code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
|---|---|---|---|---|
"""simple docstring"""
import os
import time
import warnings
from dataclasses import dataclass, field
from enum import Enum
from typing import List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import logging
from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors
from ..processors.utils import InputFeatures
__UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
@dataclass
class a :
snake_case__ = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(glue_processors.keys() )} )
snake_case__ = field(
metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} )
snake_case__ = field(
default=1_2_8 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
snake_case__ = field(
default=a__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.task_name.lower()
class a ( a__ ):
snake_case__ = '''train'''
snake_case__ = '''dev'''
snake_case__ = '''test'''
class a ( a__ ):
snake_case__ = 42
snake_case__ = 42
snake_case__ = 42
def __init__( self , _snake_case , _snake_case , _snake_case = None , _snake_case = Split.train , _snake_case = None , ):
"""simple docstring"""
warnings.warn(
'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets '
'library. You can have a look at this example script for pointers: '
'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , _snake_case , )
lowerCAmelCase = args
lowerCAmelCase = glue_processors[args.task_name]()
lowerCAmelCase = glue_output_modes[args.task_name]
if isinstance(_snake_case , _snake_case ):
try:
lowerCAmelCase = Split[mode]
except KeyError:
raise KeyError('mode is not a valid split name' )
# Load data features from cache or dataset file
lowerCAmelCase = os.path.join(
cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , )
lowerCAmelCase = self.processor.get_labels()
if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in (
"RobertaTokenizer",
"RobertaTokenizerFast",
"XLMRobertaTokenizer",
"BartTokenizer",
"BartTokenizerFast",
):
# HACK(label indices are swapped in RoBERTa pretrained model)
lowerCAmelCase ,lowerCAmelCase = label_list[2], label_list[1]
lowerCAmelCase = label_list
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
lowerCAmelCase = cached_features_file + '.lock'
with FileLock(_snake_case ):
if os.path.exists(_snake_case ) and not args.overwrite_cache:
lowerCAmelCase = time.time()
lowerCAmelCase = torch.load(_snake_case )
logger.info(
F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start )
else:
logger.info(F'Creating features from dataset file at {args.data_dir}' )
if mode == Split.dev:
lowerCAmelCase = self.processor.get_dev_examples(args.data_dir )
elif mode == Split.test:
lowerCAmelCase = self.processor.get_test_examples(args.data_dir )
else:
lowerCAmelCase = self.processor.get_train_examples(args.data_dir )
if limit_length is not None:
lowerCAmelCase = examples[:limit_length]
lowerCAmelCase = glue_convert_examples_to_features(
_snake_case , _snake_case , max_length=args.max_seq_length , label_list=_snake_case , output_mode=self.output_mode , )
lowerCAmelCase = time.time()
torch.save(self.features , _snake_case )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' )
def __len__( self ):
"""simple docstring"""
return len(self.features )
def __getitem__( self , _snake_case ):
"""simple docstring"""
return self.features[i]
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self.label_list
| 309
|
"""simple docstring"""
import io
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__UpperCamelCase : Union[str, Any] = logging.get_logger(__name__)
__UpperCamelCase : Dict = '''▁'''
__UpperCamelCase : Optional[int] = {'''vocab_file''': '''vocab.txt''', '''sentencepiece_model_ckpt''': '''sentencepiece.bpe.model'''}
__UpperCamelCase : str = {
'''sentencepiece_model_file''': '''sentencepiece.bpe.model''',
'''vocab_file''': '''vocab.txt''',
}
__UpperCamelCase : Tuple = {
'''vocab_file''': {
'''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''',
'''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''',
},
'''sentencepiece_model_file''': {
'''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''',
'''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''',
},
}
__UpperCamelCase : Optional[Any] = {
'''ernie-m-base''': 514,
'''ernie-m-large''': 514,
}
__UpperCamelCase : str = {
'''ernie-m-base''': {'''do_lower_case''': False},
'''ernie-m-large''': {'''do_lower_case''': False},
}
class a ( a__ ):
snake_case__ = ["input_ids"]
snake_case__ = VOCAB_FILES_NAMES
snake_case__ = PRETRAINED_INIT_CONFIGURATION
snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case__ = PRETRAINED_VOCAB_FILES_MAP
snake_case__ = RESOURCE_FILES_NAMES
def __init__( self , _snake_case , _snake_case=None , _snake_case=False , _snake_case="utf8" , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case = None , **_snake_case , ):
"""simple docstring"""
lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , vocab_file=_snake_case , encoding=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , )
lowerCAmelCase = do_lower_case
lowerCAmelCase = sentencepiece_model_ckpt
lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_snake_case )
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
lowerCAmelCase = self.load_vocab(filepath=_snake_case )
else:
lowerCAmelCase = {self.sp_model.id_to_piece(_snake_case ): id for id in range(self.sp_model.get_piece_size() )}
lowerCAmelCase = {v: k for k, v in self.vocab.items()}
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if text is None:
return None
lowerCAmelCase = self.tokenize(_snake_case )
lowerCAmelCase ,lowerCAmelCase = '', []
for i, ch in enumerate(_snake_case ):
if ch in self.SP_CHAR_MAPPING:
lowerCAmelCase = self.SP_CHAR_MAPPING.get(_snake_case )
else:
lowerCAmelCase = unicodedata.normalize('NFKC' , _snake_case )
if self.is_whitespace(_snake_case ):
continue
normalized_text += ch
char_mapping.extend([i] * len(_snake_case ) )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = normalized_text, [], 0
if self.do_lower_case:
lowerCAmelCase = text.lower()
for token in split_tokens:
if token[:1] == "▁":
lowerCAmelCase = token[1:]
lowerCAmelCase = text[offset:].index(_snake_case ) + offset
lowerCAmelCase = start + len(_snake_case )
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) )
lowerCAmelCase = end
return token_mapping
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return len(self.vocab )
def UpperCamelCase__ ( self ):
"""simple docstring"""
return dict(self.vocab , **self.added_tokens_encoder )
def __getstate__( self ):
"""simple docstring"""
lowerCAmelCase = self.__dict__.copy()
lowerCAmelCase = None
return state
def __setstate__( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
lowerCAmelCase = {}
lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.sentencepiece_model_ckpt )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
return "".join((self.SP_CHAR_MAPPING.get(_snake_case , _snake_case ) for c in text) )
def UpperCamelCase__ ( self , _snake_case , _snake_case=False , _snake_case=64 , _snake_case=0.1 ):
"""simple docstring"""
if self.sp_model_kwargs.get('enable_sampling' ) is True:
lowerCAmelCase = True
if self.sp_model_kwargs.get('alpha' ) is not None:
lowerCAmelCase = self.sp_model_kwargs.get('alpha' )
if self.sp_model_kwargs.get('nbest_size' ) is not None:
lowerCAmelCase = self.sp_model_kwargs.get('nbest_size' )
if not enable_sampling:
lowerCAmelCase = self.sp_model.EncodeAsPieces(_snake_case )
else:
lowerCAmelCase = self.sp_model.SampleEncodeAsPieces(_snake_case , _snake_case , _snake_case )
lowerCAmelCase = []
for pi, piece in enumerate(_snake_case ):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(_snake_case ) and pi != 0:
new_pieces.append(_snake_case )
continue
else:
continue
lowerCAmelCase = 0
for i, chunk in enumerate(_snake_case ):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(_snake_case ) or self.is_punct(_snake_case ):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
new_pieces.append(_snake_case )
lowerCAmelCase = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
lowerCAmelCase = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
lowerCAmelCase = i
if len(_snake_case ) > lst_i:
new_pieces.append(piece[lst_i:] )
return new_pieces
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = ''.join(_snake_case ).replace(_snake_case , ' ' ).strip()
return out_string
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = self.convert_ids_to_tokens(_snake_case )
lowerCAmelCase = ''.join(_snake_case ).replace(_snake_case , ' ' ).strip()
return out_string
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
return self.vocab.get(_snake_case , self.vocab.get(self.unk_token ) )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
return self.reverse_vocab.get(_snake_case , self.unk_token )
def UpperCamelCase__ ( self , _snake_case , _snake_case=None ):
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowerCAmelCase = [self.cls_token_id]
lowerCAmelCase = [self.sep_token_id]
return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep
def UpperCamelCase__ ( self , _snake_case , _snake_case=None ):
"""simple docstring"""
if offset_mapping_a is None:
return [(0, 0)] + offset_mapping_a + [(0, 0)]
return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)]
def UpperCamelCase__ ( self , _snake_case , _snake_case=None , _snake_case=False ):
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'You should not supply a second sequence if the provided sequence of '
'ids is already formatted with special tokens for the model.' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) + [1]
return [1] + ([0] * len(_snake_case )) + [1]
def UpperCamelCase__ ( self , _snake_case , _snake_case = None ):
"""simple docstring"""
if token_ids_a is None:
# [CLS] X [SEP]
return (len(_snake_case ) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(_snake_case ) + 1) + [1] * (len(_snake_case ) + 3)
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if "\u4e00" <= char <= "\u9fff":
return True
return False
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if char in ",;:.?!~,;:。?!《》【】":
return True
return False
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(_snake_case ) == 1:
lowerCAmelCase = unicodedata.category(_snake_case )
if cat == "Zs":
return True
return False
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = {}
with io.open(_snake_case , 'r' , encoding='utf-8' ) as f:
for index, line in enumerate(_snake_case ):
lowerCAmelCase = line.rstrip('\n' )
lowerCAmelCase = int(_snake_case )
return token_to_idx
def UpperCamelCase__ ( self , _snake_case , _snake_case = None ):
"""simple docstring"""
lowerCAmelCase = 0
if os.path.isdir(_snake_case ):
lowerCAmelCase = os.path.join(
_snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
else:
lowerCAmelCase = (filename_prefix + '-' if filename_prefix else '') + save_directory
with open(_snake_case , 'w' , encoding='utf-8' ) as writer:
for token, token_index in sorted(self.vocab.items() , key=lambda _snake_case : kv[1] ):
if index != token_index:
logger.warning(
F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'
' Please check that the vocabulary is not corrupted!' )
lowerCAmelCase = token_index
writer.write(token + '\n' )
index += 1
lowerCAmelCase = os.path.join(_snake_case , 'sentencepiece.bpe.model' )
with open(_snake_case , 'wb' ) as fi:
lowerCAmelCase = self.sp_model.serialized_model_proto()
fi.write(_snake_case )
return (vocab_file,)
| 309
| 1
|
"""simple docstring"""
from __future__ import annotations
import unittest
import numpy as np
from transformers import LayoutLMConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.layoutlm.modeling_tf_layoutlm import (
TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLayoutLMForMaskedLM,
TFLayoutLMForQuestionAnswering,
TFLayoutLMForSequenceClassification,
TFLayoutLMForTokenClassification,
TFLayoutLMModel,
)
class a :
def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=2 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , _snake_case=10_00 , ):
"""simple docstring"""
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = seq_length
lowerCAmelCase = is_training
lowerCAmelCase = use_input_mask
lowerCAmelCase = use_token_type_ids
lowerCAmelCase = use_labels
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_act
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = type_sequence_label_size
lowerCAmelCase = initializer_range
lowerCAmelCase = num_labels
lowerCAmelCase = num_choices
lowerCAmelCase = scope
lowerCAmelCase = range_bbox
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
# convert bbox to numpy since TF does not support item assignment
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
lowerCAmelCase = bbox[i, j, 3]
lowerCAmelCase = bbox[i, j, 1]
lowerCAmelCase = t
if bbox[i, j, 2] < bbox[i, j, 0]:
lowerCAmelCase = bbox[i, j, 2]
lowerCAmelCase = bbox[i, j, 0]
lowerCAmelCase = t
lowerCAmelCase = tf.convert_to_tensor(_snake_case )
lowerCAmelCase = None
if self.use_input_mask:
lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase = None
if self.use_token_type_ids:
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCAmelCase = None
lowerCAmelCase = None
lowerCAmelCase = None
if self.use_labels:
lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase = LayoutLMConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = TFLayoutLMModel(config=_snake_case )
lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case )
lowerCAmelCase = model(_snake_case , _snake_case , token_type_ids=_snake_case )
lowerCAmelCase = model(_snake_case , _snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = TFLayoutLMForMaskedLM(config=_snake_case )
lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = self.num_labels
lowerCAmelCase = TFLayoutLMForSequenceClassification(config=_snake_case )
lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = self.num_labels
lowerCAmelCase = TFLayoutLMForTokenClassification(config=_snake_case )
lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = TFLayoutLMForQuestionAnswering(config=_snake_case )
lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.prepare_config_and_inputs()
(
(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,
) = config_and_inputs
lowerCAmelCase = {
'input_ids': input_ids,
'bbox': bbox,
'token_type_ids': token_type_ids,
'attention_mask': input_mask,
}
return config, inputs_dict
@require_tf
class a ( a__ , a__ , unittest.TestCase ):
snake_case__ = (
(
TFLayoutLMModel,
TFLayoutLMForMaskedLM,
TFLayoutLMForTokenClassification,
TFLayoutLMForSequenceClassification,
TFLayoutLMForQuestionAnswering,
)
if is_tf_available()
else ()
)
snake_case__ = (
{
'''feature-extraction''': TFLayoutLMModel,
'''fill-mask''': TFLayoutLMForMaskedLM,
'''text-classification''': TFLayoutLMForSequenceClassification,
'''token-classification''': TFLayoutLMForTokenClassification,
'''zero-shot''': TFLayoutLMForSequenceClassification,
}
if is_tf_available()
else {}
)
snake_case__ = False
snake_case__ = True
snake_case__ = 1_0
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFLayoutLMModelTester(self )
lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_snake_case )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase = TFLayoutLMModel.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
@unittest.skip('Onnx compliancy broke with TF 2.10' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
def _SCREAMING_SNAKE_CASE ():
# Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on:
# fmt: off
lowerCAmelCase = tf.convert_to_tensor([[101,1019,1014,1016,1037,1_2849,4747,1004,1_4246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,1_1300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,1_9274,2772,6205,2_7814,1_6147,1_6147,4343,2047,1_0283,1_0969,1_4389,1012,2338,102]] ) # noqa: E231
lowerCAmelCase = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231
lowerCAmelCase = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231
lowerCAmelCase = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231
# these are sequence labels (i.e. at the token level)
lowerCAmelCase = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231
# fmt: on
return input_ids, attention_mask, bbox, token_type_ids, labels
@require_tf
class a ( unittest.TestCase ):
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs()
# forward pass
lowerCAmelCase = model(input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case )
# test the sequence output on [0, :3, :3]
lowerCAmelCase = tf.convert_to_tensor(
[[0.1_785, -0.1_947, -0.0_425], [-0.3_254, -0.2_807, 0.2_553], [-0.5_391, -0.3_322, 0.3_364]] , )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _snake_case , atol=1E-3 ) )
# test the pooled output on [1, :3]
lowerCAmelCase = tf.convert_to_tensor([-0.6_580, -0.0_214, 0.8_552] )
self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _snake_case , atol=1E-3 ) )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs()
# forward pass
lowerCAmelCase = model(
input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=tf.convert_to_tensor([1, 1] ) , )
# test whether we get a loss as a scalar
lowerCAmelCase = outputs.loss
lowerCAmelCase = (2,)
self.assertEqual(loss.shape , _snake_case )
# test the shape of the logits
lowerCAmelCase = outputs.logits
lowerCAmelCase = (2, 2)
self.assertEqual(logits.shape , _snake_case )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=13 )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs()
# forward pass
lowerCAmelCase = model(
input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case )
# test the shape of the logits
lowerCAmelCase = outputs.logits
lowerCAmelCase = tf.convert_to_tensor((2, 25, 13) )
self.assertEqual(logits.shape , _snake_case )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs()
# forward pass
lowerCAmelCase = model(input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case )
# test the shape of the logits
lowerCAmelCase = tf.convert_to_tensor((2, 25) )
self.assertEqual(outputs.start_logits.shape , _snake_case )
self.assertEqual(outputs.end_logits.shape , _snake_case )
| 309
|
"""simple docstring"""
import argparse
import os
import torch
from transformers.utils import WEIGHTS_NAME
__UpperCamelCase : int = ['''small''', '''medium''', '''large''']
__UpperCamelCase : str = '''lm_head.decoder.weight'''
__UpperCamelCase : Dict = '''lm_head.weight'''
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ):
lowerCAmelCase = torch.load(_UpperCAmelCase )
lowerCAmelCase = d.pop(_UpperCAmelCase )
os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase )
torch.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase ) )
if __name__ == "__main__":
__UpperCamelCase : Optional[int] = argparse.ArgumentParser()
parser.add_argument('''--dialogpt_path''', default='''.''', type=str)
__UpperCamelCase : Optional[int] = parser.parse_args()
for MODEL in DIALOGPT_MODELS:
__UpperCamelCase : Dict = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''')
__UpperCamelCase : str = f'''./DialoGPT-{MODEL}'''
convert_dialogpt_checkpoint(
checkpoint_path,
pytorch_dump_folder_path,
)
| 309
| 1
|
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_beit import BeitImageProcessor
__UpperCamelCase : List[str] = logging.get_logger(__name__)
class a ( a__ ):
def __init__( self , *_snake_case , **_snake_case ):
"""simple docstring"""
warnings.warn(
'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use BeitImageProcessor instead.' , _snake_case , )
super().__init__(*_snake_case , **_snake_case )
| 309
|
"""simple docstring"""
__UpperCamelCase : Dict = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []}
__UpperCamelCase : str = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]}
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[int, list[int]] , _UpperCAmelCase : int , _UpperCAmelCase : list[bool] ):
lowerCAmelCase = True
lowerCAmelCase = []
for neighbour in graph[vert]:
if not visited[neighbour]:
order += topology_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
order.append(_UpperCAmelCase )
return order
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[int, list[int]] , _UpperCAmelCase : int , _UpperCAmelCase : list[bool] ):
lowerCAmelCase = True
lowerCAmelCase = [vert]
for neighbour in reversed_graph[vert]:
if not visited[neighbour]:
component += find_components(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
return component
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[int, list[int]] ):
lowerCAmelCase = len(_UpperCAmelCase ) * [False]
lowerCAmelCase = {vert: [] for vert in range(len(_UpperCAmelCase ) )}
for vert, neighbours in graph.items():
for neighbour in neighbours:
reversed_graph[neighbour].append(_UpperCAmelCase )
lowerCAmelCase = []
for i, was_visited in enumerate(_UpperCAmelCase ):
if not was_visited:
order += topology_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase = []
lowerCAmelCase = len(_UpperCAmelCase ) * [False]
for i in range(len(_UpperCAmelCase ) ):
lowerCAmelCase = order[len(_UpperCAmelCase ) - i - 1]
if not visited[vert]:
lowerCAmelCase = find_components(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
components_list.append(_UpperCAmelCase )
return components_list
| 309
| 1
|
"""simple docstring"""
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMInverseScheduler,
DDIMScheduler,
DPMSolverMultistepInverseScheduler,
DPMSolverMultistepScheduler,
StableDiffusionDiffEditPipeline,
UNetaDConditionModel,
)
from diffusers.utils import load_image, slow
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class a ( a__ , a__ , unittest.TestCase ):
snake_case__ = StableDiffusionDiffEditPipeline
snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''}
snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''}
snake_case__ = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
snake_case__ = frozenset([] )
def UpperCamelCase__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowerCAmelCase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_snake_case , )
lowerCAmelCase = DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_snake_case , set_alpha_to_one=_snake_case , )
lowerCAmelCase = DDIMInverseScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_snake_case , set_alpha_to_zero=_snake_case , )
torch.manual_seed(0 )
lowerCAmelCase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_28 , )
torch.manual_seed(0 )
lowerCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='gelu' , projection_dim=5_12 , )
lowerCAmelCase = CLIPTextModel(_snake_case )
lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
lowerCAmelCase = {
'unet': unet,
'scheduler': scheduler,
'inverse_scheduler': inverse_scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ):
"""simple docstring"""
lowerCAmelCase = floats_tensor((1, 16, 16) , rng=random.Random(_snake_case ) ).to(_snake_case )
lowerCAmelCase = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_snake_case ) ).to(_snake_case )
if str(_snake_case ).startswith('mps' ):
lowerCAmelCase = torch.manual_seed(_snake_case )
else:
lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case )
lowerCAmelCase = {
'prompt': 'a dog and a newt',
'mask_image': mask,
'image_latents': latents,
'generator': generator,
'num_inference_steps': 2,
'inpaint_strength': 1.0,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ):
"""simple docstring"""
lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case )
lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCAmelCase = Image.fromarray(np.uinta(_snake_case ) ).convert('RGB' )
if str(_snake_case ).startswith('mps' ):
lowerCAmelCase = torch.manual_seed(_snake_case )
else:
lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case )
lowerCAmelCase = {
'image': image,
'source_prompt': 'a cat and a frog',
'target_prompt': 'a dog and a newt',
'generator': generator,
'num_inference_steps': 2,
'num_maps_per_mask': 2,
'mask_encode_strength': 1.0,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ):
"""simple docstring"""
lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case )
lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCAmelCase = Image.fromarray(np.uinta(_snake_case ) ).convert('RGB' )
if str(_snake_case ).startswith('mps' ):
lowerCAmelCase = torch.manual_seed(_snake_case )
else:
lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case )
lowerCAmelCase = {
'image': image,
'prompt': 'a cat and a frog',
'generator': generator,
'num_inference_steps': 2,
'inpaint_strength': 1.0,
'guidance_scale': 6.0,
'decode_latents': True,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase__ ( self ):
"""simple docstring"""
if not hasattr(self.pipeline_class , '_optional_components' ):
return
lowerCAmelCase = self.get_dummy_components()
lowerCAmelCase = self.pipeline_class(**_snake_case )
pipe.to(_snake_case )
pipe.set_progress_bar_config(disable=_snake_case )
# set all optional components to None and update pipeline config accordingly
for optional_component in pipe._optional_components:
setattr(_snake_case , _snake_case , _snake_case )
pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} )
lowerCAmelCase = self.get_dummy_inputs(_snake_case )
lowerCAmelCase = pipe(**_snake_case )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(_snake_case )
lowerCAmelCase = self.pipeline_class.from_pretrained(_snake_case )
pipe_loaded.to(_snake_case )
pipe_loaded.set_progress_bar_config(disable=_snake_case )
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(_snake_case , _snake_case ) is None , F'`{optional_component}` did not stay set to None after loading.' , )
lowerCAmelCase = self.get_dummy_inputs(_snake_case )
lowerCAmelCase = pipe_loaded(**_snake_case )[0]
lowerCAmelCase = np.abs(output - output_loaded ).max()
self.assertLess(_snake_case , 1E-4 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = 'cpu'
lowerCAmelCase = self.get_dummy_components()
lowerCAmelCase = self.pipeline_class(**_snake_case )
pipe.to(_snake_case )
pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase = self.get_dummy_mask_inputs(_snake_case )
lowerCAmelCase = pipe.generate_mask(**_snake_case )
lowerCAmelCase = mask[0, -3:, -3:]
self.assertEqual(mask.shape , (1, 16, 16) )
lowerCAmelCase = np.array([0] * 9 )
lowerCAmelCase = np.abs(mask_slice.flatten() - expected_slice ).max()
self.assertLessEqual(_snake_case , 1E-3 )
self.assertEqual(mask[0, -3, -4] , 0 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = 'cpu'
lowerCAmelCase = self.get_dummy_components()
lowerCAmelCase = self.pipeline_class(**_snake_case )
pipe.to(_snake_case )
pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase = self.get_dummy_inversion_inputs(_snake_case )
lowerCAmelCase = pipe.invert(**_snake_case ).images
lowerCAmelCase = image[0, -1, -3:, -3:]
self.assertEqual(image.shape , (2, 32, 32, 3) )
lowerCAmelCase = np.array(
[0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , )
lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(_snake_case , 1E-3 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
super().test_inference_batch_single_identical(expected_max_diff=5E-3 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = 'cpu'
lowerCAmelCase = self.get_dummy_components()
lowerCAmelCase = {'beta_start': 0.00_085, 'beta_end': 0.012, 'beta_schedule': 'scaled_linear'}
lowerCAmelCase = DPMSolverMultistepScheduler(**_snake_case )
lowerCAmelCase = DPMSolverMultistepInverseScheduler(**_snake_case )
lowerCAmelCase = self.pipeline_class(**_snake_case )
pipe.to(_snake_case )
pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase = self.get_dummy_inversion_inputs(_snake_case )
lowerCAmelCase = pipe.invert(**_snake_case ).images
lowerCAmelCase = image[0, -1, -3:, -3:]
self.assertEqual(image.shape , (2, 32, 32, 3) )
lowerCAmelCase = np.array(
[0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , )
lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(_snake_case , 1E-3 )
@require_torch_gpu
@slow
class a ( unittest.TestCase ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@classmethod
def UpperCamelCase__ ( cls ):
"""simple docstring"""
lowerCAmelCase = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' )
lowerCAmelCase = raw_image.convert('RGB' ).resize((7_68, 7_68) )
lowerCAmelCase = raw_image
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = torch.manual_seed(0 )
lowerCAmelCase = StableDiffusionDiffEditPipeline.from_pretrained(
'stabilityai/stable-diffusion-2-1' , safety_checker=_snake_case , torch_dtype=torch.floataa )
lowerCAmelCase = DDIMScheduler.from_config(pipe.scheduler.config )
lowerCAmelCase = DDIMInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase = 'a bowl of fruit'
lowerCAmelCase = 'a bowl of pears'
lowerCAmelCase = pipe.generate_mask(
image=self.raw_image , source_prompt=_snake_case , target_prompt=_snake_case , generator=_snake_case , )
lowerCAmelCase = pipe.invert(
prompt=_snake_case , image=self.raw_image , inpaint_strength=0.7 , generator=_snake_case ).latents
lowerCAmelCase = pipe(
prompt=_snake_case , mask_image=_snake_case , image_latents=_snake_case , generator=_snake_case , negative_prompt=_snake_case , inpaint_strength=0.7 , output_type='numpy' , ).images[0]
lowerCAmelCase = (
np.array(
load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/diffedit/pears.png' ).resize((7_68, 7_68) ) )
/ 2_55
)
assert np.abs((expected_image - image).max() ) < 5E-1
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = torch.manual_seed(0 )
lowerCAmelCase = StableDiffusionDiffEditPipeline.from_pretrained(
'stabilityai/stable-diffusion-2-1' , safety_checker=_snake_case , torch_dtype=torch.floataa )
lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
lowerCAmelCase = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase = 'a bowl of fruit'
lowerCAmelCase = 'a bowl of pears'
lowerCAmelCase = pipe.generate_mask(
image=self.raw_image , source_prompt=_snake_case , target_prompt=_snake_case , generator=_snake_case , )
lowerCAmelCase = pipe.invert(
prompt=_snake_case , image=self.raw_image , inpaint_strength=0.7 , generator=_snake_case , num_inference_steps=25 , ).latents
lowerCAmelCase = pipe(
prompt=_snake_case , mask_image=_snake_case , image_latents=_snake_case , generator=_snake_case , negative_prompt=_snake_case , inpaint_strength=0.7 , num_inference_steps=25 , output_type='numpy' , ).images[0]
lowerCAmelCase = (
np.array(
load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/diffedit/pears.png' ).resize((7_68, 7_68) ) )
/ 2_55
)
assert np.abs((expected_image - image).max() ) < 5E-1
| 309
|
"""simple docstring"""
import os
import time
import warnings
from dataclasses import dataclass, field
from enum import Enum
from typing import List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import logging
from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors
from ..processors.utils import InputFeatures
__UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
@dataclass
class a :
snake_case__ = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(glue_processors.keys() )} )
snake_case__ = field(
metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} )
snake_case__ = field(
default=1_2_8 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
snake_case__ = field(
default=a__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.task_name.lower()
class a ( a__ ):
snake_case__ = '''train'''
snake_case__ = '''dev'''
snake_case__ = '''test'''
class a ( a__ ):
snake_case__ = 42
snake_case__ = 42
snake_case__ = 42
def __init__( self , _snake_case , _snake_case , _snake_case = None , _snake_case = Split.train , _snake_case = None , ):
"""simple docstring"""
warnings.warn(
'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets '
'library. You can have a look at this example script for pointers: '
'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , _snake_case , )
lowerCAmelCase = args
lowerCAmelCase = glue_processors[args.task_name]()
lowerCAmelCase = glue_output_modes[args.task_name]
if isinstance(_snake_case , _snake_case ):
try:
lowerCAmelCase = Split[mode]
except KeyError:
raise KeyError('mode is not a valid split name' )
# Load data features from cache or dataset file
lowerCAmelCase = os.path.join(
cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , )
lowerCAmelCase = self.processor.get_labels()
if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in (
"RobertaTokenizer",
"RobertaTokenizerFast",
"XLMRobertaTokenizer",
"BartTokenizer",
"BartTokenizerFast",
):
# HACK(label indices are swapped in RoBERTa pretrained model)
lowerCAmelCase ,lowerCAmelCase = label_list[2], label_list[1]
lowerCAmelCase = label_list
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
lowerCAmelCase = cached_features_file + '.lock'
with FileLock(_snake_case ):
if os.path.exists(_snake_case ) and not args.overwrite_cache:
lowerCAmelCase = time.time()
lowerCAmelCase = torch.load(_snake_case )
logger.info(
F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start )
else:
logger.info(F'Creating features from dataset file at {args.data_dir}' )
if mode == Split.dev:
lowerCAmelCase = self.processor.get_dev_examples(args.data_dir )
elif mode == Split.test:
lowerCAmelCase = self.processor.get_test_examples(args.data_dir )
else:
lowerCAmelCase = self.processor.get_train_examples(args.data_dir )
if limit_length is not None:
lowerCAmelCase = examples[:limit_length]
lowerCAmelCase = glue_convert_examples_to_features(
_snake_case , _snake_case , max_length=args.max_seq_length , label_list=_snake_case , output_mode=self.output_mode , )
lowerCAmelCase = time.time()
torch.save(self.features , _snake_case )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' )
def __len__( self ):
"""simple docstring"""
return len(self.features )
def __getitem__( self , _snake_case ):
"""simple docstring"""
return self.features[i]
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self.label_list
| 309
| 1
|
"""simple docstring"""
from __future__ import annotations
from fractions import Fraction
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : int ):
return (
num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den
)
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ):
lowerCAmelCase = []
lowerCAmelCase = 11
lowerCAmelCase = int('1' + '0' * digit_len )
for num in range(_UpperCAmelCase , _UpperCAmelCase ):
while den <= 99:
if (num != den) and (num % 10 == den // 10) and (den % 10 != 0):
if is_digit_cancelling(_UpperCAmelCase , _UpperCAmelCase ):
solutions.append(F'{num}/{den}' )
den += 1
num += 1
lowerCAmelCase = 10
return solutions
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 2 ):
lowerCAmelCase = 1.0
for fraction in fraction_list(_UpperCAmelCase ):
lowerCAmelCase = Fraction(_UpperCAmelCase )
result *= frac.denominator / frac.numerator
return int(_UpperCAmelCase )
if __name__ == "__main__":
print(solution())
| 309
|
"""simple docstring"""
import os
from collections.abc import Iterator
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "." ):
for dir_path, dir_names, filenames in os.walk(_UpperCAmelCase ):
lowerCAmelCase = [d for d in dir_names if d != 'scripts' and d[0] not in '._']
for filename in filenames:
if filename == "__init__.py":
continue
if os.path.splitext(_UpperCAmelCase )[1] in (".py", ".ipynb"):
yield os.path.join(_UpperCAmelCase , _UpperCAmelCase ).lstrip('./' )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ):
return F'{i * " "}*' if i else "\n##"
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ):
lowerCAmelCase = old_path.split(os.sep )
for i, new_part in enumerate(new_path.split(os.sep ) ):
if (i + 1 > len(_UpperCAmelCase ) or old_parts[i] != new_part) and new_part:
print(F'{md_prefix(_UpperCAmelCase )} {new_part.replace("_" , " " ).title()}' )
return new_path
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "." ):
lowerCAmelCase = ''
for filepath in sorted(good_file_paths(_UpperCAmelCase ) ):
lowerCAmelCase ,lowerCAmelCase = os.path.split(_UpperCAmelCase )
if filepath != old_path:
lowerCAmelCase = print_path(_UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase = (filepath.count(os.sep ) + 1) if filepath else 0
lowerCAmelCase = F'{filepath}/{filename}'.replace(' ' , '%20' )
lowerCAmelCase = os.path.splitext(filename.replace('_' , ' ' ).title() )[0]
print(F'{md_prefix(_UpperCAmelCase )} [{filename}]({url})' )
if __name__ == "__main__":
print_directory_md('''.''')
| 309
| 1
|
"""simple docstring"""
import argparse
import math
import os
import torch
from neural_compressor.utils.pytorch import load
from PIL import Image
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument(
'-m' , '--pretrained_model_name_or_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , required=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , )
parser.add_argument(
'-c' , '--caption' , type=_UpperCAmelCase , default='robotic cat with wings' , help='Text used to generate images.' , )
parser.add_argument(
'-n' , '--images_num' , type=_UpperCAmelCase , default=4 , help='How much images to generate.' , )
parser.add_argument(
'-s' , '--seed' , type=_UpperCAmelCase , default=42 , help='Seed for random process.' , )
parser.add_argument(
'-ci' , '--cuda_id' , type=_UpperCAmelCase , default=0 , help='cuda_id.' , )
lowerCAmelCase = parser.parse_args()
return args
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : str ):
if not len(_UpperCAmelCase ) == rows * cols:
raise ValueError('The specified number of rows and columns are not correct.' )
lowerCAmelCase ,lowerCAmelCase = imgs[0].size
lowerCAmelCase = Image.new('RGB' , size=(cols * w, rows * h) )
lowerCAmelCase ,lowerCAmelCase = grid.size
for i, img in enumerate(_UpperCAmelCase ):
grid.paste(_UpperCAmelCase , box=(i % cols * w, i // cols * h) )
return grid
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str]="robotic cat with wings" , _UpperCAmelCase : Tuple=7.5 , _UpperCAmelCase : Any=50 , _UpperCAmelCase : Dict=1 , _UpperCAmelCase : Union[str, Any]=42 , ):
lowerCAmelCase = torch.Generator(pipeline.device ).manual_seed(_UpperCAmelCase )
lowerCAmelCase = pipeline(
_UpperCAmelCase , guidance_scale=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , generator=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , ).images
lowerCAmelCase = int(math.sqrt(_UpperCAmelCase ) )
lowerCAmelCase = image_grid(_UpperCAmelCase , rows=_rows , cols=num_images_per_prompt // _rows )
return grid, images
__UpperCamelCase : Optional[Any] = parse_args()
# Load models and create wrapper for stable diffusion
__UpperCamelCase : Union[str, Any] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''')
__UpperCamelCase : Union[str, Any] = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''')
__UpperCamelCase : Optional[Any] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''')
__UpperCamelCase : str = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''')
__UpperCamelCase : Tuple = StableDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer
)
__UpperCamelCase : int = lambda images, clip_input: (images, False)
if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')):
__UpperCamelCase : List[Any] = load(args.pretrained_model_name_or_path, model=unet)
unet.eval()
setattr(pipeline, '''unet''', unet)
else:
__UpperCamelCase : List[str] = unet.to(torch.device('''cuda''', args.cuda_id))
__UpperCamelCase : Any = pipeline.to(unet.device)
__UpperCamelCase ,__UpperCamelCase : str = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed)
grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split()))))
__UpperCamelCase : Tuple = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split()))
os.makedirs(dirname, exist_ok=True)
for idx, image in enumerate(images):
image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
| 309
|
"""simple docstring"""
import os
from datetime import datetime as dt
from github import Github
__UpperCamelCase : int = [
'''good first issue''',
'''good second issue''',
'''good difficult issue''',
'''enhancement''',
'''new pipeline/model''',
'''new scheduler''',
'''wip''',
]
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = Github(os.environ['GITHUB_TOKEN'] )
lowerCAmelCase = g.get_repo('huggingface/diffusers' )
lowerCAmelCase = repo.get_issues(state='open' )
for issue in open_issues:
lowerCAmelCase = sorted(issue.get_comments() , key=lambda _UpperCAmelCase : i.created_at , reverse=_UpperCAmelCase )
lowerCAmelCase = comments[0] if len(_UpperCAmelCase ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Closes the issue after 7 days of inactivity since the Stalebot notification.
issue.edit(state='closed' )
elif (
"stale" in issue.get_labels()
and last_comment is not None
and last_comment.user.login != "github-actions[bot]"
):
# Opens the issue if someone other than Stalebot commented.
issue.edit(state='open' )
issue.remove_from_labels('stale' )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Post a Stalebot notification after 23 days of inactivity.
issue.create_comment(
'This issue has been automatically marked as stale because it has not had '
'recent activity. If you think this still needs to be addressed '
'please comment on this thread.\n\nPlease note that issues that do not follow the '
'[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) '
'are likely to be ignored.' )
issue.add_to_labels('stale' )
if __name__ == "__main__":
main()
| 309
| 1
|
"""simple docstring"""
from timeit import timeit
__UpperCamelCase : Optional[Any] = {
'''MALAYALAM''': True,
'''String''': False,
'''rotor''': True,
'''level''': True,
'''A''': True,
'''BB''': True,
'''ABC''': False,
'''amanaplanacanalpanama''': True, # "a man a plan a canal panama"
}
# Ensure our test data is valid
assert all((key == key[::-1]) is value for key, value in test_data.items())
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ):
lowerCAmelCase = 0
lowerCAmelCase = len(_UpperCAmelCase ) - 1
while start_i < end_i:
if s[start_i] == s[end_i]:
start_i += 1
end_i -= 1
else:
return False
return True
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ):
lowerCAmelCase = len(_UpperCAmelCase ) // 2
lowerCAmelCase = len(_UpperCAmelCase )
# We need to traverse till half of the length of string
# as we can get access of the i'th last element from
# i'th index.
# eg: [0,1,2,3,4,5] => 4th index can be accessed
# with the help of 1st index (i==n-i-1)
# where n is length of string
return all(s[i] == s[n - i - 1] for i in range(_UpperCAmelCase ) )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ):
if len(_UpperCAmelCase ) <= 2:
return True
if s[0] == s[len(_UpperCAmelCase ) - 1]:
return is_palindrome_recursive(s[1:-1] )
else:
return False
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ):
return s == s[::-1]
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ):
lowerCAmelCase = F'all({name}(key) is value for key, value in test_data.items())'
lowerCAmelCase = F'from __main__ import test_data, {name}'
lowerCAmelCase = 50_0000
lowerCAmelCase = timeit(stmt=_UpperCAmelCase , setup=_UpperCAmelCase , number=_UpperCAmelCase )
print(F'{name:<35} finished {number:,} runs in {result:.5f} seconds' )
if __name__ == "__main__":
for key, value in test_data.items():
assert is_palindrome(key) is is_palindrome_recursive(key)
assert is_palindrome(key) is is_palindrome_slice(key)
print(f'''{key:21} {value}''')
print('''a man a plan a canal panama''')
# finished 500,000 runs in 0.46793 seconds
benchmark_function('''is_palindrome_slice''')
# finished 500,000 runs in 0.85234 seconds
benchmark_function('''is_palindrome''')
# finished 500,000 runs in 1.32028 seconds
benchmark_function('''is_palindrome_recursive''')
# finished 500,000 runs in 2.08679 seconds
benchmark_function('''is_palindrome_traversal''')
| 309
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__UpperCamelCase : Any = {
'''configuration_layoutlmv2''': ['''LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv2Config'''],
'''processing_layoutlmv2''': ['''LayoutLMv2Processor'''],
'''tokenization_layoutlmv2''': ['''LayoutLMv2Tokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Tuple = ['''LayoutLMv2TokenizerFast''']
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Optional[int] = ['''LayoutLMv2FeatureExtractor''']
__UpperCamelCase : Optional[int] = ['''LayoutLMv2ImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Any = [
'''LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''LayoutLMv2ForQuestionAnswering''',
'''LayoutLMv2ForSequenceClassification''',
'''LayoutLMv2ForTokenClassification''',
'''LayoutLMv2Layer''',
'''LayoutLMv2Model''',
'''LayoutLMv2PreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaLayer,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
else:
import sys
__UpperCamelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 309
| 1
|
"""simple docstring"""
import torch
from diffusers import KDPMaDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class a ( a__ ):
snake_case__ = (KDPMaDiscreteScheduler,)
snake_case__ = 1_0
def UpperCamelCase__ ( self , **_snake_case ):
"""simple docstring"""
lowerCAmelCase = {
'num_train_timesteps': 11_00,
'beta_start': 0.0_001,
'beta_end': 0.02,
'beta_schedule': 'linear',
}
config.update(**_snake_case )
return config
def UpperCamelCase__ ( self ):
"""simple docstring"""
for timesteps in [10, 50, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ):
self.check_over_configs(beta_start=_snake_case , beta_end=_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config(prediction_type='v_prediction' )
lowerCAmelCase = scheduler_class(**_snake_case )
scheduler.set_timesteps(self.num_inference_steps )
lowerCAmelCase = self.dummy_model()
lowerCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
lowerCAmelCase = sample.to(_snake_case )
for i, t in enumerate(scheduler.timesteps ):
lowerCAmelCase = scheduler.scale_model_input(_snake_case , _snake_case )
lowerCAmelCase = model(_snake_case , _snake_case )
lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case )
lowerCAmelCase = output.prev_sample
lowerCAmelCase = torch.sum(torch.abs(_snake_case ) )
lowerCAmelCase = torch.mean(torch.abs(_snake_case ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 4.69_34E-07 ) < 1E-2
assert abs(result_mean.item() - 6.11_12E-10 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 4.6_93_42_86_50_17_09_72E-07 ) < 1E-2
assert abs(result_mean.item() - 0.0_002 ) < 1E-3
def UpperCamelCase__ ( self ):
"""simple docstring"""
if torch_device == "mps":
return
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**_snake_case )
scheduler.set_timesteps(self.num_inference_steps )
lowerCAmelCase = self.dummy_model()
lowerCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
lowerCAmelCase = sample.to(_snake_case )
for i, t in enumerate(scheduler.timesteps ):
lowerCAmelCase = scheduler.scale_model_input(_snake_case , _snake_case )
lowerCAmelCase = model(_snake_case , _snake_case )
lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case )
lowerCAmelCase = output.prev_sample
lowerCAmelCase = torch.sum(torch.abs(_snake_case ) )
lowerCAmelCase = torch.mean(torch.abs(_snake_case ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 20.4_125 ) < 1E-2
assert abs(result_mean.item() - 0.0_266 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.4_125 ) < 1E-2
assert abs(result_mean.item() - 0.0_266 ) < 1E-3
def UpperCamelCase__ ( self ):
"""simple docstring"""
if torch_device == "mps":
return
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**_snake_case )
scheduler.set_timesteps(self.num_inference_steps , device=_snake_case )
lowerCAmelCase = self.dummy_model()
lowerCAmelCase = self.dummy_sample_deter.to(_snake_case ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
lowerCAmelCase = scheduler.scale_model_input(_snake_case , _snake_case )
lowerCAmelCase = model(_snake_case , _snake_case )
lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case )
lowerCAmelCase = output.prev_sample
lowerCAmelCase = torch.sum(torch.abs(_snake_case ) )
lowerCAmelCase = torch.mean(torch.abs(_snake_case ) )
if str(_snake_case ).startswith('cpu' ):
# The following sum varies between 148 and 156 on mps. Why?
assert abs(result_sum.item() - 20.4_125 ) < 1E-2
assert abs(result_mean.item() - 0.0_266 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.4_125 ) < 1E-2
assert abs(result_mean.item() - 0.0_266 ) < 1E-3
| 309
|
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_poolformer import PoolFormerImageProcessor
__UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
class a ( a__ ):
def __init__( self , *_snake_case , **_snake_case ):
"""simple docstring"""
warnings.warn(
'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use PoolFormerImageProcessor instead.' , _snake_case , )
super().__init__(*_snake_case , **_snake_case )
| 309
| 1
|
"""simple docstring"""
from __future__ import annotations
import os
import tempfile
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import is_tensorflow_text_available, is_tf_available
from transformers.testing_utils import require_tensorflow_text, require_tf, slow
from ..test_modeling_tf_common import floats_tensor
from .test_framework_agnostic import GenerationIntegrationTestsMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
AutoTokenizer,
TFAutoModelForCausalLM,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSpeechSeqaSeq,
TFAutoModelForVisionaSeq,
TFBartForConditionalGeneration,
TFLogitsProcessorList,
TFMinLengthLogitsProcessor,
tf_top_k_top_p_filtering,
)
if is_tensorflow_text_available():
import tensorflow_text as text
@require_tf
class a ( unittest.TestCase ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = tf.convert_to_tensor(
[
[
8.2_220_991, # 3rd highest value; idx. 0
-0.5_620_044,
5.23_229_752,
4.0_386_393,
-6.8_798_378,
-0.54_785_802,
-3.2_012_153,
2.92_777_176,
1.88_171_953,
7.35_341_276, # 5th highest value; idx. 9
8.43_207_833, # 2nd highest value; idx. 10
-9.85_711_836,
-5.96_209_236,
-1.13_039_161,
-7.1_115_294,
-0.8_369_633,
-5.3_186_408,
7.06_427_407,
0.81_369_344,
-0.82_023_817,
-5.9_179_796,
0.58_813_443,
-6.99_778_438,
4.71_551_189,
-0.18_771_637,
7.44_020_759, # 4th highest value; idx. 25
9.38_450_987, # 1st highest value; idx. 26
2.12_662_941,
-9.32_562_038,
2.35_652_522,
], # cummulative prob of 5 highest values <= 0.6
[
0.58_425_518,
4.53_139_238,
-5.57_510_464,
-6.28_030_699,
-7.19_529_503,
-4.02_122_551,
1.39_337_037,
-6.06_707_057,
1.59_480_517,
-9.643_119,
0.03_907_799,
0.67_231_762,
-8.88_206_726,
6.27_115_922, # 4th highest value; idx. 13
2.28_520_723,
4.82_767_506,
4.30_421_368,
8.8_275_313, # 2nd highest value; idx. 17
5.44_029_958, # 5th highest value; idx. 18
-4.4_735_794,
7.38_579_536, # 3rd highest value; idx. 20
-2.91_051_663,
2.61_946_077,
-2.5_674_762,
-9.48_959_302,
-4.02_922_645,
-1.35_416_918,
9.67_702_323, # 1st highest value; idx. 27
-5.89_478_553,
1.85_370_467,
], # cummulative prob of 5 highest values <= 0.6
] , dtype=tf.floataa , )
lowerCAmelCase = tf.convert_to_tensor(
[[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above
lowerCAmelCase = tf.convert_to_tensor(
[8.222_099, 7.3_534_126, 8.432_078, 7.4_402_075, 9.38_451, 6.271_159, 8.827_531, 5.4_402_995, 7.3_857_956, 9.677_023] , dtype=tf.floataa , ) # expected non filtered values as noted above
lowerCAmelCase = tf_top_k_top_p_filtering(_snake_case , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 )
lowerCAmelCase = output[output != -float('inf' )]
lowerCAmelCase = tf.cast(
tf.where(tf.not_equal(_snake_case , tf.constant(-float('inf' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , )
tf.debugging.assert_near(_snake_case , _snake_case , rtol=1E-12 )
tf.debugging.assert_equal(_snake_case , _snake_case )
@require_tf
class a ( unittest.TestCase , a__ ):
# setting framework_dependent_parameters needs to be gated, just like its contents' imports
if is_tf_available():
snake_case__ = {
'''AutoModelForCausalLM''': TFAutoModelForCausalLM,
'''AutoModelForSpeechSeq2Seq''': TFAutoModelForSpeechSeqaSeq,
'''AutoModelForSeq2SeqLM''': TFAutoModelForSeqaSeqLM,
'''AutoModelForVision2Seq''': TFAutoModelForVisionaSeq,
'''LogitsProcessorList''': TFLogitsProcessorList,
'''MinLengthLogitsProcessor''': TFMinLengthLogitsProcessor,
'''create_tensor_fn''': tf.convert_to_tensor,
'''floats_tensor''': floats_tensor,
'''return_tensors''': '''tf''',
}
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' )
lowerCAmelCase = 2
lowerCAmelCase = 2
class a ( tf.Module ):
def __init__( self , _snake_case ):
"""simple docstring"""
super(_snake_case , self ).__init__()
lowerCAmelCase = model
@tf.function(
input_signature=(
tf.TensorSpec((None, input_length) , tf.intaa , name='input_ids' ),
tf.TensorSpec((None, input_length) , tf.intaa , name='attention_mask' ),
) , jit_compile=_snake_case , )
def UpperCamelCase__ ( self , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = self.model.generate(
input_ids=_snake_case , attention_mask=_snake_case , max_new_tokens=_snake_case , return_dict_in_generate=_snake_case , )
return {"sequences": outputs["sequences"]}
lowerCAmelCase = [[2, 0], [1_02, 1_03]]
lowerCAmelCase = [[1, 0], [1, 1]]
lowerCAmelCase = DummyModel(model=_snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(_snake_case , _snake_case , signatures={'serving_default': dummy_model.serving} )
lowerCAmelCase = tf.saved_model.load(_snake_case ).signatures['serving_default']
for batch_size in range(1 , len(_snake_case ) + 1 ):
lowerCAmelCase = {
'input_ids': tf.constant(dummy_input_ids[:batch_size] ),
'attention_mask': tf.constant(dummy_attention_masks[:batch_size] ),
}
lowerCAmelCase = serving_func(**_snake_case )['sequences']
lowerCAmelCase = test_model.generate(**_snake_case , max_new_tokens=_snake_case )
tf.debugging.assert_equal(_snake_case , _snake_case )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' )
lowerCAmelCase = 1
lowerCAmelCase = 2
class a ( tf.Module ):
def __init__( self , _snake_case ):
"""simple docstring"""
super(_snake_case , self ).__init__()
lowerCAmelCase = model
@tf.function(
input_signature=(
tf.TensorSpec((batch_size, None) , tf.intaa , name='input_ids' ),
tf.TensorSpec((batch_size, None) , tf.intaa , name='attention_mask' ),
) , jit_compile=_snake_case , )
def UpperCamelCase__ ( self , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = self.model.generate(
input_ids=_snake_case , attention_mask=_snake_case , max_new_tokens=_snake_case , return_dict_in_generate=_snake_case , )
return {"sequences": outputs["sequences"]}
lowerCAmelCase = [[2], [1_02, 1_03]]
lowerCAmelCase = [[1], [1, 1]]
lowerCAmelCase = DummyModel(model=_snake_case )
with tempfile.TemporaryDirectory() as tmp_dir:
tf.saved_model.save(_snake_case , _snake_case , signatures={'serving_default': dummy_model.serving} )
lowerCAmelCase = tf.saved_model.load(_snake_case ).signatures['serving_default']
for input_row in range(len(_snake_case ) ):
lowerCAmelCase = {
'input_ids': tf.constant([dummy_input_ids[input_row]] ),
'attention_mask': tf.constant([dummy_attention_masks[input_row]] ),
}
lowerCAmelCase = serving_func(**_snake_case )['sequences']
lowerCAmelCase = test_model.generate(**_snake_case , max_new_tokens=_snake_case )
tf.debugging.assert_equal(_snake_case , _snake_case )
@slow
@require_tensorflow_text
def UpperCamelCase__ ( self ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
# file needed to load the TF tokenizer
hf_hub_download(repo_id='google/flan-t5-small' , filename='spiece.model' , local_dir=_snake_case )
class a ( tf.keras.layers.Layer ):
def __init__( self ):
"""simple docstring"""
super().__init__()
lowerCAmelCase = text.SentencepieceTokenizer(
model=tf.io.gfile.GFile(os.path.join(_snake_case , 'spiece.model' ) , 'rb' ).read() )
lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained('hf-internal-testing/tiny-random-t5' )
def UpperCamelCase__ ( self , _snake_case , *_snake_case , **_snake_case ):
"""simple docstring"""
lowerCAmelCase = self.tokenizer.tokenize(_snake_case )
lowerCAmelCase ,lowerCAmelCase = text.pad_model_inputs(
_snake_case , max_seq_length=64 , pad_value=self.model.config.pad_token_id )
lowerCAmelCase = self.model.generate(input_ids=_snake_case , attention_mask=_snake_case )
return self.tokenizer.detokenize(_snake_case )
lowerCAmelCase = CompleteSentenceTransformer()
lowerCAmelCase = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='inputs' )
lowerCAmelCase = complete_model(_snake_case )
lowerCAmelCase = tf.keras.Model(_snake_case , _snake_case )
keras_model.save(_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = {
'do_sample': True,
'num_beams': 1,
'top_p': 0.7,
'top_k': 10,
'temperature': 0.7,
}
lowerCAmelCase = 14
lowerCAmelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' )
lowerCAmelCase = 'Hello, my dog is cute and'
lowerCAmelCase = tokenizer(_snake_case , return_tensors='tf' )
lowerCAmelCase = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' )
lowerCAmelCase = 6_38
# forces the generation to happen on CPU, to avoid GPU-related quirks
with tf.device(':/CPU:0' ):
tf.random.set_seed(0 )
lowerCAmelCase = model.generate(**_snake_case , eos_token_id=_snake_case , **_snake_case )
self.assertTrue(expectation == len(generated_tokens[0] ) )
lowerCAmelCase = [6_38, 1_98]
with tf.device(':/CPU:0' ):
tf.random.set_seed(0 )
lowerCAmelCase = model.generate(**_snake_case , eos_token_id=_snake_case , **_snake_case )
self.assertTrue(expectation == len(generated_tokens[0] ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bart' )
lowerCAmelCase = 'Hugging Face is a technology company based in New York and Paris.'
lowerCAmelCase = bart_tokenizer(_snake_case , return_tensors='tf' ).input_ids
lowerCAmelCase = TFBartForConditionalGeneration.from_pretrained('hf-internal-testing/tiny-random-bart' )
lowerCAmelCase = bart_model.generate(_snake_case ).numpy()
class a ( a__ ):
def UpperCamelCase__ ( self , _snake_case , _snake_case=None , **_snake_case ):
"""simple docstring"""
return super().call(_snake_case , **_snake_case )
lowerCAmelCase = FakeBart.from_pretrained('hf-internal-testing/tiny-random-bart' )
lowerCAmelCase = bart_model.generate(_snake_case , foo='bar' ).numpy()
self.assertTrue(np.array_equal(_snake_case , _snake_case ) )
class a ( bart_model.model.encoder.__class__ ):
def UpperCamelCase__ ( self , _snake_case , **_snake_case ):
"""simple docstring"""
return super().call(_snake_case , **_snake_case )
lowerCAmelCase = FakeEncoder(bart_model.config , bart_model.model.shared )
lowerCAmelCase = fake_encoder
# Normal generation still works (the output will be different because the encoder weights are different)
lowerCAmelCase = bart_model.generate(_snake_case ).numpy()
with self.assertRaises(_snake_case ):
# FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo"
bart_model.generate(_snake_case , foo='bar' )
| 309
|
"""simple docstring"""
from __future__ import annotations
import random
# Maximum size of the population. Bigger could be faster but is more memory expensive.
__UpperCamelCase : str = 200
# Number of elements selected in every generation of evolution. The selection takes
# place from best to worst of that generation and must be smaller than N_POPULATION.
__UpperCamelCase : Optional[Any] = 50
# Probability that an element of a generation can mutate, changing one of its genes.
# This will guarantee that all genes will be used during evolution.
__UpperCamelCase : Dict = 0.4
# Just a seed to improve randomness required by the algorithm.
random.seed(random.randint(0, 1000))
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ):
lowerCAmelCase = len([g for position, g in enumerate(_UpperCAmelCase ) if g == main_target[position]] )
return (item, float(_UpperCAmelCase ))
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ):
lowerCAmelCase = random.randint(0 , len(_UpperCAmelCase ) - 1 )
lowerCAmelCase = parent_a[:random_slice] + parent_a[random_slice:]
lowerCAmelCase = parent_a[:random_slice] + parent_a[random_slice:]
return (child_a, child_a)
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] ):
lowerCAmelCase = list(_UpperCAmelCase )
if random.uniform(0 , 1 ) < MUTATION_PROBABILITY:
lowerCAmelCase = random.choice(_UpperCAmelCase )
return "".join(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : tuple[str, float] , _UpperCAmelCase : list[tuple[str, float]] , _UpperCAmelCase : list[str] , ):
lowerCAmelCase = []
# Generate more children proportionally to the fitness score.
lowerCAmelCase = int(parent_a[1] * 100 ) + 1
lowerCAmelCase = 10 if child_n >= 10 else child_n
for _ in range(_UpperCAmelCase ):
lowerCAmelCase = population_score[random.randint(0 , _UpperCAmelCase )][0]
lowerCAmelCase ,lowerCAmelCase = crossover(parent_a[0] , _UpperCAmelCase )
# Append new string to the population list.
pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) )
pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) )
return pop
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] , _UpperCAmelCase : bool = True ):
# Verify if N_POPULATION is bigger than N_SELECTED
if N_POPULATION < N_SELECTED:
lowerCAmelCase = F'{N_POPULATION} must be bigger than {N_SELECTED}'
raise ValueError(_UpperCAmelCase )
# Verify that the target contains no genes besides the ones inside genes variable.
lowerCAmelCase = sorted({c for c in target if c not in genes} )
if not_in_genes_list:
lowerCAmelCase = F'{not_in_genes_list} is not in genes list, evolution cannot converge'
raise ValueError(_UpperCAmelCase )
# Generate random starting population.
lowerCAmelCase = []
for _ in range(_UpperCAmelCase ):
population.append(''.join([random.choice(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) )] ) )
# Just some logs to know what the algorithms is doing.
lowerCAmelCase ,lowerCAmelCase = 0, 0
# This loop will end when we find a perfect match for our target.
while True:
generation += 1
total_population += len(_UpperCAmelCase )
# Random population created. Now it's time to evaluate.
# Adding a bit of concurrency can make everything faster,
#
# import concurrent.futures
# population_score: list[tuple[str, float]] = []
# with concurrent.futures.ThreadPoolExecutor(
# max_workers=NUM_WORKERS) as executor:
# futures = {executor.submit(evaluate, item) for item in population}
# concurrent.futures.wait(futures)
# population_score = [item.result() for item in futures]
#
# but with a simple algorithm like this, it will probably be slower.
# We just need to call evaluate for every item inside the population.
lowerCAmelCase = [evaluate(_UpperCAmelCase , _UpperCAmelCase ) for item in population]
# Check if there is a matching evolution.
lowerCAmelCase = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] , reverse=_UpperCAmelCase )
if population_score[0][0] == target:
return (generation, total_population, population_score[0][0])
# Print the best result every 10 generation.
# Just to know that the algorithm is working.
if debug and generation % 10 == 0:
print(
F'\nGeneration: {generation}'
F'\nTotal Population:{total_population}'
F'\nBest score: {population_score[0][1]}'
F'\nBest string: {population_score[0][0]}' )
# Flush the old population, keeping some of the best evolutions.
# Keeping this avoid regression of evolution.
lowerCAmelCase = population[: int(N_POPULATION / 3 )]
population.clear()
population.extend(_UpperCAmelCase )
# Normalize population score to be between 0 and 1.
lowerCAmelCase = [
(item, score / len(_UpperCAmelCase )) for item, score in population_score
]
# This is selection
for i in range(_UpperCAmelCase ):
population.extend(select(population_score[int(_UpperCAmelCase )] , _UpperCAmelCase , _UpperCAmelCase ) )
# Check if the population has already reached the maximum value and if so,
# break the cycle. If this check is disabled, the algorithm will take
# forever to compute large strings, but will also calculate small strings in
# a far fewer generations.
if len(_UpperCAmelCase ) > N_POPULATION:
break
if __name__ == "__main__":
__UpperCamelCase : Tuple = (
'''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!'''
)
__UpperCamelCase : str = list(
''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm'''
'''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\'''
)
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase : Dict = basic(target_str, genes_list)
print(
f'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}'''
)
| 309
| 1
|
"""simple docstring"""
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : int ):
return int((input_a, input_a).count(1 ) != 0 )
def _SCREAMING_SNAKE_CASE ():
assert or_gate(0 , 0 ) == 0
assert or_gate(0 , 1 ) == 1
assert or_gate(1 , 0 ) == 1
assert or_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 309
|
"""simple docstring"""
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class a :
def __init__( self ):
"""simple docstring"""
lowerCAmelCase = ''
lowerCAmelCase = ''
lowerCAmelCase = []
lowerCAmelCase = 0
lowerCAmelCase = 2_56
lowerCAmelCase = 0
lowerCAmelCase = 0
lowerCAmelCase = 0
lowerCAmelCase = 0
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = cva.imread(_snake_case , 0 )
lowerCAmelCase = copy.deepcopy(self.img )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = plt.hist(self.img.ravel() , 2_56 , [0, 2_56] , label='x' )
lowerCAmelCase = np.sum(_snake_case )
for i in range(len(_snake_case ) ):
lowerCAmelCase = x[i] / self.k
self.sk += prk
lowerCAmelCase = (self.L - 1) * self.sk
if self.rem != 0:
lowerCAmelCase = int(last % last )
lowerCAmelCase = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(_snake_case )
lowerCAmelCase = int(np.ma.count(self.img ) / self.img[1].size )
lowerCAmelCase = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
lowerCAmelCase = self.img[j][i]
if num != self.last_list[num]:
lowerCAmelCase = self.last_list[num]
cva.imwrite('output_data/output.jpg' , self.img )
def UpperCamelCase__ ( self ):
"""simple docstring"""
plt.hist(self.img.ravel() , 2_56 , [0, 2_56] )
def UpperCamelCase__ ( self ):
"""simple docstring"""
cva.imshow('Output-Image' , self.img )
cva.imshow('Input-Image' , self.original_image )
cva.waitKey(50_00 )
cva.destroyAllWindows()
if __name__ == "__main__":
__UpperCamelCase : int = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''')
__UpperCamelCase : List[Any] = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 309
| 1
|
"""simple docstring"""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
__UpperCamelCase : Union[str, Any] = '''▁'''
__UpperCamelCase : List[Any] = {'''vocab_file''': '''spiece.model'''}
__UpperCamelCase : List[str] = {
'''vocab_file''': {
'''google/reformer-crime-and-punishment''': (
'''https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model'''
)
}
}
__UpperCamelCase : Tuple = {
'''google/reformer-crime-and-punishment''': 52_4288,
}
class a ( a__ ):
snake_case__ = VOCAB_FILES_NAMES
snake_case__ = PRETRAINED_VOCAB_FILES_MAP
snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case__ = ['''input_ids''', '''attention_mask''']
def __init__( self , _snake_case , _snake_case="</s>" , _snake_case="<unk>" , _snake_case=[] , _snake_case = None , **_snake_case , ):
"""simple docstring"""
lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=_snake_case , unk_token=_snake_case , additional_special_tokens=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , )
lowerCAmelCase = vocab_file
lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_snake_case )
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self.sp_model.get_piece_size()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ):
"""simple docstring"""
lowerCAmelCase = self.__dict__.copy()
lowerCAmelCase = None
return state
def __setstate__( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
lowerCAmelCase = {}
lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
return self.sp_model.encode(_snake_case , out_type=_snake_case )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
return self.sp_model.piece_to_id(_snake_case )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if index < self.sp_model.get_piece_size():
lowerCAmelCase = self.sp_model.IdToPiece(_snake_case )
return token
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = []
lowerCAmelCase = ''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(_snake_case ) + token
lowerCAmelCase = []
else:
current_sub_tokens.append(_snake_case )
out_string += self.sp_model.decode(_snake_case )
return out_string.strip()
def UpperCamelCase__ ( self , _snake_case , _snake_case = None ):
"""simple docstring"""
if not os.path.isdir(_snake_case ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
lowerCAmelCase = os.path.join(
_snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _snake_case )
elif not os.path.isfile(self.vocab_file ):
with open(_snake_case , 'wb' ) as fi:
lowerCAmelCase = self.sp_model.serialized_model_proto()
fi.write(_snake_case )
return (out_vocab_file,)
| 309
|
"""simple docstring"""
import pytest
from datasets.splits import SplitDict, SplitInfo
from datasets.utils.py_utils import asdict
@pytest.mark.parametrize(
'split_dict' , [
SplitDict(),
SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 , dataset_name='my_dataset' )} ),
SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 )} ),
SplitDict({'train': SplitInfo()} ),
] , )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : SplitDict ):
lowerCAmelCase = split_dict._to_yaml_list()
assert len(_UpperCAmelCase ) == len(_UpperCAmelCase )
lowerCAmelCase = SplitDict._from_yaml_list(_UpperCAmelCase )
for split_name, split_info in split_dict.items():
# dataset_name field is deprecated, and is therefore not part of the YAML dump
lowerCAmelCase = None
# the split name of split_dict takes over the name of the split info object
lowerCAmelCase = split_name
assert split_dict == reloaded
@pytest.mark.parametrize(
'split_info' , [SplitInfo(), SplitInfo(dataset_name=_UpperCAmelCase ), SplitInfo(dataset_name='my_dataset' )] )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] ):
# For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name"
# field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files
lowerCAmelCase = asdict(SplitDict({'train': split_info} ) )
assert "dataset_name" in split_dict_asdict["train"]
assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
| 309
| 1
|
"""simple docstring"""
from typing import Callable, List, Optional, Union
import PIL
import torch
from transformers import (
CLIPImageProcessor,
CLIPSegForImageSegmentation,
CLIPSegProcessor,
CLIPTextModel,
CLIPTokenizer,
)
from diffusers import DiffusionPipeline
from diffusers.configuration_utils import FrozenDict
from diffusers.models import AutoencoderKL, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import deprecate, is_accelerate_available, logging
__UpperCamelCase : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name
class a ( a__ ):
def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ):
"""simple docstring"""
super().__init__()
if hasattr(scheduler.config , 'steps_offset' ) and scheduler.config.steps_offset != 1:
lowerCAmelCase = (
F'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`'
F' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure '
'to update the config accordingly as leaving `steps_offset` might led to incorrect results'
' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,'
' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`'
' file'
)
deprecate('steps_offset!=1' , '1.0.0' , _snake_case , standard_warn=_snake_case )
lowerCAmelCase = dict(scheduler.config )
lowerCAmelCase = 1
lowerCAmelCase = FrozenDict(_snake_case )
if hasattr(scheduler.config , 'skip_prk_steps' ) and scheduler.config.skip_prk_steps is False:
lowerCAmelCase = (
F'The configuration file of this scheduler: {scheduler} has not set the configuration'
' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make'
' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to'
' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face'
' Hub, it would be very nice if you could open a Pull request for the'
' `scheduler/scheduler_config.json` file'
)
deprecate('skip_prk_steps not set' , '1.0.0' , _snake_case , standard_warn=_snake_case )
lowerCAmelCase = dict(scheduler.config )
lowerCAmelCase = True
lowerCAmelCase = FrozenDict(_snake_case )
if safety_checker is None:
logger.warning(
F'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure'
' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered'
' results in services or applications open to the public. Both the diffusers team and Hugging Face'
' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling'
' it only for use-cases that involve analyzing network behavior or auditing its results. For more'
' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' )
self.register_modules(
segmentation_model=_snake_case , segmentation_processor=_snake_case , vae=_snake_case , text_encoder=_snake_case , tokenizer=_snake_case , unet=_snake_case , scheduler=_snake_case , safety_checker=_snake_case , feature_extractor=_snake_case , )
def UpperCamelCase__ ( self , _snake_case = "auto" ):
"""simple docstring"""
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
lowerCAmelCase = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.enable_attention_slicing(_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError('Please install accelerate via `pip install accelerate`' )
lowerCAmelCase = torch.device('cuda' )
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]:
if cpu_offloaded_model is not None:
cpu_offload(_snake_case , _snake_case )
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def UpperCamelCase__ ( self ):
"""simple docstring"""
if self.device != torch.device('meta' ) or not hasattr(self.unet , '_hf_hook' ):
return self.device
for module in self.unet.modules():
if (
hasattr(_snake_case , '_hf_hook' )
and hasattr(module._hf_hook , 'execution_device' )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
def __call__( self , _snake_case , _snake_case , _snake_case , _snake_case = 5_12 , _snake_case = 5_12 , _snake_case = 50 , _snake_case = 7.5 , _snake_case = None , _snake_case = 1 , _snake_case = 0.0 , _snake_case = None , _snake_case = None , _snake_case = "pil" , _snake_case = True , _snake_case = None , _snake_case = 1 , **_snake_case , ):
"""simple docstring"""
lowerCAmelCase = self.segmentation_processor(
text=[text] , images=[image] , padding='max_length' , return_tensors='pt' ).to(self.device )
lowerCAmelCase = self.segmentation_model(**_snake_case )
lowerCAmelCase = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy()
lowerCAmelCase = self.numpy_to_pil(_snake_case )[0].resize(image.size )
# Run inpainting pipeline with the generated mask
lowerCAmelCase = StableDiffusionInpaintPipeline(
vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , )
return inpainting_pipeline(
prompt=_snake_case , image=_snake_case , mask_image=_snake_case , height=_snake_case , width=_snake_case , num_inference_steps=_snake_case , guidance_scale=_snake_case , negative_prompt=_snake_case , num_images_per_prompt=_snake_case , eta=_snake_case , generator=_snake_case , latents=_snake_case , output_type=_snake_case , return_dict=_snake_case , callback=_snake_case , callback_steps=_snake_case , )
| 309
|
"""simple docstring"""
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
__UpperCamelCase : Any = abspath(join(dirname(dirname(__file__)), '''src'''))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action='''ignore''', category=FutureWarning)
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] ):
from diffusers.utils.testing_utils import pytest_addoption_shared
pytest_addoption_shared(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ):
from diffusers.utils.testing_utils import pytest_terminal_summary_main
lowerCAmelCase = terminalreporter.config.getoption('--make-reports' )
if make_reports:
pytest_terminal_summary_main(_UpperCAmelCase , id=_UpperCAmelCase )
| 309
| 1
|
"""simple docstring"""
import os
import sys
__UpperCamelCase : Any = os.path.join(os.path.dirname(__file__), '''src''')
sys.path.append(SRC_DIR)
from transformers import (
AutoConfig,
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForQuestionAnswering,
AutoModelForSequenceClassification,
AutoTokenizer,
add_start_docstrings,
)
__UpperCamelCase : Any = [
'''torch''',
'''numpy''',
'''tokenizers''',
'''filelock''',
'''requests''',
'''tqdm''',
'''regex''',
'''sentencepiece''',
'''sacremoses''',
'''importlib_metadata''',
'''huggingface_hub''',
]
@add_start_docstrings(AutoConfig.__doc__ )
def _SCREAMING_SNAKE_CASE (*_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : str ):
return AutoConfig.from_pretrained(*_UpperCAmelCase , **_UpperCAmelCase )
@add_start_docstrings(AutoTokenizer.__doc__ )
def _SCREAMING_SNAKE_CASE (*_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : List[str] ):
return AutoTokenizer.from_pretrained(*_UpperCAmelCase , **_UpperCAmelCase )
@add_start_docstrings(AutoModel.__doc__ )
def _SCREAMING_SNAKE_CASE (*_UpperCAmelCase : str , **_UpperCAmelCase : Optional[Any] ):
return AutoModel.from_pretrained(*_UpperCAmelCase , **_UpperCAmelCase )
@add_start_docstrings(AutoModelForCausalLM.__doc__ )
def _SCREAMING_SNAKE_CASE (*_UpperCAmelCase : Dict , **_UpperCAmelCase : Optional[int] ):
return AutoModelForCausalLM.from_pretrained(*_UpperCAmelCase , **_UpperCAmelCase )
@add_start_docstrings(AutoModelForMaskedLM.__doc__ )
def _SCREAMING_SNAKE_CASE (*_UpperCAmelCase : int , **_UpperCAmelCase : Tuple ):
return AutoModelForMaskedLM.from_pretrained(*_UpperCAmelCase , **_UpperCAmelCase )
@add_start_docstrings(AutoModelForSequenceClassification.__doc__ )
def _SCREAMING_SNAKE_CASE (*_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : int ):
return AutoModelForSequenceClassification.from_pretrained(*_UpperCAmelCase , **_UpperCAmelCase )
@add_start_docstrings(AutoModelForQuestionAnswering.__doc__ )
def _SCREAMING_SNAKE_CASE (*_UpperCAmelCase : Dict , **_UpperCAmelCase : str ):
return AutoModelForQuestionAnswering.from_pretrained(*_UpperCAmelCase , **_UpperCAmelCase )
| 309
|
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class a ( unittest.TestCase ):
def __init__( self , _snake_case , _snake_case=7 , _snake_case=3 , _snake_case=18 , _snake_case=30 , _snake_case=4_00 , _snake_case=True , _snake_case=None , _snake_case=True , _snake_case=None , _snake_case=True , ):
"""simple docstring"""
lowerCAmelCase = size if size is not None else {'shortest_edge': 20}
lowerCAmelCase = crop_size if crop_size is not None else {'height': 18, 'width': 18}
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = num_channels
lowerCAmelCase = image_size
lowerCAmelCase = min_resolution
lowerCAmelCase = max_resolution
lowerCAmelCase = do_resize
lowerCAmelCase = size
lowerCAmelCase = do_center_crop
lowerCAmelCase = crop_size
lowerCAmelCase = do_flip_channel_order
def UpperCamelCase__ ( self ):
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_flip_channel_order": self.do_flip_channel_order,
}
@require_torch
@require_vision
class a ( a__ , unittest.TestCase ):
snake_case__ = MobileViTImageProcessor if is_vision_available() else None
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = MobileViTImageProcessingTester(self )
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_snake_case , 'do_resize' ) )
self.assertTrue(hasattr(_snake_case , 'size' ) )
self.assertTrue(hasattr(_snake_case , 'do_center_crop' ) )
self.assertTrue(hasattr(_snake_case , 'center_crop' ) )
self.assertTrue(hasattr(_snake_case , 'do_flip_channel_order' ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 20} )
self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} )
lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'shortest_edge': 42} )
self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case )
for image in image_inputs:
self.assertIsInstance(_snake_case , Image.Image )
# Test not batched input
lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , numpify=_snake_case )
for image in image_inputs:
self.assertIsInstance(_snake_case , np.ndarray )
# Test not batched input
lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , torchify=_snake_case )
for image in image_inputs:
self.assertIsInstance(_snake_case , torch.Tensor )
# Test not batched input
lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
| 309
| 1
|
"""simple docstring"""
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
ControlNetModel,
DDIMScheduler,
StableDiffusionControlNetImgaImgPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel
from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
)
enable_full_determinism()
class a ( a__ , a__ , a__ , unittest.TestCase ):
snake_case__ = StableDiffusionControlNetImgaImgPipeline
snake_case__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''}
snake_case__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
snake_case__ = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'''control_image'''} )
snake_case__ = IMAGE_TO_IMAGE_IMAGE_PARAMS
def UpperCamelCase__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowerCAmelCase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , )
torch.manual_seed(0 )
lowerCAmelCase = ControlNetModel(
block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , )
torch.manual_seed(0 )
lowerCAmelCase = DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_snake_case , set_alpha_to_one=_snake_case , )
torch.manual_seed(0 )
lowerCAmelCase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
torch.manual_seed(0 )
lowerCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
lowerCAmelCase = CLIPTextModel(_snake_case )
lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
lowerCAmelCase = {
'unet': unet,
'controlnet': controlnet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ):
"""simple docstring"""
if str(_snake_case ).startswith('mps' ):
lowerCAmelCase = torch.manual_seed(_snake_case )
else:
lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case )
lowerCAmelCase = 2
lowerCAmelCase = randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_snake_case , device=torch.device(_snake_case ) , )
lowerCAmelCase = floats_tensor(control_image.shape , rng=random.Random(_snake_case ) ).to(_snake_case )
lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCAmelCase = Image.fromarray(np.uinta(_snake_case ) ).convert('RGB' ).resize((64, 64) )
lowerCAmelCase = {
'prompt': 'A painting of a squirrel eating a burger',
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'output_type': 'numpy',
'image': image,
'control_image': control_image,
}
return inputs
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 )
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_inference_batch_single_identical(expected_max_diff=2E-3 )
class a ( a__ , a__ , unittest.TestCase ):
snake_case__ = StableDiffusionControlNetImgaImgPipeline
snake_case__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''}
snake_case__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
snake_case__ = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess
def UpperCamelCase__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowerCAmelCase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , )
torch.manual_seed(0 )
def init_weights(_snake_case ):
if isinstance(_snake_case , torch.nn.Convad ):
torch.nn.init.normal(m.weight )
m.bias.data.fill_(1.0 )
lowerCAmelCase = ControlNetModel(
block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , )
controlneta.controlnet_down_blocks.apply(_snake_case )
torch.manual_seed(0 )
lowerCAmelCase = ControlNetModel(
block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , )
controlneta.controlnet_down_blocks.apply(_snake_case )
torch.manual_seed(0 )
lowerCAmelCase = DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_snake_case , set_alpha_to_one=_snake_case , )
torch.manual_seed(0 )
lowerCAmelCase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
torch.manual_seed(0 )
lowerCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
lowerCAmelCase = CLIPTextModel(_snake_case )
lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
lowerCAmelCase = MultiControlNetModel([controlneta, controlneta] )
lowerCAmelCase = {
'unet': unet,
'controlnet': controlnet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ):
"""simple docstring"""
if str(_snake_case ).startswith('mps' ):
lowerCAmelCase = torch.manual_seed(_snake_case )
else:
lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case )
lowerCAmelCase = 2
lowerCAmelCase = [
randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_snake_case , device=torch.device(_snake_case ) , ),
randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_snake_case , device=torch.device(_snake_case ) , ),
]
lowerCAmelCase = floats_tensor(control_image[0].shape , rng=random.Random(_snake_case ) ).to(_snake_case )
lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCAmelCase = Image.fromarray(np.uinta(_snake_case ) ).convert('RGB' ).resize((64, 64) )
lowerCAmelCase = {
'prompt': 'A painting of a squirrel eating a burger',
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'output_type': 'numpy',
'image': image,
'control_image': control_image,
}
return inputs
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.get_dummy_components()
lowerCAmelCase = self.pipeline_class(**_snake_case )
pipe.to(_snake_case )
lowerCAmelCase = 10.0
lowerCAmelCase = 4
lowerCAmelCase = self.get_dummy_inputs(_snake_case )
lowerCAmelCase = steps
lowerCAmelCase = scale
lowerCAmelCase = pipe(**_snake_case )[0]
lowerCAmelCase = self.get_dummy_inputs(_snake_case )
lowerCAmelCase = steps
lowerCAmelCase = scale
lowerCAmelCase = pipe(**_snake_case , control_guidance_start=0.1 , control_guidance_end=0.2 )[0]
lowerCAmelCase = self.get_dummy_inputs(_snake_case )
lowerCAmelCase = steps
lowerCAmelCase = scale
lowerCAmelCase = pipe(**_snake_case , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0]
lowerCAmelCase = self.get_dummy_inputs(_snake_case )
lowerCAmelCase = steps
lowerCAmelCase = scale
lowerCAmelCase = pipe(**_snake_case , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0]
# make sure that all outputs are different
assert np.sum(np.abs(output_a - output_a ) ) > 1E-3
assert np.sum(np.abs(output_a - output_a ) ) > 1E-3
assert np.sum(np.abs(output_a - output_a ) ) > 1E-3
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 )
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_inference_batch_single_identical(expected_max_diff=2E-3 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.get_dummy_components()
lowerCAmelCase = self.pipeline_class(**_snake_case )
pipe.to(_snake_case )
pipe.set_progress_bar_config(disable=_snake_case )
with tempfile.TemporaryDirectory() as tmpdir:
try:
# save_pretrained is not implemented for Multi-ControlNet
pipe.save_pretrained(_snake_case )
except NotImplementedError:
pass
@slow
@require_torch_gpu
class a ( unittest.TestCase ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = ControlNetModel.from_pretrained('lllyasviel/sd-controlnet-canny' )
lowerCAmelCase = StableDiffusionControlNetImgaImgPipeline.from_pretrained(
'runwayml/stable-diffusion-v1-5' , safety_checker=_snake_case , controlnet=_snake_case )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase = torch.Generator(device='cpu' ).manual_seed(0 )
lowerCAmelCase = 'evil space-punk bird'
lowerCAmelCase = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ).resize((5_12, 5_12) )
lowerCAmelCase = load_image(
'https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png' ).resize((5_12, 5_12) )
lowerCAmelCase = pipe(
_snake_case , _snake_case , control_image=_snake_case , generator=_snake_case , output_type='np' , num_inference_steps=50 , strength=0.6 , )
lowerCAmelCase = output.images[0]
assert image.shape == (5_12, 5_12, 3)
lowerCAmelCase = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy' )
assert np.abs(expected_image - image ).max() < 9E-2
| 309
|
"""simple docstring"""
import unittest
from accelerate import debug_launcher
from accelerate.test_utils import require_cpu, test_ops, test_script
@require_cpu
class a ( unittest.TestCase ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
debug_launcher(test_script.main )
def UpperCamelCase__ ( self ):
"""simple docstring"""
debug_launcher(test_ops.main )
| 309
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__UpperCamelCase : Union[str, Any] = {
'''configuration_megatron_bert''': ['''MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegatronBertConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Dict = [
'''MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MegatronBertForCausalLM''',
'''MegatronBertForMaskedLM''',
'''MegatronBertForMultipleChoice''',
'''MegatronBertForNextSentencePrediction''',
'''MegatronBertForPreTraining''',
'''MegatronBertForQuestionAnswering''',
'''MegatronBertForSequenceClassification''',
'''MegatronBertForTokenClassification''',
'''MegatronBertModel''',
'''MegatronBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
MegatronBertPreTrainedModel,
)
else:
import sys
__UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 309
|
"""simple docstring"""
from __future__ import annotations
from decimal import Decimal
from numpy import array
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[list[float]] ):
lowerCAmelCase = Decimal
# Check if the provided matrix has 2 rows and 2 columns
# since this implementation only works for 2x2 matrices
if len(_UpperCAmelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2:
# Calculate the determinant of the matrix
lowerCAmelCase = float(
d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) )
if determinant == 0:
raise ValueError('This matrix has no inverse.' )
# Creates a copy of the matrix with swapped positions of the elements
lowerCAmelCase = [[0.0, 0.0], [0.0, 0.0]]
lowerCAmelCase ,lowerCAmelCase = matrix[1][1], matrix[0][0]
lowerCAmelCase ,lowerCAmelCase = -matrix[1][0], -matrix[0][1]
# Calculate the inverse of the matrix
return [
[(float(d(_UpperCAmelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix
]
elif (
len(_UpperCAmelCase ) == 3
and len(matrix[0] ) == 3
and len(matrix[1] ) == 3
and len(matrix[2] ) == 3
):
# Calculate the determinant of the matrix using Sarrus rule
lowerCAmelCase = float(
(
(d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] ))
+ (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] ))
+ (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] ))
)
- (
(d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] ))
+ (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] ))
+ (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] ))
) )
if determinant == 0:
raise ValueError('This matrix has no inverse.' )
# Creating cofactor matrix
lowerCAmelCase = [
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
]
lowerCAmelCase = (d(matrix[1][1] ) * d(matrix[2][2] )) - (
d(matrix[1][2] ) * d(matrix[2][1] )
)
lowerCAmelCase = -(
(d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] ))
)
lowerCAmelCase = (d(matrix[1][0] ) * d(matrix[2][1] )) - (
d(matrix[1][1] ) * d(matrix[2][0] )
)
lowerCAmelCase = -(
(d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] ))
)
lowerCAmelCase = (d(matrix[0][0] ) * d(matrix[2][2] )) - (
d(matrix[0][2] ) * d(matrix[2][0] )
)
lowerCAmelCase = -(
(d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] ))
)
lowerCAmelCase = (d(matrix[0][1] ) * d(matrix[1][2] )) - (
d(matrix[0][2] ) * d(matrix[1][1] )
)
lowerCAmelCase = -(
(d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] ))
)
lowerCAmelCase = (d(matrix[0][0] ) * d(matrix[1][1] )) - (
d(matrix[0][1] ) * d(matrix[1][0] )
)
# Transpose the cofactor matrix (Adjoint matrix)
lowerCAmelCase = array(_UpperCAmelCase )
for i in range(3 ):
for j in range(3 ):
lowerCAmelCase = cofactor_matrix[j][i]
# Inverse of the matrix using the formula (1/determinant) * adjoint matrix
lowerCAmelCase = array(_UpperCAmelCase )
for i in range(3 ):
for j in range(3 ):
inverse_matrix[i][j] /= d(_UpperCAmelCase )
# Calculate the inverse of the matrix
return [[float(d(_UpperCAmelCase ) ) or 0.0 for n in row] for row in inverse_matrix]
raise ValueError('Please provide a matrix of size 2x2 or 3x3.' )
| 309
| 1
|
"""simple docstring"""
from PIL import Image
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Image , _UpperCAmelCase : float ):
def brightness(_UpperCAmelCase : int ) -> float:
return 128 + level + (c - 128)
if not -255.0 <= level <= 255.0:
raise ValueError('level must be between -255.0 (black) and 255.0 (white)' )
return img.point(_UpperCAmelCase )
if __name__ == "__main__":
# Load image
with Image.open('''image_data/lena.jpg''') as img:
# Change brightness to 100
__UpperCamelCase : Dict = change_brightness(img, 100)
brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
| 309
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__UpperCamelCase : Dict = {
'''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''],
'''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''],
'''processing_mctct''': ['''MCTCTProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Tuple = [
'''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MCTCTForCTC''',
'''MCTCTModel''',
'''MCTCTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
__UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 309
| 1
|
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
__UpperCamelCase : int = logging.get_logger(__name__)
class a ( a__ ):
snake_case__ = ['''pixel_values''']
def __init__( self , _snake_case = True , _snake_case = None , _snake_case = None , _snake_case = PILImageResampling.BILINEAR , _snake_case = True , _snake_case = 1 / 2_55 , _snake_case = True , _snake_case = None , _snake_case = None , **_snake_case , ):
"""simple docstring"""
super().__init__(**_snake_case )
lowerCAmelCase = size if size is not None else {'shortest_edge': 3_84}
lowerCAmelCase = get_size_dict(_snake_case , default_to_square=_snake_case )
lowerCAmelCase = do_resize
lowerCAmelCase = size
# Default value set here for backwards compatibility where the value in config is None
lowerCAmelCase = crop_pct if crop_pct is not None else 2_24 / 2_56
lowerCAmelCase = resample
lowerCAmelCase = do_rescale
lowerCAmelCase = rescale_factor
lowerCAmelCase = do_normalize
lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
lowerCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case = PILImageResampling.BICUBIC , _snake_case = None , **_snake_case , ):
"""simple docstring"""
lowerCAmelCase = get_size_dict(_snake_case , default_to_square=_snake_case )
if "shortest_edge" not in size:
raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' )
lowerCAmelCase = size['shortest_edge']
if shortest_edge < 3_84:
# maintain same ratio, resizing shortest edge to shortest_edge/crop_pct
lowerCAmelCase = int(shortest_edge / crop_pct )
lowerCAmelCase = get_resize_output_image_size(_snake_case , size=_snake_case , default_to_square=_snake_case )
lowerCAmelCase = resize(image=_snake_case , size=_snake_case , resample=_snake_case , data_format=_snake_case , **_snake_case )
# then crop to (shortest_edge, shortest_edge)
return center_crop(image=_snake_case , size=(shortest_edge, shortest_edge) , data_format=_snake_case , **_snake_case )
else:
# warping (no cropping) when evaluated at 384 or larger
return resize(
_snake_case , size=(shortest_edge, shortest_edge) , resample=_snake_case , data_format=_snake_case , **_snake_case )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case = None , **_snake_case , ):
"""simple docstring"""
return rescale(_snake_case , scale=_snake_case , data_format=_snake_case , **_snake_case )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case = None , **_snake_case , ):
"""simple docstring"""
return normalize(_snake_case , mean=_snake_case , std=_snake_case , data_format=_snake_case , **_snake_case )
def UpperCamelCase__ ( self , _snake_case , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = ChannelDimension.FIRST , **_snake_case , ):
"""simple docstring"""
lowerCAmelCase = do_resize if do_resize is not None else self.do_resize
lowerCAmelCase = crop_pct if crop_pct is not None else self.crop_pct
lowerCAmelCase = resample if resample is not None else self.resample
lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
lowerCAmelCase = image_mean if image_mean is not None else self.image_mean
lowerCAmelCase = image_std if image_std is not None else self.image_std
lowerCAmelCase = size if size is not None else self.size
lowerCAmelCase = get_size_dict(_snake_case , default_to_square=_snake_case )
lowerCAmelCase = make_list_of_images(_snake_case )
if not valid_images(_snake_case ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_resize and size["shortest_edge"] < 3_84 and crop_pct is None:
raise ValueError('crop_pct must be specified if size < 384.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
lowerCAmelCase = [to_numpy_array(_snake_case ) for image in images]
if do_resize:
lowerCAmelCase = [self.resize(image=_snake_case , size=_snake_case , crop_pct=_snake_case , resample=_snake_case ) for image in images]
if do_rescale:
lowerCAmelCase = [self.rescale(image=_snake_case , scale=_snake_case ) for image in images]
if do_normalize:
lowerCAmelCase = [self.normalize(image=_snake_case , mean=_snake_case , std=_snake_case ) for image in images]
lowerCAmelCase = [to_channel_dimension_format(_snake_case , _snake_case ) for image in images]
lowerCAmelCase = {'pixel_values': images}
return BatchFeature(data=_snake_case , tensor_type=_snake_case )
| 309
|
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
__UpperCamelCase : Dict = logging.get_logger(__name__)
__UpperCamelCase : str = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
__UpperCamelCase : Optional[int] = {
'''vocab_file''': {
'''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''',
'''distilbert-base-uncased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt'''
),
'''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''',
'''distilbert-base-cased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt'''
),
'''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''',
'''distilbert-base-multilingual-cased''': (
'''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''',
'''distilbert-base-uncased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json'''
),
'''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''',
'''distilbert-base-cased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json'''
),
'''distilbert-base-german-cased''': (
'''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json'''
),
'''distilbert-base-multilingual-cased''': (
'''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json'''
),
},
}
__UpperCamelCase : str = {
'''distilbert-base-uncased''': 512,
'''distilbert-base-uncased-distilled-squad''': 512,
'''distilbert-base-cased''': 512,
'''distilbert-base-cased-distilled-squad''': 512,
'''distilbert-base-german-cased''': 512,
'''distilbert-base-multilingual-cased''': 512,
}
__UpperCamelCase : Any = {
'''distilbert-base-uncased''': {'''do_lower_case''': True},
'''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True},
'''distilbert-base-cased''': {'''do_lower_case''': False},
'''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False},
'''distilbert-base-german-cased''': {'''do_lower_case''': False},
'''distilbert-base-multilingual-cased''': {'''do_lower_case''': False},
}
class a ( a__ ):
snake_case__ = VOCAB_FILES_NAMES
snake_case__ = PRETRAINED_VOCAB_FILES_MAP
snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case__ = PRETRAINED_INIT_CONFIGURATION
snake_case__ = ['''input_ids''', '''attention_mask''']
snake_case__ = DistilBertTokenizer
def __init__( self , _snake_case=None , _snake_case=None , _snake_case=True , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case=True , _snake_case=None , **_snake_case , ):
"""simple docstring"""
super().__init__(
_snake_case , tokenizer_file=_snake_case , do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , tokenize_chinese_chars=_snake_case , strip_accents=_snake_case , **_snake_case , )
lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , _snake_case ) != do_lower_case
or normalizer_state.get('strip_accents' , _snake_case ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , _snake_case ) != tokenize_chinese_chars
):
lowerCAmelCase = getattr(_snake_case , normalizer_state.pop('type' ) )
lowerCAmelCase = do_lower_case
lowerCAmelCase = strip_accents
lowerCAmelCase = tokenize_chinese_chars
lowerCAmelCase = normalizer_class(**_snake_case )
lowerCAmelCase = do_lower_case
def UpperCamelCase__ ( self , _snake_case , _snake_case=None ):
"""simple docstring"""
lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCamelCase__ ( self , _snake_case , _snake_case = None ):
"""simple docstring"""
lowerCAmelCase = [self.sep_token_id]
lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase__ ( self , _snake_case , _snake_case = None ):
"""simple docstring"""
lowerCAmelCase = self._tokenizer.model.save(_snake_case , name=_snake_case )
return tuple(_snake_case )
| 309
| 1
|
"""simple docstring"""
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionPipeline
from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device
__UpperCamelCase : Union[str, Any] = False
class a ( unittest.TestCase ):
pass
@nightly
@require_torch_gpu
class a ( unittest.TestCase ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa )
pipe.to(_snake_case )
pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' )
lowerCAmelCase = torch.manual_seed(0 )
lowerCAmelCase = pipe.dual_guided(
prompt='first prompt' , image=_snake_case , text_to_image_strength=0.75 , generator=_snake_case , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(_snake_case )
lowerCAmelCase = VersatileDiffusionPipeline.from_pretrained(_snake_case , torch_dtype=torch.floataa )
pipe.to(_snake_case )
pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase = generator.manual_seed(0 )
lowerCAmelCase = pipe.dual_guided(
prompt='first prompt' , image=_snake_case , text_to_image_strength=0.75 , generator=_snake_case , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images
assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass"
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa )
pipe.to(_snake_case )
pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase = 'cyberpunk 2077'
lowerCAmelCase = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' )
lowerCAmelCase = torch.manual_seed(0 )
lowerCAmelCase = pipe.dual_guided(
prompt=_snake_case , image=_snake_case , text_to_image_strength=0.75 , generator=_snake_case , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images
lowerCAmelCase = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
lowerCAmelCase = np.array([0.1_448, 0.1_619, 0.1_741, 0.1_086, 0.1_147, 0.1_128, 0.1_199, 0.1_165, 0.1_001] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
lowerCAmelCase = 'A painting of a squirrel eating a burger '
lowerCAmelCase = torch.manual_seed(0 )
lowerCAmelCase = pipe.text_to_image(
prompt=_snake_case , generator=_snake_case , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' ).images
lowerCAmelCase = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
lowerCAmelCase = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
lowerCAmelCase = pipe.image_variation(_snake_case , generator=_snake_case , output_type='numpy' ).images
lowerCAmelCase = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
lowerCAmelCase = np.array([0.3_076, 0.3_123, 0.3_284, 0.3_782, 0.3_770, 0.3_894, 0.4_297, 0.4_331, 0.4_456] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
| 309
|
"""simple docstring"""
from __future__ import annotations
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] | None = None ):
lowerCAmelCase = word_bank or []
# create a table
lowerCAmelCase = len(_UpperCAmelCase ) + 1
lowerCAmelCase = []
for _ in range(_UpperCAmelCase ):
table.append([] )
# seed value
lowerCAmelCase = [[]] # because empty string has empty combination
# iterate through the indices
for i in range(_UpperCAmelCase ):
# condition
if table[i] != []:
for word in word_bank:
# slice condition
if target[i : i + len(_UpperCAmelCase )] == word:
lowerCAmelCase = [
[word, *way] for way in table[i]
]
# adds the word to every combination the current position holds
# now,push that combination to the table[i+len(word)]
table[i + len(_UpperCAmelCase )] += new_combinations
# combinations are in reverse order so reverse for better output
for combination in table[len(_UpperCAmelCase )]:
combination.reverse()
return table[len(_UpperCAmelCase )]
if __name__ == "__main__":
print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa''']))
print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t''']))
print(
all_construct(
'''hexagonosaurus''',
['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''],
)
)
| 309
| 1
|
"""simple docstring"""
from manim import *
class a ( a__ ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = Rectangle(height=0.5 , width=0.5 )
lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
lowerCAmelCase = [mem.copy() for i in range(6 )]
lowerCAmelCase = [mem.copy() for i in range(6 )]
lowerCAmelCase = VGroup(*_snake_case ).arrange(_snake_case , buff=0 )
lowerCAmelCase = VGroup(*_snake_case ).arrange(_snake_case , buff=0 )
lowerCAmelCase = VGroup(_snake_case , _snake_case ).arrange(_snake_case , buff=0 )
lowerCAmelCase = Text('CPU' , font_size=24 )
lowerCAmelCase = Group(_snake_case , _snake_case ).arrange(_snake_case , buff=0.5 , aligned_edge=_snake_case )
cpu.move_to([-2.5, -0.5, 0] )
self.add(_snake_case )
lowerCAmelCase = [mem.copy() for i in range(1 )]
lowerCAmelCase = VGroup(*_snake_case ).arrange(_snake_case , buff=0 )
lowerCAmelCase = Text('GPU' , font_size=24 )
lowerCAmelCase = Group(_snake_case , _snake_case ).arrange(_snake_case , buff=0.5 , aligned_edge=_snake_case )
gpu.align_to(_snake_case , _snake_case )
gpu.set_x(gpu.get_x() - 1 )
self.add(_snake_case )
lowerCAmelCase = [mem.copy() for i in range(6 )]
lowerCAmelCase = VGroup(*_snake_case ).arrange(_snake_case , buff=0 )
lowerCAmelCase = Text('Model' , font_size=24 )
lowerCAmelCase = Group(_snake_case , _snake_case ).arrange(_snake_case , buff=0.5 , aligned_edge=_snake_case )
model.move_to([3, -1.0, 0] )
self.play(
Create(_snake_case , run_time=1 ) , Create(_snake_case , run_time=1 ) , Create(_snake_case , run_time=1 ) , )
lowerCAmelCase = MarkupText(
F'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' , font_size=24 , )
lowerCAmelCase = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
lowerCAmelCase = MarkupText(
F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
step_a.move_to([2, 2, 0] )
self.play(Write(_snake_case , run_time=2.5 ) , Write(_snake_case ) , Write(_snake_case ) )
self.add(_snake_case )
lowerCAmelCase = []
lowerCAmelCase = []
lowerCAmelCase = []
for i, rect in enumerate(_snake_case ):
lowerCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_snake_case , opacity=0.7 )
cpu_target.move_to(_snake_case )
cpu_target.generate_target()
lowerCAmelCase = 0.46 / 4
lowerCAmelCase = 0.46 / 3
if i == 0:
cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_snake_case )
cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 )
elif i == 3:
cpu_target.target.next_to(cpu_targs[0].target , direction=_snake_case , buff=0.0 )
else:
cpu_target.target.next_to(cpu_targs[i - 1].target , direction=_snake_case , buff=0.0 )
cpu_targs.append(_snake_case )
first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_snake_case ) )
second_animations.append(MoveToTarget(_snake_case , run_time=1.5 ) )
self.play(*_snake_case )
self.play(*_snake_case )
self.wait()
| 309
|
"""simple docstring"""
import re
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ):
if len(re.findall('[ATCG]' , _UpperCAmelCase ) ) != len(_UpperCAmelCase ):
raise ValueError('Invalid Strand' )
return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 309
| 1
|
"""simple docstring"""
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_multi_gpu
from accelerate.utils import patch_environment
class a ( unittest.TestCase ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = inspect.getfile(accelerate.test_utils )
lowerCAmelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] )
lowerCAmelCase = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] )
lowerCAmelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] )
@require_multi_gpu
def UpperCamelCase__ ( self ):
"""simple docstring"""
print(F'Found {torch.cuda.device_count()} devices.' )
lowerCAmelCase = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_snake_case , env=os.environ.copy() )
@require_multi_gpu
def UpperCamelCase__ ( self ):
"""simple docstring"""
print(F'Found {torch.cuda.device_count()} devices.' )
lowerCAmelCase = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', self.operation_file_path]
print(F'Command: {cmd}' )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_snake_case , env=os.environ.copy() )
@require_multi_gpu
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_snake_case , env=os.environ.copy() )
@require_multi_gpu
def UpperCamelCase__ ( self ):
"""simple docstring"""
print(F'Found {torch.cuda.device_count()} devices, using 2 devices only' )
lowerCAmelCase = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', self.data_loop_file_path]
with patch_environment(omp_num_threads=1 , cuda_visible_devices='0,1' ):
execute_subprocess_async(_snake_case , env=os.environ.copy() )
if __name__ == "__main__":
__UpperCamelCase : Optional[Any] = Accelerator()
__UpperCamelCase : Optional[int] = (accelerator.state.process_index + 2, 10)
__UpperCamelCase : Union[str, Any] = torch.randint(0, 10, shape).to(accelerator.device)
__UpperCamelCase : List[Any] = ''''''
__UpperCamelCase : str = accelerator.pad_across_processes(tensor)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0):
error_msg += "Padding was not done with the right value (0)."
__UpperCamelCase : Optional[int] = accelerator.pad_across_processes(tensor, pad_first=True)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
__UpperCamelCase : List[Any] = accelerator.state.num_processes - accelerator.state.process_index - 1
if not torch.equal(tensora[index:], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[:index] == 0):
error_msg += "Padding was not done with the right value (0)."
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 309
|
"""simple docstring"""
import numpy as np
import skfuzzy as fuzz
if __name__ == "__main__":
# Create universe of discourse in Python using linspace ()
__UpperCamelCase : List[Any] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False)
# Create two fuzzy sets by defining any membership function
# (trapmf(), gbellmf(), gaussmf(), etc).
__UpperCamelCase : str = [0, 25, 50]
__UpperCamelCase : int = [25, 50, 75]
__UpperCamelCase : str = fuzz.membership.trimf(X, abca)
__UpperCamelCase : Tuple = fuzz.membership.trimf(X, abca)
# Compute the different operations using inbuilt functions.
__UpperCamelCase : Dict = np.ones(75)
__UpperCamelCase : str = np.zeros((75,))
# 1. Union = max(µA(x), µB(x))
__UpperCamelCase : Optional[Any] = fuzz.fuzzy_or(X, young, X, middle_aged)[1]
# 2. Intersection = min(µA(x), µB(x))
__UpperCamelCase : Dict = fuzz.fuzzy_and(X, young, X, middle_aged)[1]
# 3. Complement (A) = (1- min(µA(x))
__UpperCamelCase : Dict = fuzz.fuzzy_not(young)
# 4. Difference (A/B) = min(µA(x),(1- µB(x)))
__UpperCamelCase : List[str] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1]
# 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))]
__UpperCamelCase : List[str] = young + middle_aged - (young * middle_aged)
# 6. Algebraic Product = (µA(x) * µB(x))
__UpperCamelCase : Tuple = young * middle_aged
# 7. Bounded Sum = min[1,(µA(x), µB(x))]
__UpperCamelCase : Union[str, Any] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1]
# 8. Bounded difference = min[0,(µA(x), µB(x))]
__UpperCamelCase : Dict = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1]
# max-min composition
# max-product composition
# Plot each set A, set B and each operation result using plot() and subplot().
from matplotlib import pyplot as plt
plt.figure()
plt.subplot(4, 3, 1)
plt.plot(X, young)
plt.title('''Young''')
plt.grid(True)
plt.subplot(4, 3, 2)
plt.plot(X, middle_aged)
plt.title('''Middle aged''')
plt.grid(True)
plt.subplot(4, 3, 3)
plt.plot(X, union)
plt.title('''union''')
plt.grid(True)
plt.subplot(4, 3, 4)
plt.plot(X, intersection)
plt.title('''intersection''')
plt.grid(True)
plt.subplot(4, 3, 5)
plt.plot(X, complement_a)
plt.title('''complement_a''')
plt.grid(True)
plt.subplot(4, 3, 6)
plt.plot(X, difference)
plt.title('''difference a/b''')
plt.grid(True)
plt.subplot(4, 3, 7)
plt.plot(X, alg_sum)
plt.title('''alg_sum''')
plt.grid(True)
plt.subplot(4, 3, 8)
plt.plot(X, alg_product)
plt.title('''alg_product''')
plt.grid(True)
plt.subplot(4, 3, 9)
plt.plot(X, bdd_sum)
plt.title('''bdd_sum''')
plt.grid(True)
plt.subplot(4, 3, 10)
plt.plot(X, bdd_difference)
plt.title('''bdd_difference''')
plt.grid(True)
plt.subplots_adjust(hspace=0.5)
plt.show()
| 309
| 1
|
"""simple docstring"""
import pprint
import requests
__UpperCamelCase : Any = '''https://zenquotes.io/api'''
def _SCREAMING_SNAKE_CASE ():
return requests.get(API_ENDPOINT_URL + '/today' ).json()
def _SCREAMING_SNAKE_CASE ():
return requests.get(API_ENDPOINT_URL + '/random' ).json()
if __name__ == "__main__":
__UpperCamelCase : Any = random_quotes()
pprint.pprint(response)
| 309
|
"""simple docstring"""
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[int] , _UpperCAmelCase : str ):
lowerCAmelCase = int(_UpperCAmelCase )
# Initialize Result
lowerCAmelCase = []
# Traverse through all denomination
for denomination in reversed(_UpperCAmelCase ):
# Find denominations
while int(_UpperCAmelCase ) >= int(_UpperCAmelCase ):
total_value -= int(_UpperCAmelCase )
answer.append(_UpperCAmelCase ) # Append the "answers" array
return answer
# Driver Code
if __name__ == "__main__":
__UpperCamelCase : Any = []
__UpperCamelCase : List[Any] = '''0'''
if (
input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower()
== "y"
):
__UpperCamelCase : Any = int(input('''Enter the number of denominations you want to add: ''').strip())
for i in range(0, n):
denominations.append(int(input(f'''Denomination {i}: ''').strip()))
__UpperCamelCase : int = input('''Enter the change you want to make in Indian Currency: ''').strip()
else:
# All denominations of Indian Currency if user does not enter
__UpperCamelCase : List[str] = [1, 2, 5, 10, 20, 50, 100, 500, 2000]
__UpperCamelCase : Any = input('''Enter the change you want to make: ''').strip()
if int(value) == 0 or int(value) < 0:
print('''The total value cannot be zero or negative.''')
else:
print(f'''Following is minimal change for {value}: ''')
__UpperCamelCase : List[str] = find_minimum_change(denominations, value)
# Print result
for i in range(len(answer)):
print(answer[i], end=''' ''')
| 309
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__UpperCamelCase : Union[str, Any] = {'''configuration_ibert''': ['''IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''IBertConfig''', '''IBertOnnxConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Optional[int] = [
'''IBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''IBertForMaskedLM''',
'''IBertForMultipleChoice''',
'''IBertForQuestionAnswering''',
'''IBertForSequenceClassification''',
'''IBertForTokenClassification''',
'''IBertModel''',
'''IBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ibert import (
IBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
IBertForMaskedLM,
IBertForMultipleChoice,
IBertForQuestionAnswering,
IBertForSequenceClassification,
IBertForTokenClassification,
IBertModel,
IBertPreTrainedModel,
)
else:
import sys
__UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 309
|
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import EsmConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy
import tensorflow as tf
from transformers.models.esm.modeling_tf_esm import (
TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFEsmForMaskedLM,
TFEsmForSequenceClassification,
TFEsmForTokenClassification,
TFEsmModel,
)
class a :
def __init__( self , _snake_case , ):
"""simple docstring"""
lowerCAmelCase = parent
lowerCAmelCase = 13
lowerCAmelCase = 7
lowerCAmelCase = True
lowerCAmelCase = True
lowerCAmelCase = True
lowerCAmelCase = 99
lowerCAmelCase = 32
lowerCAmelCase = 2
lowerCAmelCase = 4
lowerCAmelCase = 37
lowerCAmelCase = 'gelu'
lowerCAmelCase = 0.1
lowerCAmelCase = 0.1
lowerCAmelCase = 5_12
lowerCAmelCase = 16
lowerCAmelCase = 2
lowerCAmelCase = 0.02
lowerCAmelCase = 3
lowerCAmelCase = 4
lowerCAmelCase = None
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase = None
if self.use_input_mask:
lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase = None
lowerCAmelCase = None
lowerCAmelCase = None
if self.use_labels:
lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase = EsmConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase__ ( self ):
"""simple docstring"""
(
(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,
) = self.prepare_config_and_inputs()
lowerCAmelCase = True
lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = TFEsmModel(config=_snake_case )
lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask}
lowerCAmelCase = model(_snake_case )
lowerCAmelCase = [input_ids, input_mask]
lowerCAmelCase = model(_snake_case )
lowerCAmelCase = model(_snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ):
"""simple docstring"""
lowerCAmelCase = True
lowerCAmelCase = TFEsmModel(config=_snake_case )
lowerCAmelCase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'encoder_hidden_states': encoder_hidden_states,
'encoder_attention_mask': encoder_attention_mask,
}
lowerCAmelCase = model(_snake_case )
lowerCAmelCase = [input_ids, input_mask]
lowerCAmelCase = model(_snake_case , encoder_hidden_states=_snake_case )
# Also check the case where encoder outputs are not passed
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = TFEsmForMaskedLM(config=_snake_case )
lowerCAmelCase = model([input_ids, input_mask] )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = self.num_labels
lowerCAmelCase = TFEsmForTokenClassification(config=_snake_case )
lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask}
lowerCAmelCase = model(_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.prepare_config_and_inputs()
(
(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,
) = config_and_inputs
lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class a ( a__ , a__ , unittest.TestCase ):
snake_case__ = (
(
TFEsmModel,
TFEsmForMaskedLM,
TFEsmForSequenceClassification,
TFEsmForTokenClassification,
)
if is_tf_available()
else ()
)
snake_case__ = (
{
'''feature-extraction''': TFEsmModel,
'''fill-mask''': TFEsmForMaskedLM,
'''text-classification''': TFEsmForSequenceClassification,
'''token-classification''': TFEsmForTokenClassification,
'''zero-shot''': TFEsmForSequenceClassification,
}
if is_tf_available()
else {}
)
snake_case__ = False
snake_case__ = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFEsmModelTester(self )
lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_snake_case )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase = TFEsmModel.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
@unittest.skip('Protein models do not support embedding resizing.' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
@unittest.skip('Protein models do not support embedding resizing.' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase = model_class(_snake_case )
assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer )
if model_class is TFEsmForMaskedLM:
# Output embedding test differs from the main test because they're a matrix, not a layer
lowerCAmelCase = model.get_bias()
assert isinstance(_snake_case , _snake_case )
for k, v in name.items():
assert isinstance(_snake_case , tf.Variable )
else:
lowerCAmelCase = model.get_output_embeddings()
assert x is None
lowerCAmelCase = model.get_bias()
assert name is None
@require_tf
class a ( unittest.TestCase ):
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' )
lowerCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] )
lowerCAmelCase = model(_snake_case )[0]
lowerCAmelCase = [1, 6, 33]
self.assertEqual(list(output.numpy().shape ) , _snake_case )
# compare the actual values for a slice.
lowerCAmelCase = tf.constant(
[
[
[8.921_518, -10.589_814, -6.4_671_307],
[-6.3_967_156, -13.911_377, -1.1_211_915],
[-7.781_247, -13.951_557, -3.740_592],
]
] )
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' )
lowerCAmelCase = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
lowerCAmelCase = model(_snake_case )[0]
# compare the actual values for a slice.
lowerCAmelCase = tf.constant(
[
[
[0.14_443_092, 0.54_125_327, 0.3_247_739],
[0.30_340_484, 0.00_526_676, 0.31_077_722],
[0.32_278_043, -0.24_987_096, 0.3_414_628],
]
] )
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 309
| 1
|
"""simple docstring"""
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : int ):
lowerCAmelCase = len(_UpperCAmelCase )
lowerCAmelCase = [[0] * n for i in range(_UpperCAmelCase )]
for i in range(_UpperCAmelCase ):
lowerCAmelCase = y_points[i]
for i in range(2 , _UpperCAmelCase ):
for j in range(_UpperCAmelCase , _UpperCAmelCase ):
lowerCAmelCase = (
(xa - x_points[j - i + 1]) * q[j][i - 1]
- (xa - x_points[j]) * q[j - 1][i - 1]
) / (x_points[j] - x_points[j - i + 1])
return [q[n - 1][n - 1], q]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 309
|
"""simple docstring"""
import io
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__UpperCamelCase : Union[str, Any] = logging.get_logger(__name__)
__UpperCamelCase : Dict = '''▁'''
__UpperCamelCase : Optional[int] = {'''vocab_file''': '''vocab.txt''', '''sentencepiece_model_ckpt''': '''sentencepiece.bpe.model'''}
__UpperCamelCase : str = {
'''sentencepiece_model_file''': '''sentencepiece.bpe.model''',
'''vocab_file''': '''vocab.txt''',
}
__UpperCamelCase : Tuple = {
'''vocab_file''': {
'''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''',
'''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''',
},
'''sentencepiece_model_file''': {
'''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''',
'''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''',
},
}
__UpperCamelCase : Optional[Any] = {
'''ernie-m-base''': 514,
'''ernie-m-large''': 514,
}
__UpperCamelCase : str = {
'''ernie-m-base''': {'''do_lower_case''': False},
'''ernie-m-large''': {'''do_lower_case''': False},
}
class a ( a__ ):
snake_case__ = ["input_ids"]
snake_case__ = VOCAB_FILES_NAMES
snake_case__ = PRETRAINED_INIT_CONFIGURATION
snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case__ = PRETRAINED_VOCAB_FILES_MAP
snake_case__ = RESOURCE_FILES_NAMES
def __init__( self , _snake_case , _snake_case=None , _snake_case=False , _snake_case="utf8" , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case = None , **_snake_case , ):
"""simple docstring"""
lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , vocab_file=_snake_case , encoding=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , )
lowerCAmelCase = do_lower_case
lowerCAmelCase = sentencepiece_model_ckpt
lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_snake_case )
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
lowerCAmelCase = self.load_vocab(filepath=_snake_case )
else:
lowerCAmelCase = {self.sp_model.id_to_piece(_snake_case ): id for id in range(self.sp_model.get_piece_size() )}
lowerCAmelCase = {v: k for k, v in self.vocab.items()}
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if text is None:
return None
lowerCAmelCase = self.tokenize(_snake_case )
lowerCAmelCase ,lowerCAmelCase = '', []
for i, ch in enumerate(_snake_case ):
if ch in self.SP_CHAR_MAPPING:
lowerCAmelCase = self.SP_CHAR_MAPPING.get(_snake_case )
else:
lowerCAmelCase = unicodedata.normalize('NFKC' , _snake_case )
if self.is_whitespace(_snake_case ):
continue
normalized_text += ch
char_mapping.extend([i] * len(_snake_case ) )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = normalized_text, [], 0
if self.do_lower_case:
lowerCAmelCase = text.lower()
for token in split_tokens:
if token[:1] == "▁":
lowerCAmelCase = token[1:]
lowerCAmelCase = text[offset:].index(_snake_case ) + offset
lowerCAmelCase = start + len(_snake_case )
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) )
lowerCAmelCase = end
return token_mapping
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return len(self.vocab )
def UpperCamelCase__ ( self ):
"""simple docstring"""
return dict(self.vocab , **self.added_tokens_encoder )
def __getstate__( self ):
"""simple docstring"""
lowerCAmelCase = self.__dict__.copy()
lowerCAmelCase = None
return state
def __setstate__( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
lowerCAmelCase = {}
lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.sentencepiece_model_ckpt )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
return "".join((self.SP_CHAR_MAPPING.get(_snake_case , _snake_case ) for c in text) )
def UpperCamelCase__ ( self , _snake_case , _snake_case=False , _snake_case=64 , _snake_case=0.1 ):
"""simple docstring"""
if self.sp_model_kwargs.get('enable_sampling' ) is True:
lowerCAmelCase = True
if self.sp_model_kwargs.get('alpha' ) is not None:
lowerCAmelCase = self.sp_model_kwargs.get('alpha' )
if self.sp_model_kwargs.get('nbest_size' ) is not None:
lowerCAmelCase = self.sp_model_kwargs.get('nbest_size' )
if not enable_sampling:
lowerCAmelCase = self.sp_model.EncodeAsPieces(_snake_case )
else:
lowerCAmelCase = self.sp_model.SampleEncodeAsPieces(_snake_case , _snake_case , _snake_case )
lowerCAmelCase = []
for pi, piece in enumerate(_snake_case ):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(_snake_case ) and pi != 0:
new_pieces.append(_snake_case )
continue
else:
continue
lowerCAmelCase = 0
for i, chunk in enumerate(_snake_case ):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(_snake_case ) or self.is_punct(_snake_case ):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
new_pieces.append(_snake_case )
lowerCAmelCase = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
lowerCAmelCase = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
lowerCAmelCase = i
if len(_snake_case ) > lst_i:
new_pieces.append(piece[lst_i:] )
return new_pieces
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = ''.join(_snake_case ).replace(_snake_case , ' ' ).strip()
return out_string
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = self.convert_ids_to_tokens(_snake_case )
lowerCAmelCase = ''.join(_snake_case ).replace(_snake_case , ' ' ).strip()
return out_string
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
return self.vocab.get(_snake_case , self.vocab.get(self.unk_token ) )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
return self.reverse_vocab.get(_snake_case , self.unk_token )
def UpperCamelCase__ ( self , _snake_case , _snake_case=None ):
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowerCAmelCase = [self.cls_token_id]
lowerCAmelCase = [self.sep_token_id]
return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep
def UpperCamelCase__ ( self , _snake_case , _snake_case=None ):
"""simple docstring"""
if offset_mapping_a is None:
return [(0, 0)] + offset_mapping_a + [(0, 0)]
return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)]
def UpperCamelCase__ ( self , _snake_case , _snake_case=None , _snake_case=False ):
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'You should not supply a second sequence if the provided sequence of '
'ids is already formatted with special tokens for the model.' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) + [1]
return [1] + ([0] * len(_snake_case )) + [1]
def UpperCamelCase__ ( self , _snake_case , _snake_case = None ):
"""simple docstring"""
if token_ids_a is None:
# [CLS] X [SEP]
return (len(_snake_case ) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(_snake_case ) + 1) + [1] * (len(_snake_case ) + 3)
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if "\u4e00" <= char <= "\u9fff":
return True
return False
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if char in ",;:.?!~,;:。?!《》【】":
return True
return False
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(_snake_case ) == 1:
lowerCAmelCase = unicodedata.category(_snake_case )
if cat == "Zs":
return True
return False
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = {}
with io.open(_snake_case , 'r' , encoding='utf-8' ) as f:
for index, line in enumerate(_snake_case ):
lowerCAmelCase = line.rstrip('\n' )
lowerCAmelCase = int(_snake_case )
return token_to_idx
def UpperCamelCase__ ( self , _snake_case , _snake_case = None ):
"""simple docstring"""
lowerCAmelCase = 0
if os.path.isdir(_snake_case ):
lowerCAmelCase = os.path.join(
_snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
else:
lowerCAmelCase = (filename_prefix + '-' if filename_prefix else '') + save_directory
with open(_snake_case , 'w' , encoding='utf-8' ) as writer:
for token, token_index in sorted(self.vocab.items() , key=lambda _snake_case : kv[1] ):
if index != token_index:
logger.warning(
F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'
' Please check that the vocabulary is not corrupted!' )
lowerCAmelCase = token_index
writer.write(token + '\n' )
index += 1
lowerCAmelCase = os.path.join(_snake_case , 'sentencepiece.bpe.model' )
with open(_snake_case , 'wb' ) as fi:
lowerCAmelCase = self.sp_model.serialized_model_proto()
fi.write(_snake_case )
return (vocab_file,)
| 309
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__UpperCamelCase : Dict = {'''configuration_encoder_decoder''': ['''EncoderDecoderConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Tuple = ['''EncoderDecoderModel''']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Optional[int] = ['''TFEncoderDecoderModel''']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Dict = ['''FlaxEncoderDecoderModel''']
if TYPE_CHECKING:
from .configuration_encoder_decoder import EncoderDecoderConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_encoder_decoder import EncoderDecoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_encoder_decoder import TFEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel
else:
import sys
__UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 309
|
"""simple docstring"""
import argparse
import os
import torch
from transformers.utils import WEIGHTS_NAME
__UpperCamelCase : int = ['''small''', '''medium''', '''large''']
__UpperCamelCase : str = '''lm_head.decoder.weight'''
__UpperCamelCase : Dict = '''lm_head.weight'''
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ):
lowerCAmelCase = torch.load(_UpperCAmelCase )
lowerCAmelCase = d.pop(_UpperCAmelCase )
os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase )
torch.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase ) )
if __name__ == "__main__":
__UpperCamelCase : Optional[int] = argparse.ArgumentParser()
parser.add_argument('''--dialogpt_path''', default='''.''', type=str)
__UpperCamelCase : Optional[int] = parser.parse_args()
for MODEL in DIALOGPT_MODELS:
__UpperCamelCase : Dict = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''')
__UpperCamelCase : str = f'''./DialoGPT-{MODEL}'''
convert_dialogpt_checkpoint(
checkpoint_path,
pytorch_dump_folder_path,
)
| 309
| 1
|
"""simple docstring"""
import io
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__UpperCamelCase : Union[str, Any] = logging.get_logger(__name__)
__UpperCamelCase : Dict = '''▁'''
__UpperCamelCase : Optional[int] = {'''vocab_file''': '''vocab.txt''', '''sentencepiece_model_ckpt''': '''sentencepiece.bpe.model'''}
__UpperCamelCase : str = {
'''sentencepiece_model_file''': '''sentencepiece.bpe.model''',
'''vocab_file''': '''vocab.txt''',
}
__UpperCamelCase : Tuple = {
'''vocab_file''': {
'''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''',
'''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''',
},
'''sentencepiece_model_file''': {
'''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''',
'''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''',
},
}
__UpperCamelCase : Optional[Any] = {
'''ernie-m-base''': 514,
'''ernie-m-large''': 514,
}
__UpperCamelCase : str = {
'''ernie-m-base''': {'''do_lower_case''': False},
'''ernie-m-large''': {'''do_lower_case''': False},
}
class a ( a__ ):
snake_case__ = ["input_ids"]
snake_case__ = VOCAB_FILES_NAMES
snake_case__ = PRETRAINED_INIT_CONFIGURATION
snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case__ = PRETRAINED_VOCAB_FILES_MAP
snake_case__ = RESOURCE_FILES_NAMES
def __init__( self , _snake_case , _snake_case=None , _snake_case=False , _snake_case="utf8" , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case = None , **_snake_case , ):
"""simple docstring"""
lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , vocab_file=_snake_case , encoding=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , )
lowerCAmelCase = do_lower_case
lowerCAmelCase = sentencepiece_model_ckpt
lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_snake_case )
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
lowerCAmelCase = self.load_vocab(filepath=_snake_case )
else:
lowerCAmelCase = {self.sp_model.id_to_piece(_snake_case ): id for id in range(self.sp_model.get_piece_size() )}
lowerCAmelCase = {v: k for k, v in self.vocab.items()}
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if text is None:
return None
lowerCAmelCase = self.tokenize(_snake_case )
lowerCAmelCase ,lowerCAmelCase = '', []
for i, ch in enumerate(_snake_case ):
if ch in self.SP_CHAR_MAPPING:
lowerCAmelCase = self.SP_CHAR_MAPPING.get(_snake_case )
else:
lowerCAmelCase = unicodedata.normalize('NFKC' , _snake_case )
if self.is_whitespace(_snake_case ):
continue
normalized_text += ch
char_mapping.extend([i] * len(_snake_case ) )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = normalized_text, [], 0
if self.do_lower_case:
lowerCAmelCase = text.lower()
for token in split_tokens:
if token[:1] == "▁":
lowerCAmelCase = token[1:]
lowerCAmelCase = text[offset:].index(_snake_case ) + offset
lowerCAmelCase = start + len(_snake_case )
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) )
lowerCAmelCase = end
return token_mapping
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return len(self.vocab )
def UpperCamelCase__ ( self ):
"""simple docstring"""
return dict(self.vocab , **self.added_tokens_encoder )
def __getstate__( self ):
"""simple docstring"""
lowerCAmelCase = self.__dict__.copy()
lowerCAmelCase = None
return state
def __setstate__( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
lowerCAmelCase = {}
lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.sentencepiece_model_ckpt )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
return "".join((self.SP_CHAR_MAPPING.get(_snake_case , _snake_case ) for c in text) )
def UpperCamelCase__ ( self , _snake_case , _snake_case=False , _snake_case=64 , _snake_case=0.1 ):
"""simple docstring"""
if self.sp_model_kwargs.get('enable_sampling' ) is True:
lowerCAmelCase = True
if self.sp_model_kwargs.get('alpha' ) is not None:
lowerCAmelCase = self.sp_model_kwargs.get('alpha' )
if self.sp_model_kwargs.get('nbest_size' ) is not None:
lowerCAmelCase = self.sp_model_kwargs.get('nbest_size' )
if not enable_sampling:
lowerCAmelCase = self.sp_model.EncodeAsPieces(_snake_case )
else:
lowerCAmelCase = self.sp_model.SampleEncodeAsPieces(_snake_case , _snake_case , _snake_case )
lowerCAmelCase = []
for pi, piece in enumerate(_snake_case ):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(_snake_case ) and pi != 0:
new_pieces.append(_snake_case )
continue
else:
continue
lowerCAmelCase = 0
for i, chunk in enumerate(_snake_case ):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(_snake_case ) or self.is_punct(_snake_case ):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
new_pieces.append(_snake_case )
lowerCAmelCase = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
lowerCAmelCase = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
lowerCAmelCase = i
if len(_snake_case ) > lst_i:
new_pieces.append(piece[lst_i:] )
return new_pieces
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = ''.join(_snake_case ).replace(_snake_case , ' ' ).strip()
return out_string
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = self.convert_ids_to_tokens(_snake_case )
lowerCAmelCase = ''.join(_snake_case ).replace(_snake_case , ' ' ).strip()
return out_string
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
return self.vocab.get(_snake_case , self.vocab.get(self.unk_token ) )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
return self.reverse_vocab.get(_snake_case , self.unk_token )
def UpperCamelCase__ ( self , _snake_case , _snake_case=None ):
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowerCAmelCase = [self.cls_token_id]
lowerCAmelCase = [self.sep_token_id]
return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep
def UpperCamelCase__ ( self , _snake_case , _snake_case=None ):
"""simple docstring"""
if offset_mapping_a is None:
return [(0, 0)] + offset_mapping_a + [(0, 0)]
return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)]
def UpperCamelCase__ ( self , _snake_case , _snake_case=None , _snake_case=False ):
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'You should not supply a second sequence if the provided sequence of '
'ids is already formatted with special tokens for the model.' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) + [1]
return [1] + ([0] * len(_snake_case )) + [1]
def UpperCamelCase__ ( self , _snake_case , _snake_case = None ):
"""simple docstring"""
if token_ids_a is None:
# [CLS] X [SEP]
return (len(_snake_case ) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(_snake_case ) + 1) + [1] * (len(_snake_case ) + 3)
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if "\u4e00" <= char <= "\u9fff":
return True
return False
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if char in ",;:.?!~,;:。?!《》【】":
return True
return False
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(_snake_case ) == 1:
lowerCAmelCase = unicodedata.category(_snake_case )
if cat == "Zs":
return True
return False
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = {}
with io.open(_snake_case , 'r' , encoding='utf-8' ) as f:
for index, line in enumerate(_snake_case ):
lowerCAmelCase = line.rstrip('\n' )
lowerCAmelCase = int(_snake_case )
return token_to_idx
def UpperCamelCase__ ( self , _snake_case , _snake_case = None ):
"""simple docstring"""
lowerCAmelCase = 0
if os.path.isdir(_snake_case ):
lowerCAmelCase = os.path.join(
_snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
else:
lowerCAmelCase = (filename_prefix + '-' if filename_prefix else '') + save_directory
with open(_snake_case , 'w' , encoding='utf-8' ) as writer:
for token, token_index in sorted(self.vocab.items() , key=lambda _snake_case : kv[1] ):
if index != token_index:
logger.warning(
F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'
' Please check that the vocabulary is not corrupted!' )
lowerCAmelCase = token_index
writer.write(token + '\n' )
index += 1
lowerCAmelCase = os.path.join(_snake_case , 'sentencepiece.bpe.model' )
with open(_snake_case , 'wb' ) as fi:
lowerCAmelCase = self.sp_model.serialized_model_proto()
fi.write(_snake_case )
return (vocab_file,)
| 309
|
"""simple docstring"""
__UpperCamelCase : Dict = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []}
__UpperCamelCase : str = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]}
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[int, list[int]] , _UpperCAmelCase : int , _UpperCAmelCase : list[bool] ):
lowerCAmelCase = True
lowerCAmelCase = []
for neighbour in graph[vert]:
if not visited[neighbour]:
order += topology_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
order.append(_UpperCAmelCase )
return order
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[int, list[int]] , _UpperCAmelCase : int , _UpperCAmelCase : list[bool] ):
lowerCAmelCase = True
lowerCAmelCase = [vert]
for neighbour in reversed_graph[vert]:
if not visited[neighbour]:
component += find_components(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
return component
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[int, list[int]] ):
lowerCAmelCase = len(_UpperCAmelCase ) * [False]
lowerCAmelCase = {vert: [] for vert in range(len(_UpperCAmelCase ) )}
for vert, neighbours in graph.items():
for neighbour in neighbours:
reversed_graph[neighbour].append(_UpperCAmelCase )
lowerCAmelCase = []
for i, was_visited in enumerate(_UpperCAmelCase ):
if not was_visited:
order += topology_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase = []
lowerCAmelCase = len(_UpperCAmelCase ) * [False]
for i in range(len(_UpperCAmelCase ) ):
lowerCAmelCase = order[len(_UpperCAmelCase ) - i - 1]
if not visited[vert]:
lowerCAmelCase = find_components(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
components_list.append(_UpperCAmelCase )
return components_list
| 309
| 1
|
"""simple docstring"""
from math import loga
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ):
if a < 0:
raise ValueError('Input value must be a positive integer' )
elif isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise TypeError('Input value must be a \'int\' type' )
return 0 if (a == 0) else int(loga(a & -a ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 309
|
"""simple docstring"""
import os
import time
import warnings
from dataclasses import dataclass, field
from enum import Enum
from typing import List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import logging
from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors
from ..processors.utils import InputFeatures
__UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
@dataclass
class a :
snake_case__ = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(glue_processors.keys() )} )
snake_case__ = field(
metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} )
snake_case__ = field(
default=1_2_8 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
snake_case__ = field(
default=a__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.task_name.lower()
class a ( a__ ):
snake_case__ = '''train'''
snake_case__ = '''dev'''
snake_case__ = '''test'''
class a ( a__ ):
snake_case__ = 42
snake_case__ = 42
snake_case__ = 42
def __init__( self , _snake_case , _snake_case , _snake_case = None , _snake_case = Split.train , _snake_case = None , ):
"""simple docstring"""
warnings.warn(
'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets '
'library. You can have a look at this example script for pointers: '
'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , _snake_case , )
lowerCAmelCase = args
lowerCAmelCase = glue_processors[args.task_name]()
lowerCAmelCase = glue_output_modes[args.task_name]
if isinstance(_snake_case , _snake_case ):
try:
lowerCAmelCase = Split[mode]
except KeyError:
raise KeyError('mode is not a valid split name' )
# Load data features from cache or dataset file
lowerCAmelCase = os.path.join(
cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , )
lowerCAmelCase = self.processor.get_labels()
if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in (
"RobertaTokenizer",
"RobertaTokenizerFast",
"XLMRobertaTokenizer",
"BartTokenizer",
"BartTokenizerFast",
):
# HACK(label indices are swapped in RoBERTa pretrained model)
lowerCAmelCase ,lowerCAmelCase = label_list[2], label_list[1]
lowerCAmelCase = label_list
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
lowerCAmelCase = cached_features_file + '.lock'
with FileLock(_snake_case ):
if os.path.exists(_snake_case ) and not args.overwrite_cache:
lowerCAmelCase = time.time()
lowerCAmelCase = torch.load(_snake_case )
logger.info(
F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start )
else:
logger.info(F'Creating features from dataset file at {args.data_dir}' )
if mode == Split.dev:
lowerCAmelCase = self.processor.get_dev_examples(args.data_dir )
elif mode == Split.test:
lowerCAmelCase = self.processor.get_test_examples(args.data_dir )
else:
lowerCAmelCase = self.processor.get_train_examples(args.data_dir )
if limit_length is not None:
lowerCAmelCase = examples[:limit_length]
lowerCAmelCase = glue_convert_examples_to_features(
_snake_case , _snake_case , max_length=args.max_seq_length , label_list=_snake_case , output_mode=self.output_mode , )
lowerCAmelCase = time.time()
torch.save(self.features , _snake_case )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' )
def __len__( self ):
"""simple docstring"""
return len(self.features )
def __getitem__( self , _snake_case ):
"""simple docstring"""
return self.features[i]
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self.label_list
| 309
| 1
|
"""simple docstring"""
import numpy as np
import torch
import tqdm
from ...models.unet_ad import UNetaDModel
from ...pipelines import DiffusionPipeline
from ...utils import randn_tensor
from ...utils.dummy_pt_objects import DDPMScheduler
class a ( a__ ):
def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case , ):
"""simple docstring"""
super().__init__()
lowerCAmelCase = value_function
lowerCAmelCase = unet
lowerCAmelCase = scheduler
lowerCAmelCase = env
lowerCAmelCase = env.get_dataset()
lowerCAmelCase = {}
for key in self.data.keys():
try:
lowerCAmelCase = self.data[key].mean()
except: # noqa: E722
pass
lowerCAmelCase = {}
for key in self.data.keys():
try:
lowerCAmelCase = self.data[key].std()
except: # noqa: E722
pass
lowerCAmelCase = env.observation_space.shape[0]
lowerCAmelCase = env.action_space.shape[0]
def UpperCamelCase__ ( self , _snake_case , _snake_case ):
"""simple docstring"""
return (x_in - self.means[key]) / self.stds[key]
def UpperCamelCase__ ( self , _snake_case , _snake_case ):
"""simple docstring"""
return x_in * self.stds[key] + self.means[key]
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if type(_snake_case ) is dict:
return {k: self.to_torch(_snake_case ) for k, v in x_in.items()}
elif torch.is_tensor(_snake_case ):
return x_in.to(self.unet.device )
return torch.tensor(_snake_case , device=self.unet.device )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
for key, val in cond.items():
lowerCAmelCase = val.clone()
return x_in
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = x.shape[0]
lowerCAmelCase = None
for i in tqdm.tqdm(self.scheduler.timesteps ):
# create batch of timesteps to pass into model
lowerCAmelCase = torch.full((batch_size,) , _snake_case , device=self.unet.device , dtype=torch.long )
for _ in range(_snake_case ):
with torch.enable_grad():
x.requires_grad_()
# permute to match dimension for pre-trained models
lowerCAmelCase = self.value_function(x.permute(0 , 2 , 1 ) , _snake_case ).sample
lowerCAmelCase = torch.autograd.grad([y.sum()] , [x] )[0]
lowerCAmelCase = self.scheduler._get_variance(_snake_case )
lowerCAmelCase = torch.exp(0.5 * posterior_variance )
lowerCAmelCase = model_std * grad
lowerCAmelCase = 0
lowerCAmelCase = x.detach()
lowerCAmelCase = x + scale * grad
lowerCAmelCase = self.reset_xa(_snake_case , _snake_case , self.action_dim )
lowerCAmelCase = self.unet(x.permute(0 , 2 , 1 ) , _snake_case ).sample.permute(0 , 2 , 1 )
# TODO: verify deprecation of this kwarg
lowerCAmelCase = self.scheduler.step(_snake_case , _snake_case , _snake_case , predict_epsilon=_snake_case )['prev_sample']
# apply conditions to the trajectory (set the initial state)
lowerCAmelCase = self.reset_xa(_snake_case , _snake_case , self.action_dim )
lowerCAmelCase = self.to_torch(_snake_case )
return x, y
def __call__( self , _snake_case , _snake_case=64 , _snake_case=32 , _snake_case=2 , _snake_case=0.1 ):
"""simple docstring"""
lowerCAmelCase = self.normalize(_snake_case , 'observations' )
lowerCAmelCase = obs[None].repeat(_snake_case , axis=0 )
lowerCAmelCase = {0: self.to_torch(_snake_case )}
lowerCAmelCase = (batch_size, planning_horizon, self.state_dim + self.action_dim)
# generate initial noise and apply our conditions (to make the trajectories start at current state)
lowerCAmelCase = randn_tensor(_snake_case , device=self.unet.device )
lowerCAmelCase = self.reset_xa(_snake_case , _snake_case , self.action_dim )
lowerCAmelCase = self.to_torch(_snake_case )
# run the diffusion process
lowerCAmelCase ,lowerCAmelCase = self.run_diffusion(_snake_case , _snake_case , _snake_case , _snake_case )
# sort output trajectories by value
lowerCAmelCase = y.argsort(0 , descending=_snake_case ).squeeze()
lowerCAmelCase = x[sorted_idx]
lowerCAmelCase = sorted_values[:, :, : self.action_dim]
lowerCAmelCase = actions.detach().cpu().numpy()
lowerCAmelCase = self.de_normalize(_snake_case , key='actions' )
# select the action with the highest value
if y is not None:
lowerCAmelCase = 0
else:
# if we didn't run value guiding, select a random action
lowerCAmelCase = np.random.randint(0 , _snake_case )
lowerCAmelCase = denorm_actions[selected_index, 0]
return denorm_actions
| 309
|
"""simple docstring"""
import os
from collections.abc import Iterator
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "." ):
for dir_path, dir_names, filenames in os.walk(_UpperCAmelCase ):
lowerCAmelCase = [d for d in dir_names if d != 'scripts' and d[0] not in '._']
for filename in filenames:
if filename == "__init__.py":
continue
if os.path.splitext(_UpperCAmelCase )[1] in (".py", ".ipynb"):
yield os.path.join(_UpperCAmelCase , _UpperCAmelCase ).lstrip('./' )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ):
return F'{i * " "}*' if i else "\n##"
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ):
lowerCAmelCase = old_path.split(os.sep )
for i, new_part in enumerate(new_path.split(os.sep ) ):
if (i + 1 > len(_UpperCAmelCase ) or old_parts[i] != new_part) and new_part:
print(F'{md_prefix(_UpperCAmelCase )} {new_part.replace("_" , " " ).title()}' )
return new_path
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "." ):
lowerCAmelCase = ''
for filepath in sorted(good_file_paths(_UpperCAmelCase ) ):
lowerCAmelCase ,lowerCAmelCase = os.path.split(_UpperCAmelCase )
if filepath != old_path:
lowerCAmelCase = print_path(_UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase = (filepath.count(os.sep ) + 1) if filepath else 0
lowerCAmelCase = F'{filepath}/{filename}'.replace(' ' , '%20' )
lowerCAmelCase = os.path.splitext(filename.replace('_' , ' ' ).title() )[0]
print(F'{md_prefix(_UpperCAmelCase )} [{filename}]({url})' )
if __name__ == "__main__":
print_directory_md('''.''')
| 309
| 1
|
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_donut import DonutImageProcessor
__UpperCamelCase : Optional[int] = logging.get_logger(__name__)
class a ( a__ ):
def __init__( self , *_snake_case , **_snake_case ):
"""simple docstring"""
warnings.warn(
'The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use DonutImageProcessor instead.' , _snake_case , )
super().__init__(*_snake_case , **_snake_case )
| 309
|
"""simple docstring"""
import os
from datetime import datetime as dt
from github import Github
__UpperCamelCase : int = [
'''good first issue''',
'''good second issue''',
'''good difficult issue''',
'''enhancement''',
'''new pipeline/model''',
'''new scheduler''',
'''wip''',
]
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = Github(os.environ['GITHUB_TOKEN'] )
lowerCAmelCase = g.get_repo('huggingface/diffusers' )
lowerCAmelCase = repo.get_issues(state='open' )
for issue in open_issues:
lowerCAmelCase = sorted(issue.get_comments() , key=lambda _UpperCAmelCase : i.created_at , reverse=_UpperCAmelCase )
lowerCAmelCase = comments[0] if len(_UpperCAmelCase ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Closes the issue after 7 days of inactivity since the Stalebot notification.
issue.edit(state='closed' )
elif (
"stale" in issue.get_labels()
and last_comment is not None
and last_comment.user.login != "github-actions[bot]"
):
# Opens the issue if someone other than Stalebot commented.
issue.edit(state='open' )
issue.remove_from_labels('stale' )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Post a Stalebot notification after 23 days of inactivity.
issue.create_comment(
'This issue has been automatically marked as stale because it has not had '
'recent activity. If you think this still needs to be addressed '
'please comment on this thread.\n\nPlease note that issues that do not follow the '
'[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) '
'are likely to be ignored.' )
issue.add_to_labels('stale' )
if __name__ == "__main__":
main()
| 309
| 1
|
"""simple docstring"""
import collections
import inspect
import unittest
from typing import Dict, List, Tuple
from transformers import MaskFormerSwinConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device
from transformers.utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MaskFormerSwinBackbone
from transformers.models.maskformer import MaskFormerSwinModel
class a :
def __init__( self , _snake_case , _snake_case=13 , _snake_case=32 , _snake_case=2 , _snake_case=3 , _snake_case=16 , _snake_case=[1, 2, 1] , _snake_case=[2, 2, 4] , _snake_case=2 , _snake_case=2.0 , _snake_case=True , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.1 , _snake_case="gelu" , _snake_case=False , _snake_case=True , _snake_case=0.02 , _snake_case=1E-5 , _snake_case=True , _snake_case=None , _snake_case=True , _snake_case=10 , _snake_case=8 , _snake_case=["stage1", "stage2", "stage3"] , _snake_case=[1, 2, 3] , ):
"""simple docstring"""
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = image_size
lowerCAmelCase = patch_size
lowerCAmelCase = num_channels
lowerCAmelCase = embed_dim
lowerCAmelCase = depths
lowerCAmelCase = num_heads
lowerCAmelCase = window_size
lowerCAmelCase = mlp_ratio
lowerCAmelCase = qkv_bias
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = drop_path_rate
lowerCAmelCase = hidden_act
lowerCAmelCase = use_absolute_embeddings
lowerCAmelCase = patch_norm
lowerCAmelCase = layer_norm_eps
lowerCAmelCase = initializer_range
lowerCAmelCase = is_training
lowerCAmelCase = scope
lowerCAmelCase = use_labels
lowerCAmelCase = type_sequence_label_size
lowerCAmelCase = encoder_stride
lowerCAmelCase = out_features
lowerCAmelCase = out_indices
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase = None
if self.use_labels:
lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase = self.get_config()
return config, pixel_values, labels
def UpperCamelCase__ ( self ):
"""simple docstring"""
return MaskFormerSwinConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = MaskFormerSwinModel(config=_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case )
lowerCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
lowerCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = MaskFormerSwinBackbone(config=_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , [16, 32, 64] )
# verify ValueError
with self.parent.assertRaises(_snake_case ):
lowerCAmelCase = ['stem']
lowerCAmelCase = MaskFormerSwinBackbone(config=_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.prepare_config_and_inputs()
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = config_and_inputs
lowerCAmelCase = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class a ( a__ , a__ , unittest.TestCase ):
snake_case__ = (
(
MaskFormerSwinModel,
MaskFormerSwinBackbone,
)
if is_torch_available()
else ()
)
snake_case__ = {'''feature-extraction''': MaskFormerSwinModel} if is_torch_available() else {}
snake_case__ = False
snake_case__ = False
snake_case__ = False
snake_case__ = False
snake_case__ = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = MaskFormerSwinModelTester(self )
lowerCAmelCase = ConfigTester(self , config_class=_snake_case , embed_dim=37 )
@require_torch_multi_gpu
@unittest.skip(
reason=(
'`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with'
' `nn.DataParallel`'
) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCamelCase__ ( self ):
"""simple docstring"""
return
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*_snake_case )
@unittest.skip('Swin does not use inputs_embeds' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
@unittest.skip('Swin does not support feedforward chunking' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase = model_class(_snake_case )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
lowerCAmelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_snake_case , nn.Linear ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase = model_class(_snake_case )
lowerCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase = [*signature.parameters.keys()]
lowerCAmelCase = ['pixel_values']
self.assertListEqual(arg_names[:1] , _snake_case )
@unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
@unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = model_class(_snake_case )
model.to(_snake_case )
model.eval()
with torch.no_grad():
lowerCAmelCase = model(**self._prepare_for_class(_snake_case , _snake_case ) )
lowerCAmelCase = outputs.hidden_states
lowerCAmelCase = getattr(
self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(_snake_case ) , _snake_case )
# Swin has a different seq_length
lowerCAmelCase = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
lowerCAmelCase = True
self.check_hidden_states_output(_snake_case , _snake_case , _snake_case , _snake_case )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCAmelCase = True
self.check_hidden_states_output(_snake_case , _snake_case , _snake_case , _snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase = 3
lowerCAmelCase = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
lowerCAmelCase = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
lowerCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
lowerCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
lowerCAmelCase = True
self.check_hidden_states_output(_snake_case , _snake_case , _snake_case , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCAmelCase = True
self.check_hidden_states_output(_snake_case , _snake_case , _snake_case , (padded_height, padded_width) )
@unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
@unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
@unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(_snake_case ):
lowerCAmelCase = 0
return t
def check_equivalence(_snake_case , _snake_case , _snake_case , _snake_case={} ):
with torch.no_grad():
lowerCAmelCase = model(**_snake_case , return_dict=_snake_case , **_snake_case )
lowerCAmelCase = model(**_snake_case , return_dict=_snake_case , **_snake_case ).to_tuple()
def recursive_check(_snake_case , _snake_case ):
if isinstance(_snake_case , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(_snake_case , _snake_case ):
recursive_check(_snake_case , _snake_case )
elif isinstance(_snake_case , _snake_case ):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values() , dict_object.values() ):
recursive_check(_snake_case , _snake_case )
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(_snake_case ) , set_nan_tensor_to_zero(_snake_case ) , atol=1E-5 ) , msg=(
'Tuple and dict output are not equal. Difference:'
F' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:'
F' {torch.isnan(_snake_case ).any()} and `inf`: {torch.isinf(_snake_case )}. Dict has'
F' `nan`: {torch.isnan(_snake_case ).any()} and `inf`: {torch.isinf(_snake_case )}.'
) , )
recursive_check(_snake_case , _snake_case )
for model_class in self.all_model_classes:
lowerCAmelCase = model_class(_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = self._prepare_for_class(_snake_case , _snake_case )
lowerCAmelCase = self._prepare_for_class(_snake_case , _snake_case )
check_equivalence(_snake_case , _snake_case , _snake_case )
lowerCAmelCase = self._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case )
lowerCAmelCase = self._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case )
check_equivalence(_snake_case , _snake_case , _snake_case )
lowerCAmelCase = self._prepare_for_class(_snake_case , _snake_case )
lowerCAmelCase = self._prepare_for_class(_snake_case , _snake_case )
check_equivalence(_snake_case , _snake_case , _snake_case , {'output_hidden_states': True} )
lowerCAmelCase = self._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case )
lowerCAmelCase = self._prepare_for_class(_snake_case , _snake_case , return_labels=_snake_case )
check_equivalence(_snake_case , _snake_case , _snake_case , {'output_hidden_states': True} )
@require_torch
class a ( unittest.TestCase , a__ ):
snake_case__ = (MaskFormerSwinBackbone,) if is_torch_available() else ()
snake_case__ = MaskFormerSwinConfig
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = MaskFormerSwinModelTester(self )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase = inputs_dict['pixel_values'].shape[0]
for backbone_class in self.all_model_classes:
lowerCAmelCase = backbone_class(_snake_case )
backbone.to(_snake_case )
backbone.eval()
lowerCAmelCase = backbone(**_snake_case )
# Test default outputs and verify feature maps
self.assertIsInstance(outputs.feature_maps , _snake_case )
self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) )
for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ):
self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) )
self.assertIsNone(outputs.hidden_states )
self.assertIsNone(outputs.attentions )
# Test output_hidden_states=True
lowerCAmelCase = backbone(**_snake_case , output_hidden_states=_snake_case )
self.assertIsNotNone(outputs.hidden_states )
self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) )
# We skip the stem layer
for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ):
for hidden_state in hidden_states:
# Hidden states are in the format (batch_size, (height * width), n_channels)
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = hidden_state.shape
self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) )
# Test output_attentions=True
if self.has_attentions:
lowerCAmelCase = backbone(**_snake_case , output_attentions=_snake_case )
self.assertIsNotNone(outputs.attentions )
| 309
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__UpperCamelCase : Any = {
'''configuration_layoutlmv2''': ['''LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv2Config'''],
'''processing_layoutlmv2''': ['''LayoutLMv2Processor'''],
'''tokenization_layoutlmv2''': ['''LayoutLMv2Tokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Tuple = ['''LayoutLMv2TokenizerFast''']
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Optional[int] = ['''LayoutLMv2FeatureExtractor''']
__UpperCamelCase : Optional[int] = ['''LayoutLMv2ImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Any = [
'''LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''LayoutLMv2ForQuestionAnswering''',
'''LayoutLMv2ForSequenceClassification''',
'''LayoutLMv2ForTokenClassification''',
'''LayoutLMv2Layer''',
'''LayoutLMv2Model''',
'''LayoutLMv2PreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaLayer,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
else:
import sys
__UpperCamelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 309
| 1
|
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor
from ..utils import is_datasets_available
from .base import PipelineTool
if is_datasets_available():
from datasets import load_dataset
class a ( a__ ):
snake_case__ = '''microsoft/speecht5_tts'''
snake_case__ = (
'''This is a tool that reads an English text out loud. It takes an input named `text` which should contain the '''
'''text to read (in English) and returns a waveform object containing the sound.'''
)
snake_case__ = '''text_reader'''
snake_case__ = SpeechTaProcessor
snake_case__ = SpeechTaForTextToSpeech
snake_case__ = SpeechTaHifiGan
snake_case__ = ['''text''']
snake_case__ = ['''audio''']
def UpperCamelCase__ ( self ):
"""simple docstring"""
if self.post_processor is None:
lowerCAmelCase = 'microsoft/speecht5_hifigan'
super().setup()
def UpperCamelCase__ ( self , _snake_case , _snake_case=None ):
"""simple docstring"""
lowerCAmelCase = self.pre_processor(text=_snake_case , return_tensors='pt' , truncation=_snake_case )
if speaker_embeddings is None:
if not is_datasets_available():
raise ImportError('Datasets needs to be installed if not passing speaker embeddings.' )
lowerCAmelCase = load_dataset('Matthijs/cmu-arctic-xvectors' , split='validation' )
lowerCAmelCase = torch.tensor(embeddings_dataset[73_05]['xvector'] ).unsqueeze(0 )
return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings}
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
with torch.no_grad():
return self.model.generate_speech(**_snake_case )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
with torch.no_grad():
return self.post_processor(_snake_case ).cpu().detach()
| 309
|
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_poolformer import PoolFormerImageProcessor
__UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
class a ( a__ ):
def __init__( self , *_snake_case , **_snake_case ):
"""simple docstring"""
warnings.warn(
'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use PoolFormerImageProcessor instead.' , _snake_case , )
super().__init__(*_snake_case , **_snake_case )
| 309
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__UpperCamelCase : Any = {
'''configuration_clipseg''': [
'''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''CLIPSegConfig''',
'''CLIPSegTextConfig''',
'''CLIPSegVisionConfig''',
],
'''processing_clipseg''': ['''CLIPSegProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Tuple = [
'''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''CLIPSegModel''',
'''CLIPSegPreTrainedModel''',
'''CLIPSegTextModel''',
'''CLIPSegVisionModel''',
'''CLIPSegForImageSegmentation''',
]
if TYPE_CHECKING:
from .configuration_clipseg import (
CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP,
CLIPSegConfig,
CLIPSegTextConfig,
CLIPSegVisionConfig,
)
from .processing_clipseg import CLIPSegProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_clipseg import (
CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST,
CLIPSegForImageSegmentation,
CLIPSegModel,
CLIPSegPreTrainedModel,
CLIPSegTextModel,
CLIPSegVisionModel,
)
else:
import sys
__UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 309
|
"""simple docstring"""
from __future__ import annotations
import random
# Maximum size of the population. Bigger could be faster but is more memory expensive.
__UpperCamelCase : str = 200
# Number of elements selected in every generation of evolution. The selection takes
# place from best to worst of that generation and must be smaller than N_POPULATION.
__UpperCamelCase : Optional[Any] = 50
# Probability that an element of a generation can mutate, changing one of its genes.
# This will guarantee that all genes will be used during evolution.
__UpperCamelCase : Dict = 0.4
# Just a seed to improve randomness required by the algorithm.
random.seed(random.randint(0, 1000))
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ):
lowerCAmelCase = len([g for position, g in enumerate(_UpperCAmelCase ) if g == main_target[position]] )
return (item, float(_UpperCAmelCase ))
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ):
lowerCAmelCase = random.randint(0 , len(_UpperCAmelCase ) - 1 )
lowerCAmelCase = parent_a[:random_slice] + parent_a[random_slice:]
lowerCAmelCase = parent_a[:random_slice] + parent_a[random_slice:]
return (child_a, child_a)
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] ):
lowerCAmelCase = list(_UpperCAmelCase )
if random.uniform(0 , 1 ) < MUTATION_PROBABILITY:
lowerCAmelCase = random.choice(_UpperCAmelCase )
return "".join(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : tuple[str, float] , _UpperCAmelCase : list[tuple[str, float]] , _UpperCAmelCase : list[str] , ):
lowerCAmelCase = []
# Generate more children proportionally to the fitness score.
lowerCAmelCase = int(parent_a[1] * 100 ) + 1
lowerCAmelCase = 10 if child_n >= 10 else child_n
for _ in range(_UpperCAmelCase ):
lowerCAmelCase = population_score[random.randint(0 , _UpperCAmelCase )][0]
lowerCAmelCase ,lowerCAmelCase = crossover(parent_a[0] , _UpperCAmelCase )
# Append new string to the population list.
pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) )
pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) )
return pop
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] , _UpperCAmelCase : bool = True ):
# Verify if N_POPULATION is bigger than N_SELECTED
if N_POPULATION < N_SELECTED:
lowerCAmelCase = F'{N_POPULATION} must be bigger than {N_SELECTED}'
raise ValueError(_UpperCAmelCase )
# Verify that the target contains no genes besides the ones inside genes variable.
lowerCAmelCase = sorted({c for c in target if c not in genes} )
if not_in_genes_list:
lowerCAmelCase = F'{not_in_genes_list} is not in genes list, evolution cannot converge'
raise ValueError(_UpperCAmelCase )
# Generate random starting population.
lowerCAmelCase = []
for _ in range(_UpperCAmelCase ):
population.append(''.join([random.choice(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) )] ) )
# Just some logs to know what the algorithms is doing.
lowerCAmelCase ,lowerCAmelCase = 0, 0
# This loop will end when we find a perfect match for our target.
while True:
generation += 1
total_population += len(_UpperCAmelCase )
# Random population created. Now it's time to evaluate.
# Adding a bit of concurrency can make everything faster,
#
# import concurrent.futures
# population_score: list[tuple[str, float]] = []
# with concurrent.futures.ThreadPoolExecutor(
# max_workers=NUM_WORKERS) as executor:
# futures = {executor.submit(evaluate, item) for item in population}
# concurrent.futures.wait(futures)
# population_score = [item.result() for item in futures]
#
# but with a simple algorithm like this, it will probably be slower.
# We just need to call evaluate for every item inside the population.
lowerCAmelCase = [evaluate(_UpperCAmelCase , _UpperCAmelCase ) for item in population]
# Check if there is a matching evolution.
lowerCAmelCase = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] , reverse=_UpperCAmelCase )
if population_score[0][0] == target:
return (generation, total_population, population_score[0][0])
# Print the best result every 10 generation.
# Just to know that the algorithm is working.
if debug and generation % 10 == 0:
print(
F'\nGeneration: {generation}'
F'\nTotal Population:{total_population}'
F'\nBest score: {population_score[0][1]}'
F'\nBest string: {population_score[0][0]}' )
# Flush the old population, keeping some of the best evolutions.
# Keeping this avoid regression of evolution.
lowerCAmelCase = population[: int(N_POPULATION / 3 )]
population.clear()
population.extend(_UpperCAmelCase )
# Normalize population score to be between 0 and 1.
lowerCAmelCase = [
(item, score / len(_UpperCAmelCase )) for item, score in population_score
]
# This is selection
for i in range(_UpperCAmelCase ):
population.extend(select(population_score[int(_UpperCAmelCase )] , _UpperCAmelCase , _UpperCAmelCase ) )
# Check if the population has already reached the maximum value and if so,
# break the cycle. If this check is disabled, the algorithm will take
# forever to compute large strings, but will also calculate small strings in
# a far fewer generations.
if len(_UpperCAmelCase ) > N_POPULATION:
break
if __name__ == "__main__":
__UpperCamelCase : Tuple = (
'''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!'''
)
__UpperCamelCase : str = list(
''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm'''
'''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\'''
)
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase : Dict = basic(target_str, genes_list)
print(
f'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}'''
)
| 309
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__UpperCamelCase : Optional[Any] = {
'''configuration_x_clip''': [
'''XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''XCLIPConfig''',
'''XCLIPTextConfig''',
'''XCLIPVisionConfig''',
],
'''processing_x_clip''': ['''XCLIPProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Union[str, Any] = [
'''XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''XCLIPModel''',
'''XCLIPPreTrainedModel''',
'''XCLIPTextModel''',
'''XCLIPVisionModel''',
]
if TYPE_CHECKING:
from .configuration_x_clip import (
XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
XCLIPConfig,
XCLIPTextConfig,
XCLIPVisionConfig,
)
from .processing_x_clip import XCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_x_clip import (
XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
XCLIPModel,
XCLIPPreTrainedModel,
XCLIPTextModel,
XCLIPVisionModel,
)
else:
import sys
__UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 309
|
"""simple docstring"""
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class a :
def __init__( self ):
"""simple docstring"""
lowerCAmelCase = ''
lowerCAmelCase = ''
lowerCAmelCase = []
lowerCAmelCase = 0
lowerCAmelCase = 2_56
lowerCAmelCase = 0
lowerCAmelCase = 0
lowerCAmelCase = 0
lowerCAmelCase = 0
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = cva.imread(_snake_case , 0 )
lowerCAmelCase = copy.deepcopy(self.img )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = plt.hist(self.img.ravel() , 2_56 , [0, 2_56] , label='x' )
lowerCAmelCase = np.sum(_snake_case )
for i in range(len(_snake_case ) ):
lowerCAmelCase = x[i] / self.k
self.sk += prk
lowerCAmelCase = (self.L - 1) * self.sk
if self.rem != 0:
lowerCAmelCase = int(last % last )
lowerCAmelCase = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(_snake_case )
lowerCAmelCase = int(np.ma.count(self.img ) / self.img[1].size )
lowerCAmelCase = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
lowerCAmelCase = self.img[j][i]
if num != self.last_list[num]:
lowerCAmelCase = self.last_list[num]
cva.imwrite('output_data/output.jpg' , self.img )
def UpperCamelCase__ ( self ):
"""simple docstring"""
plt.hist(self.img.ravel() , 2_56 , [0, 2_56] )
def UpperCamelCase__ ( self ):
"""simple docstring"""
cva.imshow('Output-Image' , self.img )
cva.imshow('Input-Image' , self.original_image )
cva.waitKey(50_00 )
cva.destroyAllWindows()
if __name__ == "__main__":
__UpperCamelCase : int = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''')
__UpperCamelCase : List[Any] = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 309
| 1
|
"""simple docstring"""
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : List[Any] ):
lowerCAmelCase = [0 for i in range(r + 1 )]
# nc0 = 1
lowerCAmelCase = 1
for i in range(1 , n + 1 ):
# to compute current row from previous row.
lowerCAmelCase = min(_UpperCAmelCase , _UpperCAmelCase )
while j > 0:
c[j] += c[j - 1]
j -= 1
return c[r]
print(binomial_coefficient(n=10, r=5))
| 309
|
"""simple docstring"""
import pytest
from datasets.splits import SplitDict, SplitInfo
from datasets.utils.py_utils import asdict
@pytest.mark.parametrize(
'split_dict' , [
SplitDict(),
SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 , dataset_name='my_dataset' )} ),
SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 )} ),
SplitDict({'train': SplitInfo()} ),
] , )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : SplitDict ):
lowerCAmelCase = split_dict._to_yaml_list()
assert len(_UpperCAmelCase ) == len(_UpperCAmelCase )
lowerCAmelCase = SplitDict._from_yaml_list(_UpperCAmelCase )
for split_name, split_info in split_dict.items():
# dataset_name field is deprecated, and is therefore not part of the YAML dump
lowerCAmelCase = None
# the split name of split_dict takes over the name of the split info object
lowerCAmelCase = split_name
assert split_dict == reloaded
@pytest.mark.parametrize(
'split_info' , [SplitInfo(), SplitInfo(dataset_name=_UpperCAmelCase ), SplitInfo(dataset_name='my_dataset' )] )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] ):
# For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name"
# field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files
lowerCAmelCase = asdict(SplitDict({'train': split_info} ) )
assert "dataset_name" in split_dict_asdict["train"]
assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
| 309
| 1
|
"""simple docstring"""
import argparse
import requests
import torch
# pip3 install salesforce-lavis
# I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis
from lavis.models import load_model_and_preprocess
from PIL import Image
from transformers import (
AutoTokenizer,
BlipaConfig,
BlipaForConditionalGeneration,
BlipaProcessor,
BlipaVisionConfig,
BlipImageProcessor,
OPTConfig,
TaConfig,
)
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png'
lowerCAmelCase = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert('RGB' )
return image
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any ):
lowerCAmelCase = []
# fmt: off
# vision encoder
rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') )
rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') )
rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') )
rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') )
rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') )
rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') )
for i in range(config.vision_config.num_hidden_layers ):
rename_keys.append((F'visual_encoder.blocks.{i}.norm1.weight', F'vision_model.encoder.layers.{i}.layer_norm1.weight') )
rename_keys.append((F'visual_encoder.blocks.{i}.norm1.bias', F'vision_model.encoder.layers.{i}.layer_norm1.bias') )
rename_keys.append((F'visual_encoder.blocks.{i}.norm2.weight', F'vision_model.encoder.layers.{i}.layer_norm2.weight') )
rename_keys.append((F'visual_encoder.blocks.{i}.norm2.bias', F'vision_model.encoder.layers.{i}.layer_norm2.bias') )
rename_keys.append((F'visual_encoder.blocks.{i}.attn.qkv.weight', F'vision_model.encoder.layers.{i}.self_attn.qkv.weight') )
rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.weight', F'vision_model.encoder.layers.{i}.self_attn.projection.weight',) )
rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.bias', F'vision_model.encoder.layers.{i}.self_attn.projection.bias') )
rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.weight', F'vision_model.encoder.layers.{i}.mlp.fc1.weight') )
rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.bias', F'vision_model.encoder.layers.{i}.mlp.fc1.bias') )
rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.weight', F'vision_model.encoder.layers.{i}.mlp.fc2.weight') )
rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.bias', F'vision_model.encoder.layers.{i}.mlp.fc2.bias') )
# QFormer
rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') )
rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') )
# fmt: on
return rename_keys
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] ):
lowerCAmelCase = dct.pop(_UpperCAmelCase )
lowerCAmelCase = val
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ):
for i in range(config.vision_config.num_hidden_layers ):
# read in original q and v biases
lowerCAmelCase = state_dict.pop(F'visual_encoder.blocks.{i}.attn.q_bias' )
lowerCAmelCase = state_dict.pop(F'visual_encoder.blocks.{i}.attn.v_bias' )
# next, set bias in the state dict
lowerCAmelCase = torch.cat((q_bias, torch.zeros_like(_UpperCAmelCase , requires_grad=_UpperCAmelCase ), v_bias) )
lowerCAmelCase = qkv_bias
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : str ):
lowerCAmelCase = 364 if 'coco' in model_name else 224
lowerCAmelCase = BlipaVisionConfig(image_size=_UpperCAmelCase ).to_dict()
# make sure the models have proper bos_token_id and eos_token_id set (important for generation)
# seems like flan-T5 models don't have bos_token_id properly set?
if "opt-2.7b" in model_name:
lowerCAmelCase = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=_UpperCAmelCase ).to_dict()
elif "opt-6.7b" in model_name:
lowerCAmelCase = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=_UpperCAmelCase ).to_dict()
elif "t5-xl" in model_name:
lowerCAmelCase = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict()
elif "t5-xxl" in model_name:
lowerCAmelCase = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict()
lowerCAmelCase = BlipaConfig(vision_config=_UpperCAmelCase , text_config=_UpperCAmelCase )
return config, image_size
@torch.no_grad()
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : int=None , _UpperCAmelCase : Any=False ):
lowerCAmelCase = (
AutoTokenizer.from_pretrained('facebook/opt-2.7b' )
if 'opt' in model_name
else AutoTokenizer.from_pretrained('google/flan-t5-xl' )
)
lowerCAmelCase = tokenizer('\n' , add_special_tokens=_UpperCAmelCase ).input_ids[0]
lowerCAmelCase ,lowerCAmelCase = get_blipa_config(_UpperCAmelCase , eos_token_id=_UpperCAmelCase )
lowerCAmelCase = BlipaForConditionalGeneration(_UpperCAmelCase ).eval()
lowerCAmelCase = {
'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'),
'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'),
'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'),
'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'),
'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'),
'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'),
'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'),
}
lowerCAmelCase ,lowerCAmelCase = model_name_to_original[model_name]
# load original model
print('Loading original model...' )
lowerCAmelCase = 'cuda' if torch.cuda.is_available() else 'cpu'
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = load_model_and_preprocess(
name=_UpperCAmelCase , model_type=_UpperCAmelCase , is_eval=_UpperCAmelCase , device=_UpperCAmelCase )
original_model.eval()
print('Done!' )
# update state dict keys
lowerCAmelCase = original_model.state_dict()
lowerCAmelCase = create_rename_keys(_UpperCAmelCase )
for src, dest in rename_keys:
rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# some keys can be renamed efficiently
for key, val in state_dict.copy().items():
lowerCAmelCase = state_dict.pop(_UpperCAmelCase )
if key.startswith('Qformer.bert' ):
lowerCAmelCase = key.replace('Qformer.bert' , 'qformer' )
if "attention.self" in key:
lowerCAmelCase = key.replace('self' , 'attention' )
if "opt_proj" in key:
lowerCAmelCase = key.replace('opt_proj' , 'language_projection' )
if "t5_proj" in key:
lowerCAmelCase = key.replace('t5_proj' , 'language_projection' )
if key.startswith('opt' ):
lowerCAmelCase = key.replace('opt' , 'language' )
if key.startswith('t5' ):
lowerCAmelCase = key.replace('t5' , 'language' )
lowerCAmelCase = val
# read in qv biases
read_in_q_v_bias(_UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase ,lowerCAmelCase = hf_model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase )
assert len(_UpperCAmelCase ) == 0
assert unexpected_keys == ["qformer.embeddings.position_ids"]
lowerCAmelCase = load_demo_image()
lowerCAmelCase = vis_processors['eval'](_UpperCAmelCase ).unsqueeze(0 ).to(_UpperCAmelCase )
lowerCAmelCase = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(_UpperCAmelCase )
# create processor
lowerCAmelCase = BlipImageProcessor(
size={'height': image_size, 'width': image_size} , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase )
lowerCAmelCase = BlipaProcessor(image_processor=_UpperCAmelCase , tokenizer=_UpperCAmelCase )
lowerCAmelCase = processor(images=_UpperCAmelCase , return_tensors='pt' ).pixel_values.to(_UpperCAmelCase )
# make sure processor creates exact same pixel values
assert torch.allclose(_UpperCAmelCase , _UpperCAmelCase )
original_model.to(_UpperCAmelCase )
hf_model.to(_UpperCAmelCase )
with torch.no_grad():
if "opt" in model_name:
lowerCAmelCase = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits
lowerCAmelCase = hf_model(_UpperCAmelCase , _UpperCAmelCase ).logits
else:
lowerCAmelCase = original_model(
{'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits
lowerCAmelCase = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 )
lowerCAmelCase = hf_model(_UpperCAmelCase , _UpperCAmelCase , labels=_UpperCAmelCase ).logits
assert original_logits.shape == logits.shape
print('First values of original logits:' , original_logits[0, :3, :3] )
print('First values of HF logits:' , logits[0, :3, :3] )
# assert values
if model_name == "blip2-flan-t5-xl":
lowerCAmelCase = torch.tensor(
[[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=_UpperCAmelCase )
assert torch.allclose(logits[0, :3, :3] , _UpperCAmelCase , atol=1e-4 )
elif model_name == "blip2-flan-t5-xl-coco":
lowerCAmelCase = torch.tensor(
[[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=_UpperCAmelCase )
else:
# cast to same type
lowerCAmelCase = logits.dtype
assert torch.allclose(original_logits.to(_UpperCAmelCase ) , _UpperCAmelCase , atol=1e-2 )
print('Looks ok!' )
print('Generating a caption...' )
lowerCAmelCase = ''
lowerCAmelCase = tokenizer(_UpperCAmelCase , return_tensors='pt' ).input_ids.to(_UpperCAmelCase )
lowerCAmelCase = original_model.generate({'image': original_pixel_values} )
lowerCAmelCase = hf_model.generate(
_UpperCAmelCase , _UpperCAmelCase , do_sample=_UpperCAmelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , )
print('Original generation:' , _UpperCAmelCase )
lowerCAmelCase = input_ids.shape[1]
lowerCAmelCase = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_UpperCAmelCase )
lowerCAmelCase = [text.strip() for text in output_text]
print('HF generation:' , _UpperCAmelCase )
if pytorch_dump_folder_path is not None:
processor.save_pretrained(_UpperCAmelCase )
hf_model.save_pretrained(_UpperCAmelCase )
if push_to_hub:
processor.push_to_hub(F'nielsr/{model_name}' )
hf_model.push_to_hub(F'nielsr/{model_name}' )
if __name__ == "__main__":
__UpperCamelCase : Tuple = argparse.ArgumentParser()
__UpperCamelCase : Dict = [
'''blip2-opt-2.7b''',
'''blip2-opt-6.7b''',
'''blip2-opt-2.7b-coco''',
'''blip2-opt-6.7b-coco''',
'''blip2-flan-t5-xl''',
'''blip2-flan-t5-xl-coco''',
'''blip2-flan-t5-xxl''',
]
parser.add_argument(
'''--model_name''',
default='''blip2-opt-2.7b''',
choices=choices,
type=str,
help='''Path to hf config.json of model to convert''',
)
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
help='''Whether to push the model and processor to the hub after converting''',
)
__UpperCamelCase : List[Any] = parser.parse_args()
convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 309
|
"""simple docstring"""
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
__UpperCamelCase : Any = abspath(join(dirname(dirname(__file__)), '''src'''))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action='''ignore''', category=FutureWarning)
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] ):
from diffusers.utils.testing_utils import pytest_addoption_shared
pytest_addoption_shared(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ):
from diffusers.utils.testing_utils import pytest_terminal_summary_main
lowerCAmelCase = terminalreporter.config.getoption('--make-reports' )
if make_reports:
pytest_terminal_summary_main(_UpperCAmelCase , id=_UpperCAmelCase )
| 309
| 1
|
"""simple docstring"""
import math
import os
from copy import deepcopy
import datasets
import evaluate
import torch
import transformers
from datasets import load_dataset
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from accelerate import Accelerator
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import is_tpu_available, set_seed
__UpperCamelCase : Dict = '''true'''
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : Tuple=82 , _UpperCAmelCase : Tuple=16 ):
set_seed(42 )
lowerCAmelCase = RegressionModel()
lowerCAmelCase = deepcopy(_UpperCAmelCase )
lowerCAmelCase = RegressionDataset(length=_UpperCAmelCase )
lowerCAmelCase = DataLoader(_UpperCAmelCase , batch_size=_UpperCAmelCase )
model.to(accelerator.device )
lowerCAmelCase ,lowerCAmelCase = accelerator.prepare(_UpperCAmelCase , _UpperCAmelCase )
return model, ddp_model, dataloader
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Accelerator , _UpperCAmelCase : Dict=False ):
lowerCAmelCase = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' )
lowerCAmelCase = load_dataset('glue' , 'mrpc' , split='validation' )
def tokenize_function(_UpperCAmelCase : Dict ):
lowerCAmelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase )
return outputs
with accelerator.main_process_first():
lowerCAmelCase = dataset.map(
_UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , )
lowerCAmelCase = tokenized_datasets.rename_column('label' , 'labels' )
def collate_fn(_UpperCAmelCase : int ):
if use_longest:
return tokenizer.pad(_UpperCAmelCase , padding='longest' , return_tensors='pt' )
return tokenizer.pad(_UpperCAmelCase , padding='max_length' , max_length=128 , return_tensors='pt' )
return DataLoader(_UpperCAmelCase , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=16 )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] ):
lowerCAmelCase = Accelerator(dispatch_batches=_UpperCAmelCase , split_batches=_UpperCAmelCase )
lowerCAmelCase = get_dataloader(_UpperCAmelCase , not dispatch_batches )
lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained(
'hf-internal-testing/mrpc-bert-base-cased' , return_dict=_UpperCAmelCase )
lowerCAmelCase ,lowerCAmelCase = accelerator.prepare(_UpperCAmelCase , _UpperCAmelCase )
return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int ):
lowerCAmelCase = []
for batch in dataloader:
lowerCAmelCase ,lowerCAmelCase = batch.values()
with torch.no_grad():
lowerCAmelCase = model(_UpperCAmelCase )
lowerCAmelCase ,lowerCAmelCase = accelerator.gather_for_metrics((logit, target) )
logits_and_targets.append((logit, target) )
lowerCAmelCase ,lowerCAmelCase = [], []
for logit, targ in logits_and_targets:
logits.append(_UpperCAmelCase )
targs.append(_UpperCAmelCase )
lowerCAmelCase ,lowerCAmelCase = torch.cat(_UpperCAmelCase ), torch.cat(_UpperCAmelCase )
return logits, targs
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Accelerator , _UpperCAmelCase : str=82 , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : Any=16 ):
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = get_basic_setup(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase ,lowerCAmelCase = generate_predictions(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
assert (
len(_UpperCAmelCase ) == num_samples
), F'Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(_UpperCAmelCase )}'
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False ):
lowerCAmelCase = evaluate.load('glue' , 'mrpc' )
lowerCAmelCase ,lowerCAmelCase = get_mrpc_setup(_UpperCAmelCase , _UpperCAmelCase )
# First do baseline
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = setup['no']
model.to(_UpperCAmelCase )
model.eval()
for batch in dataloader:
batch.to(_UpperCAmelCase )
with torch.inference_mode():
lowerCAmelCase = model(**_UpperCAmelCase )
lowerCAmelCase = outputs.logits.argmax(dim=-1 )
metric.add_batch(predictions=_UpperCAmelCase , references=batch['labels'] )
lowerCAmelCase = metric.compute()
# Then do distributed
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = setup['ddp']
model.eval()
for batch in dataloader:
with torch.inference_mode():
lowerCAmelCase = model(**_UpperCAmelCase )
lowerCAmelCase = outputs.logits.argmax(dim=-1 )
lowerCAmelCase = batch['labels']
lowerCAmelCase ,lowerCAmelCase = accelerator.gather_for_metrics((preds, references) )
metric.add_batch(predictions=_UpperCAmelCase , references=_UpperCAmelCase )
lowerCAmelCase = metric.compute()
for key in "accuracy f1".split():
assert math.isclose(
baseline[key] , distributed[key] ), F'Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n'
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = Accelerator(split_batches=_UpperCAmelCase , dispatch_batches=_UpperCAmelCase )
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_warning()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# These are a bit slower so they should only be ran on the GPU or TPU
if torch.cuda.is_available() or is_tpu_available():
if accelerator.is_local_main_process:
print('**Testing gather_for_metrics**' )
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
if accelerator.is_local_main_process:
print(F'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`' )
test_mrpc(_UpperCAmelCase , _UpperCAmelCase )
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print('**Test torch metrics**' )
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
lowerCAmelCase = Accelerator(split_batches=_UpperCAmelCase , dispatch_batches=_UpperCAmelCase )
if accelerator.is_local_main_process:
print(F'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99' )
test_torch_metrics(_UpperCAmelCase , 99 )
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print('**Test last batch is not dropped when perfectly divisible**' )
lowerCAmelCase = Accelerator()
test_torch_metrics(_UpperCAmelCase , 512 )
accelerator.state._reset_state()
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 309
|
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class a ( unittest.TestCase ):
def __init__( self , _snake_case , _snake_case=7 , _snake_case=3 , _snake_case=18 , _snake_case=30 , _snake_case=4_00 , _snake_case=True , _snake_case=None , _snake_case=True , _snake_case=None , _snake_case=True , ):
"""simple docstring"""
lowerCAmelCase = size if size is not None else {'shortest_edge': 20}
lowerCAmelCase = crop_size if crop_size is not None else {'height': 18, 'width': 18}
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = num_channels
lowerCAmelCase = image_size
lowerCAmelCase = min_resolution
lowerCAmelCase = max_resolution
lowerCAmelCase = do_resize
lowerCAmelCase = size
lowerCAmelCase = do_center_crop
lowerCAmelCase = crop_size
lowerCAmelCase = do_flip_channel_order
def UpperCamelCase__ ( self ):
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_flip_channel_order": self.do_flip_channel_order,
}
@require_torch
@require_vision
class a ( a__ , unittest.TestCase ):
snake_case__ = MobileViTImageProcessor if is_vision_available() else None
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = MobileViTImageProcessingTester(self )
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_snake_case , 'do_resize' ) )
self.assertTrue(hasattr(_snake_case , 'size' ) )
self.assertTrue(hasattr(_snake_case , 'do_center_crop' ) )
self.assertTrue(hasattr(_snake_case , 'center_crop' ) )
self.assertTrue(hasattr(_snake_case , 'do_flip_channel_order' ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 20} )
self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} )
lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'shortest_edge': 42} )
self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case )
for image in image_inputs:
self.assertIsInstance(_snake_case , Image.Image )
# Test not batched input
lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , numpify=_snake_case )
for image in image_inputs:
self.assertIsInstance(_snake_case , np.ndarray )
# Test not batched input
lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , torchify=_snake_case )
for image in image_inputs:
self.assertIsInstance(_snake_case , torch.Tensor )
# Test not batched input
lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
| 309
| 1
|
"""simple docstring"""
__UpperCamelCase : Tuple = [
[0, 16, 13, 0, 0, 0],
[0, 0, 10, 12, 0, 0],
[0, 4, 0, 0, 14, 0],
[0, 0, 9, 0, 0, 20],
[0, 0, 0, 7, 0, 4],
[0, 0, 0, 0, 0, 0],
]
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict ):
# Return True if there is node that has not iterated.
lowerCAmelCase = [False] * len(_UpperCAmelCase )
lowerCAmelCase = [s]
lowerCAmelCase = True
while queue:
lowerCAmelCase = queue.pop(0 )
for ind in range(len(graph[u] ) ):
if visited[ind] is False and graph[u][ind] > 0:
queue.append(_UpperCAmelCase )
lowerCAmelCase = True
lowerCAmelCase = u
return visited[t]
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ):
lowerCAmelCase = [-1] * (len(_UpperCAmelCase ))
lowerCAmelCase = 0
lowerCAmelCase = []
lowerCAmelCase = [i[:] for i in graph] # Record original cut, copy.
while bfs(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
lowerCAmelCase = float('Inf' )
lowerCAmelCase = sink
while s != source:
# Find the minimum value in select path
lowerCAmelCase = min(_UpperCAmelCase , graph[parent[s]][s] )
lowerCAmelCase = parent[s]
max_flow += path_flow
lowerCAmelCase = sink
while v != source:
lowerCAmelCase = parent[v]
graph[u][v] -= path_flow
graph[v][u] += path_flow
lowerCAmelCase = parent[v]
for i in range(len(_UpperCAmelCase ) ):
for j in range(len(graph[0] ) ):
if graph[i][j] == 0 and temp[i][j] > 0:
res.append((i, j) )
return res
if __name__ == "__main__":
print(mincut(test_graph, source=0, sink=5))
| 309
|
"""simple docstring"""
import unittest
from accelerate import debug_launcher
from accelerate.test_utils import require_cpu, test_ops, test_script
@require_cpu
class a ( unittest.TestCase ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
debug_launcher(test_script.main )
def UpperCamelCase__ ( self ):
"""simple docstring"""
debug_launcher(test_ops.main )
| 309
| 1
|
"""simple docstring"""
from __future__ import annotations
from collections import namedtuple
from dataclasses import dataclass
@dataclass
class a :
snake_case__ = 42
snake_case__ = None
snake_case__ = None
__UpperCamelCase : Tuple = namedtuple('''CoinsDistribResult''', '''moves excess''')
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : TreeNode | None ):
if root is None:
return 0
# Validation
def count_nodes(_UpperCAmelCase : TreeNode | None ) -> int:
if node is None:
return 0
return count_nodes(node.left ) + count_nodes(node.right ) + 1
def count_coins(_UpperCAmelCase : TreeNode | None ) -> int:
if node is None:
return 0
return count_coins(node.left ) + count_coins(node.right ) + node.data
if count_nodes(_UpperCAmelCase ) != count_coins(_UpperCAmelCase ):
raise ValueError('The nodes number should be same as the number of coins' )
# Main calculation
def get_distrib(_UpperCAmelCase : TreeNode | None ) -> CoinsDistribResult:
if node is None:
return CoinsDistribResult(0 , 1 )
lowerCAmelCase ,lowerCAmelCase = get_distrib(node.left )
lowerCAmelCase ,lowerCAmelCase = get_distrib(node.right )
lowerCAmelCase = 1 - left_distrib_excess
lowerCAmelCase = 1 - right_distrib_excess
lowerCAmelCase = (
left_distrib_moves
+ right_distrib_moves
+ abs(_UpperCAmelCase )
+ abs(_UpperCAmelCase )
)
lowerCAmelCase = node.data - coins_to_left - coins_to_right
return CoinsDistribResult(_UpperCAmelCase , _UpperCAmelCase )
return get_distrib(_UpperCAmelCase )[0]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 309
|
"""simple docstring"""
from __future__ import annotations
from decimal import Decimal
from numpy import array
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[list[float]] ):
lowerCAmelCase = Decimal
# Check if the provided matrix has 2 rows and 2 columns
# since this implementation only works for 2x2 matrices
if len(_UpperCAmelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2:
# Calculate the determinant of the matrix
lowerCAmelCase = float(
d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) )
if determinant == 0:
raise ValueError('This matrix has no inverse.' )
# Creates a copy of the matrix with swapped positions of the elements
lowerCAmelCase = [[0.0, 0.0], [0.0, 0.0]]
lowerCAmelCase ,lowerCAmelCase = matrix[1][1], matrix[0][0]
lowerCAmelCase ,lowerCAmelCase = -matrix[1][0], -matrix[0][1]
# Calculate the inverse of the matrix
return [
[(float(d(_UpperCAmelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix
]
elif (
len(_UpperCAmelCase ) == 3
and len(matrix[0] ) == 3
and len(matrix[1] ) == 3
and len(matrix[2] ) == 3
):
# Calculate the determinant of the matrix using Sarrus rule
lowerCAmelCase = float(
(
(d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] ))
+ (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] ))
+ (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] ))
)
- (
(d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] ))
+ (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] ))
+ (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] ))
) )
if determinant == 0:
raise ValueError('This matrix has no inverse.' )
# Creating cofactor matrix
lowerCAmelCase = [
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
]
lowerCAmelCase = (d(matrix[1][1] ) * d(matrix[2][2] )) - (
d(matrix[1][2] ) * d(matrix[2][1] )
)
lowerCAmelCase = -(
(d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] ))
)
lowerCAmelCase = (d(matrix[1][0] ) * d(matrix[2][1] )) - (
d(matrix[1][1] ) * d(matrix[2][0] )
)
lowerCAmelCase = -(
(d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] ))
)
lowerCAmelCase = (d(matrix[0][0] ) * d(matrix[2][2] )) - (
d(matrix[0][2] ) * d(matrix[2][0] )
)
lowerCAmelCase = -(
(d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] ))
)
lowerCAmelCase = (d(matrix[0][1] ) * d(matrix[1][2] )) - (
d(matrix[0][2] ) * d(matrix[1][1] )
)
lowerCAmelCase = -(
(d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] ))
)
lowerCAmelCase = (d(matrix[0][0] ) * d(matrix[1][1] )) - (
d(matrix[0][1] ) * d(matrix[1][0] )
)
# Transpose the cofactor matrix (Adjoint matrix)
lowerCAmelCase = array(_UpperCAmelCase )
for i in range(3 ):
for j in range(3 ):
lowerCAmelCase = cofactor_matrix[j][i]
# Inverse of the matrix using the formula (1/determinant) * adjoint matrix
lowerCAmelCase = array(_UpperCAmelCase )
for i in range(3 ):
for j in range(3 ):
inverse_matrix[i][j] /= d(_UpperCAmelCase )
# Calculate the inverse of the matrix
return [[float(d(_UpperCAmelCase ) ) or 0.0 for n in row] for row in inverse_matrix]
raise ValueError('Please provide a matrix of size 2x2 or 3x3.' )
| 309
| 1
|
"""simple docstring"""
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
__UpperCamelCase : Any = logging.get_logger(__name__)
__UpperCamelCase : str = {
'''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''',
'''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''',
'''microsoft/deberta-v2-xlarge-mnli''': (
'''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json'''
),
'''microsoft/deberta-v2-xxlarge-mnli''': (
'''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json'''
),
}
class a ( a__ ):
snake_case__ = '''deberta-v2'''
def __init__( self , _snake_case=12_81_00 , _snake_case=15_36 , _snake_case=24 , _snake_case=24 , _snake_case=61_44 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=0 , _snake_case=0.02 , _snake_case=1E-7 , _snake_case=False , _snake_case=-1 , _snake_case=0 , _snake_case=True , _snake_case=None , _snake_case=0 , _snake_case="gelu" , **_snake_case , ):
"""simple docstring"""
super().__init__(**_snake_case )
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_act
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = initializer_range
lowerCAmelCase = relative_attention
lowerCAmelCase = max_relative_positions
lowerCAmelCase = pad_token_id
lowerCAmelCase = position_biased_input
# Backwards compatibility
if type(_snake_case ) == str:
lowerCAmelCase = [x.strip() for x in pos_att_type.lower().split('|' )]
lowerCAmelCase = pos_att_type
lowerCAmelCase = vocab_size
lowerCAmelCase = layer_norm_eps
lowerCAmelCase = kwargs.get('pooler_hidden_size' , _snake_case )
lowerCAmelCase = pooler_dropout
lowerCAmelCase = pooler_hidden_act
class a ( a__ ):
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
if self.task == "multiple-choice":
lowerCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
lowerCAmelCase = {0: 'batch', 1: 'sequence'}
if self._config.type_vocab_size > 0:
return OrderedDict(
[('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] )
else:
return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] )
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return 12
def UpperCamelCase__ ( self , _snake_case , _snake_case = -1 , _snake_case = -1 , _snake_case = -1 , _snake_case = False , _snake_case = None , _snake_case = 3 , _snake_case = 40 , _snake_case = 40 , _snake_case = None , ):
"""simple docstring"""
lowerCAmelCase = super().generate_dummy_inputs(preprocessor=_snake_case , framework=_snake_case )
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs
| 309
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__UpperCamelCase : Dict = {
'''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''],
'''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''],
'''processing_mctct''': ['''MCTCTProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Tuple = [
'''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MCTCTForCTC''',
'''MCTCTModel''',
'''MCTCTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
__UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 309
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import _LazyModule
__UpperCamelCase : Union[str, Any] = {'''tokenization_tapex''': ['''TapexTokenizer''']}
if TYPE_CHECKING:
from .tokenization_tapex import TapexTokenizer
else:
import sys
__UpperCamelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 309
|
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
__UpperCamelCase : Dict = logging.get_logger(__name__)
__UpperCamelCase : str = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
__UpperCamelCase : Optional[int] = {
'''vocab_file''': {
'''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''',
'''distilbert-base-uncased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt'''
),
'''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''',
'''distilbert-base-cased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt'''
),
'''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''',
'''distilbert-base-multilingual-cased''': (
'''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''',
'''distilbert-base-uncased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json'''
),
'''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''',
'''distilbert-base-cased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json'''
),
'''distilbert-base-german-cased''': (
'''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json'''
),
'''distilbert-base-multilingual-cased''': (
'''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json'''
),
},
}
__UpperCamelCase : str = {
'''distilbert-base-uncased''': 512,
'''distilbert-base-uncased-distilled-squad''': 512,
'''distilbert-base-cased''': 512,
'''distilbert-base-cased-distilled-squad''': 512,
'''distilbert-base-german-cased''': 512,
'''distilbert-base-multilingual-cased''': 512,
}
__UpperCamelCase : Any = {
'''distilbert-base-uncased''': {'''do_lower_case''': True},
'''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True},
'''distilbert-base-cased''': {'''do_lower_case''': False},
'''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False},
'''distilbert-base-german-cased''': {'''do_lower_case''': False},
'''distilbert-base-multilingual-cased''': {'''do_lower_case''': False},
}
class a ( a__ ):
snake_case__ = VOCAB_FILES_NAMES
snake_case__ = PRETRAINED_VOCAB_FILES_MAP
snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case__ = PRETRAINED_INIT_CONFIGURATION
snake_case__ = ['''input_ids''', '''attention_mask''']
snake_case__ = DistilBertTokenizer
def __init__( self , _snake_case=None , _snake_case=None , _snake_case=True , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case=True , _snake_case=None , **_snake_case , ):
"""simple docstring"""
super().__init__(
_snake_case , tokenizer_file=_snake_case , do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , tokenize_chinese_chars=_snake_case , strip_accents=_snake_case , **_snake_case , )
lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , _snake_case ) != do_lower_case
or normalizer_state.get('strip_accents' , _snake_case ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , _snake_case ) != tokenize_chinese_chars
):
lowerCAmelCase = getattr(_snake_case , normalizer_state.pop('type' ) )
lowerCAmelCase = do_lower_case
lowerCAmelCase = strip_accents
lowerCAmelCase = tokenize_chinese_chars
lowerCAmelCase = normalizer_class(**_snake_case )
lowerCAmelCase = do_lower_case
def UpperCamelCase__ ( self , _snake_case , _snake_case=None ):
"""simple docstring"""
lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCamelCase__ ( self , _snake_case , _snake_case = None ):
"""simple docstring"""
lowerCAmelCase = [self.sep_token_id]
lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase__ ( self , _snake_case , _snake_case = None ):
"""simple docstring"""
lowerCAmelCase = self._tokenizer.model.save(_snake_case , name=_snake_case )
return tuple(_snake_case )
| 309
| 1
|
"""simple docstring"""
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
__UpperCamelCase : Optional[int] = logging.get_logger(__name__)
class a ( a__ ):
snake_case__ = ['''pixel_values''']
def __init__( self , _snake_case = True , _snake_case = 1 / 2_55 , _snake_case = True , _snake_case = 8 , **_snake_case , ):
"""simple docstring"""
super().__init__(**_snake_case )
lowerCAmelCase = do_rescale
lowerCAmelCase = rescale_factor
lowerCAmelCase = do_pad
lowerCAmelCase = pad_size
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case = None , **_snake_case ):
"""simple docstring"""
return rescale(_snake_case , scale=_snake_case , data_format=_snake_case , **_snake_case )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case = None ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = get_image_size(_snake_case )
lowerCAmelCase = (old_height // size + 1) * size - old_height
lowerCAmelCase = (old_width // size + 1) * size - old_width
return pad(_snake_case , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=_snake_case )
def UpperCamelCase__ ( self , _snake_case , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = ChannelDimension.FIRST , **_snake_case , ):
"""simple docstring"""
lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
lowerCAmelCase = do_pad if do_pad is not None else self.do_pad
lowerCAmelCase = pad_size if pad_size is not None else self.pad_size
lowerCAmelCase = make_list_of_images(_snake_case )
if not valid_images(_snake_case ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
# All transformations expect numpy arrays.
lowerCAmelCase = [to_numpy_array(_snake_case ) for image in images]
if do_rescale:
lowerCAmelCase = [self.rescale(image=_snake_case , scale=_snake_case ) for image in images]
if do_pad:
lowerCAmelCase = [self.pad(_snake_case , size=_snake_case ) for image in images]
lowerCAmelCase = [to_channel_dimension_format(_snake_case , _snake_case ) for image in images]
lowerCAmelCase = {'pixel_values': images}
return BatchFeature(data=_snake_case , tensor_type=_snake_case )
| 309
|
"""simple docstring"""
from __future__ import annotations
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] | None = None ):
lowerCAmelCase = word_bank or []
# create a table
lowerCAmelCase = len(_UpperCAmelCase ) + 1
lowerCAmelCase = []
for _ in range(_UpperCAmelCase ):
table.append([] )
# seed value
lowerCAmelCase = [[]] # because empty string has empty combination
# iterate through the indices
for i in range(_UpperCAmelCase ):
# condition
if table[i] != []:
for word in word_bank:
# slice condition
if target[i : i + len(_UpperCAmelCase )] == word:
lowerCAmelCase = [
[word, *way] for way in table[i]
]
# adds the word to every combination the current position holds
# now,push that combination to the table[i+len(word)]
table[i + len(_UpperCAmelCase )] += new_combinations
# combinations are in reverse order so reverse for better output
for combination in table[len(_UpperCAmelCase )]:
combination.reverse()
return table[len(_UpperCAmelCase )]
if __name__ == "__main__":
print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa''']))
print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t''']))
print(
all_construct(
'''hexagonosaurus''',
['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''],
)
)
| 309
| 1
|
"""simple docstring"""
import torch
from diffusers import DPMSolverSDEScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import require_torchsde
from .test_schedulers import SchedulerCommonTest
@require_torchsde
class a ( a__ ):
snake_case__ = (DPMSolverSDEScheduler,)
snake_case__ = 1_0
def UpperCamelCase__ ( self , **_snake_case ):
"""simple docstring"""
lowerCAmelCase = {
'num_train_timesteps': 11_00,
'beta_start': 0.0_001,
'beta_end': 0.02,
'beta_schedule': 'linear',
'noise_sampler_seed': 0,
}
config.update(**_snake_case )
return config
def UpperCamelCase__ ( self ):
"""simple docstring"""
for timesteps in [10, 50, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ):
self.check_over_configs(beta_start=_snake_case , beta_end=_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**_snake_case )
scheduler.set_timesteps(self.num_inference_steps )
lowerCAmelCase = self.dummy_model()
lowerCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
lowerCAmelCase = sample.to(_snake_case )
for i, t in enumerate(scheduler.timesteps ):
lowerCAmelCase = scheduler.scale_model_input(_snake_case , _snake_case )
lowerCAmelCase = model(_snake_case , _snake_case )
lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case )
lowerCAmelCase = output.prev_sample
lowerCAmelCase = torch.sum(torch.abs(_snake_case ) )
lowerCAmelCase = torch.mean(torch.abs(_snake_case ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 167.47_821_044_921_875 ) < 1E-2
assert abs(result_mean.item() - 0.2_178_705_964_565_277 ) < 1E-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 171.59_352_111_816_406 ) < 1E-2
assert abs(result_mean.item() - 0.22_342_906_892_299_652 ) < 1E-3
else:
assert abs(result_sum.item() - 162.52_383_422_851_562 ) < 1E-2
assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1E-3
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config(prediction_type='v_prediction' )
lowerCAmelCase = scheduler_class(**_snake_case )
scheduler.set_timesteps(self.num_inference_steps )
lowerCAmelCase = self.dummy_model()
lowerCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma
lowerCAmelCase = sample.to(_snake_case )
for i, t in enumerate(scheduler.timesteps ):
lowerCAmelCase = scheduler.scale_model_input(_snake_case , _snake_case )
lowerCAmelCase = model(_snake_case , _snake_case )
lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case )
lowerCAmelCase = output.prev_sample
lowerCAmelCase = torch.sum(torch.abs(_snake_case ) )
lowerCAmelCase = torch.mean(torch.abs(_snake_case ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 124.77_149_200_439_453 ) < 1E-2
assert abs(result_mean.item() - 0.16_226_289_014_816_284 ) < 1E-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 128.1_663_360_595_703 ) < 1E-2
assert abs(result_mean.item() - 0.16_688_326_001_167_297 ) < 1E-3
else:
assert abs(result_sum.item() - 119.8_487_548_828_125 ) < 1E-2
assert abs(result_mean.item() - 0.1_560_530_662_536_621 ) < 1E-3
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**_snake_case )
scheduler.set_timesteps(self.num_inference_steps , device=_snake_case )
lowerCAmelCase = self.dummy_model()
lowerCAmelCase = self.dummy_sample_deter.to(_snake_case ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
lowerCAmelCase = scheduler.scale_model_input(_snake_case , _snake_case )
lowerCAmelCase = model(_snake_case , _snake_case )
lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case )
lowerCAmelCase = output.prev_sample
lowerCAmelCase = torch.sum(torch.abs(_snake_case ) )
lowerCAmelCase = torch.mean(torch.abs(_snake_case ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 167.46_957_397_460_938 ) < 1E-2
assert abs(result_mean.item() - 0.21_805_934_607_982_635 ) < 1E-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 171.59_353_637_695_312 ) < 1E-2
assert abs(result_mean.item() - 0.22_342_908_382_415_771 ) < 1E-3
else:
assert abs(result_sum.item() - 162.52_383_422_851_562 ) < 1E-2
assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1E-3
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**_snake_case , use_karras_sigmas=_snake_case )
scheduler.set_timesteps(self.num_inference_steps , device=_snake_case )
lowerCAmelCase = self.dummy_model()
lowerCAmelCase = self.dummy_sample_deter.to(_snake_case ) * scheduler.init_noise_sigma
lowerCAmelCase = sample.to(_snake_case )
for t in scheduler.timesteps:
lowerCAmelCase = scheduler.scale_model_input(_snake_case , _snake_case )
lowerCAmelCase = model(_snake_case , _snake_case )
lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case )
lowerCAmelCase = output.prev_sample
lowerCAmelCase = torch.sum(torch.abs(_snake_case ) )
lowerCAmelCase = torch.mean(torch.abs(_snake_case ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 176.66_974_135_742_188 ) < 1E-2
assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1E-2
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 177.63_653_564_453_125 ) < 1E-2
assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1E-2
else:
assert abs(result_sum.item() - 170.3_135_223_388_672 ) < 1E-2
assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1E-2
| 309
|
"""simple docstring"""
import re
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ):
if len(re.findall('[ATCG]' , _UpperCAmelCase ) ) != len(_UpperCAmelCase ):
raise ValueError('Invalid Strand' )
return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 309
| 1
|
"""simple docstring"""
from __future__ import annotations
import math
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list ):
if len(_UpperCAmelCase ) != 2 or len(a[0] ) != 2 or len(_UpperCAmelCase ) != 2 or len(b[0] ) != 2:
raise Exception('Matrices are not 2x2' )
lowerCAmelCase = [
[a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]],
[a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]],
]
return new_matrix
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list ):
return [
[matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )]
for row in range(len(_UpperCAmelCase ) )
]
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list ):
return [
[matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )]
for row in range(len(_UpperCAmelCase ) )
]
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list ):
if len(_UpperCAmelCase ) % 2 != 0 or len(a[0] ) % 2 != 0:
raise Exception('Odd matrices are not supported!' )
lowerCAmelCase = len(_UpperCAmelCase )
lowerCAmelCase = matrix_length // 2
lowerCAmelCase = [[a[i][j] for j in range(_UpperCAmelCase , _UpperCAmelCase )] for i in range(_UpperCAmelCase )]
lowerCAmelCase = [
[a[i][j] for j in range(_UpperCAmelCase , _UpperCAmelCase )] for i in range(_UpperCAmelCase , _UpperCAmelCase )
]
lowerCAmelCase = [[a[i][j] for j in range(_UpperCAmelCase )] for i in range(_UpperCAmelCase )]
lowerCAmelCase = [[a[i][j] for j in range(_UpperCAmelCase )] for i in range(_UpperCAmelCase , _UpperCAmelCase )]
return top_left, top_right, bot_left, bot_right
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list ):
return len(_UpperCAmelCase ), len(matrix[0] )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list ):
print('\n'.join(str(_UpperCAmelCase ) for line in matrix ) )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list ):
if matrix_dimensions(_UpperCAmelCase ) == (2, 2):
return default_matrix_multiplication(_UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = split_matrix(_UpperCAmelCase )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = split_matrix(_UpperCAmelCase )
lowerCAmelCase = actual_strassen(_UpperCAmelCase , matrix_subtraction(_UpperCAmelCase , _UpperCAmelCase ) )
lowerCAmelCase = actual_strassen(matrix_addition(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase )
lowerCAmelCase = actual_strassen(matrix_addition(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase )
lowerCAmelCase = actual_strassen(_UpperCAmelCase , matrix_subtraction(_UpperCAmelCase , _UpperCAmelCase ) )
lowerCAmelCase = actual_strassen(matrix_addition(_UpperCAmelCase , _UpperCAmelCase ) , matrix_addition(_UpperCAmelCase , _UpperCAmelCase ) )
lowerCAmelCase = actual_strassen(matrix_subtraction(_UpperCAmelCase , _UpperCAmelCase ) , matrix_addition(_UpperCAmelCase , _UpperCAmelCase ) )
lowerCAmelCase = actual_strassen(matrix_subtraction(_UpperCAmelCase , _UpperCAmelCase ) , matrix_addition(_UpperCAmelCase , _UpperCAmelCase ) )
lowerCAmelCase = matrix_addition(matrix_subtraction(matrix_addition(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase ) , _UpperCAmelCase )
lowerCAmelCase = matrix_addition(_UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase = matrix_addition(_UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase = matrix_subtraction(matrix_subtraction(matrix_addition(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase ) , _UpperCAmelCase )
# construct the new matrix from our 4 quadrants
lowerCAmelCase = []
for i in range(len(_UpperCAmelCase ) ):
new_matrix.append(top_left[i] + top_right[i] )
for i in range(len(_UpperCAmelCase ) ):
new_matrix.append(bot_left[i] + bot_right[i] )
return new_matrix
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list ):
if matrix_dimensions(_UpperCAmelCase )[1] != matrix_dimensions(_UpperCAmelCase )[0]:
lowerCAmelCase = (
'Unable to multiply these matrices, please check the dimensions.\n'
F'Matrix A: {matrixa}\n'
F'Matrix B: {matrixa}'
)
raise Exception(_UpperCAmelCase )
lowerCAmelCase = matrix_dimensions(_UpperCAmelCase )
lowerCAmelCase = matrix_dimensions(_UpperCAmelCase )
if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]:
return [matrixa, matrixa]
lowerCAmelCase = max(*_UpperCAmelCase , *_UpperCAmelCase )
lowerCAmelCase = int(math.pow(2 , math.ceil(math.loga(_UpperCAmelCase ) ) ) )
lowerCAmelCase = matrixa
lowerCAmelCase = matrixa
# Adding zeros to the matrices so that the arrays dimensions are the same and also
# power of 2
for i in range(0 , _UpperCAmelCase ):
if i < dimensiona[0]:
for _ in range(dimensiona[1] , _UpperCAmelCase ):
new_matrixa[i].append(0 )
else:
new_matrixa.append([0] * maxim )
if i < dimensiona[0]:
for _ in range(dimensiona[1] , _UpperCAmelCase ):
new_matrixa[i].append(0 )
else:
new_matrixa.append([0] * maxim )
lowerCAmelCase = actual_strassen(_UpperCAmelCase , _UpperCAmelCase )
# Removing the additional zeros
for i in range(0 , _UpperCAmelCase ):
if i < dimensiona[0]:
for _ in range(dimensiona[1] , _UpperCAmelCase ):
final_matrix[i].pop()
else:
final_matrix.pop()
return final_matrix
if __name__ == "__main__":
__UpperCamelCase : Optional[int] = [
[2, 3, 4, 5],
[6, 4, 3, 1],
[2, 3, 6, 7],
[3, 1, 2, 4],
[2, 3, 4, 5],
[6, 4, 3, 1],
[2, 3, 6, 7],
[3, 1, 2, 4],
[2, 3, 4, 5],
[6, 2, 3, 1],
]
__UpperCamelCase : Union[str, Any] = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]]
print(strassen(matrixa, matrixa))
| 309
|
"""simple docstring"""
import numpy as np
import skfuzzy as fuzz
if __name__ == "__main__":
# Create universe of discourse in Python using linspace ()
__UpperCamelCase : List[Any] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False)
# Create two fuzzy sets by defining any membership function
# (trapmf(), gbellmf(), gaussmf(), etc).
__UpperCamelCase : str = [0, 25, 50]
__UpperCamelCase : int = [25, 50, 75]
__UpperCamelCase : str = fuzz.membership.trimf(X, abca)
__UpperCamelCase : Tuple = fuzz.membership.trimf(X, abca)
# Compute the different operations using inbuilt functions.
__UpperCamelCase : Dict = np.ones(75)
__UpperCamelCase : str = np.zeros((75,))
# 1. Union = max(µA(x), µB(x))
__UpperCamelCase : Optional[Any] = fuzz.fuzzy_or(X, young, X, middle_aged)[1]
# 2. Intersection = min(µA(x), µB(x))
__UpperCamelCase : Dict = fuzz.fuzzy_and(X, young, X, middle_aged)[1]
# 3. Complement (A) = (1- min(µA(x))
__UpperCamelCase : Dict = fuzz.fuzzy_not(young)
# 4. Difference (A/B) = min(µA(x),(1- µB(x)))
__UpperCamelCase : List[str] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1]
# 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))]
__UpperCamelCase : List[str] = young + middle_aged - (young * middle_aged)
# 6. Algebraic Product = (µA(x) * µB(x))
__UpperCamelCase : Tuple = young * middle_aged
# 7. Bounded Sum = min[1,(µA(x), µB(x))]
__UpperCamelCase : Union[str, Any] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1]
# 8. Bounded difference = min[0,(µA(x), µB(x))]
__UpperCamelCase : Dict = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1]
# max-min composition
# max-product composition
# Plot each set A, set B and each operation result using plot() and subplot().
from matplotlib import pyplot as plt
plt.figure()
plt.subplot(4, 3, 1)
plt.plot(X, young)
plt.title('''Young''')
plt.grid(True)
plt.subplot(4, 3, 2)
plt.plot(X, middle_aged)
plt.title('''Middle aged''')
plt.grid(True)
plt.subplot(4, 3, 3)
plt.plot(X, union)
plt.title('''union''')
plt.grid(True)
plt.subplot(4, 3, 4)
plt.plot(X, intersection)
plt.title('''intersection''')
plt.grid(True)
plt.subplot(4, 3, 5)
plt.plot(X, complement_a)
plt.title('''complement_a''')
plt.grid(True)
plt.subplot(4, 3, 6)
plt.plot(X, difference)
plt.title('''difference a/b''')
plt.grid(True)
plt.subplot(4, 3, 7)
plt.plot(X, alg_sum)
plt.title('''alg_sum''')
plt.grid(True)
plt.subplot(4, 3, 8)
plt.plot(X, alg_product)
plt.title('''alg_product''')
plt.grid(True)
plt.subplot(4, 3, 9)
plt.plot(X, bdd_sum)
plt.title('''bdd_sum''')
plt.grid(True)
plt.subplot(4, 3, 10)
plt.plot(X, bdd_difference)
plt.title('''bdd_difference''')
plt.grid(True)
plt.subplots_adjust(hspace=0.5)
plt.show()
| 309
| 1
|
"""simple docstring"""
import argparse
import collections
import json
import os
import re
import string
import sys
import numpy as np
__UpperCamelCase : Optional[int] = re.compile(R'''\b(a|an|the)\b''', re.UNICODE)
__UpperCamelCase : Any = None
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = argparse.ArgumentParser('Official evaluation script for SQuAD version 2.0.' )
parser.add_argument('data_file' , metavar='data.json' , help='Input data JSON file.' )
parser.add_argument('pred_file' , metavar='pred.json' , help='Model predictions.' )
parser.add_argument(
'--out-file' , '-o' , metavar='eval.json' , help='Write accuracy metrics to file (default is stdout).' )
parser.add_argument(
'--na-prob-file' , '-n' , metavar='na_prob.json' , help='Model estimates of probability of no answer.' )
parser.add_argument(
'--na-prob-thresh' , '-t' , type=_UpperCAmelCase , default=1.0 , help='Predict "" if no-answer probability exceeds this (default = 1.0).' , )
parser.add_argument(
'--out-image-dir' , '-p' , metavar='out_images' , default=_UpperCAmelCase , help='Save precision-recall curves to directory.' )
parser.add_argument('--verbose' , '-v' , action='store_true' )
if len(sys.argv ) == 1:
parser.print_help()
sys.exit(1 )
return parser.parse_args()
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] ):
lowerCAmelCase = {}
for article in dataset:
for p in article["paragraphs"]:
for qa in p["qas"]:
lowerCAmelCase = bool(qa['answers']['text'] )
return qid_to_has_ans
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] ):
def remove_articles(_UpperCAmelCase : Optional[Any] ):
return ARTICLES_REGEX.sub(' ' , _UpperCAmelCase )
def white_space_fix(_UpperCAmelCase : Dict ):
return " ".join(text.split() )
def remove_punc(_UpperCAmelCase : Optional[Any] ):
lowerCAmelCase = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(_UpperCAmelCase : Union[str, Any] ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(_UpperCAmelCase ) ) ) )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any ):
if not s:
return []
return normalize_answer(_UpperCAmelCase ).split()
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict , _UpperCAmelCase : int ):
return int(normalize_answer(_UpperCAmelCase ) == normalize_answer(_UpperCAmelCase ) )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] ):
lowerCAmelCase = get_tokens(_UpperCAmelCase )
lowerCAmelCase = get_tokens(_UpperCAmelCase )
lowerCAmelCase = collections.Counter(_UpperCAmelCase ) & collections.Counter(_UpperCAmelCase )
lowerCAmelCase = sum(common.values() )
if len(_UpperCAmelCase ) == 0 or len(_UpperCAmelCase ) == 0:
# If either is no-answer, then F1 is 1 if they agree, 0 otherwise
return int(gold_toks == pred_toks )
if num_same == 0:
return 0
lowerCAmelCase = 1.0 * num_same / len(_UpperCAmelCase )
lowerCAmelCase = 1.0 * num_same / len(_UpperCAmelCase )
lowerCAmelCase = (2 * precision * recall) / (precision + recall)
return fa
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple ):
lowerCAmelCase = {}
lowerCAmelCase = {}
for article in dataset:
for p in article["paragraphs"]:
for qa in p["qas"]:
lowerCAmelCase = qa['id']
lowerCAmelCase = [t for t in qa['answers']['text'] if normalize_answer(_UpperCAmelCase )]
if not gold_answers:
# For unanswerable questions, only correct answer is empty string
lowerCAmelCase = ['']
if qid not in preds:
print(F'Missing prediction for {qid}' )
continue
lowerCAmelCase = preds[qid]
# Take max over all gold answers
lowerCAmelCase = max(compute_exact(_UpperCAmelCase , _UpperCAmelCase ) for a in gold_answers )
lowerCAmelCase = max(compute_fa(_UpperCAmelCase , _UpperCAmelCase ) for a in gold_answers )
return exact_scores, fa_scores
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict ):
lowerCAmelCase = {}
for qid, s in scores.items():
lowerCAmelCase = na_probs[qid] > na_prob_thresh
if pred_na:
lowerCAmelCase = float(not qid_to_has_ans[qid] )
else:
lowerCAmelCase = s
return new_scores
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict=None ):
if not qid_list:
lowerCAmelCase = len(_UpperCAmelCase )
return collections.OrderedDict(
[
('exact', 100.0 * sum(exact_scores.values() ) / total),
('f1', 100.0 * sum(fa_scores.values() ) / total),
('total', total),
] )
else:
lowerCAmelCase = len(_UpperCAmelCase )
return collections.OrderedDict(
[
('exact', 100.0 * sum(exact_scores[k] for k in qid_list ) / total),
('f1', 100.0 * sum(fa_scores[k] for k in qid_list ) / total),
('total', total),
] )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict ):
for k in new_eval:
lowerCAmelCase = new_eval[k]
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : int ):
plt.step(_UpperCAmelCase , _UpperCAmelCase , color='b' , alpha=0.2 , where='post' )
plt.fill_between(_UpperCAmelCase , _UpperCAmelCase , step='post' , alpha=0.2 , color='b' )
plt.xlabel('Recall' )
plt.ylabel('Precision' )
plt.xlim([0.0, 1.05] )
plt.ylim([0.0, 1.05] )
plt.title(_UpperCAmelCase )
plt.savefig(_UpperCAmelCase )
plt.clf()
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[Any]=None ):
lowerCAmelCase = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : na_probs[k] )
lowerCAmelCase = 0.0
lowerCAmelCase = 1.0
lowerCAmelCase = 0.0
lowerCAmelCase = [1.0]
lowerCAmelCase = [0.0]
lowerCAmelCase = 0.0
for i, qid in enumerate(_UpperCAmelCase ):
if qid_to_has_ans[qid]:
true_pos += scores[qid]
lowerCAmelCase = true_pos / float(i + 1 )
lowerCAmelCase = true_pos / float(_UpperCAmelCase )
if i == len(_UpperCAmelCase ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]:
# i.e., if we can put a threshold after this point
avg_prec += cur_p * (cur_r - recalls[-1])
precisions.append(_UpperCAmelCase )
recalls.append(_UpperCAmelCase )
if out_image:
plot_pr_curve(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
return {"ap": 100.0 * avg_prec}
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] ):
if out_image_dir and not os.path.exists(_UpperCAmelCase ):
os.makedirs(_UpperCAmelCase )
lowerCAmelCase = sum(1 for v in qid_to_has_ans.values() if v )
if num_true_pos == 0:
return
lowerCAmelCase = make_precision_recall_eval(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , out_image=os.path.join(_UpperCAmelCase , 'pr_exact.png' ) , title='Precision-Recall curve for Exact Match score' , )
lowerCAmelCase = make_precision_recall_eval(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , out_image=os.path.join(_UpperCAmelCase , 'pr_f1.png' ) , title='Precision-Recall curve for F1 score' , )
lowerCAmelCase = {k: float(_UpperCAmelCase ) for k, v in qid_to_has_ans.items()}
lowerCAmelCase = make_precision_recall_eval(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , out_image=os.path.join(_UpperCAmelCase , 'pr_oracle.png' ) , title='Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)' , )
merge_eval(_UpperCAmelCase , _UpperCAmelCase , 'pr_exact' )
merge_eval(_UpperCAmelCase , _UpperCAmelCase , 'pr_f1' )
merge_eval(_UpperCAmelCase , _UpperCAmelCase , 'pr_oracle' )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] ):
if not qid_list:
return
lowerCAmelCase = [na_probs[k] for k in qid_list]
lowerCAmelCase = np.ones_like(_UpperCAmelCase ) / float(len(_UpperCAmelCase ) )
plt.hist(_UpperCAmelCase , weights=_UpperCAmelCase , bins=20 , range=(0.0, 1.0) )
plt.xlabel('Model probability of no-answer' )
plt.ylabel('Proportion of dataset' )
plt.title(F'Histogram of no-answer probability: {name}' )
plt.savefig(os.path.join(_UpperCAmelCase , F'na_prob_hist_{name}.png' ) )
plt.clf()
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : List[str] ):
lowerCAmelCase = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] )
lowerCAmelCase = num_no_ans
lowerCAmelCase = cur_score
lowerCAmelCase = 0.0
lowerCAmelCase = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : na_probs[k] )
for i, qid in enumerate(_UpperCAmelCase ):
if qid not in scores:
continue
if qid_to_has_ans[qid]:
lowerCAmelCase = scores[qid]
else:
if preds[qid]:
lowerCAmelCase = -1
else:
lowerCAmelCase = 0
cur_score += diff
if cur_score > best_score:
lowerCAmelCase = cur_score
lowerCAmelCase = na_probs[qid]
return 100.0 * best_score / len(_UpperCAmelCase ), best_thresh
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Any ):
lowerCAmelCase ,lowerCAmelCase = find_best_thresh(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase ,lowerCAmelCase = find_best_thresh(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase = best_exact
lowerCAmelCase = exact_thresh
lowerCAmelCase = best_fa
lowerCAmelCase = fa_thresh
def _SCREAMING_SNAKE_CASE ():
with open(OPTS.data_file ) as f:
lowerCAmelCase = json.load(_UpperCAmelCase )
lowerCAmelCase = dataset_json['data']
with open(OPTS.pred_file ) as f:
lowerCAmelCase = json.load(_UpperCAmelCase )
if OPTS.na_prob_file:
with open(OPTS.na_prob_file ) as f:
lowerCAmelCase = json.load(_UpperCAmelCase )
else:
lowerCAmelCase = {k: 0.0 for k in preds}
lowerCAmelCase = make_qid_to_has_ans(_UpperCAmelCase ) # maps qid to True/False
lowerCAmelCase = [k for k, v in qid_to_has_ans.items() if v]
lowerCAmelCase = [k for k, v in qid_to_has_ans.items() if not v]
lowerCAmelCase ,lowerCAmelCase = get_raw_scores(_UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase = apply_no_ans_threshold(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , OPTS.na_prob_thresh )
lowerCAmelCase = apply_no_ans_threshold(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , OPTS.na_prob_thresh )
lowerCAmelCase = make_eval_dict(_UpperCAmelCase , _UpperCAmelCase )
if has_ans_qids:
lowerCAmelCase = make_eval_dict(_UpperCAmelCase , _UpperCAmelCase , qid_list=_UpperCAmelCase )
merge_eval(_UpperCAmelCase , _UpperCAmelCase , 'HasAns' )
if no_ans_qids:
lowerCAmelCase = make_eval_dict(_UpperCAmelCase , _UpperCAmelCase , qid_list=_UpperCAmelCase )
merge_eval(_UpperCAmelCase , _UpperCAmelCase , 'NoAns' )
if OPTS.na_prob_file:
find_all_best_thresh(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
if OPTS.na_prob_file and OPTS.out_image_dir:
run_precision_recall_analysis(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , OPTS.out_image_dir )
histogram_na_prob(_UpperCAmelCase , _UpperCAmelCase , OPTS.out_image_dir , 'hasAns' )
histogram_na_prob(_UpperCAmelCase , _UpperCAmelCase , OPTS.out_image_dir , 'noAns' )
if OPTS.out_file:
with open(OPTS.out_file , 'w' ) as f:
json.dump(_UpperCAmelCase , _UpperCAmelCase )
else:
print(json.dumps(_UpperCAmelCase , indent=2 ) )
if __name__ == "__main__":
__UpperCamelCase : Dict = parse_args()
if OPTS.out_image_dir:
import matplotlib
matplotlib.use('''Agg''')
import matplotlib.pyplot as plt
main()
| 309
|
"""simple docstring"""
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[int] , _UpperCAmelCase : str ):
lowerCAmelCase = int(_UpperCAmelCase )
# Initialize Result
lowerCAmelCase = []
# Traverse through all denomination
for denomination in reversed(_UpperCAmelCase ):
# Find denominations
while int(_UpperCAmelCase ) >= int(_UpperCAmelCase ):
total_value -= int(_UpperCAmelCase )
answer.append(_UpperCAmelCase ) # Append the "answers" array
return answer
# Driver Code
if __name__ == "__main__":
__UpperCamelCase : Any = []
__UpperCamelCase : List[Any] = '''0'''
if (
input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower()
== "y"
):
__UpperCamelCase : Any = int(input('''Enter the number of denominations you want to add: ''').strip())
for i in range(0, n):
denominations.append(int(input(f'''Denomination {i}: ''').strip()))
__UpperCamelCase : int = input('''Enter the change you want to make in Indian Currency: ''').strip()
else:
# All denominations of Indian Currency if user does not enter
__UpperCamelCase : List[str] = [1, 2, 5, 10, 20, 50, 100, 500, 2000]
__UpperCamelCase : Any = input('''Enter the change you want to make: ''').strip()
if int(value) == 0 or int(value) < 0:
print('''The total value cannot be zero or negative.''')
else:
print(f'''Following is minimal change for {value}: ''')
__UpperCamelCase : List[str] = find_minimum_change(denominations, value)
# Print result
for i in range(len(answer)):
print(answer[i], end=''' ''')
| 309
| 1
|
"""simple docstring"""
import argparse
import os
import torch
from transformers.utils import WEIGHTS_NAME
__UpperCamelCase : int = ['''small''', '''medium''', '''large''']
__UpperCamelCase : str = '''lm_head.decoder.weight'''
__UpperCamelCase : Dict = '''lm_head.weight'''
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ):
lowerCAmelCase = torch.load(_UpperCAmelCase )
lowerCAmelCase = d.pop(_UpperCAmelCase )
os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase )
torch.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase ) )
if __name__ == "__main__":
__UpperCamelCase : Optional[int] = argparse.ArgumentParser()
parser.add_argument('''--dialogpt_path''', default='''.''', type=str)
__UpperCamelCase : Optional[int] = parser.parse_args()
for MODEL in DIALOGPT_MODELS:
__UpperCamelCase : Dict = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''')
__UpperCamelCase : str = f'''./DialoGPT-{MODEL}'''
convert_dialogpt_checkpoint(
checkpoint_path,
pytorch_dump_folder_path,
)
| 309
|
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import EsmConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy
import tensorflow as tf
from transformers.models.esm.modeling_tf_esm import (
TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFEsmForMaskedLM,
TFEsmForSequenceClassification,
TFEsmForTokenClassification,
TFEsmModel,
)
class a :
def __init__( self , _snake_case , ):
"""simple docstring"""
lowerCAmelCase = parent
lowerCAmelCase = 13
lowerCAmelCase = 7
lowerCAmelCase = True
lowerCAmelCase = True
lowerCAmelCase = True
lowerCAmelCase = 99
lowerCAmelCase = 32
lowerCAmelCase = 2
lowerCAmelCase = 4
lowerCAmelCase = 37
lowerCAmelCase = 'gelu'
lowerCAmelCase = 0.1
lowerCAmelCase = 0.1
lowerCAmelCase = 5_12
lowerCAmelCase = 16
lowerCAmelCase = 2
lowerCAmelCase = 0.02
lowerCAmelCase = 3
lowerCAmelCase = 4
lowerCAmelCase = None
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase = None
if self.use_input_mask:
lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase = None
lowerCAmelCase = None
lowerCAmelCase = None
if self.use_labels:
lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase = EsmConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase__ ( self ):
"""simple docstring"""
(
(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,
) = self.prepare_config_and_inputs()
lowerCAmelCase = True
lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = TFEsmModel(config=_snake_case )
lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask}
lowerCAmelCase = model(_snake_case )
lowerCAmelCase = [input_ids, input_mask]
lowerCAmelCase = model(_snake_case )
lowerCAmelCase = model(_snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ):
"""simple docstring"""
lowerCAmelCase = True
lowerCAmelCase = TFEsmModel(config=_snake_case )
lowerCAmelCase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'encoder_hidden_states': encoder_hidden_states,
'encoder_attention_mask': encoder_attention_mask,
}
lowerCAmelCase = model(_snake_case )
lowerCAmelCase = [input_ids, input_mask]
lowerCAmelCase = model(_snake_case , encoder_hidden_states=_snake_case )
# Also check the case where encoder outputs are not passed
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = TFEsmForMaskedLM(config=_snake_case )
lowerCAmelCase = model([input_ids, input_mask] )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = self.num_labels
lowerCAmelCase = TFEsmForTokenClassification(config=_snake_case )
lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask}
lowerCAmelCase = model(_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.prepare_config_and_inputs()
(
(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,
) = config_and_inputs
lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class a ( a__ , a__ , unittest.TestCase ):
snake_case__ = (
(
TFEsmModel,
TFEsmForMaskedLM,
TFEsmForSequenceClassification,
TFEsmForTokenClassification,
)
if is_tf_available()
else ()
)
snake_case__ = (
{
'''feature-extraction''': TFEsmModel,
'''fill-mask''': TFEsmForMaskedLM,
'''text-classification''': TFEsmForSequenceClassification,
'''token-classification''': TFEsmForTokenClassification,
'''zero-shot''': TFEsmForSequenceClassification,
}
if is_tf_available()
else {}
)
snake_case__ = False
snake_case__ = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFEsmModelTester(self )
lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_snake_case )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase = TFEsmModel.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
@unittest.skip('Protein models do not support embedding resizing.' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
@unittest.skip('Protein models do not support embedding resizing.' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase = model_class(_snake_case )
assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer )
if model_class is TFEsmForMaskedLM:
# Output embedding test differs from the main test because they're a matrix, not a layer
lowerCAmelCase = model.get_bias()
assert isinstance(_snake_case , _snake_case )
for k, v in name.items():
assert isinstance(_snake_case , tf.Variable )
else:
lowerCAmelCase = model.get_output_embeddings()
assert x is None
lowerCAmelCase = model.get_bias()
assert name is None
@require_tf
class a ( unittest.TestCase ):
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' )
lowerCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] )
lowerCAmelCase = model(_snake_case )[0]
lowerCAmelCase = [1, 6, 33]
self.assertEqual(list(output.numpy().shape ) , _snake_case )
# compare the actual values for a slice.
lowerCAmelCase = tf.constant(
[
[
[8.921_518, -10.589_814, -6.4_671_307],
[-6.3_967_156, -13.911_377, -1.1_211_915],
[-7.781_247, -13.951_557, -3.740_592],
]
] )
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' )
lowerCAmelCase = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
lowerCAmelCase = model(_snake_case )[0]
# compare the actual values for a slice.
lowerCAmelCase = tf.constant(
[
[
[0.14_443_092, 0.54_125_327, 0.3_247_739],
[0.30_340_484, 0.00_526_676, 0.31_077_722],
[0.32_278_043, -0.24_987_096, 0.3_414_628],
]
] )
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 309
| 1
|
"""simple docstring"""
from __future__ import annotations
__UpperCamelCase : int = '''#'''
class a :
def __init__( self ):
"""simple docstring"""
lowerCAmelCase = {}
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = self._trie
for char in text:
if char not in trie:
lowerCAmelCase = {}
lowerCAmelCase = trie[char]
lowerCAmelCase = True
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = self._trie
for char in prefix:
if char in trie:
lowerCAmelCase = trie[char]
else:
return []
return self._elements(_snake_case )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = []
for c, v in d.items():
lowerCAmelCase = [' '] if c == END else [(c + s) for s in self._elements(_snake_case )]
result.extend(_snake_case )
return tuple(_snake_case )
__UpperCamelCase : Dict = Trie()
__UpperCamelCase : List[str] = ('''depart''', '''detergent''', '''daring''', '''dog''', '''deer''', '''deal''')
for word in words:
trie.insert_word(word)
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ):
lowerCAmelCase = trie.find_word(_UpperCAmelCase )
return tuple(string + word for word in suffixes )
def _SCREAMING_SNAKE_CASE ():
print(autocomplete_using_trie('de' ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 309
|
"""simple docstring"""
import io
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__UpperCamelCase : Union[str, Any] = logging.get_logger(__name__)
__UpperCamelCase : Dict = '''▁'''
__UpperCamelCase : Optional[int] = {'''vocab_file''': '''vocab.txt''', '''sentencepiece_model_ckpt''': '''sentencepiece.bpe.model'''}
__UpperCamelCase : str = {
'''sentencepiece_model_file''': '''sentencepiece.bpe.model''',
'''vocab_file''': '''vocab.txt''',
}
__UpperCamelCase : Tuple = {
'''vocab_file''': {
'''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''',
'''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''',
},
'''sentencepiece_model_file''': {
'''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''',
'''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''',
},
}
__UpperCamelCase : Optional[Any] = {
'''ernie-m-base''': 514,
'''ernie-m-large''': 514,
}
__UpperCamelCase : str = {
'''ernie-m-base''': {'''do_lower_case''': False},
'''ernie-m-large''': {'''do_lower_case''': False},
}
class a ( a__ ):
snake_case__ = ["input_ids"]
snake_case__ = VOCAB_FILES_NAMES
snake_case__ = PRETRAINED_INIT_CONFIGURATION
snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case__ = PRETRAINED_VOCAB_FILES_MAP
snake_case__ = RESOURCE_FILES_NAMES
def __init__( self , _snake_case , _snake_case=None , _snake_case=False , _snake_case="utf8" , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case = None , **_snake_case , ):
"""simple docstring"""
lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , vocab_file=_snake_case , encoding=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , )
lowerCAmelCase = do_lower_case
lowerCAmelCase = sentencepiece_model_ckpt
lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_snake_case )
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
lowerCAmelCase = self.load_vocab(filepath=_snake_case )
else:
lowerCAmelCase = {self.sp_model.id_to_piece(_snake_case ): id for id in range(self.sp_model.get_piece_size() )}
lowerCAmelCase = {v: k for k, v in self.vocab.items()}
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if text is None:
return None
lowerCAmelCase = self.tokenize(_snake_case )
lowerCAmelCase ,lowerCAmelCase = '', []
for i, ch in enumerate(_snake_case ):
if ch in self.SP_CHAR_MAPPING:
lowerCAmelCase = self.SP_CHAR_MAPPING.get(_snake_case )
else:
lowerCAmelCase = unicodedata.normalize('NFKC' , _snake_case )
if self.is_whitespace(_snake_case ):
continue
normalized_text += ch
char_mapping.extend([i] * len(_snake_case ) )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = normalized_text, [], 0
if self.do_lower_case:
lowerCAmelCase = text.lower()
for token in split_tokens:
if token[:1] == "▁":
lowerCAmelCase = token[1:]
lowerCAmelCase = text[offset:].index(_snake_case ) + offset
lowerCAmelCase = start + len(_snake_case )
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) )
lowerCAmelCase = end
return token_mapping
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return len(self.vocab )
def UpperCamelCase__ ( self ):
"""simple docstring"""
return dict(self.vocab , **self.added_tokens_encoder )
def __getstate__( self ):
"""simple docstring"""
lowerCAmelCase = self.__dict__.copy()
lowerCAmelCase = None
return state
def __setstate__( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
lowerCAmelCase = {}
lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.sentencepiece_model_ckpt )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
return "".join((self.SP_CHAR_MAPPING.get(_snake_case , _snake_case ) for c in text) )
def UpperCamelCase__ ( self , _snake_case , _snake_case=False , _snake_case=64 , _snake_case=0.1 ):
"""simple docstring"""
if self.sp_model_kwargs.get('enable_sampling' ) is True:
lowerCAmelCase = True
if self.sp_model_kwargs.get('alpha' ) is not None:
lowerCAmelCase = self.sp_model_kwargs.get('alpha' )
if self.sp_model_kwargs.get('nbest_size' ) is not None:
lowerCAmelCase = self.sp_model_kwargs.get('nbest_size' )
if not enable_sampling:
lowerCAmelCase = self.sp_model.EncodeAsPieces(_snake_case )
else:
lowerCAmelCase = self.sp_model.SampleEncodeAsPieces(_snake_case , _snake_case , _snake_case )
lowerCAmelCase = []
for pi, piece in enumerate(_snake_case ):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(_snake_case ) and pi != 0:
new_pieces.append(_snake_case )
continue
else:
continue
lowerCAmelCase = 0
for i, chunk in enumerate(_snake_case ):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(_snake_case ) or self.is_punct(_snake_case ):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
new_pieces.append(_snake_case )
lowerCAmelCase = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
lowerCAmelCase = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
lowerCAmelCase = i
if len(_snake_case ) > lst_i:
new_pieces.append(piece[lst_i:] )
return new_pieces
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = ''.join(_snake_case ).replace(_snake_case , ' ' ).strip()
return out_string
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = self.convert_ids_to_tokens(_snake_case )
lowerCAmelCase = ''.join(_snake_case ).replace(_snake_case , ' ' ).strip()
return out_string
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
return self.vocab.get(_snake_case , self.vocab.get(self.unk_token ) )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
return self.reverse_vocab.get(_snake_case , self.unk_token )
def UpperCamelCase__ ( self , _snake_case , _snake_case=None ):
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowerCAmelCase = [self.cls_token_id]
lowerCAmelCase = [self.sep_token_id]
return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep
def UpperCamelCase__ ( self , _snake_case , _snake_case=None ):
"""simple docstring"""
if offset_mapping_a is None:
return [(0, 0)] + offset_mapping_a + [(0, 0)]
return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)]
def UpperCamelCase__ ( self , _snake_case , _snake_case=None , _snake_case=False ):
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'You should not supply a second sequence if the provided sequence of '
'ids is already formatted with special tokens for the model.' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) + [1]
return [1] + ([0] * len(_snake_case )) + [1]
def UpperCamelCase__ ( self , _snake_case , _snake_case = None ):
"""simple docstring"""
if token_ids_a is None:
# [CLS] X [SEP]
return (len(_snake_case ) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(_snake_case ) + 1) + [1] * (len(_snake_case ) + 3)
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if "\u4e00" <= char <= "\u9fff":
return True
return False
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if char in ",;:.?!~,;:。?!《》【】":
return True
return False
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(_snake_case ) == 1:
lowerCAmelCase = unicodedata.category(_snake_case )
if cat == "Zs":
return True
return False
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = {}
with io.open(_snake_case , 'r' , encoding='utf-8' ) as f:
for index, line in enumerate(_snake_case ):
lowerCAmelCase = line.rstrip('\n' )
lowerCAmelCase = int(_snake_case )
return token_to_idx
def UpperCamelCase__ ( self , _snake_case , _snake_case = None ):
"""simple docstring"""
lowerCAmelCase = 0
if os.path.isdir(_snake_case ):
lowerCAmelCase = os.path.join(
_snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
else:
lowerCAmelCase = (filename_prefix + '-' if filename_prefix else '') + save_directory
with open(_snake_case , 'w' , encoding='utf-8' ) as writer:
for token, token_index in sorted(self.vocab.items() , key=lambda _snake_case : kv[1] ):
if index != token_index:
logger.warning(
F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'
' Please check that the vocabulary is not corrupted!' )
lowerCAmelCase = token_index
writer.write(token + '\n' )
index += 1
lowerCAmelCase = os.path.join(_snake_case , 'sentencepiece.bpe.model' )
with open(_snake_case , 'wb' ) as fi:
lowerCAmelCase = self.sp_model.serialized_model_proto()
fi.write(_snake_case )
return (vocab_file,)
| 309
| 1
|
"""simple docstring"""
import copy
import fnmatch
import json
import os
import pickle as pkl
import shutil
import sys
import tarfile
import tempfile
from collections import OrderedDict
from contextlib import contextmanager
from functools import partial
from hashlib import shaaaa
from io import BytesIO
from pathlib import Path
from urllib.parse import urlparse
from zipfile import ZipFile, is_zipfile
import cva
import numpy as np
import requests
import wget
from filelock import FileLock
from PIL import Image
from tqdm.auto import tqdm
from yaml import Loader, dump, load
try:
import torch
__UpperCamelCase : Optional[int] = True
except ImportError:
__UpperCamelCase : Any = False
try:
from torch.hub import _get_torch_home
__UpperCamelCase : str = _get_torch_home()
except ImportError:
__UpperCamelCase : int = os.path.expanduser(
os.getenv('''TORCH_HOME''', os.path.join(os.getenv('''XDG_CACHE_HOME''', '''~/.cache'''), '''torch'''))
)
__UpperCamelCase : Tuple = os.path.join(torch_cache_home, '''transformers''')
__UpperCamelCase : Optional[Any] = '''https://cdn.huggingface.co'''
__UpperCamelCase : Dict = '''https://s3.amazonaws.com/models.huggingface.co/bert'''
__UpperCamelCase : Dict = '''/'''.join(str(Path(__file__).resolve()).split('''/''')[:-1])
__UpperCamelCase : Any = os.path.join(PATH, '''config.yaml''')
__UpperCamelCase : Any = os.path.join(PATH, '''attributes.txt''')
__UpperCamelCase : Optional[Any] = os.path.join(PATH, '''objects.txt''')
__UpperCamelCase : Optional[int] = os.getenv('''PYTORCH_PRETRAINED_BERT_CACHE''', default_cache_path)
__UpperCamelCase : List[Any] = os.getenv('''PYTORCH_TRANSFORMERS_CACHE''', PYTORCH_PRETRAINED_BERT_CACHE)
__UpperCamelCase : List[Any] = os.getenv('''TRANSFORMERS_CACHE''', PYTORCH_TRANSFORMERS_CACHE)
__UpperCamelCase : List[Any] = '''pytorch_model.bin'''
__UpperCamelCase : int = '''config.yaml'''
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any=OBJECTS , _UpperCAmelCase : Optional[int]=ATTRIBUTES ):
lowerCAmelCase = []
with open(_UpperCAmelCase ) as f:
for object in f.readlines():
vg_classes.append(object.split(',' )[0].lower().strip() )
lowerCAmelCase = []
with open(_UpperCAmelCase ) as f:
for object in f.readlines():
vg_attrs.append(object.split(',' )[0].lower().strip() )
return vg_classes, vg_attrs
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] ):
lowerCAmelCase = OrderedDict()
with open(_UpperCAmelCase , 'rb' ) as f:
lowerCAmelCase = pkl.load(_UpperCAmelCase )['model']
for k in copy.deepcopy(list(ckp.keys() ) ):
lowerCAmelCase = ckp.pop(_UpperCAmelCase )
if isinstance(_UpperCAmelCase , np.ndarray ):
lowerCAmelCase = torch.tensor(_UpperCAmelCase )
else:
assert isinstance(_UpperCAmelCase , torch.tensor ), type(_UpperCAmelCase )
lowerCAmelCase = v
return r
class a :
snake_case__ = {}
def __init__( self , _snake_case , _snake_case = "root" , _snake_case=0 ):
"""simple docstring"""
lowerCAmelCase = name
lowerCAmelCase = level
lowerCAmelCase = {}
for k, v in dictionary.items():
if v is None:
raise ValueError()
lowerCAmelCase = copy.deepcopy(_snake_case )
lowerCAmelCase = copy.deepcopy(_snake_case )
if isinstance(_snake_case , _snake_case ):
lowerCAmelCase = Config(_snake_case , name=_snake_case , level=level + 1 )
lowerCAmelCase = v
setattr(self , _snake_case , _snake_case )
lowerCAmelCase = d
def __repr__( self ):
"""simple docstring"""
return str(list((self._pointer.keys()) ) )
def __setattr__( self , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = val
lowerCAmelCase = val
lowerCAmelCase = key.split('.' )
lowerCAmelCase = len(_snake_case ) - 1
lowerCAmelCase = self._pointer
if len(_snake_case ) > 1:
for i, l in enumerate(_snake_case ):
if hasattr(self , _snake_case ) and isinstance(getattr(self , _snake_case ) , _snake_case ):
setattr(getattr(self , _snake_case ) , '.'.join(levels[i:] ) , _snake_case )
if l == last_level:
lowerCAmelCase = val
else:
lowerCAmelCase = pointer[l]
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self._pointer
def UpperCamelCase__ ( self , _snake_case , _snake_case ):
"""simple docstring"""
with open(F'{file_name}' , 'w' ) as stream:
dump(_snake_case , _snake_case )
def UpperCamelCase__ ( self , _snake_case , _snake_case ):
"""simple docstring"""
with open(F'{file_name}' , 'w' ) as stream:
json.dump(_snake_case , _snake_case )
@staticmethod
def UpperCamelCase__ ( _snake_case ):
"""simple docstring"""
with open(_snake_case ) as stream:
lowerCAmelCase = load(_snake_case , Loader=_snake_case )
return data
def __str__( self ):
"""simple docstring"""
lowerCAmelCase = ' '
if self._name != "root":
lowerCAmelCase = F'{t * (self._level-1)}{self._name}:\n'
else:
lowerCAmelCase = ''
lowerCAmelCase = self._level
for i, (k, v) in enumerate(self._pointer.items() ):
if isinstance(_snake_case , _snake_case ):
r += F'{t * (self._level)}{v}\n'
self._level += 1
else:
r += F'{t * (self._level)}{k}: {v} ({type(_snake_case ).__name__})\n'
lowerCAmelCase = level
return r[:-1]
@classmethod
def UpperCamelCase__ ( cls , _snake_case , **_snake_case ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = cls.get_config_dict(_snake_case , **_snake_case )
return cls(_snake_case )
@classmethod
def UpperCamelCase__ ( cls , _snake_case , **_snake_case ):
"""simple docstring"""
lowerCAmelCase = kwargs.pop('cache_dir' , _snake_case )
lowerCAmelCase = kwargs.pop('force_download' , _snake_case )
lowerCAmelCase = kwargs.pop('resume_download' , _snake_case )
lowerCAmelCase = kwargs.pop('proxies' , _snake_case )
lowerCAmelCase = kwargs.pop('local_files_only' , _snake_case )
if os.path.isdir(_snake_case ):
lowerCAmelCase = os.path.join(_snake_case , _snake_case )
elif os.path.isfile(_snake_case ) or is_remote_url(_snake_case ):
lowerCAmelCase = pretrained_model_name_or_path
else:
lowerCAmelCase = hf_bucket_url(_snake_case , filename=_snake_case , use_cdn=_snake_case )
try:
# Load from URL or cache if already cached
lowerCAmelCase = cached_path(
_snake_case , cache_dir=_snake_case , force_download=_snake_case , proxies=_snake_case , resume_download=_snake_case , local_files_only=_snake_case , )
# Load config dict
if resolved_config_file is None:
raise EnvironmentError
lowerCAmelCase = Config.load_yaml(_snake_case )
except EnvironmentError:
lowerCAmelCase = 'Can\'t load config for'
raise EnvironmentError(_snake_case )
if resolved_config_file == config_file:
print('loading configuration file from path' )
else:
print('loading configuration file cache' )
return Config.load_yaml(_snake_case ), kwargs
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ):
lowerCAmelCase = torch.load('dump.pt' , map_location=in_tensor.device )
lowerCAmelCase = in_tensor.numpy()
lowerCAmelCase = out_tensor.numpy()[0]
print(na.shape , na[0, 0, :5] )
print(na.shape , na[0, 0, :5] )
assert np.allclose(_UpperCAmelCase , _UpperCAmelCase , rtol=0.01 , atol=0.1 ), (
F'{sum([1 for x in np.isclose(_UpperCAmelCase , _UpperCAmelCase , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %'
" element-wise mismatch"
)
raise Exception('tensors are all good' )
# Hugging face functions below
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple ):
lowerCAmelCase = urlparse(_UpperCAmelCase )
return parsed.scheme in ("http", "https")
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Tuple=True ):
lowerCAmelCase = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX
lowerCAmelCase = '/' not in model_id
if legacy_format:
return F'{endpoint}/{model_id}-{filename}'
else:
return F'{endpoint}/{model_id}/{filename}'
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Dict=None , _UpperCAmelCase : int=0 , _UpperCAmelCase : str=None , ):
lowerCAmelCase = 'python/{}'.format(sys.version.split()[0] )
if _torch_available:
ua += "; torch/{}".format(torch.__version__ )
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
ua += "; " + "; ".join('{}/{}'.format(_UpperCAmelCase , _UpperCAmelCase ) for k, v in user_agent.items() )
elif isinstance(_UpperCAmelCase , _UpperCAmelCase ):
ua += "; " + user_agent
lowerCAmelCase = {'user-agent': ua}
if resume_size > 0:
lowerCAmelCase = 'bytes=%d-' % (resume_size,)
lowerCAmelCase = requests.get(_UpperCAmelCase , stream=_UpperCAmelCase , proxies=_UpperCAmelCase , headers=_UpperCAmelCase )
if response.status_code == 416: # Range not satisfiable
return
lowerCAmelCase = response.headers.get('Content-Length' )
lowerCAmelCase = resume_size + int(_UpperCAmelCase ) if content_length is not None else None
lowerCAmelCase = tqdm(
unit='B' , unit_scale=_UpperCAmelCase , total=_UpperCAmelCase , initial=_UpperCAmelCase , desc='Downloading' , )
for chunk in response.iter_content(chunk_size=1024 ):
if chunk: # filter out keep-alive new chunks
progress.update(len(_UpperCAmelCase ) )
temp_file.write(_UpperCAmelCase )
progress.close()
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Any=10 , _UpperCAmelCase : Dict=False , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Optional[int]=False , ):
if cache_dir is None:
lowerCAmelCase = TRANSFORMERS_CACHE
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
lowerCAmelCase = str(_UpperCAmelCase )
os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase )
lowerCAmelCase = None
if not local_files_only:
try:
lowerCAmelCase = requests.head(_UpperCAmelCase , allow_redirects=_UpperCAmelCase , proxies=_UpperCAmelCase , timeout=_UpperCAmelCase )
if response.status_code == 200:
lowerCAmelCase = response.headers.get('ETag' )
except (EnvironmentError, requests.exceptions.Timeout):
# etag is already None
pass
lowerCAmelCase = url_to_filename(_UpperCAmelCase , _UpperCAmelCase )
# get cache path to put the file
lowerCAmelCase = os.path.join(_UpperCAmelCase , _UpperCAmelCase )
# etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible.
# try to get the last downloaded one
if etag is None:
if os.path.exists(_UpperCAmelCase ):
return cache_path
else:
lowerCAmelCase = [
file
for file in fnmatch.filter(os.listdir(_UpperCAmelCase ) , filename + '.*' )
if not file.endswith('.json' ) and not file.endswith('.lock' )
]
if len(_UpperCAmelCase ) > 0:
return os.path.join(_UpperCAmelCase , matching_files[-1] )
else:
# If files cannot be found and local_files_only=True,
# the models might've been found if local_files_only=False
# Notify the user about that
if local_files_only:
raise ValueError(
'Cannot find the requested files in the cached path and outgoing traffic has been'
' disabled. To enable model look-ups and downloads online, set \'local_files_only\''
' to False.' )
return None
# From now on, etag is not None.
if os.path.exists(_UpperCAmelCase ) and not force_download:
return cache_path
# Prevent parallel downloads of the same file with a lock.
lowerCAmelCase = cache_path + '.lock'
with FileLock(_UpperCAmelCase ):
# If the download just completed while the lock was activated.
if os.path.exists(_UpperCAmelCase ) and not force_download:
# Even if returning early like here, the lock will be released.
return cache_path
if resume_download:
lowerCAmelCase = cache_path + '.incomplete'
@contextmanager
def _resumable_file_manager():
with open(_UpperCAmelCase , 'a+b' ) as f:
yield f
lowerCAmelCase = _resumable_file_manager
if os.path.exists(_UpperCAmelCase ):
lowerCAmelCase = os.stat(_UpperCAmelCase ).st_size
else:
lowerCAmelCase = 0
else:
lowerCAmelCase = partial(tempfile.NamedTemporaryFile , dir=_UpperCAmelCase , delete=_UpperCAmelCase )
lowerCAmelCase = 0
# Download to temporary file, then copy to cache dir once finished.
# Otherwise you get corrupt cache entries if the download gets interrupted.
with temp_file_manager() as temp_file:
print(
'%s not found in cache or force_download set to True, downloading to %s' , _UpperCAmelCase , temp_file.name , )
http_get(
_UpperCAmelCase , _UpperCAmelCase , proxies=_UpperCAmelCase , resume_size=_UpperCAmelCase , user_agent=_UpperCAmelCase , )
os.replace(temp_file.name , _UpperCAmelCase )
lowerCAmelCase = {'url': url, 'etag': etag}
lowerCAmelCase = cache_path + '.json'
with open(_UpperCAmelCase , 'w' ) as meta_file:
json.dump(_UpperCAmelCase , _UpperCAmelCase )
return cache_path
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=None ):
lowerCAmelCase = url.encode('utf-8' )
lowerCAmelCase = shaaaa(_UpperCAmelCase )
lowerCAmelCase = url_hash.hexdigest()
if etag:
lowerCAmelCase = etag.encode('utf-8' )
lowerCAmelCase = shaaaa(_UpperCAmelCase )
filename += "." + etag_hash.hexdigest()
if url.endswith('.h5' ):
filename += ".h5"
return filename
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : str=False , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Tuple=False , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : Optional[int]=False , ):
if cache_dir is None:
lowerCAmelCase = TRANSFORMERS_CACHE
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
lowerCAmelCase = str(_UpperCAmelCase )
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
lowerCAmelCase = str(_UpperCAmelCase )
if is_remote_url(_UpperCAmelCase ):
# URL, so get it from the cache (downloading if necessary)
lowerCAmelCase = get_from_cache(
_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , proxies=_UpperCAmelCase , resume_download=_UpperCAmelCase , user_agent=_UpperCAmelCase , local_files_only=_UpperCAmelCase , )
elif os.path.exists(_UpperCAmelCase ):
# File, and it exists.
lowerCAmelCase = url_or_filename
elif urlparse(_UpperCAmelCase ).scheme == "":
# File, but it doesn't exist.
raise EnvironmentError('file {} not found'.format(_UpperCAmelCase ) )
else:
# Something unknown
raise ValueError('unable to parse {} as a URL or as a local path'.format(_UpperCAmelCase ) )
if extract_compressed_file:
if not is_zipfile(_UpperCAmelCase ) and not tarfile.is_tarfile(_UpperCAmelCase ):
return output_path
# Path where we extract compressed archives
# We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/"
lowerCAmelCase ,lowerCAmelCase = os.path.split(_UpperCAmelCase )
lowerCAmelCase = output_file.replace('.' , '-' ) + '-extracted'
lowerCAmelCase = os.path.join(_UpperCAmelCase , _UpperCAmelCase )
if os.path.isdir(_UpperCAmelCase ) and os.listdir(_UpperCAmelCase ) and not force_extract:
return output_path_extracted
# Prevent parallel extractions
lowerCAmelCase = output_path + '.lock'
with FileLock(_UpperCAmelCase ):
shutil.rmtree(_UpperCAmelCase , ignore_errors=_UpperCAmelCase )
os.makedirs(_UpperCAmelCase )
if is_zipfile(_UpperCAmelCase ):
with ZipFile(_UpperCAmelCase , 'r' ) as zip_file:
zip_file.extractall(_UpperCAmelCase )
zip_file.close()
elif tarfile.is_tarfile(_UpperCAmelCase ):
lowerCAmelCase = tarfile.open(_UpperCAmelCase )
tar_file.extractall(_UpperCAmelCase )
tar_file.close()
else:
raise EnvironmentError('Archive format of {} could not be identified'.format(_UpperCAmelCase ) )
return output_path_extracted
return output_path
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict , _UpperCAmelCase : str="," ):
assert isinstance(_UpperCAmelCase , _UpperCAmelCase )
if os.path.isfile(_UpperCAmelCase ):
with open(_UpperCAmelCase ) as f:
lowerCAmelCase = eval(f.read() )
else:
lowerCAmelCase = requests.get(_UpperCAmelCase )
try:
lowerCAmelCase = requests.json()
except Exception:
lowerCAmelCase = req.content.decode()
assert data is not None, "could not connect"
try:
lowerCAmelCase = eval(_UpperCAmelCase )
except Exception:
lowerCAmelCase = data.split('\n' )
req.close()
return data
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] ):
lowerCAmelCase = requests.get(_UpperCAmelCase )
lowerCAmelCase = np.array(Image.open(BytesIO(response.content ) ) )
return img
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] ):
lowerCAmelCase = url.split('/' )[-1]
if fn not in os.listdir(os.getcwd() ):
wget.download(_UpperCAmelCase )
with open(_UpperCAmelCase , 'rb' ) as stream:
lowerCAmelCase = pkl.load(_UpperCAmelCase )
lowerCAmelCase = weights.pop('model' )
lowerCAmelCase = {}
for k, v in model.items():
lowerCAmelCase = torch.from_numpy(_UpperCAmelCase )
if "running_var" in k:
lowerCAmelCase = torch.tensor([0] )
lowerCAmelCase = k.replace('running_var' , 'num_batches_tracked' )
lowerCAmelCase = zero
return new
def _SCREAMING_SNAKE_CASE ():
print(F'{os.path.abspath(os.path.join(_UpperCAmelCase , os.pardir ) )}/demo.ipynb' )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : int="RGB" ):
assert isinstance(_UpperCAmelCase , _UpperCAmelCase )
if os.path.isfile(_UpperCAmelCase ):
lowerCAmelCase = cva.imread(_UpperCAmelCase )
else:
lowerCAmelCase = get_image_from_url(_UpperCAmelCase )
assert img is not None, F'could not connect to: {im}'
lowerCAmelCase = cva.cvtColor(_UpperCAmelCase , cva.COLOR_BGR2RGB )
if input_format == "RGB":
lowerCAmelCase = img[:, :, ::-1]
return img
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : List[str]=1 ):
return (images[i : i + batch] for i in range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase ))
| 309
|
"""simple docstring"""
import argparse
import os
import torch
from transformers.utils import WEIGHTS_NAME
__UpperCamelCase : int = ['''small''', '''medium''', '''large''']
__UpperCamelCase : str = '''lm_head.decoder.weight'''
__UpperCamelCase : Dict = '''lm_head.weight'''
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ):
lowerCAmelCase = torch.load(_UpperCAmelCase )
lowerCAmelCase = d.pop(_UpperCAmelCase )
os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase )
torch.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase ) )
if __name__ == "__main__":
__UpperCamelCase : Optional[int] = argparse.ArgumentParser()
parser.add_argument('''--dialogpt_path''', default='''.''', type=str)
__UpperCamelCase : Optional[int] = parser.parse_args()
for MODEL in DIALOGPT_MODELS:
__UpperCamelCase : Dict = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''')
__UpperCamelCase : str = f'''./DialoGPT-{MODEL}'''
convert_dialogpt_checkpoint(
checkpoint_path,
pytorch_dump_folder_path,
)
| 309
| 1
|
"""simple docstring"""
from __future__ import annotations
import matplotlib.pyplot as plt # type: ignore
import numpy
# initial triangle of Koch snowflake
__UpperCamelCase : Union[str, Any] = numpy.array([0, 0])
__UpperCamelCase : int = numpy.array([0.5, 0.8_66_02_54])
__UpperCamelCase : Any = numpy.array([1, 0])
__UpperCamelCase : int = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1]
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[numpy.ndarray] , _UpperCAmelCase : int ):
lowerCAmelCase = initial_vectors
for _ in range(_UpperCAmelCase ):
lowerCAmelCase = iteration_step(_UpperCAmelCase )
return vectors
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[numpy.ndarray] ):
lowerCAmelCase = []
for i, start_vector in enumerate(vectors[:-1] ):
lowerCAmelCase = vectors[i + 1]
new_vectors.append(_UpperCAmelCase )
lowerCAmelCase = end_vector - start_vector
new_vectors.append(start_vector + difference_vector / 3 )
new_vectors.append(
start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) )
new_vectors.append(start_vector + difference_vector * 2 / 3 )
new_vectors.append(vectors[-1] )
return new_vectors
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : numpy.ndarray , _UpperCAmelCase : float ):
lowerCAmelCase = numpy.radians(_UpperCAmelCase )
lowerCAmelCase ,lowerCAmelCase = numpy.cos(_UpperCAmelCase ), numpy.sin(_UpperCAmelCase )
lowerCAmelCase = numpy.array(((c, -s), (s, c)) )
return numpy.dot(_UpperCAmelCase , _UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[numpy.ndarray] ):
lowerCAmelCase = plt.gca()
axes.set_aspect('equal' )
# matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all
# y-coordinates as inputs, which are constructed from the vector-list using
# zip()
lowerCAmelCase ,lowerCAmelCase = zip(*_UpperCAmelCase )
plt.plot(_UpperCAmelCase , _UpperCAmelCase )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
__UpperCamelCase : int = iterate(INITIAL_VECTORS, 5)
plot(processed_vectors)
| 309
|
"""simple docstring"""
__UpperCamelCase : Dict = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []}
__UpperCamelCase : str = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]}
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[int, list[int]] , _UpperCAmelCase : int , _UpperCAmelCase : list[bool] ):
lowerCAmelCase = True
lowerCAmelCase = []
for neighbour in graph[vert]:
if not visited[neighbour]:
order += topology_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
order.append(_UpperCAmelCase )
return order
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[int, list[int]] , _UpperCAmelCase : int , _UpperCAmelCase : list[bool] ):
lowerCAmelCase = True
lowerCAmelCase = [vert]
for neighbour in reversed_graph[vert]:
if not visited[neighbour]:
component += find_components(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
return component
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[int, list[int]] ):
lowerCAmelCase = len(_UpperCAmelCase ) * [False]
lowerCAmelCase = {vert: [] for vert in range(len(_UpperCAmelCase ) )}
for vert, neighbours in graph.items():
for neighbour in neighbours:
reversed_graph[neighbour].append(_UpperCAmelCase )
lowerCAmelCase = []
for i, was_visited in enumerate(_UpperCAmelCase ):
if not was_visited:
order += topology_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase = []
lowerCAmelCase = len(_UpperCAmelCase ) * [False]
for i in range(len(_UpperCAmelCase ) ):
lowerCAmelCase = order[len(_UpperCAmelCase ) - i - 1]
if not visited[vert]:
lowerCAmelCase = find_components(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
components_list.append(_UpperCAmelCase )
return components_list
| 309
| 1
|
"""simple docstring"""
import argparse
import os
import re
__UpperCamelCase : List[str] = '''src/diffusers'''
# Pattern that looks at the indentation in a line.
__UpperCamelCase : int = re.compile(R'''^(\s*)\S''')
# Pattern that matches `"key":" and puts `key` in group 0.
__UpperCamelCase : str = re.compile(R'''^\s*"([^"]+)":''')
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
__UpperCamelCase : Tuple = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''')
# Pattern that matches `"key",` and puts `key` in group 0.
__UpperCamelCase : int = re.compile(R'''^\s*"([^"]+)",\s*$''')
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
__UpperCamelCase : Tuple = re.compile(R'''\[([^\]]+)\]''')
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict ):
lowerCAmelCase = _re_indent.search(_UpperCAmelCase )
return "" if search is None else search.groups()[0]
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any]="" , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : List[Any]=None ):
lowerCAmelCase = 0
lowerCAmelCase = code.split('\n' )
if start_prompt is not None:
while not lines[index].startswith(_UpperCAmelCase ):
index += 1
lowerCAmelCase = ['\n'.join(lines[:index] )]
else:
lowerCAmelCase = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
lowerCAmelCase = [lines[index]]
index += 1
while index < len(_UpperCAmelCase ) and (end_prompt is None or not lines[index].startswith(_UpperCAmelCase )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(_UpperCAmelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ):
current_block.append(lines[index] )
blocks.append('\n'.join(_UpperCAmelCase ) )
if index < len(_UpperCAmelCase ) - 1:
lowerCAmelCase = [lines[index + 1]]
index += 1
else:
lowerCAmelCase = []
else:
blocks.append('\n'.join(_UpperCAmelCase ) )
lowerCAmelCase = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(_UpperCAmelCase ) > 0:
blocks.append('\n'.join(_UpperCAmelCase ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(_UpperCAmelCase ):
blocks.append('\n'.join(lines[index:] ) )
return blocks
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] ):
def _inner(_UpperCAmelCase : Dict ):
return key(_UpperCAmelCase ).lower().replace('_' , '' )
return _inner
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any]=None ):
# If no key is provided, we use a noop.
def noop(_UpperCAmelCase : List[str] ):
return x
if key is None:
lowerCAmelCase = noop
# Constants are all uppercase, they go first.
lowerCAmelCase = [obj for obj in objects if key(_UpperCAmelCase ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
lowerCAmelCase = [obj for obj in objects if key(_UpperCAmelCase )[0].isupper() and not key(_UpperCAmelCase ).isupper()]
# Functions begin with a lowercase, they go last.
lowerCAmelCase = [obj for obj in objects if not key(_UpperCAmelCase )[0].isupper()]
lowerCAmelCase = ignore_underscore(_UpperCAmelCase )
return sorted(_UpperCAmelCase , key=_UpperCAmelCase ) + sorted(_UpperCAmelCase , key=_UpperCAmelCase ) + sorted(_UpperCAmelCase , key=_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any ):
# This inner function sort imports between [ ].
def _replace(_UpperCAmelCase : List[str] ):
lowerCAmelCase = match.groups()[0]
if "," not in imports:
return F'[{imports}]'
lowerCAmelCase = [part.strip().replace('"' , '' ) for part in imports.split(',' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
lowerCAmelCase = keys[:-1]
return "[" + ", ".join([F'"{k}"' for k in sort_objects(_UpperCAmelCase )] ) + "]"
lowerCAmelCase = import_statement.split('\n' )
if len(_UpperCAmelCase ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
lowerCAmelCase = 2 if lines[1].strip() == '[' else 1
lowerCAmelCase = [(i, _re_strip_line.search(_UpperCAmelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
lowerCAmelCase = sort_objects(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] )
lowerCAmelCase = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(_UpperCAmelCase ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
lowerCAmelCase = _re_bracket_content.sub(_replace , lines[1] )
else:
lowerCAmelCase = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
lowerCAmelCase = keys[:-1]
lowerCAmelCase = get_indent(lines[1] ) + ', '.join([F'"{k}"' for k in sort_objects(_UpperCAmelCase )] )
return "\n".join(_UpperCAmelCase )
else:
# Finally we have to deal with imports fitting on one line
lowerCAmelCase = _re_bracket_content.sub(_replace , _UpperCAmelCase )
return import_statement
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict , _UpperCAmelCase : Tuple=True ):
with open(_UpperCAmelCase , 'r' ) as f:
lowerCAmelCase = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
lowerCAmelCase = split_code_in_indented_blocks(
_UpperCAmelCase , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' )
# We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 , len(_UpperCAmelCase ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
lowerCAmelCase = main_blocks[block_idx]
lowerCAmelCase = block.split('\n' )
# Get to the start of the imports.
lowerCAmelCase = 0
while line_idx < len(_UpperCAmelCase ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
lowerCAmelCase = len(_UpperCAmelCase )
else:
line_idx += 1
if line_idx >= len(_UpperCAmelCase ):
continue
# Ignore beginning and last line: they don't contain anything.
lowerCAmelCase = '\n'.join(block_lines[line_idx:-1] )
lowerCAmelCase = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
lowerCAmelCase = split_code_in_indented_blocks(_UpperCAmelCase , indent_level=_UpperCAmelCase )
# We have two categories of import key: list or _import_structure[key].append/extend
lowerCAmelCase = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
lowerCAmelCase = [(pattern.search(_UpperCAmelCase ).groups()[0] if pattern.search(_UpperCAmelCase ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
lowerCAmelCase = [(i, key) for i, key in enumerate(_UpperCAmelCase ) if key is not None]
lowerCAmelCase = [x[0] for x in sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
lowerCAmelCase = 0
lowerCAmelCase = []
for i in range(len(_UpperCAmelCase ) ):
if keys[i] is None:
reordered_blocks.append(internal_blocks[i] )
else:
lowerCAmelCase = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reordered_blocks.append(_UpperCAmelCase )
count += 1
# And we put our main block back together with its first and last line.
lowerCAmelCase = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] )
if code != "\n".join(_UpperCAmelCase ):
if check_only:
return True
else:
print(F'Overwriting {file}.' )
with open(_UpperCAmelCase , 'w' ) as f:
f.write('\n'.join(_UpperCAmelCase ) )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict=True ):
lowerCAmelCase = []
for root, _, files in os.walk(_UpperCAmelCase ):
if "__init__.py" in files:
lowerCAmelCase = sort_imports(os.path.join(_UpperCAmelCase , '__init__.py' ) , check_only=_UpperCAmelCase )
if result:
lowerCAmelCase = [os.path.join(_UpperCAmelCase , '__init__.py' )]
if len(_UpperCAmelCase ) > 0:
raise ValueError(F'Would overwrite {len(_UpperCAmelCase )} files, run `make style`.' )
if __name__ == "__main__":
__UpperCamelCase : str = argparse.ArgumentParser()
parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''')
__UpperCamelCase : Dict = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 309
|
"""simple docstring"""
import os
import time
import warnings
from dataclasses import dataclass, field
from enum import Enum
from typing import List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import logging
from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors
from ..processors.utils import InputFeatures
__UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
@dataclass
class a :
snake_case__ = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(glue_processors.keys() )} )
snake_case__ = field(
metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} )
snake_case__ = field(
default=1_2_8 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
snake_case__ = field(
default=a__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.task_name.lower()
class a ( a__ ):
snake_case__ = '''train'''
snake_case__ = '''dev'''
snake_case__ = '''test'''
class a ( a__ ):
snake_case__ = 42
snake_case__ = 42
snake_case__ = 42
def __init__( self , _snake_case , _snake_case , _snake_case = None , _snake_case = Split.train , _snake_case = None , ):
"""simple docstring"""
warnings.warn(
'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets '
'library. You can have a look at this example script for pointers: '
'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , _snake_case , )
lowerCAmelCase = args
lowerCAmelCase = glue_processors[args.task_name]()
lowerCAmelCase = glue_output_modes[args.task_name]
if isinstance(_snake_case , _snake_case ):
try:
lowerCAmelCase = Split[mode]
except KeyError:
raise KeyError('mode is not a valid split name' )
# Load data features from cache or dataset file
lowerCAmelCase = os.path.join(
cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , )
lowerCAmelCase = self.processor.get_labels()
if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in (
"RobertaTokenizer",
"RobertaTokenizerFast",
"XLMRobertaTokenizer",
"BartTokenizer",
"BartTokenizerFast",
):
# HACK(label indices are swapped in RoBERTa pretrained model)
lowerCAmelCase ,lowerCAmelCase = label_list[2], label_list[1]
lowerCAmelCase = label_list
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
lowerCAmelCase = cached_features_file + '.lock'
with FileLock(_snake_case ):
if os.path.exists(_snake_case ) and not args.overwrite_cache:
lowerCAmelCase = time.time()
lowerCAmelCase = torch.load(_snake_case )
logger.info(
F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start )
else:
logger.info(F'Creating features from dataset file at {args.data_dir}' )
if mode == Split.dev:
lowerCAmelCase = self.processor.get_dev_examples(args.data_dir )
elif mode == Split.test:
lowerCAmelCase = self.processor.get_test_examples(args.data_dir )
else:
lowerCAmelCase = self.processor.get_train_examples(args.data_dir )
if limit_length is not None:
lowerCAmelCase = examples[:limit_length]
lowerCAmelCase = glue_convert_examples_to_features(
_snake_case , _snake_case , max_length=args.max_seq_length , label_list=_snake_case , output_mode=self.output_mode , )
lowerCAmelCase = time.time()
torch.save(self.features , _snake_case )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' )
def __len__( self ):
"""simple docstring"""
return len(self.features )
def __getitem__( self , _snake_case ):
"""simple docstring"""
return self.features[i]
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self.label_list
| 309
| 1
|
"""simple docstring"""
import inspect
import unittest
from transformers import MobileNetVaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel
from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class a ( a__ ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(_snake_case , 'tf_padding' ) )
self.parent.assertTrue(hasattr(_snake_case , 'depth_multiplier' ) )
class a :
def __init__( self , _snake_case , _snake_case=13 , _snake_case=3 , _snake_case=32 , _snake_case=0.25 , _snake_case=8 , _snake_case=8 , _snake_case=6 , _snake_case=32 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case="relu6" , _snake_case=12_80 , _snake_case=0.1 , _snake_case=0.02 , _snake_case=True , _snake_case=True , _snake_case=10 , _snake_case=None , ):
"""simple docstring"""
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = num_channels
lowerCAmelCase = image_size
lowerCAmelCase = depth_multiplier
lowerCAmelCase = depth_divisible_by
lowerCAmelCase = min_depth
lowerCAmelCase = expand_ratio
lowerCAmelCase = tf_padding
lowerCAmelCase = output_stride
lowerCAmelCase = first_layer_is_expansion
lowerCAmelCase = finegrained_output
lowerCAmelCase = hidden_act
lowerCAmelCase = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier )
lowerCAmelCase = classifier_dropout_prob
lowerCAmelCase = use_labels
lowerCAmelCase = is_training
lowerCAmelCase = num_labels
lowerCAmelCase = initializer_range
lowerCAmelCase = scope
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase = None
lowerCAmelCase = None
if self.use_labels:
lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels )
lowerCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
lowerCAmelCase = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCamelCase__ ( self ):
"""simple docstring"""
return MobileNetVaConfig(
num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = MobileNetVaModel(config=_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
self.parent.assertEqual(
result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = self.num_labels
lowerCAmelCase = MobileNetVaForImageClassification(_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , labels=_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = self.num_labels
lowerCAmelCase = MobileNetVaForSemanticSegmentation(_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
lowerCAmelCase = model(_snake_case , labels=_snake_case )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.prepare_config_and_inputs()
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = config_and_inputs
lowerCAmelCase = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class a ( a__ , a__ , unittest.TestCase ):
snake_case__ = (
(MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation)
if is_torch_available()
else ()
)
snake_case__ = (
{
'''feature-extraction''': MobileNetVaModel,
'''image-classification''': MobileNetVaForImageClassification,
'''image-segmentation''': MobileNetVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
snake_case__ = False
snake_case__ = False
snake_case__ = False
snake_case__ = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = MobileNetVaModelTester(self )
lowerCAmelCase = MobileNetVaConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason='MobileNetV2 does not use inputs_embeds' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
@unittest.skip(reason='MobileNetV2 does not support input and output embeddings' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
@unittest.skip(reason='MobileNetV2 does not output attentions' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase = model_class(_snake_case )
lowerCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase = [*signature.parameters.keys()]
lowerCAmelCase = ['pixel_values']
self.assertListEqual(arg_names[:1] , _snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
def check_hidden_states_output(_snake_case , _snake_case , _snake_case ):
lowerCAmelCase = model_class(_snake_case )
model.to(_snake_case )
model.eval()
with torch.no_grad():
lowerCAmelCase = model(**self._prepare_for_class(_snake_case , _snake_case ) )
lowerCAmelCase = outputs.hidden_states
lowerCAmelCase = 16
self.assertEqual(len(_snake_case ) , _snake_case )
lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase = True
check_hidden_states_output(_snake_case , _snake_case , _snake_case )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCAmelCase = True
check_hidden_states_output(_snake_case , _snake_case , _snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*_snake_case )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase = MobileNetVaModel.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class a ( unittest.TestCase ):
@cached_property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return (
MobileNetVaImageProcessor.from_pretrained('google/mobilenet_v2_1.0_224' ) if is_vision_available() else None
)
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = MobileNetVaForImageClassification.from_pretrained('google/mobilenet_v2_1.0_224' ).to(_snake_case )
lowerCAmelCase = self.default_image_processor
lowerCAmelCase = prepare_img()
lowerCAmelCase = image_processor(images=_snake_case , return_tensors='pt' ).to(_snake_case )
# forward pass
with torch.no_grad():
lowerCAmelCase = model(**_snake_case )
# verify the logits
lowerCAmelCase = torch.Size((1, 10_01) )
self.assertEqual(outputs.logits.shape , _snake_case )
lowerCAmelCase = torch.tensor([0.2_445, -1.1_993, 0.1_905] ).to(_snake_case )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _snake_case , atol=1E-4 ) )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = MobileNetVaForSemanticSegmentation.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' )
lowerCAmelCase = model.to(_snake_case )
lowerCAmelCase = MobileNetVaImageProcessor.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' )
lowerCAmelCase = prepare_img()
lowerCAmelCase = image_processor(images=_snake_case , return_tensors='pt' ).to(_snake_case )
# forward pass
with torch.no_grad():
lowerCAmelCase = model(**_snake_case )
lowerCAmelCase = outputs.logits
# verify the logits
lowerCAmelCase = torch.Size((1, 21, 65, 65) )
self.assertEqual(logits.shape , _snake_case )
lowerCAmelCase = torch.tensor(
[
[[17.5_790, 17.7_581, 18.3_355], [18.3_257, 18.4_230, 18.8_973], [18.6_169, 18.8_650, 19.2_187]],
[[-2.1_595, -2.0_977, -2.3_741], [-2.4_226, -2.3_028, -2.6_835], [-2.7_819, -2.5_991, -2.7_706]],
[[4.2_058, 4.8_317, 4.7_638], [4.4_136, 5.0_361, 4.9_383], [4.5_028, 4.9_644, 4.8_734]],
] , device=_snake_case , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _snake_case , atol=1E-4 ) )
| 309
|
"""simple docstring"""
import os
from collections.abc import Iterator
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "." ):
for dir_path, dir_names, filenames in os.walk(_UpperCAmelCase ):
lowerCAmelCase = [d for d in dir_names if d != 'scripts' and d[0] not in '._']
for filename in filenames:
if filename == "__init__.py":
continue
if os.path.splitext(_UpperCAmelCase )[1] in (".py", ".ipynb"):
yield os.path.join(_UpperCAmelCase , _UpperCAmelCase ).lstrip('./' )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ):
return F'{i * " "}*' if i else "\n##"
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ):
lowerCAmelCase = old_path.split(os.sep )
for i, new_part in enumerate(new_path.split(os.sep ) ):
if (i + 1 > len(_UpperCAmelCase ) or old_parts[i] != new_part) and new_part:
print(F'{md_prefix(_UpperCAmelCase )} {new_part.replace("_" , " " ).title()}' )
return new_path
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "." ):
lowerCAmelCase = ''
for filepath in sorted(good_file_paths(_UpperCAmelCase ) ):
lowerCAmelCase ,lowerCAmelCase = os.path.split(_UpperCAmelCase )
if filepath != old_path:
lowerCAmelCase = print_path(_UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase = (filepath.count(os.sep ) + 1) if filepath else 0
lowerCAmelCase = F'{filepath}/{filename}'.replace(' ' , '%20' )
lowerCAmelCase = os.path.splitext(filename.replace('_' , ' ' ).title() )[0]
print(F'{md_prefix(_UpperCAmelCase )} [{filename}]({url})' )
if __name__ == "__main__":
print_directory_md('''.''')
| 309
| 1
|
"""simple docstring"""
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
__UpperCamelCase : Any = abspath(join(dirname(dirname(__file__)), '''src'''))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action='''ignore''', category=FutureWarning)
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] ):
from diffusers.utils.testing_utils import pytest_addoption_shared
pytest_addoption_shared(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ):
from diffusers.utils.testing_utils import pytest_terminal_summary_main
lowerCAmelCase = terminalreporter.config.getoption('--make-reports' )
if make_reports:
pytest_terminal_summary_main(_UpperCAmelCase , id=_UpperCAmelCase )
| 309
|
"""simple docstring"""
import os
from datetime import datetime as dt
from github import Github
__UpperCamelCase : int = [
'''good first issue''',
'''good second issue''',
'''good difficult issue''',
'''enhancement''',
'''new pipeline/model''',
'''new scheduler''',
'''wip''',
]
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = Github(os.environ['GITHUB_TOKEN'] )
lowerCAmelCase = g.get_repo('huggingface/diffusers' )
lowerCAmelCase = repo.get_issues(state='open' )
for issue in open_issues:
lowerCAmelCase = sorted(issue.get_comments() , key=lambda _UpperCAmelCase : i.created_at , reverse=_UpperCAmelCase )
lowerCAmelCase = comments[0] if len(_UpperCAmelCase ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Closes the issue after 7 days of inactivity since the Stalebot notification.
issue.edit(state='closed' )
elif (
"stale" in issue.get_labels()
and last_comment is not None
and last_comment.user.login != "github-actions[bot]"
):
# Opens the issue if someone other than Stalebot commented.
issue.edit(state='open' )
issue.remove_from_labels('stale' )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Post a Stalebot notification after 23 days of inactivity.
issue.create_comment(
'This issue has been automatically marked as stale because it has not had '
'recent activity. If you think this still needs to be addressed '
'please comment on this thread.\n\nPlease note that issues that do not follow the '
'[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) '
'are likely to be ignored.' )
issue.add_to_labels('stale' )
if __name__ == "__main__":
main()
| 309
| 1
|
"""simple docstring"""
import argparse
import logging
import sys
from unittest.mock import patch
import run_glue_deebert
from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow
logging.basicConfig(level=logging.DEBUG)
__UpperCamelCase : Tuple = logging.getLogger()
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument('-f' )
lowerCAmelCase = parser.parse_args()
return args.f
class a ( a__ ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = logging.StreamHandler(sys.stdout )
logger.addHandler(_snake_case )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = get_gpu_count()
if n_gpu > 1:
pass
# XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560
# script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py"
# distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split()
# cmd = [sys.executable] + distributed_args + args
# execute_subprocess_async(cmd, env=self.get_env())
# XXX: test the results - need to save them first into .json file
else:
args.insert(0 , 'run_glue_deebert.py' )
with patch.object(_snake_case , 'argv' , _snake_case ):
lowerCAmelCase = run_glue_deebert.main()
for value in result.values():
self.assertGreaterEqual(_snake_case , 0.666 )
@slow
@require_torch_non_multi_gpu
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = '\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n '.split()
self.run_and_check(_snake_case )
lowerCAmelCase = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split()
self.run_and_check(_snake_case )
lowerCAmelCase = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split()
self.run_and_check(_snake_case )
| 309
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__UpperCamelCase : Any = {
'''configuration_layoutlmv2''': ['''LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv2Config'''],
'''processing_layoutlmv2''': ['''LayoutLMv2Processor'''],
'''tokenization_layoutlmv2''': ['''LayoutLMv2Tokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Tuple = ['''LayoutLMv2TokenizerFast''']
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Optional[int] = ['''LayoutLMv2FeatureExtractor''']
__UpperCamelCase : Optional[int] = ['''LayoutLMv2ImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Any = [
'''LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''LayoutLMv2ForQuestionAnswering''',
'''LayoutLMv2ForSequenceClassification''',
'''LayoutLMv2ForTokenClassification''',
'''LayoutLMv2Layer''',
'''LayoutLMv2Model''',
'''LayoutLMv2PreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaLayer,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
else:
import sys
__UpperCamelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 309
| 1
|
"""simple docstring"""
from __future__ import annotations
import numpy as np
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[float] ):
return np.maximum(0 , _UpperCAmelCase )
if __name__ == "__main__":
print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
| 309
|
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_poolformer import PoolFormerImageProcessor
__UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
class a ( a__ ):
def __init__( self , *_snake_case , **_snake_case ):
"""simple docstring"""
warnings.warn(
'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use PoolFormerImageProcessor instead.' , _snake_case , )
super().__init__(*_snake_case , **_snake_case )
| 309
| 1
|
"""simple docstring"""
import copy
import tempfile
import unittest
from transformers import MaMaaaConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from transformers.utils import cached_property
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer
from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : int=None , _UpperCAmelCase : Any=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Any=None , ):
if attention_mask is None:
lowerCAmelCase = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
lowerCAmelCase = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
lowerCAmelCase = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=_UpperCAmelCase )
if decoder_head_mask is None:
lowerCAmelCase = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=_UpperCAmelCase )
if cross_attn_head_mask is None:
lowerCAmelCase = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=_UpperCAmelCase )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
class a :
def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=False , _snake_case=99 , _snake_case=16 , _snake_case=2 , _snake_case=4 , _snake_case=4 , _snake_case="relu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=0.0 , _snake_case=0.0 , _snake_case=20 , _snake_case=2 , _snake_case=1 , _snake_case=0 , ):
"""simple docstring"""
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = seq_length
lowerCAmelCase = is_training
lowerCAmelCase = use_labels
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_act
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = encoder_layerdrop
lowerCAmelCase = decoder_layerdrop
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = eos_token_id
lowerCAmelCase = pad_token_id
lowerCAmelCase = bos_token_id
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase = self.eos_token_id # Eos Token
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for M2M100 the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
lowerCAmelCase = input_ids.clamp(self.pad_token_id + 1 )
lowerCAmelCase = decoder_input_ids.clamp(self.pad_token_id + 1 )
lowerCAmelCase = self.get_config()
lowerCAmelCase = prepare_mam_aaa_inputs_dict(_snake_case , _snake_case , _snake_case )
return config, inputs_dict
def UpperCamelCase__ ( self ):
"""simple docstring"""
return MaMaaaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.prepare_config_and_inputs()
return config, inputs_dict
def UpperCamelCase__ ( self , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = MaMaaaModel(config=_snake_case ).get_decoder().to(_snake_case ).eval()
lowerCAmelCase = inputs_dict['input_ids']
lowerCAmelCase = inputs_dict['attention_mask']
lowerCAmelCase = inputs_dict['head_mask']
# first forward pass
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , head_mask=_snake_case , use_cache=_snake_case )
lowerCAmelCase ,lowerCAmelCase = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size )
lowerCAmelCase = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
lowerCAmelCase = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case )['last_hidden_state']
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , past_key_values=_snake_case )[
'last_hidden_state'
]
# select random slice
lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach()
lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-2 ) )
def UpperCamelCase__ ( self , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = MaMaaaModel(config=_snake_case ).to(_snake_case ).eval()
lowerCAmelCase = model(**_snake_case )
lowerCAmelCase = outputs.encoder_last_hidden_state
lowerCAmelCase = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCAmelCase = model.get_encoder()
encoder.save_pretrained(_snake_case )
lowerCAmelCase = MaMaaaEncoder.from_pretrained(_snake_case ).to(_snake_case )
lowerCAmelCase = encoder(inputs_dict['input_ids'] , attention_mask=inputs_dict['attention_mask'] )[
0
]
self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 )
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCAmelCase = model.get_decoder()
decoder.save_pretrained(_snake_case )
lowerCAmelCase = MaMaaaDecoder.from_pretrained(_snake_case ).to(_snake_case )
lowerCAmelCase = decoder(
input_ids=inputs_dict['decoder_input_ids'] , attention_mask=inputs_dict['decoder_attention_mask'] , encoder_hidden_states=_snake_case , encoder_attention_mask=inputs_dict['attention_mask'] , )[0]
self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 )
@require_torch
class a ( a__ , a__ , a__ , unittest.TestCase ):
snake_case__ = (
(
MaMaaaModel,
MaMaaaForConditionalGeneration,
)
if is_torch_available()
else ()
)
snake_case__ = (MaMaaaForConditionalGeneration,) if is_torch_available() else ()
snake_case__ = (
{
'''conversational''': MaMaaaForConditionalGeneration,
'''feature-extraction''': MaMaaaModel,
'''summarization''': MaMaaaForConditionalGeneration,
'''text2text-generation''': MaMaaaForConditionalGeneration,
'''translation''': MaMaaaForConditionalGeneration,
}
if is_torch_available()
else {}
)
snake_case__ = True
snake_case__ = True
snake_case__ = False
snake_case__ = False
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
if pipeline_test_casse_name == "TranslationPipelineTests":
# Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`.
# `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer.
return True
return False
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = MaMaaaModelTester(self )
lowerCAmelCase = ConfigTester(self , config_class=_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
lowerCAmelCase = model_class(_snake_case )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_snake_case )
lowerCAmelCase ,lowerCAmelCase = model_class.from_pretrained(_snake_case , output_loading_info=_snake_case )
self.assertEqual(info['missing_keys'] , [] )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration):
lowerCAmelCase = model_class(_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = copy.deepcopy(self._prepare_for_class(_snake_case , _snake_case ) )
if not self.is_encoder_decoder:
lowerCAmelCase = inputs['input_ids']
del inputs["input_ids"]
else:
lowerCAmelCase = inputs['input_ids']
lowerCAmelCase = inputs.get('decoder_input_ids' , _snake_case )
del inputs["input_ids"]
inputs.pop('decoder_input_ids' , _snake_case )
lowerCAmelCase = model.get_input_embeddings()
if not self.is_encoder_decoder:
lowerCAmelCase = wte(_snake_case )
else:
lowerCAmelCase = wte(_snake_case )
lowerCAmelCase = wte(_snake_case )
with torch.no_grad():
model(**_snake_case )[0]
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
lowerCAmelCase = input_dict['input_ids']
lowerCAmelCase = input_ids.ne(1 ).to(_snake_case )
lowerCAmelCase = MaMaaaForConditionalGeneration(_snake_case ).eval().to(_snake_case )
if torch_device == "cuda":
model.half()
model.generate(_snake_case , attention_mask=_snake_case )
model.generate(num_beams=4 , do_sample=_snake_case , early_stopping=_snake_case , num_return_sequences=3 )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ):
return torch.tensor(_UpperCAmelCase , dtype=torch.long , device=_UpperCAmelCase )
__UpperCamelCase : List[Any] = 1e-4
@require_torch
@require_sentencepiece
@require_tokenizers
@slow
class a ( unittest.TestCase ):
@cached_property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = MaMaaaModel.from_pretrained('facebook/m2m100_418M' ).to(_snake_case )
lowerCAmelCase = _long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]] )
lowerCAmelCase = _long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]] )
lowerCAmelCase = prepare_mam_aaa_inputs_dict(model.config , _snake_case , _snake_case )
with torch.no_grad():
lowerCAmelCase = model(**_snake_case )[0]
lowerCAmelCase = torch.Size((1, 11, 10_24) )
self.assertEqual(output.shape , _snake_case )
# change to expected output here
lowerCAmelCase = torch.tensor(
[[-0.7_780, -0.1_676, 0.1_038], [-6.7_556, -1.3_992, 0.0_567], [-7.5_383, -0.5_920, -0.2_779]] , device=_snake_case )
self.assertTrue(torch.allclose(output[:, :3, :3] , _snake_case , atol=_snake_case ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(_snake_case )
# change to intended input
lowerCAmelCase = _long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]] )
lowerCAmelCase = _long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]] )
lowerCAmelCase = prepare_mam_aaa_inputs_dict(model.config , _snake_case , _snake_case )
with torch.no_grad():
lowerCAmelCase = model(**_snake_case )[0]
lowerCAmelCase = torch.Size((1, 11, model.config.vocab_size) )
self.assertEqual(output.shape , _snake_case )
# change to expected output here
lowerCAmelCase = torch.tensor(
[[-1.0_448, -1.0_411, 3.7_992], [-3.2_191, -3.2_386, -1.3_451], [-3.6_210, -3.5_993, 0.4_925]] , device=_snake_case )
self.assertTrue(torch.allclose(output[:, :3, :3] , _snake_case , atol=_snake_case ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(_snake_case )
lowerCAmelCase = MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' , src_lang='fr' , tgt_lang='en' )
lowerCAmelCase = [
'L\'affaire NSA souligne l\'absence totale de débat sur le renseignement',
'Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.',
'Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent'
' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de'
' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.',
]
# The below article tests that we don't add any hypotheses outside of the top n_beams
lowerCAmelCase = tokenizer(_snake_case , padding=_snake_case , return_tensors='pt' )
lowerCAmelCase = model.generate(
input_ids=dct['input_ids'].to(_snake_case ) , attention_mask=dct['attention_mask'].to(_snake_case ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id('en' ) , )
lowerCAmelCase = [
'The NSA case highlights the total absence of intelligence debate',
'I think there are two levels of response from the French government.',
'When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.'
' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all'
' communications in France.',
]
lowerCAmelCase = tokenizer.batch_decode(
hypotheses_batch.tolist() , clean_up_tokenization_spaces=_snake_case , skip_special_tokens=_snake_case )
assert generated == expected_en
| 309
|
"""simple docstring"""
from __future__ import annotations
import random
# Maximum size of the population. Bigger could be faster but is more memory expensive.
__UpperCamelCase : str = 200
# Number of elements selected in every generation of evolution. The selection takes
# place from best to worst of that generation and must be smaller than N_POPULATION.
__UpperCamelCase : Optional[Any] = 50
# Probability that an element of a generation can mutate, changing one of its genes.
# This will guarantee that all genes will be used during evolution.
__UpperCamelCase : Dict = 0.4
# Just a seed to improve randomness required by the algorithm.
random.seed(random.randint(0, 1000))
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ):
lowerCAmelCase = len([g for position, g in enumerate(_UpperCAmelCase ) if g == main_target[position]] )
return (item, float(_UpperCAmelCase ))
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ):
lowerCAmelCase = random.randint(0 , len(_UpperCAmelCase ) - 1 )
lowerCAmelCase = parent_a[:random_slice] + parent_a[random_slice:]
lowerCAmelCase = parent_a[:random_slice] + parent_a[random_slice:]
return (child_a, child_a)
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] ):
lowerCAmelCase = list(_UpperCAmelCase )
if random.uniform(0 , 1 ) < MUTATION_PROBABILITY:
lowerCAmelCase = random.choice(_UpperCAmelCase )
return "".join(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : tuple[str, float] , _UpperCAmelCase : list[tuple[str, float]] , _UpperCAmelCase : list[str] , ):
lowerCAmelCase = []
# Generate more children proportionally to the fitness score.
lowerCAmelCase = int(parent_a[1] * 100 ) + 1
lowerCAmelCase = 10 if child_n >= 10 else child_n
for _ in range(_UpperCAmelCase ):
lowerCAmelCase = population_score[random.randint(0 , _UpperCAmelCase )][0]
lowerCAmelCase ,lowerCAmelCase = crossover(parent_a[0] , _UpperCAmelCase )
# Append new string to the population list.
pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) )
pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) )
return pop
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] , _UpperCAmelCase : bool = True ):
# Verify if N_POPULATION is bigger than N_SELECTED
if N_POPULATION < N_SELECTED:
lowerCAmelCase = F'{N_POPULATION} must be bigger than {N_SELECTED}'
raise ValueError(_UpperCAmelCase )
# Verify that the target contains no genes besides the ones inside genes variable.
lowerCAmelCase = sorted({c for c in target if c not in genes} )
if not_in_genes_list:
lowerCAmelCase = F'{not_in_genes_list} is not in genes list, evolution cannot converge'
raise ValueError(_UpperCAmelCase )
# Generate random starting population.
lowerCAmelCase = []
for _ in range(_UpperCAmelCase ):
population.append(''.join([random.choice(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) )] ) )
# Just some logs to know what the algorithms is doing.
lowerCAmelCase ,lowerCAmelCase = 0, 0
# This loop will end when we find a perfect match for our target.
while True:
generation += 1
total_population += len(_UpperCAmelCase )
# Random population created. Now it's time to evaluate.
# Adding a bit of concurrency can make everything faster,
#
# import concurrent.futures
# population_score: list[tuple[str, float]] = []
# with concurrent.futures.ThreadPoolExecutor(
# max_workers=NUM_WORKERS) as executor:
# futures = {executor.submit(evaluate, item) for item in population}
# concurrent.futures.wait(futures)
# population_score = [item.result() for item in futures]
#
# but with a simple algorithm like this, it will probably be slower.
# We just need to call evaluate for every item inside the population.
lowerCAmelCase = [evaluate(_UpperCAmelCase , _UpperCAmelCase ) for item in population]
# Check if there is a matching evolution.
lowerCAmelCase = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] , reverse=_UpperCAmelCase )
if population_score[0][0] == target:
return (generation, total_population, population_score[0][0])
# Print the best result every 10 generation.
# Just to know that the algorithm is working.
if debug and generation % 10 == 0:
print(
F'\nGeneration: {generation}'
F'\nTotal Population:{total_population}'
F'\nBest score: {population_score[0][1]}'
F'\nBest string: {population_score[0][0]}' )
# Flush the old population, keeping some of the best evolutions.
# Keeping this avoid regression of evolution.
lowerCAmelCase = population[: int(N_POPULATION / 3 )]
population.clear()
population.extend(_UpperCAmelCase )
# Normalize population score to be between 0 and 1.
lowerCAmelCase = [
(item, score / len(_UpperCAmelCase )) for item, score in population_score
]
# This is selection
for i in range(_UpperCAmelCase ):
population.extend(select(population_score[int(_UpperCAmelCase )] , _UpperCAmelCase , _UpperCAmelCase ) )
# Check if the population has already reached the maximum value and if so,
# break the cycle. If this check is disabled, the algorithm will take
# forever to compute large strings, but will also calculate small strings in
# a far fewer generations.
if len(_UpperCAmelCase ) > N_POPULATION:
break
if __name__ == "__main__":
__UpperCamelCase : Tuple = (
'''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!'''
)
__UpperCamelCase : str = list(
''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm'''
'''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\'''
)
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase : Dict = basic(target_str, genes_list)
print(
f'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}'''
)
| 309
| 1
|
"""simple docstring"""
import warnings
from contextlib import contextmanager
from ....processing_utils import ProcessorMixin
class a ( a__ ):
snake_case__ = '''MCTCTFeatureExtractor'''
snake_case__ = '''AutoTokenizer'''
def __init__( self , _snake_case , _snake_case ):
"""simple docstring"""
super().__init__(_snake_case , _snake_case )
lowerCAmelCase = self.feature_extractor
lowerCAmelCase = False
def __call__( self , *_snake_case , **_snake_case ):
"""simple docstring"""
if self._in_target_context_manager:
return self.current_processor(*_snake_case , **_snake_case )
if "raw_speech" in kwargs:
warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' )
lowerCAmelCase = kwargs.pop('raw_speech' )
else:
lowerCAmelCase = kwargs.pop('audio' , _snake_case )
lowerCAmelCase = kwargs.pop('sampling_rate' , _snake_case )
lowerCAmelCase = kwargs.pop('text' , _snake_case )
if len(_snake_case ) > 0:
lowerCAmelCase = args[0]
lowerCAmelCase = args[1:]
if audio is None and text is None:
raise ValueError('You need to specify either an `audio` or `text` input to process.' )
if audio is not None:
lowerCAmelCase = self.feature_extractor(_snake_case , *_snake_case , sampling_rate=_snake_case , **_snake_case )
if text is not None:
lowerCAmelCase = self.tokenizer(_snake_case , **_snake_case )
if text is None:
return inputs
elif audio is None:
return encodings
else:
lowerCAmelCase = encodings['input_ids']
return inputs
def UpperCamelCase__ ( self , *_snake_case , **_snake_case ):
"""simple docstring"""
return self.tokenizer.batch_decode(*_snake_case , **_snake_case )
def UpperCamelCase__ ( self , *_snake_case , **_snake_case ):
"""simple docstring"""
if self._in_target_context_manager:
return self.current_processor.pad(*_snake_case , **_snake_case )
lowerCAmelCase = kwargs.pop('input_features' , _snake_case )
lowerCAmelCase = kwargs.pop('labels' , _snake_case )
if len(_snake_case ) > 0:
lowerCAmelCase = args[0]
lowerCAmelCase = args[1:]
if input_features is not None:
lowerCAmelCase = self.feature_extractor.pad(_snake_case , *_snake_case , **_snake_case )
if labels is not None:
lowerCAmelCase = self.tokenizer.pad(_snake_case , **_snake_case )
if labels is None:
return input_features
elif input_features is None:
return labels
else:
lowerCAmelCase = labels['input_ids']
return input_features
def UpperCamelCase__ ( self , *_snake_case , **_snake_case ):
"""simple docstring"""
return self.tokenizer.decode(*_snake_case , **_snake_case )
@contextmanager
def UpperCamelCase__ ( self ):
"""simple docstring"""
warnings.warn(
'`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your '
'labels by using the argument `text` of the regular `__call__` method (either in the same call as '
'your audio inputs, or in a separate call.' )
lowerCAmelCase = True
lowerCAmelCase = self.tokenizer
yield
lowerCAmelCase = self.feature_extractor
lowerCAmelCase = False
| 309
|
"""simple docstring"""
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class a :
def __init__( self ):
"""simple docstring"""
lowerCAmelCase = ''
lowerCAmelCase = ''
lowerCAmelCase = []
lowerCAmelCase = 0
lowerCAmelCase = 2_56
lowerCAmelCase = 0
lowerCAmelCase = 0
lowerCAmelCase = 0
lowerCAmelCase = 0
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = cva.imread(_snake_case , 0 )
lowerCAmelCase = copy.deepcopy(self.img )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = plt.hist(self.img.ravel() , 2_56 , [0, 2_56] , label='x' )
lowerCAmelCase = np.sum(_snake_case )
for i in range(len(_snake_case ) ):
lowerCAmelCase = x[i] / self.k
self.sk += prk
lowerCAmelCase = (self.L - 1) * self.sk
if self.rem != 0:
lowerCAmelCase = int(last % last )
lowerCAmelCase = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(_snake_case )
lowerCAmelCase = int(np.ma.count(self.img ) / self.img[1].size )
lowerCAmelCase = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
lowerCAmelCase = self.img[j][i]
if num != self.last_list[num]:
lowerCAmelCase = self.last_list[num]
cva.imwrite('output_data/output.jpg' , self.img )
def UpperCamelCase__ ( self ):
"""simple docstring"""
plt.hist(self.img.ravel() , 2_56 , [0, 2_56] )
def UpperCamelCase__ ( self ):
"""simple docstring"""
cva.imshow('Output-Image' , self.img )
cva.imshow('Input-Image' , self.original_image )
cva.waitKey(50_00 )
cva.destroyAllWindows()
if __name__ == "__main__":
__UpperCamelCase : int = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''')
__UpperCamelCase : List[Any] = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 309
| 1
|
"""simple docstring"""
from pickle import UnpicklingError
import jax
import jax.numpy as jnp
import numpy as np
from flax.serialization import from_bytes
from flax.traverse_util import flatten_dict
from ..utils import logging
__UpperCamelCase : Union[str, Any] = logging.get_logger(__name__)
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any ):
try:
with open(_UpperCAmelCase , 'rb' ) as flax_state_f:
lowerCAmelCase = from_bytes(_UpperCAmelCase , flax_state_f.read() )
except UnpicklingError as e:
try:
with open(_UpperCAmelCase ) as f:
if f.read().startswith('version' ):
raise OSError(
'You seem to have cloned a repository without having git-lfs installed. Please'
' install git-lfs and run `git lfs install` followed by `git lfs pull` in the'
' folder you cloned.' )
else:
raise ValueError from e
except (UnicodeDecodeError, ValueError):
raise EnvironmentError(F'Unable to convert {model_file} to Flax deserializable object. ' )
return load_flax_weights_in_pytorch_model(_UpperCAmelCase , _UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] ):
try:
import torch # noqa: F401
except ImportError:
logger.error(
'Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see'
' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation'
' instructions.' )
raise
# check if we have bf16 weights
lowerCAmelCase = flatten_dict(jax.tree_util.tree_map(lambda _UpperCAmelCase : x.dtype == jnp.bfloataa , _UpperCAmelCase ) ).values()
if any(_UpperCAmelCase ):
# convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16
# and bf16 is not fully supported in PT yet.
logger.warning(
'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` '
'before loading those in PyTorch model.' )
lowerCAmelCase = jax.tree_util.tree_map(
lambda _UpperCAmelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _UpperCAmelCase )
lowerCAmelCase = ''
lowerCAmelCase = flatten_dict(_UpperCAmelCase , sep='.' )
lowerCAmelCase = pt_model.state_dict()
# keep track of unexpected & missing keys
lowerCAmelCase = []
lowerCAmelCase = set(pt_model_dict.keys() )
for flax_key_tuple, flax_tensor in flax_state_dict.items():
lowerCAmelCase = flax_key_tuple.split('.' )
if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4:
lowerCAmelCase = flax_key_tuple_array[:-1] + ['weight']
lowerCAmelCase = jnp.transpose(_UpperCAmelCase , (3, 2, 0, 1) )
elif flax_key_tuple_array[-1] == "kernel":
lowerCAmelCase = flax_key_tuple_array[:-1] + ['weight']
lowerCAmelCase = flax_tensor.T
elif flax_key_tuple_array[-1] == "scale":
lowerCAmelCase = flax_key_tuple_array[:-1] + ['weight']
if "time_embedding" not in flax_key_tuple_array:
for i, flax_key_tuple_string in enumerate(_UpperCAmelCase ):
lowerCAmelCase = (
flax_key_tuple_string.replace('_0' , '.0' )
.replace('_1' , '.1' )
.replace('_2' , '.2' )
.replace('_3' , '.3' )
.replace('_4' , '.4' )
.replace('_5' , '.5' )
.replace('_6' , '.6' )
.replace('_7' , '.7' )
.replace('_8' , '.8' )
.replace('_9' , '.9' )
)
lowerCAmelCase = '.'.join(_UpperCAmelCase )
if flax_key in pt_model_dict:
if flax_tensor.shape != pt_model_dict[flax_key].shape:
raise ValueError(
F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected '
F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' )
else:
# add weight to pytorch dict
lowerCAmelCase = np.asarray(_UpperCAmelCase ) if not isinstance(_UpperCAmelCase , np.ndarray ) else flax_tensor
lowerCAmelCase = torch.from_numpy(_UpperCAmelCase )
# remove from missing keys
missing_keys.remove(_UpperCAmelCase )
else:
# weight is not expected by PyTorch model
unexpected_keys.append(_UpperCAmelCase )
pt_model.load_state_dict(_UpperCAmelCase )
# re-transform missing_keys to list
lowerCAmelCase = list(_UpperCAmelCase )
if len(_UpperCAmelCase ) > 0:
logger.warning(
'Some weights of the Flax model were not used when initializing the PyTorch model'
F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing'
F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture'
' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This'
F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect'
' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a'
' FlaxBertForSequenceClassification model).' )
if len(_UpperCAmelCase ) > 0:
logger.warning(
F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly'
F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to'
' use it for predictions and inference.' )
return pt_model
| 309
|
"""simple docstring"""
import pytest
from datasets.splits import SplitDict, SplitInfo
from datasets.utils.py_utils import asdict
@pytest.mark.parametrize(
'split_dict' , [
SplitDict(),
SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 , dataset_name='my_dataset' )} ),
SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 )} ),
SplitDict({'train': SplitInfo()} ),
] , )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : SplitDict ):
lowerCAmelCase = split_dict._to_yaml_list()
assert len(_UpperCAmelCase ) == len(_UpperCAmelCase )
lowerCAmelCase = SplitDict._from_yaml_list(_UpperCAmelCase )
for split_name, split_info in split_dict.items():
# dataset_name field is deprecated, and is therefore not part of the YAML dump
lowerCAmelCase = None
# the split name of split_dict takes over the name of the split info object
lowerCAmelCase = split_name
assert split_dict == reloaded
@pytest.mark.parametrize(
'split_info' , [SplitInfo(), SplitInfo(dataset_name=_UpperCAmelCase ), SplitInfo(dataset_name='my_dataset' )] )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] ):
# For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name"
# field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files
lowerCAmelCase = asdict(SplitDict({'train': split_info} ) )
assert "dataset_name" in split_dict_asdict["train"]
assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
| 309
| 1
|
"""simple docstring"""
# Algorithm for the pigeonhole sorting
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple ):
lowerCAmelCase = min(_UpperCAmelCase ) # min() finds the minimum value
lowerCAmelCase = max(_UpperCAmelCase ) # max() finds the maximum value
lowerCAmelCase = max_val - min_val + 1 # size is difference of max and min values plus one
# list of pigeonholes of size equal to the variable size
lowerCAmelCase = [0] * size
# Populate the pigeonholes.
for x in a:
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "integers only please"
holes[x - min_val] += 1
# Putting the elements back into the array in an order.
lowerCAmelCase = 0
for count in range(_UpperCAmelCase ):
while holes[count] > 0:
holes[count] -= 1
lowerCAmelCase = count + min_val
i += 1
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = [8, 3, 2, 7, 4, 6, 8]
pigeonhole_sort(_UpperCAmelCase )
print('Sorted order is:' , ' '.join(_UpperCAmelCase ) )
if __name__ == "__main__":
main()
| 309
|
"""simple docstring"""
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
__UpperCamelCase : Any = abspath(join(dirname(dirname(__file__)), '''src'''))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action='''ignore''', category=FutureWarning)
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] ):
from diffusers.utils.testing_utils import pytest_addoption_shared
pytest_addoption_shared(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ):
from diffusers.utils.testing_utils import pytest_terminal_summary_main
lowerCAmelCase = terminalreporter.config.getoption('--make-reports' )
if make_reports:
pytest_terminal_summary_main(_UpperCAmelCase , id=_UpperCAmelCase )
| 309
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__UpperCamelCase : Union[str, Any] = {
'''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''],
'''tokenization_mvp''': ['''MvpTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Any = ['''MvpTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : List[Any] = [
'''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MvpForCausalLM''',
'''MvpForConditionalGeneration''',
'''MvpForQuestionAnswering''',
'''MvpForSequenceClassification''',
'''MvpModel''',
'''MvpPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig
from .tokenization_mvp import MvpTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mvp_fast import MvpTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mvp import (
MVP_PRETRAINED_MODEL_ARCHIVE_LIST,
MvpForCausalLM,
MvpForConditionalGeneration,
MvpForQuestionAnswering,
MvpForSequenceClassification,
MvpModel,
MvpPreTrainedModel,
)
else:
import sys
__UpperCamelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 309
|
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class a ( unittest.TestCase ):
def __init__( self , _snake_case , _snake_case=7 , _snake_case=3 , _snake_case=18 , _snake_case=30 , _snake_case=4_00 , _snake_case=True , _snake_case=None , _snake_case=True , _snake_case=None , _snake_case=True , ):
"""simple docstring"""
lowerCAmelCase = size if size is not None else {'shortest_edge': 20}
lowerCAmelCase = crop_size if crop_size is not None else {'height': 18, 'width': 18}
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = num_channels
lowerCAmelCase = image_size
lowerCAmelCase = min_resolution
lowerCAmelCase = max_resolution
lowerCAmelCase = do_resize
lowerCAmelCase = size
lowerCAmelCase = do_center_crop
lowerCAmelCase = crop_size
lowerCAmelCase = do_flip_channel_order
def UpperCamelCase__ ( self ):
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_flip_channel_order": self.do_flip_channel_order,
}
@require_torch
@require_vision
class a ( a__ , unittest.TestCase ):
snake_case__ = MobileViTImageProcessor if is_vision_available() else None
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = MobileViTImageProcessingTester(self )
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_snake_case , 'do_resize' ) )
self.assertTrue(hasattr(_snake_case , 'size' ) )
self.assertTrue(hasattr(_snake_case , 'do_center_crop' ) )
self.assertTrue(hasattr(_snake_case , 'center_crop' ) )
self.assertTrue(hasattr(_snake_case , 'do_flip_channel_order' ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 20} )
self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} )
lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'shortest_edge': 42} )
self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case )
for image in image_inputs:
self.assertIsInstance(_snake_case , Image.Image )
# Test not batched input
lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , numpify=_snake_case )
for image in image_inputs:
self.assertIsInstance(_snake_case , np.ndarray )
# Test not batched input
lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , torchify=_snake_case )
for image in image_inputs:
self.assertIsInstance(_snake_case , torch.Tensor )
# Test not batched input
lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
| 309
| 1
|
"""simple docstring"""
import math
import unittest
from transformers import BioGptConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptTokenizer,
)
from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST
class a :
def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=False , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , ):
"""simple docstring"""
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = seq_length
lowerCAmelCase = is_training
lowerCAmelCase = use_input_mask
lowerCAmelCase = use_token_type_ids
lowerCAmelCase = use_labels
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_act
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = type_sequence_label_size
lowerCAmelCase = initializer_range
lowerCAmelCase = num_labels
lowerCAmelCase = num_choices
lowerCAmelCase = scope
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase = None
if self.use_input_mask:
lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase = None
if self.use_token_type_ids:
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCAmelCase = None
lowerCAmelCase = None
lowerCAmelCase = None
if self.use_labels:
lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase__ ( self ):
"""simple docstring"""
return BioGptConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = BioGptModel(config=_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case )
lowerCAmelCase = model(_snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ):
"""simple docstring"""
lowerCAmelCase = BioGptForCausalLM(config=_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ):
"""simple docstring"""
lowerCAmelCase = BioGptModel(config=_snake_case )
model.to(_snake_case )
model.eval()
# create attention mask
lowerCAmelCase = torch.ones(input_ids.shape , dtype=torch.long , device=_snake_case )
lowerCAmelCase = self.seq_length // 2
lowerCAmelCase = 0
# first forward pass
lowerCAmelCase ,lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ).to_tuple()
# create hypothetical next token and extent to next_input_ids
lowerCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size )
# change a random masked slice from input_ids
lowerCAmelCase = ids_tensor((1,) , _snake_case ).item() + 1
lowerCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 )
lowerCAmelCase = random_other_next_tokens
# append to next input_ids and attn_mask
lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
lowerCAmelCase = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=_snake_case )] , dim=1 , )
# get two different outputs
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case )['last_hidden_state']
lowerCAmelCase = model(_snake_case , past_key_values=_snake_case , attention_mask=_snake_case )['last_hidden_state']
# select random slice
lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
lowerCAmelCase = output_from_no_past[:, -1, random_slice_idx].detach()
lowerCAmelCase = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-3 ) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ):
"""simple docstring"""
lowerCAmelCase = BioGptModel(config=_snake_case ).to(_snake_case ).eval()
lowerCAmelCase = torch.ones(input_ids.shape , dtype=torch.long , device=_snake_case )
# first forward pass
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , use_cache=_snake_case )
lowerCAmelCase ,lowerCAmelCase = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size )
lowerCAmelCase = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
lowerCAmelCase = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case )['last_hidden_state']
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , past_key_values=_snake_case )[
'last_hidden_state'
]
# select random slice
lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach()
lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1E-3 ) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case , _snake_case=False ):
"""simple docstring"""
lowerCAmelCase = BioGptForCausalLM(_snake_case )
model.to(_snake_case )
if gradient_checkpointing:
model.gradient_checkpointing_enable()
lowerCAmelCase = model(_snake_case , labels=_snake_case )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
result.loss.backward()
def UpperCamelCase__ ( self , _snake_case , *_snake_case ):
"""simple docstring"""
lowerCAmelCase = BioGptModel(_snake_case )
lowerCAmelCase = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers )
for key in model.state_dict().keys():
if "c_proj" in key and "weight" in key:
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 )
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ):
"""simple docstring"""
lowerCAmelCase = self.num_labels
lowerCAmelCase = BioGptForTokenClassification(_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.prepare_config_and_inputs()
(
(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,
) = config_and_inputs
lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class a ( a__ , a__ , a__ , unittest.TestCase ):
snake_case__ = (
(BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification)
if is_torch_available()
else ()
)
snake_case__ = (BioGptForCausalLM,) if is_torch_available() else ()
snake_case__ = (
{
'''feature-extraction''': BioGptModel,
'''text-classification''': BioGptForSequenceClassification,
'''text-generation''': BioGptForCausalLM,
'''token-classification''': BioGptForTokenClassification,
'''zero-shot''': BioGptForSequenceClassification,
}
if is_torch_available()
else {}
)
snake_case__ = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = BioGptModelTester(self )
lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowerCAmelCase = type
self.model_tester.create_and_check_model(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_attention_mask_past(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_forward_and_backwards(*_snake_case , gradient_checkpointing=_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_past_large_inputs(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_weight_initialization(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_for_token_classification(*_snake_case )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = BioGptForCausalLM.from_pretrained('microsoft/biogpt' )
model.to(_snake_case )
lowerCAmelCase = BioGptTokenizer.from_pretrained('microsoft/biogpt' )
lowerCAmelCase = 'left'
# Define PAD Token = EOS Token = 50256
lowerCAmelCase = tokenizer.eos_token
lowerCAmelCase = model.config.eos_token_id
# use different length sentences to test batching
lowerCAmelCase = [
'Hello, my dog is a little',
'Today, I',
]
lowerCAmelCase = tokenizer(_snake_case , return_tensors='pt' , padding=_snake_case )
lowerCAmelCase = inputs['input_ids'].to(_snake_case )
lowerCAmelCase = model.generate(
input_ids=_snake_case , attention_mask=inputs['attention_mask'].to(_snake_case ) , )
lowerCAmelCase = tokenizer(sentences[0] , return_tensors='pt' ).input_ids.to(_snake_case )
lowerCAmelCase = model.generate(input_ids=_snake_case )
lowerCAmelCase = inputs_non_padded.shape[-1] - inputs['attention_mask'][-1].long().sum().cpu().item()
lowerCAmelCase = tokenizer(sentences[1] , return_tensors='pt' ).input_ids.to(_snake_case )
lowerCAmelCase = model.generate(input_ids=_snake_case , max_length=model.config.max_length - num_paddings )
lowerCAmelCase = tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case )
lowerCAmelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_snake_case )
lowerCAmelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=_snake_case )
lowerCAmelCase = [
'Hello, my dog is a little bit bigger than a little bit.',
'Today, I have a good idea of how to use the information',
]
self.assertListEqual(_snake_case , _snake_case )
self.assertListEqual(_snake_case , [non_padded_sentence, padded_sentence] )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase = BioGptModel.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase = 3
lowerCAmelCase = input_dict['input_ids']
lowerCAmelCase = input_ids.ne(1 ).to(_snake_case )
lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
lowerCAmelCase = BioGptForSequenceClassification(_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase = 3
lowerCAmelCase = 'multi_label_classification'
lowerCAmelCase = input_dict['input_ids']
lowerCAmelCase = input_ids.ne(1 ).to(_snake_case )
lowerCAmelCase = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
lowerCAmelCase = BioGptForSequenceClassification(_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case , labels=_snake_case )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@require_torch
class a ( unittest.TestCase ):
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = BioGptForCausalLM.from_pretrained('microsoft/biogpt' )
lowerCAmelCase = torch.tensor([[2, 48_05, 9, 6_56, 21]] )
lowerCAmelCase = model(_snake_case )[0]
lowerCAmelCase = 4_23_84
lowerCAmelCase = torch.Size((1, 5, vocab_size) )
self.assertEqual(output.shape , _snake_case )
lowerCAmelCase = torch.tensor(
[[[-9.5_236, -9.8_918, 10.4_557], [-11.0_469, -9.6_423, 8.1_022], [-8.8_664, -7.8_826, 5.5_325]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _snake_case , atol=1E-4 ) )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = BioGptTokenizer.from_pretrained('microsoft/biogpt' )
lowerCAmelCase = BioGptForCausalLM.from_pretrained('microsoft/biogpt' )
model.to(_snake_case )
torch.manual_seed(0 )
lowerCAmelCase = tokenizer('COVID-19 is' , return_tensors='pt' ).to(_snake_case )
lowerCAmelCase = model.generate(
**_snake_case , min_length=1_00 , max_length=10_24 , num_beams=5 , early_stopping=_snake_case , )
lowerCAmelCase = tokenizer.decode(output_ids[0] , skip_special_tokens=_snake_case )
lowerCAmelCase = (
'COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the'
' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and'
' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),'
' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and'
' more than 800,000 deaths.'
)
self.assertEqual(_snake_case , _snake_case )
| 309
|
"""simple docstring"""
import unittest
from accelerate import debug_launcher
from accelerate.test_utils import require_cpu, test_ops, test_script
@require_cpu
class a ( unittest.TestCase ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
debug_launcher(test_script.main )
def UpperCamelCase__ ( self ):
"""simple docstring"""
debug_launcher(test_ops.main )
| 309
| 1
|
"""simple docstring"""
from __future__ import annotations
# This is the precision for this function which can be altered.
# It is recommended for users to keep this number greater than or equal to 10.
__UpperCamelCase : int = 10
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : list[int] , _UpperCAmelCase : int ):
for i in range(_UpperCAmelCase , _UpperCAmelCase ):
if array[i] == target:
return i
return -1
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[int] , _UpperCAmelCase : int ):
lowerCAmelCase = 0
lowerCAmelCase = len(_UpperCAmelCase )
while left <= right:
if right - left < precision:
return lin_search(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase = (left + right) // 3 + 1
lowerCAmelCase = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
lowerCAmelCase = one_third - 1
elif array[two_third] < target:
lowerCAmelCase = two_third + 1
else:
lowerCAmelCase = one_third + 1
lowerCAmelCase = two_third - 1
else:
return -1
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : list[int] , _UpperCAmelCase : int ):
if left < right:
if right - left < precision:
return lin_search(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase = (left + right) // 3 + 1
lowerCAmelCase = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
return rec_ternary_search(_UpperCAmelCase , one_third - 1 , _UpperCAmelCase , _UpperCAmelCase )
elif array[two_third] < target:
return rec_ternary_search(two_third + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
else:
return rec_ternary_search(one_third + 1 , two_third - 1 , _UpperCAmelCase , _UpperCAmelCase )
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
__UpperCamelCase : Optional[Any] = input('''Enter numbers separated by comma:\n''').strip()
__UpperCamelCase : Any = [int(item.strip()) for item in user_input.split(''',''')]
assert collection == sorted(collection), f"List must be ordered.\n{collection}."
__UpperCamelCase : List[Any] = int(input('''Enter the number to be found in the list:\n''').strip())
__UpperCamelCase : Any = ite_ternary_search(collection, target)
__UpperCamelCase : List[Any] = rec_ternary_search(0, len(collection) - 1, collection, target)
if resulta != -1:
print(f'''Iterative search: {target} found at positions: {resulta}''')
print(f'''Recursive search: {target} found at positions: {resulta}''')
else:
print('''Not found''')
| 309
|
"""simple docstring"""
from __future__ import annotations
from decimal import Decimal
from numpy import array
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[list[float]] ):
lowerCAmelCase = Decimal
# Check if the provided matrix has 2 rows and 2 columns
# since this implementation only works for 2x2 matrices
if len(_UpperCAmelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2:
# Calculate the determinant of the matrix
lowerCAmelCase = float(
d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) )
if determinant == 0:
raise ValueError('This matrix has no inverse.' )
# Creates a copy of the matrix with swapped positions of the elements
lowerCAmelCase = [[0.0, 0.0], [0.0, 0.0]]
lowerCAmelCase ,lowerCAmelCase = matrix[1][1], matrix[0][0]
lowerCAmelCase ,lowerCAmelCase = -matrix[1][0], -matrix[0][1]
# Calculate the inverse of the matrix
return [
[(float(d(_UpperCAmelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix
]
elif (
len(_UpperCAmelCase ) == 3
and len(matrix[0] ) == 3
and len(matrix[1] ) == 3
and len(matrix[2] ) == 3
):
# Calculate the determinant of the matrix using Sarrus rule
lowerCAmelCase = float(
(
(d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] ))
+ (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] ))
+ (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] ))
)
- (
(d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] ))
+ (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] ))
+ (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] ))
) )
if determinant == 0:
raise ValueError('This matrix has no inverse.' )
# Creating cofactor matrix
lowerCAmelCase = [
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
]
lowerCAmelCase = (d(matrix[1][1] ) * d(matrix[2][2] )) - (
d(matrix[1][2] ) * d(matrix[2][1] )
)
lowerCAmelCase = -(
(d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] ))
)
lowerCAmelCase = (d(matrix[1][0] ) * d(matrix[2][1] )) - (
d(matrix[1][1] ) * d(matrix[2][0] )
)
lowerCAmelCase = -(
(d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] ))
)
lowerCAmelCase = (d(matrix[0][0] ) * d(matrix[2][2] )) - (
d(matrix[0][2] ) * d(matrix[2][0] )
)
lowerCAmelCase = -(
(d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] ))
)
lowerCAmelCase = (d(matrix[0][1] ) * d(matrix[1][2] )) - (
d(matrix[0][2] ) * d(matrix[1][1] )
)
lowerCAmelCase = -(
(d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] ))
)
lowerCAmelCase = (d(matrix[0][0] ) * d(matrix[1][1] )) - (
d(matrix[0][1] ) * d(matrix[1][0] )
)
# Transpose the cofactor matrix (Adjoint matrix)
lowerCAmelCase = array(_UpperCAmelCase )
for i in range(3 ):
for j in range(3 ):
lowerCAmelCase = cofactor_matrix[j][i]
# Inverse of the matrix using the formula (1/determinant) * adjoint matrix
lowerCAmelCase = array(_UpperCAmelCase )
for i in range(3 ):
for j in range(3 ):
inverse_matrix[i][j] /= d(_UpperCAmelCase )
# Calculate the inverse of the matrix
return [[float(d(_UpperCAmelCase ) ) or 0.0 for n in row] for row in inverse_matrix]
raise ValueError('Please provide a matrix of size 2x2 or 3x3.' )
| 309
| 1
|
"""simple docstring"""
from __future__ import annotations
from PIL import Image
# Define glider example
__UpperCamelCase : Union[str, Any] = [
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
]
# Define blinker example
__UpperCamelCase : List[Any] = [[0, 1, 0], [0, 1, 0], [0, 1, 0]]
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[list[int]] ):
lowerCAmelCase = []
for i in range(len(_UpperCAmelCase ) ):
lowerCAmelCase = []
for j in range(len(cells[i] ) ):
# Get the number of live neighbours
lowerCAmelCase = 0
if i > 0 and j > 0:
neighbour_count += cells[i - 1][j - 1]
if i > 0:
neighbour_count += cells[i - 1][j]
if i > 0 and j < len(cells[i] ) - 1:
neighbour_count += cells[i - 1][j + 1]
if j > 0:
neighbour_count += cells[i][j - 1]
if j < len(cells[i] ) - 1:
neighbour_count += cells[i][j + 1]
if i < len(_UpperCAmelCase ) - 1 and j > 0:
neighbour_count += cells[i + 1][j - 1]
if i < len(_UpperCAmelCase ) - 1:
neighbour_count += cells[i + 1][j]
if i < len(_UpperCAmelCase ) - 1 and j < len(cells[i] ) - 1:
neighbour_count += cells[i + 1][j + 1]
# Rules of the game of life (excerpt from Wikipedia):
# 1. Any live cell with two or three live neighbours survives.
# 2. Any dead cell with three live neighbours becomes a live cell.
# 3. All other live cells die in the next generation.
# Similarly, all other dead cells stay dead.
lowerCAmelCase = cells[i][j] == 1
if (
(alive and 2 <= neighbour_count <= 3)
or not alive
and neighbour_count == 3
):
next_generation_row.append(1 )
else:
next_generation_row.append(0 )
next_generation.append(_UpperCAmelCase )
return next_generation
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[list[int]] , _UpperCAmelCase : int ):
lowerCAmelCase = []
for _ in range(_UpperCAmelCase ):
# Create output image
lowerCAmelCase = Image.new('RGB' , (len(cells[0] ), len(_UpperCAmelCase )) )
lowerCAmelCase = img.load()
# Save cells to image
for x in range(len(_UpperCAmelCase ) ):
for y in range(len(cells[0] ) ):
lowerCAmelCase = 255 - cells[y][x] * 255
lowerCAmelCase = (colour, colour, colour)
# Save image
images.append(_UpperCAmelCase )
lowerCAmelCase = new_generation(_UpperCAmelCase )
return images
if __name__ == "__main__":
__UpperCamelCase : List[Any] = generate_images(GLIDER, 16)
images[0].save('''out.gif''', save_all=True, append_images=images[1:])
| 309
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__UpperCamelCase : Dict = {
'''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''],
'''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''],
'''processing_mctct''': ['''MCTCTProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Tuple = [
'''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MCTCTForCTC''',
'''MCTCTModel''',
'''MCTCTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
__UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 309
| 1
|
"""simple docstring"""
import argparse
import math
import traceback
import dateutil.parser as date_parser
import requests
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] ):
lowerCAmelCase = {}
lowerCAmelCase = job['started_at']
lowerCAmelCase = job['completed_at']
lowerCAmelCase = date_parser.parse(_UpperCAmelCase )
lowerCAmelCase = date_parser.parse(_UpperCAmelCase )
lowerCAmelCase = round((end_datetime - start_datetime).total_seconds() / 60.0 )
lowerCAmelCase = start
lowerCAmelCase = end
lowerCAmelCase = duration_in_min
return job_info
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any]=None ):
lowerCAmelCase = None
if token is not None:
lowerCAmelCase = {'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'}
lowerCAmelCase = F'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100'
lowerCAmelCase = requests.get(_UpperCAmelCase , headers=_UpperCAmelCase ).json()
lowerCAmelCase = {}
try:
job_time.update({job['name']: extract_time_from_single_job(_UpperCAmelCase ) for job in result['jobs']} )
lowerCAmelCase = math.ceil((result['total_count'] - 100) / 100 )
for i in range(_UpperCAmelCase ):
lowerCAmelCase = requests.get(url + F'&page={i + 2}' , headers=_UpperCAmelCase ).json()
job_time.update({job['name']: extract_time_from_single_job(_UpperCAmelCase ) for job in result['jobs']} )
return job_time
except Exception:
print(F'Unknown error, could not fetch links:\n{traceback.format_exc()}' )
return {}
if __name__ == "__main__":
__UpperCamelCase : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''')
__UpperCamelCase : Union[str, Any] = parser.parse_args()
__UpperCamelCase : Any = get_job_time(args.workflow_run_id)
__UpperCamelCase : List[str] = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True))
for k, v in job_time.items():
print(f'''{k}: {v['duration']}''')
| 309
|
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
__UpperCamelCase : Dict = logging.get_logger(__name__)
__UpperCamelCase : str = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
__UpperCamelCase : Optional[int] = {
'''vocab_file''': {
'''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''',
'''distilbert-base-uncased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt'''
),
'''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''',
'''distilbert-base-cased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt'''
),
'''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''',
'''distilbert-base-multilingual-cased''': (
'''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''',
'''distilbert-base-uncased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json'''
),
'''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''',
'''distilbert-base-cased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json'''
),
'''distilbert-base-german-cased''': (
'''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json'''
),
'''distilbert-base-multilingual-cased''': (
'''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json'''
),
},
}
__UpperCamelCase : str = {
'''distilbert-base-uncased''': 512,
'''distilbert-base-uncased-distilled-squad''': 512,
'''distilbert-base-cased''': 512,
'''distilbert-base-cased-distilled-squad''': 512,
'''distilbert-base-german-cased''': 512,
'''distilbert-base-multilingual-cased''': 512,
}
__UpperCamelCase : Any = {
'''distilbert-base-uncased''': {'''do_lower_case''': True},
'''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True},
'''distilbert-base-cased''': {'''do_lower_case''': False},
'''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False},
'''distilbert-base-german-cased''': {'''do_lower_case''': False},
'''distilbert-base-multilingual-cased''': {'''do_lower_case''': False},
}
class a ( a__ ):
snake_case__ = VOCAB_FILES_NAMES
snake_case__ = PRETRAINED_VOCAB_FILES_MAP
snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case__ = PRETRAINED_INIT_CONFIGURATION
snake_case__ = ['''input_ids''', '''attention_mask''']
snake_case__ = DistilBertTokenizer
def __init__( self , _snake_case=None , _snake_case=None , _snake_case=True , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case=True , _snake_case=None , **_snake_case , ):
"""simple docstring"""
super().__init__(
_snake_case , tokenizer_file=_snake_case , do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , tokenize_chinese_chars=_snake_case , strip_accents=_snake_case , **_snake_case , )
lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , _snake_case ) != do_lower_case
or normalizer_state.get('strip_accents' , _snake_case ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , _snake_case ) != tokenize_chinese_chars
):
lowerCAmelCase = getattr(_snake_case , normalizer_state.pop('type' ) )
lowerCAmelCase = do_lower_case
lowerCAmelCase = strip_accents
lowerCAmelCase = tokenize_chinese_chars
lowerCAmelCase = normalizer_class(**_snake_case )
lowerCAmelCase = do_lower_case
def UpperCamelCase__ ( self , _snake_case , _snake_case=None ):
"""simple docstring"""
lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCamelCase__ ( self , _snake_case , _snake_case = None ):
"""simple docstring"""
lowerCAmelCase = [self.sep_token_id]
lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase__ ( self , _snake_case , _snake_case = None ):
"""simple docstring"""
lowerCAmelCase = self._tokenizer.model.save(_snake_case , name=_snake_case )
return tuple(_snake_case )
| 309
| 1
|
"""simple docstring"""
import random
import unittest
import torch
from diffusers import IFInpaintingPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class a ( a__ , a__ , unittest.TestCase ):
snake_case__ = IFInpaintingPipeline
snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''}
snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
snake_case__ = PipelineTesterMixin.required_optional_params - {'''latents'''}
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self._get_dummy_components()
def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ):
"""simple docstring"""
if str(_snake_case ).startswith('mps' ):
lowerCAmelCase = torch.manual_seed(_snake_case )
else:
lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case )
lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case )
lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case )
lowerCAmelCase = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'mask_image': mask_image,
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
super().test_save_load_floataa(expected_max_diff=1E-1 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_save_load_local()
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
| 309
|
"""simple docstring"""
from __future__ import annotations
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] | None = None ):
lowerCAmelCase = word_bank or []
# create a table
lowerCAmelCase = len(_UpperCAmelCase ) + 1
lowerCAmelCase = []
for _ in range(_UpperCAmelCase ):
table.append([] )
# seed value
lowerCAmelCase = [[]] # because empty string has empty combination
# iterate through the indices
for i in range(_UpperCAmelCase ):
# condition
if table[i] != []:
for word in word_bank:
# slice condition
if target[i : i + len(_UpperCAmelCase )] == word:
lowerCAmelCase = [
[word, *way] for way in table[i]
]
# adds the word to every combination the current position holds
# now,push that combination to the table[i+len(word)]
table[i + len(_UpperCAmelCase )] += new_combinations
# combinations are in reverse order so reverse for better output
for combination in table[len(_UpperCAmelCase )]:
combination.reverse()
return table[len(_UpperCAmelCase )]
if __name__ == "__main__":
print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa''']))
print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t''']))
print(
all_construct(
'''hexagonosaurus''',
['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''],
)
)
| 309
| 1
|
"""simple docstring"""
import gc
import unittest
from transformers import CTRLConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
CTRLForSequenceClassification,
CTRLLMHeadModel,
CTRLModel,
)
class a :
def __init__( self , _snake_case , _snake_case=14 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , ):
"""simple docstring"""
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = seq_length
lowerCAmelCase = is_training
lowerCAmelCase = use_token_type_ids
lowerCAmelCase = use_input_mask
lowerCAmelCase = use_labels
lowerCAmelCase = use_mc_token_ids
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_act
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = type_sequence_label_size
lowerCAmelCase = initializer_range
lowerCAmelCase = num_labels
lowerCAmelCase = num_choices
lowerCAmelCase = scope
lowerCAmelCase = self.vocab_size - 1
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase = None
if self.use_input_mask:
lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase = None
if self.use_token_type_ids:
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCAmelCase = None
if self.use_mc_token_ids:
lowerCAmelCase = ids_tensor([self.batch_size, self.num_choices] , self.seq_length )
lowerCAmelCase = None
lowerCAmelCase = None
lowerCAmelCase = None
if self.use_labels:
lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase = self.get_config()
lowerCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
)
def UpperCamelCase__ ( self ):
"""simple docstring"""
return CTRLConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ):
"""simple docstring"""
lowerCAmelCase = CTRLModel(config=_snake_case )
model.to(_snake_case )
model.eval()
model(_snake_case , token_type_ids=_snake_case , head_mask=_snake_case )
model(_snake_case , token_type_ids=_snake_case )
lowerCAmelCase = model(_snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(len(result.past_key_values ) , config.n_layer )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ):
"""simple docstring"""
lowerCAmelCase = CTRLLMHeadModel(_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.prepare_config_and_inputs()
(
(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,
) = config_and_inputs
lowerCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask}
return config, inputs_dict
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , *_snake_case ):
"""simple docstring"""
lowerCAmelCase = self.num_labels
lowerCAmelCase = CTRLForSequenceClassification(_snake_case )
model.to(_snake_case )
model.eval()
lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase = model(_snake_case , token_type_ids=_snake_case , labels=_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
@require_torch
class a ( a__ , a__ , a__ , unittest.TestCase ):
snake_case__ = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else ()
snake_case__ = (CTRLLMHeadModel,) if is_torch_available() else ()
snake_case__ = (
{
'''feature-extraction''': CTRLModel,
'''text-classification''': CTRLForSequenceClassification,
'''text-generation''': CTRLLMHeadModel,
'''zero-shot''': CTRLForSequenceClassification,
}
if is_torch_available()
else {}
)
snake_case__ = True
snake_case__ = False
snake_case__ = False
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny
# config could not be created.
return True
return False
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = CTRLModelTester(self )
lowerCAmelCase = ConfigTester(self , config_class=_snake_case , n_embd=37 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_ctrl_model(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*_snake_case )
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase = CTRLModel.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
@unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :)
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
@require_torch
class a ( unittest.TestCase ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
torch.cuda.empty_cache()
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = CTRLLMHeadModel.from_pretrained('ctrl' )
model.to(_snake_case )
lowerCAmelCase = torch.tensor(
[[1_18_59, 0, 16_11, 8]] , dtype=torch.long , device=_snake_case ) # Legal the president is
lowerCAmelCase = [
1_18_59,
0,
16_11,
8,
5,
1_50,
2_64_49,
2,
19,
3_48,
4_69,
3,
25_95,
48,
2_07_40,
24_65_33,
24_65_33,
19,
30,
5,
] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a
lowerCAmelCase = model.generate(_snake_case , do_sample=_snake_case )
self.assertListEqual(output_ids[0].tolist() , _snake_case )
| 309
|
"""simple docstring"""
import re
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ):
if len(re.findall('[ATCG]' , _UpperCAmelCase ) ) != len(_UpperCAmelCase ):
raise ValueError('Invalid Strand' )
return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 309
| 1
|
"""simple docstring"""
import functools
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[int] , _UpperCAmelCase : list[int] ):
# Validation
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not all(isinstance(_UpperCAmelCase , _UpperCAmelCase ) for day in days ):
raise ValueError('The parameter days should be a list of integers' )
if len(_UpperCAmelCase ) != 3 or not all(isinstance(_UpperCAmelCase , _UpperCAmelCase ) for cost in costs ):
raise ValueError('The parameter costs should be a list of three integers' )
if len(_UpperCAmelCase ) == 0:
return 0
if min(_UpperCAmelCase ) <= 0:
raise ValueError('All days elements should be greater than 0' )
if max(_UpperCAmelCase ) >= 366:
raise ValueError('All days elements should be less than 366' )
lowerCAmelCase = set(_UpperCAmelCase )
@functools.cache
def dynamic_programming(_UpperCAmelCase : int ) -> int:
if index > 365:
return 0
if index not in days_set:
return dynamic_programming(index + 1 )
return min(
costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , )
return dynamic_programming(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 309
|
"""simple docstring"""
import numpy as np
import skfuzzy as fuzz
if __name__ == "__main__":
# Create universe of discourse in Python using linspace ()
__UpperCamelCase : List[Any] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False)
# Create two fuzzy sets by defining any membership function
# (trapmf(), gbellmf(), gaussmf(), etc).
__UpperCamelCase : str = [0, 25, 50]
__UpperCamelCase : int = [25, 50, 75]
__UpperCamelCase : str = fuzz.membership.trimf(X, abca)
__UpperCamelCase : Tuple = fuzz.membership.trimf(X, abca)
# Compute the different operations using inbuilt functions.
__UpperCamelCase : Dict = np.ones(75)
__UpperCamelCase : str = np.zeros((75,))
# 1. Union = max(µA(x), µB(x))
__UpperCamelCase : Optional[Any] = fuzz.fuzzy_or(X, young, X, middle_aged)[1]
# 2. Intersection = min(µA(x), µB(x))
__UpperCamelCase : Dict = fuzz.fuzzy_and(X, young, X, middle_aged)[1]
# 3. Complement (A) = (1- min(µA(x))
__UpperCamelCase : Dict = fuzz.fuzzy_not(young)
# 4. Difference (A/B) = min(µA(x),(1- µB(x)))
__UpperCamelCase : List[str] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1]
# 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))]
__UpperCamelCase : List[str] = young + middle_aged - (young * middle_aged)
# 6. Algebraic Product = (µA(x) * µB(x))
__UpperCamelCase : Tuple = young * middle_aged
# 7. Bounded Sum = min[1,(µA(x), µB(x))]
__UpperCamelCase : Union[str, Any] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1]
# 8. Bounded difference = min[0,(µA(x), µB(x))]
__UpperCamelCase : Dict = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1]
# max-min composition
# max-product composition
# Plot each set A, set B and each operation result using plot() and subplot().
from matplotlib import pyplot as plt
plt.figure()
plt.subplot(4, 3, 1)
plt.plot(X, young)
plt.title('''Young''')
plt.grid(True)
plt.subplot(4, 3, 2)
plt.plot(X, middle_aged)
plt.title('''Middle aged''')
plt.grid(True)
plt.subplot(4, 3, 3)
plt.plot(X, union)
plt.title('''union''')
plt.grid(True)
plt.subplot(4, 3, 4)
plt.plot(X, intersection)
plt.title('''intersection''')
plt.grid(True)
plt.subplot(4, 3, 5)
plt.plot(X, complement_a)
plt.title('''complement_a''')
plt.grid(True)
plt.subplot(4, 3, 6)
plt.plot(X, difference)
plt.title('''difference a/b''')
plt.grid(True)
plt.subplot(4, 3, 7)
plt.plot(X, alg_sum)
plt.title('''alg_sum''')
plt.grid(True)
plt.subplot(4, 3, 8)
plt.plot(X, alg_product)
plt.title('''alg_product''')
plt.grid(True)
plt.subplot(4, 3, 9)
plt.plot(X, bdd_sum)
plt.title('''bdd_sum''')
plt.grid(True)
plt.subplot(4, 3, 10)
plt.plot(X, bdd_difference)
plt.title('''bdd_difference''')
plt.grid(True)
plt.subplots_adjust(hspace=0.5)
plt.show()
| 309
| 1
|
"""simple docstring"""
import re
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ):
if len(re.findall('[ATCG]' , _UpperCAmelCase ) ) != len(_UpperCAmelCase ):
raise ValueError('Invalid Strand' )
return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 309
|
"""simple docstring"""
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[int] , _UpperCAmelCase : str ):
lowerCAmelCase = int(_UpperCAmelCase )
# Initialize Result
lowerCAmelCase = []
# Traverse through all denomination
for denomination in reversed(_UpperCAmelCase ):
# Find denominations
while int(_UpperCAmelCase ) >= int(_UpperCAmelCase ):
total_value -= int(_UpperCAmelCase )
answer.append(_UpperCAmelCase ) # Append the "answers" array
return answer
# Driver Code
if __name__ == "__main__":
__UpperCamelCase : Any = []
__UpperCamelCase : List[Any] = '''0'''
if (
input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower()
== "y"
):
__UpperCamelCase : Any = int(input('''Enter the number of denominations you want to add: ''').strip())
for i in range(0, n):
denominations.append(int(input(f'''Denomination {i}: ''').strip()))
__UpperCamelCase : int = input('''Enter the change you want to make in Indian Currency: ''').strip()
else:
# All denominations of Indian Currency if user does not enter
__UpperCamelCase : List[str] = [1, 2, 5, 10, 20, 50, 100, 500, 2000]
__UpperCamelCase : Any = input('''Enter the change you want to make: ''').strip()
if int(value) == 0 or int(value) < 0:
print('''The total value cannot be zero or negative.''')
else:
print(f'''Following is minimal change for {value}: ''')
__UpperCamelCase : List[str] = find_minimum_change(denominations, value)
# Print result
for i in range(len(answer)):
print(answer[i], end=''' ''')
| 309
| 1
|
"""simple docstring"""
import numpy as np
from transformers import BatchFeature
from transformers.testing_utils import require_tf, require_torch
from .test_feature_extraction_common import FeatureExtractionSavingTestMixin
class a ( a__ ):
# to overwrite at feature extractactor specific tests
snake_case__ = None
snake_case__ = None
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self.feat_extract_tester.prepare_feat_extract_dict()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict )
self.assertTrue(hasattr(_snake_case , 'feature_size' ) )
self.assertTrue(hasattr(_snake_case , 'sampling_rate' ) )
self.assertTrue(hasattr(_snake_case , 'padding_value' ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common()
lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict )
lowerCAmelCase = feat_extract.model_input_names[0]
lowerCAmelCase = BatchFeature({input_name: speech_inputs} )
self.assertTrue(all(len(_snake_case ) == len(_snake_case ) for x, y in zip(_snake_case , processed_features[input_name] ) ) )
lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_snake_case )
lowerCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type='np' )
lowerCAmelCase = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
lowerCAmelCase = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
@require_torch
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_snake_case )
lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict )
lowerCAmelCase = feat_extract.model_input_names[0]
lowerCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type='pt' )
lowerCAmelCase = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
lowerCAmelCase = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
@require_tf
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_snake_case )
lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict )
lowerCAmelCase = feat_extract.model_input_names[0]
lowerCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type='tf' )
lowerCAmelCase = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
lowerCAmelCase = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
def UpperCamelCase__ ( self , _snake_case=False ):
"""simple docstring"""
def _inputs_have_equal_length(_snake_case ):
lowerCAmelCase = len(input[0] )
for input_slice in input[1:]:
if len(_snake_case ) != length:
return False
return True
def _inputs_are_equal(_snake_case , _snake_case ):
if len(_snake_case ) != len(_snake_case ):
return False
for input_slice_a, input_slice_a in zip(_snake_case , _snake_case ):
if not np.allclose(np.asarray(_snake_case ) , np.asarray(_snake_case ) , atol=1E-3 ):
return False
return True
lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict )
lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(numpify=_snake_case )
lowerCAmelCase = feat_extract.model_input_names[0]
lowerCAmelCase = BatchFeature({input_name: speech_inputs} )
lowerCAmelCase = self.feat_extract_tester.seq_length_diff
lowerCAmelCase = self.feat_extract_tester.max_seq_length + pad_diff
lowerCAmelCase = self.feat_extract_tester.min_seq_length
lowerCAmelCase = self.feat_extract_tester.batch_size
lowerCAmelCase = self.feat_extract_tester.feature_size
# test padding for List[int] + numpy
lowerCAmelCase = feat_extract.pad(_snake_case , padding=_snake_case )
lowerCAmelCase = input_a[input_name]
lowerCAmelCase = feat_extract.pad(_snake_case , padding='longest' )
lowerCAmelCase = input_a[input_name]
lowerCAmelCase = feat_extract.pad(_snake_case , padding='max_length' , max_length=len(speech_inputs[-1] ) )
lowerCAmelCase = input_a[input_name]
lowerCAmelCase = feat_extract.pad(_snake_case , padding='longest' , return_tensors='np' )
lowerCAmelCase = input_a[input_name]
# max_length parameter has to be provided when setting `padding="max_length"`
with self.assertRaises(_snake_case ):
feat_extract.pad(_snake_case , padding='max_length' )[input_name]
lowerCAmelCase = feat_extract.pad(
_snake_case , padding='max_length' , max_length=_snake_case , return_tensors='np' )
lowerCAmelCase = input_a[input_name]
self.assertFalse(_inputs_have_equal_length(_snake_case ) )
self.assertTrue(_inputs_have_equal_length(_snake_case ) )
self.assertTrue(_inputs_have_equal_length(_snake_case ) )
self.assertTrue(_inputs_are_equal(_snake_case , _snake_case ) )
self.assertTrue(len(input_a[0] ) == pad_min_length )
self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff )
self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) )
self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) )
if feature_size > 1:
self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size )
# test padding for `pad_to_multiple_of` for List[int] + numpy
lowerCAmelCase = feat_extract.pad(_snake_case , pad_to_multiple_of=10 )
lowerCAmelCase = input_a[input_name]
lowerCAmelCase = feat_extract.pad(_snake_case , padding='longest' , pad_to_multiple_of=10 )
lowerCAmelCase = input_a[input_name]
lowerCAmelCase = feat_extract.pad(
_snake_case , padding='max_length' , pad_to_multiple_of=10 , max_length=_snake_case )
lowerCAmelCase = input_a[input_name]
lowerCAmelCase = feat_extract.pad(
_snake_case , padding='max_length' , pad_to_multiple_of=10 , max_length=_snake_case , return_tensors='np' , )
lowerCAmelCase = input_a[input_name]
self.assertTrue(all(len(_snake_case ) % 10 == 0 for x in input_a ) )
self.assertTrue(_inputs_are_equal(_snake_case , _snake_case ) )
lowerCAmelCase = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10
self.assertTrue(all(len(_snake_case ) == expected_mult_pad_length for x in input_a ) )
self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) )
if feature_size > 1:
self.assertTrue(input_a.shape[2] == feature_size )
# Check padding value is correct
lowerCAmelCase = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum()
self.assertTrue(
abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) )
< 1E-3 )
self.assertTrue(
abs(
np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) )
< 1E-3 )
self.assertTrue(
abs(
np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) )
< 1E-3 )
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 )
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) )
< 1E-3 )
def UpperCamelCase__ ( self , _snake_case=False ):
"""simple docstring"""
def _inputs_have_equal_length(_snake_case ):
lowerCAmelCase = len(input[0] )
for input_slice in input[1:]:
if len(_snake_case ) != length:
return False
return True
def _inputs_are_equal(_snake_case , _snake_case ):
if len(_snake_case ) != len(_snake_case ):
return False
for input_slice_a, input_slice_a in zip(_snake_case , _snake_case ):
if not np.allclose(np.asarray(_snake_case ) , np.asarray(_snake_case ) , atol=1E-3 ):
return False
return True
lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict )
lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(numpify=_snake_case )
lowerCAmelCase = feat_extract.model_input_names[0]
lowerCAmelCase = BatchFeature({input_name: speech_inputs} )
# truncate to smallest
lowerCAmelCase = feat_extract.pad(
_snake_case , padding='max_length' , max_length=len(speech_inputs[0] ) , truncation=_snake_case )
lowerCAmelCase = input_a[input_name]
lowerCAmelCase = feat_extract.pad(_snake_case , padding='max_length' , max_length=len(speech_inputs[0] ) )
lowerCAmelCase = input_a[input_name]
self.assertTrue(_inputs_have_equal_length(_snake_case ) )
self.assertFalse(_inputs_have_equal_length(_snake_case ) )
# truncate to smallest with np
lowerCAmelCase = feat_extract.pad(
_snake_case , padding='max_length' , max_length=len(speech_inputs[0] ) , return_tensors='np' , truncation=_snake_case , )
lowerCAmelCase = input_a[input_name]
lowerCAmelCase = feat_extract.pad(
_snake_case , padding='max_length' , max_length=len(speech_inputs[0] ) , return_tensors='np' )
lowerCAmelCase = input_a[input_name]
self.assertTrue(_inputs_have_equal_length(_snake_case ) )
self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) )
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(_snake_case ) )
# truncate to middle
lowerCAmelCase = feat_extract.pad(
_snake_case , padding='max_length' , max_length=len(speech_inputs[1] ) , truncation=_snake_case , return_tensors='np' , )
lowerCAmelCase = input_a[input_name]
lowerCAmelCase = feat_extract.pad(
_snake_case , padding='max_length' , max_length=len(speech_inputs[1] ) , truncation=_snake_case )
lowerCAmelCase = input_a[input_name]
lowerCAmelCase = feat_extract.pad(
_snake_case , padding='max_length' , max_length=len(speech_inputs[1] ) , return_tensors='np' )
lowerCAmelCase = input_a[input_name]
self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) )
self.assertTrue(_inputs_have_equal_length(_snake_case ) )
self.assertTrue(_inputs_have_equal_length(_snake_case ) )
self.assertTrue(_inputs_are_equal(_snake_case , _snake_case ) )
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(_snake_case ) )
self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) )
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(_snake_case ):
feat_extract.pad(_snake_case , truncation=_snake_case )[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(_snake_case ):
feat_extract.pad(_snake_case , padding='longest' , truncation=_snake_case )[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(_snake_case ):
feat_extract.pad(_snake_case , padding='longest' , truncation=_snake_case )[input_name]
# max_length parameter has to be provided when setting `truncation=True` and padding="max_length"
with self.assertRaises(_snake_case ):
feat_extract.pad(_snake_case , padding='max_length' , truncation=_snake_case )[input_name]
# test truncation for `pad_to_multiple_of` for List[int] + numpy
lowerCAmelCase = 12
lowerCAmelCase = feat_extract.pad(
_snake_case , padding='max_length' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_snake_case , truncation=_snake_case , )
lowerCAmelCase = input_a[input_name]
lowerCAmelCase = feat_extract.pad(
_snake_case , padding='max_length' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_snake_case , )
lowerCAmelCase = input_a[input_name]
# retrieve expected_length as multiple of pad_to_multiple_of
lowerCAmelCase = len(speech_inputs[0] )
if expected_length % pad_to_multiple_of != 0:
lowerCAmelCase = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of
self.assertTrue(len(input_a[0] ) == expected_length )
self.assertTrue(_inputs_have_equal_length(_snake_case ) )
self.assertFalse(_inputs_have_equal_length(_snake_case ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._check_padding(numpify=_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._check_padding(numpify=_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._check_truncation(numpify=_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self._check_truncation(numpify=_snake_case )
@require_torch
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict )
lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common()
lowerCAmelCase = feat_extract.model_input_names[0]
lowerCAmelCase = BatchFeature({input_name: speech_inputs} )
lowerCAmelCase = feat_extract.pad(_snake_case , padding='longest' , return_tensors='np' )[input_name]
lowerCAmelCase = feat_extract.pad(_snake_case , padding='longest' , return_tensors='pt' )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 )
@require_tf
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict )
lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common()
lowerCAmelCase = feat_extract.model_input_names[0]
lowerCAmelCase = BatchFeature({input_name: speech_inputs} )
lowerCAmelCase = feat_extract.pad(_snake_case , padding='longest' , return_tensors='np' )[input_name]
lowerCAmelCase = feat_extract.pad(_snake_case , padding='longest' , return_tensors='tf' )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1E-2 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.feat_extract_dict
lowerCAmelCase = True
lowerCAmelCase = self.feature_extraction_class(**_snake_case )
lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common()
lowerCAmelCase = [len(_snake_case ) for x in speech_inputs]
lowerCAmelCase = feat_extract.model_input_names[0]
lowerCAmelCase = BatchFeature({input_name: speech_inputs} )
lowerCAmelCase = feat_extract.pad(_snake_case , padding='longest' , return_tensors='np' )
self.assertIn('attention_mask' , _snake_case )
self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) )
self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.feat_extract_dict
lowerCAmelCase = True
lowerCAmelCase = self.feature_extraction_class(**_snake_case )
lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common()
lowerCAmelCase = [len(_snake_case ) for x in speech_inputs]
lowerCAmelCase = feat_extract.model_input_names[0]
lowerCAmelCase = BatchFeature({input_name: speech_inputs} )
lowerCAmelCase = min(_snake_case )
lowerCAmelCase = feat_extract.pad(
_snake_case , padding='max_length' , max_length=_snake_case , truncation=_snake_case , return_tensors='np' )
self.assertIn('attention_mask' , _snake_case )
self.assertListEqual(
list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] )
self.assertListEqual(
processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
| 309
|
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import EsmConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy
import tensorflow as tf
from transformers.models.esm.modeling_tf_esm import (
TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFEsmForMaskedLM,
TFEsmForSequenceClassification,
TFEsmForTokenClassification,
TFEsmModel,
)
class a :
def __init__( self , _snake_case , ):
"""simple docstring"""
lowerCAmelCase = parent
lowerCAmelCase = 13
lowerCAmelCase = 7
lowerCAmelCase = True
lowerCAmelCase = True
lowerCAmelCase = True
lowerCAmelCase = 99
lowerCAmelCase = 32
lowerCAmelCase = 2
lowerCAmelCase = 4
lowerCAmelCase = 37
lowerCAmelCase = 'gelu'
lowerCAmelCase = 0.1
lowerCAmelCase = 0.1
lowerCAmelCase = 5_12
lowerCAmelCase = 16
lowerCAmelCase = 2
lowerCAmelCase = 0.02
lowerCAmelCase = 3
lowerCAmelCase = 4
lowerCAmelCase = None
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase = None
if self.use_input_mask:
lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase = None
lowerCAmelCase = None
lowerCAmelCase = None
if self.use_labels:
lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase = EsmConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase__ ( self ):
"""simple docstring"""
(
(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,
) = self.prepare_config_and_inputs()
lowerCAmelCase = True
lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = TFEsmModel(config=_snake_case )
lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask}
lowerCAmelCase = model(_snake_case )
lowerCAmelCase = [input_ids, input_mask]
lowerCAmelCase = model(_snake_case )
lowerCAmelCase = model(_snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ):
"""simple docstring"""
lowerCAmelCase = True
lowerCAmelCase = TFEsmModel(config=_snake_case )
lowerCAmelCase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'encoder_hidden_states': encoder_hidden_states,
'encoder_attention_mask': encoder_attention_mask,
}
lowerCAmelCase = model(_snake_case )
lowerCAmelCase = [input_ids, input_mask]
lowerCAmelCase = model(_snake_case , encoder_hidden_states=_snake_case )
# Also check the case where encoder outputs are not passed
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = TFEsmForMaskedLM(config=_snake_case )
lowerCAmelCase = model([input_ids, input_mask] )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = self.num_labels
lowerCAmelCase = TFEsmForTokenClassification(config=_snake_case )
lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask}
lowerCAmelCase = model(_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.prepare_config_and_inputs()
(
(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,
) = config_and_inputs
lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class a ( a__ , a__ , unittest.TestCase ):
snake_case__ = (
(
TFEsmModel,
TFEsmForMaskedLM,
TFEsmForSequenceClassification,
TFEsmForTokenClassification,
)
if is_tf_available()
else ()
)
snake_case__ = (
{
'''feature-extraction''': TFEsmModel,
'''fill-mask''': TFEsmForMaskedLM,
'''text-classification''': TFEsmForSequenceClassification,
'''token-classification''': TFEsmForTokenClassification,
'''zero-shot''': TFEsmForSequenceClassification,
}
if is_tf_available()
else {}
)
snake_case__ = False
snake_case__ = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFEsmModelTester(self )
lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_snake_case )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase = TFEsmModel.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
@unittest.skip('Protein models do not support embedding resizing.' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
@unittest.skip('Protein models do not support embedding resizing.' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase = model_class(_snake_case )
assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer )
if model_class is TFEsmForMaskedLM:
# Output embedding test differs from the main test because they're a matrix, not a layer
lowerCAmelCase = model.get_bias()
assert isinstance(_snake_case , _snake_case )
for k, v in name.items():
assert isinstance(_snake_case , tf.Variable )
else:
lowerCAmelCase = model.get_output_embeddings()
assert x is None
lowerCAmelCase = model.get_bias()
assert name is None
@require_tf
class a ( unittest.TestCase ):
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' )
lowerCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] )
lowerCAmelCase = model(_snake_case )[0]
lowerCAmelCase = [1, 6, 33]
self.assertEqual(list(output.numpy().shape ) , _snake_case )
# compare the actual values for a slice.
lowerCAmelCase = tf.constant(
[
[
[8.921_518, -10.589_814, -6.4_671_307],
[-6.3_967_156, -13.911_377, -1.1_211_915],
[-7.781_247, -13.951_557, -3.740_592],
]
] )
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' )
lowerCAmelCase = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
lowerCAmelCase = model(_snake_case )[0]
# compare the actual values for a slice.
lowerCAmelCase = tf.constant(
[
[
[0.14_443_092, 0.54_125_327, 0.3_247_739],
[0.30_340_484, 0.00_526_676, 0.31_077_722],
[0.32_278_043, -0.24_987_096, 0.3_414_628],
]
] )
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 309
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__UpperCamelCase : Dict = {
'''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''],
'''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''],
'''processing_mctct''': ['''MCTCTProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Tuple = [
'''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MCTCTForCTC''',
'''MCTCTModel''',
'''MCTCTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
__UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 309
|
"""simple docstring"""
import io
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__UpperCamelCase : Union[str, Any] = logging.get_logger(__name__)
__UpperCamelCase : Dict = '''▁'''
__UpperCamelCase : Optional[int] = {'''vocab_file''': '''vocab.txt''', '''sentencepiece_model_ckpt''': '''sentencepiece.bpe.model'''}
__UpperCamelCase : str = {
'''sentencepiece_model_file''': '''sentencepiece.bpe.model''',
'''vocab_file''': '''vocab.txt''',
}
__UpperCamelCase : Tuple = {
'''vocab_file''': {
'''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''',
'''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''',
},
'''sentencepiece_model_file''': {
'''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''',
'''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''',
},
}
__UpperCamelCase : Optional[Any] = {
'''ernie-m-base''': 514,
'''ernie-m-large''': 514,
}
__UpperCamelCase : str = {
'''ernie-m-base''': {'''do_lower_case''': False},
'''ernie-m-large''': {'''do_lower_case''': False},
}
class a ( a__ ):
snake_case__ = ["input_ids"]
snake_case__ = VOCAB_FILES_NAMES
snake_case__ = PRETRAINED_INIT_CONFIGURATION
snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case__ = PRETRAINED_VOCAB_FILES_MAP
snake_case__ = RESOURCE_FILES_NAMES
def __init__( self , _snake_case , _snake_case=None , _snake_case=False , _snake_case="utf8" , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case = None , **_snake_case , ):
"""simple docstring"""
lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , vocab_file=_snake_case , encoding=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , )
lowerCAmelCase = do_lower_case
lowerCAmelCase = sentencepiece_model_ckpt
lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_snake_case )
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
lowerCAmelCase = self.load_vocab(filepath=_snake_case )
else:
lowerCAmelCase = {self.sp_model.id_to_piece(_snake_case ): id for id in range(self.sp_model.get_piece_size() )}
lowerCAmelCase = {v: k for k, v in self.vocab.items()}
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if text is None:
return None
lowerCAmelCase = self.tokenize(_snake_case )
lowerCAmelCase ,lowerCAmelCase = '', []
for i, ch in enumerate(_snake_case ):
if ch in self.SP_CHAR_MAPPING:
lowerCAmelCase = self.SP_CHAR_MAPPING.get(_snake_case )
else:
lowerCAmelCase = unicodedata.normalize('NFKC' , _snake_case )
if self.is_whitespace(_snake_case ):
continue
normalized_text += ch
char_mapping.extend([i] * len(_snake_case ) )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = normalized_text, [], 0
if self.do_lower_case:
lowerCAmelCase = text.lower()
for token in split_tokens:
if token[:1] == "▁":
lowerCAmelCase = token[1:]
lowerCAmelCase = text[offset:].index(_snake_case ) + offset
lowerCAmelCase = start + len(_snake_case )
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) )
lowerCAmelCase = end
return token_mapping
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return len(self.vocab )
def UpperCamelCase__ ( self ):
"""simple docstring"""
return dict(self.vocab , **self.added_tokens_encoder )
def __getstate__( self ):
"""simple docstring"""
lowerCAmelCase = self.__dict__.copy()
lowerCAmelCase = None
return state
def __setstate__( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
lowerCAmelCase = {}
lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.sentencepiece_model_ckpt )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
return "".join((self.SP_CHAR_MAPPING.get(_snake_case , _snake_case ) for c in text) )
def UpperCamelCase__ ( self , _snake_case , _snake_case=False , _snake_case=64 , _snake_case=0.1 ):
"""simple docstring"""
if self.sp_model_kwargs.get('enable_sampling' ) is True:
lowerCAmelCase = True
if self.sp_model_kwargs.get('alpha' ) is not None:
lowerCAmelCase = self.sp_model_kwargs.get('alpha' )
if self.sp_model_kwargs.get('nbest_size' ) is not None:
lowerCAmelCase = self.sp_model_kwargs.get('nbest_size' )
if not enable_sampling:
lowerCAmelCase = self.sp_model.EncodeAsPieces(_snake_case )
else:
lowerCAmelCase = self.sp_model.SampleEncodeAsPieces(_snake_case , _snake_case , _snake_case )
lowerCAmelCase = []
for pi, piece in enumerate(_snake_case ):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(_snake_case ) and pi != 0:
new_pieces.append(_snake_case )
continue
else:
continue
lowerCAmelCase = 0
for i, chunk in enumerate(_snake_case ):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(_snake_case ) or self.is_punct(_snake_case ):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
new_pieces.append(_snake_case )
lowerCAmelCase = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
lowerCAmelCase = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
lowerCAmelCase = i
if len(_snake_case ) > lst_i:
new_pieces.append(piece[lst_i:] )
return new_pieces
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = ''.join(_snake_case ).replace(_snake_case , ' ' ).strip()
return out_string
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = self.convert_ids_to_tokens(_snake_case )
lowerCAmelCase = ''.join(_snake_case ).replace(_snake_case , ' ' ).strip()
return out_string
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
return self.vocab.get(_snake_case , self.vocab.get(self.unk_token ) )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
return self.reverse_vocab.get(_snake_case , self.unk_token )
def UpperCamelCase__ ( self , _snake_case , _snake_case=None ):
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowerCAmelCase = [self.cls_token_id]
lowerCAmelCase = [self.sep_token_id]
return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep
def UpperCamelCase__ ( self , _snake_case , _snake_case=None ):
"""simple docstring"""
if offset_mapping_a is None:
return [(0, 0)] + offset_mapping_a + [(0, 0)]
return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)]
def UpperCamelCase__ ( self , _snake_case , _snake_case=None , _snake_case=False ):
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'You should not supply a second sequence if the provided sequence of '
'ids is already formatted with special tokens for the model.' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) + [1]
return [1] + ([0] * len(_snake_case )) + [1]
def UpperCamelCase__ ( self , _snake_case , _snake_case = None ):
"""simple docstring"""
if token_ids_a is None:
# [CLS] X [SEP]
return (len(_snake_case ) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(_snake_case ) + 1) + [1] * (len(_snake_case ) + 3)
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if "\u4e00" <= char <= "\u9fff":
return True
return False
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if char in ",;:.?!~,;:。?!《》【】":
return True
return False
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(_snake_case ) == 1:
lowerCAmelCase = unicodedata.category(_snake_case )
if cat == "Zs":
return True
return False
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = {}
with io.open(_snake_case , 'r' , encoding='utf-8' ) as f:
for index, line in enumerate(_snake_case ):
lowerCAmelCase = line.rstrip('\n' )
lowerCAmelCase = int(_snake_case )
return token_to_idx
def UpperCamelCase__ ( self , _snake_case , _snake_case = None ):
"""simple docstring"""
lowerCAmelCase = 0
if os.path.isdir(_snake_case ):
lowerCAmelCase = os.path.join(
_snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
else:
lowerCAmelCase = (filename_prefix + '-' if filename_prefix else '') + save_directory
with open(_snake_case , 'w' , encoding='utf-8' ) as writer:
for token, token_index in sorted(self.vocab.items() , key=lambda _snake_case : kv[1] ):
if index != token_index:
logger.warning(
F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'
' Please check that the vocabulary is not corrupted!' )
lowerCAmelCase = token_index
writer.write(token + '\n' )
index += 1
lowerCAmelCase = os.path.join(_snake_case , 'sentencepiece.bpe.model' )
with open(_snake_case , 'wb' ) as fi:
lowerCAmelCase = self.sp_model.serialized_model_proto()
fi.write(_snake_case )
return (vocab_file,)
| 309
| 1
|
"""simple docstring"""
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel
from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class a ( unittest.TestCase ):
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowerCAmelCase = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , )
return model
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowerCAmelCase = VQModel(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , )
return model
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
torch.manual_seed(0 )
lowerCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
return CLIPTextModel(_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.dummy_uncond_unet
lowerCAmelCase = DDIMScheduler()
lowerCAmelCase = self.dummy_vq_model
lowerCAmelCase = LDMPipeline(unet=_snake_case , vqvae=_snake_case , scheduler=_snake_case )
ldm.to(_snake_case )
ldm.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase = torch.manual_seed(0 )
lowerCAmelCase = ldm(generator=_snake_case , num_inference_steps=2 , output_type='numpy' ).images
lowerCAmelCase = torch.manual_seed(0 )
lowerCAmelCase = ldm(generator=_snake_case , num_inference_steps=2 , output_type='numpy' , return_dict=_snake_case )[0]
lowerCAmelCase = image[0, -3:, -3:, -1]
lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCAmelCase = np.array([0.8_512, 0.818, 0.6_411, 0.6_808, 0.4_465, 0.5_618, 0.46, 0.6_231, 0.5_172] )
lowerCAmelCase = 1E-2 if torch_device != 'mps' else 3E-2
assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance
@slow
@require_torch
class a ( unittest.TestCase ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' )
ldm.to(_snake_case )
ldm.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase = torch.manual_seed(0 )
lowerCAmelCase = ldm(generator=_snake_case , num_inference_steps=5 , output_type='numpy' ).images
lowerCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
lowerCAmelCase = np.array([0.4_399, 0.44_975, 0.46_825, 0.474, 0.4_359, 0.4_581, 0.45_095, 0.4_341, 0.4_447] )
lowerCAmelCase = 1E-2 if torch_device != 'mps' else 3E-2
assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
| 309
|
"""simple docstring"""
import argparse
import os
import torch
from transformers.utils import WEIGHTS_NAME
__UpperCamelCase : int = ['''small''', '''medium''', '''large''']
__UpperCamelCase : str = '''lm_head.decoder.weight'''
__UpperCamelCase : Dict = '''lm_head.weight'''
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ):
lowerCAmelCase = torch.load(_UpperCAmelCase )
lowerCAmelCase = d.pop(_UpperCAmelCase )
os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase )
torch.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase ) )
if __name__ == "__main__":
__UpperCamelCase : Optional[int] = argparse.ArgumentParser()
parser.add_argument('''--dialogpt_path''', default='''.''', type=str)
__UpperCamelCase : Optional[int] = parser.parse_args()
for MODEL in DIALOGPT_MODELS:
__UpperCamelCase : Dict = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''')
__UpperCamelCase : str = f'''./DialoGPT-{MODEL}'''
convert_dialogpt_checkpoint(
checkpoint_path,
pytorch_dump_folder_path,
)
| 309
| 1
|
"""simple docstring"""
from __future__ import annotations
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] | None = None ):
lowerCAmelCase = word_bank or []
# create a table
lowerCAmelCase = len(_UpperCAmelCase ) + 1
lowerCAmelCase = []
for _ in range(_UpperCAmelCase ):
table.append([] )
# seed value
lowerCAmelCase = [[]] # because empty string has empty combination
# iterate through the indices
for i in range(_UpperCAmelCase ):
# condition
if table[i] != []:
for word in word_bank:
# slice condition
if target[i : i + len(_UpperCAmelCase )] == word:
lowerCAmelCase = [
[word, *way] for way in table[i]
]
# adds the word to every combination the current position holds
# now,push that combination to the table[i+len(word)]
table[i + len(_UpperCAmelCase )] += new_combinations
# combinations are in reverse order so reverse for better output
for combination in table[len(_UpperCAmelCase )]:
combination.reverse()
return table[len(_UpperCAmelCase )]
if __name__ == "__main__":
print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa''']))
print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t''']))
print(
all_construct(
'''hexagonosaurus''',
['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''],
)
)
| 309
|
"""simple docstring"""
__UpperCamelCase : Dict = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []}
__UpperCamelCase : str = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]}
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[int, list[int]] , _UpperCAmelCase : int , _UpperCAmelCase : list[bool] ):
lowerCAmelCase = True
lowerCAmelCase = []
for neighbour in graph[vert]:
if not visited[neighbour]:
order += topology_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
order.append(_UpperCAmelCase )
return order
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[int, list[int]] , _UpperCAmelCase : int , _UpperCAmelCase : list[bool] ):
lowerCAmelCase = True
lowerCAmelCase = [vert]
for neighbour in reversed_graph[vert]:
if not visited[neighbour]:
component += find_components(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
return component
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[int, list[int]] ):
lowerCAmelCase = len(_UpperCAmelCase ) * [False]
lowerCAmelCase = {vert: [] for vert in range(len(_UpperCAmelCase ) )}
for vert, neighbours in graph.items():
for neighbour in neighbours:
reversed_graph[neighbour].append(_UpperCAmelCase )
lowerCAmelCase = []
for i, was_visited in enumerate(_UpperCAmelCase ):
if not was_visited:
order += topology_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase = []
lowerCAmelCase = len(_UpperCAmelCase ) * [False]
for i in range(len(_UpperCAmelCase ) ):
lowerCAmelCase = order[len(_UpperCAmelCase ) - i - 1]
if not visited[vert]:
lowerCAmelCase = find_components(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
components_list.append(_UpperCAmelCase )
return components_list
| 309
| 1
|
"""simple docstring"""
import logging
import os
import threading
import time
try:
import warnings
except ImportError:
__UpperCamelCase : Dict = None
try:
import msvcrt
except ImportError:
__UpperCamelCase : Optional[int] = None
try:
import fcntl
except ImportError:
__UpperCamelCase : Dict = None
# Backward compatibility
# ------------------------------------------------
try:
TimeoutError
except NameError:
__UpperCamelCase : str = OSError
# Data
# ------------------------------------------------
__UpperCamelCase : List[str] = [
'''Timeout''',
'''BaseFileLock''',
'''WindowsFileLock''',
'''UnixFileLock''',
'''SoftFileLock''',
'''FileLock''',
]
__UpperCamelCase : Union[str, Any] = '''3.0.12'''
__UpperCamelCase : List[Any] = None
def _SCREAMING_SNAKE_CASE ():
global _logger
lowerCAmelCase = _logger or logging.getLogger(__name__ )
return _logger
class a ( a__ ):
def __init__( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = lock_file
return None
def __str__( self ):
"""simple docstring"""
lowerCAmelCase = F'The file lock \'{self.lock_file}\' could not be acquired.'
return temp
class a :
def __init__( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = lock
return None
def __enter__( self ):
"""simple docstring"""
return self.lock
def __exit__( self , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
self.lock.release()
return None
class a :
def __init__( self , _snake_case , _snake_case=-1 , _snake_case=None ):
"""simple docstring"""
lowerCAmelCase = max_filename_length if max_filename_length is not None else 2_55
# Hash the filename if it's too long
lowerCAmelCase = self.hash_filename_if_too_long(_snake_case , _snake_case )
# The path to the lock file.
lowerCAmelCase = lock_file
# The file descriptor for the *_lock_file* as it is returned by the
# os.open() function.
# This file lock is only NOT None, if the object currently holds the
# lock.
lowerCAmelCase = None
# The default timeout value.
lowerCAmelCase = timeout
# We use this lock primarily for the lock counter.
lowerCAmelCase = threading.Lock()
# The lock counter is used for implementing the nested locking
# mechanism. Whenever the lock is acquired, the counter is increased and
# the lock is only released, when this value is 0 again.
lowerCAmelCase = 0
return None
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self._lock_file
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self._timeout
@timeout.setter
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = float(_snake_case )
return None
def UpperCamelCase__ ( self ):
"""simple docstring"""
raise NotImplementedError()
def UpperCamelCase__ ( self ):
"""simple docstring"""
raise NotImplementedError()
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self._lock_file_fd is not None
def UpperCamelCase__ ( self , _snake_case=None , _snake_case=0.05 ):
"""simple docstring"""
if timeout is None:
lowerCAmelCase = self.timeout
# Increment the number right at the beginning.
# We can still undo it, if something fails.
with self._thread_lock:
self._lock_counter += 1
lowerCAmelCase = id(self )
lowerCAmelCase = self._lock_file
lowerCAmelCase = time.time()
try:
while True:
with self._thread_lock:
if not self.is_locked:
logger().debug(F'Attempting to acquire lock {lock_id} on {lock_filename}' )
self._acquire()
if self.is_locked:
logger().debug(F'Lock {lock_id} acquired on {lock_filename}' )
break
elif timeout >= 0 and time.time() - start_time > timeout:
logger().debug(F'Timeout on acquiring lock {lock_id} on {lock_filename}' )
raise Timeout(self._lock_file )
else:
logger().debug(
F'Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...' )
time.sleep(_snake_case )
except: # noqa
# Something did go wrong, so decrement the counter.
with self._thread_lock:
lowerCAmelCase = max(0 , self._lock_counter - 1 )
raise
return _Acquire_ReturnProxy(lock=self )
def UpperCamelCase__ ( self , _snake_case=False ):
"""simple docstring"""
with self._thread_lock:
if self.is_locked:
self._lock_counter -= 1
if self._lock_counter == 0 or force:
lowerCAmelCase = id(self )
lowerCAmelCase = self._lock_file
logger().debug(F'Attempting to release lock {lock_id} on {lock_filename}' )
self._release()
lowerCAmelCase = 0
logger().debug(F'Lock {lock_id} released on {lock_filename}' )
return None
def __enter__( self ):
"""simple docstring"""
self.acquire()
return self
def __exit__( self , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
self.release()
return None
def __del__( self ):
"""simple docstring"""
self.release(force=_snake_case )
return None
def UpperCamelCase__ ( self , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = os.path.basename(_snake_case )
if len(_snake_case ) > max_length and max_length > 0:
lowerCAmelCase = os.path.dirname(_snake_case )
lowerCAmelCase = str(hash(_snake_case ) )
lowerCAmelCase = filename[: max_length - len(_snake_case ) - 8] + '...' + hashed_filename + '.lock'
return os.path.join(_snake_case , _snake_case )
else:
return path
class a ( a__ ):
def __init__( self , _snake_case , _snake_case=-1 , _snake_case=None ):
"""simple docstring"""
from .file_utils import relative_to_absolute_path
super().__init__(_snake_case , timeout=_snake_case , max_filename_length=_snake_case )
lowerCAmelCase = '\\\\?\\' + relative_to_absolute_path(self.lock_file )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC
try:
lowerCAmelCase = os.open(self._lock_file , _snake_case )
except OSError:
pass
else:
try:
msvcrt.locking(_snake_case , msvcrt.LK_NBLCK , 1 )
except OSError:
os.close(_snake_case )
else:
lowerCAmelCase = fd
return None
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self._lock_file_fd
lowerCAmelCase = None
msvcrt.locking(_snake_case , msvcrt.LK_UNLCK , 1 )
os.close(_snake_case )
try:
os.remove(self._lock_file )
# Probably another instance of the application
# that acquired the file lock.
except OSError:
pass
return None
class a ( a__ ):
def __init__( self , _snake_case , _snake_case=-1 , _snake_case=None ):
"""simple docstring"""
lowerCAmelCase = os.statvfs(os.path.dirname(_snake_case ) ).f_namemax
super().__init__(_snake_case , timeout=_snake_case , max_filename_length=_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC
lowerCAmelCase = os.open(self._lock_file , _snake_case )
try:
fcntl.flock(_snake_case , fcntl.LOCK_EX | fcntl.LOCK_NB )
except OSError:
os.close(_snake_case )
else:
lowerCAmelCase = fd
return None
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self._lock_file_fd
lowerCAmelCase = None
fcntl.flock(_snake_case , fcntl.LOCK_UN )
os.close(_snake_case )
return None
class a ( a__ ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC
try:
lowerCAmelCase = os.open(self._lock_file , _snake_case )
except OSError:
pass
else:
lowerCAmelCase = fd
return None
def UpperCamelCase__ ( self ):
"""simple docstring"""
os.close(self._lock_file_fd )
lowerCAmelCase = None
try:
os.remove(self._lock_file )
# The file is already deleted and that's what we want.
except OSError:
pass
return None
__UpperCamelCase : Any = None
if msvcrt:
__UpperCamelCase : List[Any] = WindowsFileLock
elif fcntl:
__UpperCamelCase : int = UnixFileLock
else:
__UpperCamelCase : Tuple = SoftFileLock
if warnings is not None:
warnings.warn('''only soft file lock is available''')
| 309
|
"""simple docstring"""
import os
import time
import warnings
from dataclasses import dataclass, field
from enum import Enum
from typing import List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import logging
from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors
from ..processors.utils import InputFeatures
__UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
@dataclass
class a :
snake_case__ = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(glue_processors.keys() )} )
snake_case__ = field(
metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} )
snake_case__ = field(
default=1_2_8 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
snake_case__ = field(
default=a__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.task_name.lower()
class a ( a__ ):
snake_case__ = '''train'''
snake_case__ = '''dev'''
snake_case__ = '''test'''
class a ( a__ ):
snake_case__ = 42
snake_case__ = 42
snake_case__ = 42
def __init__( self , _snake_case , _snake_case , _snake_case = None , _snake_case = Split.train , _snake_case = None , ):
"""simple docstring"""
warnings.warn(
'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets '
'library. You can have a look at this example script for pointers: '
'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , _snake_case , )
lowerCAmelCase = args
lowerCAmelCase = glue_processors[args.task_name]()
lowerCAmelCase = glue_output_modes[args.task_name]
if isinstance(_snake_case , _snake_case ):
try:
lowerCAmelCase = Split[mode]
except KeyError:
raise KeyError('mode is not a valid split name' )
# Load data features from cache or dataset file
lowerCAmelCase = os.path.join(
cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , )
lowerCAmelCase = self.processor.get_labels()
if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in (
"RobertaTokenizer",
"RobertaTokenizerFast",
"XLMRobertaTokenizer",
"BartTokenizer",
"BartTokenizerFast",
):
# HACK(label indices are swapped in RoBERTa pretrained model)
lowerCAmelCase ,lowerCAmelCase = label_list[2], label_list[1]
lowerCAmelCase = label_list
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
lowerCAmelCase = cached_features_file + '.lock'
with FileLock(_snake_case ):
if os.path.exists(_snake_case ) and not args.overwrite_cache:
lowerCAmelCase = time.time()
lowerCAmelCase = torch.load(_snake_case )
logger.info(
F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start )
else:
logger.info(F'Creating features from dataset file at {args.data_dir}' )
if mode == Split.dev:
lowerCAmelCase = self.processor.get_dev_examples(args.data_dir )
elif mode == Split.test:
lowerCAmelCase = self.processor.get_test_examples(args.data_dir )
else:
lowerCAmelCase = self.processor.get_train_examples(args.data_dir )
if limit_length is not None:
lowerCAmelCase = examples[:limit_length]
lowerCAmelCase = glue_convert_examples_to_features(
_snake_case , _snake_case , max_length=args.max_seq_length , label_list=_snake_case , output_mode=self.output_mode , )
lowerCAmelCase = time.time()
torch.save(self.features , _snake_case )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' )
def __len__( self ):
"""simple docstring"""
return len(self.features )
def __getitem__( self , _snake_case ):
"""simple docstring"""
return self.features[i]
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self.label_list
| 309
| 1
|
"""simple docstring"""
# NOTE: This file is deprecated and will be removed in a future version.
# It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works
from ...utils import deprecate
from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401
from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401
deprecate(
'''stable diffusion controlnet''',
'''0.22.0''',
'''Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.''',
standard_warn=False,
stacklevel=3,
)
| 309
|
"""simple docstring"""
import os
from collections.abc import Iterator
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "." ):
for dir_path, dir_names, filenames in os.walk(_UpperCAmelCase ):
lowerCAmelCase = [d for d in dir_names if d != 'scripts' and d[0] not in '._']
for filename in filenames:
if filename == "__init__.py":
continue
if os.path.splitext(_UpperCAmelCase )[1] in (".py", ".ipynb"):
yield os.path.join(_UpperCAmelCase , _UpperCAmelCase ).lstrip('./' )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ):
return F'{i * " "}*' if i else "\n##"
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ):
lowerCAmelCase = old_path.split(os.sep )
for i, new_part in enumerate(new_path.split(os.sep ) ):
if (i + 1 > len(_UpperCAmelCase ) or old_parts[i] != new_part) and new_part:
print(F'{md_prefix(_UpperCAmelCase )} {new_part.replace("_" , " " ).title()}' )
return new_path
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "." ):
lowerCAmelCase = ''
for filepath in sorted(good_file_paths(_UpperCAmelCase ) ):
lowerCAmelCase ,lowerCAmelCase = os.path.split(_UpperCAmelCase )
if filepath != old_path:
lowerCAmelCase = print_path(_UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase = (filepath.count(os.sep ) + 1) if filepath else 0
lowerCAmelCase = F'{filepath}/{filename}'.replace(' ' , '%20' )
lowerCAmelCase = os.path.splitext(filename.replace('_' , ' ' ).title() )[0]
print(F'{md_prefix(_UpperCAmelCase )} [{filename}]({url})' )
if __name__ == "__main__":
print_directory_md('''.''')
| 309
| 1
|
"""simple docstring"""
from unittest.mock import Mock, patch
from file_transfer.send_file import send_file
@patch('socket.socket' )
@patch('builtins.open' )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] ):
# ===== initialization =====
lowerCAmelCase = Mock()
lowerCAmelCase = conn, Mock()
lowerCAmelCase = iter([1, None] )
lowerCAmelCase = lambda _UpperCAmelCase : next(_UpperCAmelCase )
# ===== invoke =====
send_file(filename='mytext.txt' , testing=_UpperCAmelCase )
# ===== ensurance =====
sock.assert_called_once()
sock.return_value.bind.assert_called_once()
sock.return_value.listen.assert_called_once()
sock.return_value.accept.assert_called_once()
conn.recv.assert_called_once()
file.return_value.__enter__.assert_called_once()
file.return_value.__enter__.return_value.read.assert_called()
conn.send.assert_called_once()
conn.close.assert_called_once()
sock.return_value.shutdown.assert_called_once()
sock.return_value.close.assert_called_once()
| 309
|
"""simple docstring"""
import os
from datetime import datetime as dt
from github import Github
__UpperCamelCase : int = [
'''good first issue''',
'''good second issue''',
'''good difficult issue''',
'''enhancement''',
'''new pipeline/model''',
'''new scheduler''',
'''wip''',
]
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = Github(os.environ['GITHUB_TOKEN'] )
lowerCAmelCase = g.get_repo('huggingface/diffusers' )
lowerCAmelCase = repo.get_issues(state='open' )
for issue in open_issues:
lowerCAmelCase = sorted(issue.get_comments() , key=lambda _UpperCAmelCase : i.created_at , reverse=_UpperCAmelCase )
lowerCAmelCase = comments[0] if len(_UpperCAmelCase ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Closes the issue after 7 days of inactivity since the Stalebot notification.
issue.edit(state='closed' )
elif (
"stale" in issue.get_labels()
and last_comment is not None
and last_comment.user.login != "github-actions[bot]"
):
# Opens the issue if someone other than Stalebot commented.
issue.edit(state='open' )
issue.remove_from_labels('stale' )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Post a Stalebot notification after 23 days of inactivity.
issue.create_comment(
'This issue has been automatically marked as stale because it has not had '
'recent activity. If you think this still needs to be addressed '
'please comment on this thread.\n\nPlease note that issues that do not follow the '
'[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) '
'are likely to be ignored.' )
issue.add_to_labels('stale' )
if __name__ == "__main__":
main()
| 309
| 1
|
"""simple docstring"""
import os
from typing import Dict, List, Tuple, TypeVar, Union
__UpperCamelCase : Any = TypeVar('''T''')
__UpperCamelCase : Dict = Union[List[T], Tuple[T, ...]]
__UpperCamelCase : str = Union[T, List[T], Dict[str, T]]
__UpperCamelCase : Optional[Any] = Union[str, bytes, os.PathLike]
| 309
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__UpperCamelCase : Any = {
'''configuration_layoutlmv2''': ['''LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv2Config'''],
'''processing_layoutlmv2''': ['''LayoutLMv2Processor'''],
'''tokenization_layoutlmv2''': ['''LayoutLMv2Tokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Tuple = ['''LayoutLMv2TokenizerFast''']
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Optional[int] = ['''LayoutLMv2FeatureExtractor''']
__UpperCamelCase : Optional[int] = ['''LayoutLMv2ImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Any = [
'''LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''LayoutLMv2ForQuestionAnswering''',
'''LayoutLMv2ForSequenceClassification''',
'''LayoutLMv2ForTokenClassification''',
'''LayoutLMv2Layer''',
'''LayoutLMv2Model''',
'''LayoutLMv2PreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaLayer,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
else:
import sys
__UpperCamelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 309
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__UpperCamelCase : Any = {
'''configuration_chinese_clip''': [
'''CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''ChineseCLIPConfig''',
'''ChineseCLIPOnnxConfig''',
'''ChineseCLIPTextConfig''',
'''ChineseCLIPVisionConfig''',
],
'''processing_chinese_clip''': ['''ChineseCLIPProcessor'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : str = ['''ChineseCLIPFeatureExtractor''']
__UpperCamelCase : List[str] = ['''ChineseCLIPImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Any = [
'''CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ChineseCLIPModel''',
'''ChineseCLIPPreTrainedModel''',
'''ChineseCLIPTextModel''',
'''ChineseCLIPVisionModel''',
]
if TYPE_CHECKING:
from .configuration_chinese_clip import (
CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
ChineseCLIPConfig,
ChineseCLIPOnnxConfig,
ChineseCLIPTextConfig,
ChineseCLIPVisionConfig,
)
from .processing_chinese_clip import ChineseCLIPProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_chinese_clip import (
CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
ChineseCLIPModel,
ChineseCLIPPreTrainedModel,
ChineseCLIPTextModel,
ChineseCLIPVisionModel,
)
else:
import sys
__UpperCamelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 309
|
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_poolformer import PoolFormerImageProcessor
__UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
class a ( a__ ):
def __init__( self , *_snake_case , **_snake_case ):
"""simple docstring"""
warnings.warn(
'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use PoolFormerImageProcessor instead.' , _snake_case , )
super().__init__(*_snake_case , **_snake_case )
| 309
| 1
|
"""simple docstring"""
import tempfile
import torch
from diffusers import IPNDMScheduler
from .test_schedulers import SchedulerCommonTest
class a ( a__ ):
snake_case__ = (IPNDMScheduler,)
snake_case__ = (('''num_inference_steps''', 5_0),)
def UpperCamelCase__ ( self , **_snake_case ):
"""simple docstring"""
lowerCAmelCase = {'num_train_timesteps': 10_00}
config.update(**_snake_case )
return config
def UpperCamelCase__ ( self , _snake_case=0 , **_snake_case ):
"""simple docstring"""
lowerCAmelCase = dict(self.forward_default_kwargs )
lowerCAmelCase = kwargs.pop('num_inference_steps' , _snake_case )
lowerCAmelCase = self.dummy_sample
lowerCAmelCase = 0.1 * sample
lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
lowerCAmelCase = self.get_scheduler_config(**_snake_case )
lowerCAmelCase = scheduler_class(**_snake_case )
scheduler.set_timesteps(_snake_case )
# copy over dummy past residuals
lowerCAmelCase = dummy_past_residuals[:]
if time_step is None:
lowerCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_snake_case )
lowerCAmelCase = scheduler_class.from_pretrained(_snake_case )
new_scheduler.set_timesteps(_snake_case )
# copy over dummy past residuals
lowerCAmelCase = dummy_past_residuals[:]
lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample
lowerCAmelCase = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample
lowerCAmelCase = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
def UpperCamelCase__ ( self , _snake_case=0 , **_snake_case ):
"""simple docstring"""
lowerCAmelCase = dict(self.forward_default_kwargs )
lowerCAmelCase = kwargs.pop('num_inference_steps' , _snake_case )
lowerCAmelCase = self.dummy_sample
lowerCAmelCase = 0.1 * sample
lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**_snake_case )
scheduler.set_timesteps(_snake_case )
# copy over dummy past residuals (must be after setting timesteps)
lowerCAmelCase = dummy_past_residuals[:]
if time_step is None:
lowerCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_snake_case )
lowerCAmelCase = scheduler_class.from_pretrained(_snake_case )
# copy over dummy past residuals
new_scheduler.set_timesteps(_snake_case )
# copy over dummy past residual (must be after setting timesteps)
lowerCAmelCase = dummy_past_residuals[:]
lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample
lowerCAmelCase = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample
lowerCAmelCase = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def UpperCamelCase__ ( self , **_snake_case ):
"""simple docstring"""
lowerCAmelCase = self.scheduler_classes[0]
lowerCAmelCase = self.get_scheduler_config(**_snake_case )
lowerCAmelCase = scheduler_class(**_snake_case )
lowerCAmelCase = 10
lowerCAmelCase = self.dummy_model()
lowerCAmelCase = self.dummy_sample_deter
scheduler.set_timesteps(_snake_case )
for i, t in enumerate(scheduler.timesteps ):
lowerCAmelCase = model(_snake_case , _snake_case )
lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case ).prev_sample
for i, t in enumerate(scheduler.timesteps ):
lowerCAmelCase = model(_snake_case , _snake_case )
lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case ).prev_sample
return sample
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = dict(self.forward_default_kwargs )
lowerCAmelCase = kwargs.pop('num_inference_steps' , _snake_case )
for scheduler_class in self.scheduler_classes:
lowerCAmelCase = self.get_scheduler_config()
lowerCAmelCase = scheduler_class(**_snake_case )
lowerCAmelCase = self.dummy_sample
lowerCAmelCase = 0.1 * sample
if num_inference_steps is not None and hasattr(_snake_case , 'set_timesteps' ):
scheduler.set_timesteps(_snake_case )
elif num_inference_steps is not None and not hasattr(_snake_case , 'set_timesteps' ):
lowerCAmelCase = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
lowerCAmelCase = dummy_past_residuals[:]
lowerCAmelCase = scheduler.timesteps[5]
lowerCAmelCase = scheduler.timesteps[6]
lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample
lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample
lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for timesteps in [1_00, 10_00]:
self.check_over_configs(num_train_timesteps=_snake_case , time_step=_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ):
self.check_over_forward(num_inference_steps=_snake_case , time_step=_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.full_loop()
lowerCAmelCase = torch.mean(torch.abs(_snake_case ) )
assert abs(result_mean.item() - 2_54_05_29 ) < 10
| 309
|
"""simple docstring"""
from __future__ import annotations
import random
# Maximum size of the population. Bigger could be faster but is more memory expensive.
__UpperCamelCase : str = 200
# Number of elements selected in every generation of evolution. The selection takes
# place from best to worst of that generation and must be smaller than N_POPULATION.
__UpperCamelCase : Optional[Any] = 50
# Probability that an element of a generation can mutate, changing one of its genes.
# This will guarantee that all genes will be used during evolution.
__UpperCamelCase : Dict = 0.4
# Just a seed to improve randomness required by the algorithm.
random.seed(random.randint(0, 1000))
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ):
lowerCAmelCase = len([g for position, g in enumerate(_UpperCAmelCase ) if g == main_target[position]] )
return (item, float(_UpperCAmelCase ))
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ):
lowerCAmelCase = random.randint(0 , len(_UpperCAmelCase ) - 1 )
lowerCAmelCase = parent_a[:random_slice] + parent_a[random_slice:]
lowerCAmelCase = parent_a[:random_slice] + parent_a[random_slice:]
return (child_a, child_a)
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] ):
lowerCAmelCase = list(_UpperCAmelCase )
if random.uniform(0 , 1 ) < MUTATION_PROBABILITY:
lowerCAmelCase = random.choice(_UpperCAmelCase )
return "".join(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : tuple[str, float] , _UpperCAmelCase : list[tuple[str, float]] , _UpperCAmelCase : list[str] , ):
lowerCAmelCase = []
# Generate more children proportionally to the fitness score.
lowerCAmelCase = int(parent_a[1] * 100 ) + 1
lowerCAmelCase = 10 if child_n >= 10 else child_n
for _ in range(_UpperCAmelCase ):
lowerCAmelCase = population_score[random.randint(0 , _UpperCAmelCase )][0]
lowerCAmelCase ,lowerCAmelCase = crossover(parent_a[0] , _UpperCAmelCase )
# Append new string to the population list.
pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) )
pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) )
return pop
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] , _UpperCAmelCase : bool = True ):
# Verify if N_POPULATION is bigger than N_SELECTED
if N_POPULATION < N_SELECTED:
lowerCAmelCase = F'{N_POPULATION} must be bigger than {N_SELECTED}'
raise ValueError(_UpperCAmelCase )
# Verify that the target contains no genes besides the ones inside genes variable.
lowerCAmelCase = sorted({c for c in target if c not in genes} )
if not_in_genes_list:
lowerCAmelCase = F'{not_in_genes_list} is not in genes list, evolution cannot converge'
raise ValueError(_UpperCAmelCase )
# Generate random starting population.
lowerCAmelCase = []
for _ in range(_UpperCAmelCase ):
population.append(''.join([random.choice(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) )] ) )
# Just some logs to know what the algorithms is doing.
lowerCAmelCase ,lowerCAmelCase = 0, 0
# This loop will end when we find a perfect match for our target.
while True:
generation += 1
total_population += len(_UpperCAmelCase )
# Random population created. Now it's time to evaluate.
# Adding a bit of concurrency can make everything faster,
#
# import concurrent.futures
# population_score: list[tuple[str, float]] = []
# with concurrent.futures.ThreadPoolExecutor(
# max_workers=NUM_WORKERS) as executor:
# futures = {executor.submit(evaluate, item) for item in population}
# concurrent.futures.wait(futures)
# population_score = [item.result() for item in futures]
#
# but with a simple algorithm like this, it will probably be slower.
# We just need to call evaluate for every item inside the population.
lowerCAmelCase = [evaluate(_UpperCAmelCase , _UpperCAmelCase ) for item in population]
# Check if there is a matching evolution.
lowerCAmelCase = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] , reverse=_UpperCAmelCase )
if population_score[0][0] == target:
return (generation, total_population, population_score[0][0])
# Print the best result every 10 generation.
# Just to know that the algorithm is working.
if debug and generation % 10 == 0:
print(
F'\nGeneration: {generation}'
F'\nTotal Population:{total_population}'
F'\nBest score: {population_score[0][1]}'
F'\nBest string: {population_score[0][0]}' )
# Flush the old population, keeping some of the best evolutions.
# Keeping this avoid regression of evolution.
lowerCAmelCase = population[: int(N_POPULATION / 3 )]
population.clear()
population.extend(_UpperCAmelCase )
# Normalize population score to be between 0 and 1.
lowerCAmelCase = [
(item, score / len(_UpperCAmelCase )) for item, score in population_score
]
# This is selection
for i in range(_UpperCAmelCase ):
population.extend(select(population_score[int(_UpperCAmelCase )] , _UpperCAmelCase , _UpperCAmelCase ) )
# Check if the population has already reached the maximum value and if so,
# break the cycle. If this check is disabled, the algorithm will take
# forever to compute large strings, but will also calculate small strings in
# a far fewer generations.
if len(_UpperCAmelCase ) > N_POPULATION:
break
if __name__ == "__main__":
__UpperCamelCase : Tuple = (
'''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!'''
)
__UpperCamelCase : str = list(
''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm'''
'''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\'''
)
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase : Dict = basic(target_str, genes_list)
print(
f'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}'''
)
| 309
| 1
|
"""simple docstring"""
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast
from ...utils import logging
if TYPE_CHECKING:
from ...feature_extraction_utils import FeatureExtractionMixin
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType
__UpperCamelCase : Any = logging.get_logger(__name__)
__UpperCamelCase : List[str] = {
'''openai/whisper-base''': '''https://huggingface.co/openai/whisper-base/resolve/main/config.json''',
}
# fmt: off
__UpperCamelCase : Tuple = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 357, 366, 438, 532, 685,
705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377,
1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211,
4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 1_0563, 1_0786,
1_1420, 1_1709, 1_1907, 1_3163, 1_3697, 1_3700, 1_4808, 1_5306, 1_6410, 1_6791,
1_7992, 1_9203, 1_9510, 2_0724, 2_2305, 2_2935, 2_7007, 3_0109, 3_0420, 3_3409,
3_4949, 4_0283, 4_0493, 4_0549, 4_7282, 4_9146, 5_0257, 5_0359, 5_0360, 5_0361
]
__UpperCamelCase : Optional[Any] = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 359, 503, 522, 542, 873,
893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627,
3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647,
7273, 9061, 9383, 1_0428, 1_0929, 1_1938, 1_2033, 1_2331, 1_2562, 1_3793,
1_4157, 1_4635, 1_5265, 1_5618, 1_6553, 1_6604, 1_8362, 1_8956, 2_0075, 2_1675,
2_2520, 2_6130, 2_6161, 2_6435, 2_8279, 2_9464, 3_1650, 3_2302, 3_2470, 3_6865,
4_2863, 4_7425, 4_9870, 5_0254, 5_0258, 5_0360, 5_0361, 5_0362
]
class a ( a__ ):
snake_case__ = '''whisper'''
snake_case__ = ['''past_key_values''']
snake_case__ = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''}
def __init__( self , _snake_case=5_18_65 , _snake_case=80 , _snake_case=6 , _snake_case=4 , _snake_case=6 , _snake_case=4 , _snake_case=15_36 , _snake_case=15_36 , _snake_case=0.0 , _snake_case=0.0 , _snake_case=5_02_57 , _snake_case=True , _snake_case=True , _snake_case="gelu" , _snake_case=2_56 , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=False , _snake_case=15_00 , _snake_case=4_48 , _snake_case=5_02_56 , _snake_case=5_02_56 , _snake_case=5_02_56 , _snake_case=None , _snake_case=[2_20, 5_02_56] , _snake_case=False , _snake_case=2_56 , _snake_case=False , _snake_case=0.05 , _snake_case=10 , _snake_case=2 , _snake_case=0.0 , _snake_case=10 , _snake_case=0 , _snake_case=7 , **_snake_case , ):
"""simple docstring"""
lowerCAmelCase = vocab_size
lowerCAmelCase = num_mel_bins
lowerCAmelCase = d_model
lowerCAmelCase = encoder_layers
lowerCAmelCase = encoder_attention_heads
lowerCAmelCase = decoder_layers
lowerCAmelCase = decoder_attention_heads
lowerCAmelCase = decoder_ffn_dim
lowerCAmelCase = encoder_ffn_dim
lowerCAmelCase = dropout
lowerCAmelCase = attention_dropout
lowerCAmelCase = activation_dropout
lowerCAmelCase = activation_function
lowerCAmelCase = init_std
lowerCAmelCase = encoder_layerdrop
lowerCAmelCase = decoder_layerdrop
lowerCAmelCase = use_cache
lowerCAmelCase = encoder_layers
lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True
lowerCAmelCase = max_source_positions
lowerCAmelCase = max_target_positions
# Audio Classification-specific parameters. Feel free to ignore for other classes.
lowerCAmelCase = classifier_proj_size
lowerCAmelCase = use_weighted_layer_sum
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
lowerCAmelCase = apply_spec_augment
lowerCAmelCase = mask_time_prob
lowerCAmelCase = mask_time_length
lowerCAmelCase = mask_time_min_masks
lowerCAmelCase = mask_feature_prob
lowerCAmelCase = mask_feature_length
lowerCAmelCase = mask_feature_min_masks
lowerCAmelCase = median_filter_width
super().__init__(
pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , is_encoder_decoder=_snake_case , decoder_start_token_id=_snake_case , suppress_tokens=_snake_case , begin_suppress_tokens=_snake_case , **_snake_case , )
class a ( a__ ):
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = OrderedDict(
[
('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}),
] )
if self.use_past:
lowerCAmelCase = {0: 'batch'}
else:
lowerCAmelCase = {0: 'batch', 1: 'decoder_sequence'}
if self.use_past:
self.fill_with_past_key_values_(_snake_case , direction='inputs' )
return common_inputs
def UpperCamelCase__ ( self , _snake_case , _snake_case = -1 , _snake_case = -1 , _snake_case = False , _snake_case = None , _snake_case = 2_20_50 , _snake_case = 5.0 , _snake_case = 2_20 , ):
"""simple docstring"""
lowerCAmelCase = OrderedDict()
lowerCAmelCase = OnnxConfig.generate_dummy_inputs(
self , preprocessor=preprocessor.feature_extractor , batch_size=_snake_case , framework=_snake_case , sampling_rate=_snake_case , time_duration=_snake_case , frequency=_snake_case , )
lowerCAmelCase = encoder_inputs['input_features'].shape[2]
lowerCAmelCase = encoder_sequence_length // 2 if self.use_past else seq_length
lowerCAmelCase = super().generate_dummy_inputs(
preprocessor.tokenizer , _snake_case , _snake_case , _snake_case , _snake_case )
lowerCAmelCase = encoder_inputs.pop('input_features' )
lowerCAmelCase = decoder_inputs.pop('decoder_input_ids' )
if "past_key_values" in decoder_inputs:
lowerCAmelCase = decoder_inputs.pop('past_key_values' )
return dummy_inputs
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return 1E-3
| 309
|
"""simple docstring"""
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class a :
def __init__( self ):
"""simple docstring"""
lowerCAmelCase = ''
lowerCAmelCase = ''
lowerCAmelCase = []
lowerCAmelCase = 0
lowerCAmelCase = 2_56
lowerCAmelCase = 0
lowerCAmelCase = 0
lowerCAmelCase = 0
lowerCAmelCase = 0
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = cva.imread(_snake_case , 0 )
lowerCAmelCase = copy.deepcopy(self.img )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = plt.hist(self.img.ravel() , 2_56 , [0, 2_56] , label='x' )
lowerCAmelCase = np.sum(_snake_case )
for i in range(len(_snake_case ) ):
lowerCAmelCase = x[i] / self.k
self.sk += prk
lowerCAmelCase = (self.L - 1) * self.sk
if self.rem != 0:
lowerCAmelCase = int(last % last )
lowerCAmelCase = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(_snake_case )
lowerCAmelCase = int(np.ma.count(self.img ) / self.img[1].size )
lowerCAmelCase = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
lowerCAmelCase = self.img[j][i]
if num != self.last_list[num]:
lowerCAmelCase = self.last_list[num]
cva.imwrite('output_data/output.jpg' , self.img )
def UpperCamelCase__ ( self ):
"""simple docstring"""
plt.hist(self.img.ravel() , 2_56 , [0, 2_56] )
def UpperCamelCase__ ( self ):
"""simple docstring"""
cva.imshow('Output-Image' , self.img )
cva.imshow('Input-Image' , self.original_image )
cva.waitKey(50_00 )
cva.destroyAllWindows()
if __name__ == "__main__":
__UpperCamelCase : int = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''')
__UpperCamelCase : List[Any] = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 309
| 1
|
"""simple docstring"""
import collections
import importlib.util
import os
import re
from pathlib import Path
__UpperCamelCase : int = '''src/transformers'''
# Matches is_xxx_available()
__UpperCamelCase : str = re.compile(R'''is\_([a-z_]*)_available()''')
# Catches a one-line _import_struct = {xxx}
__UpperCamelCase : Tuple = re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''')
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
__UpperCamelCase : Optional[Any] = re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''')
# Catches a line if not is_foo_available
__UpperCamelCase : int = re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''')
# Catches a line _import_struct["bla"].append("foo")
__UpperCamelCase : Optional[Any] = re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''')
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
__UpperCamelCase : Dict = re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''')
# Catches a line with an object between quotes and a comma: "MyModel",
__UpperCamelCase : Optional[Any] = re.compile('''^\s+"([^"]+)",''')
# Catches a line with objects between brackets only: ["foo", "bar"],
__UpperCamelCase : Optional[int] = re.compile('''^\s+\[([^\]]+)\]''')
# Catches a line with from foo import bar, bla, boo
__UpperCamelCase : Dict = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''')
# Catches a line with try:
__UpperCamelCase : Any = re.compile(R'''^\s*try:''')
# Catches a line with else:
__UpperCamelCase : Union[str, Any] = re.compile(R'''^\s*else:''')
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any ):
if _re_test_backend.search(_UpperCAmelCase ) is None:
return None
lowerCAmelCase = [b[0] for b in _re_backend.findall(_UpperCAmelCase )]
backends.sort()
return "_and_".join(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] ):
with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f:
lowerCAmelCase = f.readlines()
lowerCAmelCase = 0
while line_index < len(_UpperCAmelCase ) and not lines[line_index].startswith('_import_structure = {' ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(_UpperCAmelCase ):
return None
# First grab the objects without a specific backend in _import_structure
lowerCAmelCase = []
while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None:
lowerCAmelCase = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(_UpperCAmelCase ):
lowerCAmelCase = _re_one_line_import_struct.search(_UpperCAmelCase ).groups()[0]
lowerCAmelCase = re.findall('\[([^\]]+)\]' , _UpperCAmelCase )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(', ' )] )
line_index += 1
continue
lowerCAmelCase = _re_import_struct_key_value.search(_UpperCAmelCase )
if single_line_import_search is not None:
lowerCAmelCase = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(_UpperCAmelCase ) > 0]
objects.extend(_UpperCAmelCase )
elif line.startswith(' ' * 8 + '"' ):
objects.append(line[9:-3] )
line_index += 1
lowerCAmelCase = {'none': objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith('if TYPE_CHECKING' ):
# If the line is an if not is_backend_available, we grab all objects associated.
lowerCAmelCase = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
lowerCAmelCase = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
lowerCAmelCase = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ):
lowerCAmelCase = lines[line_index]
if _re_import_struct_add_one.search(_UpperCAmelCase ) is not None:
objects.append(_re_import_struct_add_one.search(_UpperCAmelCase ).groups()[0] )
elif _re_import_struct_add_many.search(_UpperCAmelCase ) is not None:
lowerCAmelCase = _re_import_struct_add_many.search(_UpperCAmelCase ).groups()[0].split(', ' )
lowerCAmelCase = [obj[1:-1] for obj in imports if len(_UpperCAmelCase ) > 0]
objects.extend(_UpperCAmelCase )
elif _re_between_brackets.search(_UpperCAmelCase ) is not None:
lowerCAmelCase = _re_between_brackets.search(_UpperCAmelCase ).groups()[0].split(', ' )
lowerCAmelCase = [obj[1:-1] for obj in imports if len(_UpperCAmelCase ) > 0]
objects.extend(_UpperCAmelCase )
elif _re_quote_object.search(_UpperCAmelCase ) is not None:
objects.append(_re_quote_object.search(_UpperCAmelCase ).groups()[0] )
elif line.startswith(' ' * 8 + '"' ):
objects.append(line[9:-3] )
elif line.startswith(' ' * 12 + '"' ):
objects.append(line[13:-3] )
line_index += 1
lowerCAmelCase = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
lowerCAmelCase = []
while (
line_index < len(_UpperCAmelCase )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith('else' )
):
lowerCAmelCase = lines[line_index]
lowerCAmelCase = _re_import.search(_UpperCAmelCase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 8 ):
objects.append(line[8:-2] )
line_index += 1
lowerCAmelCase = {'none': objects}
# Let's continue with backend-specific objects
while line_index < len(_UpperCAmelCase ):
# If the line is an if is_backend_available, we grab all objects associated.
lowerCAmelCase = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
lowerCAmelCase = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
lowerCAmelCase = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ):
lowerCAmelCase = lines[line_index]
lowerCAmelCase = _re_import.search(_UpperCAmelCase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 12 ):
objects.append(line[12:-2] )
line_index += 1
lowerCAmelCase = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] ):
def find_duplicates(_UpperCAmelCase : Any ):
return [k for k, v in collections.Counter(_UpperCAmelCase ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
lowerCAmelCase = []
for key in import_dict_objects.keys():
lowerCAmelCase = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F'Duplicate _import_structure definitions for: {duplicate_imports}' )
lowerCAmelCase = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
lowerCAmelCase = 'base imports' if key == 'none' else F'{key} backend'
errors.append(F'Differences for {name}:' )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F' {a} in TYPE_HINT but not in _import_structure.' )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F' {a} in _import_structure but not in TYPE_HINT.' )
return errors
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = []
for root, _, files in os.walk(_UpperCAmelCase ):
if "__init__.py" in files:
lowerCAmelCase = os.path.join(_UpperCAmelCase , '__init__.py' )
lowerCAmelCase = parse_init(_UpperCAmelCase )
if objects is not None:
lowerCAmelCase = analyze_results(*_UpperCAmelCase )
if len(_UpperCAmelCase ) > 0:
lowerCAmelCase = F'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}'
failures.append('\n'.join(_UpperCAmelCase ) )
if len(_UpperCAmelCase ) > 0:
raise ValueError('\n\n'.join(_UpperCAmelCase ) )
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = []
for path, directories, files in os.walk(_UpperCAmelCase ):
for folder in directories:
# Ignore private modules
if folder.startswith('_' ):
directories.remove(_UpperCAmelCase )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(_UpperCAmelCase ) / folder).glob('*.py' ) ) ) == 0:
continue
lowerCAmelCase = str((Path(_UpperCAmelCase ) / folder).relative_to(_UpperCAmelCase ) )
lowerCAmelCase = short_path.replace(os.path.sep , '.' )
submodules.append(_UpperCAmelCase )
for fname in files:
if fname == "__init__.py":
continue
lowerCAmelCase = str((Path(_UpperCAmelCase ) / fname).relative_to(_UpperCAmelCase ) )
lowerCAmelCase = short_path.replace('.py' , '' ).replace(os.path.sep , '.' )
if len(submodule.split('.' ) ) == 1:
submodules.append(_UpperCAmelCase )
return submodules
__UpperCamelCase : Union[str, Any] = [
'''convert_pytorch_checkpoint_to_tf2''',
'''modeling_flax_pytorch_utils''',
]
def _SCREAMING_SNAKE_CASE ():
# This is to make sure the transformers module imported is the one in the repo.
lowerCAmelCase = importlib.util.spec_from_file_location(
'transformers' , os.path.join(_UpperCAmelCase , '__init__.py' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , )
lowerCAmelCase = spec.loader.load_module()
lowerCAmelCase = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(_UpperCAmelCase ) > 0:
lowerCAmelCase = '\n'.join(F'- {module}' for module in module_not_registered )
raise ValueError(
'The following submodules are not properly registered in the main init of Transformers:\n'
F'{list_of_modules}\n'
'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 309
|
"""simple docstring"""
import pytest
from datasets.splits import SplitDict, SplitInfo
from datasets.utils.py_utils import asdict
@pytest.mark.parametrize(
'split_dict' , [
SplitDict(),
SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 , dataset_name='my_dataset' )} ),
SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 )} ),
SplitDict({'train': SplitInfo()} ),
] , )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : SplitDict ):
lowerCAmelCase = split_dict._to_yaml_list()
assert len(_UpperCAmelCase ) == len(_UpperCAmelCase )
lowerCAmelCase = SplitDict._from_yaml_list(_UpperCAmelCase )
for split_name, split_info in split_dict.items():
# dataset_name field is deprecated, and is therefore not part of the YAML dump
lowerCAmelCase = None
# the split name of split_dict takes over the name of the split info object
lowerCAmelCase = split_name
assert split_dict == reloaded
@pytest.mark.parametrize(
'split_info' , [SplitInfo(), SplitInfo(dataset_name=_UpperCAmelCase ), SplitInfo(dataset_name='my_dataset' )] )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] ):
# For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name"
# field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files
lowerCAmelCase = asdict(SplitDict({'train': split_info} ) )
assert "dataset_name" in split_dict_asdict["train"]
assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
| 309
| 1
|
"""simple docstring"""
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : int ):
if a < 0 or b < 0:
raise ValueError('the value of both inputs must be positive' )
lowerCAmelCase = str(bin(_UpperCAmelCase ) )[2:] # remove the leading "0b"
lowerCAmelCase = str(bin(_UpperCAmelCase ) )[2:]
lowerCAmelCase = max(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) )
return "0b" + "".join(
str(int('1' in (char_a, char_b) ) )
for char_a, char_b in zip(a_binary.zfill(_UpperCAmelCase ) , b_binary.zfill(_UpperCAmelCase ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 309
|
"""simple docstring"""
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
__UpperCamelCase : Any = abspath(join(dirname(dirname(__file__)), '''src'''))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action='''ignore''', category=FutureWarning)
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] ):
from diffusers.utils.testing_utils import pytest_addoption_shared
pytest_addoption_shared(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ):
from diffusers.utils.testing_utils import pytest_terminal_summary_main
lowerCAmelCase = terminalreporter.config.getoption('--make-reports' )
if make_reports:
pytest_terminal_summary_main(_UpperCAmelCase , id=_UpperCAmelCase )
| 309
| 1
|
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class a ( unittest.TestCase ):
def __init__( self , _snake_case , _snake_case=7 , _snake_case=3 , _snake_case=18 , _snake_case=30 , _snake_case=4_00 , _snake_case=True , _snake_case=None , _snake_case=True , _snake_case=None , _snake_case=True , ):
"""simple docstring"""
lowerCAmelCase = size if size is not None else {'shortest_edge': 20}
lowerCAmelCase = crop_size if crop_size is not None else {'height': 18, 'width': 18}
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = num_channels
lowerCAmelCase = image_size
lowerCAmelCase = min_resolution
lowerCAmelCase = max_resolution
lowerCAmelCase = do_resize
lowerCAmelCase = size
lowerCAmelCase = do_center_crop
lowerCAmelCase = crop_size
lowerCAmelCase = do_flip_channel_order
def UpperCamelCase__ ( self ):
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_flip_channel_order": self.do_flip_channel_order,
}
@require_torch
@require_vision
class a ( a__ , unittest.TestCase ):
snake_case__ = MobileViTImageProcessor if is_vision_available() else None
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = MobileViTImageProcessingTester(self )
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_snake_case , 'do_resize' ) )
self.assertTrue(hasattr(_snake_case , 'size' ) )
self.assertTrue(hasattr(_snake_case , 'do_center_crop' ) )
self.assertTrue(hasattr(_snake_case , 'center_crop' ) )
self.assertTrue(hasattr(_snake_case , 'do_flip_channel_order' ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 20} )
self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} )
lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'shortest_edge': 42} )
self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case )
for image in image_inputs:
self.assertIsInstance(_snake_case , Image.Image )
# Test not batched input
lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , numpify=_snake_case )
for image in image_inputs:
self.assertIsInstance(_snake_case , np.ndarray )
# Test not batched input
lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , torchify=_snake_case )
for image in image_inputs:
self.assertIsInstance(_snake_case , torch.Tensor )
# Test not batched input
lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
| 309
|
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class a ( unittest.TestCase ):
def __init__( self , _snake_case , _snake_case=7 , _snake_case=3 , _snake_case=18 , _snake_case=30 , _snake_case=4_00 , _snake_case=True , _snake_case=None , _snake_case=True , _snake_case=None , _snake_case=True , ):
"""simple docstring"""
lowerCAmelCase = size if size is not None else {'shortest_edge': 20}
lowerCAmelCase = crop_size if crop_size is not None else {'height': 18, 'width': 18}
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = num_channels
lowerCAmelCase = image_size
lowerCAmelCase = min_resolution
lowerCAmelCase = max_resolution
lowerCAmelCase = do_resize
lowerCAmelCase = size
lowerCAmelCase = do_center_crop
lowerCAmelCase = crop_size
lowerCAmelCase = do_flip_channel_order
def UpperCamelCase__ ( self ):
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_flip_channel_order": self.do_flip_channel_order,
}
@require_torch
@require_vision
class a ( a__ , unittest.TestCase ):
snake_case__ = MobileViTImageProcessor if is_vision_available() else None
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = MobileViTImageProcessingTester(self )
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_snake_case , 'do_resize' ) )
self.assertTrue(hasattr(_snake_case , 'size' ) )
self.assertTrue(hasattr(_snake_case , 'do_center_crop' ) )
self.assertTrue(hasattr(_snake_case , 'center_crop' ) )
self.assertTrue(hasattr(_snake_case , 'do_flip_channel_order' ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 20} )
self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} )
lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'shortest_edge': 42} )
self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case )
for image in image_inputs:
self.assertIsInstance(_snake_case , Image.Image )
# Test not batched input
lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , numpify=_snake_case )
for image in image_inputs:
self.assertIsInstance(_snake_case , np.ndarray )
# Test not batched input
lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , torchify=_snake_case )
for image in image_inputs:
self.assertIsInstance(_snake_case , torch.Tensor )
# Test not batched input
lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
| 309
| 1
|
"""simple docstring"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class a ( a__ ):
snake_case__ = ['''image_processor''', '''tokenizer''']
snake_case__ = '''CLIPImageProcessor'''
snake_case__ = ('''XLMRobertaTokenizer''', '''XLMRobertaTokenizerFast''')
def __init__( self , _snake_case=None , _snake_case=None , **_snake_case ):
"""simple docstring"""
lowerCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , _snake_case , )
lowerCAmelCase = kwargs.pop('feature_extractor' )
lowerCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(_snake_case , _snake_case )
def __call__( self , _snake_case=None , _snake_case=None , _snake_case=None , **_snake_case ):
"""simple docstring"""
if text is None and images is None:
raise ValueError('You have to specify either text or images. Both cannot be none.' )
if text is not None:
lowerCAmelCase = self.tokenizer(_snake_case , return_tensors=_snake_case , **_snake_case )
if images is not None:
lowerCAmelCase = self.image_processor(_snake_case , return_tensors=_snake_case , **_snake_case )
if text is not None and images is not None:
lowerCAmelCase = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**_snake_case ) , tensor_type=_snake_case )
def UpperCamelCase__ ( self , *_snake_case , **_snake_case ):
"""simple docstring"""
return self.tokenizer.batch_decode(*_snake_case , **_snake_case )
def UpperCamelCase__ ( self , *_snake_case , **_snake_case ):
"""simple docstring"""
return self.tokenizer.decode(*_snake_case , **_snake_case )
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.tokenizer.model_input_names
lowerCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 309
|
"""simple docstring"""
import unittest
from accelerate import debug_launcher
from accelerate.test_utils import require_cpu, test_ops, test_script
@require_cpu
class a ( unittest.TestCase ):
def UpperCamelCase__ ( self ):
"""simple docstring"""
debug_launcher(test_script.main )
def UpperCamelCase__ ( self ):
"""simple docstring"""
debug_launcher(test_ops.main )
| 309
| 1
|
"""simple docstring"""
from __future__ import annotations
from decimal import Decimal
from numpy import array
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[list[float]] ):
lowerCAmelCase = Decimal
# Check if the provided matrix has 2 rows and 2 columns
# since this implementation only works for 2x2 matrices
if len(_UpperCAmelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2:
# Calculate the determinant of the matrix
lowerCAmelCase = float(
d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) )
if determinant == 0:
raise ValueError('This matrix has no inverse.' )
# Creates a copy of the matrix with swapped positions of the elements
lowerCAmelCase = [[0.0, 0.0], [0.0, 0.0]]
lowerCAmelCase ,lowerCAmelCase = matrix[1][1], matrix[0][0]
lowerCAmelCase ,lowerCAmelCase = -matrix[1][0], -matrix[0][1]
# Calculate the inverse of the matrix
return [
[(float(d(_UpperCAmelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix
]
elif (
len(_UpperCAmelCase ) == 3
and len(matrix[0] ) == 3
and len(matrix[1] ) == 3
and len(matrix[2] ) == 3
):
# Calculate the determinant of the matrix using Sarrus rule
lowerCAmelCase = float(
(
(d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] ))
+ (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] ))
+ (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] ))
)
- (
(d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] ))
+ (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] ))
+ (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] ))
) )
if determinant == 0:
raise ValueError('This matrix has no inverse.' )
# Creating cofactor matrix
lowerCAmelCase = [
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
]
lowerCAmelCase = (d(matrix[1][1] ) * d(matrix[2][2] )) - (
d(matrix[1][2] ) * d(matrix[2][1] )
)
lowerCAmelCase = -(
(d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] ))
)
lowerCAmelCase = (d(matrix[1][0] ) * d(matrix[2][1] )) - (
d(matrix[1][1] ) * d(matrix[2][0] )
)
lowerCAmelCase = -(
(d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] ))
)
lowerCAmelCase = (d(matrix[0][0] ) * d(matrix[2][2] )) - (
d(matrix[0][2] ) * d(matrix[2][0] )
)
lowerCAmelCase = -(
(d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] ))
)
lowerCAmelCase = (d(matrix[0][1] ) * d(matrix[1][2] )) - (
d(matrix[0][2] ) * d(matrix[1][1] )
)
lowerCAmelCase = -(
(d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] ))
)
lowerCAmelCase = (d(matrix[0][0] ) * d(matrix[1][1] )) - (
d(matrix[0][1] ) * d(matrix[1][0] )
)
# Transpose the cofactor matrix (Adjoint matrix)
lowerCAmelCase = array(_UpperCAmelCase )
for i in range(3 ):
for j in range(3 ):
lowerCAmelCase = cofactor_matrix[j][i]
# Inverse of the matrix using the formula (1/determinant) * adjoint matrix
lowerCAmelCase = array(_UpperCAmelCase )
for i in range(3 ):
for j in range(3 ):
inverse_matrix[i][j] /= d(_UpperCAmelCase )
# Calculate the inverse of the matrix
return [[float(d(_UpperCAmelCase ) ) or 0.0 for n in row] for row in inverse_matrix]
raise ValueError('Please provide a matrix of size 2x2 or 3x3.' )
| 309
|
"""simple docstring"""
from __future__ import annotations
from decimal import Decimal
from numpy import array
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[list[float]] ):
lowerCAmelCase = Decimal
# Check if the provided matrix has 2 rows and 2 columns
# since this implementation only works for 2x2 matrices
if len(_UpperCAmelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2:
# Calculate the determinant of the matrix
lowerCAmelCase = float(
d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) )
if determinant == 0:
raise ValueError('This matrix has no inverse.' )
# Creates a copy of the matrix with swapped positions of the elements
lowerCAmelCase = [[0.0, 0.0], [0.0, 0.0]]
lowerCAmelCase ,lowerCAmelCase = matrix[1][1], matrix[0][0]
lowerCAmelCase ,lowerCAmelCase = -matrix[1][0], -matrix[0][1]
# Calculate the inverse of the matrix
return [
[(float(d(_UpperCAmelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix
]
elif (
len(_UpperCAmelCase ) == 3
and len(matrix[0] ) == 3
and len(matrix[1] ) == 3
and len(matrix[2] ) == 3
):
# Calculate the determinant of the matrix using Sarrus rule
lowerCAmelCase = float(
(
(d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] ))
+ (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] ))
+ (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] ))
)
- (
(d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] ))
+ (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] ))
+ (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] ))
) )
if determinant == 0:
raise ValueError('This matrix has no inverse.' )
# Creating cofactor matrix
lowerCAmelCase = [
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
]
lowerCAmelCase = (d(matrix[1][1] ) * d(matrix[2][2] )) - (
d(matrix[1][2] ) * d(matrix[2][1] )
)
lowerCAmelCase = -(
(d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] ))
)
lowerCAmelCase = (d(matrix[1][0] ) * d(matrix[2][1] )) - (
d(matrix[1][1] ) * d(matrix[2][0] )
)
lowerCAmelCase = -(
(d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] ))
)
lowerCAmelCase = (d(matrix[0][0] ) * d(matrix[2][2] )) - (
d(matrix[0][2] ) * d(matrix[2][0] )
)
lowerCAmelCase = -(
(d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] ))
)
lowerCAmelCase = (d(matrix[0][1] ) * d(matrix[1][2] )) - (
d(matrix[0][2] ) * d(matrix[1][1] )
)
lowerCAmelCase = -(
(d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] ))
)
lowerCAmelCase = (d(matrix[0][0] ) * d(matrix[1][1] )) - (
d(matrix[0][1] ) * d(matrix[1][0] )
)
# Transpose the cofactor matrix (Adjoint matrix)
lowerCAmelCase = array(_UpperCAmelCase )
for i in range(3 ):
for j in range(3 ):
lowerCAmelCase = cofactor_matrix[j][i]
# Inverse of the matrix using the formula (1/determinant) * adjoint matrix
lowerCAmelCase = array(_UpperCAmelCase )
for i in range(3 ):
for j in range(3 ):
inverse_matrix[i][j] /= d(_UpperCAmelCase )
# Calculate the inverse of the matrix
return [[float(d(_UpperCAmelCase ) ) or 0.0 for n in row] for row in inverse_matrix]
raise ValueError('Please provide a matrix of size 2x2 or 3x3.' )
| 309
| 1
|
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
__UpperCamelCase : Tuple = logging.get_logger(__name__)
__UpperCamelCase : List[str] = {'''vocab_file''': '''vocab.txt'''}
__UpperCamelCase : Tuple = {
'''vocab_file''': {
'''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''',
'''YituTech/conv-bert-medium-small''': (
'''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt'''
),
'''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''',
}
}
__UpperCamelCase : Dict = {
'''YituTech/conv-bert-base''': 512,
'''YituTech/conv-bert-medium-small''': 512,
'''YituTech/conv-bert-small''': 512,
}
__UpperCamelCase : List[str] = {
'''YituTech/conv-bert-base''': {'''do_lower_case''': True},
'''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True},
'''YituTech/conv-bert-small''': {'''do_lower_case''': True},
}
class a ( a__ ):
snake_case__ = VOCAB_FILES_NAMES
snake_case__ = PRETRAINED_VOCAB_FILES_MAP
snake_case__ = PRETRAINED_INIT_CONFIGURATION
snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case__ = ConvBertTokenizer
def __init__( self , _snake_case=None , _snake_case=None , _snake_case=True , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case=True , _snake_case=None , **_snake_case , ):
"""simple docstring"""
super().__init__(
_snake_case , tokenizer_file=_snake_case , do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , tokenize_chinese_chars=_snake_case , strip_accents=_snake_case , **_snake_case , )
lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , _snake_case ) != do_lower_case
or normalizer_state.get('strip_accents' , _snake_case ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , _snake_case ) != tokenize_chinese_chars
):
lowerCAmelCase = getattr(_snake_case , normalizer_state.pop('type' ) )
lowerCAmelCase = do_lower_case
lowerCAmelCase = strip_accents
lowerCAmelCase = tokenize_chinese_chars
lowerCAmelCase = normalizer_class(**_snake_case )
lowerCAmelCase = do_lower_case
def UpperCamelCase__ ( self , _snake_case , _snake_case=None ):
"""simple docstring"""
lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCamelCase__ ( self , _snake_case , _snake_case = None ):
"""simple docstring"""
lowerCAmelCase = [self.sep_token_id]
lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase__ ( self , _snake_case , _snake_case = None ):
"""simple docstring"""
lowerCAmelCase = self._tokenizer.model.save(_snake_case , name=_snake_case )
return tuple(_snake_case )
| 309
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__UpperCamelCase : Dict = {
'''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''],
'''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''],
'''processing_mctct''': ['''MCTCTProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Tuple = [
'''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MCTCTForCTC''',
'''MCTCTModel''',
'''MCTCTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
__UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 309
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__UpperCamelCase : str = {
'''configuration_bridgetower''': [
'''BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''BridgeTowerConfig''',
'''BridgeTowerTextConfig''',
'''BridgeTowerVisionConfig''',
],
'''processing_bridgetower''': ['''BridgeTowerProcessor'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Optional[Any] = ['''BridgeTowerImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : int = [
'''BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BridgeTowerForContrastiveLearning''',
'''BridgeTowerForImageAndTextRetrieval''',
'''BridgeTowerForMaskedLM''',
'''BridgeTowerModel''',
'''BridgeTowerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_bridgetower import (
BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP,
BridgeTowerConfig,
BridgeTowerTextConfig,
BridgeTowerVisionConfig,
)
from .processing_bridgetower import BridgeTowerProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_bridgetower import BridgeTowerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bridgetower import (
BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST,
BridgeTowerForContrastiveLearning,
BridgeTowerForImageAndTextRetrieval,
BridgeTowerForMaskedLM,
BridgeTowerModel,
BridgeTowerPreTrainedModel,
)
else:
import sys
__UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 309
|
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
__UpperCamelCase : Dict = logging.get_logger(__name__)
__UpperCamelCase : str = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
__UpperCamelCase : Optional[int] = {
'''vocab_file''': {
'''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''',
'''distilbert-base-uncased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt'''
),
'''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''',
'''distilbert-base-cased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt'''
),
'''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''',
'''distilbert-base-multilingual-cased''': (
'''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''',
'''distilbert-base-uncased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json'''
),
'''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''',
'''distilbert-base-cased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json'''
),
'''distilbert-base-german-cased''': (
'''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json'''
),
'''distilbert-base-multilingual-cased''': (
'''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json'''
),
},
}
__UpperCamelCase : str = {
'''distilbert-base-uncased''': 512,
'''distilbert-base-uncased-distilled-squad''': 512,
'''distilbert-base-cased''': 512,
'''distilbert-base-cased-distilled-squad''': 512,
'''distilbert-base-german-cased''': 512,
'''distilbert-base-multilingual-cased''': 512,
}
__UpperCamelCase : Any = {
'''distilbert-base-uncased''': {'''do_lower_case''': True},
'''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True},
'''distilbert-base-cased''': {'''do_lower_case''': False},
'''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False},
'''distilbert-base-german-cased''': {'''do_lower_case''': False},
'''distilbert-base-multilingual-cased''': {'''do_lower_case''': False},
}
class a ( a__ ):
snake_case__ = VOCAB_FILES_NAMES
snake_case__ = PRETRAINED_VOCAB_FILES_MAP
snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case__ = PRETRAINED_INIT_CONFIGURATION
snake_case__ = ['''input_ids''', '''attention_mask''']
snake_case__ = DistilBertTokenizer
def __init__( self , _snake_case=None , _snake_case=None , _snake_case=True , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case=True , _snake_case=None , **_snake_case , ):
"""simple docstring"""
super().__init__(
_snake_case , tokenizer_file=_snake_case , do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , tokenize_chinese_chars=_snake_case , strip_accents=_snake_case , **_snake_case , )
lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , _snake_case ) != do_lower_case
or normalizer_state.get('strip_accents' , _snake_case ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , _snake_case ) != tokenize_chinese_chars
):
lowerCAmelCase = getattr(_snake_case , normalizer_state.pop('type' ) )
lowerCAmelCase = do_lower_case
lowerCAmelCase = strip_accents
lowerCAmelCase = tokenize_chinese_chars
lowerCAmelCase = normalizer_class(**_snake_case )
lowerCAmelCase = do_lower_case
def UpperCamelCase__ ( self , _snake_case , _snake_case=None ):
"""simple docstring"""
lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCamelCase__ ( self , _snake_case , _snake_case = None ):
"""simple docstring"""
lowerCAmelCase = [self.sep_token_id]
lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase__ ( self , _snake_case , _snake_case = None ):
"""simple docstring"""
lowerCAmelCase = self._tokenizer.model.save(_snake_case , name=_snake_case )
return tuple(_snake_case )
| 309
| 1
|
"""simple docstring"""
from collections.abc import Sequence
from queue import Queue
class a :
def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case=None , _snake_case=None ):
"""simple docstring"""
lowerCAmelCase = start
lowerCAmelCase = end
lowerCAmelCase = val
lowerCAmelCase = (start + end) // 2
lowerCAmelCase = left
lowerCAmelCase = right
def __repr__( self ):
"""simple docstring"""
return F'SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})'
class a :
def __init__( self , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = collection
lowerCAmelCase = function
if self.collection:
lowerCAmelCase = self._build_tree(0 , len(_snake_case ) - 1 )
def UpperCamelCase__ ( self , _snake_case , _snake_case ):
"""simple docstring"""
self._update_tree(self.root , _snake_case , _snake_case )
def UpperCamelCase__ ( self , _snake_case , _snake_case ):
"""simple docstring"""
return self._query_range(self.root , _snake_case , _snake_case )
def UpperCamelCase__ ( self , _snake_case , _snake_case ):
"""simple docstring"""
if start == end:
return SegmentTreeNode(_snake_case , _snake_case , self.collection[start] )
lowerCAmelCase = (start + end) // 2
lowerCAmelCase = self._build_tree(_snake_case , _snake_case )
lowerCAmelCase = self._build_tree(mid + 1 , _snake_case )
return SegmentTreeNode(_snake_case , _snake_case , self.fn(left.val , right.val ) , _snake_case , _snake_case )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
if node.start == i and node.end == i:
lowerCAmelCase = val
return
if i <= node.mid:
self._update_tree(node.left , _snake_case , _snake_case )
else:
self._update_tree(node.right , _snake_case , _snake_case )
lowerCAmelCase = self.fn(node.left.val , node.right.val )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
if node.start == i and node.end == j:
return node.val
if i <= node.mid:
if j <= node.mid:
# range in left child tree
return self._query_range(node.left , _snake_case , _snake_case )
else:
# range in left child tree and right child tree
return self.fn(
self._query_range(node.left , _snake_case , node.mid ) , self._query_range(node.right , node.mid + 1 , _snake_case ) , )
else:
# range in right child tree
return self._query_range(node.right , _snake_case , _snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
if self.root is not None:
lowerCAmelCase = Queue()
queue.put(self.root )
while not queue.empty():
lowerCAmelCase = queue.get()
yield node
if node.left is not None:
queue.put(node.left )
if node.right is not None:
queue.put(node.right )
if __name__ == "__main__":
import operator
for fn in [operator.add, max, min]:
print('''*''' * 50)
__UpperCamelCase : Tuple = SegmentTree([2, 1, 5, 3, 4], fn)
for node in arr.traverse():
print(node)
print()
arr.update(1, 5)
for node in arr.traverse():
print(node)
print()
print(arr.query_range(3, 4)) # 7
print(arr.query_range(2, 2)) # 5
print(arr.query_range(1, 3)) # 13
print()
| 309
|
"""simple docstring"""
from __future__ import annotations
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] | None = None ):
lowerCAmelCase = word_bank or []
# create a table
lowerCAmelCase = len(_UpperCAmelCase ) + 1
lowerCAmelCase = []
for _ in range(_UpperCAmelCase ):
table.append([] )
# seed value
lowerCAmelCase = [[]] # because empty string has empty combination
# iterate through the indices
for i in range(_UpperCAmelCase ):
# condition
if table[i] != []:
for word in word_bank:
# slice condition
if target[i : i + len(_UpperCAmelCase )] == word:
lowerCAmelCase = [
[word, *way] for way in table[i]
]
# adds the word to every combination the current position holds
# now,push that combination to the table[i+len(word)]
table[i + len(_UpperCAmelCase )] += new_combinations
# combinations are in reverse order so reverse for better output
for combination in table[len(_UpperCAmelCase )]:
combination.reverse()
return table[len(_UpperCAmelCase )]
if __name__ == "__main__":
print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa''']))
print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t''']))
print(
all_construct(
'''hexagonosaurus''',
['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''],
)
)
| 309
| 1
|
"""simple docstring"""
import math
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ):
lowerCAmelCase = []
lowerCAmelCase = 2
lowerCAmelCase = int(math.sqrt(_UpperCAmelCase ) ) # Size of every segment
lowerCAmelCase = [True] * (end + 1)
lowerCAmelCase = []
while start <= end:
if temp[start] is True:
in_prime.append(_UpperCAmelCase )
for i in range(start * start , end + 1 , _UpperCAmelCase ):
lowerCAmelCase = False
start += 1
prime += in_prime
lowerCAmelCase = end + 1
lowerCAmelCase = min(2 * end , _UpperCAmelCase )
while low <= n:
lowerCAmelCase = [True] * (high - low + 1)
for each in in_prime:
lowerCAmelCase = math.floor(low / each ) * each
if t < low:
t += each
for j in range(_UpperCAmelCase , high + 1 , _UpperCAmelCase ):
lowerCAmelCase = False
for j in range(len(_UpperCAmelCase ) ):
if temp[j] is True:
prime.append(j + low )
lowerCAmelCase = high + 1
lowerCAmelCase = min(high + end , _UpperCAmelCase )
return prime
print(sieve(10**6))
| 309
|
"""simple docstring"""
import re
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ):
if len(re.findall('[ATCG]' , _UpperCAmelCase ) ) != len(_UpperCAmelCase ):
raise ValueError('Invalid Strand' )
return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 309
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available
from ...utils import OptionalDependencyNotAvailable
__UpperCamelCase : Any = {'''configuration_dpt''': ['''DPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DPTConfig''']}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Optional[Any] = ['''DPTFeatureExtractor''']
__UpperCamelCase : List[Any] = ['''DPTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Tuple = [
'''DPT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''DPTForDepthEstimation''',
'''DPTForSemanticSegmentation''',
'''DPTModel''',
'''DPTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_dpt import DPTFeatureExtractor
from .image_processing_dpt import DPTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_dpt import (
DPT_PRETRAINED_MODEL_ARCHIVE_LIST,
DPTForDepthEstimation,
DPTForSemanticSegmentation,
DPTModel,
DPTPreTrainedModel,
)
else:
import sys
__UpperCamelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 309
|
"""simple docstring"""
import numpy as np
import skfuzzy as fuzz
if __name__ == "__main__":
# Create universe of discourse in Python using linspace ()
__UpperCamelCase : List[Any] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False)
# Create two fuzzy sets by defining any membership function
# (trapmf(), gbellmf(), gaussmf(), etc).
__UpperCamelCase : str = [0, 25, 50]
__UpperCamelCase : int = [25, 50, 75]
__UpperCamelCase : str = fuzz.membership.trimf(X, abca)
__UpperCamelCase : Tuple = fuzz.membership.trimf(X, abca)
# Compute the different operations using inbuilt functions.
__UpperCamelCase : Dict = np.ones(75)
__UpperCamelCase : str = np.zeros((75,))
# 1. Union = max(µA(x), µB(x))
__UpperCamelCase : Optional[Any] = fuzz.fuzzy_or(X, young, X, middle_aged)[1]
# 2. Intersection = min(µA(x), µB(x))
__UpperCamelCase : Dict = fuzz.fuzzy_and(X, young, X, middle_aged)[1]
# 3. Complement (A) = (1- min(µA(x))
__UpperCamelCase : Dict = fuzz.fuzzy_not(young)
# 4. Difference (A/B) = min(µA(x),(1- µB(x)))
__UpperCamelCase : List[str] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1]
# 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))]
__UpperCamelCase : List[str] = young + middle_aged - (young * middle_aged)
# 6. Algebraic Product = (µA(x) * µB(x))
__UpperCamelCase : Tuple = young * middle_aged
# 7. Bounded Sum = min[1,(µA(x), µB(x))]
__UpperCamelCase : Union[str, Any] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1]
# 8. Bounded difference = min[0,(µA(x), µB(x))]
__UpperCamelCase : Dict = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1]
# max-min composition
# max-product composition
# Plot each set A, set B and each operation result using plot() and subplot().
from matplotlib import pyplot as plt
plt.figure()
plt.subplot(4, 3, 1)
plt.plot(X, young)
plt.title('''Young''')
plt.grid(True)
plt.subplot(4, 3, 2)
plt.plot(X, middle_aged)
plt.title('''Middle aged''')
plt.grid(True)
plt.subplot(4, 3, 3)
plt.plot(X, union)
plt.title('''union''')
plt.grid(True)
plt.subplot(4, 3, 4)
plt.plot(X, intersection)
plt.title('''intersection''')
plt.grid(True)
plt.subplot(4, 3, 5)
plt.plot(X, complement_a)
plt.title('''complement_a''')
plt.grid(True)
plt.subplot(4, 3, 6)
plt.plot(X, difference)
plt.title('''difference a/b''')
plt.grid(True)
plt.subplot(4, 3, 7)
plt.plot(X, alg_sum)
plt.title('''alg_sum''')
plt.grid(True)
plt.subplot(4, 3, 8)
plt.plot(X, alg_product)
plt.title('''alg_product''')
plt.grid(True)
plt.subplot(4, 3, 9)
plt.plot(X, bdd_sum)
plt.title('''bdd_sum''')
plt.grid(True)
plt.subplot(4, 3, 10)
plt.plot(X, bdd_difference)
plt.title('''bdd_difference''')
plt.grid(True)
plt.subplots_adjust(hspace=0.5)
plt.show()
| 309
| 1
|
"""simple docstring"""
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 1000 ):
return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) )
if __name__ == "__main__":
print(solution())
| 309
|
"""simple docstring"""
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[int] , _UpperCAmelCase : str ):
lowerCAmelCase = int(_UpperCAmelCase )
# Initialize Result
lowerCAmelCase = []
# Traverse through all denomination
for denomination in reversed(_UpperCAmelCase ):
# Find denominations
while int(_UpperCAmelCase ) >= int(_UpperCAmelCase ):
total_value -= int(_UpperCAmelCase )
answer.append(_UpperCAmelCase ) # Append the "answers" array
return answer
# Driver Code
if __name__ == "__main__":
__UpperCamelCase : Any = []
__UpperCamelCase : List[Any] = '''0'''
if (
input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower()
== "y"
):
__UpperCamelCase : Any = int(input('''Enter the number of denominations you want to add: ''').strip())
for i in range(0, n):
denominations.append(int(input(f'''Denomination {i}: ''').strip()))
__UpperCamelCase : int = input('''Enter the change you want to make in Indian Currency: ''').strip()
else:
# All denominations of Indian Currency if user does not enter
__UpperCamelCase : List[str] = [1, 2, 5, 10, 20, 50, 100, 500, 2000]
__UpperCamelCase : Any = input('''Enter the change you want to make: ''').strip()
if int(value) == 0 or int(value) < 0:
print('''The total value cannot be zero or negative.''')
else:
print(f'''Following is minimal change for {value}: ''')
__UpperCamelCase : List[str] = find_minimum_change(denominations, value)
# Print result
for i in range(len(answer)):
print(answer[i], end=''' ''')
| 309
| 1
|
"""simple docstring"""
from sympy import diff, lambdify, symbols
from sympy.functions import * # noqa: F403
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : complex , _UpperCAmelCase : str = "x" , _UpperCAmelCase : float = 10**-10 , _UpperCAmelCase : int = 1 , ):
lowerCAmelCase = symbols(_UpperCAmelCase )
lowerCAmelCase = lambdify(_UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase = lambdify(_UpperCAmelCase , diff(_UpperCAmelCase , _UpperCAmelCase ) )
lowerCAmelCase = starting_point
while True:
if diff_function(_UpperCAmelCase ) != 0:
lowerCAmelCase = prev_guess - multiplicity * func(_UpperCAmelCase ) / diff_function(
_UpperCAmelCase )
else:
raise ZeroDivisionError('Could not find root' ) from None
# Precision is checked by comparing the difference of consecutive guesses
if abs(next_guess - prev_guess ) < precision:
return next_guess
lowerCAmelCase = next_guess
# Let's Execute
if __name__ == "__main__":
# Find root of trigonometric function
# Find value of pi
print(f'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''')
# Find root of polynomial
# Find fourth Root of 5
print(f'''The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5j)}''')
# Find value of e
print(
'''The root of log(y) - 1 = 0 is ''',
f'''{newton_raphson('log(y) - 1', 2, variable='y')}''',
)
# Exponential Roots
print(
'''The root of exp(x) - 1 = 0 is''',
f'''{newton_raphson('exp(x) - 1', 10, precision=0.0_05)}''',
)
# Find root of cos(x)
print(f'''The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}''')
| 309
|
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import EsmConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy
import tensorflow as tf
from transformers.models.esm.modeling_tf_esm import (
TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFEsmForMaskedLM,
TFEsmForSequenceClassification,
TFEsmForTokenClassification,
TFEsmModel,
)
class a :
def __init__( self , _snake_case , ):
"""simple docstring"""
lowerCAmelCase = parent
lowerCAmelCase = 13
lowerCAmelCase = 7
lowerCAmelCase = True
lowerCAmelCase = True
lowerCAmelCase = True
lowerCAmelCase = 99
lowerCAmelCase = 32
lowerCAmelCase = 2
lowerCAmelCase = 4
lowerCAmelCase = 37
lowerCAmelCase = 'gelu'
lowerCAmelCase = 0.1
lowerCAmelCase = 0.1
lowerCAmelCase = 5_12
lowerCAmelCase = 16
lowerCAmelCase = 2
lowerCAmelCase = 0.02
lowerCAmelCase = 3
lowerCAmelCase = 4
lowerCAmelCase = None
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase = None
if self.use_input_mask:
lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase = None
lowerCAmelCase = None
lowerCAmelCase = None
if self.use_labels:
lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase = EsmConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase__ ( self ):
"""simple docstring"""
(
(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,
) = self.prepare_config_and_inputs()
lowerCAmelCase = True
lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = TFEsmModel(config=_snake_case )
lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask}
lowerCAmelCase = model(_snake_case )
lowerCAmelCase = [input_ids, input_mask]
lowerCAmelCase = model(_snake_case )
lowerCAmelCase = model(_snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ):
"""simple docstring"""
lowerCAmelCase = True
lowerCAmelCase = TFEsmModel(config=_snake_case )
lowerCAmelCase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'encoder_hidden_states': encoder_hidden_states,
'encoder_attention_mask': encoder_attention_mask,
}
lowerCAmelCase = model(_snake_case )
lowerCAmelCase = [input_ids, input_mask]
lowerCAmelCase = model(_snake_case , encoder_hidden_states=_snake_case )
# Also check the case where encoder outputs are not passed
lowerCAmelCase = model(_snake_case , attention_mask=_snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = TFEsmForMaskedLM(config=_snake_case )
lowerCAmelCase = model([input_ids, input_mask] )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = self.num_labels
lowerCAmelCase = TFEsmForTokenClassification(config=_snake_case )
lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask}
lowerCAmelCase = model(_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.prepare_config_and_inputs()
(
(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,(
lowerCAmelCase
) ,
) = config_and_inputs
lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class a ( a__ , a__ , unittest.TestCase ):
snake_case__ = (
(
TFEsmModel,
TFEsmForMaskedLM,
TFEsmForSequenceClassification,
TFEsmForTokenClassification,
)
if is_tf_available()
else ()
)
snake_case__ = (
{
'''feature-extraction''': TFEsmModel,
'''fill-mask''': TFEsmForMaskedLM,
'''text-classification''': TFEsmForSequenceClassification,
'''token-classification''': TFEsmForTokenClassification,
'''zero-shot''': TFEsmForSequenceClassification,
}
if is_tf_available()
else {}
)
snake_case__ = False
snake_case__ = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFEsmModelTester(self )
lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 )
def UpperCamelCase__ ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_snake_case )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase = TFEsmModel.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
@unittest.skip('Protein models do not support embedding resizing.' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
@unittest.skip('Protein models do not support embedding resizing.' )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase = model_class(_snake_case )
assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer )
if model_class is TFEsmForMaskedLM:
# Output embedding test differs from the main test because they're a matrix, not a layer
lowerCAmelCase = model.get_bias()
assert isinstance(_snake_case , _snake_case )
for k, v in name.items():
assert isinstance(_snake_case , tf.Variable )
else:
lowerCAmelCase = model.get_output_embeddings()
assert x is None
lowerCAmelCase = model.get_bias()
assert name is None
@require_tf
class a ( unittest.TestCase ):
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' )
lowerCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] )
lowerCAmelCase = model(_snake_case )[0]
lowerCAmelCase = [1, 6, 33]
self.assertEqual(list(output.numpy().shape ) , _snake_case )
# compare the actual values for a slice.
lowerCAmelCase = tf.constant(
[
[
[8.921_518, -10.589_814, -6.4_671_307],
[-6.3_967_156, -13.911_377, -1.1_211_915],
[-7.781_247, -13.951_557, -3.740_592],
]
] )
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) )
@slow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' )
lowerCAmelCase = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
lowerCAmelCase = model(_snake_case )[0]
# compare the actual values for a slice.
lowerCAmelCase = tf.constant(
[
[
[0.14_443_092, 0.54_125_327, 0.3_247_739],
[0.30_340_484, 0.00_526_676, 0.31_077_722],
[0.32_278_043, -0.24_987_096, 0.3_414_628],
]
] )
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 309
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
__UpperCamelCase : Dict = {
'''configuration_groupvit''': [
'''GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''GroupViTConfig''',
'''GroupViTOnnxConfig''',
'''GroupViTTextConfig''',
'''GroupViTVisionConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : List[Any] = [
'''GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''GroupViTModel''',
'''GroupViTPreTrainedModel''',
'''GroupViTTextModel''',
'''GroupViTVisionModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Optional[int] = [
'''TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFGroupViTModel''',
'''TFGroupViTPreTrainedModel''',
'''TFGroupViTTextModel''',
'''TFGroupViTVisionModel''',
]
if TYPE_CHECKING:
from .configuration_groupvit import (
GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GroupViTConfig,
GroupViTOnnxConfig,
GroupViTTextConfig,
GroupViTVisionConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_groupvit import (
GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GroupViTModel,
GroupViTPreTrainedModel,
GroupViTTextModel,
GroupViTVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_groupvit import (
TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFGroupViTModel,
TFGroupViTPreTrainedModel,
TFGroupViTTextModel,
TFGroupViTVisionModel,
)
else:
import sys
__UpperCamelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 309
|
"""simple docstring"""
import io
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__UpperCamelCase : Union[str, Any] = logging.get_logger(__name__)
__UpperCamelCase : Dict = '''▁'''
__UpperCamelCase : Optional[int] = {'''vocab_file''': '''vocab.txt''', '''sentencepiece_model_ckpt''': '''sentencepiece.bpe.model'''}
__UpperCamelCase : str = {
'''sentencepiece_model_file''': '''sentencepiece.bpe.model''',
'''vocab_file''': '''vocab.txt''',
}
__UpperCamelCase : Tuple = {
'''vocab_file''': {
'''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''',
'''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''',
},
'''sentencepiece_model_file''': {
'''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''',
'''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''',
},
}
__UpperCamelCase : Optional[Any] = {
'''ernie-m-base''': 514,
'''ernie-m-large''': 514,
}
__UpperCamelCase : str = {
'''ernie-m-base''': {'''do_lower_case''': False},
'''ernie-m-large''': {'''do_lower_case''': False},
}
class a ( a__ ):
snake_case__ = ["input_ids"]
snake_case__ = VOCAB_FILES_NAMES
snake_case__ = PRETRAINED_INIT_CONFIGURATION
snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case__ = PRETRAINED_VOCAB_FILES_MAP
snake_case__ = RESOURCE_FILES_NAMES
def __init__( self , _snake_case , _snake_case=None , _snake_case=False , _snake_case="utf8" , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case = None , **_snake_case , ):
"""simple docstring"""
lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , vocab_file=_snake_case , encoding=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , )
lowerCAmelCase = do_lower_case
lowerCAmelCase = sentencepiece_model_ckpt
lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_snake_case )
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
lowerCAmelCase = self.load_vocab(filepath=_snake_case )
else:
lowerCAmelCase = {self.sp_model.id_to_piece(_snake_case ): id for id in range(self.sp_model.get_piece_size() )}
lowerCAmelCase = {v: k for k, v in self.vocab.items()}
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if text is None:
return None
lowerCAmelCase = self.tokenize(_snake_case )
lowerCAmelCase ,lowerCAmelCase = '', []
for i, ch in enumerate(_snake_case ):
if ch in self.SP_CHAR_MAPPING:
lowerCAmelCase = self.SP_CHAR_MAPPING.get(_snake_case )
else:
lowerCAmelCase = unicodedata.normalize('NFKC' , _snake_case )
if self.is_whitespace(_snake_case ):
continue
normalized_text += ch
char_mapping.extend([i] * len(_snake_case ) )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = normalized_text, [], 0
if self.do_lower_case:
lowerCAmelCase = text.lower()
for token in split_tokens:
if token[:1] == "▁":
lowerCAmelCase = token[1:]
lowerCAmelCase = text[offset:].index(_snake_case ) + offset
lowerCAmelCase = start + len(_snake_case )
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) )
lowerCAmelCase = end
return token_mapping
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return len(self.vocab )
def UpperCamelCase__ ( self ):
"""simple docstring"""
return dict(self.vocab , **self.added_tokens_encoder )
def __getstate__( self ):
"""simple docstring"""
lowerCAmelCase = self.__dict__.copy()
lowerCAmelCase = None
return state
def __setstate__( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
lowerCAmelCase = {}
lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.sentencepiece_model_ckpt )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
return "".join((self.SP_CHAR_MAPPING.get(_snake_case , _snake_case ) for c in text) )
def UpperCamelCase__ ( self , _snake_case , _snake_case=False , _snake_case=64 , _snake_case=0.1 ):
"""simple docstring"""
if self.sp_model_kwargs.get('enable_sampling' ) is True:
lowerCAmelCase = True
if self.sp_model_kwargs.get('alpha' ) is not None:
lowerCAmelCase = self.sp_model_kwargs.get('alpha' )
if self.sp_model_kwargs.get('nbest_size' ) is not None:
lowerCAmelCase = self.sp_model_kwargs.get('nbest_size' )
if not enable_sampling:
lowerCAmelCase = self.sp_model.EncodeAsPieces(_snake_case )
else:
lowerCAmelCase = self.sp_model.SampleEncodeAsPieces(_snake_case , _snake_case , _snake_case )
lowerCAmelCase = []
for pi, piece in enumerate(_snake_case ):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(_snake_case ) and pi != 0:
new_pieces.append(_snake_case )
continue
else:
continue
lowerCAmelCase = 0
for i, chunk in enumerate(_snake_case ):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(_snake_case ) or self.is_punct(_snake_case ):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
new_pieces.append(_snake_case )
lowerCAmelCase = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
lowerCAmelCase = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
lowerCAmelCase = i
if len(_snake_case ) > lst_i:
new_pieces.append(piece[lst_i:] )
return new_pieces
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = ''.join(_snake_case ).replace(_snake_case , ' ' ).strip()
return out_string
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = self.convert_ids_to_tokens(_snake_case )
lowerCAmelCase = ''.join(_snake_case ).replace(_snake_case , ' ' ).strip()
return out_string
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
return self.vocab.get(_snake_case , self.vocab.get(self.unk_token ) )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
return self.reverse_vocab.get(_snake_case , self.unk_token )
def UpperCamelCase__ ( self , _snake_case , _snake_case=None ):
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowerCAmelCase = [self.cls_token_id]
lowerCAmelCase = [self.sep_token_id]
return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep
def UpperCamelCase__ ( self , _snake_case , _snake_case=None ):
"""simple docstring"""
if offset_mapping_a is None:
return [(0, 0)] + offset_mapping_a + [(0, 0)]
return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)]
def UpperCamelCase__ ( self , _snake_case , _snake_case=None , _snake_case=False ):
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'You should not supply a second sequence if the provided sequence of '
'ids is already formatted with special tokens for the model.' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) + [1]
return [1] + ([0] * len(_snake_case )) + [1]
def UpperCamelCase__ ( self , _snake_case , _snake_case = None ):
"""simple docstring"""
if token_ids_a is None:
# [CLS] X [SEP]
return (len(_snake_case ) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(_snake_case ) + 1) + [1] * (len(_snake_case ) + 3)
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if "\u4e00" <= char <= "\u9fff":
return True
return False
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if char in ",;:.?!~,;:。?!《》【】":
return True
return False
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(_snake_case ) == 1:
lowerCAmelCase = unicodedata.category(_snake_case )
if cat == "Zs":
return True
return False
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = {}
with io.open(_snake_case , 'r' , encoding='utf-8' ) as f:
for index, line in enumerate(_snake_case ):
lowerCAmelCase = line.rstrip('\n' )
lowerCAmelCase = int(_snake_case )
return token_to_idx
def UpperCamelCase__ ( self , _snake_case , _snake_case = None ):
"""simple docstring"""
lowerCAmelCase = 0
if os.path.isdir(_snake_case ):
lowerCAmelCase = os.path.join(
_snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
else:
lowerCAmelCase = (filename_prefix + '-' if filename_prefix else '') + save_directory
with open(_snake_case , 'w' , encoding='utf-8' ) as writer:
for token, token_index in sorted(self.vocab.items() , key=lambda _snake_case : kv[1] ):
if index != token_index:
logger.warning(
F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'
' Please check that the vocabulary is not corrupted!' )
lowerCAmelCase = token_index
writer.write(token + '\n' )
index += 1
lowerCAmelCase = os.path.join(_snake_case , 'sentencepiece.bpe.model' )
with open(_snake_case , 'wb' ) as fi:
lowerCAmelCase = self.sp_model.serialized_model_proto()
fi.write(_snake_case )
return (vocab_file,)
| 309
| 1
|
"""simple docstring"""
# Lint as: python3
# pylint: enable=line-too-long
# pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position
__UpperCamelCase : int = '''2.13.1'''
import platform
import pyarrow
from packaging import version
if version.parse(platform.python_version()) < version.parse('''3.7'''):
raise ImportWarning(
'''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.'''
)
if version.parse(pyarrow.__version__).major < 8:
raise ImportWarning(
'''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n'''
'''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.'''
)
del platform
del pyarrow
del version
from .arrow_dataset import Dataset
from .arrow_reader import ReadInstruction
from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder
from .combine import concatenate_datasets, interleave_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .download import *
from .features import *
from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled
from .info import DatasetInfo, MetricInfo
from .inspect import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
list_datasets,
list_metrics,
)
from .iterable_dataset import IterableDataset
from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric
from .metric import Metric
from .splits import (
NamedSplit,
NamedSplitAll,
Split,
SplitBase,
SplitDict,
SplitGenerator,
SplitInfo,
SubSplitInfo,
percent,
)
from .tasks import *
from .utils import *
from .utils import logging
# deprecated modules
from datasets import arrow_dataset as _arrow_dataset # isort:skip
from datasets import utils as _utils # isort:skip
from datasets.utils import download_manager as _deprecated_download_manager # isort:skip
__UpperCamelCase : Dict = concatenate_datasets
__UpperCamelCase : Optional[int] = DownloadConfig
__UpperCamelCase : List[Any] = DownloadManager
__UpperCamelCase : List[str] = DownloadMode
__UpperCamelCase : Optional[Any] = DownloadConfig
__UpperCamelCase : Any = DownloadMode
__UpperCamelCase : Optional[Any] = DownloadManager
del _arrow_dataset, _utils, _deprecated_download_manager
| 309
|
"""simple docstring"""
import argparse
import os
import torch
from transformers.utils import WEIGHTS_NAME
__UpperCamelCase : int = ['''small''', '''medium''', '''large''']
__UpperCamelCase : str = '''lm_head.decoder.weight'''
__UpperCamelCase : Dict = '''lm_head.weight'''
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ):
lowerCAmelCase = torch.load(_UpperCAmelCase )
lowerCAmelCase = d.pop(_UpperCAmelCase )
os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase )
torch.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase ) )
if __name__ == "__main__":
__UpperCamelCase : Optional[int] = argparse.ArgumentParser()
parser.add_argument('''--dialogpt_path''', default='''.''', type=str)
__UpperCamelCase : Optional[int] = parser.parse_args()
for MODEL in DIALOGPT_MODELS:
__UpperCamelCase : Dict = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''')
__UpperCamelCase : str = f'''./DialoGPT-{MODEL}'''
convert_dialogpt_checkpoint(
checkpoint_path,
pytorch_dump_folder_path,
)
| 309
| 1
|
"""simple docstring"""
from typing import Optional, Union
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_mobilenet_va import MobileNetVaConfig
__UpperCamelCase : Dict = logging.get_logger(__name__)
# General docstring
__UpperCamelCase : str = '''MobileNetV1Config'''
# Base docstring
__UpperCamelCase : List[str] = '''google/mobilenet_v1_1.0_224'''
__UpperCamelCase : Any = [1, 1024, 7, 7]
# Image classification docstring
__UpperCamelCase : Optional[Any] = '''google/mobilenet_v1_1.0_224'''
__UpperCamelCase : int = '''tabby, tabby cat'''
__UpperCamelCase : Any = [
'''google/mobilenet_v1_1.0_224''',
'''google/mobilenet_v1_0.75_192''',
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
]
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[str]=None ):
lowerCAmelCase = {}
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
lowerCAmelCase = model.mobilenet_va
else:
lowerCAmelCase = model
lowerCAmelCase = 'MobilenetV1/Conv2d_0/'
lowerCAmelCase = backbone.conv_stem.convolution.weight
lowerCAmelCase = backbone.conv_stem.normalization.bias
lowerCAmelCase = backbone.conv_stem.normalization.weight
lowerCAmelCase = backbone.conv_stem.normalization.running_mean
lowerCAmelCase = backbone.conv_stem.normalization.running_var
for i in range(13 ):
lowerCAmelCase = i + 1
lowerCAmelCase = i * 2
lowerCAmelCase = backbone.layer[pt_index]
lowerCAmelCase = F'MobilenetV1/Conv2d_{tf_index}_depthwise/'
lowerCAmelCase = pointer.convolution.weight
lowerCAmelCase = pointer.normalization.bias
lowerCAmelCase = pointer.normalization.weight
lowerCAmelCase = pointer.normalization.running_mean
lowerCAmelCase = pointer.normalization.running_var
lowerCAmelCase = backbone.layer[pt_index + 1]
lowerCAmelCase = F'MobilenetV1/Conv2d_{tf_index}_pointwise/'
lowerCAmelCase = pointer.convolution.weight
lowerCAmelCase = pointer.normalization.bias
lowerCAmelCase = pointer.normalization.weight
lowerCAmelCase = pointer.normalization.running_mean
lowerCAmelCase = pointer.normalization.running_var
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
lowerCAmelCase = 'MobilenetV1/Logits/Conv2d_1c_1x1/'
lowerCAmelCase = model.classifier.weight
lowerCAmelCase = model.classifier.bias
return tf_to_pt_map
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ):
try:
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
'Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see '
'https://www.tensorflow.org/install/ for installation instructions.' )
raise
# Load weights from TF model
lowerCAmelCase = tf.train.list_variables(_UpperCAmelCase )
lowerCAmelCase = {}
for name, shape in init_vars:
logger.info(F'Loading TF weight {name} with shape {shape}' )
lowerCAmelCase = tf.train.load_variable(_UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase = array
# Build TF to PyTorch weights loading map
lowerCAmelCase = _build_tf_to_pytorch_map(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
for name, pointer in tf_to_pt_map.items():
logger.info(F'Importing {name}' )
if name not in tf_weights:
logger.info(F'{name} not in tf pre-trained weights, skipping' )
continue
lowerCAmelCase = tf_weights[name]
if "depthwise_weights" in name:
logger.info('Transposing depthwise' )
lowerCAmelCase = np.transpose(_UpperCAmelCase , (2, 3, 0, 1) )
elif "weights" in name:
logger.info('Transposing' )
if len(pointer.shape ) == 2: # copying into linear layer
lowerCAmelCase = array.squeeze().transpose()
else:
lowerCAmelCase = np.transpose(_UpperCAmelCase , (3, 2, 0, 1) )
if pointer.shape != array.shape:
raise ValueError(F'Pointer shape {pointer.shape} and array shape {array.shape} mismatched' )
logger.info(F'Initialize PyTorch weight {name} {array.shape}' )
lowerCAmelCase = torch.from_numpy(_UpperCAmelCase )
tf_weights.pop(_UpperCAmelCase , _UpperCAmelCase )
tf_weights.pop(name + '/RMSProp' , _UpperCAmelCase )
tf_weights.pop(name + '/RMSProp_1' , _UpperCAmelCase )
tf_weights.pop(name + '/ExponentialMovingAverage' , _UpperCAmelCase )
logger.info(F'Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}' )
return model
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : torch.Tensor , _UpperCAmelCase : nn.Convad ):
lowerCAmelCase ,lowerCAmelCase = features.shape[-2:]
lowerCAmelCase ,lowerCAmelCase = conv_layer.stride
lowerCAmelCase ,lowerCAmelCase = conv_layer.kernel_size
if in_height % stride_height == 0:
lowerCAmelCase = max(kernel_height - stride_height , 0 )
else:
lowerCAmelCase = max(kernel_height - (in_height % stride_height) , 0 )
if in_width % stride_width == 0:
lowerCAmelCase = max(kernel_width - stride_width , 0 )
else:
lowerCAmelCase = max(kernel_width - (in_width % stride_width) , 0 )
lowerCAmelCase = pad_along_width // 2
lowerCAmelCase = pad_along_width - pad_left
lowerCAmelCase = pad_along_height // 2
lowerCAmelCase = pad_along_height - pad_top
lowerCAmelCase = (pad_left, pad_right, pad_top, pad_bottom)
return nn.functional.pad(_UpperCAmelCase , _UpperCAmelCase , 'constant' , 0.0 )
class a ( nn.Module ):
def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case = 1 , _snake_case = 1 , _snake_case = False , _snake_case = True , _snake_case = True , ):
"""simple docstring"""
super().__init__()
lowerCAmelCase = config
if in_channels % groups != 0:
raise ValueError(F'Input channels ({in_channels}) are not divisible by {groups} groups.' )
if out_channels % groups != 0:
raise ValueError(F'Output channels ({out_channels}) are not divisible by {groups} groups.' )
lowerCAmelCase = 0 if config.tf_padding else int((kernel_size - 1) / 2 )
lowerCAmelCase = nn.Convad(
in_channels=_snake_case , out_channels=_snake_case , kernel_size=_snake_case , stride=_snake_case , padding=_snake_case , groups=_snake_case , bias=_snake_case , padding_mode='zeros' , )
if use_normalization:
lowerCAmelCase = nn.BatchNormad(
num_features=_snake_case , eps=config.layer_norm_eps , momentum=0.9_997 , affine=_snake_case , track_running_stats=_snake_case , )
else:
lowerCAmelCase = None
if use_activation:
if isinstance(_snake_case , _snake_case ):
lowerCAmelCase = ACTaFN[use_activation]
elif isinstance(config.hidden_act , _snake_case ):
lowerCAmelCase = ACTaFN[config.hidden_act]
else:
lowerCAmelCase = config.hidden_act
else:
lowerCAmelCase = None
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if self.config.tf_padding:
lowerCAmelCase = apply_tf_padding(_snake_case , self.convolution )
lowerCAmelCase = self.convolution(_snake_case )
if self.normalization is not None:
lowerCAmelCase = self.normalization(_snake_case )
if self.activation is not None:
lowerCAmelCase = self.activation(_snake_case )
return features
class a ( a__ ):
snake_case__ = MobileNetVaConfig
snake_case__ = load_tf_weights_in_mobilenet_va
snake_case__ = '''mobilenet_v1'''
snake_case__ = '''pixel_values'''
snake_case__ = False
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
if isinstance(_snake_case , (nn.Linear, nn.Convad) ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(_snake_case , nn.BatchNormad ):
module.bias.data.zero_()
module.weight.data.fill_(1.0 )
__UpperCamelCase : Dict = R'''
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
'''
__UpperCamelCase : Any = R'''
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`MobileNetV1ImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
'''
@add_start_docstrings(
'''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' , a__ , )
class a ( a__ ):
def __init__( self , _snake_case , _snake_case = True ):
"""simple docstring"""
super().__init__(_snake_case )
lowerCAmelCase = config
lowerCAmelCase = 32
lowerCAmelCase = max(int(depth * config.depth_multiplier ) , config.min_depth )
lowerCAmelCase = MobileNetVaConvLayer(
_snake_case , in_channels=config.num_channels , out_channels=_snake_case , kernel_size=3 , stride=2 , )
lowerCAmelCase = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1]
lowerCAmelCase = nn.ModuleList()
for i in range(13 ):
lowerCAmelCase = out_channels
if strides[i] == 2 or i == 0:
depth *= 2
lowerCAmelCase = max(int(depth * config.depth_multiplier ) , config.min_depth )
self.layer.append(
MobileNetVaConvLayer(
_snake_case , in_channels=_snake_case , out_channels=_snake_case , kernel_size=3 , stride=strides[i] , groups=_snake_case , ) )
self.layer.append(
MobileNetVaConvLayer(
_snake_case , in_channels=_snake_case , out_channels=_snake_case , kernel_size=1 , ) )
lowerCAmelCase = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
raise NotImplementedError
@add_start_docstrings_to_model_forward(_snake_case )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=_snake_case , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def UpperCamelCase__ ( self , _snake_case = None , _snake_case = None , _snake_case = None , ):
"""simple docstring"""
lowerCAmelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError('You have to specify pixel_values' )
lowerCAmelCase = self.conv_stem(_snake_case )
lowerCAmelCase = () if output_hidden_states else None
for i, layer_module in enumerate(self.layer ):
lowerCAmelCase = layer_module(_snake_case )
if output_hidden_states:
lowerCAmelCase = all_hidden_states + (hidden_states,)
lowerCAmelCase = hidden_states
if self.pooler is not None:
lowerCAmelCase = torch.flatten(self.pooler(_snake_case ) , start_dim=1 )
else:
lowerCAmelCase = None
if not return_dict:
return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None )
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=_snake_case , pooler_output=_snake_case , hidden_states=_snake_case , )
@add_start_docstrings(
'''
MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
''' , a__ , )
class a ( a__ ):
def __init__( self , _snake_case ):
"""simple docstring"""
super().__init__(_snake_case )
lowerCAmelCase = config.num_labels
lowerCAmelCase = MobileNetVaModel(_snake_case )
lowerCAmelCase = self.mobilenet_va.layer[-1].convolution.out_channels
# Classifier head
lowerCAmelCase = nn.Dropout(config.classifier_dropout_prob , inplace=_snake_case )
lowerCAmelCase = nn.Linear(_snake_case , config.num_labels ) if config.num_labels > 0 else nn.Identity()
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_snake_case )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_snake_case , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def UpperCamelCase__ ( self , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , ):
"""simple docstring"""
lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict
lowerCAmelCase = self.mobilenet_va(_snake_case , output_hidden_states=_snake_case , return_dict=_snake_case )
lowerCAmelCase = outputs.pooler_output if return_dict else outputs[1]
lowerCAmelCase = self.classifier(self.dropout(_snake_case ) )
lowerCAmelCase = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
lowerCAmelCase = 'regression'
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
lowerCAmelCase = 'single_label_classification'
else:
lowerCAmelCase = 'multi_label_classification'
if self.config.problem_type == "regression":
lowerCAmelCase = MSELoss()
if self.num_labels == 1:
lowerCAmelCase = loss_fct(logits.squeeze() , labels.squeeze() )
else:
lowerCAmelCase = loss_fct(_snake_case , _snake_case )
elif self.config.problem_type == "single_label_classification":
lowerCAmelCase = CrossEntropyLoss()
lowerCAmelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
lowerCAmelCase = BCEWithLogitsLoss()
lowerCAmelCase = loss_fct(_snake_case , _snake_case )
if not return_dict:
lowerCAmelCase = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(
loss=_snake_case , logits=_snake_case , hidden_states=outputs.hidden_states , )
| 309
|
"""simple docstring"""
__UpperCamelCase : Dict = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []}
__UpperCamelCase : str = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]}
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[int, list[int]] , _UpperCAmelCase : int , _UpperCAmelCase : list[bool] ):
lowerCAmelCase = True
lowerCAmelCase = []
for neighbour in graph[vert]:
if not visited[neighbour]:
order += topology_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
order.append(_UpperCAmelCase )
return order
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[int, list[int]] , _UpperCAmelCase : int , _UpperCAmelCase : list[bool] ):
lowerCAmelCase = True
lowerCAmelCase = [vert]
for neighbour in reversed_graph[vert]:
if not visited[neighbour]:
component += find_components(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
return component
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[int, list[int]] ):
lowerCAmelCase = len(_UpperCAmelCase ) * [False]
lowerCAmelCase = {vert: [] for vert in range(len(_UpperCAmelCase ) )}
for vert, neighbours in graph.items():
for neighbour in neighbours:
reversed_graph[neighbour].append(_UpperCAmelCase )
lowerCAmelCase = []
for i, was_visited in enumerate(_UpperCAmelCase ):
if not was_visited:
order += topology_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase = []
lowerCAmelCase = len(_UpperCAmelCase ) * [False]
for i in range(len(_UpperCAmelCase ) ):
lowerCAmelCase = order[len(_UpperCAmelCase ) - i - 1]
if not visited[vert]:
lowerCAmelCase = find_components(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
components_list.append(_UpperCAmelCase )
return components_list
| 309
| 1
|
"""simple docstring"""
import baseaa
import io
import json
import os
from copy import deepcopy
from ..optimizer import AcceleratedOptimizer
from ..scheduler import AcceleratedScheduler
class a :
def __init__( self , _snake_case ):
"""simple docstring"""
if isinstance(_snake_case , _snake_case ):
# Don't modify user's data should they want to reuse it (e.g. in tests), because once we
# modified it, it will not be accepted here again, since `auto` values would have been overridden
lowerCAmelCase = deepcopy(_snake_case )
elif os.path.exists(_snake_case ):
with io.open(_snake_case , 'r' , encoding='utf-8' ) as f:
lowerCAmelCase = json.load(_snake_case )
else:
try:
lowerCAmelCase = baseaa.urlsafe_baadecode(_snake_case ).decode('utf-8' )
lowerCAmelCase = json.loads(_snake_case )
except (UnicodeDecodeError, AttributeError, ValueError):
raise ValueError(
F'Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}' )
lowerCAmelCase = config
self.set_stage_and_offload()
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.get_value('zero_optimization.stage' , -1 )
# offload
lowerCAmelCase = False
if self.is_zeroa() or self.is_zeroa():
lowerCAmelCase = set(['cpu', 'nvme'] )
lowerCAmelCase = set(
[
self.get_value('zero_optimization.offload_optimizer.device' ),
self.get_value('zero_optimization.offload_param.device' ),
] )
if len(offload_devices & offload_devices_valid ) > 0:
lowerCAmelCase = True
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = self.config
# find the config node of interest if it exists
lowerCAmelCase = ds_key_long.split('.' )
lowerCAmelCase = nodes.pop()
for node in nodes:
lowerCAmelCase = config.get(_snake_case )
if config is None:
return None, ds_key
return config, ds_key
def UpperCamelCase__ ( self , _snake_case , _snake_case=None ):
"""simple docstring"""
lowerCAmelCase ,lowerCAmelCase = self.find_config_node(_snake_case )
if config is None:
return default
return config.get(_snake_case , _snake_case )
def UpperCamelCase__ ( self , _snake_case , _snake_case=False ):
"""simple docstring"""
lowerCAmelCase = self.config
# find the config node of interest if it exists
lowerCAmelCase = ds_key_long.split('.' )
for node in nodes:
lowerCAmelCase = config
lowerCAmelCase = config.get(_snake_case )
if config is None:
if must_exist:
raise ValueError(F'Can\'t find {ds_key_long} entry in the config: {self.config}' )
else:
return
# if found remove it
if parent_config is not None:
parent_config.pop(_snake_case )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = self.get_value(_snake_case )
return False if value is None else bool(_snake_case )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = self.get_value(_snake_case )
return False if value is None else not bool(_snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self._stage == 2
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self._stage == 3
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self._offload
class a :
def __init__( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = engine
def UpperCamelCase__ ( self , _snake_case , **_snake_case ):
"""simple docstring"""
self.engine.backward(_snake_case , **_snake_case )
# Deepspeed's `engine.step` performs the following operations:
# - gradient accumulation check
# - gradient clipping
# - optimizer step
# - zero grad
# - checking overflow
# - lr_scheduler step (only if engine.lr_scheduler is not None)
self.engine.step()
# and this plugin overrides the above calls with no-ops when Accelerate runs under
# Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple
# training loop that works transparently under many training regimes.
class a ( a__ ):
def __init__( self , _snake_case ):
"""simple docstring"""
super().__init__(_snake_case , device_placement=_snake_case , scaler=_snake_case )
lowerCAmelCase = hasattr(self.optimizer , 'overflow' )
def UpperCamelCase__ ( self , _snake_case=None ):
"""simple docstring"""
pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
if self.__has_overflow__:
return self.optimizer.overflow
return False
class a ( a__ ):
def __init__( self , _snake_case , _snake_case ):
"""simple docstring"""
super().__init__(_snake_case , _snake_case )
def UpperCamelCase__ ( self ):
"""simple docstring"""
pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed
class a :
def __init__( self , _snake_case , _snake_case=0.001 , _snake_case=0 , **_snake_case ):
"""simple docstring"""
lowerCAmelCase = params
lowerCAmelCase = lr
lowerCAmelCase = weight_decay
lowerCAmelCase = kwargs
class a :
def __init__( self , _snake_case , _snake_case=None , _snake_case=0 , **_snake_case ):
"""simple docstring"""
lowerCAmelCase = optimizer
lowerCAmelCase = total_num_steps
lowerCAmelCase = warmup_num_steps
lowerCAmelCase = kwargs
| 309
|
"""simple docstring"""
import os
import time
import warnings
from dataclasses import dataclass, field
from enum import Enum
from typing import List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import logging
from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors
from ..processors.utils import InputFeatures
__UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
@dataclass
class a :
snake_case__ = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(glue_processors.keys() )} )
snake_case__ = field(
metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} )
snake_case__ = field(
default=1_2_8 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
snake_case__ = field(
default=a__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.task_name.lower()
class a ( a__ ):
snake_case__ = '''train'''
snake_case__ = '''dev'''
snake_case__ = '''test'''
class a ( a__ ):
snake_case__ = 42
snake_case__ = 42
snake_case__ = 42
def __init__( self , _snake_case , _snake_case , _snake_case = None , _snake_case = Split.train , _snake_case = None , ):
"""simple docstring"""
warnings.warn(
'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets '
'library. You can have a look at this example script for pointers: '
'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , _snake_case , )
lowerCAmelCase = args
lowerCAmelCase = glue_processors[args.task_name]()
lowerCAmelCase = glue_output_modes[args.task_name]
if isinstance(_snake_case , _snake_case ):
try:
lowerCAmelCase = Split[mode]
except KeyError:
raise KeyError('mode is not a valid split name' )
# Load data features from cache or dataset file
lowerCAmelCase = os.path.join(
cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , )
lowerCAmelCase = self.processor.get_labels()
if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in (
"RobertaTokenizer",
"RobertaTokenizerFast",
"XLMRobertaTokenizer",
"BartTokenizer",
"BartTokenizerFast",
):
# HACK(label indices are swapped in RoBERTa pretrained model)
lowerCAmelCase ,lowerCAmelCase = label_list[2], label_list[1]
lowerCAmelCase = label_list
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
lowerCAmelCase = cached_features_file + '.lock'
with FileLock(_snake_case ):
if os.path.exists(_snake_case ) and not args.overwrite_cache:
lowerCAmelCase = time.time()
lowerCAmelCase = torch.load(_snake_case )
logger.info(
F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start )
else:
logger.info(F'Creating features from dataset file at {args.data_dir}' )
if mode == Split.dev:
lowerCAmelCase = self.processor.get_dev_examples(args.data_dir )
elif mode == Split.test:
lowerCAmelCase = self.processor.get_test_examples(args.data_dir )
else:
lowerCAmelCase = self.processor.get_train_examples(args.data_dir )
if limit_length is not None:
lowerCAmelCase = examples[:limit_length]
lowerCAmelCase = glue_convert_examples_to_features(
_snake_case , _snake_case , max_length=args.max_seq_length , label_list=_snake_case , output_mode=self.output_mode , )
lowerCAmelCase = time.time()
torch.save(self.features , _snake_case )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' )
def __len__( self ):
"""simple docstring"""
return len(self.features )
def __getitem__( self , _snake_case ):
"""simple docstring"""
return self.features[i]
def UpperCamelCase__ ( self ):
"""simple docstring"""
return self.label_list
| 309
| 1
|
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
__UpperCamelCase : Dict = logging.get_logger(__name__)
__UpperCamelCase : str = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
__UpperCamelCase : Optional[int] = {
'''vocab_file''': {
'''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''',
'''distilbert-base-uncased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt'''
),
'''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''',
'''distilbert-base-cased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt'''
),
'''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''',
'''distilbert-base-multilingual-cased''': (
'''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''',
'''distilbert-base-uncased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json'''
),
'''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''',
'''distilbert-base-cased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json'''
),
'''distilbert-base-german-cased''': (
'''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json'''
),
'''distilbert-base-multilingual-cased''': (
'''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json'''
),
},
}
__UpperCamelCase : str = {
'''distilbert-base-uncased''': 512,
'''distilbert-base-uncased-distilled-squad''': 512,
'''distilbert-base-cased''': 512,
'''distilbert-base-cased-distilled-squad''': 512,
'''distilbert-base-german-cased''': 512,
'''distilbert-base-multilingual-cased''': 512,
}
__UpperCamelCase : Any = {
'''distilbert-base-uncased''': {'''do_lower_case''': True},
'''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True},
'''distilbert-base-cased''': {'''do_lower_case''': False},
'''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False},
'''distilbert-base-german-cased''': {'''do_lower_case''': False},
'''distilbert-base-multilingual-cased''': {'''do_lower_case''': False},
}
class a ( a__ ):
snake_case__ = VOCAB_FILES_NAMES
snake_case__ = PRETRAINED_VOCAB_FILES_MAP
snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case__ = PRETRAINED_INIT_CONFIGURATION
snake_case__ = ['''input_ids''', '''attention_mask''']
snake_case__ = DistilBertTokenizer
def __init__( self , _snake_case=None , _snake_case=None , _snake_case=True , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case=True , _snake_case=None , **_snake_case , ):
"""simple docstring"""
super().__init__(
_snake_case , tokenizer_file=_snake_case , do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , tokenize_chinese_chars=_snake_case , strip_accents=_snake_case , **_snake_case , )
lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , _snake_case ) != do_lower_case
or normalizer_state.get('strip_accents' , _snake_case ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , _snake_case ) != tokenize_chinese_chars
):
lowerCAmelCase = getattr(_snake_case , normalizer_state.pop('type' ) )
lowerCAmelCase = do_lower_case
lowerCAmelCase = strip_accents
lowerCAmelCase = tokenize_chinese_chars
lowerCAmelCase = normalizer_class(**_snake_case )
lowerCAmelCase = do_lower_case
def UpperCamelCase__ ( self , _snake_case , _snake_case=None ):
"""simple docstring"""
lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCamelCase__ ( self , _snake_case , _snake_case = None ):
"""simple docstring"""
lowerCAmelCase = [self.sep_token_id]
lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCamelCase__ ( self , _snake_case , _snake_case = None ):
"""simple docstring"""
lowerCAmelCase = self._tokenizer.model.save(_snake_case , name=_snake_case )
return tuple(_snake_case )
| 309
|
"""simple docstring"""
import os
from collections.abc import Iterator
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "." ):
for dir_path, dir_names, filenames in os.walk(_UpperCAmelCase ):
lowerCAmelCase = [d for d in dir_names if d != 'scripts' and d[0] not in '._']
for filename in filenames:
if filename == "__init__.py":
continue
if os.path.splitext(_UpperCAmelCase )[1] in (".py", ".ipynb"):
yield os.path.join(_UpperCAmelCase , _UpperCAmelCase ).lstrip('./' )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ):
return F'{i * " "}*' if i else "\n##"
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ):
lowerCAmelCase = old_path.split(os.sep )
for i, new_part in enumerate(new_path.split(os.sep ) ):
if (i + 1 > len(_UpperCAmelCase ) or old_parts[i] != new_part) and new_part:
print(F'{md_prefix(_UpperCAmelCase )} {new_part.replace("_" , " " ).title()}' )
return new_path
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "." ):
lowerCAmelCase = ''
for filepath in sorted(good_file_paths(_UpperCAmelCase ) ):
lowerCAmelCase ,lowerCAmelCase = os.path.split(_UpperCAmelCase )
if filepath != old_path:
lowerCAmelCase = print_path(_UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase = (filepath.count(os.sep ) + 1) if filepath else 0
lowerCAmelCase = F'{filepath}/{filename}'.replace(' ' , '%20' )
lowerCAmelCase = os.path.splitext(filename.replace('_' , ' ' ).title() )[0]
print(F'{md_prefix(_UpperCAmelCase )} [{filename}]({url})' )
if __name__ == "__main__":
print_directory_md('''.''')
| 309
| 1
|
"""simple docstring"""
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
__UpperCamelCase : Dict = 0
__UpperCamelCase : Optional[Any] = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
__UpperCamelCase : Union[str, Any] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
__UpperCamelCase : Any = tuple[int, int]
class a :
def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ):
"""simple docstring"""
lowerCAmelCase = pos_x
lowerCAmelCase = pos_y
lowerCAmelCase = (pos_y, pos_x)
lowerCAmelCase = goal_x
lowerCAmelCase = goal_y
lowerCAmelCase = g_cost
lowerCAmelCase = parent
lowerCAmelCase = self.calculate_heuristic()
lowerCAmelCase = self.g_cost + self.h_cost
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.pos_x - self.goal_x
lowerCAmelCase = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(_snake_case ) + abs(_snake_case )
else:
return sqrt(dy**2 + dx**2 )
def __lt__( self , _snake_case ):
"""simple docstring"""
return self.f_cost < other.f_cost
class a :
def __init__( self , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _snake_case )
lowerCAmelCase = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , _snake_case )
lowerCAmelCase = [self.start]
lowerCAmelCase = []
lowerCAmelCase = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
lowerCAmelCase = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
return self.retrace_path(_snake_case )
self.closed_nodes.append(_snake_case )
lowerCAmelCase = self.get_successors(_snake_case )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(_snake_case )
else:
# retrieve the best current path
lowerCAmelCase = self.open_nodes.pop(self.open_nodes.index(_snake_case ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(_snake_case )
else:
self.open_nodes.append(_snake_case )
return [self.start.pos]
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = []
for action in delta:
lowerCAmelCase = parent.pos_x + action[1]
lowerCAmelCase = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_snake_case ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
_snake_case , _snake_case , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _snake_case , ) )
return successors
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = node
lowerCAmelCase = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
lowerCAmelCase = current_node.parent
path.reverse()
return path
class a :
def __init__( self , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = AStar(_snake_case , _snake_case )
lowerCAmelCase = AStar(_snake_case , _snake_case )
lowerCAmelCase = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
lowerCAmelCase = self.fwd_astar.open_nodes.pop(0 )
lowerCAmelCase = self.bwd_astar.open_nodes.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
_snake_case , _snake_case )
self.fwd_astar.closed_nodes.append(_snake_case )
self.bwd_astar.closed_nodes.append(_snake_case )
lowerCAmelCase = current_bwd_node
lowerCAmelCase = current_fwd_node
lowerCAmelCase = {
self.fwd_astar: self.fwd_astar.get_successors(_snake_case ),
self.bwd_astar: self.bwd_astar.get_successors(_snake_case ),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(_snake_case )
else:
# retrieve the best current path
lowerCAmelCase = astar.open_nodes.pop(
astar.open_nodes.index(_snake_case ) )
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(_snake_case )
else:
astar.open_nodes.append(_snake_case )
return [self.fwd_astar.start.pos]
def UpperCamelCase__ ( self , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = self.fwd_astar.retrace_path(_snake_case )
lowerCAmelCase = self.bwd_astar.retrace_path(_snake_case )
bwd_path.pop()
bwd_path.reverse()
lowerCAmelCase = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
__UpperCamelCase : int = (0, 0)
__UpperCamelCase : str = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
__UpperCamelCase : List[str] = time.time()
__UpperCamelCase : Optional[int] = AStar(init, goal)
__UpperCamelCase : int = a_star.search()
__UpperCamelCase : Any = time.time() - start_time
print(f'''AStar execution time = {end_time:f} seconds''')
__UpperCamelCase : List[str] = time.time()
__UpperCamelCase : Dict = BidirectionalAStar(init, goal)
__UpperCamelCase : List[str] = time.time() - bd_start_time
print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
| 309
|
"""simple docstring"""
import os
from datetime import datetime as dt
from github import Github
__UpperCamelCase : int = [
'''good first issue''',
'''good second issue''',
'''good difficult issue''',
'''enhancement''',
'''new pipeline/model''',
'''new scheduler''',
'''wip''',
]
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = Github(os.environ['GITHUB_TOKEN'] )
lowerCAmelCase = g.get_repo('huggingface/diffusers' )
lowerCAmelCase = repo.get_issues(state='open' )
for issue in open_issues:
lowerCAmelCase = sorted(issue.get_comments() , key=lambda _UpperCAmelCase : i.created_at , reverse=_UpperCAmelCase )
lowerCAmelCase = comments[0] if len(_UpperCAmelCase ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Closes the issue after 7 days of inactivity since the Stalebot notification.
issue.edit(state='closed' )
elif (
"stale" in issue.get_labels()
and last_comment is not None
and last_comment.user.login != "github-actions[bot]"
):
# Opens the issue if someone other than Stalebot commented.
issue.edit(state='open' )
issue.remove_from_labels('stale' )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Post a Stalebot notification after 23 days of inactivity.
issue.create_comment(
'This issue has been automatically marked as stale because it has not had '
'recent activity. If you think this still needs to be addressed '
'please comment on this thread.\n\nPlease note that issues that do not follow the '
'[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) '
'are likely to be ignored.' )
issue.add_to_labels('stale' )
if __name__ == "__main__":
main()
| 309
| 1
|
"""simple docstring"""
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list ):
if any(not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or x < 0 for x in sequence ):
raise TypeError('Sequence must be list of non-negative integers' )
for _ in range(len(_UpperCAmelCase ) ):
for i, (rod_upper, rod_lower) in enumerate(zip(_UpperCAmelCase , sequence[1:] ) ):
if rod_upper > rod_lower:
sequence[i] -= rod_upper - rod_lower
sequence[i + 1] += rod_upper - rod_lower
return sequence
if __name__ == "__main__":
assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
| 309
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__UpperCamelCase : Any = {
'''configuration_layoutlmv2''': ['''LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv2Config'''],
'''processing_layoutlmv2''': ['''LayoutLMv2Processor'''],
'''tokenization_layoutlmv2''': ['''LayoutLMv2Tokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Tuple = ['''LayoutLMv2TokenizerFast''']
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Optional[int] = ['''LayoutLMv2FeatureExtractor''']
__UpperCamelCase : Optional[int] = ['''LayoutLMv2ImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Any = [
'''LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''LayoutLMv2ForQuestionAnswering''',
'''LayoutLMv2ForSequenceClassification''',
'''LayoutLMv2ForTokenClassification''',
'''LayoutLMv2Layer''',
'''LayoutLMv2Model''',
'''LayoutLMv2PreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaLayer,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
else:
import sys
__UpperCamelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 309
| 1
|
"""simple docstring"""
import os
import unittest
from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer
from transformers.testing_utils import require_jieba, tooslow
from ...test_tokenization_common import TokenizerTesterMixin
@require_jieba
class a ( a__ , unittest.TestCase ):
snake_case__ = CpmAntTokenizer
snake_case__ = False
def UpperCamelCase__ ( self ):
"""simple docstring"""
super().setUp()
lowerCAmelCase = [
'<d>',
'</d>',
'<s>',
'</s>',
'</_>',
'<unk>',
'<pad>',
'</n>',
'我',
'是',
'C',
'P',
'M',
'A',
'n',
't',
]
lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
@tooslow
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = CpmAntTokenizer.from_pretrained('openbmb/cpm-ant-10b' )
lowerCAmelCase = '今天天气真好!'
lowerCAmelCase = ['今天', '天气', '真', '好', '!']
lowerCAmelCase = tokenizer.tokenize(_snake_case )
self.assertListEqual(_snake_case , _snake_case )
lowerCAmelCase = '今天天气真好!'
lowerCAmelCase = [tokenizer.bos_token] + tokens
lowerCAmelCase = [6, 98_02, 1_49_62, 20_82, 8_31, 2_44]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , _snake_case )
lowerCAmelCase = tokenizer.decode(_snake_case )
self.assertEqual(_snake_case , _snake_case )
| 309
|
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_poolformer import PoolFormerImageProcessor
__UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
class a ( a__ ):
def __init__( self , *_snake_case , **_snake_case ):
"""simple docstring"""
warnings.warn(
'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use PoolFormerImageProcessor instead.' , _snake_case , )
super().__init__(*_snake_case , **_snake_case )
| 309
| 1
|
"""simple docstring"""
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ):
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise ValueError('check_bouncy() accepts only integer arguments' )
lowerCAmelCase = str(_UpperCAmelCase )
lowerCAmelCase = ''.join(sorted(_UpperCAmelCase ) )
return sorted_str_n != str_n and sorted_str_n[::-1] != str_n
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : float = 99 ):
if not 0 < percent < 100:
raise ValueError('solution() only accepts values from 0 to 100' )
lowerCAmelCase = 0
lowerCAmelCase = 1
while True:
if check_bouncy(_UpperCAmelCase ):
bouncy_num += 1
if (bouncy_num / num) * 100 >= percent:
return num
num += 1
if __name__ == "__main__":
from doctest import testmod
testmod()
print(f'''{solution(99)}''')
| 309
|
"""simple docstring"""
from __future__ import annotations
import random
# Maximum size of the population. Bigger could be faster but is more memory expensive.
__UpperCamelCase : str = 200
# Number of elements selected in every generation of evolution. The selection takes
# place from best to worst of that generation and must be smaller than N_POPULATION.
__UpperCamelCase : Optional[Any] = 50
# Probability that an element of a generation can mutate, changing one of its genes.
# This will guarantee that all genes will be used during evolution.
__UpperCamelCase : Dict = 0.4
# Just a seed to improve randomness required by the algorithm.
random.seed(random.randint(0, 1000))
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ):
lowerCAmelCase = len([g for position, g in enumerate(_UpperCAmelCase ) if g == main_target[position]] )
return (item, float(_UpperCAmelCase ))
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ):
lowerCAmelCase = random.randint(0 , len(_UpperCAmelCase ) - 1 )
lowerCAmelCase = parent_a[:random_slice] + parent_a[random_slice:]
lowerCAmelCase = parent_a[:random_slice] + parent_a[random_slice:]
return (child_a, child_a)
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] ):
lowerCAmelCase = list(_UpperCAmelCase )
if random.uniform(0 , 1 ) < MUTATION_PROBABILITY:
lowerCAmelCase = random.choice(_UpperCAmelCase )
return "".join(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : tuple[str, float] , _UpperCAmelCase : list[tuple[str, float]] , _UpperCAmelCase : list[str] , ):
lowerCAmelCase = []
# Generate more children proportionally to the fitness score.
lowerCAmelCase = int(parent_a[1] * 100 ) + 1
lowerCAmelCase = 10 if child_n >= 10 else child_n
for _ in range(_UpperCAmelCase ):
lowerCAmelCase = population_score[random.randint(0 , _UpperCAmelCase )][0]
lowerCAmelCase ,lowerCAmelCase = crossover(parent_a[0] , _UpperCAmelCase )
# Append new string to the population list.
pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) )
pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) )
return pop
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] , _UpperCAmelCase : bool = True ):
# Verify if N_POPULATION is bigger than N_SELECTED
if N_POPULATION < N_SELECTED:
lowerCAmelCase = F'{N_POPULATION} must be bigger than {N_SELECTED}'
raise ValueError(_UpperCAmelCase )
# Verify that the target contains no genes besides the ones inside genes variable.
lowerCAmelCase = sorted({c for c in target if c not in genes} )
if not_in_genes_list:
lowerCAmelCase = F'{not_in_genes_list} is not in genes list, evolution cannot converge'
raise ValueError(_UpperCAmelCase )
# Generate random starting population.
lowerCAmelCase = []
for _ in range(_UpperCAmelCase ):
population.append(''.join([random.choice(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) )] ) )
# Just some logs to know what the algorithms is doing.
lowerCAmelCase ,lowerCAmelCase = 0, 0
# This loop will end when we find a perfect match for our target.
while True:
generation += 1
total_population += len(_UpperCAmelCase )
# Random population created. Now it's time to evaluate.
# Adding a bit of concurrency can make everything faster,
#
# import concurrent.futures
# population_score: list[tuple[str, float]] = []
# with concurrent.futures.ThreadPoolExecutor(
# max_workers=NUM_WORKERS) as executor:
# futures = {executor.submit(evaluate, item) for item in population}
# concurrent.futures.wait(futures)
# population_score = [item.result() for item in futures]
#
# but with a simple algorithm like this, it will probably be slower.
# We just need to call evaluate for every item inside the population.
lowerCAmelCase = [evaluate(_UpperCAmelCase , _UpperCAmelCase ) for item in population]
# Check if there is a matching evolution.
lowerCAmelCase = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] , reverse=_UpperCAmelCase )
if population_score[0][0] == target:
return (generation, total_population, population_score[0][0])
# Print the best result every 10 generation.
# Just to know that the algorithm is working.
if debug and generation % 10 == 0:
print(
F'\nGeneration: {generation}'
F'\nTotal Population:{total_population}'
F'\nBest score: {population_score[0][1]}'
F'\nBest string: {population_score[0][0]}' )
# Flush the old population, keeping some of the best evolutions.
# Keeping this avoid regression of evolution.
lowerCAmelCase = population[: int(N_POPULATION / 3 )]
population.clear()
population.extend(_UpperCAmelCase )
# Normalize population score to be between 0 and 1.
lowerCAmelCase = [
(item, score / len(_UpperCAmelCase )) for item, score in population_score
]
# This is selection
for i in range(_UpperCAmelCase ):
population.extend(select(population_score[int(_UpperCAmelCase )] , _UpperCAmelCase , _UpperCAmelCase ) )
# Check if the population has already reached the maximum value and if so,
# break the cycle. If this check is disabled, the algorithm will take
# forever to compute large strings, but will also calculate small strings in
# a far fewer generations.
if len(_UpperCAmelCase ) > N_POPULATION:
break
if __name__ == "__main__":
__UpperCamelCase : Tuple = (
'''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!'''
)
__UpperCamelCase : str = list(
''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm'''
'''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\'''
)
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase : Dict = basic(target_str, genes_list)
print(
f'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}'''
)
| 309
| 1
|
"""simple docstring"""
import random
import unittest
import numpy as np
import torch
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionUpscalePipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class a ( a__ , unittest.TestCase ):
# TODO: is there an appropriate internal test set?
snake_case__ = '''ssube/stable-diffusion-x4-upscaler-onnx'''
def UpperCamelCase__ ( self , _snake_case=0 ):
"""simple docstring"""
lowerCAmelCase = floats_tensor((1, 3, 1_28, 1_28) , rng=random.Random(_snake_case ) )
lowerCAmelCase = torch.manual_seed(_snake_case )
lowerCAmelCase = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'generator': generator,
'num_inference_steps': 3,
'guidance_scale': 7.5,
'output_type': 'numpy',
}
return inputs
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' )
pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase = self.get_dummy_inputs()
lowerCAmelCase = pipe(**_snake_case ).images
lowerCAmelCase = image[0, -3:, -3:, -1].flatten()
# started as 128, should now be 512
assert image.shape == (1, 5_12, 5_12, 3)
lowerCAmelCase = np.array(
[0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] )
assert np.abs(image_slice - expected_slice ).max() < 1E-1
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' )
lowerCAmelCase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_snake_case )
pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase = self.get_dummy_inputs()
lowerCAmelCase = pipe(**_snake_case ).images
lowerCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
lowerCAmelCase = np.array(
[0.6_898_892, 0.59_240_556, 0.52_499_527, 0.58_866_215, 0.52_258_235, 0.52_572_715, 0.62_414_473, 0.6_174_387, 0.6_214_964] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' )
lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase = self.get_dummy_inputs()
lowerCAmelCase = pipe(**_snake_case ).images
lowerCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
lowerCAmelCase = np.array(
[0.7_659_278, 0.76_437_664, 0.75_579_107, 0.7_691_116, 0.77_666_986, 0.7_727_672, 0.7_758_664, 0.7_812_226, 0.76_942_515] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' )
lowerCAmelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase = self.get_dummy_inputs()
lowerCAmelCase = pipe(**_snake_case ).images
lowerCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
lowerCAmelCase = np.array(
[0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' )
lowerCAmelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase = self.get_dummy_inputs()
lowerCAmelCase = pipe(**_snake_case ).images
lowerCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
lowerCAmelCase = np.array(
[0.77_424_496, 0.773_601, 0.7_645_288, 0.7_769_598, 0.7_772_739, 0.7_738_688, 0.78_187_233, 0.77_879_584, 0.767_043] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
@nightly
@require_onnxruntime
@require_torch_gpu
class a ( unittest.TestCase ):
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = ort.SessionOptions()
lowerCAmelCase = False
return options
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg' )
lowerCAmelCase = init_image.resize((1_28, 1_28) )
# using the PNDM scheduler by default
lowerCAmelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(
'ssube/stable-diffusion-x4-upscaler-onnx' , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase = 'A fantasy landscape, trending on artstation'
lowerCAmelCase = torch.manual_seed(0 )
lowerCAmelCase = pipe(
prompt=_snake_case , image=_snake_case , guidance_scale=7.5 , num_inference_steps=10 , generator=_snake_case , output_type='np' , )
lowerCAmelCase = output.images
lowerCAmelCase = images[0, 2_55:2_58, 3_83:3_86, -1]
assert images.shape == (1, 5_12, 5_12, 3)
lowerCAmelCase = np.array([0.4_883, 0.4_947, 0.4_980, 0.4_975, 0.4_982, 0.4_980, 0.5_000, 0.5_006, 0.4_972] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg' )
lowerCAmelCase = init_image.resize((1_28, 1_28) )
lowerCAmelCase = LMSDiscreteScheduler.from_pretrained(
'ssube/stable-diffusion-x4-upscaler-onnx' , subfolder='scheduler' )
lowerCAmelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(
'ssube/stable-diffusion-x4-upscaler-onnx' , scheduler=_snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase = 'A fantasy landscape, trending on artstation'
lowerCAmelCase = torch.manual_seed(0 )
lowerCAmelCase = pipe(
prompt=_snake_case , image=_snake_case , guidance_scale=7.5 , num_inference_steps=20 , generator=_snake_case , output_type='np' , )
lowerCAmelCase = output.images
lowerCAmelCase = images[0, 2_55:2_58, 3_83:3_86, -1]
assert images.shape == (1, 5_12, 5_12, 3)
lowerCAmelCase = np.array(
[0.50_173_753, 0.50_223_356, 0.502_039, 0.50_233_036, 0.5_023_725, 0.5_022_601, 0.5_018_758, 0.50_234_085, 0.50_241_566] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
| 309
|
"""simple docstring"""
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class a :
def __init__( self ):
"""simple docstring"""
lowerCAmelCase = ''
lowerCAmelCase = ''
lowerCAmelCase = []
lowerCAmelCase = 0
lowerCAmelCase = 2_56
lowerCAmelCase = 0
lowerCAmelCase = 0
lowerCAmelCase = 0
lowerCAmelCase = 0
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = cva.imread(_snake_case , 0 )
lowerCAmelCase = copy.deepcopy(self.img )
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = plt.hist(self.img.ravel() , 2_56 , [0, 2_56] , label='x' )
lowerCAmelCase = np.sum(_snake_case )
for i in range(len(_snake_case ) ):
lowerCAmelCase = x[i] / self.k
self.sk += prk
lowerCAmelCase = (self.L - 1) * self.sk
if self.rem != 0:
lowerCAmelCase = int(last % last )
lowerCAmelCase = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(_snake_case )
lowerCAmelCase = int(np.ma.count(self.img ) / self.img[1].size )
lowerCAmelCase = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
lowerCAmelCase = self.img[j][i]
if num != self.last_list[num]:
lowerCAmelCase = self.last_list[num]
cva.imwrite('output_data/output.jpg' , self.img )
def UpperCamelCase__ ( self ):
"""simple docstring"""
plt.hist(self.img.ravel() , 2_56 , [0, 2_56] )
def UpperCamelCase__ ( self ):
"""simple docstring"""
cva.imshow('Output-Image' , self.img )
cva.imshow('Input-Image' , self.original_image )
cva.waitKey(50_00 )
cva.destroyAllWindows()
if __name__ == "__main__":
__UpperCamelCase : int = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''')
__UpperCamelCase : List[Any] = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 309
| 1
|
"""simple docstring"""
import itertools
import random
import unittest
import numpy as np
from transformers import is_speech_available
from transformers.testing_utils import require_torch, require_torchaudio
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_speech_available():
from transformers import SpeechaTextFeatureExtractor
__UpperCamelCase : Any = random.Random()
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]=1.0 , _UpperCAmelCase : Dict=None , _UpperCAmelCase : List[Any]=None ):
if rng is None:
lowerCAmelCase = global_rng
lowerCAmelCase = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
@require_torch
@require_torchaudio
class a ( unittest.TestCase ):
def __init__( self , _snake_case , _snake_case=7 , _snake_case=4_00 , _snake_case=20_00 , _snake_case=24 , _snake_case=24 , _snake_case=0.0 , _snake_case=1_60_00 , _snake_case=True , _snake_case=True , ):
"""simple docstring"""
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = min_seq_length
lowerCAmelCase = max_seq_length
lowerCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
lowerCAmelCase = feature_size
lowerCAmelCase = num_mel_bins
lowerCAmelCase = padding_value
lowerCAmelCase = sampling_rate
lowerCAmelCase = return_attention_mask
lowerCAmelCase = do_normalize
def UpperCamelCase__ ( self ):
"""simple docstring"""
return {
"feature_size": self.feature_size,
"num_mel_bins": self.num_mel_bins,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def UpperCamelCase__ ( self , _snake_case=False , _snake_case=False ):
"""simple docstring"""
def _flatten(_snake_case ):
return list(itertools.chain(*_snake_case ) )
if equal_length:
lowerCAmelCase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
lowerCAmelCase = [
floats_list((x, self.feature_size) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
lowerCAmelCase = [np.asarray(_snake_case ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class a ( a__ , unittest.TestCase ):
snake_case__ = SpeechaTextFeatureExtractor if is_speech_available() else None
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = SpeechaTextFeatureExtractionTester(self )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
self.assertTrue(np.all(np.mean(_snake_case , axis=0 ) < 1E-3 ) )
self.assertTrue(np.all(np.abs(np.var(_snake_case , axis=0 ) - 1 ) < 1E-3 ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
lowerCAmelCase = [np.asarray(_snake_case ) for speech_input in speech_inputs]
# Test feature size
lowerCAmelCase = feature_extractor(_snake_case , padding=_snake_case , return_tensors='np' ).input_features
self.assertTrue(input_features.ndim == 3 )
self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size )
# Test not batched input
lowerCAmelCase = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features
lowerCAmelCase = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features
self.assertTrue(np.allclose(_snake_case , _snake_case , atol=1E-3 ) )
# Test batched
lowerCAmelCase = feature_extractor(_snake_case , return_tensors='np' ).input_features
lowerCAmelCase = feature_extractor(_snake_case , return_tensors='np' ).input_features
for enc_seq_a, enc_seq_a in zip(_snake_case , _snake_case ):
self.assertTrue(np.allclose(_snake_case , _snake_case , atol=1E-3 ) )
# Test 2-D numpy arrays are batched.
lowerCAmelCase = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)]
lowerCAmelCase = np.asarray(_snake_case )
lowerCAmelCase = feature_extractor(_snake_case , return_tensors='np' ).input_features
lowerCAmelCase = feature_extractor(_snake_case , return_tensors='np' ).input_features
for enc_seq_a, enc_seq_a in zip(_snake_case , _snake_case ):
self.assertTrue(np.allclose(_snake_case , _snake_case , atol=1E-3 ) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
lowerCAmelCase = ['longest', 'max_length', 'do_not_pad']
lowerCAmelCase = [None, 16, None]
for max_length, padding in zip(_snake_case , _snake_case ):
lowerCAmelCase = feature_extractor(
_snake_case , padding=_snake_case , max_length=_snake_case , return_attention_mask=_snake_case )
lowerCAmelCase = inputs.input_features
lowerCAmelCase = inputs.attention_mask
lowerCAmelCase = [np.sum(_snake_case ) for x in attention_mask]
self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] )
self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
lowerCAmelCase = ['longest', 'max_length', 'do_not_pad']
lowerCAmelCase = [None, 16, None]
for max_length, padding in zip(_snake_case , _snake_case ):
lowerCAmelCase = feature_extractor(
_snake_case , max_length=_snake_case , padding=_snake_case , return_tensors='np' , return_attention_mask=_snake_case )
lowerCAmelCase = inputs.input_features
lowerCAmelCase = inputs.attention_mask
lowerCAmelCase = [np.sum(_snake_case ) for x in attention_mask]
self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] )
self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1E-6 )
self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] )
self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1E-6 )
self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
lowerCAmelCase = feature_extractor(
_snake_case , padding='max_length' , max_length=4 , truncation=_snake_case , return_tensors='np' , return_attention_mask=_snake_case , )
lowerCAmelCase = inputs.input_features
lowerCAmelCase = inputs.attention_mask
lowerCAmelCase = np.sum(attention_mask == 1 , axis=1 )
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1] )
self._check_zero_mean_unit_variance(input_features[2] )
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
lowerCAmelCase = feature_extractor(
_snake_case , padding='longest' , max_length=4 , truncation=_snake_case , return_tensors='np' , return_attention_mask=_snake_case , )
lowerCAmelCase = inputs.input_features
lowerCAmelCase = inputs.attention_mask
lowerCAmelCase = np.sum(attention_mask == 1 , axis=1 )
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] )
self._check_zero_mean_unit_variance(input_features[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertEqual(input_features.shape , (3, 4, 24) )
lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
lowerCAmelCase = feature_extractor(
_snake_case , padding='longest' , max_length=16 , truncation=_snake_case , return_tensors='np' , return_attention_mask=_snake_case , )
lowerCAmelCase = inputs.input_features
lowerCAmelCase = inputs.attention_mask
lowerCAmelCase = np.sum(attention_mask == 1 , axis=1 )
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] )
self._check_zero_mean_unit_variance(input_features[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertEqual(input_features.shape , (3, 6, 24) )
def UpperCamelCase__ ( self ):
"""simple docstring"""
import torch
lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
lowerCAmelCase = np.random.rand(1_00 , 32 ).astype(np.floataa )
lowerCAmelCase = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
lowerCAmelCase = feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' )
self.assertTrue(np_processed.input_features.dtype == np.floataa )
lowerCAmelCase = feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' )
self.assertTrue(pt_processed.input_features.dtype == torch.floataa )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
from datasets import load_dataset
lowerCAmelCase = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' )
# automatic decoding with librispeech
lowerCAmelCase = ds.sort('id' ).select(range(_snake_case ) )[:num_samples]['audio']
return [x["array"] for x in speech_samples]
def UpperCamelCase__ ( self ):
"""simple docstring"""
lowerCAmelCase = np.array([
-1.5_745, -1.7_713, -1.7_020, -1.6_069, -1.2_250, -1.1_105, -0.9_072, -0.8_241,
-1.2_310, -0.8_098, -0.3_320, -0.4_101, -0.7_985, -0.4_996, -0.8_213, -0.9_128,
-1.0_420, -1.1_286, -1.0_440, -0.7_999, -0.8_405, -1.2_275, -1.5_443, -1.4_625,
] )
# fmt: on
lowerCAmelCase = self._load_datasamples(1 )
lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
lowerCAmelCase = feature_extractor(_snake_case , return_tensors='pt' ).input_features
self.assertEquals(input_features.shape , (1, 5_84, 24) )
self.assertTrue(np.allclose(input_features[0, 0, :30] , _snake_case , atol=1E-4 ) )
| 309
|
"""simple docstring"""
import pytest
from datasets.splits import SplitDict, SplitInfo
from datasets.utils.py_utils import asdict
@pytest.mark.parametrize(
'split_dict' , [
SplitDict(),
SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 , dataset_name='my_dataset' )} ),
SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 )} ),
SplitDict({'train': SplitInfo()} ),
] , )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : SplitDict ):
lowerCAmelCase = split_dict._to_yaml_list()
assert len(_UpperCAmelCase ) == len(_UpperCAmelCase )
lowerCAmelCase = SplitDict._from_yaml_list(_UpperCAmelCase )
for split_name, split_info in split_dict.items():
# dataset_name field is deprecated, and is therefore not part of the YAML dump
lowerCAmelCase = None
# the split name of split_dict takes over the name of the split info object
lowerCAmelCase = split_name
assert split_dict == reloaded
@pytest.mark.parametrize(
'split_info' , [SplitInfo(), SplitInfo(dataset_name=_UpperCAmelCase ), SplitInfo(dataset_name='my_dataset' )] )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] ):
# For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name"
# field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files
lowerCAmelCase = asdict(SplitDict({'train': split_info} ) )
assert "dataset_name" in split_dict_asdict["train"]
assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
| 309
| 1
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__UpperCamelCase : Dict = {
'''configuration_resnet''': ['''RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ResNetConfig''', '''ResNetOnnxConfig''']
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Any = [
'''RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ResNetForImageClassification''',
'''ResNetModel''',
'''ResNetPreTrainedModel''',
'''ResNetBackbone''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : int = [
'''TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFResNetForImageClassification''',
'''TFResNetModel''',
'''TFResNetPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Tuple = [
'''FlaxResNetForImageClassification''',
'''FlaxResNetModel''',
'''FlaxResNetPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_resnet import (
RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
ResNetBackbone,
ResNetForImageClassification,
ResNetModel,
ResNetPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_resnet import (
TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFResNetForImageClassification,
TFResNetModel,
TFResNetPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel
else:
import sys
__UpperCamelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 309
|
"""simple docstring"""
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
__UpperCamelCase : Any = abspath(join(dirname(dirname(__file__)), '''src'''))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action='''ignore''', category=FutureWarning)
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] ):
from diffusers.utils.testing_utils import pytest_addoption_shared
pytest_addoption_shared(_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ):
from diffusers.utils.testing_utils import pytest_terminal_summary_main
lowerCAmelCase = terminalreporter.config.getoption('--make-reports' )
if make_reports:
pytest_terminal_summary_main(_UpperCAmelCase , id=_UpperCAmelCase )
| 309
| 1
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.