eval_metric, 'evaluation_strategy': args.evaluation_strategy, 'early_stopping_patience': args.early_stopping_patience, 'early_stopping_threshold': args.early_stopping_threshold, 'seed': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(_snake_case , _snake_case ): arguments_dict.update({key: value} ) __a =os.path.join(_snake_case , 'best-checkpoint' , _snake_case ) if os.path.exists(_snake_case ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.' , _snake_case , _snake_case , ) else: logger.info('***** Running self-training: iteration: %d, stage: 1 *****' , _snake_case ) finetune(**_snake_case ) accelerator.wait_for_everyone() assert os.path.exists(_snake_case ) logger.info('Self-training job completed: iteration: %d, stage: 1.' , _snake_case ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data __a =os.path.join(_snake_case , 'best-checkpoint' ) __a =os.path.join(_snake_case , 'stage-2' ) # Update arguments_dict __a =model_path __a =data_files['train'] __a =current_output_dir __a =os.path.join(_snake_case , 'best-checkpoint' , _snake_case ) if os.path.exists(_snake_case ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.' , _snake_case , _snake_case , ) else: logger.info('***** Running self-training: iteration: %d, stage: 2 *****' , _snake_case ) finetune(**_snake_case ) accelerator.wait_for_everyone() assert os.path.exists(_snake_case ) logger.info('Self-training job completed: iteration: %d, stage: 2.' , _snake_case ) __a =iteration __a =data_dir_format(iteration + 1 ) __a =AutoConfig.from_pretrained(os.path.join(_snake_case , 'best-checkpoint' ) ) __a =config.idalabel __a =os.path.join(_snake_case , 'eval_results_best-checkpoint.json' ) __a =os.path.join(_snake_case , 'test_results_best-checkpoint.json' ) assert os.path.exists(_snake_case ) with open(_snake_case , 'r' ) as f: __a =float(json.load(_snake_case )[args.eval_metric] ) __a =os.path.join(_snake_case , 'infer_output_best-checkpoint.csv' ) assert os.path.exists(_snake_case ) # Loading the dataset from local csv or json files. __a =load_dataset(args.data_file_extension , data_files={'data': data_files['infer']} )['data'] __a =load_dataset('csv' , data_files={'data': infer_output_file} )['data'] if accelerator.is_main_process: os.makedirs(_snake_case , exist_ok=_snake_case ) shutil.copy(_snake_case , os.path.join(_snake_case , F'eval_results_iter-{iteration}.json' ) ) if os.path.exists(_snake_case ): shutil.copy(_snake_case , os.path.join(_snake_case , F'test_results_iter-{iteration}.json' ) ) create_pseudo_labeled_data(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) accelerator.wait_for_everyone() __a =os.path.join(_snake_case , F'train_pseudo.{args.data_file_extension}' ) if args.evaluation_strategy != IntervalStrategy.NO.value: __a =eval_result if best_iteration is None: __a =new_iteration __a =new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: __a =new_iteration __a =new_eval_result __a =0 else: if new_eval_result == best_eval_result: __a =new_iteration __a =new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: __a =True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('Best iteration: %d' , _snake_case ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , _snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_snake_case , F'eval_results_iter-{iteration}.json' ) , os.path.join(_snake_case , 'eval_results_best-iteration.json' ) , ) else: # Assume that the last iteration is the best logger.info('Best iteration: %d' , args.max_selftrain_iterations - 1 ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , _snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_snake_case , F'eval_results_iter-{args.max_selftrain_iterations - 1}.json' ) , os.path.join(_snake_case , 'eval_results_best-iteration.json' ) , )
308
0
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _lowerCAmelCase : Any = 256 class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = ['melgan'] def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ): '''simple docstring''' super().__init__() # From MELGAN __a =math.log(1e-5 ) # Matches MelGAN training. __a =4.0 # Largest value for most examples __a =128 self.register_modules( notes_encoder=__snake_case , continuous_encoder=__snake_case , decoder=__snake_case , scheduler=__snake_case , melgan=__snake_case , ) def __magic_name__ ( self , __snake_case , __snake_case=(-1.0, 1.0) , __snake_case=False ): '''simple docstring''' __a , __a =output_range if clip: __a =torch.clip(__snake_case , self.min_value , self.max_value ) # Scale to [0, 1]. __a =(features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def __magic_name__ ( self , __snake_case , __snake_case=(-1.0, 1.0) , __snake_case=False ): '''simple docstring''' __a , __a =input_range __a =torch.clip(__snake_case , __snake_case , __snake_case ) if clip else outputs # Scale to [0, 1]. __a =(outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def __magic_name__ ( self , __snake_case , __snake_case , __snake_case ): '''simple docstring''' __a =input_tokens > 0 __a , __a =self.notes_encoder( encoder_input_tokens=__snake_case , encoder_inputs_mask=__snake_case ) __a , __a =self.continuous_encoder( encoder_inputs=__snake_case , encoder_inputs_mask=__snake_case ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def __magic_name__ ( self , __snake_case , __snake_case , __snake_case ): '''simple docstring''' __a =noise_time if not torch.is_tensor(__snake_case ): __a =torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(__snake_case ) and len(timesteps.shape ) == 0: __a =timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __a =timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) __a =self.decoder( encodings_and_masks=__snake_case , decoder_input_tokens=__snake_case , decoder_noise_time=__snake_case ) return logits @torch.no_grad() def __call__( self , __snake_case , __snake_case = None , __snake_case = 100 , __snake_case = True , __snake_case = "numpy" , __snake_case = None , __snake_case = 1 , ): '''simple docstring''' if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__snake_case , __snake_case ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(__snake_case )}.' ) __a =np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) __a =np.zeros([1, 0, self.n_dims] , np.floataa ) __a =torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=__snake_case , device=self.device ) for i, encoder_input_tokens in enumerate(__snake_case ): if i == 0: __a =torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. __a =torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=__snake_case , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. __a =ones __a =self.scale_features( __snake_case , output_range=[-1.0, 1.0] , clip=__snake_case ) __a =self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=__snake_case , continuous_mask=__snake_case , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop __a =randn_tensor( shape=encoder_continuous_inputs.shape , generator=__snake_case , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(__snake_case ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __a =self.decode( encodings_and_masks=__snake_case , input_tokens=__snake_case , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 __a =self.scheduler.step(__snake_case , __snake_case , __snake_case , generator=__snake_case ).prev_sample __a =self.scale_to_features(__snake_case , input_range=[-1.0, 1.0] ) __a =mel[:1] __a =mel.cpu().float().numpy() __a =np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__snake_case , __snake_case ) logger.info('Generated segment' , __snake_case ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( 'Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( 'Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.' ) if output_type == "numpy": __a =self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: __a =full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=__snake_case )
353
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Any = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right _lowerCAmelCase : List[Any] = 256_047 _lowerCAmelCase : Dict = 256_145 @require_sentencepiece @require_tokenizers class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = NllbTokenizer SCREAMING_SNAKE_CASE = NllbTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = {} def __magic_name__ ( self ) -> int: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __a =NllbTokenizer(__snake_case , keep_accents=__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self ) -> int: '''simple docstring''' __a =NllbTokenizer(__snake_case , keep_accents=__snake_case ) __a =tokenizer.tokenize('This is a test' ) self.assertListEqual(__snake_case , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __a =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __a =tokenizer.convert_tokens_to_ids(__snake_case ) self.assertListEqual( __snake_case , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __a =tokenizer.convert_ids_to_tokens(__snake_case ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-nllb', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __a =self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __a =self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) __a =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=True __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=False __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) @require_torch def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' if not self.test_seqaseq: return __a =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Longer text that will definitely require truncation. __a =[ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for' ' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons' ' will only worsen the violence and misery for millions of people.', ] __a =[ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al' ' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi' ' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] try: __a =tokenizer.prepare_seqaseq_batch( src_texts=__snake_case , tgt_texts=__snake_case , max_length=3 , max_target_length=10 , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='ron_Latn' , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified __a =tokenizer.prepare_seqaseq_batch( __snake_case , tgt_texts=__snake_case , max_length=3 , return_tensors='pt' ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) __a =tokenizer.prepare_seqaseq_batch( src_texts=__snake_case , max_length=3 , max_target_length=10 , return_tensors='pt' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn('decoder_input_ids' , __snake_case ) @unittest.skip('Unfortunately way too slow to build a BPE with SentencePiece.' ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' pass def __magic_name__ ( self ) -> Tuple: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __a =[AddedToken('<special>' , lstrip=__snake_case )] __a =self.rust_tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case ) __a =tokenizer_r.encode('Hey this is a <special> token' ) __a =tokenizer_r.encode('<special>' , add_special_tokens=__snake_case )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: __a =self.rust_tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case , ) __a =self.tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case ) __a =tokenizer_p.encode('Hey this is a <special> token' ) __a =tokenizer_cr.encode('Hey this is a <special> token' ) self.assertEqual(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class __magic_name__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = 'facebook/nllb-200-distilled-600M' SCREAMING_SNAKE_CASE = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] SCREAMING_SNAKE_CASE = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] SCREAMING_SNAKE_CASE = [ 2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 8_1_6_5, 2_4_8_0_6_6, 1_4_7_3_4, 9_5_0, 1_1_3_5, 1_0_5_7_2_1, 3_5_7_3, 8_3, 2_7_3_5_2, 1_0_8, 4_9_4_8_6, 2, ] @classmethod def __magic_name__ ( cls ) -> Tuple: '''simple docstring''' __a =NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang='eng_Latn' , tgt_lang='ron_Latn' ) __a =1 return cls def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Arab'] , 25_6001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Latn'] , 25_6002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['fra_Latn'] , 25_6057 ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' self.assertIn(__snake_case , self.tokenizer.all_special_ids ) # fmt: off __a =[RO_CODE, 4254, 9_8068, 11_2923, 3_9072, 3909, 713, 10_2767, 26, 1_7314, 3_5642, 1_4683, 3_3118, 2022, 6_6987, 2, 25_6047] # fmt: on __a =self.tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) __a =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertNotIn(self.tokenizer.eos_token , __snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , __snake_case ) __a =10 __a =self.tokenizer(__snake_case , max_length=__snake_case , truncation=__snake_case ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , __snake_case ) self.assertEqual(len(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_6203, 3] ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =tempfile.mkdtemp() __a =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__snake_case ) __a =NllbTokenizer.from_pretrained(__snake_case ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __snake_case ) @require_torch def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) __a =shift_tokens_right( batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['ron_Latn'] ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) __a =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) self.assertEqual(__snake_case , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =self.tokenizer(self.src_text , padding=__snake_case , truncation=__snake_case , max_length=3 , return_tensors='pt' ) __a =self.tokenizer( text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=10 , return_tensors='pt' ) __a =targets['input_ids'] __a =shift_tokens_right( __snake_case , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( nested_simplify(__snake_case ) , { # A, test, EOS, en_XX 'input_ids': [[25_6047, 70, 7356, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_6057, } , ) @require_torch def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =True __a =self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2, 25_6047] ) __a =False __a =self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [25_6047, 1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2] )
308
0
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : List[str] = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _lowerCAmelCase : Union[str, Any] = 250_004 _lowerCAmelCase : List[str] = 250_020 @require_sentencepiece @require_tokenizers class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = MBartaaTokenizer SCREAMING_SNAKE_CASE = MBartaaTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True def __magic_name__ ( self ) -> Dict: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __a =MBartaaTokenizer(__snake_case , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a ='<s>' __a =0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(__snake_case ) , 1054 ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1054 ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =MBartaaTokenizer(__snake_case , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=__snake_case ) __a =tokenizer.tokenize('This is a test' ) self.assertListEqual(__snake_case , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __a =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __snake_case , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) __a =tokenizer.convert_tokens_to_ids(__snake_case ) self.assertListEqual( __snake_case , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __a =tokenizer.convert_ids_to_tokens(__snake_case ) self.assertListEqual( __snake_case , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a ={'input_ids': [[25_0004, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [25_0004, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_0004, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name='facebook/mbart-large-50' , revision='d3913889c59cd5c9e456b269c376325eabad57e2' , ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __a =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart50', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __a =self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __a =self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) __a =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=True __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=False __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) @require_torch @require_sentencepiece @require_tokenizers class __magic_name__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = 'facebook/mbart-large-50-one-to-many-mmt' SCREAMING_SNAKE_CASE = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] SCREAMING_SNAKE_CASE = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] SCREAMING_SNAKE_CASE = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2] @classmethod def __magic_name__ ( cls ) -> Optional[Any]: '''simple docstring''' __a =MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' ) __a =1 return cls def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 25_0001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 25_0004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 25_0020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['mr_IN'] , 25_0038 ) def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' self.assertIn(__snake_case , self.tokenizer.all_special_ids ) __a =[RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2] __a =self.tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) __a =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertNotIn(self.tokenizer.eos_token , __snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , __snake_case ) __a =10 __a =self.tokenizer(__snake_case , max_length=__snake_case , truncation=__snake_case ).input_ids[0] self.assertEqual(ids[0] , __snake_case ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> int: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_0053, 25_0001] ) def __magic_name__ ( self ) -> int: '''simple docstring''' __a =tempfile.mkdtemp() __a =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__snake_case ) __a =MBartaaTokenizer.from_pretrained(__snake_case ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __snake_case ) @require_torch def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__snake_case , return_tensors='pt' ) __a =shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def __magic_name__ ( self ) -> int: '''simple docstring''' __a =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) __a =shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) __a =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.tokenizer(self.src_text , padding=__snake_case , truncation=__snake_case , max_length=3 , return_tensors='pt' ) __a =self.tokenizer( text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=10 , return_tensors='pt' ) __a =targets['input_ids'] __a =shift_tokens_right(__snake_case , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(__snake_case ) , { # en_XX, A, test, EOS 'input_ids': [[25_0004, 62, 3034, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_0001, } , )
354
def UpperCamelCase_( _snake_case : str , _snake_case : int ): """simple docstring""" return [sentence[i : i + ngram_size] for i in range(len(_snake_case ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
308
0
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(lowerCAmelCase_ ) , 'Tatoeba directory does not exist.' ) class __magic_name__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =tempfile.mkdtemp() return TatoebaConverter(save_dir=__snake_case ) @slow def __magic_name__ ( self ) -> List[str]: '''simple docstring''' self.resolver.convert_models(['heb-eng'] ) @slow def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a , __a =self.resolver.write_model_card('opus-mt-he-en' , dry_run=__snake_case ) assert mmeta["long_pair"] == "heb-eng"
355
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class __magic_name__ ( pl.LightningModule ): def __init__( self , __snake_case ) -> List[Any]: '''simple docstring''' super().__init__() __a =model __a =2 __a =nn.Linear(self.model.config.hidden_size , self.num_labels ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' pass def UpperCamelCase_( _snake_case : str , _snake_case : str , _snake_case : str ): """simple docstring""" __a =LongformerModel.from_pretrained(_snake_case ) __a =LightningModel(_snake_case ) __a =torch.load(_snake_case , map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model __a =LongformerForQuestionAnswering.from_pretrained(_snake_case ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(_snake_case ) print(F'Conversion successful. Model saved under {pytorch_dump_folder_path}' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowerCAmelCase : Optional[int] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
308
0
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCamelCase_( _snake_case : Any , _snake_case : Optional[int] ): """simple docstring""" __a =old_name if "patch_embed" in old_name: __a , __a , __a =old_name.split('.' ) if layer == "0": __a =old_name.replace('0' , 'convolution1' ) elif layer == "1": __a =old_name.replace('1' , 'batchnorm_before' ) elif layer == "3": __a =old_name.replace('3' , 'convolution2' ) else: __a =old_name.replace('4' , 'batchnorm_after' ) if "network" in old_name and re.search(r'\d\.\d' , _snake_case ): __a =r'\b\d{2}\b' if bool(re.search(_snake_case , _snake_case ) ): __a =re.search(r'\d\.\d\d.' , _snake_case ).group() else: __a =re.search(r'\d\.\d.' , _snake_case ).group() if int(match[0] ) < 6: __a =old_name.replace(_snake_case , '' ) __a =trimmed_name.replace('network' , match[0] + '.meta4D_layers.blocks.' + match[2:-1] ) __a ='intermediate_stages.' + trimmed_name else: __a =old_name.replace(_snake_case , '' ) if int(match[2] ) < num_meta4D_last_stage: __a =trimmed_name.replace('network' , 'meta4D_layers.blocks.' + match[2] ) else: __a =str(int(match[2] ) - num_meta4D_last_stage ) __a =trimmed_name.replace('network' , 'meta3D_layers.blocks.' + layer_index ) if "norm1" in old_name: __a =trimmed_name.replace('norm1' , 'layernorm1' ) elif "norm2" in old_name: __a =trimmed_name.replace('norm2' , 'layernorm2' ) elif "fc1" in old_name: __a =trimmed_name.replace('fc1' , 'linear_in' ) elif "fc2" in old_name: __a =trimmed_name.replace('fc2' , 'linear_out' ) __a ='last_stage.' + trimmed_name elif "network" in old_name and re.search(r'.\d.' , _snake_case ): __a =old_name.replace('network' , 'intermediate_stages' ) if "fc" in new_name: __a =new_name.replace('fc' , 'convolution' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): __a =new_name.replace('norm1' , 'batchnorm_before' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): __a =new_name.replace('norm2' , 'batchnorm_after' ) if "proj" in new_name: __a =new_name.replace('proj' , 'projection' ) if "dist_head" in new_name: __a =new_name.replace('dist_head' , 'distillation_classifier' ) elif "head" in new_name: __a =new_name.replace('head' , 'classifier' ) elif "patch_embed" in new_name: __a ='efficientformer.' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": __a =new_name.replace('norm' , 'layernorm' ) __a ='efficientformer.' + new_name else: __a ='efficientformer.encoder.' + new_name return new_name def UpperCamelCase_( _snake_case : Optional[int] , _snake_case : List[str] ): """simple docstring""" for key in checkpoint.copy().keys(): __a =checkpoint.pop(_snake_case ) __a =val return checkpoint def UpperCamelCase_( ): """simple docstring""" __a ='http://images.cocodataset.org/val2017/000000039769.jpg' __a =Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return image def UpperCamelCase_( _snake_case : Path , _snake_case : Path , _snake_case : Path , _snake_case : bool ): """simple docstring""" __a =torch.load(_snake_case , map_location='cpu' )['model'] __a =EfficientFormerConfig.from_json_file(_snake_case ) __a =EfficientFormerForImageClassificationWithTeacher(_snake_case ) __a ='_'.join(checkpoint_path.split('/' )[-1].split('.' )[0].split('_' )[:-1] ) __a =config.depths[-1] - config.num_metaad_blocks + 1 __a =convert_torch_checkpoint(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) model.eval() __a ={ 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } # prepare image __a =prepare_img() __a =256 __a =224 __a =EfficientFormerImageProcessor( size={'shortest_edge': image_size} , crop_size={'height': crop_size, 'width': crop_size} , resample=pillow_resamplings['bicubic'] , ) __a =processor(images=_snake_case , return_tensors='pt' ).pixel_values # original processing pipeline __a =Compose( [ Resize(_snake_case , interpolation=pillow_resamplings['bicubic'] ), CenterCrop(_snake_case ), ToTensor(), Normalize(_snake_case , _snake_case ), ] ) __a =image_transforms(_snake_case ).unsqueeze(0 ) assert torch.allclose(_snake_case , _snake_case ) __a =model(_snake_case ) __a =outputs.logits __a =(1, 1000) if "l1" in model_name: __a =torch.Tensor( [-0.1_312, 0.4_353, -1.0_499, -0.5_124, 0.4_183, -0.6_793, -1.3_777, -0.0_893, -0.7_358, -2.4_328] ) assert torch.allclose(logits[0, :10] , _snake_case , atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: __a =torch.Tensor( [-1.3_150, -1.5_456, -1.2_556, -0.8_496, -0.7_127, -0.7_897, -0.9_728, -0.3_052, 0.3_751, -0.3_127] ) assert torch.allclose(logits[0, :10] , _snake_case , atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: __a =torch.Tensor( [-1.0_283, -1.4_131, -0.5_644, -1.3_115, -0.5_785, -1.2_049, -0.7_528, 0.1_992, -0.3_822, -0.0_878] ) assert logits.shape == expected_shape else: raise ValueError( F'Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7' ) # Save Checkpoints Path(_snake_case ).mkdir(exist_ok=_snake_case ) model.save_pretrained(_snake_case ) print(F'Checkpoint successfuly converted. Model saved at {pytorch_dump_path}' ) processor.save_pretrained(_snake_case ) print(F'Processor successfuly saved at {pytorch_dump_path}' ) if push_to_hub: print('Pushing model to the hub...' ) model.push_to_hub( repo_id=F'Bearnardd/{pytorch_dump_path}' , commit_message='Add model' , use_temp_dir=_snake_case , ) processor.push_to_hub( repo_id=F'Bearnardd/{pytorch_dump_path}' , commit_message='Add image processor' , use_temp_dir=_snake_case , ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to EfficientFormer pytorch checkpoint.", ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for EfficientFormer model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) parser.set_defaults(push_to_hub=True) _lowerCAmelCase : Optional[Any] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
356
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") _lowerCAmelCase : Optional[Any] = logging.getLogger(__name__) @dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) SCREAMING_SNAKE_CASE = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) SCREAMING_SNAKE_CASE = field( default=1_0_2_4 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the training data.'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the validation data.'} ) SCREAMING_SNAKE_CASE = field(default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the test data.'} ) def __magic_name__ ( self ) -> str: '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: __a =self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __a =self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) SCREAMING_SNAKE_CASE = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def UpperCamelCase_( ): """simple docstring""" __a =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __a , __a , __a =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __a , __a , __a =parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) __a =training_args.get_process_log_level() logger.setLevel(_snake_case ) datasets.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __a =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __a =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __a =load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __a ={'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __a =data_args.train_file.split('.' )[-1] __a =data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __a =data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(F'load a local file for {key}: {data_files[key]}' ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files __a =load_dataset('csv' , data_files=_snake_case , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __a =load_dataset('json' , data_files=_snake_case , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __a =raw_datasets['train'].features['label'].names __a =len(_snake_case ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __a =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __a =TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=_snake_case , ) __a =BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __a ='max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __a =False # Some models have set the order of the labels to use, so let's make sure we do use it. __a ={'Refused': 0, 'Entailed': 1} __a ={0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __a =min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(_snake_case : Tuple ): # Tokenize the texts def _convert_table_text_to_pandas(_snake_case : Optional[Any] ): __a =[_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] __a =pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __a =examples['statement'] __a =list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) __a =tokenizer(_snake_case , _snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case ) __a =examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): __a =raw_datasets.map( _snake_case , batched=_snake_case , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) __a =raw_datasets['train'] if data_args.max_train_samples is not None: __a =train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) __a =raw_datasets['validation'] if data_args.max_eval_samples is not None: __a =eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) __a =raw_datasets['test'] if data_args.max_predict_samples is not None: __a =predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(_snake_case ) ) , 3 ): logger.info(F'Sample {index} of the training set: {train_dataset[index]}.' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_snake_case : EvalPrediction ): __a =p.predictions[0] if isinstance(p.predictions , _snake_case ) else p.predictions __a =np.argmax(_snake_case , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __a =default_data_collator elif training_args.fpaa: __a =DataCollatorWithPadding(_snake_case , pad_to_multiple_of=8 ) else: __a =None # Initialize our Trainer __a =Trainer( model=_snake_case , args=_snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_snake_case , tokenizer=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: __a =None if training_args.resume_from_checkpoint is not None: __a =training_args.resume_from_checkpoint elif last_checkpoint is not None: __a =last_checkpoint __a =trainer.train(resume_from_checkpoint=_snake_case ) __a =train_result.metrics __a =( data_args.max_train_samples if data_args.max_train_samples is not None else len(_snake_case ) ) __a =min(_snake_case , len(_snake_case ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , _snake_case ) trainer.save_metrics('train' , _snake_case ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __a =trainer.evaluate(eval_dataset=_snake_case ) __a =data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_snake_case ) __a =min(_snake_case , len(_snake_case ) ) trainer.log_metrics('eval' , _snake_case ) trainer.save_metrics('eval' , _snake_case ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __a =predict_dataset.remove_columns('label' ) __a =trainer.predict(_snake_case , metric_key_prefix='predict' ).predictions __a =np.argmax(_snake_case , axis=1 ) __a =os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(_snake_case , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(_snake_case ): __a =label_list[item] writer.write(F'{index}\t{item}\n' ) __a ={'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**_snake_case ) else: trainer.create_model_card(**_snake_case ) def UpperCamelCase_( _snake_case : Union[str, Any] ): """simple docstring""" main() if __name__ == "__main__": main()
308
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : str = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[int] = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys _lowerCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
357
from __future__ import annotations import time import numpy as np _lowerCAmelCase : List[str] = [8, 5, 9, 7] _lowerCAmelCase : List[str] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] _lowerCAmelCase : List[Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class __magic_name__ : def __init__( self , __snake_case , __snake_case , __snake_case , ) -> None: '''simple docstring''' __a =claim_vector __a =allocated_resources_table __a =maximum_claim_table def __magic_name__ ( self ) -> list[int]: '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def __magic_name__ ( self ) -> list[int]: '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def __magic_name__ ( self ) -> list[list[int]]: '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__snake_case ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def __magic_name__ ( self ) -> dict[int, list[int]]: '''simple docstring''' return {self.__need().index(__snake_case ): i for i in self.__need()} def __magic_name__ ( self , **__snake_case ) -> None: '''simple docstring''' __a =self.__need() __a =self.__allocated_resources_table __a =self.__available_resources() __a =self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: __a =False for each_need in need_list: __a =True for index, need in enumerate(__snake_case ): if need > available_resources[index]: __a =False break if execution: __a =True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __a =original_need_index print(f'Process {process_number + 1} is executing.' ) # remove the process run from stack need_list.remove(__snake_case ) # update available/freed resources stack __a =np.array(__snake_case ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(__snake_case ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( f'P{self.__allocated_resources_table.index(__snake_case ) + 1}' + ' '.join(f'{it:>8}' for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( f'P{self.__maximum_claim_table.index(__snake_case ) + 1}' + ' '.join(f'{it:>8}' for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(__snake_case ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(__snake_case ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
308
0
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = {"vocab_file": "vocab.txt"} _lowerCAmelCase : Any = { "vocab_file": { "openbmb/cpm-ant-10b": "https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt", }, } _lowerCAmelCase : List[str] = { "openbmb/cpm-ant-10b": 1_024, } def UpperCamelCase_( _snake_case : Dict ): """simple docstring""" __a =collections.OrderedDict() with open(_snake_case , 'r' , encoding='utf-8' ) as reader: __a =reader.readlines() for index, token in enumerate(_snake_case ): __a =token.rstrip('\n' ) __a =index return vocab class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , __snake_case , __snake_case="<unk>" , __snake_case=200 ) -> int: '''simple docstring''' __a =vocab __a =unk_token __a =max_input_chars_per_word def __magic_name__ ( self , __snake_case ) -> Dict: '''simple docstring''' __a =list(__snake_case ) if len(__snake_case ) > self.max_input_chars_per_word: return [self.unk_token] __a =0 __a =[] while start < len(__snake_case ): __a =len(__snake_case ) __a =None while start < end: __a =''.join(chars[start:end] ) if substr in self.vocab: __a =substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(__snake_case ) __a =end return sub_tokens class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] SCREAMING_SNAKE_CASE = False def __init__( self , __snake_case , __snake_case="<d>" , __snake_case="</d>" , __snake_case="<s>" , __snake_case="</s>" , __snake_case="<pad>" , __snake_case="<unk>" , __snake_case="</n>" , __snake_case="</_>" , __snake_case="left" , **__snake_case , ) -> List[str]: '''simple docstring''' requires_backends(self , ['jieba'] ) super().__init__( bod_token=__snake_case , eod_token=__snake_case , bos_token=__snake_case , eos_token=__snake_case , pad_token=__snake_case , unk_token=__snake_case , line_token=__snake_case , space_token=__snake_case , padding_side=__snake_case , **__snake_case , ) __a =bod_token __a =eod_token __a =load_vocab(__snake_case ) __a =self.encoder[space_token] __a =self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] __a =collections.OrderedDict(sorted(self.encoder.items() , key=lambda __snake_case : x[1] ) ) __a ={v: k for k, v in self.encoder.items()} __a =WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __magic_name__ ( self ) -> List[str]: '''simple docstring''' return self.encoder[self.bod_token] @property def __magic_name__ ( self ) -> Tuple: '''simple docstring''' return self.encoder[self.eod_token] @property def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' return self.encoder["\n"] @property def __magic_name__ ( self ) -> int: '''simple docstring''' return len(self.encoder ) def __magic_name__ ( self ) -> str: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self , __snake_case ) -> Union[str, Any]: '''simple docstring''' __a =[] for x in jieba.cut(__snake_case , cut_all=__snake_case ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(__snake_case ) ) return output_tokens def __magic_name__ ( self , __snake_case , **__snake_case ) -> str: '''simple docstring''' __a =[i for i in token_ids if i >= 0] __a =[ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(__snake_case , **__snake_case ) def __magic_name__ ( self , __snake_case ) -> Tuple: '''simple docstring''' return token in self.encoder def __magic_name__ ( self , __snake_case ) -> str: '''simple docstring''' return "".join(__snake_case ) def __magic_name__ ( self , __snake_case ) -> str: '''simple docstring''' return self.encoder.get(__snake_case , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self , __snake_case ) -> List[Any]: '''simple docstring''' return self.decoder.get(__snake_case , self.unk_token ) def __magic_name__ ( self , __snake_case , __snake_case = None ) -> Tuple[str]: '''simple docstring''' if os.path.isdir(__snake_case ): __a =os.path.join( __snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: __a =(filename_prefix + '-' if filename_prefix else '') + save_directory __a =0 if " " in self.encoder: __a =self.encoder[' '] del self.encoder[" "] if "\n" in self.encoder: __a =self.encoder['\n'] del self.encoder["\n"] __a =collections.OrderedDict(sorted(self.encoder.items() , key=lambda __snake_case : x[1] ) ) with open(__snake_case , 'w' , encoding='utf-8' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ' Please check that the vocabulary is not corrupted!' ) __a =token_index writer.write(token + '\n' ) index += 1 return (vocab_file,) def __magic_name__ ( self , __snake_case , __snake_case = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __magic_name__ ( self , __snake_case , __snake_case = None , __snake_case = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is not None: return [1] + ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case )) return [1] + ([0] * len(__snake_case ))
358
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency _lowerCAmelCase : Tuple = { "E": 12.70, "T": 9.06, "A": 8.17, "O": 7.51, "I": 6.97, "N": 6.75, "S": 6.33, "H": 6.09, "R": 5.99, "D": 4.25, "L": 4.03, "C": 2.78, "U": 2.76, "M": 2.41, "W": 2.36, "F": 2.23, "G": 2.02, "Y": 1.97, "P": 1.93, "B": 1.29, "V": 0.98, "K": 0.77, "J": 0.15, "X": 0.15, "Q": 0.10, "Z": 0.07, } _lowerCAmelCase : Optional[int] = "ETAOINSHRDLCUMWFGYPBVKJXQZ" _lowerCAmelCase : Any = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a ={letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def UpperCamelCase_( _snake_case : tuple ): """simple docstring""" return x[0] def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =get_letter_count(_snake_case ) __a ={ freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(_snake_case ) __a ={} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=_snake_case ) __a =''.join(freq_to_letter[freq] ) __a =list(freq_to_letter_str.items() ) freq_pairs.sort(key=_snake_case , reverse=_snake_case ) __a =[freq_pair[1] for freq_pair in freq_pairs] return "".join(_snake_case ) def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =get_frequency_order(_snake_case ) __a =0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
308
0
_lowerCAmelCase : str = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} _lowerCAmelCase : Any = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def UpperCamelCase_( _snake_case : dict[int, list[int]] , _snake_case : int , _snake_case : list[bool] ): """simple docstring""" __a =True __a =[] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(_snake_case , _snake_case , _snake_case ) order.append(_snake_case ) return order def UpperCamelCase_( _snake_case : dict[int, list[int]] , _snake_case : int , _snake_case : list[bool] ): """simple docstring""" __a =True __a =[vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(_snake_case , _snake_case , _snake_case ) return component def UpperCamelCase_( _snake_case : dict[int, list[int]] ): """simple docstring""" __a =len(_snake_case ) * [False] __a ={vert: [] for vert in range(len(_snake_case ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(_snake_case ) __a =[] for i, was_visited in enumerate(_snake_case ): if not was_visited: order += topology_sort(_snake_case , _snake_case , _snake_case ) __a =[] __a =len(_snake_case ) * [False] for i in range(len(_snake_case ) ): __a =order[len(_snake_case ) - i - 1] if not visited[vert]: __a =find_components(_snake_case , _snake_case , _snake_case ) components_list.append(_snake_case ) return components_list
359
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : int = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'swin2sr' SCREAMING_SNAKE_CASE = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , __snake_case=64 , __snake_case=1 , __snake_case=3 , __snake_case=180 , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=8 , __snake_case=2.0 , __snake_case=True , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.1 , __snake_case="gelu" , __snake_case=False , __snake_case=0.02 , __snake_case=1e-5 , __snake_case=2 , __snake_case=1.0 , __snake_case="1conv" , __snake_case="pixelshuffle" , **__snake_case , ) -> Dict: '''simple docstring''' super().__init__(**__snake_case ) __a =image_size __a =patch_size __a =num_channels __a =embed_dim __a =depths __a =len(__snake_case ) __a =num_heads __a =window_size __a =mlp_ratio __a =qkv_bias __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =drop_path_rate __a =hidden_act __a =use_absolute_embeddings __a =layer_norm_eps __a =initializer_range __a =upscale __a =img_range __a =resi_connection __a =upsampler
308
0
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = CanineTokenizer SCREAMING_SNAKE_CASE = False def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' super().setUp() __a =CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' return CanineTokenizer.from_pretrained('google/canine-s' ) def __magic_name__ ( self , **__snake_case ) -> CanineTokenizer: '''simple docstring''' __a =self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) __a =1024 return tokenizer @require_torch def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =self.canine_tokenizer __a =['Life is like a box of chocolates.', 'You never know what you\'re gonna get.'] # fmt: off __a =[5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0] # fmt: on __a =tokenizer(__snake_case , padding=__snake_case , return_tensors='pt' ) self.assertIsInstance(__snake_case , __snake_case ) __a =list(batch.input_ids.numpy()[0] ) self.assertListEqual(__snake_case , __snake_case ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =self.canine_tokenizer __a =['Once there was a man.', 'He wrote a test in HuggingFace Tranformers.'] __a =tokenizer(__snake_case , padding=__snake_case , return_tensors='pt' ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn('input_ids' , __snake_case ) self.assertIn('attention_mask' , __snake_case ) self.assertIn('token_type_ids' , __snake_case ) @require_torch def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =self.canine_tokenizer __a =[ 'What\'s the weater?', 'It\'s about 25 degrees.', ] __a =tokenizer( text_target=__snake_case , max_length=32 , padding='max_length' , truncation=__snake_case , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __a =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __a =tempfile.mkdtemp() __a =' He is very happy, UNwant\u00E9d,running' __a =tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) tokenizer.save_pretrained(__snake_case ) __a =tokenizer.__class__.from_pretrained(__snake_case ) __a =after_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) shutil.rmtree(__snake_case ) __a =self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __a =tempfile.mkdtemp() __a =' He is very happy, UNwant\u00E9d,running' __a =tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __a =chr(0Xe007 ) additional_special_tokens.append(__snake_case ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) __a =tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) tokenizer.save_pretrained(__snake_case ) __a =tokenizer.__class__.from_pretrained(__snake_case ) __a =after_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) self.assertIn(__snake_case , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __a =tokenizer.__class__.from_pretrained(__snake_case , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__snake_case ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =self.get_tokenizers(do_lower_case=__snake_case ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): __a , __a =self.get_clean_sequence(__snake_case ) # a special token for Canine can be defined as follows: __a =0Xe005 __a =chr(__snake_case ) tokenizer.add_special_tokens({'cls_token': special_token} ) __a =tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertEqual(len(__snake_case ) , 1 ) __a =tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__snake_case ) __a =tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) __a =tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) __a =tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertEqual(__snake_case , input_encoded + special_token_id ) __a =tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) self.assertTrue(special_token not in decoded ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.get_tokenizers(do_lower_case=__snake_case ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): __a =chr(0Xe005 ) __a =chr(0Xe006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__snake_case ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({'additional_special_tokens': [SPECIAL_TOKEN_2]} ) __a =tokenizer.tokenize(__snake_case ) __a =tokenizer.tokenize(__snake_case ) self.assertEqual(len(__snake_case ) , 1 ) self.assertEqual(len(__snake_case ) , 1 ) self.assertEqual(token_a[0] , __snake_case ) self.assertEqual(token_a[0] , __snake_case ) @require_tokenizers def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.get_tokenizers(do_lower_case=__snake_case ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # a special token for Canine can be defined as follows: __a =0Xe006 __a =chr(__snake_case ) __a =AddedToken(__snake_case , lstrip=__snake_case ) tokenizer.add_special_tokens({'additional_special_tokens': [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__snake_case ) tokenizer.from_pretrained(__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =[] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__snake_case ) with open(os.path.join(__snake_case , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: __a =json.load(__snake_case ) with open(os.path.join(__snake_case , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: __a =json.load(__snake_case ) # a special token for Canine can be defined as follows: __a =0Xe006 __a =chr(__snake_case ) __a =[new_token_a] __a =[new_token_a] with open(os.path.join(__snake_case , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(__snake_case , __snake_case ) with open(os.path.join(__snake_case , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(__snake_case , __snake_case ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __a =tokenizer_class.from_pretrained(__snake_case , extra_ids=0 ) self.assertIn(__snake_case , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) __a =0Xe007 __a =chr(__snake_case ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __a =[AddedToken(__snake_case , lstrip=__snake_case )] __a =tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , extra_ids=0 ) self.assertIn(__snake_case , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =self.get_tokenizers(do_lower_case=__snake_case ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): __a ='hello world' if self.space_between_special_tokens: __a ='[CLS] hello world [SEP]' else: __a =input __a =tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) __a =tokenizer.decode(__snake_case , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__snake_case , [output, output.lower()] ) def __magic_name__ ( self ) -> str: '''simple docstring''' __a =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): __a =[ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] __a ='a' __a =ord(__snake_case ) for attr in attributes_list: setattr(__snake_case , attr + '_id' , __snake_case ) self.assertEqual(getattr(__snake_case , __snake_case ) , __snake_case ) self.assertEqual(getattr(__snake_case , attr + '_id' ) , __snake_case ) setattr(__snake_case , attr + '_id' , __snake_case ) self.assertEqual(getattr(__snake_case , __snake_case ) , __snake_case ) self.assertEqual(getattr(__snake_case , attr + '_id' ) , __snake_case ) setattr(__snake_case , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(__snake_case , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(__snake_case , 'additional_special_tokens_ids' ) , [] ) __a =0Xe006 __a =chr(__snake_case ) setattr(__snake_case , 'additional_special_tokens_ids' , [additional_special_token_id] ) self.assertListEqual(getattr(__snake_case , 'additional_special_tokens' ) , [additional_special_token] ) self.assertListEqual(getattr(__snake_case , 'additional_special_tokens_ids' ) , [additional_special_token_id] ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' pass def __magic_name__ ( self ) -> List[str]: '''simple docstring''' pass def __magic_name__ ( self ) -> int: '''simple docstring''' pass def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' pass def __magic_name__ ( self ) -> str: '''simple docstring''' pass def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' pass def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' pass def __magic_name__ ( self ) -> Tuple: '''simple docstring''' pass
360
import os def UpperCamelCase_( _snake_case : str = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(_snake_case ) , _snake_case ) ) as input_file: __a =[ [int(_snake_case ) for element in line.split(',' )] for line in input_file.readlines() ] __a =len(_snake_case ) __a =len(matrix[0] ) __a =[[-1 for _ in range(_snake_case )] for _ in range(_snake_case )] for i in range(_snake_case ): __a =matrix[i][0] for j in range(1 , _snake_case ): for i in range(_snake_case ): __a =minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _snake_case ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
308
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : str = { "microsoft/unispeech-sat-base-100h-libri-ft": ( "https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'unispeech-sat' def __init__( self , __snake_case=32 , __snake_case=768 , __snake_case=12 , __snake_case=12 , __snake_case=3072 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=0.1 , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.1 , __snake_case=0.1 , __snake_case=0.02 , __snake_case=1e-5 , __snake_case="group" , __snake_case="gelu" , __snake_case=(512, 512, 512, 512, 512, 512, 512) , __snake_case=(5, 2, 2, 2, 2, 2, 2) , __snake_case=(10, 3, 3, 3, 3, 2, 2) , __snake_case=False , __snake_case=128 , __snake_case=16 , __snake_case=False , __snake_case=True , __snake_case=0.05 , __snake_case=10 , __snake_case=2 , __snake_case=0.0 , __snake_case=10 , __snake_case=0 , __snake_case=320 , __snake_case=2 , __snake_case=0.1 , __snake_case=100 , __snake_case=256 , __snake_case=256 , __snake_case=0.1 , __snake_case="mean" , __snake_case=False , __snake_case=False , __snake_case=256 , __snake_case=(512, 512, 512, 512, 1500) , __snake_case=(5, 3, 3, 1, 1) , __snake_case=(1, 2, 3, 1, 1) , __snake_case=512 , __snake_case=0 , __snake_case=1 , __snake_case=2 , __snake_case=504 , **__snake_case , ) -> Optional[Any]: '''simple docstring''' super().__init__(**__snake_case , pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case ) __a =hidden_size __a =feat_extract_norm __a =feat_extract_activation __a =list(__snake_case ) __a =list(__snake_case ) __a =list(__snake_case ) __a =conv_bias __a =num_conv_pos_embeddings __a =num_conv_pos_embedding_groups __a =len(self.conv_dim ) __a =num_hidden_layers __a =intermediate_size __a =hidden_act __a =num_attention_heads __a =hidden_dropout __a =attention_dropout __a =activation_dropout __a =feat_proj_dropout __a =final_dropout __a =layerdrop __a =layer_norm_eps __a =initializer_range __a =vocab_size __a =num_clusters __a =do_stable_layer_norm __a =use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' f' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __a =apply_spec_augment __a =mask_time_prob __a =mask_time_length __a =mask_time_min_masks __a =mask_feature_prob __a =mask_feature_length __a =mask_feature_min_masks # parameters for pretraining with codevector quantized representations __a =num_codevectors_per_group __a =num_codevector_groups __a =contrastive_logits_temperature __a =feat_quantizer_dropout __a =num_negatives __a =codevector_dim __a =proj_codevector_dim __a =diversity_loss_weight # ctc loss __a =ctc_loss_reduction __a =ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. __a =classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __a =list(__snake_case ) __a =list(__snake_case ) __a =list(__snake_case ) __a =xvector_output_dim @property def __magic_name__ ( self ) -> List[str]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
361
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _lowerCAmelCase : Any = logging.get_logger(__name__) class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , *__snake_case , **__snake_case ) -> None: '''simple docstring''' warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
308
0
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger(__name__) def UpperCamelCase_( _snake_case : Tuple , _snake_case : int=False ): """simple docstring""" __a =OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith('head' ): __a ='segformer.encoder.' + key if key.startswith('backbone' ): __a =key.replace('backbone' , 'segformer.encoder' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 __a =key[key.find('patch_embed' ) + len('patch_embed' )] __a =key.replace(F'patch_embed{idx}' , F'patch_embeddings.{int(_snake_case )-1}' ) if "norm" in key: __a =key.replace('norm' , 'layer_norm' ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 __a =key[key.find('segformer.encoder.layer_norm' ) + len('segformer.encoder.layer_norm' )] __a =key.replace(F'layer_norm{idx}' , F'layer_norm.{int(_snake_case )-1}' ) if "layer_norm1" in key: __a =key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: __a =key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 __a =key[key.find('block' ) + len('block' )] __a =key.replace(F'block{idx}' , F'block.{int(_snake_case )-1}' ) if "attn.q" in key: __a =key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: __a =key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: __a =key.replace('attn' , 'attention.self' ) if "fc1" in key: __a =key.replace('fc1' , 'dense1' ) if "fc2" in key: __a =key.replace('fc2' , 'dense2' ) if "linear_pred" in key: __a =key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: __a =key.replace('linear_fuse.conv' , 'linear_fuse' ) __a =key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 __a =key[key.find('linear_c' ) + len('linear_c' )] __a =key.replace(F'linear_c{idx}' , F'linear_c.{int(_snake_case )-1}' ) if key.startswith('head' ): __a =key.replace('head' , 'classifier' ) __a =value return new_state_dict def UpperCamelCase_( _snake_case : List[Any] , _snake_case : Union[str, Any] ): """simple docstring""" for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) __a =state_dict.pop(F'segformer.encoder.block.{i}.{j}.attention.self.kv.weight' ) __a =state_dict.pop(F'segformer.encoder.block.{i}.{j}.attention.self.kv.bias' ) # next, add keys and values (in that order) to the state dict __a =kv_weight[ : config.hidden_sizes[i], : ] __a =kv_bias[: config.hidden_sizes[i]] __a =kv_weight[ config.hidden_sizes[i] :, : ] __a =kv_bias[ config.hidden_sizes[i] : ] def UpperCamelCase_( ): """simple docstring""" __a ='http://images.cocodataset.org/val2017/000000039769.jpg' __a =Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return image @torch.no_grad() def UpperCamelCase_( _snake_case : Optional[int] , _snake_case : Union[str, Any] , _snake_case : Optional[int] ): """simple docstring""" __a =SegformerConfig() __a =False # set attributes based on model_name __a ='huggingface/label-files' if "segformer" in model_name: __a =model_name[len('segformer.' ) : len('segformer.' ) + 2] if "ade" in model_name: __a =150 __a ='ade20k-id2label.json' __a =(1, 150, 128, 128) elif "city" in model_name: __a =19 __a ='cityscapes-id2label.json' __a =(1, 19, 128, 128) else: raise ValueError(F'Model {model_name} not supported' ) elif "mit" in model_name: __a =True __a =model_name[4:6] __a =1000 __a ='imagenet-1k-id2label.json' __a =(1, 1000) else: raise ValueError(F'Model {model_name} not supported' ) # set config attributes __a =json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='dataset' ) , 'r' ) ) __a ={int(_snake_case ): v for k, v in idalabel.items()} __a =idalabel __a ={v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": __a =[64, 128, 320, 512] __a =256 elif size == "b2": __a =[64, 128, 320, 512] __a =768 __a =[3, 4, 6, 3] elif size == "b3": __a =[64, 128, 320, 512] __a =768 __a =[3, 4, 18, 3] elif size == "b4": __a =[64, 128, 320, 512] __a =768 __a =[3, 8, 27, 3] elif size == "b5": __a =[64, 128, 320, 512] __a =768 __a =[3, 6, 40, 3] else: raise ValueError(F'Size {size} not supported' ) # load image processor (only resize + normalize) __a =SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_snake_case , align=_snake_case , do_random_crop=_snake_case ) # prepare image __a =prepare_img() __a =image_processor(images=_snake_case , return_tensors='pt' ).pixel_values logger.info(F'Converting model {model_name}...' ) # load original state dict if encoder_only: __a =torch.load(_snake_case , map_location=torch.device('cpu' ) ) else: __a =torch.load(_snake_case , map_location=torch.device('cpu' ) )['state_dict'] # rename keys __a =rename_keys(_snake_case , encoder_only=_snake_case ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(_snake_case , _snake_case ) # create HuggingFace model and load state dict if encoder_only: __a =False __a =SegformerForImageClassification(_snake_case ) else: __a =SegformerForSemanticSegmentation(_snake_case ) model.load_state_dict(_snake_case ) model.eval() # forward pass __a =model(_snake_case ) __a =outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": __a =torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": __a =torch.tensor( [ [[-7.5_820, -8.7_231, -8.3_215], [-8.0_600, -10.3_529, -10.0_304], [-7.5_208, -9.4_103, -9.6_239]], [[-12.6_918, -13.8_994, -13.7_137], [-13.3_196, -15.7_523, -15.4_789], [-12.9_343, -14.8_757, -14.9_689]], [[-11.1_911, -11.9_421, -11.3_243], [-11.3_342, -13.6_839, -13.3_581], [-10.3_909, -12.1_832, -12.4_858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": __a =torch.tensor( [ [[-11.8_173, -14.3_850, -16.3_128], [-14.5_648, -16.5_804, -18.6_568], [-14.7_223, -15.7_387, -18.4_218]], [[-15.7_290, -17.9_171, -19.4_423], [-18.3_105, -19.9_448, -21.4_661], [-17.9_296, -18.6_497, -20.7_910]], [[-15.0_783, -17.0_336, -18.2_789], [-16.8_771, -18.6_870, -20.1_612], [-16.2_454, -17.1_426, -19.5_055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": __a =torch.tensor( [ [[-9.0_878, -10.2_081, -10.1_891], [-9.3_144, -10.7_941, -10.9_843], [-9.2_294, -10.3_855, -10.5_704]], [[-12.2_316, -13.9_068, -13.6_102], [-12.9_161, -14.3_702, -14.3_235], [-12.5_233, -13.7_174, -13.7_932]], [[-14.6_275, -15.2_490, -14.9_727], [-14.3_400, -15.9_687, -16.2_827], [-14.1_484, -15.4_033, -15.8_937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": __a =torch.tensor( [ [[-12.3_144, -13.2_447, -14.0_802], [-13.3_614, -14.5_816, -15.6_117], [-13.3_340, -14.4_433, -16.2_219]], [[-19.2_781, -20.4_128, -20.7_506], [-20.6_153, -21.6_566, -22.0_998], [-19.9_800, -21.0_430, -22.1_494]], [[-18.8_739, -19.7_804, -21.1_834], [-20.1_233, -21.6_765, -23.2_944], [-20.0_315, -21.2_641, -23.6_944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": __a =torch.tensor( [ [[-9.5_524, -12.0_835, -11.7_348], [-10.5_229, -13.6_446, -14.5_662], [-9.5_842, -12.8_851, -13.9_414]], [[-15.3_432, -17.5_323, -17.0_818], [-16.3_330, -18.9_255, -19.2_101], [-15.1_340, -17.7_848, -18.3_971]], [[-12.6_072, -14.9_486, -14.6_631], [-13.7_629, -17.0_907, -17.7_745], [-12.7_899, -16.1_695, -17.1_671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": __a =torch.tensor( [ [[-11.9_295, -13.4_057, -14.8_106], [-13.3_431, -14.8_179, -15.3_781], [-14.2_836, -15.5_942, -16.1_588]], [[-11.4_906, -12.8_067, -13.6_564], [-13.1_189, -14.0_500, -14.1_543], [-13.8_748, -14.5_136, -14.8_789]], [[0.5_374, 0.1_067, -0.4_742], [0.1_141, -0.2_255, -0.7_099], [-0.3_000, -0.5_924, -1.3_105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": __a =torch.tensor( [ [[-7.8_217, -9.8_767, -10.1_717], [-9.4_438, -10.9_058, -11.4_047], [-9.7_939, -12.3_495, -12.1_079]], [[-7.1_514, -9.5_336, -10.0_860], [-9.7_776, -11.6_822, -11.8_439], [-10.1_411, -12.7_655, -12.8_972]], [[0.3_021, 0.0_805, -0.2_310], [-0.0_328, -0.1_605, -0.2_714], [-0.1_408, -0.5_477, -0.6_976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": __a =torch.tensor( [ [ [-1.1_3_7_2e0_1, -1.2_7_8_7e0_1, -1.3_4_7_7e0_1], [-1.2_5_3_6e0_1, -1.4_1_9_4e0_1, -1.4_4_0_9e0_1], [-1.3_2_1_7e0_1, -1.4_8_8_8e0_1, -1.5_3_2_7e0_1], ], [ [-1.4_7_9_1e0_1, -1.7_1_2_2e0_1, -1.8_2_7_7e0_1], [-1.7_1_6_3e0_1, -1.9_1_9_2e0_1, -1.9_5_3_3e0_1], [-1.7_8_9_7e0_1, -1.9_9_9_1e0_1, -2.0_3_1_5e0_1], ], [ [7.6_7_2_3e-0_1, 4.1_9_2_1e-0_1, -7.7_8_7_8e-0_2], [4.7_7_7_2e-0_1, 9.5_5_5_7e-0_3, -2.8_0_8_2e-0_1], [3.6_0_3_2e-0_1, -2.4_8_2_6e-0_1, -5.1_1_6_8e-0_1], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": __a =torch.tensor( [ [[-9.4_959, -11.3_087, -11.7_479], [-11.0_025, -12.6_540, -12.3_319], [-11.4_064, -13.0_487, -12.9_905]], [[-9.8_905, -11.3_084, -12.0_854], [-11.1_726, -12.7_698, -12.9_583], [-11.5_985, -13.3_278, -14.1_774]], [[0.2_213, 0.0_192, -0.2_466], [-0.1_731, -0.4_213, -0.4_874], [-0.3_126, -0.6_541, -1.1_389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": __a =torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": __a =torch.tensor( [ [[-16.0_976, -16.4_856, -17.3_962], [-16.6_234, -19.0_342, -19.7_685], [-16.0_900, -18.0_661, -19.1_180]], [[-18.4_750, -18.8_488, -19.5_074], [-19.4_030, -22.1_570, -22.5_977], [-19.1_191, -20.8_486, -22.3_783]], [[-4.5_178, -5.5_037, -6.5_109], [-5.0_884, -7.2_174, -8.0_334], [-4.4_156, -5.8_117, -7.2_970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": __a =torch.tensor( [ [[-14.2_081, -14.4_732, -14.1_977], [-14.5_867, -16.4_423, -16.6_356], [-13.4_441, -14.9_685, -16.8_696]], [[-14.4_576, -14.7_073, -15.0_451], [-15.0_816, -17.6_237, -17.9_873], [-14.4_213, -16.0_199, -18.5_992]], [[-4.7_349, -4.9_588, -5.0_966], [-4.3_210, -6.9_325, -7.2_591], [-3.4_312, -4.7_484, -7.1_917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": __a =torch.tensor( [ [[-11.7_737, -11.9_526, -11.3_273], [-13.6_692, -14.4_574, -13.8_878], [-13.8_937, -14.6_924, -15.9_345]], [[-14.6_706, -14.5_330, -14.1_306], [-16.1_502, -16.8_180, -16.4_269], [-16.8_338, -17.8_939, -20.1_746]], [[1.0_491, 0.8_289, 1.0_310], [1.1_044, 0.5_219, 0.8_055], [1.0_899, 0.6_926, 0.5_590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": __a =torch.tensor( [ [[-12.5_641, -13.4_777, -13.0_684], [-13.9_587, -15.8_983, -16.6_557], [-13.3_109, -15.7_350, -16.3_141]], [[-14.7_074, -15.4_352, -14.5_944], [-16.6_353, -18.1_663, -18.6_120], [-15.1_702, -18.0_329, -18.1_547]], [[-1.7_990, -2.0_951, -1.7_784], [-2.6_397, -3.8_245, -3.9_686], [-1.5_264, -2.8_126, -2.9_316]], ] ) else: __a =logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , _snake_case , atol=1e-2 ) # finally, save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) model.save_pretrained(_snake_case ) image_processor.save_pretrained(_snake_case ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument( "--model_name", default="segformer.b0.512x512.ade.160k", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
362
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : int = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
0
import itertools import string from collections.abc import Generator, Iterable def UpperCamelCase_( _snake_case : Iterable[str] , _snake_case : int ): """simple docstring""" __a =iter(_snake_case ) while True: __a =tuple(itertools.islice(_snake_case , _snake_case ) ) if not chunk: return yield chunk def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =''.join([c.upper() for c in dirty if c in string.ascii_letters] ) __a ='' if len(_snake_case ) < 2: return dirty for i in range(len(_snake_case ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(_snake_case ) & 1: clean += "X" return clean def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a ='ABCDEFGHIKLMNOPQRSTUVWXYZ' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler __a =[] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(_snake_case ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(_snake_case ) return table def UpperCamelCase_( _snake_case : str , _snake_case : str ): """simple docstring""" __a =generate_table(_snake_case ) __a =prepare_input(_snake_case ) __a ='' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_snake_case , 2 ): __a , __a =divmod(table.index(_snake_case ) , 5 ) __a , __a =divmod(table.index(_snake_case ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def UpperCamelCase_( _snake_case : str , _snake_case : str ): """simple docstring""" __a =generate_table(_snake_case ) __a ='' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_snake_case , 2 ): __a , __a =divmod(table.index(_snake_case ) , 5 ) __a , __a =divmod(table.index(_snake_case ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
363
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'yolos' def __init__( self , __snake_case=768 , __snake_case=12 , __snake_case=12 , __snake_case=3072 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.02 , __snake_case=1e-12 , __snake_case=[512, 864] , __snake_case=16 , __snake_case=3 , __snake_case=True , __snake_case=100 , __snake_case=True , __snake_case=False , __snake_case=1 , __snake_case=5 , __snake_case=2 , __snake_case=5 , __snake_case=2 , __snake_case=0.1 , **__snake_case , ) -> str: '''simple docstring''' super().__init__(**__snake_case ) __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =intermediate_size __a =hidden_act __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =initializer_range __a =layer_norm_eps __a =image_size __a =patch_size __a =num_channels __a =qkv_bias __a =num_detection_tokens __a =use_mid_position_embeddings __a =auxiliary_loss # Hungarian matcher __a =class_cost __a =bbox_cost __a =giou_cost # Loss coefficients __a =bbox_loss_coefficient __a =giou_loss_coefficient __a =eos_coefficient class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = version.parse('1.11' ) @property def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __magic_name__ ( self ) -> float: '''simple docstring''' return 1e-4 @property def __magic_name__ ( self ) -> int: '''simple docstring''' return 12
308
0
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'Speech2TextFeatureExtractor' SCREAMING_SNAKE_CASE = 'Speech2TextTokenizer' def __init__( self , __snake_case , __snake_case ) -> Any: '''simple docstring''' super().__init__(__snake_case , __snake_case ) __a =self.feature_extractor __a =False def __call__( self , *__snake_case , **__snake_case ) -> Optional[Any]: '''simple docstring''' # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__snake_case , **__snake_case ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) __a =kwargs.pop('raw_speech' ) else: __a =kwargs.pop('audio' , __snake_case ) __a =kwargs.pop('sampling_rate' , __snake_case ) __a =kwargs.pop('text' , __snake_case ) if len(__snake_case ) > 0: __a =args[0] __a =args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: __a =self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case ) if text is not None: __a =self.tokenizer(__snake_case , **__snake_case ) if text is None: return inputs elif audio is None: return encodings else: __a =encodings['input_ids'] return inputs def __magic_name__ ( self , *__snake_case , **__snake_case ) -> Any: '''simple docstring''' return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def __magic_name__ ( self , *__snake_case , **__snake_case ) -> Optional[int]: '''simple docstring''' return self.tokenizer.decode(*__snake_case , **__snake_case ) @contextmanager def __magic_name__ ( self ) -> List[str]: '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) __a =True __a =self.tokenizer yield __a =self.feature_extractor __a =False
364
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def UpperCamelCase_( _snake_case : Optional[Any] ): """simple docstring""" __a =model.config __a =DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) __a =MBartConfig( is_decoder=_snake_case , is_encoder_decoder=_snake_case , add_cross_attention=_snake_case , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=_snake_case , add_final_layer_norm=_snake_case , ) return encoder_config, decoder_config def UpperCamelCase_( _snake_case : Tuple ): """simple docstring""" if "encoder.model" in name: __a =name.replace('encoder.model' , 'encoder' ) if "decoder.model" in name: __a =name.replace('decoder.model' , 'decoder' ) if "patch_embed.proj" in name: __a =name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __a =name.replace('patch_embed.norm' , 'embeddings.norm' ) if name.startswith('encoder' ): if "layers" in name: __a ='encoder.' + name if "attn.proj" in name: __a =name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "mask" not in name: __a =name.replace('attn' , 'attention.self' ) if "norm1" in name: __a =name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __a =name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __a =name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __a =name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": __a ='encoder.layernorm.weight' if name == "encoder.norm.bias": __a ='encoder.layernorm.bias' return name def UpperCamelCase_( _snake_case : Tuple , _snake_case : str ): """simple docstring""" for key in orig_state_dict.copy().keys(): __a =orig_state_dict.pop(_snake_case ) if "qkv" in key: __a =key.split('.' ) __a =int(key_split[3] ) __a =int(key_split[5] ) __a =model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __a =val[:dim, :] __a =val[dim : dim * 2, :] __a =val[-dim:, :] else: __a =val[:dim] __a =val[dim : dim * 2] __a =val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: __a =val return orig_state_dict def UpperCamelCase_( _snake_case : Tuple , _snake_case : Union[str, Any]=None , _snake_case : List[Any]=False ): """simple docstring""" __a =DonutModel.from_pretrained(_snake_case ).eval() # load HuggingFace model __a , __a =get_configs(_snake_case ) __a =DonutSwinModel(_snake_case ) __a =MBartForCausalLM(_snake_case ) __a =VisionEncoderDecoderModel(encoder=_snake_case , decoder=_snake_case ) model.eval() __a =original_model.state_dict() __a =convert_state_dict(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) # verify results on scanned document __a =load_dataset('hf-internal-testing/example-documents' ) __a =dataset['test'][0]['image'].convert('RGB' ) __a =XLMRobertaTokenizerFast.from_pretrained(_snake_case , from_slow=_snake_case ) __a =DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) __a =DonutProcessor(_snake_case , _snake_case ) __a =processor(_snake_case , return_tensors='pt' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": __a ='<s_docvqa><s_question>{user_input}</s_question><s_answer>' __a ='When is the coffee break?' __a =task_prompt.replace('{user_input}' , _snake_case ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": __a ='<s_rvlcdip>' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: __a ='<s_cord>' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": __a ='s_cord-v2>' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": __a ='<s_zhtrainticket>' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt __a ='hello world' else: raise ValueError('Model name not supported' ) __a =original_model.decoder.tokenizer(_snake_case , add_special_tokens=_snake_case , return_tensors='pt' )[ 'input_ids' ] __a =original_model.encoder.model.patch_embed(_snake_case ) __a , __a =model.encoder.embeddings(_snake_case ) assert torch.allclose(_snake_case , _snake_case , atol=1e-3 ) # verify encoder hidden states __a =original_model.encoder(_snake_case ) __a =model.encoder(_snake_case ).last_hidden_state assert torch.allclose(_snake_case , _snake_case , atol=1e-2 ) # verify decoder hidden states __a =original_model(_snake_case , _snake_case , _snake_case ).logits __a =model(_snake_case , decoder_input_ids=_snake_case ).logits assert torch.allclose(_snake_case , _snake_case , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(_snake_case ) processor.save_pretrained(_snake_case ) if push_to_hub: model.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) processor.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) _lowerCAmelCase : List[Any] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
308
0
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = LayoutLMTokenizer SCREAMING_SNAKE_CASE = LayoutLMTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True def __magic_name__ ( self ) -> int: '''simple docstring''' super().setUp() __a =[ '[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def __magic_name__ ( self , **__snake_case ) -> List[str]: '''simple docstring''' return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def __magic_name__ ( self , __snake_case ) -> Union[str, Any]: '''simple docstring''' __a ='UNwant\u00E9d,running' __a ='unwanted, running' return input_text, output_text def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =self.tokenizer_class(self.vocab_file ) __a =tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(__snake_case , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , [7, 4, 5, 10, 8, 9] ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' pass
365
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer SCREAMING_SNAKE_CASE = False def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' super().setUp() __a =['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] __a =dict(zip(__snake_case , range(len(__snake_case ) ) ) ) __a =['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] __a ={'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__snake_case ) ) def __magic_name__ ( self , **__snake_case ) -> Any: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def __magic_name__ ( self , __snake_case ) -> List[Any]: '''simple docstring''' __a ='adapt act apte' __a ='adapt act apte' return input_text, output_text def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __a ='adapt act apte' __a =['adapt', 'act', 'ap@@', 'te'] __a =tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) __a =[tokenizer.bos_token] + tokens + [tokenizer.eos_token] __a =[0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1384] __a ='I am a small frog.' __a =tok([src_text] , padding=__snake_case , truncation=__snake_case )['input_ids'] __a =tok.batch_decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) __a ='I am a small frog .' __a ='.' __a =tok(__snake_case )['input_ids'] __a =tok(__snake_case )['input_ids'] assert encoded[-1] == encoded_dot[0]
308
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : int = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
366
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __magic_name__ ( unittest.TestCase , lowerCAmelCase_ ): def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =load_tool('text-to-speech' ) self.tool.setup() def __magic_name__ ( self ) -> Dict: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) __a =self.tool('hey' ) __a =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) __a =self.tool('hey' ) __a =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) )
308
0
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def UpperCamelCase_( _snake_case : np.ndarray ): """simple docstring""" return input_array.reshape((input_array.size, 1) ) def UpperCamelCase_( _snake_case : np.ndarray , _snake_case : np.ndarray , _snake_case : int ): """simple docstring""" __a =np.nan for i in range(_snake_case ): __a =features[:, labels == i] __a =data.mean(1 ) # Centralize the data of class i __a =data - column_reshape(_snake_case ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_snake_case , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) __a =np.dot(_snake_case , centered_data.T ) return covariance_sum / features.shape[1] def UpperCamelCase_( _snake_case : np.ndarray , _snake_case : np.ndarray , _snake_case : int ): """simple docstring""" __a =features.mean(1 ) __a =np.nan for i in range(_snake_case ): __a =features[:, labels == i] __a =data.shape[1] __a =data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_snake_case ) - column_reshape(_snake_case ) , (column_reshape(_snake_case ) - column_reshape(_snake_case )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) __a =device_data * np.dot( column_reshape(_snake_case ) - column_reshape(_snake_case ) , (column_reshape(_snake_case ) - column_reshape(_snake_case )).T , ) return covariance_sum / features.shape[1] def UpperCamelCase_( _snake_case : np.ndarray , _snake_case : int ): """simple docstring""" if features.any(): __a =features.mean(1 ) # Center the dataset __a =features - np.reshape(_snake_case , (data_mean.size, 1) ) __a =np.dot(_snake_case , centered_data.T ) / features.shape[1] __a , __a =np.linalg.eigh(_snake_case ) # Take all the columns in the reverse order (-1), and then takes only the first __a =eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space __a =np.dot(filtered_eigenvectors.T , _snake_case ) logging.info('Principal Component Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='%(message)s' , force=_snake_case ) logging.error('Dataset empty' ) raise AssertionError def UpperCamelCase_( _snake_case : np.ndarray , _snake_case : np.ndarray , _snake_case : int , _snake_case : int ): """simple docstring""" assert classes > dimensions # Check if features have been already loaded if features.any: __a , __a =eigh( covariance_between_classes(_snake_case , _snake_case , _snake_case ) , covariance_within_classes(_snake_case , _snake_case , _snake_case ) , ) __a =eigenvectors[:, ::-1][:, :dimensions] __a , __a , __a =np.linalg.svd(_snake_case ) __a =svd_matrix[:, 0:dimensions] __a =np.dot(filtered_svd_matrix.T , _snake_case ) logging.info('Linear Discriminant Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='%(message)s' , force=_snake_case ) logging.error('Dataset empty' ) raise AssertionError def UpperCamelCase_( ): """simple docstring""" __a =np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) __a =np.array([0, 0, 0, 1, 1] ) __a =2 __a =2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_snake_case ) as error_info: __a =linear_discriminant_analysis( _snake_case , _snake_case , _snake_case , _snake_case ) if isinstance(_snake_case , np.ndarray ): raise AssertionError( 'Did not raise AssertionError for dimensions > classes' ) assert error_info.type is AssertionError def UpperCamelCase_( ): """simple docstring""" __a =np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) __a =2 __a =np.array([[6.92_820_323, 8.66_025_404, 10.39_230_485], [3.0, 3.0, 3.0]] ) with pytest.raises(_snake_case ) as error_info: __a =principal_component_analysis(_snake_case , _snake_case ) if not np.allclose(_snake_case , _snake_case ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
367
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> int: '''simple docstring''' __a =[] __a =[] for i in range(self.num_layers ): __a =self.in_channels if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =resnets __a =attentions if self.add_downsample: __a =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> Optional[Any]: '''simple docstring''' __a =() for resnet, attn in zip(self.resnets , self.attentions ): __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __a =self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> int: '''simple docstring''' __a =[] for i in range(self.num_layers ): __a =self.in_channels if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets if self.add_downsample: __a =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case=True ) -> Optional[int]: '''simple docstring''' __a =() for resnet in self.resnets: __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __a =self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =[] __a =[] for i in range(self.num_layers ): __a =self.in_channels if (i == self.num_layers - 1) else self.out_channels __a =self.prev_output_channel if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =resnets __a =attentions if self.add_upsample: __a =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[Any]: '''simple docstring''' for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states __a =res_hidden_states_tuple[-1] __a =res_hidden_states_tuple[:-1] __a =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __a =self.upsamplers_a(__snake_case ) return hidden_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =[] for i in range(self.num_layers ): __a =self.in_channels if (i == self.num_layers - 1) else self.out_channels __a =self.prev_output_channel if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets if self.add_upsample: __a =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[Any]: '''simple docstring''' for resnet in self.resnets: # pop res hidden states __a =res_hidden_states_tuple[-1] __a =res_hidden_states_tuple[:-1] __a =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __a =self.upsamplers_a(__snake_case ) return hidden_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # there is always at least one resnet __a =[ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] __a =[] for _ in range(self.num_layers ): __a =FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets __a =attentions def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[str]: '''simple docstring''' __a =self.resnets[0](__snake_case , __snake_case ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) return hidden_states
308
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase : str = { "configuration_convbert": ["CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvBertConfig", "ConvBertOnnxConfig"], "tokenization_convbert": ["ConvBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Union[str, Any] = ["ConvBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Union[str, Any] = [ "CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvBertForMaskedLM", "ConvBertForMultipleChoice", "ConvBertForQuestionAnswering", "ConvBertForSequenceClassification", "ConvBertForTokenClassification", "ConvBertLayer", "ConvBertModel", "ConvBertPreTrainedModel", "load_tf_weights_in_convbert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = [ "TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFConvBertForMaskedLM", "TFConvBertForMultipleChoice", "TFConvBertForQuestionAnswering", "TFConvBertForSequenceClassification", "TFConvBertForTokenClassification", "TFConvBertLayer", "TFConvBertModel", "TFConvBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys _lowerCAmelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
368
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_5_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self ) -> int: '''simple docstring''' if self.framework == "pytorch": subprocess.run( f'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding='utf-8' , check=__snake_case , ) assert hasattr(self , 'env' ) def __magic_name__ ( self , __snake_case ) -> int: '''simple docstring''' __a =f'{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}' # distributed data settings __a ={'smdistributed': {'dataparallel': {'enabled': True}}} if self.script != 'run_ddp.py' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__snake_case , instance_count=__snake_case , instance_type=self.instance_type , debugger_hook_config=__snake_case , hyperparameters={**self.env.distributed_hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__snake_case , py_version='py36' , ) def __magic_name__ ( self , __snake_case ) -> Optional[Any]: '''simple docstring''' TrainingJobAnalytics(__snake_case ).export_csv(f'{self.env.test_path}/{job_name}_metrics.csv' ) @parameterized.expand([(2,)] ) def __magic_name__ ( self , __snake_case ) -> Optional[int]: '''simple docstring''' # create estimator __a =self.create_estimator(__snake_case ) # run training estimator.fit() # result dataframe __a =TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __a =list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) __a =list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __a =( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'{estimator.latest_training_job.name}.json' , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , __snake_case )
308
0
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm _lowerCAmelCase : int = logging.get_logger(__name__) @dataclass class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self , **__snake_case ) -> Tuple: '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __a =deprecated_arg[3:] setattr(self , __snake_case , not kwargs.pop(__snake_case ) ) logger.warning( f'{deprecated_arg} is depreciated. Please use --no_{positive_arg} or' f' {positive_arg}={kwargs[positive_arg]}' ) __a =kwargs.pop('torchscript' , self.torchscript ) __a =kwargs.pop('torch_xla_tpu_print_metrics' , self.torch_xla_tpu_print_metrics ) __a =kwargs.pop('fp16_opt_level' , self.fpaa_opt_level ) super().__init__(**__snake_case ) SCREAMING_SNAKE_CASE = field(default=lowerCAmelCase_ , metadata={'help': 'Trace the models using torchscript'} ) SCREAMING_SNAKE_CASE = field(default=lowerCAmelCase_ , metadata={'help': 'Print Xla/PyTorch tpu metrics'} ) SCREAMING_SNAKE_CASE = field( default='O1' , metadata={ 'help': ( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ' 'See details at https://nvidia.github.io/apex/amp.html' ) } , ) @cached_property def __magic_name__ ( self ) -> Tuple["torch.device", int]: '''simple docstring''' requires_backends(self , ['torch'] ) logger.info('PyTorch: setting up devices' ) if not self.cuda: __a =torch.device('cpu' ) __a =0 elif is_torch_tpu_available(): __a =xm.xla_device() __a =0 else: __a =torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) __a =torch.cuda.device_count() return device, n_gpu @property def __magic_name__ ( self ) -> str: '''simple docstring''' return is_torch_tpu_available() and self.tpu @property def __magic_name__ ( self ) -> int: '''simple docstring''' requires_backends(self , ['torch'] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def __magic_name__ ( self ) -> "torch.device": '''simple docstring''' requires_backends(self , ['torch'] ) return self._setup_devices[0] @property def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['torch'] ) return self._setup_devices[1] @property def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' return self.n_gpu > 0
369
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _lowerCAmelCase : List[Any] = logging.getLogger(__name__) _lowerCAmelCase : Optional[Any] = "Hello world! cécé herlolip" _lowerCAmelCase : str = namedtuple( "BertAbsConfig", [ "temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout", ], ) def UpperCamelCase_( _snake_case : str , _snake_case : List[Any] ): """simple docstring""" __a =BertAbsConfig( temp_dir='.' , finetune_bert=_snake_case , large=_snake_case , share_emb=_snake_case , use_bert_emb=_snake_case , encoder='bert' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) __a =torch.load(_snake_case , lambda _snake_case , _snake_case : storage ) __a =AbsSummarizer(_snake_case , torch.device('cpu' ) , _snake_case ) original.eval() __a =BertAbsSummarizer(_snake_case , torch.device('cpu' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('convert the model' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('Make sure that the models\' outputs are identical' ) __a =BertTokenizer.from_pretrained('bert-base-uncased' ) # prepare the model inputs __a =tokenizer.encode('This is sample éàalj\'-.' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_snake_case )) ) __a =torch.tensor(_snake_case ).unsqueeze(0 ) __a =tokenizer.encode('This is sample 3 éàalj\'-.' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_snake_case )) ) __a =torch.tensor(_snake_case ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __a =encoder_input_ids __a =decoder_input_ids __a =__a =None __a =None __a =__a =None __a =__a =None __a =None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __a =original(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )[0] __a =original.generator(_snake_case ) __a =new_model( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )[0] __a =new_model.generator(_snake_case ) __a =torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_snake_case ) ) __a =torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_snake_case ) ) __a =torch.allclose(_snake_case , _snake_case , atol=1e-3 ) if are_identical: logging.info('all weights are equal up to 1e-3' ) else: raise ValueError('the weights are different. The new model is likely different from the original one.' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('saving the model\'s state dictionary' ) torch.save( new_model.state_dict() , './bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--bertabs_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model.", ) _lowerCAmelCase : Optional[Any] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
308
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _lowerCAmelCase : List[str] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") @dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'The column name of the images in the files.'} ) SCREAMING_SNAKE_CASE = field(default=lowerCAmelCase_ , metadata={'help': 'A folder containing the training data.'} ) SCREAMING_SNAKE_CASE = field(default=lowerCAmelCase_ , metadata={'help': 'A folder containing the validation data.'} ) SCREAMING_SNAKE_CASE = field( default=0.1_5 , metadata={'help': 'Percent to split off of train for validation.'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a ={} if self.train_dir is not None: __a =self.train_dir if self.validation_dir is not None: __a =self.validation_dir __a =data_files if data_files else None @dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name_or_path'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) SCREAMING_SNAKE_CASE = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) SCREAMING_SNAKE_CASE = field(default=lowerCAmelCase_ , metadata={'help': 'Name or path of preprocessor config.'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) SCREAMING_SNAKE_CASE = field( default=0.7_5 , metadata={'help': 'The ratio of the number of masked tokens in the input sequence.'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Whether or not to train with normalized pixel values as target.'} ) @dataclass class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = field( default=1E-3 , metadata={'help': 'Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'} ) def UpperCamelCase_( _snake_case : Optional[Any] ): """simple docstring""" __a =torch.stack([example['pixel_values'] for example in examples] ) return {"pixel_values": pixel_values} def UpperCamelCase_( ): """simple docstring""" __a =HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __a , __a , __a =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __a , __a , __a =parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mae' , _snake_case , _snake_case ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __a =training_args.get_process_log_level() logger.setLevel(_snake_case ) transformers.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __a =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __a =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. __a =load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. __a =None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _snake_case ) and data_args.train_val_split > 0.0: __a =ds['train'].train_test_split(data_args.train_val_split ) __a =split['train'] __a =split['test'] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __a ={ 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: __a =ViTMAEConfig.from_pretrained(model_args.config_name , **_snake_case ) elif model_args.model_name_or_path: __a =ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_snake_case ) else: __a =ViTMAEConfig() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(F'New config: {config}' ) # adapt config config.update( { 'mask_ratio': model_args.mask_ratio, 'norm_pix_loss': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: __a =ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_snake_case ) elif model_args.model_name_or_path: __a =ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_snake_case ) else: __a =ViTImageProcessor() # create model if model_args.model_name_or_path: __a =ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) __a =ViTMAEForPreTraining(_snake_case ) if training_args.do_train: __a =ds['train'].column_names else: __a =ds['validation'].column_names if data_args.image_column_name is not None: __a =data_args.image_column_name elif "image" in column_names: __a ='image' elif "img" in column_names: __a ='img' else: __a =column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: __a =image_processor.size['shortest_edge'] else: __a =(image_processor.size['height'], image_processor.size['width']) __a =Compose( [ Lambda(lambda _snake_case : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(_snake_case , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(_snake_case : Any ): __a =[transforms(_snake_case ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: __a =ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_snake_case ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: __a =( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_snake_case ) # Compute absolute learning rate __a =( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: __a =training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer __a =Trainer( model=_snake_case , args=_snake_case , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: __a =None if training_args.resume_from_checkpoint is not None: __a =training_args.resume_from_checkpoint elif last_checkpoint is not None: __a =last_checkpoint __a =trainer.train(resume_from_checkpoint=_snake_case ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __a =trainer.evaluate() trainer.log_metrics('eval' , _snake_case ) trainer.save_metrics('eval' , _snake_case ) # Write model card and (optionally) push to hub __a ={ 'tasks': 'masked-auto-encoding', 'dataset': data_args.dataset_name, 'tags': ['masked-auto-encoding'], } if training_args.push_to_hub: trainer.push_to_hub(**_snake_case ) else: trainer.create_model_card(**_snake_case ) def UpperCamelCase_( _snake_case : List[str] ): """simple docstring""" main() if __name__ == "__main__": main()
370
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ : def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=False , __snake_case=False , __snake_case=False , __snake_case=2 , __snake_case=99 , __snake_case=0 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=0.1 , __snake_case=0.1 , __snake_case=512 , __snake_case=2 , __snake_case=0.02 , __snake_case=2 , __snake_case=4 , __snake_case="last" , __snake_case=True , __snake_case=None , __snake_case=0 , ) -> Optional[Any]: '''simple docstring''' __a =parent __a =batch_size __a =seq_length __a =is_training __a =use_input_lengths __a =use_token_type_ids __a =use_labels __a =gelu_activation __a =sinusoidal_embeddings __a =causal __a =asm __a =n_langs __a =vocab_size __a =n_special __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =max_position_embeddings __a =type_sequence_label_size __a =initializer_range __a =num_labels __a =num_choices __a =summary_type __a =use_proj __a =scope __a =bos_token_id def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a =random_attention_mask([self.batch_size, self.seq_length] ) __a =None if self.use_input_lengths: __a =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __a =None if self.use_token_type_ids: __a =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __a =None __a =None __a =None if self.use_labels: __a =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a =ids_tensor([self.batch_size] , 2 ).float() __a =ids_tensor([self.batch_size] , self.num_choices ) __a =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __magic_name__ ( self ) -> Any: '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> List[Any]: '''simple docstring''' __a =XLMModel(config=__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , lengths=__snake_case , langs=__snake_case ) __a =model(__snake_case , langs=__snake_case ) __a =model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Optional[int]: '''simple docstring''' __a =XLMWithLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Dict: '''simple docstring''' __a =XLMForQuestionAnsweringSimple(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) __a =outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> List[Any]: '''simple docstring''' __a =XLMForQuestionAnswering(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , p_mask=__snake_case , ) __a =model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , ) ((__a) , ) =result_with_labels.to_tuple() __a =model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) ((__a) , ) =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Optional[Any]: '''simple docstring''' __a =XLMForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Any: '''simple docstring''' __a =self.num_labels __a =XLMForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Tuple: '''simple docstring''' __a =self.num_choices __a =XLMForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() __a =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) =config_and_inputs __a ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable SCREAMING_SNAKE_CASE = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> int: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __magic_name__ ( self , __snake_case , __snake_case , __snake_case=False ) -> str: '''simple docstring''' __a =super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __a =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) __a =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =XLMModelTester(self ) __a =ConfigTester(self , config_class=__snake_case , emb_dim=37 ) def __magic_name__ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=False , __snake_case=1 ) -> Optional[Any]: '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_attentions in attentions] , [True] * len(__snake_case ) ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__snake_case ): # adds PAD dummy token __a =min_length + idx + 1 __a =min_length + idx + 1 __a =( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__snake_case ) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=False , __snake_case=1 ) -> Dict: '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_hidden_states in hidden_states] , [True] * len(__snake_case ) , ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__snake_case ): # adds PAD dummy token __a =min_length + idx + 1 __a =(batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__snake_case ) , ) pass @slow def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a =XLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class __magic_name__ ( unittest.TestCase ): @slow def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(__snake_case ) __a =torch.tensor([[14, 447]] , dtype=torch.long , device=__snake_case ) # the president __a =[ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __a =model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __snake_case )
308
0
"""simple docstring""" from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline _lowerCAmelCase : int = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase_ ) class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , **__snake_case ) -> Dict: '''simple docstring''' super().__init__(**__snake_case ) if self.framework != "pt": raise ValueError(f'The {self.__class__} is only available in PyTorch.' ) # No specific FOR_XXX available yet def __call__( self , __snake_case , **__snake_case ) -> Union[str, Any]: '''simple docstring''' return super().__call__(__snake_case , **__snake_case ) def __magic_name__ ( self , **__snake_case ) -> str: '''simple docstring''' __a ={} if "candidate_labels" in kwargs: __a =kwargs['candidate_labels'] if "hypothesis_template" in kwargs: __a =kwargs['hypothesis_template'] return preprocess_params, {}, {} def __magic_name__ ( self , __snake_case , __snake_case=None , __snake_case="This is a sound of {}." ) -> Optional[int]: '''simple docstring''' if isinstance(__snake_case , __snake_case ): if audio.startswith('http://' ) or audio.startswith('https://' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png __a =requests.get(__snake_case ).content else: with open(__snake_case , 'rb' ) as f: __a =f.read() if isinstance(__snake_case , __snake_case ): __a =ffmpeg_read(__snake_case , self.feature_extractor.sampling_rate ) if not isinstance(__snake_case , np.ndarray ): raise ValueError('We expect a numpy ndarray as input' ) if len(audio.shape ) != 1: raise ValueError('We expect a single channel audio input for ZeroShotAudioClassificationPipeline' ) __a =self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='pt' ) __a =candidate_labels __a =[hypothesis_template.format(__snake_case ) for x in candidate_labels] __a =self.tokenizer(__snake_case , return_tensors=self.framework , padding=__snake_case ) __a =[text_inputs] return inputs def __magic_name__ ( self , __snake_case ) -> List[str]: '''simple docstring''' __a =model_inputs.pop('candidate_labels' ) __a =model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , __snake_case ): __a =text_inputs[0] else: # Batching case. __a =text_inputs[0][0] __a =self.model(**__snake_case , **__snake_case ) __a ={ 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_audio, } return model_outputs def __magic_name__ ( self , __snake_case ) -> Optional[int]: '''simple docstring''' __a =model_outputs.pop('candidate_labels' ) __a =model_outputs['logits'][0] if self.framework == "pt": __a =logits.softmax(dim=0 ) __a =probs.tolist() else: raise ValueError('`tf` framework not supported.' ) __a =[ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(__snake_case , __snake_case ) , key=lambda __snake_case : -x[0] ) ] return result
371
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake _lowerCAmelCase : Optional[Any] = numpy.array([0, 0]) _lowerCAmelCase : Dict = numpy.array([0.5, 0.8660254]) _lowerCAmelCase : Any = numpy.array([1, 0]) _lowerCAmelCase : int = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCamelCase_( _snake_case : list[numpy.ndarray] , _snake_case : int ): """simple docstring""" __a =initial_vectors for _ in range(_snake_case ): __a =iteration_step(_snake_case ) return vectors def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =[] for i, start_vector in enumerate(vectors[:-1] ): __a =vectors[i + 1] new_vectors.append(_snake_case ) __a =end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCamelCase_( _snake_case : numpy.ndarray , _snake_case : float ): """simple docstring""" __a =numpy.radians(_snake_case ) __a , __a =numpy.cos(_snake_case ), numpy.sin(_snake_case ) __a =numpy.array(((c, -s), (s, c)) ) return numpy.dot(_snake_case , _snake_case ) def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() __a , __a =zip(*_snake_case ) plt.plot(_snake_case , _snake_case ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : List[Any] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
308
0
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __magic_name__ ( unittest.TestCase , lowerCAmelCase_ ): def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =load_tool('text-to-speech' ) self.tool.setup() def __magic_name__ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) __a =self.tool('hey' ) __a =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) __a =self.tool('hey' ) __a =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) )
350
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Tuple = { "configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MegatronBertForCausalLM", "MegatronBertForMaskedLM", "MegatronBertForMultipleChoice", "MegatronBertForNextSentencePrediction", "MegatronBertForPreTraining", "MegatronBertForQuestionAnswering", "MegatronBertForSequenceClassification", "MegatronBertForTokenClassification", "MegatronBertModel", "MegatronBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys _lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = { "SCUT-DLVCLab/lilt-roberta-en-base": ( "https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json" ), } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'lilt' def __init__( self , __snake_case=3_0522 , __snake_case=768 , __snake_case=12 , __snake_case=12 , __snake_case=3072 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=512 , __snake_case=2 , __snake_case=0.02 , __snake_case=1e-12 , __snake_case=0 , __snake_case="absolute" , __snake_case=None , __snake_case=4 , __snake_case=1024 , **__snake_case , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=__snake_case , **__snake_case ) __a =vocab_size __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =hidden_act __a =intermediate_size __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =max_position_embeddings __a =type_vocab_size __a =initializer_range __a =layer_norm_eps __a =position_embedding_type __a =classifier_dropout __a =channel_shrink_ratio __a =max_ad_position_embeddings
351
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __magic_name__ : @staticmethod def __magic_name__ ( *__snake_case , **__snake_case ) -> List[str]: '''simple docstring''' pass def UpperCamelCase_( _snake_case : Image ): """simple docstring""" __a =hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __magic_name__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def __magic_name__ ( self , __snake_case , __snake_case , __snake_case ) -> Dict: '''simple docstring''' __a =DepthEstimationPipeline(model=__snake_case , image_processor=__snake_case ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __magic_name__ ( self , __snake_case , __snake_case ) -> Tuple: '''simple docstring''' __a =depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , __snake_case ) import datasets __a =datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) __a =depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , __snake_case , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' pass @slow @require_torch def __magic_name__ ( self ) -> int: '''simple docstring''' __a ='Intel/dpt-large' __a =pipeline('depth-estimation' , model=__snake_case ) __a =depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) __a =hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.662 ) @require_torch def __magic_name__ ( self ) -> Any: '''simple docstring''' # This is highly irregular to have no small tests. self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
308
0
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class __magic_name__ ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case = 1.0 , __snake_case = None , ) -> Optional[Any]: '''simple docstring''' super().__init__() __a =initial_learning_rate __a =warmup_steps __a =power __a =decay_schedule_fn __a =name def __call__( self , __snake_case ) -> Optional[Any]: '''simple docstring''' with tf.name_scope(self.name or 'WarmUp' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. __a =tf.cast(__snake_case , tf.floataa ) __a =tf.cast(self.warmup_steps , tf.floataa ) __a =global_step_float / warmup_steps_float __a =self.initial_learning_rate * tf.math.pow(__snake_case , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=__snake_case , ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def UpperCamelCase_( _snake_case : float , _snake_case : int , _snake_case : int , _snake_case : float = 0.0 , _snake_case : float = 0.9 , _snake_case : float = 0.999 , _snake_case : float = 1e-8 , _snake_case : Optional[float] = None , _snake_case : Optional[float] = None , _snake_case : float = 0.0 , _snake_case : float = 1.0 , _snake_case : Optional[List[str]] = None , ): """simple docstring""" __a =tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=_snake_case , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=_snake_case , ) if num_warmup_steps: __a =WarmUp( initial_learning_rate=_snake_case , decay_schedule_fn=_snake_case , warmup_steps=_snake_case , ) if weight_decay_rate > 0.0: __a =AdamWeightDecay( learning_rate=_snake_case , weight_decay_rate=_snake_case , beta_a=_snake_case , beta_a=_snake_case , epsilon=_snake_case , clipnorm=_snake_case , global_clipnorm=_snake_case , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=_snake_case , ) else: __a =tf.keras.optimizers.Adam( learning_rate=_snake_case , beta_a=_snake_case , beta_a=_snake_case , epsilon=_snake_case , clipnorm=_snake_case , global_clipnorm=_snake_case , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , __snake_case = 0.001 , __snake_case = 0.9 , __snake_case = 0.999 , __snake_case = 1e-7 , __snake_case = False , __snake_case = 0.0 , __snake_case = None , __snake_case = None , __snake_case = "AdamWeightDecay" , **__snake_case , ) -> List[str]: '''simple docstring''' super().__init__(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , **__snake_case ) __a =weight_decay_rate __a =include_in_weight_decay __a =exclude_from_weight_decay @classmethod def __magic_name__ ( cls , __snake_case ) -> Optional[int]: '''simple docstring''' __a ={'WarmUp': WarmUp} return super(__snake_case , cls ).from_config(__snake_case , custom_objects=__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case ) -> Optional[int]: '''simple docstring''' super(__snake_case , self )._prepare_local(__snake_case , __snake_case , __snake_case ) __a =tf.constant( self.weight_decay_rate , name='adam_weight_decay_rate' ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case ) -> Optional[Any]: '''simple docstring''' __a =self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , ) return tf.no_op() def __magic_name__ ( self , __snake_case , __snake_case=None , **__snake_case ) -> Union[str, Any]: '''simple docstring''' __a , __a =list(zip(*__snake_case ) ) return super(__snake_case , self ).apply_gradients(zip(__snake_case , __snake_case ) , name=__snake_case , **__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case ) -> Any: '''simple docstring''' if apply_state is None: return self._decayed_lr_t[var_dtype], {} __a =apply_state or {} __a =apply_state.get((var_device, var_dtype) ) if coefficients is None: __a =self._fallback_apply_state(__snake_case , __snake_case ) __a =coefficients return coefficients["lr_t"], {"apply_state": apply_state} def __magic_name__ ( self , __snake_case , __snake_case , __snake_case=None ) -> List[str]: '''simple docstring''' __a , __a =self._get_lr(var.device , var.dtype.base_dtype , __snake_case ) __a =self._decay_weights_op(__snake_case , __snake_case , __snake_case ) with tf.control_dependencies([decay] ): return super(__snake_case , self )._resource_apply_dense(__snake_case , __snake_case , **__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case=None ) -> Optional[Any]: '''simple docstring''' __a , __a =self._get_lr(var.device , var.dtype.base_dtype , __snake_case ) __a =self._decay_weights_op(__snake_case , __snake_case , __snake_case ) with tf.control_dependencies([decay] ): return super(__snake_case , self )._resource_apply_sparse(__snake_case , __snake_case , __snake_case , **__snake_case ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =super().get_config() config.update({'weight_decay_rate': self.weight_decay_rate} ) return config def __magic_name__ ( self , __snake_case ) -> str: '''simple docstring''' if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(__snake_case , __snake_case ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(__snake_case , __snake_case ) is not None: return False return True class __magic_name__ ( lowerCAmelCase_ ): def __init__( self ) -> Any: '''simple docstring''' __a =[] __a =None @property def __magic_name__ ( self ) -> Any: '''simple docstring''' if self._accum_steps is None: __a =tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=__snake_case , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' if not self._gradients: raise ValueError('The accumulator should be called first to initialize the gradients' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , __snake_case ) -> Union[str, Any]: '''simple docstring''' if not self._gradients: __a =self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(__snake_case ) , trainable=__snake_case , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(__snake_case ) != len(self._gradients ): raise ValueError(f'Expected {len(self._gradients )} gradients, but got {len(__snake_case )}' ) for accum_gradient, gradient in zip(self._gradients , __snake_case ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(__snake_case ) self._accum_steps.assign_add(1 ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(__snake_case ) )
352
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _lowerCAmelCase : Optional[int] = logging.getLogger(__name__) _lowerCAmelCase : Any = "pytorch_model.bin" @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co.'} , ) @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field(metadata={'help': 'A csv or a json file containing the training data.'} ) SCREAMING_SNAKE_CASE = dataclasses.field(metadata={'help': 'A csv or a json file containing the data to predict on.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the validation data.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'The name of the task to train on.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'The list of labels for the task.'} ) @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field( metadata={'help': 'The output directory where the model predictions and checkpoints will be written.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default='accuracy' , metadata={'help': 'The evaluation metric used for the task.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default='no' , metadata={ 'help': 'The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]' } , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=1_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0 , metadata={ 'help': 'How much the specified evaluation metric must improve to satisfy early stopping conditions.' } , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the confidence score.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the validation performance.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to fine-tune on labeled data after pseudo training.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0 , metadata={'help': 'Confidence threshold for pseudo-labeled data filtering.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=1_0_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Random seed for initialization.'} , ) def UpperCamelCase_( _snake_case : int , _snake_case : str , _snake_case : Optional[int] , _snake_case : str , _snake_case : Union[str, Any] , _snake_case : List[Any] ): """simple docstring""" __a =datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: __a =dataset.filter(lambda _snake_case : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 __a =int(eval_result * len(_snake_case ) ) print(_snake_case ) __a =dataset.sort('probability' , reverse=_snake_case ) __a =dataset.select(range(_snake_case ) ) __a =dataset.remove_columns(['label', 'probability'] ) __a =dataset.rename_column('prediction' , 'label' ) __a =dataset.map(lambda _snake_case : {"label": idalabel[example["label"]]} ) __a =dataset.shuffle(seed=args.seed ) __a =os.path.join(_snake_case , F'train_pseudo.{args.data_file_extension}' ) if args.data_file_extension == "csv": dataset.to_csv(_snake_case , index=_snake_case ) else: dataset.to_json(_snake_case ) def UpperCamelCase_( _snake_case : List[Any] , _snake_case : str , _snake_case : int , _snake_case : Optional[int] , **_snake_case : List[str] ): """simple docstring""" __a =Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() __a =STModelArguments(model_name_or_path=_snake_case ) __a =STDataArguments(train_file=_snake_case , infer_file=_snake_case ) __a =STTrainingArguments(output_dir=_snake_case ) __a =argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(_snake_case ).items(): setattr(_snake_case , _snake_case , _snake_case ) for key, value in kwargs.items(): if hasattr(_snake_case , _snake_case ): setattr(_snake_case , _snake_case , _snake_case ) # Sanity checks __a ={} __a =None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None __a =args.train_file __a =args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None __a =args.eval_file for key in data_files: __a =data_files[key].split('.' )[-1] assert extension in ["csv", "json"], F'`{key}_file` should be a csv or a json file.' if args.data_file_extension is None: __a =extension else: assert extension == args.data_file_extension, F'`{key}_file` should be a {args.data_file_extension} file`.' assert ( args.eval_metric in datasets.list_metrics() ), F'{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('Creating the initial data directory for self-training...' ) __a =F'{args.output_dir}/self-train_iter-{{}}'.format __a =data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=_snake_case ) os.makedirs(_snake_case , exist_ok=_snake_case ) accelerator.wait_for_everyone() __a =None __a =None __a =0 __a =False # Show the progress bar __a =tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): __a =data_dir_format(_snake_case ) assert os.path.exists(_snake_case ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 __a =os.path.join(_snake_case , 'stage-1' ) __a ={ 'accelerator': accelerator, 'model_name_or_path': args.model_name_or_path, 'cache_dir': args.cache_dir, 'do_train': True, 'train_file': data_files['train'] if iteration == 0 else data_files['train_pseudo'], 'do_eval': True if args.eval_file is not None else False, 'eval_file': data_files['eval'], 'do_predict': True, 'infer_file': data_files['infer'], 'task_name': args.task_name, 'label_list': args.label_list, 'output_dir': current_output_dir, 'eval_metric': args.eval_metric, 'evaluation_strategy': args.evaluation_strategy, 'early_stopping_patience': args.early_stopping_patience, 'early_stopping_threshold': args.early_stopping_threshold, 'seed': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(_snake_case , _snake_case ): arguments_dict.update({key: value} ) __a =os.path.join(_snake_case , 'best-checkpoint' , _snake_case ) if os.path.exists(_snake_case ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.' , _snake_case , _snake_case , ) else: logger.info('***** Running self-training: iteration: %d, stage: 1 *****' , _snake_case ) finetune(**_snake_case ) accelerator.wait_for_everyone() assert os.path.exists(_snake_case ) logger.info('Self-training job completed: iteration: %d, stage: 1.' , _snake_case ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data __a =os.path.join(_snake_case , 'best-checkpoint' ) __a =os.path.join(_snake_case , 'stage-2' ) # Update arguments_dict __a =model_path __a =data_files['train'] __a =current_output_dir __a =os.path.join(_snake_case , 'best-checkpoint' , _snake_case ) if os.path.exists(_snake_case ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.' , _snake_case , _snake_case , ) else: logger.info('***** Running self-training: iteration: %d, stage: 2 *****' , _snake_case ) finetune(**_snake_case ) accelerator.wait_for_everyone() assert os.path.exists(_snake_case ) logger.info('Self-training job completed: iteration: %d, stage: 2.' , _snake_case ) __a =iteration __a =data_dir_format(iteration + 1 ) __a =AutoConfig.from_pretrained(os.path.join(_snake_case , 'best-checkpoint' ) ) __a =config.idalabel __a =os.path.join(_snake_case , 'eval_results_best-checkpoint.json' ) __a =os.path.join(_snake_case , 'test_results_best-checkpoint.json' ) assert os.path.exists(_snake_case ) with open(_snake_case , 'r' ) as f: __a =float(json.load(_snake_case )[args.eval_metric] ) __a =os.path.join(_snake_case , 'infer_output_best-checkpoint.csv' ) assert os.path.exists(_snake_case ) # Loading the dataset from local csv or json files. __a =load_dataset(args.data_file_extension , data_files={'data': data_files['infer']} )['data'] __a =load_dataset('csv' , data_files={'data': infer_output_file} )['data'] if accelerator.is_main_process: os.makedirs(_snake_case , exist_ok=_snake_case ) shutil.copy(_snake_case , os.path.join(_snake_case , F'eval_results_iter-{iteration}.json' ) ) if os.path.exists(_snake_case ): shutil.copy(_snake_case , os.path.join(_snake_case , F'test_results_iter-{iteration}.json' ) ) create_pseudo_labeled_data(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) accelerator.wait_for_everyone() __a =os.path.join(_snake_case , F'train_pseudo.{args.data_file_extension}' ) if args.evaluation_strategy != IntervalStrategy.NO.value: __a =eval_result if best_iteration is None: __a =new_iteration __a =new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: __a =new_iteration __a =new_eval_result __a =0 else: if new_eval_result == best_eval_result: __a =new_iteration __a =new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: __a =True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('Best iteration: %d' , _snake_case ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , _snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_snake_case , F'eval_results_iter-{iteration}.json' ) , os.path.join(_snake_case , 'eval_results_best-iteration.json' ) , ) else: # Assume that the last iteration is the best logger.info('Best iteration: %d' , args.max_selftrain_iterations - 1 ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , _snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_snake_case , F'eval_results_iter-{args.max_selftrain_iterations - 1}.json' ) , os.path.join(_snake_case , 'eval_results_best-iteration.json' ) , )
308
0
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def UpperCamelCase_( _snake_case : str ): """simple docstring""" assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def UpperCamelCase_( ): """simple docstring""" assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def UpperCamelCase_( ): """simple docstring""" __a ='mock-s3-bucket' __a =F's3://{mock_bucket}' __a =extract_path_from_uri(_snake_case ) assert dataset_path.startswith('s3://' ) is False __a ='./local/path' __a =extract_path_from_uri(_snake_case ) assert dataset_path == new_dataset_path def UpperCamelCase_( _snake_case : Optional[Any] ): """simple docstring""" __a =is_remote_filesystem(_snake_case ) assert is_remote is True __a =fsspec.filesystem('file' ) __a =is_remote_filesystem(_snake_case ) assert is_remote is False @pytest.mark.parametrize('compression_fs_class' , _snake_case ) def UpperCamelCase_( _snake_case : List[str] , _snake_case : Any , _snake_case : List[Any] , _snake_case : Tuple , _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Optional[Any] ): """simple docstring""" __a ={'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_file, 'bz2': bza_file, 'lz4': lza_file} __a =input_paths[compression_fs_class.protocol] if input_path is None: __a =F'for \'{compression_fs_class.protocol}\' compression protocol, ' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_snake_case ) __a =fsspec.filesystem(compression_fs_class.protocol , fo=_snake_case ) assert isinstance(_snake_case , _snake_case ) __a =os.path.basename(_snake_case ) __a =expected_filename[: expected_filename.rindex('.' )] assert fs.glob('*' ) == [expected_filename] with fs.open(_snake_case , 'r' , encoding='utf-8' ) as f, open(_snake_case , encoding='utf-8' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('protocol' , ['zip', 'gzip'] ) def UpperCamelCase_( _snake_case : Dict , _snake_case : Dict , _snake_case : Union[str, Any] ): """simple docstring""" __a ={'zip': zip_jsonl_path, 'gzip': jsonl_gz_path} __a =compressed_file_paths[protocol] __a ='dataset.jsonl' __a =F'{protocol}://{member_file_path}::{compressed_file_path}' __a , *__a =fsspec.get_fs_token_paths(_snake_case ) assert fs.isfile(_snake_case ) assert not fs.isfile('non_existing_' + member_file_path ) @pytest.mark.integration def UpperCamelCase_( _snake_case : Union[str, Any] , _snake_case : Union[str, Any] , _snake_case : Dict , _snake_case : int ): """simple docstring""" __a =hf_api.dataset_info(_snake_case , token=_snake_case ) __a =HfFileSystem(repo_info=_snake_case , token=_snake_case ) assert sorted(hffs.glob('*' ) ) == [".gitattributes", "data"] assert hffs.isdir('data' ) assert hffs.isfile('.gitattributes' ) and hffs.isfile('data/text_data.txt' ) with open(_snake_case ) as f: assert hffs.open('data/text_data.txt' , 'r' ).read() == f.read() def UpperCamelCase_( ): """simple docstring""" __a ='bz2' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(_snake_case , _snake_case , clobber=_snake_case ) with pytest.warns(_snake_case ) as warning_info: importlib.reload(datasets.filesystems ) assert len(_snake_case ) == 1 assert ( str(warning_info[0].message ) == F'A filesystem protocol was already set for {protocol} and will be overwritten.' )
353
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Any = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right _lowerCAmelCase : List[Any] = 256_047 _lowerCAmelCase : Dict = 256_145 @require_sentencepiece @require_tokenizers class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = NllbTokenizer SCREAMING_SNAKE_CASE = NllbTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = {} def __magic_name__ ( self ) -> int: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __a =NllbTokenizer(__snake_case , keep_accents=__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self ) -> int: '''simple docstring''' __a =NllbTokenizer(__snake_case , keep_accents=__snake_case ) __a =tokenizer.tokenize('This is a test' ) self.assertListEqual(__snake_case , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __a =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __a =tokenizer.convert_tokens_to_ids(__snake_case ) self.assertListEqual( __snake_case , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __a =tokenizer.convert_ids_to_tokens(__snake_case ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-nllb', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __a =self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __a =self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) __a =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=True __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=False __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) @require_torch def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' if not self.test_seqaseq: return __a =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Longer text that will definitely require truncation. __a =[ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for' ' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons' ' will only worsen the violence and misery for millions of people.', ] __a =[ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al' ' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi' ' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] try: __a =tokenizer.prepare_seqaseq_batch( src_texts=__snake_case , tgt_texts=__snake_case , max_length=3 , max_target_length=10 , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='ron_Latn' , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified __a =tokenizer.prepare_seqaseq_batch( __snake_case , tgt_texts=__snake_case , max_length=3 , return_tensors='pt' ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) __a =tokenizer.prepare_seqaseq_batch( src_texts=__snake_case , max_length=3 , max_target_length=10 , return_tensors='pt' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn('decoder_input_ids' , __snake_case ) @unittest.skip('Unfortunately way too slow to build a BPE with SentencePiece.' ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' pass def __magic_name__ ( self ) -> Tuple: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __a =[AddedToken('<special>' , lstrip=__snake_case )] __a =self.rust_tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case ) __a =tokenizer_r.encode('Hey this is a <special> token' ) __a =tokenizer_r.encode('<special>' , add_special_tokens=__snake_case )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: __a =self.rust_tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case , ) __a =self.tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case ) __a =tokenizer_p.encode('Hey this is a <special> token' ) __a =tokenizer_cr.encode('Hey this is a <special> token' ) self.assertEqual(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class __magic_name__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = 'facebook/nllb-200-distilled-600M' SCREAMING_SNAKE_CASE = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] SCREAMING_SNAKE_CASE = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] SCREAMING_SNAKE_CASE = [ 2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 8_1_6_5, 2_4_8_0_6_6, 1_4_7_3_4, 9_5_0, 1_1_3_5, 1_0_5_7_2_1, 3_5_7_3, 8_3, 2_7_3_5_2, 1_0_8, 4_9_4_8_6, 2, ] @classmethod def __magic_name__ ( cls ) -> Tuple: '''simple docstring''' __a =NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang='eng_Latn' , tgt_lang='ron_Latn' ) __a =1 return cls def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Arab'] , 25_6001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Latn'] , 25_6002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['fra_Latn'] , 25_6057 ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' self.assertIn(__snake_case , self.tokenizer.all_special_ids ) # fmt: off __a =[RO_CODE, 4254, 9_8068, 11_2923, 3_9072, 3909, 713, 10_2767, 26, 1_7314, 3_5642, 1_4683, 3_3118, 2022, 6_6987, 2, 25_6047] # fmt: on __a =self.tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) __a =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertNotIn(self.tokenizer.eos_token , __snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , __snake_case ) __a =10 __a =self.tokenizer(__snake_case , max_length=__snake_case , truncation=__snake_case ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , __snake_case ) self.assertEqual(len(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_6203, 3] ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =tempfile.mkdtemp() __a =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__snake_case ) __a =NllbTokenizer.from_pretrained(__snake_case ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __snake_case ) @require_torch def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) __a =shift_tokens_right( batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['ron_Latn'] ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) __a =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) self.assertEqual(__snake_case , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =self.tokenizer(self.src_text , padding=__snake_case , truncation=__snake_case , max_length=3 , return_tensors='pt' ) __a =self.tokenizer( text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=10 , return_tensors='pt' ) __a =targets['input_ids'] __a =shift_tokens_right( __snake_case , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( nested_simplify(__snake_case ) , { # A, test, EOS, en_XX 'input_ids': [[25_6047, 70, 7356, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_6057, } , ) @require_torch def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =True __a =self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2, 25_6047] ) __a =False __a =self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [25_6047, 1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2] )
308
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class __magic_name__ ( lowerCAmelCase_ ): @staticmethod @abstractmethod def __magic_name__ ( __snake_case ) -> List[Any]: '''simple docstring''' raise NotImplementedError() @abstractmethod def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' raise NotImplementedError()
354
def UpperCamelCase_( _snake_case : str , _snake_case : int ): """simple docstring""" return [sentence[i : i + ngram_size] for i in range(len(_snake_case ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
308
0
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _lowerCAmelCase : List[Any] = logging.getLogger(__name__) _lowerCAmelCase : Optional[Any] = "Hello world! cécé herlolip" _lowerCAmelCase : str = namedtuple( "BertAbsConfig", [ "temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout", ], ) def UpperCamelCase_( _snake_case : str , _snake_case : List[Any] ): """simple docstring""" __a =BertAbsConfig( temp_dir='.' , finetune_bert=_snake_case , large=_snake_case , share_emb=_snake_case , use_bert_emb=_snake_case , encoder='bert' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) __a =torch.load(_snake_case , lambda _snake_case , _snake_case : storage ) __a =AbsSummarizer(_snake_case , torch.device('cpu' ) , _snake_case ) original.eval() __a =BertAbsSummarizer(_snake_case , torch.device('cpu' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('convert the model' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('Make sure that the models\' outputs are identical' ) __a =BertTokenizer.from_pretrained('bert-base-uncased' ) # prepare the model inputs __a =tokenizer.encode('This is sample éàalj\'-.' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_snake_case )) ) __a =torch.tensor(_snake_case ).unsqueeze(0 ) __a =tokenizer.encode('This is sample 3 éàalj\'-.' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_snake_case )) ) __a =torch.tensor(_snake_case ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __a =encoder_input_ids __a =decoder_input_ids __a =__a =None __a =None __a =__a =None __a =__a =None __a =None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __a =original(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )[0] __a =original.generator(_snake_case ) __a =new_model( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )[0] __a =new_model.generator(_snake_case ) __a =torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_snake_case ) ) __a =torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_snake_case ) ) __a =torch.allclose(_snake_case , _snake_case , atol=1e-3 ) if are_identical: logging.info('all weights are equal up to 1e-3' ) else: raise ValueError('the weights are different. The new model is likely different from the original one.' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('saving the model\'s state dictionary' ) torch.save( new_model.state_dict() , './bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--bertabs_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model.", ) _lowerCAmelCase : Optional[Any] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
355
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class __magic_name__ ( pl.LightningModule ): def __init__( self , __snake_case ) -> List[Any]: '''simple docstring''' super().__init__() __a =model __a =2 __a =nn.Linear(self.model.config.hidden_size , self.num_labels ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' pass def UpperCamelCase_( _snake_case : str , _snake_case : str , _snake_case : str ): """simple docstring""" __a =LongformerModel.from_pretrained(_snake_case ) __a =LightningModel(_snake_case ) __a =torch.load(_snake_case , map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model __a =LongformerForQuestionAnswering.from_pretrained(_snake_case ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(_snake_case ) print(F'Conversion successful. Model saved under {pytorch_dump_folder_path}' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowerCAmelCase : Optional[int] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
308
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Union[str, Any] = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Union[str, Any] = [ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys _lowerCAmelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
356
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") _lowerCAmelCase : Optional[Any] = logging.getLogger(__name__) @dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) SCREAMING_SNAKE_CASE = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) SCREAMING_SNAKE_CASE = field( default=1_0_2_4 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the training data.'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the validation data.'} ) SCREAMING_SNAKE_CASE = field(default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the test data.'} ) def __magic_name__ ( self ) -> str: '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: __a =self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __a =self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) SCREAMING_SNAKE_CASE = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def UpperCamelCase_( ): """simple docstring""" __a =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __a , __a , __a =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __a , __a , __a =parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) __a =training_args.get_process_log_level() logger.setLevel(_snake_case ) datasets.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __a =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __a =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __a =load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __a ={'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __a =data_args.train_file.split('.' )[-1] __a =data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __a =data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(F'load a local file for {key}: {data_files[key]}' ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files __a =load_dataset('csv' , data_files=_snake_case , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __a =load_dataset('json' , data_files=_snake_case , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __a =raw_datasets['train'].features['label'].names __a =len(_snake_case ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __a =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __a =TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=_snake_case , ) __a =BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __a ='max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __a =False # Some models have set the order of the labels to use, so let's make sure we do use it. __a ={'Refused': 0, 'Entailed': 1} __a ={0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __a =min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(_snake_case : Tuple ): # Tokenize the texts def _convert_table_text_to_pandas(_snake_case : Optional[Any] ): __a =[_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] __a =pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __a =examples['statement'] __a =list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) __a =tokenizer(_snake_case , _snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case ) __a =examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): __a =raw_datasets.map( _snake_case , batched=_snake_case , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) __a =raw_datasets['train'] if data_args.max_train_samples is not None: __a =train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) __a =raw_datasets['validation'] if data_args.max_eval_samples is not None: __a =eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) __a =raw_datasets['test'] if data_args.max_predict_samples is not None: __a =predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(_snake_case ) ) , 3 ): logger.info(F'Sample {index} of the training set: {train_dataset[index]}.' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_snake_case : EvalPrediction ): __a =p.predictions[0] if isinstance(p.predictions , _snake_case ) else p.predictions __a =np.argmax(_snake_case , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __a =default_data_collator elif training_args.fpaa: __a =DataCollatorWithPadding(_snake_case , pad_to_multiple_of=8 ) else: __a =None # Initialize our Trainer __a =Trainer( model=_snake_case , args=_snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_snake_case , tokenizer=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: __a =None if training_args.resume_from_checkpoint is not None: __a =training_args.resume_from_checkpoint elif last_checkpoint is not None: __a =last_checkpoint __a =trainer.train(resume_from_checkpoint=_snake_case ) __a =train_result.metrics __a =( data_args.max_train_samples if data_args.max_train_samples is not None else len(_snake_case ) ) __a =min(_snake_case , len(_snake_case ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , _snake_case ) trainer.save_metrics('train' , _snake_case ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __a =trainer.evaluate(eval_dataset=_snake_case ) __a =data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_snake_case ) __a =min(_snake_case , len(_snake_case ) ) trainer.log_metrics('eval' , _snake_case ) trainer.save_metrics('eval' , _snake_case ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __a =predict_dataset.remove_columns('label' ) __a =trainer.predict(_snake_case , metric_key_prefix='predict' ).predictions __a =np.argmax(_snake_case , axis=1 ) __a =os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(_snake_case , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(_snake_case ): __a =label_list[item] writer.write(F'{index}\t{item}\n' ) __a ={'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**_snake_case ) else: trainer.create_model_card(**_snake_case ) def UpperCamelCase_( _snake_case : Union[str, Any] ): """simple docstring""" main() if __name__ == "__main__": main()
308
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class __magic_name__ : def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=99 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=37 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=512 , __snake_case=16 , __snake_case=2 , __snake_case=0.02 , __snake_case=3 , __snake_case=4 , __snake_case=None , ) -> Dict: '''simple docstring''' __a =parent __a =batch_size __a =seq_length __a =is_training __a =use_token_type_ids __a =use_labels __a =vocab_size __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =intermediate_size __a =hidden_act __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =max_position_embeddings __a =type_vocab_size __a =type_sequence_label_size __a =initializer_range __a =num_labels __a =num_choices __a =scope __a =self.vocab_size - 1 def __magic_name__ ( self ) -> str: '''simple docstring''' __a =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a =None if self.use_token_type_ids: __a =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a =None __a =None __a =None if self.use_labels: __a =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a =ids_tensor([self.batch_size] , self.num_choices ) __a =OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) __a =ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , *__snake_case ) -> Dict: '''simple docstring''' __a =OpenAIGPTModel(config=__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , token_type_ids=__snake_case , head_mask=__snake_case ) __a =model(__snake_case , token_type_ids=__snake_case ) __a =model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , *__snake_case ) -> List[Any]: '''simple docstring''' __a =OpenAIGPTLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , *__snake_case ) -> Optional[int]: '''simple docstring''' __a =OpenAIGPTDoubleHeadsModel(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , *__snake_case ) -> Optional[Any]: '''simple docstring''' __a =self.num_labels __a =OpenAIGPTForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() __a =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a =model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) =config_and_inputs __a ={ 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly SCREAMING_SNAKE_CASE = ( { 'feature-extraction': OpenAIGPTModel, 'text-classification': OpenAIGPTForSequenceClassification, 'text-generation': OpenAIGPTLMHeadModel, 'zero-shot': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> int: '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def __magic_name__ ( self , __snake_case , __snake_case , __snake_case=False ) -> Dict: '''simple docstring''' __a =super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": __a =torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=__snake_case , ) __a =inputs_dict['labels'] __a =inputs_dict['labels'] __a =torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=__snake_case , ) __a =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =OpenAIGPTModelTester(self ) __a =ConfigTester(self , config_class=__snake_case , n_embd=37 ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*__snake_case ) def __magic_name__ ( self ) -> str: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__snake_case ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*__snake_case ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__snake_case ) @slow def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a =OpenAIGPTModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class __magic_name__ ( unittest.TestCase ): @slow def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(__snake_case ) __a =torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=__snake_case ) # the president is __a =[ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 4_0477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the __a =model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].tolist() , __snake_case )
357
from __future__ import annotations import time import numpy as np _lowerCAmelCase : List[str] = [8, 5, 9, 7] _lowerCAmelCase : List[str] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] _lowerCAmelCase : List[Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class __magic_name__ : def __init__( self , __snake_case , __snake_case , __snake_case , ) -> None: '''simple docstring''' __a =claim_vector __a =allocated_resources_table __a =maximum_claim_table def __magic_name__ ( self ) -> list[int]: '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def __magic_name__ ( self ) -> list[int]: '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def __magic_name__ ( self ) -> list[list[int]]: '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__snake_case ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def __magic_name__ ( self ) -> dict[int, list[int]]: '''simple docstring''' return {self.__need().index(__snake_case ): i for i in self.__need()} def __magic_name__ ( self , **__snake_case ) -> None: '''simple docstring''' __a =self.__need() __a =self.__allocated_resources_table __a =self.__available_resources() __a =self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: __a =False for each_need in need_list: __a =True for index, need in enumerate(__snake_case ): if need > available_resources[index]: __a =False break if execution: __a =True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __a =original_need_index print(f'Process {process_number + 1} is executing.' ) # remove the process run from stack need_list.remove(__snake_case ) # update available/freed resources stack __a =np.array(__snake_case ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(__snake_case ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( f'P{self.__allocated_resources_table.index(__snake_case ) + 1}' + ' '.join(f'{it:>8}' for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( f'P{self.__maximum_claim_table.index(__snake_case ) + 1}' + ' '.join(f'{it:>8}' for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(__snake_case ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(__snake_case ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
308
0
"""simple docstring""" def UpperCamelCase_( _snake_case : float , _snake_case : list[float] ): """simple docstring""" if discount_rate < 0: raise ValueError('Discount rate cannot be negative' ) if not cash_flows: raise ValueError('Cash flows list cannot be empty' ) __a =sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_snake_case ) ) return round(_snake_case , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
358
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency _lowerCAmelCase : Tuple = { "E": 12.70, "T": 9.06, "A": 8.17, "O": 7.51, "I": 6.97, "N": 6.75, "S": 6.33, "H": 6.09, "R": 5.99, "D": 4.25, "L": 4.03, "C": 2.78, "U": 2.76, "M": 2.41, "W": 2.36, "F": 2.23, "G": 2.02, "Y": 1.97, "P": 1.93, "B": 1.29, "V": 0.98, "K": 0.77, "J": 0.15, "X": 0.15, "Q": 0.10, "Z": 0.07, } _lowerCAmelCase : Optional[int] = "ETAOINSHRDLCUMWFGYPBVKJXQZ" _lowerCAmelCase : Any = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a ={letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def UpperCamelCase_( _snake_case : tuple ): """simple docstring""" return x[0] def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =get_letter_count(_snake_case ) __a ={ freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(_snake_case ) __a ={} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=_snake_case ) __a =''.join(freq_to_letter[freq] ) __a =list(freq_to_letter_str.items() ) freq_pairs.sort(key=_snake_case , reverse=_snake_case ) __a =[freq_pair[1] for freq_pair in freq_pairs] return "".join(_snake_case ) def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =get_frequency_order(_snake_case ) __a =0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
308
0
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : List[str] = r"\n Args:\n input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax\n or scores for each vocabulary token after SoftMax.\n kwargs (`Dict[str, Any]`, *optional*):\n Additional stopping criteria specific kwargs.\n\n Return:\n `bool`. `False` indicates we should continue, `True` indicates we should stop.\n\n" class __magic_name__ ( lowerCAmelCase_ ): @add_start_docstrings(__snake_case ) def __call__( self , __snake_case , __snake_case , **__snake_case ) -> bool: '''simple docstring''' raise NotImplementedError('StoppingCriteria needs to be subclassed' ) class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , __snake_case , __snake_case = None ) -> int: '''simple docstring''' __a =max_length __a =max_position_embeddings @add_start_docstrings(__snake_case ) def __call__( self , __snake_case , __snake_case , **__snake_case ) -> bool: '''simple docstring''' __a =input_ids.shape[-1] __a =cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( 'This is a friendly reminder - the current text generation call will exceed the model\'s predefined ' f'maximum length ({self.max_position_embeddings}). Depending on the model, you may observe ' 'exceptions, performance degradation, or nothing at all.' ) return is_done class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , __snake_case , __snake_case ) -> Tuple: '''simple docstring''' warnings.warn( 'The class `MaxNewTokensCriteria` is deprecated. ' f'Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` ' 'with `max_length = start_length + max_new_tokens` instead.' , __snake_case , ) __a =start_length __a =max_new_tokens __a =start_length + max_new_tokens @add_start_docstrings(__snake_case ) def __call__( self , __snake_case , __snake_case , **__snake_case ) -> bool: '''simple docstring''' return input_ids.shape[-1] >= self.max_length class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , __snake_case , __snake_case = None ) -> int: '''simple docstring''' __a =max_time __a =time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(__snake_case ) def __call__( self , __snake_case , __snake_case , **__snake_case ) -> bool: '''simple docstring''' return time.time() - self.initial_timestamp > self.max_time class __magic_name__ ( lowerCAmelCase_ ): @add_start_docstrings(__snake_case ) def __call__( self , __snake_case , __snake_case , **__snake_case ) -> bool: '''simple docstring''' return any(criteria(__snake_case , __snake_case ) for criteria in self ) @property def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' for stopping_criterium in self: if isinstance(__snake_case , __snake_case ): return stopping_criterium.max_length elif isinstance(__snake_case , __snake_case ): return stopping_criterium.max_length return None def UpperCamelCase_( _snake_case : StoppingCriteriaList , _snake_case : int ): """simple docstring""" __a =stopping_criteria.max_length __a =deepcopy(_snake_case ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn('You set different `max_length` for stopping criteria and `max_length` parameter' , _snake_case ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=_snake_case ) ) return new_stopping_criteria
359
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : int = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'swin2sr' SCREAMING_SNAKE_CASE = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , __snake_case=64 , __snake_case=1 , __snake_case=3 , __snake_case=180 , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=8 , __snake_case=2.0 , __snake_case=True , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.1 , __snake_case="gelu" , __snake_case=False , __snake_case=0.02 , __snake_case=1e-5 , __snake_case=2 , __snake_case=1.0 , __snake_case="1conv" , __snake_case="pixelshuffle" , **__snake_case , ) -> Dict: '''simple docstring''' super().__init__(**__snake_case ) __a =image_size __a =patch_size __a =num_channels __a =embed_dim __a =depths __a =len(__snake_case ) __a =num_heads __a =window_size __a =mlp_ratio __a =qkv_bias __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =drop_path_rate __a =hidden_act __a =use_absolute_embeddings __a =layer_norm_eps __a =initializer_range __a =upscale __a =img_range __a =resi_connection __a =upsampler
308
0
import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _lowerCAmelCase : str = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.encoder.norm.weight", "encoder.layernorm.weight"), ("transformer.encoder.norm.bias", "encoder.layernorm.bias"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) def UpperCamelCase_( _snake_case : Any , _snake_case : int , _snake_case : str ): """simple docstring""" __a =state_dict.pop(_snake_case ) __a =val def UpperCamelCase_( _snake_case : Dict ): """simple docstring""" __a =OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __a =key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) __a =value else: __a =value return new_state_dict def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a ='' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __a =state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) __a =state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __a =in_proj_weight[:256, :] __a =in_proj_bias[:256] __a =in_proj_weight[256:512, :] __a =in_proj_bias[256:512] __a =in_proj_weight[-256:, :] __a =in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention __a =state_dict.pop(F'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) __a =state_dict.pop(F'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __a =in_proj_weight[:256, :] __a =in_proj_bias[:256] __a =in_proj_weight[256:512, :] __a =in_proj_bias[256:512] __a =in_proj_weight[-256:, :] __a =in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention __a =state_dict.pop( F'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) __a =state_dict.pop(F'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict __a =in_proj_weight_cross_attn[:256, :] __a =in_proj_bias_cross_attn[:256] __a =in_proj_weight_cross_attn[256:512, :] __a =in_proj_bias_cross_attn[256:512] __a =in_proj_weight_cross_attn[-256:, :] __a =in_proj_bias_cross_attn[-256:] def UpperCamelCase_( _snake_case : Any , _snake_case : List[Any] ): """simple docstring""" __a , __a =image.size __a =max(_snake_case , _snake_case ) __a =800 if 'detection' in checkpoint_url else 1000 __a =target_max_size / current_max_size __a =image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def UpperCamelCase_( _snake_case : int ): """simple docstring""" __a =F.to_tensor(_snake_case ) __a =F.normalize(_snake_case , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def UpperCamelCase_( _snake_case : int , _snake_case : Tuple , _snake_case : int ): """simple docstring""" logger.info('Converting model...' ) # load original state dict __a =torch.hub.load_state_dict_from_url(_snake_case , map_location='cpu' ) # rename keys for src, dest in rename_keys: rename_key(_snake_case , _snake_case , _snake_case ) __a =rename_backbone_keys(_snake_case ) # query, key and value matrices need special treatment read_in_q_k_v(_snake_case ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __a ='model.' for key in state_dict.copy().keys(): if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): __a =state_dict.pop(_snake_case ) __a =val # create HuggingFace model and load state dict __a =TableTransformerConfig( backbone='resnet18' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: __a =15 __a =2 __a ={0: 'table', 1: 'table rotated'} __a =idalabel __a ={v: k for k, v in idalabel.items()} else: __a =125 __a =6 __a ={ 0: 'table', 1: 'table column', 2: 'table row', 3: 'table column header', 4: 'table projected row header', 5: 'table spanning cell', } __a =idalabel __a ={v: k for k, v in idalabel.items()} __a =DetrImageProcessor( format='coco_detection' , max_size=800 if 'detection' in checkpoint_url else 1000 ) __a =TableTransformerForObjectDetection(_snake_case ) model.load_state_dict(_snake_case ) model.eval() # verify our conversion __a ='example_pdf.png' if 'detection' in checkpoint_url else 'example_table.png' __a =hf_hub_download(repo_id='nielsr/example-pdf' , repo_type='dataset' , filename=_snake_case ) __a =Image.open(_snake_case ).convert('RGB' ) __a =normalize(resize(_snake_case , _snake_case ) ).unsqueeze(0 ) __a =model(_snake_case ) if "detection" in checkpoint_url: __a =(1, 15, 3) __a =torch.tensor( [[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] ) __a =torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] ) else: __a =(1, 125, 7) __a =torch.tensor( [[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] ) __a =torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , _snake_case , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , _snake_case , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) model.save_pretrained(_snake_case ) image_processor.save_pretrained(_snake_case ) if push_to_hub: # Push model to HF hub logger.info('Pushing model to the hub...' ) __a =( 'microsoft/table-transformer-detection' if 'detection' in checkpoint_url else 'microsoft/table-transformer-structure-recognition' ) model.push_to_hub(_snake_case ) image_processor.push_to_hub(_snake_case ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", type=str, choices=[ "https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", "https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth", ], help="URL of the Table Transformer checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _lowerCAmelCase : Optional[int] = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
360
import os def UpperCamelCase_( _snake_case : str = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(_snake_case ) , _snake_case ) ) as input_file: __a =[ [int(_snake_case ) for element in line.split(',' )] for line in input_file.readlines() ] __a =len(_snake_case ) __a =len(matrix[0] ) __a =[[-1 for _ in range(_snake_case )] for _ in range(_snake_case )] for i in range(_snake_case ): __a =matrix[i][0] for j in range(1 , _snake_case ): for i in range(_snake_case ): __a =minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _snake_case ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
308
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : int = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'swin2sr' SCREAMING_SNAKE_CASE = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , __snake_case=64 , __snake_case=1 , __snake_case=3 , __snake_case=180 , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=8 , __snake_case=2.0 , __snake_case=True , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.1 , __snake_case="gelu" , __snake_case=False , __snake_case=0.02 , __snake_case=1e-5 , __snake_case=2 , __snake_case=1.0 , __snake_case="1conv" , __snake_case="pixelshuffle" , **__snake_case , ) -> Dict: '''simple docstring''' super().__init__(**__snake_case ) __a =image_size __a =patch_size __a =num_channels __a =embed_dim __a =depths __a =len(__snake_case ) __a =num_heads __a =window_size __a =mlp_ratio __a =qkv_bias __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =drop_path_rate __a =hidden_act __a =use_absolute_embeddings __a =layer_norm_eps __a =initializer_range __a =upscale __a =img_range __a =resi_connection __a =upsampler
361
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _lowerCAmelCase : Any = logging.get_logger(__name__) class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , *__snake_case , **__snake_case ) -> None: '''simple docstring''' warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
308
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin _lowerCAmelCase : List[str] = False @skip_mps class __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = StableDiffusionAttendAndExcitePipeline SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_BATCH_PARAMS.union({'token_indices'} ) SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def __magic_name__ ( cls ) -> int: '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(__snake_case ) @classmethod def __magic_name__ ( cls ) -> List[str]: '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(__snake_case ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) __a =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__snake_case , ) __a =DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) torch.manual_seed(0 ) __a =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __a =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) __a =CLIPTextModel(__snake_case ) __a =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __a ={ 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __magic_name__ ( self , __snake_case , __snake_case=0 ) -> str: '''simple docstring''' if str(__snake_case ).startswith('mps' ): __a =torch.manual_seed(__snake_case ) else: __a =torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __a =__a ={ 'prompt': 'a cat and a frog', 'token_indices': [2, 5], 'generator': generator, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', 'max_iter_to_alter': 2, 'thresholds': {0: 0.7}, } return inputs def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a ='cpu' __a =self.get_dummy_components() __a =self.pipeline_class(**__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __a =self.get_dummy_inputs(__snake_case ) __a =pipe(**__snake_case ).images __a =image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) __a =np.array( [0.6390_5364, 0.6289_7307, 0.4859_9017, 0.513_3624, 0.555_0048, 0.4576_9516, 0.5032_6973, 0.502_3139, 0.4538_4496] ) __a =np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__snake_case , 1e-3 ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=5e-4 ) def __magic_name__ ( self ) -> str: '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __magic_name__ ( self ) -> Any: '''simple docstring''' self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4 ) def __magic_name__ ( self ) -> Any: '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __magic_name__ ( self ) -> Any: '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4 ) def __magic_name__ ( self ) -> str: '''simple docstring''' super().test_save_load_local(expected_max_difference=5e-4 ) def __magic_name__ ( self ) -> Any: '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=4e-4 ) @require_torch_gpu @slow class __magic_name__ ( unittest.TestCase ): @classmethod def __magic_name__ ( cls ) -> Tuple: '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(__snake_case ) @classmethod def __magic_name__ ( cls ) -> int: '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(__snake_case ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =torch.manual_seed(51 ) __a =StableDiffusionAttendAndExcitePipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , safety_checker=__snake_case , torch_dtype=torch.floataa ) pipe.to('cuda' ) __a ='a painting of an elephant with glasses' __a =[5, 7] __a =pipe( prompt=__snake_case , token_indices=__snake_case , guidance_scale=7.5 , generator=__snake_case , num_inference_steps=5 , max_iter_to_alter=5 , output_type='numpy' , ).images[0] __a =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' ) assert np.abs((expected_image - image).max() ) < 5e-1
362
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : int = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
0
from __future__ import annotations _lowerCAmelCase : str = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } class __magic_name__ : def __init__( self , __snake_case , __snake_case ) -> None: '''simple docstring''' __a =graph # mapping node to its parent in resulting breadth first tree __a ={} __a =source_vertex def __magic_name__ ( self ) -> None: '''simple docstring''' __a ={self.source_vertex} __a =None __a =[self.source_vertex] # first in first out queue while queue: __a =queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__snake_case ) __a =vertex queue.append(__snake_case ) def __magic_name__ ( self , __snake_case ) -> str: '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex __a =self.parent.get(__snake_case ) if target_vertex_parent is None: __a =( f'No path from vertex: {self.source_vertex} to vertex: {target_vertex}' ) raise ValueError(__snake_case ) return self.shortest_path(__snake_case ) + f'->{target_vertex}' if __name__ == "__main__": _lowerCAmelCase : List[Any] = Graph(graph, "G") g.breath_first_search() print(g.shortest_path("D")) print(g.shortest_path("G")) print(g.shortest_path("Foo"))
363
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'yolos' def __init__( self , __snake_case=768 , __snake_case=12 , __snake_case=12 , __snake_case=3072 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.02 , __snake_case=1e-12 , __snake_case=[512, 864] , __snake_case=16 , __snake_case=3 , __snake_case=True , __snake_case=100 , __snake_case=True , __snake_case=False , __snake_case=1 , __snake_case=5 , __snake_case=2 , __snake_case=5 , __snake_case=2 , __snake_case=0.1 , **__snake_case , ) -> str: '''simple docstring''' super().__init__(**__snake_case ) __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =intermediate_size __a =hidden_act __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =initializer_range __a =layer_norm_eps __a =image_size __a =patch_size __a =num_channels __a =qkv_bias __a =num_detection_tokens __a =use_mid_position_embeddings __a =auxiliary_loss # Hungarian matcher __a =class_cost __a =bbox_cost __a =giou_cost # Loss coefficients __a =bbox_loss_coefficient __a =giou_loss_coefficient __a =eos_coefficient class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = version.parse('1.11' ) @property def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __magic_name__ ( self ) -> float: '''simple docstring''' return 1e-4 @property def __magic_name__ ( self ) -> int: '''simple docstring''' return 12
308
0
def UpperCamelCase_( _snake_case : str , _snake_case : int ): """simple docstring""" __a =word.split() def justify(_snake_case : list , _snake_case : int , _snake_case : int ) -> str: __a =max_width - width __a =len(_snake_case ) if len(_snake_case ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: __a =words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] __a =spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] __a =( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(_snake_case ): num_spaces_between_words_list[i] += 1 __a =[] for i in range(_snake_case ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ' ' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(_snake_case ) __a =[] __a =[] __a =0 for word in words: if width + len(_snake_case ) + len(_snake_case ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(_snake_case ) width += len(_snake_case ) else: # justify the line and add it to result answer.append(justify(_snake_case , _snake_case , _snake_case ) ) # reset new line and new width __a , __a =[word], len(_snake_case ) __a =max_width - width - len(_snake_case ) answer.append(' '.join(_snake_case ) + (remaining_spaces + 1) * ' ' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
364
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def UpperCamelCase_( _snake_case : Optional[Any] ): """simple docstring""" __a =model.config __a =DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) __a =MBartConfig( is_decoder=_snake_case , is_encoder_decoder=_snake_case , add_cross_attention=_snake_case , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=_snake_case , add_final_layer_norm=_snake_case , ) return encoder_config, decoder_config def UpperCamelCase_( _snake_case : Tuple ): """simple docstring""" if "encoder.model" in name: __a =name.replace('encoder.model' , 'encoder' ) if "decoder.model" in name: __a =name.replace('decoder.model' , 'decoder' ) if "patch_embed.proj" in name: __a =name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __a =name.replace('patch_embed.norm' , 'embeddings.norm' ) if name.startswith('encoder' ): if "layers" in name: __a ='encoder.' + name if "attn.proj" in name: __a =name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "mask" not in name: __a =name.replace('attn' , 'attention.self' ) if "norm1" in name: __a =name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __a =name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __a =name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __a =name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": __a ='encoder.layernorm.weight' if name == "encoder.norm.bias": __a ='encoder.layernorm.bias' return name def UpperCamelCase_( _snake_case : Tuple , _snake_case : str ): """simple docstring""" for key in orig_state_dict.copy().keys(): __a =orig_state_dict.pop(_snake_case ) if "qkv" in key: __a =key.split('.' ) __a =int(key_split[3] ) __a =int(key_split[5] ) __a =model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __a =val[:dim, :] __a =val[dim : dim * 2, :] __a =val[-dim:, :] else: __a =val[:dim] __a =val[dim : dim * 2] __a =val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: __a =val return orig_state_dict def UpperCamelCase_( _snake_case : Tuple , _snake_case : Union[str, Any]=None , _snake_case : List[Any]=False ): """simple docstring""" __a =DonutModel.from_pretrained(_snake_case ).eval() # load HuggingFace model __a , __a =get_configs(_snake_case ) __a =DonutSwinModel(_snake_case ) __a =MBartForCausalLM(_snake_case ) __a =VisionEncoderDecoderModel(encoder=_snake_case , decoder=_snake_case ) model.eval() __a =original_model.state_dict() __a =convert_state_dict(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) # verify results on scanned document __a =load_dataset('hf-internal-testing/example-documents' ) __a =dataset['test'][0]['image'].convert('RGB' ) __a =XLMRobertaTokenizerFast.from_pretrained(_snake_case , from_slow=_snake_case ) __a =DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) __a =DonutProcessor(_snake_case , _snake_case ) __a =processor(_snake_case , return_tensors='pt' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": __a ='<s_docvqa><s_question>{user_input}</s_question><s_answer>' __a ='When is the coffee break?' __a =task_prompt.replace('{user_input}' , _snake_case ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": __a ='<s_rvlcdip>' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: __a ='<s_cord>' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": __a ='s_cord-v2>' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": __a ='<s_zhtrainticket>' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt __a ='hello world' else: raise ValueError('Model name not supported' ) __a =original_model.decoder.tokenizer(_snake_case , add_special_tokens=_snake_case , return_tensors='pt' )[ 'input_ids' ] __a =original_model.encoder.model.patch_embed(_snake_case ) __a , __a =model.encoder.embeddings(_snake_case ) assert torch.allclose(_snake_case , _snake_case , atol=1e-3 ) # verify encoder hidden states __a =original_model.encoder(_snake_case ) __a =model.encoder(_snake_case ).last_hidden_state assert torch.allclose(_snake_case , _snake_case , atol=1e-2 ) # verify decoder hidden states __a =original_model(_snake_case , _snake_case , _snake_case ).logits __a =model(_snake_case , decoder_input_ids=_snake_case ).logits assert torch.allclose(_snake_case , _snake_case , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(_snake_case ) processor.save_pretrained(_snake_case ) if push_to_hub: model.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) processor.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) _lowerCAmelCase : List[Any] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
308
0
from __future__ import annotations import bisect def UpperCamelCase_( _snake_case : list[int] , _snake_case : int , _snake_case : int = 0 , _snake_case : int = -1 ): """simple docstring""" if hi < 0: __a =len(_snake_case ) while lo < hi: __a =lo + (hi - lo) // 2 if sorted_collection[mid] < item: __a =mid + 1 else: __a =mid return lo def UpperCamelCase_( _snake_case : list[int] , _snake_case : int , _snake_case : int = 0 , _snake_case : int = -1 ): """simple docstring""" if hi < 0: __a =len(_snake_case ) while lo < hi: __a =lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __a =mid + 1 else: __a =mid return lo def UpperCamelCase_( _snake_case : list[int] , _snake_case : int , _snake_case : int = 0 , _snake_case : int = -1 ): """simple docstring""" sorted_collection.insert(bisect_left(_snake_case , _snake_case , _snake_case , _snake_case ) , _snake_case ) def UpperCamelCase_( _snake_case : list[int] , _snake_case : int , _snake_case : int = 0 , _snake_case : int = -1 ): """simple docstring""" sorted_collection.insert(bisect_right(_snake_case , _snake_case , _snake_case , _snake_case ) , _snake_case ) def UpperCamelCase_( _snake_case : list[int] , _snake_case : int ): """simple docstring""" __a =0 __a =len(_snake_case ) - 1 while left <= right: __a =left + (right - left) // 2 __a =sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __a =midpoint - 1 else: __a =midpoint + 1 return None def UpperCamelCase_( _snake_case : list[int] , _snake_case : int ): """simple docstring""" __a =bisect.bisect_left(_snake_case , _snake_case ) if index != len(_snake_case ) and sorted_collection[index] == item: return index return None def UpperCamelCase_( _snake_case : list[int] , _snake_case : int , _snake_case : int , _snake_case : int ): """simple docstring""" if right < left: return None __a =left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(_snake_case , _snake_case , _snake_case , midpoint - 1 ) else: return binary_search_by_recursion(_snake_case , _snake_case , midpoint + 1 , _snake_case ) if __name__ == "__main__": _lowerCAmelCase : List[str] = input("Enter numbers separated by comma:\n").strip() _lowerCAmelCase : Union[str, Any] = sorted(int(item) for item in user_input.split(",")) _lowerCAmelCase : str = int(input("Enter a single number to be found in the list:\n")) _lowerCAmelCase : List[Any] = binary_search(collection, target) if result is None: print(f'''{target} was not found in {collection}.''') else: print(f'''{target} was found at position {result} in {collection}.''')
365
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer SCREAMING_SNAKE_CASE = False def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' super().setUp() __a =['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] __a =dict(zip(__snake_case , range(len(__snake_case ) ) ) ) __a =['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] __a ={'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__snake_case ) ) def __magic_name__ ( self , **__snake_case ) -> Any: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def __magic_name__ ( self , __snake_case ) -> List[Any]: '''simple docstring''' __a ='adapt act apte' __a ='adapt act apte' return input_text, output_text def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __a ='adapt act apte' __a =['adapt', 'act', 'ap@@', 'te'] __a =tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) __a =[tokenizer.bos_token] + tokens + [tokenizer.eos_token] __a =[0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1384] __a ='I am a small frog.' __a =tok([src_text] , padding=__snake_case , truncation=__snake_case )['input_ids'] __a =tok.batch_decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) __a ='I am a small frog .' __a ='.' __a =tok(__snake_case )['input_ids'] __a =tok(__snake_case )['input_ids'] assert encoded[-1] == encoded_dot[0]
308
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Dict = logging.get_logger(__name__) def UpperCamelCase_( _snake_case : Tuple ): """simple docstring""" __a ='huggingface/label-files' __a ='imagenet-1k-id2label.json' __a =json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='dataset' ) , 'r' ) ) __a ={int(_snake_case ): v for k, v in idalabel.items()} __a ={v: k for k, v in idalabel.items()} __a ='std_conv' if 'bit' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" __a =BitConfig( conv_layer=_snake_case , num_labels=1000 , idalabel=_snake_case , labelaid=_snake_case , ) return config def UpperCamelCase_( _snake_case : str ): """simple docstring""" if "stem.conv" in name: __a =name.replace('stem.conv' , 'bit.embedder.convolution' ) if "blocks" in name: __a =name.replace('blocks' , 'layers' ) if "head.fc" in name: __a =name.replace('head.fc' , 'classifier.1' ) if name.startswith('norm' ): __a ='bit.' + name if "bit" not in name and "classifier" not in name: __a ='bit.encoder.' + name return name def UpperCamelCase_( ): """simple docstring""" __a ='http://images.cocodataset.org/val2017/000000039769.jpg' __a =Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return im @torch.no_grad() def UpperCamelCase_( _snake_case : Optional[Any] , _snake_case : Optional[Any] , _snake_case : Any=False ): """simple docstring""" __a =get_config(_snake_case ) # load original model from timm __a =create_model(_snake_case , pretrained=_snake_case ) timm_model.eval() # load state_dict of original model __a =timm_model.state_dict() for key in state_dict.copy().keys(): __a =state_dict.pop(_snake_case ) __a =val.squeeze() if 'head' in key else val # load HuggingFace model __a =BitForImageClassification(_snake_case ) model.eval() model.load_state_dict(_snake_case ) # create image processor __a =create_transform(**resolve_data_config({} , model=_snake_case ) ) __a =transform.transforms __a ={ 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } __a =BitImageProcessor( do_resize=_snake_case , size={'shortest_edge': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_snake_case , crop_size={'height': timm_transforms[1].size[0], 'width': timm_transforms[1].size[1]} , do_normalize=_snake_case , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) __a =prepare_img() __a =transform(_snake_case ).unsqueeze(0 ) __a =processor(_snake_case , return_tensors='pt' ).pixel_values # verify pixel values assert torch.allclose(_snake_case , _snake_case ) # verify logits with torch.no_grad(): __a =model(_snake_case ) __a =outputs.logits print('Logits:' , logits[0, :3] ) print('Predicted class:' , model.config.idalabel[logits.argmax(-1 ).item()] ) __a =timm_model(_snake_case ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_snake_case , outputs.logits , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(_snake_case ).mkdir(exist_ok=_snake_case ) print(F'Saving model {model_name} and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(_snake_case ) processor.save_pretrained(_snake_case ) if push_to_hub: print(F'Pushing model {model_name} and processor to the hub' ) model.push_to_hub(F'ybelkada/{model_name}' ) processor.push_to_hub(F'ybelkada/{model_name}' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="resnetv2_50x1_bitm", type=str, help="Name of the BiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model to the hub.", ) _lowerCAmelCase : Dict = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
366
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __magic_name__ ( unittest.TestCase , lowerCAmelCase_ ): def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =load_tool('text-to-speech' ) self.tool.setup() def __magic_name__ ( self ) -> Dict: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) __a =self.tool('hey' ) __a =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) __a =self.tool('hey' ) __a =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) )
308
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _lowerCAmelCase : Optional[int] = { "configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = [ "ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST", "ErnieForCausalLM", "ErnieForMaskedLM", "ErnieForMultipleChoice", "ErnieForNextSentencePrediction", "ErnieForPreTraining", "ErnieForQuestionAnswering", "ErnieForSequenceClassification", "ErnieForTokenClassification", "ErnieModel", "ErniePreTrainedModel", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys _lowerCAmelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
367
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> int: '''simple docstring''' __a =[] __a =[] for i in range(self.num_layers ): __a =self.in_channels if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =resnets __a =attentions if self.add_downsample: __a =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> Optional[Any]: '''simple docstring''' __a =() for resnet, attn in zip(self.resnets , self.attentions ): __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __a =self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> int: '''simple docstring''' __a =[] for i in range(self.num_layers ): __a =self.in_channels if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets if self.add_downsample: __a =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case=True ) -> Optional[int]: '''simple docstring''' __a =() for resnet in self.resnets: __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __a =self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =[] __a =[] for i in range(self.num_layers ): __a =self.in_channels if (i == self.num_layers - 1) else self.out_channels __a =self.prev_output_channel if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =resnets __a =attentions if self.add_upsample: __a =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[Any]: '''simple docstring''' for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states __a =res_hidden_states_tuple[-1] __a =res_hidden_states_tuple[:-1] __a =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __a =self.upsamplers_a(__snake_case ) return hidden_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =[] for i in range(self.num_layers ): __a =self.in_channels if (i == self.num_layers - 1) else self.out_channels __a =self.prev_output_channel if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets if self.add_upsample: __a =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[Any]: '''simple docstring''' for resnet in self.resnets: # pop res hidden states __a =res_hidden_states_tuple[-1] __a =res_hidden_states_tuple[:-1] __a =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __a =self.upsamplers_a(__snake_case ) return hidden_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # there is always at least one resnet __a =[ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] __a =[] for _ in range(self.num_layers ): __a =FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets __a =attentions def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[str]: '''simple docstring''' __a =self.resnets[0](__snake_case , __snake_case ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) return hidden_states
308
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCAmelCase : Any = { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/config.json", # See all XGLM models at https://huggingface.co/models?filter=xglm } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'xglm' SCREAMING_SNAKE_CASE = ['past_key_values'] SCREAMING_SNAKE_CASE = { 'num_attention_heads': 'attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'num_layers', } def __init__( self , __snake_case=25_6008 , __snake_case=2048 , __snake_case=1024 , __snake_case=4096 , __snake_case=24 , __snake_case=16 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.02 , __snake_case=True , __snake_case=True , __snake_case=2 , __snake_case=1 , __snake_case=0 , __snake_case=2 , **__snake_case , ) -> List[Any]: '''simple docstring''' __a =vocab_size __a =max_position_embeddings __a =d_model __a =ffn_dim __a =num_layers __a =attention_heads __a =activation_function __a =dropout __a =attention_dropout __a =activation_dropout __a =layerdrop __a =init_std __a =scale_embedding # scale factor will be sqrt(d_model) if True __a =use_cache super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , decoder_start_token_id=__snake_case , **__snake_case , )
368
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_5_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self ) -> int: '''simple docstring''' if self.framework == "pytorch": subprocess.run( f'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding='utf-8' , check=__snake_case , ) assert hasattr(self , 'env' ) def __magic_name__ ( self , __snake_case ) -> int: '''simple docstring''' __a =f'{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}' # distributed data settings __a ={'smdistributed': {'dataparallel': {'enabled': True}}} if self.script != 'run_ddp.py' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__snake_case , instance_count=__snake_case , instance_type=self.instance_type , debugger_hook_config=__snake_case , hyperparameters={**self.env.distributed_hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__snake_case , py_version='py36' , ) def __magic_name__ ( self , __snake_case ) -> Optional[Any]: '''simple docstring''' TrainingJobAnalytics(__snake_case ).export_csv(f'{self.env.test_path}/{job_name}_metrics.csv' ) @parameterized.expand([(2,)] ) def __magic_name__ ( self , __snake_case ) -> Optional[int]: '''simple docstring''' # create estimator __a =self.create_estimator(__snake_case ) # run training estimator.fit() # result dataframe __a =TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __a =list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) __a =list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __a =( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'{estimator.latest_training_job.name}.json' , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , __snake_case )
308
0
import os import numpy import onnx def UpperCamelCase_( _snake_case : Any , _snake_case : Optional[Any] ): """simple docstring""" __a =a.name __a =b.name __a ='' __a ='' __a =a == b __a =name_a __a =name_b return res def UpperCamelCase_( _snake_case : Any , _snake_case : List[Any] , _snake_case : List[Any] ): """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(_snake_case , _snake_case ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , _snake_case , _snake_case ) _graph_replace_input_with(node_proto.attribute[1].g , _snake_case , _snake_case ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , _snake_case , _snake_case ) def UpperCamelCase_( _snake_case : str , _snake_case : Any , _snake_case : str ): """simple docstring""" for n in graph_proto.node: _node_replace_input_with(_snake_case , _snake_case , _snake_case ) def UpperCamelCase_( _snake_case : List[str] , _snake_case : Tuple , _snake_case : Tuple ): """simple docstring""" __a =list(model.graph.initializer ) __a =list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i __a =inits[i].name __a =inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , _snake_case , _snake_case ) def UpperCamelCase_( _snake_case : Any ): """simple docstring""" __a =os.path.dirname(_snake_case ) __a =os.path.basename(_snake_case ) __a =onnx.load(os.path.join(_snake_case , _snake_case ) ) __a =list(model.graph.initializer ) __a =set() __a ={} __a =[] __a =0 for i in range(len(_snake_case ) ): if i in dup_set: continue for j in range(i + 1 , len(_snake_case ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(_snake_case ) dup_set.add(_snake_case ) __a =inits[j].data_type __a =numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('unexpected data type: ' , _snake_case ) total_reduced_size += mem_size __a =inits[i].name __a =inits[j].name if name_i in dup_map: dup_map[name_i].append(_snake_case ) else: __a =[name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 1024 / 1024 / 1024 , 'GB' ) __a =sorted(_snake_case ) _remove_dup_initializers_from_model(_snake_case , _snake_case , _snake_case ) __a ='optimized_' + model_file_name __a =os.path.join(_snake_case , _snake_case ) onnx.save(_snake_case , _snake_case ) return new_model
369
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _lowerCAmelCase : List[Any] = logging.getLogger(__name__) _lowerCAmelCase : Optional[Any] = "Hello world! cécé herlolip" _lowerCAmelCase : str = namedtuple( "BertAbsConfig", [ "temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout", ], ) def UpperCamelCase_( _snake_case : str , _snake_case : List[Any] ): """simple docstring""" __a =BertAbsConfig( temp_dir='.' , finetune_bert=_snake_case , large=_snake_case , share_emb=_snake_case , use_bert_emb=_snake_case , encoder='bert' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) __a =torch.load(_snake_case , lambda _snake_case , _snake_case : storage ) __a =AbsSummarizer(_snake_case , torch.device('cpu' ) , _snake_case ) original.eval() __a =BertAbsSummarizer(_snake_case , torch.device('cpu' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('convert the model' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('Make sure that the models\' outputs are identical' ) __a =BertTokenizer.from_pretrained('bert-base-uncased' ) # prepare the model inputs __a =tokenizer.encode('This is sample éàalj\'-.' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_snake_case )) ) __a =torch.tensor(_snake_case ).unsqueeze(0 ) __a =tokenizer.encode('This is sample 3 éàalj\'-.' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_snake_case )) ) __a =torch.tensor(_snake_case ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __a =encoder_input_ids __a =decoder_input_ids __a =__a =None __a =None __a =__a =None __a =__a =None __a =None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __a =original(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )[0] __a =original.generator(_snake_case ) __a =new_model( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )[0] __a =new_model.generator(_snake_case ) __a =torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_snake_case ) ) __a =torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_snake_case ) ) __a =torch.allclose(_snake_case , _snake_case , atol=1e-3 ) if are_identical: logging.info('all weights are equal up to 1e-3' ) else: raise ValueError('the weights are different. The new model is likely different from the original one.' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('saving the model\'s state dictionary' ) torch.save( new_model.state_dict() , './bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--bertabs_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model.", ) _lowerCAmelCase : Optional[Any] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
308
0
def UpperCamelCase_( _snake_case : int = 10**9 ): """simple docstring""" __a =1 __a =2 __a =0 __a =0 __a =0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __a =2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
370
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ : def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=False , __snake_case=False , __snake_case=False , __snake_case=2 , __snake_case=99 , __snake_case=0 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=0.1 , __snake_case=0.1 , __snake_case=512 , __snake_case=2 , __snake_case=0.02 , __snake_case=2 , __snake_case=4 , __snake_case="last" , __snake_case=True , __snake_case=None , __snake_case=0 , ) -> Optional[Any]: '''simple docstring''' __a =parent __a =batch_size __a =seq_length __a =is_training __a =use_input_lengths __a =use_token_type_ids __a =use_labels __a =gelu_activation __a =sinusoidal_embeddings __a =causal __a =asm __a =n_langs __a =vocab_size __a =n_special __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =max_position_embeddings __a =type_sequence_label_size __a =initializer_range __a =num_labels __a =num_choices __a =summary_type __a =use_proj __a =scope __a =bos_token_id def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a =random_attention_mask([self.batch_size, self.seq_length] ) __a =None if self.use_input_lengths: __a =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __a =None if self.use_token_type_ids: __a =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __a =None __a =None __a =None if self.use_labels: __a =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a =ids_tensor([self.batch_size] , 2 ).float() __a =ids_tensor([self.batch_size] , self.num_choices ) __a =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __magic_name__ ( self ) -> Any: '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> List[Any]: '''simple docstring''' __a =XLMModel(config=__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , lengths=__snake_case , langs=__snake_case ) __a =model(__snake_case , langs=__snake_case ) __a =model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Optional[int]: '''simple docstring''' __a =XLMWithLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Dict: '''simple docstring''' __a =XLMForQuestionAnsweringSimple(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) __a =outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> List[Any]: '''simple docstring''' __a =XLMForQuestionAnswering(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , p_mask=__snake_case , ) __a =model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , ) ((__a) , ) =result_with_labels.to_tuple() __a =model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) ((__a) , ) =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Optional[Any]: '''simple docstring''' __a =XLMForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Any: '''simple docstring''' __a =self.num_labels __a =XLMForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Tuple: '''simple docstring''' __a =self.num_choices __a =XLMForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() __a =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) =config_and_inputs __a ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable SCREAMING_SNAKE_CASE = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> int: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __magic_name__ ( self , __snake_case , __snake_case , __snake_case=False ) -> str: '''simple docstring''' __a =super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __a =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) __a =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =XLMModelTester(self ) __a =ConfigTester(self , config_class=__snake_case , emb_dim=37 ) def __magic_name__ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=False , __snake_case=1 ) -> Optional[Any]: '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_attentions in attentions] , [True] * len(__snake_case ) ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__snake_case ): # adds PAD dummy token __a =min_length + idx + 1 __a =min_length + idx + 1 __a =( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__snake_case ) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=False , __snake_case=1 ) -> Dict: '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_hidden_states in hidden_states] , [True] * len(__snake_case ) , ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__snake_case ): # adds PAD dummy token __a =min_length + idx + 1 __a =(batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__snake_case ) , ) pass @slow def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a =XLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class __magic_name__ ( unittest.TestCase ): @slow def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(__snake_case ) __a =torch.tensor([[14, 447]] , dtype=torch.long , device=__snake_case ) # the president __a =[ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __a =model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __snake_case )
308
0
"""simple docstring""" # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) _lowerCAmelCase : Optional[Any] = "pytorch_model.bin" _lowerCAmelCase : Dict = "pytorch_model.bin.index.json" _lowerCAmelCase : Optional[Any] = "adapter_config.json" _lowerCAmelCase : List[str] = "adapter_model.bin" _lowerCAmelCase : str = "adapter_model.safetensors" _lowerCAmelCase : List[str] = "tf_model.h5" _lowerCAmelCase : int = "tf_model.h5.index.json" _lowerCAmelCase : int = "model.ckpt" _lowerCAmelCase : Union[str, Any] = "flax_model.msgpack" _lowerCAmelCase : Any = "flax_model.msgpack.index.json" _lowerCAmelCase : Dict = "model.safetensors" _lowerCAmelCase : Any = "model.safetensors.index.json" _lowerCAmelCase : str = "config.json" _lowerCAmelCase : List[Any] = "preprocessor_config.json" _lowerCAmelCase : Dict = FEATURE_EXTRACTOR_NAME _lowerCAmelCase : Any = "generation_config.json" _lowerCAmelCase : Dict = "modelcard.json" _lowerCAmelCase : Any = "▁" _lowerCAmelCase : str = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility _lowerCAmelCase : Optional[Any] = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. _lowerCAmelCase : str = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] _lowerCAmelCase : int = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def UpperCamelCase_( _snake_case : Union[str, Any] ): """simple docstring""" if version.parse(_snake_case ) < version.parse(_snake_case ): if "dev" in min_version: __a =( 'This example requires a source install from HuggingFace Transformers (see ' '`https://huggingface.co/docs/transformers/installation#install-from-source`),' ) else: __a =F'This example requires a minimum version of {min_version},' error_message += F' but the version found is {__version__}.\n' raise ImportError( error_message + 'Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other ' 'versions of HuggingFace Transformers.' )
371
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake _lowerCAmelCase : Optional[Any] = numpy.array([0, 0]) _lowerCAmelCase : Dict = numpy.array([0.5, 0.8660254]) _lowerCAmelCase : Any = numpy.array([1, 0]) _lowerCAmelCase : int = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCamelCase_( _snake_case : list[numpy.ndarray] , _snake_case : int ): """simple docstring""" __a =initial_vectors for _ in range(_snake_case ): __a =iteration_step(_snake_case ) return vectors def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =[] for i, start_vector in enumerate(vectors[:-1] ): __a =vectors[i + 1] new_vectors.append(_snake_case ) __a =end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCamelCase_( _snake_case : numpy.ndarray , _snake_case : float ): """simple docstring""" __a =numpy.radians(_snake_case ) __a , __a =numpy.cos(_snake_case ), numpy.sin(_snake_case ) __a =numpy.array(((c, -s), (s, c)) ) return numpy.dot(_snake_case , _snake_case ) def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() __a , __a =zip(*_snake_case ) plt.plot(_snake_case , _snake_case ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : List[Any] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
308
0
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig _lowerCAmelCase : Dict = logging.get_logger(__name__) class __magic_name__ : def __init__( self , __snake_case , __snake_case ) -> List[Any]: '''simple docstring''' __a =question_encoder __a =generator __a =self.question_encoder def __magic_name__ ( self , __snake_case ) -> Union[str, Any]: '''simple docstring''' if os.path.isfile(__snake_case ): raise ValueError(f'Provided path ({save_directory}) should be a directory, not a file' ) os.makedirs(__snake_case , exist_ok=__snake_case ) __a =os.path.join(__snake_case , 'question_encoder_tokenizer' ) __a =os.path.join(__snake_case , 'generator_tokenizer' ) self.question_encoder.save_pretrained(__snake_case ) self.generator.save_pretrained(__snake_case ) @classmethod def __magic_name__ ( cls , __snake_case , **__snake_case ) -> Tuple: '''simple docstring''' from ..auto.tokenization_auto import AutoTokenizer __a =kwargs.pop('config' , __snake_case ) if config is None: __a =RagConfig.from_pretrained(__snake_case ) __a =AutoTokenizer.from_pretrained( __snake_case , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) __a =AutoTokenizer.from_pretrained( __snake_case , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=__snake_case , generator=__snake_case ) def __call__( self , *__snake_case , **__snake_case ) -> Union[str, Any]: '''simple docstring''' return self.current_tokenizer(*__snake_case , **__snake_case ) def __magic_name__ ( self , *__snake_case , **__snake_case ) -> List[Any]: '''simple docstring''' return self.generator.batch_decode(*__snake_case , **__snake_case ) def __magic_name__ ( self , *__snake_case , **__snake_case ) -> str: '''simple docstring''' return self.generator.decode(*__snake_case , **__snake_case ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =self.question_encoder def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =self.generator def __magic_name__ ( self , __snake_case , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = "longest" , __snake_case = None , __snake_case = True , **__snake_case , ) -> BatchEncoding: '''simple docstring''' warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , __snake_case , ) if max_length is None: __a =self.current_tokenizer.model_max_length __a =self( __snake_case , add_special_tokens=__snake_case , return_tensors=__snake_case , max_length=__snake_case , padding=__snake_case , truncation=__snake_case , **__snake_case , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: __a =self.current_tokenizer.model_max_length __a =self( text_target=__snake_case , add_special_tokens=__snake_case , return_tensors=__snake_case , padding=__snake_case , max_length=__snake_case , truncation=__snake_case , **__snake_case , ) __a =labels['input_ids'] return model_inputs
350
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Tuple = { "configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MegatronBertForCausalLM", "MegatronBertForMaskedLM", "MegatronBertForMultipleChoice", "MegatronBertForNextSentencePrediction", "MegatronBertForPreTraining", "MegatronBertForQuestionAnswering", "MegatronBertForSequenceClassification", "MegatronBertForTokenClassification", "MegatronBertModel", "MegatronBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys _lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
0
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class __magic_name__ ( unittest.TestCase ): def __init__( self , __snake_case ) -> Any: '''simple docstring''' __a =parent def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' return {} def UpperCamelCase_( ): """simple docstring""" __a ='<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR="FFFFFF">\n <HR>\n <a href="http://google.com">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style="color:#0000FF">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>' __a ='\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n ' return [html_string_a, html_string_a] @require_bsa class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = MarkupLMFeatureExtractor if is_bsa_available() else None def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =MarkupLMFeatureExtractionTester(self ) @property def __magic_name__ ( self ) -> Any: '''simple docstring''' return self.feature_extract_tester.prepare_feat_extract_dict() def __magic_name__ ( self ) -> int: '''simple docstring''' __a =self.feature_extraction_class() # Test not batched input __a =get_html_strings()[0] __a =feature_extractor(__snake_case ) # fmt: off __a =[['sample document', 'Goog', 'This is one header', 'This is a another Header', 'Travel from', 'SFO to JFK', 'on May 2, 2015 at 2:00 pm. For details go to confirm.com', 'Traveler', 'name', 'is', 'John Doe']] __a =[['/html/head/title', '/html/body/a', '/html/body/h1', '/html/body/h2', '/html/body/p', '/html/body/p/p/b[1]', '/html/body/p/p/b[2]/i', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/b', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/p']] # fmt: on self.assertEqual(encoding.nodes , __snake_case ) self.assertEqual(encoding.xpaths , __snake_case ) # Test batched __a =get_html_strings() __a =feature_extractor(__snake_case ) # fmt: off __a =expected_nodes + [['My First Heading', 'My first paragraph.']] __a =expected_xpaths + [['/html/body/h1', '/html/body/p']] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , __snake_case ) self.assertEqual(encoding.xpaths , __snake_case )
351
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __magic_name__ : @staticmethod def __magic_name__ ( *__snake_case , **__snake_case ) -> List[str]: '''simple docstring''' pass def UpperCamelCase_( _snake_case : Image ): """simple docstring""" __a =hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __magic_name__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def __magic_name__ ( self , __snake_case , __snake_case , __snake_case ) -> Dict: '''simple docstring''' __a =DepthEstimationPipeline(model=__snake_case , image_processor=__snake_case ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __magic_name__ ( self , __snake_case , __snake_case ) -> Tuple: '''simple docstring''' __a =depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , __snake_case ) import datasets __a =datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) __a =depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , __snake_case , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' pass @slow @require_torch def __magic_name__ ( self ) -> int: '''simple docstring''' __a ='Intel/dpt-large' __a =pipeline('depth-estimation' , model=__snake_case ) __a =depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) __a =hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.662 ) @require_torch def __magic_name__ ( self ) -> Any: '''simple docstring''' # This is highly irregular to have no small tests. self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
308
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCAmelCase : Optional[int] = { "configuration_chinese_clip": [ "CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "ChineseCLIPConfig", "ChineseCLIPOnnxConfig", "ChineseCLIPTextConfig", "ChineseCLIPVisionConfig", ], "processing_chinese_clip": ["ChineseCLIPProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = ["ChineseCLIPFeatureExtractor"] _lowerCAmelCase : str = ["ChineseCLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = [ "CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "ChineseCLIPModel", "ChineseCLIPPreTrainedModel", "ChineseCLIPTextModel", "ChineseCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys _lowerCAmelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
352
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _lowerCAmelCase : Optional[int] = logging.getLogger(__name__) _lowerCAmelCase : Any = "pytorch_model.bin" @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co.'} , ) @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field(metadata={'help': 'A csv or a json file containing the training data.'} ) SCREAMING_SNAKE_CASE = dataclasses.field(metadata={'help': 'A csv or a json file containing the data to predict on.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the validation data.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'The name of the task to train on.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'The list of labels for the task.'} ) @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field( metadata={'help': 'The output directory where the model predictions and checkpoints will be written.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default='accuracy' , metadata={'help': 'The evaluation metric used for the task.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default='no' , metadata={ 'help': 'The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]' } , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=1_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0 , metadata={ 'help': 'How much the specified evaluation metric must improve to satisfy early stopping conditions.' } , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the confidence score.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the validation performance.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to fine-tune on labeled data after pseudo training.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0 , metadata={'help': 'Confidence threshold for pseudo-labeled data filtering.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=1_0_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Random seed for initialization.'} , ) def UpperCamelCase_( _snake_case : int , _snake_case : str , _snake_case : Optional[int] , _snake_case : str , _snake_case : Union[str, Any] , _snake_case : List[Any] ): """simple docstring""" __a =datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: __a =dataset.filter(lambda _snake_case : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 __a =int(eval_result * len(_snake_case ) ) print(_snake_case ) __a =dataset.sort('probability' , reverse=_snake_case ) __a =dataset.select(range(_snake_case ) ) __a =dataset.remove_columns(['label', 'probability'] ) __a =dataset.rename_column('prediction' , 'label' ) __a =dataset.map(lambda _snake_case : {"label": idalabel[example["label"]]} ) __a =dataset.shuffle(seed=args.seed ) __a =os.path.join(_snake_case , F'train_pseudo.{args.data_file_extension}' ) if args.data_file_extension == "csv": dataset.to_csv(_snake_case , index=_snake_case ) else: dataset.to_json(_snake_case ) def UpperCamelCase_( _snake_case : List[Any] , _snake_case : str , _snake_case : int , _snake_case : Optional[int] , **_snake_case : List[str] ): """simple docstring""" __a =Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() __a =STModelArguments(model_name_or_path=_snake_case ) __a =STDataArguments(train_file=_snake_case , infer_file=_snake_case ) __a =STTrainingArguments(output_dir=_snake_case ) __a =argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(_snake_case ).items(): setattr(_snake_case , _snake_case , _snake_case ) for key, value in kwargs.items(): if hasattr(_snake_case , _snake_case ): setattr(_snake_case , _snake_case , _snake_case ) # Sanity checks __a ={} __a =None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None __a =args.train_file __a =args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None __a =args.eval_file for key in data_files: __a =data_files[key].split('.' )[-1] assert extension in ["csv", "json"], F'`{key}_file` should be a csv or a json file.' if args.data_file_extension is None: __a =extension else: assert extension == args.data_file_extension, F'`{key}_file` should be a {args.data_file_extension} file`.' assert ( args.eval_metric in datasets.list_metrics() ), F'{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('Creating the initial data directory for self-training...' ) __a =F'{args.output_dir}/self-train_iter-{{}}'.format __a =data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=_snake_case ) os.makedirs(_snake_case , exist_ok=_snake_case ) accelerator.wait_for_everyone() __a =None __a =None __a =0 __a =False # Show the progress bar __a =tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): __a =data_dir_format(_snake_case ) assert os.path.exists(_snake_case ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 __a =os.path.join(_snake_case , 'stage-1' ) __a ={ 'accelerator': accelerator, 'model_name_or_path': args.model_name_or_path, 'cache_dir': args.cache_dir, 'do_train': True, 'train_file': data_files['train'] if iteration == 0 else data_files['train_pseudo'], 'do_eval': True if args.eval_file is not None else False, 'eval_file': data_files['eval'], 'do_predict': True, 'infer_file': data_files['infer'], 'task_name': args.task_name, 'label_list': args.label_list, 'output_dir': current_output_dir, 'eval_metric': args.eval_metric, 'evaluation_strategy': args.evaluation_strategy, 'early_stopping_patience': args.early_stopping_patience, 'early_stopping_threshold': args.early_stopping_threshold, 'seed': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(_snake_case , _snake_case ): arguments_dict.update({key: value} ) __a =os.path.join(_snake_case , 'best-checkpoint' , _snake_case ) if os.path.exists(_snake_case ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.' , _snake_case , _snake_case , ) else: logger.info('***** Running self-training: iteration: %d, stage: 1 *****' , _snake_case ) finetune(**_snake_case ) accelerator.wait_for_everyone() assert os.path.exists(_snake_case ) logger.info('Self-training job completed: iteration: %d, stage: 1.' , _snake_case ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data __a =os.path.join(_snake_case , 'best-checkpoint' ) __a =os.path.join(_snake_case , 'stage-2' ) # Update arguments_dict __a =model_path __a =data_files['train'] __a =current_output_dir __a =os.path.join(_snake_case , 'best-checkpoint' , _snake_case ) if os.path.exists(_snake_case ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.' , _snake_case , _snake_case , ) else: logger.info('***** Running self-training: iteration: %d, stage: 2 *****' , _snake_case ) finetune(**_snake_case ) accelerator.wait_for_everyone() assert os.path.exists(_snake_case ) logger.info('Self-training job completed: iteration: %d, stage: 2.' , _snake_case ) __a =iteration __a =data_dir_format(iteration + 1 ) __a =AutoConfig.from_pretrained(os.path.join(_snake_case , 'best-checkpoint' ) ) __a =config.idalabel __a =os.path.join(_snake_case , 'eval_results_best-checkpoint.json' ) __a =os.path.join(_snake_case , 'test_results_best-checkpoint.json' ) assert os.path.exists(_snake_case ) with open(_snake_case , 'r' ) as f: __a =float(json.load(_snake_case )[args.eval_metric] ) __a =os.path.join(_snake_case , 'infer_output_best-checkpoint.csv' ) assert os.path.exists(_snake_case ) # Loading the dataset from local csv or json files. __a =load_dataset(args.data_file_extension , data_files={'data': data_files['infer']} )['data'] __a =load_dataset('csv' , data_files={'data': infer_output_file} )['data'] if accelerator.is_main_process: os.makedirs(_snake_case , exist_ok=_snake_case ) shutil.copy(_snake_case , os.path.join(_snake_case , F'eval_results_iter-{iteration}.json' ) ) if os.path.exists(_snake_case ): shutil.copy(_snake_case , os.path.join(_snake_case , F'test_results_iter-{iteration}.json' ) ) create_pseudo_labeled_data(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) accelerator.wait_for_everyone() __a =os.path.join(_snake_case , F'train_pseudo.{args.data_file_extension}' ) if args.evaluation_strategy != IntervalStrategy.NO.value: __a =eval_result if best_iteration is None: __a =new_iteration __a =new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: __a =new_iteration __a =new_eval_result __a =0 else: if new_eval_result == best_eval_result: __a =new_iteration __a =new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: __a =True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('Best iteration: %d' , _snake_case ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , _snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_snake_case , F'eval_results_iter-{iteration}.json' ) , os.path.join(_snake_case , 'eval_results_best-iteration.json' ) , ) else: # Assume that the last iteration is the best logger.info('Best iteration: %d' , args.max_selftrain_iterations - 1 ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , _snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_snake_case , F'eval_results_iter-{args.max_selftrain_iterations - 1}.json' ) , os.path.join(_snake_case , 'eval_results_best-iteration.json' ) , )
308
0
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger _lowerCAmelCase : Union[str, Any] = get_logger(__name__) _lowerCAmelCase : Dict = Path(__file__).parent / "model_card_template.md" _lowerCAmelCase : Optional[Any] = uuida().hex _lowerCAmelCase : Any = os.getenv("HF_HUB_OFFLINE", "").upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase : Dict = os.getenv("DISABLE_TELEMETRY", "").upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase : List[Any] = HUGGINGFACE_CO_RESOLVE_ENDPOINT + "/api/telemetry/" def UpperCamelCase_( _snake_case : Union[Dict, str, None] = None ): """simple docstring""" __a =F'diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F'; torch/{_torch_version}' if is_flax_available(): ua += F'; jax/{_jax_version}' ua += F'; flax/{_flax_version}' if is_onnx_available(): ua += F'; onnxruntime/{_onnxruntime_version}' # CI will set this value to True if os.environ.get('DIFFUSERS_IS_CI' , '' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(_snake_case , _snake_case ): ua += "; " + "; ".join(F'{k}/{v}' for k, v in user_agent.items() ) elif isinstance(_snake_case , _snake_case ): ua += "; " + user_agent return ua def UpperCamelCase_( _snake_case : str , _snake_case : Optional[str] = None , _snake_case : Optional[str] = None ): """simple docstring""" if token is None: __a =HfFolder.get_token() if organization is None: __a =whoami(_snake_case )['name'] return F'{username}/{model_id}' else: return F'{organization}/{model_id}' def UpperCamelCase_( _snake_case : Optional[int] , _snake_case : Union[str, Any] ): """simple docstring""" if not is_jinja_available(): raise ValueError( 'Modelcard rendering is based on Jinja templates.' ' Please make sure to have `jinja` installed before using `create_model_card`.' ' To install it, please run `pip install Jinja2`.' ) if hasattr(_snake_case , 'local_rank' ) and args.local_rank not in [-1, 0]: return __a =args.hub_token if hasattr(_snake_case , 'hub_token' ) else None __a =get_full_repo_name(_snake_case , token=_snake_case ) __a =ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='en' , license='apache-2.0' , library_name='diffusers' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=_snake_case , model_name=_snake_case , repo_name=_snake_case , dataset_name=args.dataset_name if hasattr(_snake_case , 'dataset_name' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(_snake_case , 'gradient_accumulation_steps' ) else None ) , adam_betaa=args.adam_betaa if hasattr(_snake_case , 'adam_beta1' ) else None , adam_betaa=args.adam_betaa if hasattr(_snake_case , 'adam_beta2' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(_snake_case , 'adam_weight_decay' ) else None , adam_epsilon=args.adam_epsilon if hasattr(_snake_case , 'adam_epsilon' ) else None , lr_scheduler=args.lr_scheduler if hasattr(_snake_case , 'lr_scheduler' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(_snake_case , 'lr_warmup_steps' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(_snake_case , 'ema_inv_gamma' ) else None , ema_power=args.ema_power if hasattr(_snake_case , 'ema_power' ) else None , ema_max_decay=args.ema_max_decay if hasattr(_snake_case , 'ema_max_decay' ) else None , mixed_precision=args.mixed_precision , ) __a =os.path.join(args.output_dir , 'README.md' ) model_card.save(_snake_case ) def UpperCamelCase_( _snake_case : Optional[str] , _snake_case : Optional[str] = None ): """simple docstring""" if resolved_file is None or commit_hash is not None: return commit_hash __a =str(Path(_snake_case ).as_posix() ) __a =re.search(r'snapshots/([^/]+)/' , _snake_case ) if search is None: return None __a =search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(_snake_case ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. _lowerCAmelCase : List[str] = os.path.expanduser( os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface")) ) _lowerCAmelCase : Any = os.path.join(hf_cache_home, "diffusers") def UpperCamelCase_( _snake_case : Optional[str] = None , _snake_case : Optional[str] = None ): """simple docstring""" if new_cache_dir is None: __a =DIFFUSERS_CACHE if old_cache_dir is None: __a =old_diffusers_cache __a =Path(_snake_case ).expanduser() __a =Path(_snake_case ).expanduser() for old_blob_path in old_cache_dir.glob('**/blobs/*' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): __a =new_cache_dir / old_blob_path.relative_to(_snake_case ) new_blob_path.parent.mkdir(parents=_snake_case , exist_ok=_snake_case ) os.replace(_snake_case , _snake_case ) try: os.symlink(_snake_case , _snake_case ) except OSError: logger.warning( 'Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). _lowerCAmelCase : List[str] = os.path.join(DIFFUSERS_CACHE, "version_diffusers_cache.txt") if not os.path.isfile(cache_version_file): _lowerCAmelCase : Optional[Any] = 0 else: with open(cache_version_file) as f: try: _lowerCAmelCase : str = int(f.read()) except ValueError: _lowerCAmelCase : Optional[int] = 0 if cache_version < 1: _lowerCAmelCase : Any = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( "The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your " "existing cached models. This is a one-time operation, you can interrupt it or run it " "later by calling `diffusers.utils.hub_utils.move_cache()`." ) try: move_cache() except Exception as e: _lowerCAmelCase : Optional[int] = "\n".join(traceback.format_tb(e.__traceback__)) logger.error( f'''There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ''' "file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole " "message and we will do our best to help." ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, "w") as f: f.write("1") except Exception: logger.warning( f'''There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ''' "the directory exists and can be written to." ) def UpperCamelCase_( _snake_case : str , _snake_case : Optional[str] = None ): """simple docstring""" if variant is not None: __a =weights_name.split('.' ) __a =splits[:-1] + [variant] + splits[-1:] __a ='.'.join(_snake_case ) return weights_name def UpperCamelCase_( _snake_case : Dict , *, _snake_case : Any , _snake_case : Any , _snake_case : Optional[int] , _snake_case : Dict , _snake_case : int , _snake_case : str , _snake_case : Tuple , _snake_case : List[Any] , _snake_case : Optional[int] , _snake_case : Any , _snake_case : Optional[int]=None , ): """simple docstring""" __a =str(_snake_case ) if os.path.isfile(_snake_case ): return pretrained_model_name_or_path elif os.path.isdir(_snake_case ): if os.path.isfile(os.path.join(_snake_case , _snake_case ) ): # Load from a PyTorch checkpoint __a =os.path.join(_snake_case , _snake_case ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(_snake_case , _snake_case , _snake_case ) ): __a =os.path.join(_snake_case , _snake_case , _snake_case ) return model_file else: raise EnvironmentError( F'Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(_snake_case ).base_version ) >= version.parse('0.20.0' ) ): try: __a =hf_hub_download( _snake_case , filename=_add_variant(_snake_case , _snake_case ) , cache_dir=_snake_case , force_download=_snake_case , proxies=_snake_case , resume_download=_snake_case , local_files_only=_snake_case , use_auth_token=_snake_case , user_agent=_snake_case , subfolder=_snake_case , revision=revision or commit_hash , ) warnings.warn( F'Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.' , _snake_case , ) return model_file except: # noqa: E722 warnings.warn( F'You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(_snake_case , _snake_case )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(_snake_case , _snake_case )}\' so that the correct variant file can be added.' , _snake_case , ) try: # 2. Load model file as usual __a =hf_hub_download( _snake_case , filename=_snake_case , cache_dir=_snake_case , force_download=_snake_case , proxies=_snake_case , resume_download=_snake_case , local_files_only=_snake_case , use_auth_token=_snake_case , user_agent=_snake_case , subfolder=_snake_case , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F'{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ' 'listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ' 'token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ' 'login`.' ) except RevisionNotFoundError: raise EnvironmentError( F'{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ' 'this model name. Check the model page at ' F'\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.' ) except EntryNotFoundError: raise EnvironmentError( F'{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.' ) except HTTPError as err: raise EnvironmentError( F'There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}' ) except ValueError: raise EnvironmentError( F'We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it' F' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a' F' directory containing a file named {weights_name} or' ' \nCheckout your internet connection or see how to run the library in' ' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.' ) except EnvironmentError: raise EnvironmentError( F'Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ' '\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ' F'Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ' F'containing a file named {weights_name}' )
353
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Any = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right _lowerCAmelCase : List[Any] = 256_047 _lowerCAmelCase : Dict = 256_145 @require_sentencepiece @require_tokenizers class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = NllbTokenizer SCREAMING_SNAKE_CASE = NllbTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = {} def __magic_name__ ( self ) -> int: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __a =NllbTokenizer(__snake_case , keep_accents=__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self ) -> int: '''simple docstring''' __a =NllbTokenizer(__snake_case , keep_accents=__snake_case ) __a =tokenizer.tokenize('This is a test' ) self.assertListEqual(__snake_case , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __a =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __a =tokenizer.convert_tokens_to_ids(__snake_case ) self.assertListEqual( __snake_case , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __a =tokenizer.convert_ids_to_tokens(__snake_case ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-nllb', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __a =self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __a =self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) __a =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=True __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=False __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) @require_torch def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' if not self.test_seqaseq: return __a =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Longer text that will definitely require truncation. __a =[ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for' ' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons' ' will only worsen the violence and misery for millions of people.', ] __a =[ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al' ' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi' ' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] try: __a =tokenizer.prepare_seqaseq_batch( src_texts=__snake_case , tgt_texts=__snake_case , max_length=3 , max_target_length=10 , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='ron_Latn' , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified __a =tokenizer.prepare_seqaseq_batch( __snake_case , tgt_texts=__snake_case , max_length=3 , return_tensors='pt' ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) __a =tokenizer.prepare_seqaseq_batch( src_texts=__snake_case , max_length=3 , max_target_length=10 , return_tensors='pt' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn('decoder_input_ids' , __snake_case ) @unittest.skip('Unfortunately way too slow to build a BPE with SentencePiece.' ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' pass def __magic_name__ ( self ) -> Tuple: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __a =[AddedToken('<special>' , lstrip=__snake_case )] __a =self.rust_tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case ) __a =tokenizer_r.encode('Hey this is a <special> token' ) __a =tokenizer_r.encode('<special>' , add_special_tokens=__snake_case )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: __a =self.rust_tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case , ) __a =self.tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case ) __a =tokenizer_p.encode('Hey this is a <special> token' ) __a =tokenizer_cr.encode('Hey this is a <special> token' ) self.assertEqual(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class __magic_name__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = 'facebook/nllb-200-distilled-600M' SCREAMING_SNAKE_CASE = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] SCREAMING_SNAKE_CASE = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] SCREAMING_SNAKE_CASE = [ 2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 8_1_6_5, 2_4_8_0_6_6, 1_4_7_3_4, 9_5_0, 1_1_3_5, 1_0_5_7_2_1, 3_5_7_3, 8_3, 2_7_3_5_2, 1_0_8, 4_9_4_8_6, 2, ] @classmethod def __magic_name__ ( cls ) -> Tuple: '''simple docstring''' __a =NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang='eng_Latn' , tgt_lang='ron_Latn' ) __a =1 return cls def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Arab'] , 25_6001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Latn'] , 25_6002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['fra_Latn'] , 25_6057 ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' self.assertIn(__snake_case , self.tokenizer.all_special_ids ) # fmt: off __a =[RO_CODE, 4254, 9_8068, 11_2923, 3_9072, 3909, 713, 10_2767, 26, 1_7314, 3_5642, 1_4683, 3_3118, 2022, 6_6987, 2, 25_6047] # fmt: on __a =self.tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) __a =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertNotIn(self.tokenizer.eos_token , __snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , __snake_case ) __a =10 __a =self.tokenizer(__snake_case , max_length=__snake_case , truncation=__snake_case ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , __snake_case ) self.assertEqual(len(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_6203, 3] ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =tempfile.mkdtemp() __a =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__snake_case ) __a =NllbTokenizer.from_pretrained(__snake_case ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __snake_case ) @require_torch def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) __a =shift_tokens_right( batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['ron_Latn'] ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) __a =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) self.assertEqual(__snake_case , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =self.tokenizer(self.src_text , padding=__snake_case , truncation=__snake_case , max_length=3 , return_tensors='pt' ) __a =self.tokenizer( text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=10 , return_tensors='pt' ) __a =targets['input_ids'] __a =shift_tokens_right( __snake_case , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( nested_simplify(__snake_case ) , { # A, test, EOS, en_XX 'input_ids': [[25_6047, 70, 7356, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_6057, } , ) @require_torch def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =True __a =self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2, 25_6047] ) __a =False __a =self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [25_6047, 1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2] )
308
0
def UpperCamelCase_( _snake_case : str , _snake_case : int ): """simple docstring""" return [sentence[i : i + ngram_size] for i in range(len(_snake_case ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
354
def UpperCamelCase_( _snake_case : str , _snake_case : int ): """simple docstring""" return [sentence[i : i + ngram_size] for i in range(len(_snake_case ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
308
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'microsoft/speecht5_tts' SCREAMING_SNAKE_CASE = ( 'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ' 'text to read (in English) and returns a waveform object containing the sound.' ) SCREAMING_SNAKE_CASE = 'text_reader' SCREAMING_SNAKE_CASE = SpeechTaProcessor SCREAMING_SNAKE_CASE = SpeechTaForTextToSpeech SCREAMING_SNAKE_CASE = SpeechTaHifiGan SCREAMING_SNAKE_CASE = ['text'] SCREAMING_SNAKE_CASE = ['audio'] def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' if self.post_processor is None: __a ='microsoft/speecht5_hifigan' super().setup() def __magic_name__ ( self , __snake_case , __snake_case=None ) -> Any: '''simple docstring''' __a =self.pre_processor(text=__snake_case , return_tensors='pt' , truncation=__snake_case ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('Datasets needs to be installed if not passing speaker embeddings.' ) __a =load_dataset('Matthijs/cmu-arctic-xvectors' , split='validation' ) __a =torch.tensor(embeddings_dataset[7305]['xvector'] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __magic_name__ ( self , __snake_case ) -> Optional[Any]: '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**__snake_case ) def __magic_name__ ( self , __snake_case ) -> List[str]: '''simple docstring''' with torch.no_grad(): return self.post_processor(__snake_case ).cpu().detach()
355
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class __magic_name__ ( pl.LightningModule ): def __init__( self , __snake_case ) -> List[Any]: '''simple docstring''' super().__init__() __a =model __a =2 __a =nn.Linear(self.model.config.hidden_size , self.num_labels ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' pass def UpperCamelCase_( _snake_case : str , _snake_case : str , _snake_case : str ): """simple docstring""" __a =LongformerModel.from_pretrained(_snake_case ) __a =LightningModel(_snake_case ) __a =torch.load(_snake_case , map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model __a =LongformerForQuestionAnswering.from_pretrained(_snake_case ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(_snake_case ) print(F'Conversion successful. Model saved under {pytorch_dump_folder_path}' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowerCAmelCase : Optional[int] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
308
0
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor _lowerCAmelCase : Tuple = logging.get_logger(__name__) class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , *__snake_case , **__snake_case ) -> None: '''simple docstring''' warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
356
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") _lowerCAmelCase : Optional[Any] = logging.getLogger(__name__) @dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) SCREAMING_SNAKE_CASE = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) SCREAMING_SNAKE_CASE = field( default=1_0_2_4 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the training data.'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the validation data.'} ) SCREAMING_SNAKE_CASE = field(default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the test data.'} ) def __magic_name__ ( self ) -> str: '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: __a =self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __a =self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) SCREAMING_SNAKE_CASE = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def UpperCamelCase_( ): """simple docstring""" __a =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __a , __a , __a =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __a , __a , __a =parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) __a =training_args.get_process_log_level() logger.setLevel(_snake_case ) datasets.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __a =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __a =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __a =load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __a ={'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __a =data_args.train_file.split('.' )[-1] __a =data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __a =data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(F'load a local file for {key}: {data_files[key]}' ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files __a =load_dataset('csv' , data_files=_snake_case , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __a =load_dataset('json' , data_files=_snake_case , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __a =raw_datasets['train'].features['label'].names __a =len(_snake_case ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __a =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __a =TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=_snake_case , ) __a =BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __a ='max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __a =False # Some models have set the order of the labels to use, so let's make sure we do use it. __a ={'Refused': 0, 'Entailed': 1} __a ={0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __a =min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(_snake_case : Tuple ): # Tokenize the texts def _convert_table_text_to_pandas(_snake_case : Optional[Any] ): __a =[_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] __a =pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __a =examples['statement'] __a =list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) __a =tokenizer(_snake_case , _snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case ) __a =examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): __a =raw_datasets.map( _snake_case , batched=_snake_case , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) __a =raw_datasets['train'] if data_args.max_train_samples is not None: __a =train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) __a =raw_datasets['validation'] if data_args.max_eval_samples is not None: __a =eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) __a =raw_datasets['test'] if data_args.max_predict_samples is not None: __a =predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(_snake_case ) ) , 3 ): logger.info(F'Sample {index} of the training set: {train_dataset[index]}.' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_snake_case : EvalPrediction ): __a =p.predictions[0] if isinstance(p.predictions , _snake_case ) else p.predictions __a =np.argmax(_snake_case , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __a =default_data_collator elif training_args.fpaa: __a =DataCollatorWithPadding(_snake_case , pad_to_multiple_of=8 ) else: __a =None # Initialize our Trainer __a =Trainer( model=_snake_case , args=_snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_snake_case , tokenizer=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: __a =None if training_args.resume_from_checkpoint is not None: __a =training_args.resume_from_checkpoint elif last_checkpoint is not None: __a =last_checkpoint __a =trainer.train(resume_from_checkpoint=_snake_case ) __a =train_result.metrics __a =( data_args.max_train_samples if data_args.max_train_samples is not None else len(_snake_case ) ) __a =min(_snake_case , len(_snake_case ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , _snake_case ) trainer.save_metrics('train' , _snake_case ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __a =trainer.evaluate(eval_dataset=_snake_case ) __a =data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_snake_case ) __a =min(_snake_case , len(_snake_case ) ) trainer.log_metrics('eval' , _snake_case ) trainer.save_metrics('eval' , _snake_case ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __a =predict_dataset.remove_columns('label' ) __a =trainer.predict(_snake_case , metric_key_prefix='predict' ).predictions __a =np.argmax(_snake_case , axis=1 ) __a =os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(_snake_case , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(_snake_case ): __a =label_list[item] writer.write(F'{index}\t{item}\n' ) __a ={'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**_snake_case ) else: trainer.create_model_card(**_snake_case ) def UpperCamelCase_( _snake_case : Union[str, Any] ): """simple docstring""" main() if __name__ == "__main__": main()
308
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class __magic_name__ ( datasets.BeamBasedBuilder ): def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({'content': datasets.Value('string' )} ) , supervised_keys=__snake_case , ) def __magic_name__ ( self , __snake_case , __snake_case ) -> List[str]: '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_dummy_examples()} )] def __magic_name__ ( self , __snake_case , __snake_case ) -> Optional[Any]: '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__snake_case ) class __magic_name__ ( datasets.BeamBasedBuilder ): def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) , supervised_keys=__snake_case , ) def __magic_name__ ( self , __snake_case , __snake_case ) -> List[str]: '''simple docstring''' return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_nested_examples()} ) ] def __magic_name__ ( self , __snake_case , __snake_case ) -> Optional[int]: '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__snake_case ) def UpperCamelCase_( ): """simple docstring""" return [(i, {"content": content}) for i, content in enumerate(['foo', 'bar', 'foobar'] )] def UpperCamelCase_( ): """simple docstring""" return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['foo', 'bar', 'foobar'] )] class __magic_name__ ( lowerCAmelCase_ ): @require_beam def __magic_name__ ( self ) -> str: '''simple docstring''' __a =len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: __a =DummyBeamDataset(cache_dir=__snake_case , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__snake_case , builder.name , 'default' , '0.0.0' , f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) __a =builder.as_dataset() self.assertEqual(dset['train'].num_rows , __snake_case ) self.assertEqual(dset['train'].info.splits['train'].num_examples , __snake_case ) self.assertDictEqual(dset['train'][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__snake_case , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' import apache_beam as beam __a =beam.io.parquetio.WriteToParquet __a =len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: __a =DummyBeamDataset(cache_dir=__snake_case , beam_runner='DirectRunner' ) with patch('apache_beam.io.parquetio.WriteToParquet' ) as write_parquet_mock: __a =partial(__snake_case , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( __snake_case , builder.name , 'default' , '0.0.0' , f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertTrue( os.path.exists( os.path.join( __snake_case , builder.name , 'default' , '0.0.0' , f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) __a =builder.as_dataset() self.assertEqual(dset['train'].num_rows , __snake_case ) self.assertEqual(dset['train'].info.splits['train'].num_examples , __snake_case ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['train']['content'] ) , sorted(['foo', 'bar', 'foobar'] ) ) self.assertTrue( os.path.exists(os.path.join(__snake_case , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_cache_dir: __a =DummyBeamDataset(cache_dir=__snake_case ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def __magic_name__ ( self ) -> str: '''simple docstring''' __a =len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: __a =NestedBeamDataset(cache_dir=__snake_case , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__snake_case , builder.name , 'default' , '0.0.0' , f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) ) __a =builder.as_dataset() self.assertEqual(dset['train'].num_rows , __snake_case ) self.assertEqual(dset['train'].info.splits['train'].num_examples , __snake_case ) self.assertDictEqual(dset['train'][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__snake_case , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset
357
from __future__ import annotations import time import numpy as np _lowerCAmelCase : List[str] = [8, 5, 9, 7] _lowerCAmelCase : List[str] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] _lowerCAmelCase : List[Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class __magic_name__ : def __init__( self , __snake_case , __snake_case , __snake_case , ) -> None: '''simple docstring''' __a =claim_vector __a =allocated_resources_table __a =maximum_claim_table def __magic_name__ ( self ) -> list[int]: '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def __magic_name__ ( self ) -> list[int]: '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def __magic_name__ ( self ) -> list[list[int]]: '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__snake_case ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def __magic_name__ ( self ) -> dict[int, list[int]]: '''simple docstring''' return {self.__need().index(__snake_case ): i for i in self.__need()} def __magic_name__ ( self , **__snake_case ) -> None: '''simple docstring''' __a =self.__need() __a =self.__allocated_resources_table __a =self.__available_resources() __a =self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: __a =False for each_need in need_list: __a =True for index, need in enumerate(__snake_case ): if need > available_resources[index]: __a =False break if execution: __a =True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __a =original_need_index print(f'Process {process_number + 1} is executing.' ) # remove the process run from stack need_list.remove(__snake_case ) # update available/freed resources stack __a =np.array(__snake_case ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(__snake_case ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( f'P{self.__allocated_resources_table.index(__snake_case ) + 1}' + ' '.join(f'{it:>8}' for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( f'P{self.__maximum_claim_table.index(__snake_case ) + 1}' + ' '.join(f'{it:>8}' for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(__snake_case ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(__snake_case ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
308
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : Any = "▁" _lowerCAmelCase : Optional[Any] = {"vocab_file": "spiece.model"} _lowerCAmelCase : List[Any] = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"} } _lowerCAmelCase : Union[str, Any] = { "google/pegasus-xsum": 512, } _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] def __init__( self , __snake_case , __snake_case="<pad>" , __snake_case="</s>" , __snake_case="<unk>" , __snake_case="<mask_2>" , __snake_case="<mask_1>" , __snake_case=None , __snake_case=103 , __snake_case = None , **__snake_case , ) -> None: '''simple docstring''' __a =offset if additional_special_tokens is not None: if not isinstance(__snake_case , __snake_case ): raise TypeError( f'additional_special_tokens should be of type {type(__snake_case )}, but is' f' {type(__snake_case )}' ) __a =( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'<unk_{i}>' for i in range(len(__snake_case ) , self.offset - 1 ) ] if len(set(__snake_case ) ) != len(__snake_case ): raise ValueError( 'Please make sure that the provided additional_special_tokens do not contain an incorrectly' f' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.' ) __a =additional_special_tokens_extended else: __a =[mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'<unk_{i}>' for i in range(2 , self.offset )] __a ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__snake_case , unk_token=__snake_case , mask_token=__snake_case , pad_token=__snake_case , mask_token_sent=__snake_case , offset=__snake_case , additional_special_tokens=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) __a =mask_token_sent __a =vocab_file __a =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__snake_case ) # add special tokens to encoder dict __a ={ 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) __a ={v: k for k, v in self.encoder.items()} @property def __magic_name__ ( self ) -> int: '''simple docstring''' return len(self.sp_model ) + self.offset def __magic_name__ ( self ) -> Dict[str, int]: '''simple docstring''' __a ={self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Optional[Any]: '''simple docstring''' __a =self.__dict__.copy() __a =None return state def __setstate__( self , __snake_case ) -> str: '''simple docstring''' __a =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __a ={} __a =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __magic_name__ ( self , __snake_case ) -> List[str]: '''simple docstring''' return self.sp_model.encode(__snake_case , out_type=__snake_case ) def __magic_name__ ( self , __snake_case ) -> int: '''simple docstring''' if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] __a =self.sp_model.piece_to_id(__snake_case ) return sp_id + self.offset def __magic_name__ ( self , __snake_case ) -> str: '''simple docstring''' if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: __a =self.sp_model.IdToPiece(index - self.offset ) return token def __magic_name__ ( self , __snake_case ) -> Any: '''simple docstring''' __a =[] __a ='' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__snake_case ) + token __a =[] else: current_sub_tokens.append(__snake_case ) out_string += self.sp_model.decode(__snake_case ) return out_string.strip() def __magic_name__ ( self , __snake_case=False ) -> Union[str, Any]: '''simple docstring''' return 1 def __magic_name__ ( self , __snake_case ) -> Optional[int]: '''simple docstring''' __a =set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def __magic_name__ ( self , __snake_case , __snake_case = None , __snake_case = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(__snake_case ) elif token_ids_a is None: return self._special_token_mask(__snake_case ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def __magic_name__ ( self , __snake_case , __snake_case=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __magic_name__ ( self , __snake_case , __snake_case = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(__snake_case ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __a =os.path.join( __snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __snake_case ) elif not os.path.isfile(self.vocab_file ): with open(__snake_case , 'wb' ) as fi: __a =self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (out_vocab_file,)
358
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency _lowerCAmelCase : Tuple = { "E": 12.70, "T": 9.06, "A": 8.17, "O": 7.51, "I": 6.97, "N": 6.75, "S": 6.33, "H": 6.09, "R": 5.99, "D": 4.25, "L": 4.03, "C": 2.78, "U": 2.76, "M": 2.41, "W": 2.36, "F": 2.23, "G": 2.02, "Y": 1.97, "P": 1.93, "B": 1.29, "V": 0.98, "K": 0.77, "J": 0.15, "X": 0.15, "Q": 0.10, "Z": 0.07, } _lowerCAmelCase : Optional[int] = "ETAOINSHRDLCUMWFGYPBVKJXQZ" _lowerCAmelCase : Any = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a ={letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def UpperCamelCase_( _snake_case : tuple ): """simple docstring""" return x[0] def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =get_letter_count(_snake_case ) __a ={ freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(_snake_case ) __a ={} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=_snake_case ) __a =''.join(freq_to_letter[freq] ) __a =list(freq_to_letter_str.items() ) freq_pairs.sort(key=_snake_case , reverse=_snake_case ) __a =[freq_pair[1] for freq_pair in freq_pairs] return "".join(_snake_case ) def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =get_frequency_order(_snake_case ) __a =0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
308
0
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake _lowerCAmelCase : Optional[Any] = numpy.array([0, 0]) _lowerCAmelCase : Dict = numpy.array([0.5, 0.8660254]) _lowerCAmelCase : Any = numpy.array([1, 0]) _lowerCAmelCase : int = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCamelCase_( _snake_case : list[numpy.ndarray] , _snake_case : int ): """simple docstring""" __a =initial_vectors for _ in range(_snake_case ): __a =iteration_step(_snake_case ) return vectors def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =[] for i, start_vector in enumerate(vectors[:-1] ): __a =vectors[i + 1] new_vectors.append(_snake_case ) __a =end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCamelCase_( _snake_case : numpy.ndarray , _snake_case : float ): """simple docstring""" __a =numpy.radians(_snake_case ) __a , __a =numpy.cos(_snake_case ), numpy.sin(_snake_case ) __a =numpy.array(((c, -s), (s, c)) ) return numpy.dot(_snake_case , _snake_case ) def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() __a , __a =zip(*_snake_case ) plt.plot(_snake_case , _snake_case ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : List[Any] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
359
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : int = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'swin2sr' SCREAMING_SNAKE_CASE = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , __snake_case=64 , __snake_case=1 , __snake_case=3 , __snake_case=180 , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=8 , __snake_case=2.0 , __snake_case=True , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.1 , __snake_case="gelu" , __snake_case=False , __snake_case=0.02 , __snake_case=1e-5 , __snake_case=2 , __snake_case=1.0 , __snake_case="1conv" , __snake_case="pixelshuffle" , **__snake_case , ) -> Dict: '''simple docstring''' super().__init__(**__snake_case ) __a =image_size __a =patch_size __a =num_channels __a =embed_dim __a =depths __a =len(__snake_case ) __a =num_heads __a =window_size __a =mlp_ratio __a =qkv_bias __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =drop_path_rate __a =hidden_act __a =use_absolute_embeddings __a =layer_norm_eps __a =initializer_range __a =upscale __a =img_range __a =resi_connection __a =upsampler
308
0
from random import shuffle import tensorflow as tf from numpy import array def UpperCamelCase_( _snake_case : Optional[int] , _snake_case : Optional[int] ): """simple docstring""" __a =int(_snake_case ) assert noofclusters < len(_snake_case ) # Find out the dimensionality __a =len(vectors[0] ) # Will help select random centroids from among the available vectors __a =list(range(len(_snake_case ) ) ) shuffle(_snake_case ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __a =tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __a =tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __a =[ tf.Variable(vectors[vector_indices[i]] ) for i in range(_snake_case ) ] ##These nodes will assign the centroid Variables the appropriate ##values __a =tf.placeholder('float64' , [dim] ) __a =[] for centroid in centroids: cent_assigns.append(tf.assign(_snake_case , _snake_case ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __a =[tf.Variable(0 ) for i in range(len(_snake_case ) )] ##These nodes will assign an assignment Variable the appropriate ##value __a =tf.placeholder('int32' ) __a =[] for assignment in assignments: cluster_assigns.append(tf.assign(_snake_case , _snake_case ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __a =tf.placeholder('float' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __a =tf.reduce_mean(_snake_case , 0 ) ##Node for computing Euclidean distances # Placeholders for input __a =tf.placeholder('float' , [dim] ) __a =tf.placeholder('float' , [dim] ) __a =tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(_snake_case , _snake_case ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __a =tf.placeholder('float' , [noofclusters] ) __a =tf.argmin(_snake_case , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __a =tf.initialize_all_variables() # Initialize all variables sess.run(_snake_case ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __a =100 for _ in range(_snake_case ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(_snake_case ) ): __a =vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __a =[ sess.run(_snake_case , feed_dict={va: vect, va: sess.run(_snake_case )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __a =sess.run( _snake_case , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(_snake_case ): # Collect all the vectors assigned to this cluster __a =[ vectors[i] for i in range(len(_snake_case ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __a =sess.run( _snake_case , feed_dict={mean_input: array(_snake_case )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __a =sess.run(_snake_case ) __a =sess.run(_snake_case ) return centroids, assignments
360
import os def UpperCamelCase_( _snake_case : str = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(_snake_case ) , _snake_case ) ) as input_file: __a =[ [int(_snake_case ) for element in line.split(',' )] for line in input_file.readlines() ] __a =len(_snake_case ) __a =len(matrix[0] ) __a =[[-1 for _ in range(_snake_case )] for _ in range(_snake_case )] for i in range(_snake_case ): __a =matrix[i][0] for j in range(1 , _snake_case ): for i in range(_snake_case ): __a =minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _snake_case ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
308
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = AltDiffusionPipeline SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_IMAGE_PARAMS def __magic_name__ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) __a =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) __a =DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) torch.manual_seed(0 ) __a =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) __a =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) __a =CLIPTextModel(__snake_case ) __a =XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) __a =77 __a ={ 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __magic_name__ ( self , __snake_case , __snake_case=0 ) -> int: '''simple docstring''' if str(__snake_case ).startswith('mps' ): __a =torch.manual_seed(__snake_case ) else: __a =torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __a ={ 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def __magic_name__ ( self ) -> str: '''simple docstring''' __a ='cpu' # ensure determinism for the device-dependent torch.Generator __a =self.get_dummy_components() torch.manual_seed(0 ) __a =RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder __a =RobertaSeriesModelWithTransformation(__snake_case ) __a =text_encoder __a =AltDiffusionPipeline(**__snake_case ) __a =alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) __a =self.get_dummy_inputs(__snake_case ) __a ='A photo of an astronaut' __a =alt_pipe(**__snake_case ) __a =output.images __a =image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a =np.array( [0.574_8162, 0.6044_7145, 0.4882_1217, 0.5010_0636, 0.543_1185, 0.4576_3683, 0.4965_7696, 0.4813_2733, 0.4757_3093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __magic_name__ ( self ) -> str: '''simple docstring''' __a ='cpu' # ensure determinism for the device-dependent torch.Generator __a =self.get_dummy_components() __a =PNDMScheduler(skip_prk_steps=__snake_case ) torch.manual_seed(0 ) __a =RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder __a =RobertaSeriesModelWithTransformation(__snake_case ) __a =text_encoder __a =AltDiffusionPipeline(**__snake_case ) __a =alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) __a =self.get_dummy_inputs(__snake_case ) __a =alt_pipe(**__snake_case ) __a =output.images __a =image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a =np.array( [0.5160_5093, 0.570_7241, 0.4736_5507, 0.5057_8886, 0.563_3877, 0.464_2503, 0.518_2081, 0.4876_3484, 0.4908_4237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , safety_checker=__snake_case ) __a =alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) __a ='A painting of a squirrel eating a burger' __a =torch.manual_seed(0 ) __a =alt_pipe([prompt] , generator=__snake_case , guidance_scale=6.0 , num_inference_steps=20 , output_type='np' ) __a =output.images __a =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __a =np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =DDIMScheduler.from_pretrained('BAAI/AltDiffusion' , subfolder='scheduler' ) __a =AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , scheduler=__snake_case , safety_checker=__snake_case ) __a =alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) __a ='A painting of a squirrel eating a burger' __a =torch.manual_seed(0 ) __a =alt_pipe([prompt] , generator=__snake_case , num_inference_steps=2 , output_type='numpy' ) __a =output.images __a =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __a =np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
361
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _lowerCAmelCase : Any = logging.get_logger(__name__) class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , *__snake_case , **__snake_case ) -> None: '''simple docstring''' warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
308
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = ['input_features'] def __init__( self , __snake_case=80 , __snake_case=1_6000 , __snake_case=160 , __snake_case=30 , __snake_case=400 , __snake_case=0.0 , __snake_case=False , **__snake_case , ) -> Any: '''simple docstring''' super().__init__( feature_size=__snake_case , sampling_rate=__snake_case , padding_value=__snake_case , return_attention_mask=__snake_case , **__snake_case , ) __a =n_fft __a =hop_length __a =chunk_length __a =chunk_length * sampling_rate __a =self.n_samples // hop_length __a =sampling_rate __a =mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__snake_case , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=__snake_case , norm='slaney' , mel_scale='slaney' , ) def __magic_name__ ( self , __snake_case ) -> np.ndarray: '''simple docstring''' __a =spectrogram( __snake_case , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='log10' , ) __a =log_spec[:, :-1] __a =np.maximum(__snake_case , log_spec.max() - 8.0 ) __a =(log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __magic_name__ ( __snake_case , __snake_case , __snake_case = 0.0 ) -> List[np.ndarray]: '''simple docstring''' if attention_mask is not None: __a =np.array(__snake_case , np.intaa ) __a =[] for vector, length in zip(__snake_case , attention_mask.sum(-1 ) ): __a =(vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: __a =padding_value normed_input_values.append(__snake_case ) else: __a =[(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self , __snake_case , __snake_case = True , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = "max_length" , __snake_case = None , __snake_case = None , __snake_case = None , **__snake_case , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' f' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' f' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) __a =isinstance(__snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) __a =is_batched_numpy or ( isinstance(__snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __a =[np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__snake_case , np.ndarray ): __a =np.asarray(__snake_case , dtype=np.floataa ) elif isinstance(__snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __a =raw_speech.astype(np.floataa ) # always return batch if not is_batched: __a =[np.asarray([raw_speech] ).T] __a =BatchFeature({'input_features': raw_speech} ) # convert into correct format for padding __a =self.pad( __snake_case , padding=__snake_case , max_length=max_length if max_length else self.n_samples , truncation=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: __a =self.zero_mean_unit_var_norm( padded_inputs['input_features'] , attention_mask=padded_inputs['attention_mask'] , padding_value=self.padding_value , ) __a =np.stack(padded_inputs['input_features'] , axis=0 ) # make sure list is in array format __a =padded_inputs.get('input_features' ).transpose(2 , 0 , 1 ) __a =[self._np_extract_fbank_features(__snake_case ) for waveform in input_features[0]] if isinstance(input_features[0] , __snake_case ): __a =[np.asarray(__snake_case , dtype=np.floataa ) for feature in input_features] else: __a =input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) __a =padded_inputs['attention_mask'][:, :: self.hop_length] if return_tensors is not None: __a =padded_inputs.convert_to_tensors(__snake_case ) return padded_inputs def __magic_name__ ( self ) -> Dict[str, Any]: '''simple docstring''' __a =copy.deepcopy(self.__dict__ ) __a =self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
362
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : int = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
0
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = AudioLDMPipeline SCREAMING_SNAKE_CASE = TEXT_TO_AUDIO_PARAMS SCREAMING_SNAKE_CASE = TEXT_TO_AUDIO_BATCH_PARAMS SCREAMING_SNAKE_CASE = frozenset( [ 'num_inference_steps', 'num_waveforms_per_prompt', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) __a =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=(32, 64) , class_embed_type='simple_projection' , projection_class_embeddings_input_dim=32 , class_embeddings_concat=__snake_case , ) __a =DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) torch.manual_seed(0 ) __a =AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) __a =ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , ) __a =ClapTextModelWithProjection(__snake_case ) __a =RobertaTokenizer.from_pretrained('hf-internal-testing/tiny-random-roberta' , model_max_length=77 ) __a =SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=__snake_case , ) __a =SpeechTaHifiGan(__snake_case ) __a ={ 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'vocoder': vocoder, } return components def __magic_name__ ( self , __snake_case , __snake_case=0 ) -> Dict: '''simple docstring''' if str(__snake_case ).startswith('mps' ): __a =torch.manual_seed(__snake_case ) else: __a =torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __a ={ 'prompt': 'A hammer hitting a wooden surface', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, } return inputs def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a ='cpu' # ensure determinism for the device-dependent torch.Generator __a =self.get_dummy_components() __a =AudioLDMPipeline(**__snake_case ) __a =audioldm_pipe.to(__snake_case ) audioldm_pipe.set_progress_bar_config(disable=__snake_case ) __a =self.get_dummy_inputs(__snake_case ) __a =audioldm_pipe(**__snake_case ) __a =output.audios[0] assert audio.ndim == 1 assert len(__snake_case ) == 256 __a =audio[:10] __a =np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.get_dummy_components() __a =AudioLDMPipeline(**__snake_case ) __a =audioldm_pipe.to(__snake_case ) __a =audioldm_pipe.to(__snake_case ) audioldm_pipe.set_progress_bar_config(disable=__snake_case ) __a =self.get_dummy_inputs(__snake_case ) __a =3 * [inputs['prompt']] # forward __a =audioldm_pipe(**__snake_case ) __a =output.audios[0] __a =self.get_dummy_inputs(__snake_case ) __a =3 * [inputs.pop('prompt' )] __a =audioldm_pipe.tokenizer( __snake_case , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=__snake_case , return_tensors='pt' , ) __a =text_inputs['input_ids'].to(__snake_case ) __a =audioldm_pipe.text_encoder( __snake_case , ) __a =prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state __a =F.normalize(__snake_case , dim=-1 ) __a =prompt_embeds # forward __a =audioldm_pipe(**__snake_case ) __a =output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.get_dummy_components() __a =AudioLDMPipeline(**__snake_case ) __a =audioldm_pipe.to(__snake_case ) __a =audioldm_pipe.to(__snake_case ) audioldm_pipe.set_progress_bar_config(disable=__snake_case ) __a =self.get_dummy_inputs(__snake_case ) __a =3 * ['this is a negative prompt'] __a =negative_prompt __a =3 * [inputs['prompt']] # forward __a =audioldm_pipe(**__snake_case ) __a =output.audios[0] __a =self.get_dummy_inputs(__snake_case ) __a =3 * [inputs.pop('prompt' )] __a =[] for p in [prompt, negative_prompt]: __a =audioldm_pipe.tokenizer( __snake_case , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=__snake_case , return_tensors='pt' , ) __a =text_inputs['input_ids'].to(__snake_case ) __a =audioldm_pipe.text_encoder( __snake_case , ) __a =text_embeds.text_embeds # additional L_2 normalization over each hidden-state __a =F.normalize(__snake_case , dim=-1 ) embeds.append(__snake_case ) __a , __a =embeds # forward __a =audioldm_pipe(**__snake_case ) __a =output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a ='cpu' # ensure determinism for the device-dependent torch.Generator __a =self.get_dummy_components() __a =PNDMScheduler(skip_prk_steps=__snake_case ) __a =AudioLDMPipeline(**__snake_case ) __a =audioldm_pipe.to(__snake_case ) audioldm_pipe.set_progress_bar_config(disable=__snake_case ) __a =self.get_dummy_inputs(__snake_case ) __a ='egg cracking' __a =audioldm_pipe(**__snake_case , negative_prompt=__snake_case ) __a =output.audios[0] assert audio.ndim == 1 assert len(__snake_case ) == 256 __a =audio[:10] __a =np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a ='cpu' # ensure determinism for the device-dependent torch.Generator __a =self.get_dummy_components() __a =PNDMScheduler(skip_prk_steps=__snake_case ) __a =AudioLDMPipeline(**__snake_case ) __a =audioldm_pipe.to(__snake_case ) audioldm_pipe.set_progress_bar_config(disable=__snake_case ) __a ='A hammer hitting a wooden surface' # test num_waveforms_per_prompt=1 (default) __a =audioldm_pipe(__snake_case , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts __a =2 __a =audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt __a =2 __a =audioldm_pipe(__snake_case , num_inference_steps=2 , num_waveforms_per_prompt=__snake_case ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts __a =2 __a =audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=__snake_case ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a ='cpu' # ensure determinism for the device-dependent torch.Generator __a =self.get_dummy_components() __a =AudioLDMPipeline(**__snake_case ) __a =audioldm_pipe.to(__snake_case ) audioldm_pipe.set_progress_bar_config(disable=__snake_case ) __a =audioldm_pipe.vocoder.config.sampling_rate __a =self.get_dummy_inputs(__snake_case ) __a =audioldm_pipe(audio_length_in_s=0.016 , **__snake_case ) __a =output.audios[0] assert audio.ndim == 1 assert len(__snake_case ) / vocoder_sampling_rate == 0.016 __a =audioldm_pipe(audio_length_in_s=0.032 , **__snake_case ) __a =output.audios[0] assert audio.ndim == 1 assert len(__snake_case ) / vocoder_sampling_rate == 0.032 def __magic_name__ ( self ) -> str: '''simple docstring''' __a =self.get_dummy_components() __a =AudioLDMPipeline(**__snake_case ) __a =audioldm_pipe.to(__snake_case ) audioldm_pipe.set_progress_bar_config(disable=__snake_case ) __a =['hey'] __a =audioldm_pipe(__snake_case , num_inference_steps=1 ) __a =output.audios.shape assert audio_shape == (1, 256) __a =audioldm_pipe.vocoder.config config.model_in_dim *= 2 __a =SpeechTaHifiGan(__snake_case ).to(__snake_case ) __a =audioldm_pipe(__snake_case , num_inference_steps=1 ) __a =output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__snake_case ) def __magic_name__ ( self ) -> str: '''simple docstring''' self._test_inference_batch_single_identical(test_mean_pixel_difference=__snake_case ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__snake_case ) @slow class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self , __snake_case , __snake_case="cpu" , __snake_case=torch.floataa , __snake_case=0 ) -> Union[str, Any]: '''simple docstring''' __a =torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __a =np.random.RandomState(__snake_case ).standard_normal((1, 8, 128, 16) ) __a =torch.from_numpy(__snake_case ).to(device=__snake_case , dtype=__snake_case ) __a ={ 'prompt': 'A hammer hitting a wooden surface', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 2.5, } return inputs def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) __a =audioldm_pipe.to(__snake_case ) audioldm_pipe.set_progress_bar_config(disable=__snake_case ) __a =self.get_inputs(__snake_case ) __a =25 __a =audioldm_pipe(**__snake_case ).audios[0] assert audio.ndim == 1 assert len(__snake_case ) == 8_1920 __a =audio[7_7230:7_7240] __a =np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) __a =np.abs(expected_slice - audio_slice ).max() assert max_diff < 1e-2 def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) __a =LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) __a =audioldm_pipe.to(__snake_case ) audioldm_pipe.set_progress_bar_config(disable=__snake_case ) __a =self.get_inputs(__snake_case ) __a =audioldm_pipe(**__snake_case ).audios[0] assert audio.ndim == 1 assert len(__snake_case ) == 8_1920 __a =audio[2_7780:2_7790] __a =np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) __a =np.abs(expected_slice - audio_slice ).max() assert max_diff < 3e-2
363
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'yolos' def __init__( self , __snake_case=768 , __snake_case=12 , __snake_case=12 , __snake_case=3072 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.02 , __snake_case=1e-12 , __snake_case=[512, 864] , __snake_case=16 , __snake_case=3 , __snake_case=True , __snake_case=100 , __snake_case=True , __snake_case=False , __snake_case=1 , __snake_case=5 , __snake_case=2 , __snake_case=5 , __snake_case=2 , __snake_case=0.1 , **__snake_case , ) -> str: '''simple docstring''' super().__init__(**__snake_case ) __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =intermediate_size __a =hidden_act __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =initializer_range __a =layer_norm_eps __a =image_size __a =patch_size __a =num_channels __a =qkv_bias __a =num_detection_tokens __a =use_mid_position_embeddings __a =auxiliary_loss # Hungarian matcher __a =class_cost __a =bbox_cost __a =giou_cost # Loss coefficients __a =bbox_loss_coefficient __a =giou_loss_coefficient __a =eos_coefficient class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = version.parse('1.11' ) @property def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __magic_name__ ( self ) -> float: '''simple docstring''' return 1e-4 @property def __magic_name__ ( self ) -> int: '''simple docstring''' return 12
308
0
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("ignore", category=UserWarning, module="torch.optim.lr_scheduler") class __magic_name__ : def __init__( self , __snake_case , __snake_case , __snake_case = True , __snake_case = False ) -> Optional[int]: '''simple docstring''' __a =scheduler __a =optimizers if isinstance(__snake_case , (list, tuple) ) else [optimizers] __a =split_batches __a =step_with_optimizer __a =GradientState() def __magic_name__ ( self , *__snake_case , **__snake_case ) -> Tuple: '''simple docstring''' if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*__snake_case , **__snake_case ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*__snake_case , **__snake_case ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step __a =AcceleratorState().num_processes for _ in range(__snake_case ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , 'total_steps' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*__snake_case , **__snake_case ) else: self.scheduler.step(*__snake_case , **__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' return self.scheduler.get_last_lr() def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' return self.scheduler.state_dict() def __magic_name__ ( self , __snake_case ) -> List[Any]: '''simple docstring''' self.scheduler.load_state_dict(__snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' return self.scheduler.get_lr() def __magic_name__ ( self , *__snake_case , **__snake_case ) -> Optional[Any]: '''simple docstring''' return self.scheduler.print_lr(*__snake_case , **__snake_case )
364
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def UpperCamelCase_( _snake_case : Optional[Any] ): """simple docstring""" __a =model.config __a =DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) __a =MBartConfig( is_decoder=_snake_case , is_encoder_decoder=_snake_case , add_cross_attention=_snake_case , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=_snake_case , add_final_layer_norm=_snake_case , ) return encoder_config, decoder_config def UpperCamelCase_( _snake_case : Tuple ): """simple docstring""" if "encoder.model" in name: __a =name.replace('encoder.model' , 'encoder' ) if "decoder.model" in name: __a =name.replace('decoder.model' , 'decoder' ) if "patch_embed.proj" in name: __a =name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __a =name.replace('patch_embed.norm' , 'embeddings.norm' ) if name.startswith('encoder' ): if "layers" in name: __a ='encoder.' + name if "attn.proj" in name: __a =name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "mask" not in name: __a =name.replace('attn' , 'attention.self' ) if "norm1" in name: __a =name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __a =name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __a =name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __a =name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": __a ='encoder.layernorm.weight' if name == "encoder.norm.bias": __a ='encoder.layernorm.bias' return name def UpperCamelCase_( _snake_case : Tuple , _snake_case : str ): """simple docstring""" for key in orig_state_dict.copy().keys(): __a =orig_state_dict.pop(_snake_case ) if "qkv" in key: __a =key.split('.' ) __a =int(key_split[3] ) __a =int(key_split[5] ) __a =model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __a =val[:dim, :] __a =val[dim : dim * 2, :] __a =val[-dim:, :] else: __a =val[:dim] __a =val[dim : dim * 2] __a =val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: __a =val return orig_state_dict def UpperCamelCase_( _snake_case : Tuple , _snake_case : Union[str, Any]=None , _snake_case : List[Any]=False ): """simple docstring""" __a =DonutModel.from_pretrained(_snake_case ).eval() # load HuggingFace model __a , __a =get_configs(_snake_case ) __a =DonutSwinModel(_snake_case ) __a =MBartForCausalLM(_snake_case ) __a =VisionEncoderDecoderModel(encoder=_snake_case , decoder=_snake_case ) model.eval() __a =original_model.state_dict() __a =convert_state_dict(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) # verify results on scanned document __a =load_dataset('hf-internal-testing/example-documents' ) __a =dataset['test'][0]['image'].convert('RGB' ) __a =XLMRobertaTokenizerFast.from_pretrained(_snake_case , from_slow=_snake_case ) __a =DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) __a =DonutProcessor(_snake_case , _snake_case ) __a =processor(_snake_case , return_tensors='pt' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": __a ='<s_docvqa><s_question>{user_input}</s_question><s_answer>' __a ='When is the coffee break?' __a =task_prompt.replace('{user_input}' , _snake_case ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": __a ='<s_rvlcdip>' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: __a ='<s_cord>' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": __a ='s_cord-v2>' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": __a ='<s_zhtrainticket>' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt __a ='hello world' else: raise ValueError('Model name not supported' ) __a =original_model.decoder.tokenizer(_snake_case , add_special_tokens=_snake_case , return_tensors='pt' )[ 'input_ids' ] __a =original_model.encoder.model.patch_embed(_snake_case ) __a , __a =model.encoder.embeddings(_snake_case ) assert torch.allclose(_snake_case , _snake_case , atol=1e-3 ) # verify encoder hidden states __a =original_model.encoder(_snake_case ) __a =model.encoder(_snake_case ).last_hidden_state assert torch.allclose(_snake_case , _snake_case , atol=1e-2 ) # verify decoder hidden states __a =original_model(_snake_case , _snake_case , _snake_case ).logits __a =model(_snake_case , decoder_input_ids=_snake_case ).logits assert torch.allclose(_snake_case , _snake_case , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(_snake_case ) processor.save_pretrained(_snake_case ) if push_to_hub: model.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) processor.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) _lowerCAmelCase : List[Any] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
308
0