code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
def UpperCamelCase_( _snake_case : Dict , _snake_case : Dict , _snake_case : int , _snake_case : int ): """simple docstring""" __a =[False] * len(_snake_case ) __a =[] queue.append(_snake_case ) __a =True while queue: __a =queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_snake_case ) __a =True __a =u return visited[t] def UpperCamelCase_( _snake_case : int , _snake_case : str , _snake_case : Union[str, Any] ): """simple docstring""" __a =[-1] * (len(_snake_case )) __a =0 while bfs(_snake_case , _snake_case , _snake_case , _snake_case ): __a =float('Inf' ) __a =sink while s != source: # Find the minimum value in select path __a =min(_snake_case , graph[parent[s]][s] ) __a =parent[s] max_flow += path_flow __a =sink while v != source: __a =parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __a =parent[v] return max_flow _lowerCAmelCase : str = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] _lowerCAmelCase : Union[str, Any] = 0, 5 print(ford_fulkerson(graph, source, sink))
365
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer SCREAMING_SNAKE_CASE = False def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' super().setUp() __a =['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] __a =dict(zip(__snake_case , range(len(__snake_case ) ) ) ) __a =['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] __a ={'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__snake_case ) ) def __magic_name__ ( self , **__snake_case ) -> Any: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def __magic_name__ ( self , __snake_case ) -> List[Any]: '''simple docstring''' __a ='adapt act apte' __a ='adapt act apte' return input_text, output_text def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __a ='adapt act apte' __a =['adapt', 'act', 'ap@@', 'te'] __a =tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) __a =[tokenizer.bos_token] + tokens + [tokenizer.eos_token] __a =[0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1384] __a ='I am a small frog.' __a =tok([src_text] , padding=__snake_case , truncation=__snake_case )['input_ids'] __a =tok.batch_decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) __a ='I am a small frog .' __a ='.' __a =tok(__snake_case )['input_ids'] __a =tok(__snake_case )['input_ids'] assert encoded[-1] == encoded_dot[0]
308
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def UpperCamelCase_( _snake_case : Optional[int] , _snake_case : int=False ): """simple docstring""" __a =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'module.blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'module.blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (F'module.blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'module.blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'module.blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'module.blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'module.blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'module.blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'module.blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'module.blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __a =[(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def UpperCamelCase_( _snake_case : Any , _snake_case : List[Any] , _snake_case : List[str]=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: __a ='' else: __a ='vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __a =state_dict.pop(F'module.blocks.{i}.attn.qkv.weight' ) __a =state_dict.pop(F'module.blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __a =in_proj_weight[ : config.hidden_size, : ] __a =in_proj_bias[: config.hidden_size] __a =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __a =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __a =in_proj_weight[ -config.hidden_size :, : ] __a =in_proj_bias[-config.hidden_size :] def UpperCamelCase_( _snake_case : Optional[Any] ): """simple docstring""" __a =['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) def UpperCamelCase_( _snake_case : List[Any] ): """simple docstring""" __a =[ 'module.fc.fc1.weight', 'module.fc.fc1.bias', 'module.fc.bn1.weight', 'module.fc.bn1.bias', 'module.fc.bn1.running_mean', 'module.fc.bn1.running_var', 'module.fc.bn1.num_batches_tracked', 'module.fc.fc2.weight', 'module.fc.fc2.bias', 'module.fc.bn2.weight', 'module.fc.bn2.bias', 'module.fc.bn2.running_mean', 'module.fc.bn2.running_var', 'module.fc.bn2.num_batches_tracked', 'module.fc.fc3.weight', 'module.fc.fc3.bias', ] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) def UpperCamelCase_( _snake_case : Optional[Any] , _snake_case : Union[str, Any] , _snake_case : Optional[int] ): """simple docstring""" __a =dct.pop(_snake_case ) __a =val def UpperCamelCase_( _snake_case : Optional[Any] , _snake_case : Tuple ): """simple docstring""" __a =ViTMSNConfig() __a =1000 __a ='datasets/huggingface/label-files' __a ='imagenet-1k-id2label.json' __a =json.load(open(hf_hub_download(_snake_case , _snake_case ) , 'r' ) ) __a ={int(_snake_case ): v for k, v in idalabel.items()} __a =idalabel __a ={v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: __a =384 __a =1536 __a =6 elif "l16" in checkpoint_url: __a =1024 __a =4096 __a =24 __a =16 __a =0.1 elif "b4" in checkpoint_url: __a =4 elif "l7" in checkpoint_url: __a =7 __a =1024 __a =4096 __a =24 __a =16 __a =0.1 __a =ViTMSNModel(_snake_case ) __a =torch.hub.load_state_dict_from_url(_snake_case , map_location='cpu' )['target_encoder'] __a =ViTImageProcessor(size=config.image_size ) remove_projection_head(_snake_case ) __a =create_rename_keys(_snake_case , base_model=_snake_case ) for src, dest in rename_keys: rename_key(_snake_case , _snake_case , _snake_case ) read_in_q_k_v(_snake_case , _snake_case , base_model=_snake_case ) model.load_state_dict(_snake_case ) model.eval() __a ='http://images.cocodataset.org/val2017/000000039769.jpg' __a =Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) __a =ViTImageProcessor( size=config.image_size , image_mean=_snake_case , image_std=_snake_case ) __a =image_processor(images=_snake_case , return_tensors='pt' ) # forward pass torch.manual_seed(2 ) __a =model(**_snake_case ) __a =outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: __a =torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: __a =torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: __a =torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: __a =torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: __a =torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , _snake_case , atol=1e-4 ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_snake_case ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_snake_case ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _lowerCAmelCase : Tuple = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
366
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __magic_name__ ( unittest.TestCase , lowerCAmelCase_ ): def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =load_tool('text-to-speech' ) self.tool.setup() def __magic_name__ ( self ) -> Dict: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) __a =self.tool('hey' ) __a =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) __a =self.tool('hey' ) __a =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) )
308
0
import math def UpperCamelCase_( _snake_case : float , _snake_case : float ): """simple docstring""" if initial_intensity < 0: raise ValueError('The value of intensity cannot be negative' ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError('In Malus Law, the angle is in the range 0-360 degrees' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(_snake_case ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="malus_law")
367
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> int: '''simple docstring''' __a =[] __a =[] for i in range(self.num_layers ): __a =self.in_channels if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =resnets __a =attentions if self.add_downsample: __a =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> Optional[Any]: '''simple docstring''' __a =() for resnet, attn in zip(self.resnets , self.attentions ): __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __a =self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> int: '''simple docstring''' __a =[] for i in range(self.num_layers ): __a =self.in_channels if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets if self.add_downsample: __a =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case=True ) -> Optional[int]: '''simple docstring''' __a =() for resnet in self.resnets: __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __a =self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =[] __a =[] for i in range(self.num_layers ): __a =self.in_channels if (i == self.num_layers - 1) else self.out_channels __a =self.prev_output_channel if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =resnets __a =attentions if self.add_upsample: __a =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[Any]: '''simple docstring''' for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states __a =res_hidden_states_tuple[-1] __a =res_hidden_states_tuple[:-1] __a =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __a =self.upsamplers_a(__snake_case ) return hidden_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =[] for i in range(self.num_layers ): __a =self.in_channels if (i == self.num_layers - 1) else self.out_channels __a =self.prev_output_channel if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets if self.add_upsample: __a =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[Any]: '''simple docstring''' for resnet in self.resnets: # pop res hidden states __a =res_hidden_states_tuple[-1] __a =res_hidden_states_tuple[:-1] __a =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __a =self.upsamplers_a(__snake_case ) return hidden_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # there is always at least one resnet __a =[ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] __a =[] for _ in range(self.num_layers ): __a =FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets __a =attentions def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[str]: '''simple docstring''' __a =self.resnets[0](__snake_case , __snake_case ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) return hidden_states
308
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Tuple = { "configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MegatronBertForCausalLM", "MegatronBertForMaskedLM", "MegatronBertForMultipleChoice", "MegatronBertForNextSentencePrediction", "MegatronBertForPreTraining", "MegatronBertForQuestionAnswering", "MegatronBertForSequenceClassification", "MegatronBertForTokenClassification", "MegatronBertModel", "MegatronBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys _lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
368
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_5_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self ) -> int: '''simple docstring''' if self.framework == "pytorch": subprocess.run( f'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding='utf-8' , check=__snake_case , ) assert hasattr(self , 'env' ) def __magic_name__ ( self , __snake_case ) -> int: '''simple docstring''' __a =f'{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}' # distributed data settings __a ={'smdistributed': {'dataparallel': {'enabled': True}}} if self.script != 'run_ddp.py' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__snake_case , instance_count=__snake_case , instance_type=self.instance_type , debugger_hook_config=__snake_case , hyperparameters={**self.env.distributed_hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__snake_case , py_version='py36' , ) def __magic_name__ ( self , __snake_case ) -> Optional[Any]: '''simple docstring''' TrainingJobAnalytics(__snake_case ).export_csv(f'{self.env.test_path}/{job_name}_metrics.csv' ) @parameterized.expand([(2,)] ) def __magic_name__ ( self , __snake_case ) -> Optional[int]: '''simple docstring''' # create estimator __a =self.create_estimator(__snake_case ) # run training estimator.fit() # result dataframe __a =TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __a =list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) __a =list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __a =( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'{estimator.latest_training_job.name}.json' , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , __snake_case )
308
0
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) _lowerCAmelCase : Dict = "\\n Text data.\n Second line of data." _lowerCAmelCase : Any = "file" @pytest.fixture(scope='session' ) def UpperCamelCase_( _snake_case : List[Any] ): """simple docstring""" __a =tmp_path_factory.mktemp('data' ) / (FILE_PATH + '.zstd') __a =bytes(_snake_case , 'utf-8' ) with zstd.open(_snake_case , 'wb' ) as f: f.write(_snake_case ) return path @pytest.fixture def UpperCamelCase_( _snake_case : Union[str, Any] ): """simple docstring""" with open(os.path.join(tmpfs.local_root_dir , _snake_case ) , 'w' ) as f: f.write(_snake_case ) return FILE_PATH @pytest.mark.parametrize('compression_format' , ['gzip', 'xz', 'zstd'] ) def UpperCamelCase_( _snake_case : List[Any] , _snake_case : List[str] , _snake_case : List[str] , _snake_case : Union[str, Any] , _snake_case : List[str] , _snake_case : str ): """simple docstring""" __a ={'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_path} __a =input_paths[compression_format] __a =tmp_path / 'cache' __a =DownloadConfig(cache_dir=_snake_case , extract_compressed_file=_snake_case ) __a =cached_path(_snake_case , download_config=_snake_case ) with open(_snake_case ) as f: __a =f.read() with open(_snake_case ) as f: __a =f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('default_extracted' , [True, False] ) @pytest.mark.parametrize('default_cache_dir' , [True, False] ) def UpperCamelCase_( _snake_case : List[str] , _snake_case : str , _snake_case : Dict , _snake_case : Any , _snake_case : Tuple ): """simple docstring""" __a ='custom_cache' __a ='custom_extracted_dir' __a =tmp_path / 'custom_extracted_path' if default_extracted: __a =('downloads' if default_cache_dir else custom_cache_dir, 'extracted') else: monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_DIR' , _snake_case ) monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(_snake_case ) ) __a =custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) __a =xz_file __a =( DownloadConfig(extract_compressed_file=_snake_case ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_snake_case ) ) __a =cached_path(_snake_case , download_config=_snake_case ) assert Path(_snake_case ).parent.parts[-2:] == expected def UpperCamelCase_( _snake_case : int ): """simple docstring""" __a =str(Path(_snake_case ).resolve() ) assert cached_path(_snake_case ) == text_file # relative path __a =str(Path(_snake_case ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(_snake_case ) == text_file def UpperCamelCase_( _snake_case : Tuple ): """simple docstring""" __a =str(tmp_path.resolve() / '__missing_file__.txt' ) with pytest.raises(_snake_case ): cached_path(_snake_case ) # relative path __a ='./__missing_file__.txt' with pytest.raises(_snake_case ): cached_path(_snake_case ) def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =get_from_cache(F'tmp://{tmpfs_file}' ) with open(_snake_case ) as f: __a =f.read() assert output_file_content == FILE_CONTENT @patch('datasets.config.HF_DATASETS_OFFLINE' , _snake_case ) def UpperCamelCase_( ): """simple docstring""" with pytest.raises(_snake_case ): cached_path('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , _snake_case ) def UpperCamelCase_( _snake_case : Dict ): """simple docstring""" __a =tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(_snake_case ): http_get('https://huggingface.co' , temp_file=_snake_case ) with pytest.raises(_snake_case ): http_head('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , _snake_case ) def UpperCamelCase_( _snake_case : Tuple ): """simple docstring""" __a =tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(_snake_case ): ftp_get('ftp://huggingface.co' , temp_file=_snake_case ) with pytest.raises(_snake_case ): ftp_head('ftp://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , _snake_case ) def UpperCamelCase_( _snake_case : List[str] ): """simple docstring""" __a =tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(_snake_case ): fsspec_get('s3://huggingface.co' , temp_file=_snake_case ) with pytest.raises(_snake_case ): fsspec_head('s3://huggingface.co' )
369
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _lowerCAmelCase : List[Any] = logging.getLogger(__name__) _lowerCAmelCase : Optional[Any] = "Hello world! cécé herlolip" _lowerCAmelCase : str = namedtuple( "BertAbsConfig", [ "temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout", ], ) def UpperCamelCase_( _snake_case : str , _snake_case : List[Any] ): """simple docstring""" __a =BertAbsConfig( temp_dir='.' , finetune_bert=_snake_case , large=_snake_case , share_emb=_snake_case , use_bert_emb=_snake_case , encoder='bert' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) __a =torch.load(_snake_case , lambda _snake_case , _snake_case : storage ) __a =AbsSummarizer(_snake_case , torch.device('cpu' ) , _snake_case ) original.eval() __a =BertAbsSummarizer(_snake_case , torch.device('cpu' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('convert the model' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('Make sure that the models\' outputs are identical' ) __a =BertTokenizer.from_pretrained('bert-base-uncased' ) # prepare the model inputs __a =tokenizer.encode('This is sample éàalj\'-.' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_snake_case )) ) __a =torch.tensor(_snake_case ).unsqueeze(0 ) __a =tokenizer.encode('This is sample 3 éàalj\'-.' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_snake_case )) ) __a =torch.tensor(_snake_case ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __a =encoder_input_ids __a =decoder_input_ids __a =__a =None __a =None __a =__a =None __a =__a =None __a =None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __a =original(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )[0] __a =original.generator(_snake_case ) __a =new_model( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )[0] __a =new_model.generator(_snake_case ) __a =torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_snake_case ) ) __a =torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_snake_case ) ) __a =torch.allclose(_snake_case , _snake_case , atol=1e-3 ) if are_identical: logging.info('all weights are equal up to 1e-3' ) else: raise ValueError('the weights are different. The new model is likely different from the original one.' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('saving the model\'s state dictionary' ) torch.save( new_model.state_dict() , './bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--bertabs_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model.", ) _lowerCAmelCase : Optional[Any] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
308
0
from heapq import heappop, heappush import numpy as np def UpperCamelCase_( _snake_case : np.ndarray , _snake_case : tuple[int, int] , _snake_case : tuple[int, int] , _snake_case : bool , ): """simple docstring""" __a , __a =grid.shape __a =[-1, 1, 0, 0] __a =[0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] __a , __a =[(0, source)], set() __a =np.full((rows, cols) , np.inf ) __a =0 __a =np.empty((rows, cols) , dtype=_snake_case ) __a =None while queue: ((__a) , (__a)) =heappop(_snake_case ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: __a =[] while (x, y) != source: path.append((x, y) ) __a , __a =predecessors[x, y] path.append(_snake_case ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(_snake_case ) ): __a , __a =x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: __a =grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(_snake_case , (dist + 1, (nx, ny)) ) __a =dist + 1 __a =(x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
370
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ : def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=False , __snake_case=False , __snake_case=False , __snake_case=2 , __snake_case=99 , __snake_case=0 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=0.1 , __snake_case=0.1 , __snake_case=512 , __snake_case=2 , __snake_case=0.02 , __snake_case=2 , __snake_case=4 , __snake_case="last" , __snake_case=True , __snake_case=None , __snake_case=0 , ) -> Optional[Any]: '''simple docstring''' __a =parent __a =batch_size __a =seq_length __a =is_training __a =use_input_lengths __a =use_token_type_ids __a =use_labels __a =gelu_activation __a =sinusoidal_embeddings __a =causal __a =asm __a =n_langs __a =vocab_size __a =n_special __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =max_position_embeddings __a =type_sequence_label_size __a =initializer_range __a =num_labels __a =num_choices __a =summary_type __a =use_proj __a =scope __a =bos_token_id def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a =random_attention_mask([self.batch_size, self.seq_length] ) __a =None if self.use_input_lengths: __a =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __a =None if self.use_token_type_ids: __a =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __a =None __a =None __a =None if self.use_labels: __a =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a =ids_tensor([self.batch_size] , 2 ).float() __a =ids_tensor([self.batch_size] , self.num_choices ) __a =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __magic_name__ ( self ) -> Any: '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> List[Any]: '''simple docstring''' __a =XLMModel(config=__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , lengths=__snake_case , langs=__snake_case ) __a =model(__snake_case , langs=__snake_case ) __a =model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Optional[int]: '''simple docstring''' __a =XLMWithLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Dict: '''simple docstring''' __a =XLMForQuestionAnsweringSimple(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) __a =outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> List[Any]: '''simple docstring''' __a =XLMForQuestionAnswering(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , p_mask=__snake_case , ) __a =model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , ) ((__a) , ) =result_with_labels.to_tuple() __a =model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) ((__a) , ) =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Optional[Any]: '''simple docstring''' __a =XLMForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Any: '''simple docstring''' __a =self.num_labels __a =XLMForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Tuple: '''simple docstring''' __a =self.num_choices __a =XLMForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() __a =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) =config_and_inputs __a ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable SCREAMING_SNAKE_CASE = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> int: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __magic_name__ ( self , __snake_case , __snake_case , __snake_case=False ) -> str: '''simple docstring''' __a =super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __a =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) __a =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =XLMModelTester(self ) __a =ConfigTester(self , config_class=__snake_case , emb_dim=37 ) def __magic_name__ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=False , __snake_case=1 ) -> Optional[Any]: '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_attentions in attentions] , [True] * len(__snake_case ) ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__snake_case ): # adds PAD dummy token __a =min_length + idx + 1 __a =min_length + idx + 1 __a =( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__snake_case ) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=False , __snake_case=1 ) -> Dict: '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_hidden_states in hidden_states] , [True] * len(__snake_case ) , ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__snake_case ): # adds PAD dummy token __a =min_length + idx + 1 __a =(batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__snake_case ) , ) pass @slow def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a =XLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class __magic_name__ ( unittest.TestCase ): @slow def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(__snake_case ) __a =torch.tensor([[14, 447]] , dtype=torch.long , device=__snake_case ) # the president __a =[ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __a =model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __snake_case )
308
0
"""simple docstring""" from __future__ import annotations def UpperCamelCase_( _snake_case : int , _snake_case : int ): """simple docstring""" if b == 0: return (1, 0) ((__a) , (__a)) =extended_euclid(_snake_case , a % b ) __a =a // b return (y, x - k * y) def UpperCamelCase_( _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : int ): """simple docstring""" ((__a) , (__a)) =extended_euclid(_snake_case , _snake_case ) __a =na * na __a =ra * x * na + ra * y * na return (n % m + m) % m def UpperCamelCase_( _snake_case : int , _snake_case : int ): """simple docstring""" ((__a) , (__a)) =extended_euclid(_snake_case , _snake_case ) if b < 0: __a =(b % n + n) % n return b def UpperCamelCase_( _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : int ): """simple docstring""" __a , __a =invert_modulo(_snake_case , _snake_case ), invert_modulo(_snake_case , _snake_case ) __a =na * na __a =ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
371
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake _lowerCAmelCase : Optional[Any] = numpy.array([0, 0]) _lowerCAmelCase : Dict = numpy.array([0.5, 0.8660254]) _lowerCAmelCase : Any = numpy.array([1, 0]) _lowerCAmelCase : int = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCamelCase_( _snake_case : list[numpy.ndarray] , _snake_case : int ): """simple docstring""" __a =initial_vectors for _ in range(_snake_case ): __a =iteration_step(_snake_case ) return vectors def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =[] for i, start_vector in enumerate(vectors[:-1] ): __a =vectors[i + 1] new_vectors.append(_snake_case ) __a =end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCamelCase_( _snake_case : numpy.ndarray , _snake_case : float ): """simple docstring""" __a =numpy.radians(_snake_case ) __a , __a =numpy.cos(_snake_case ), numpy.sin(_snake_case ) __a =numpy.array(((c, -s), (s, c)) ) return numpy.dot(_snake_case , _snake_case ) def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() __a , __a =zip(*_snake_case ) plt.plot(_snake_case , _snake_case ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : List[Any] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
308
0
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer _lowerCAmelCase : List[Any] = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _lowerCAmelCase : List[str] = { "vocab_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json" }, "merges_file": { "allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt" }, } _lowerCAmelCase : str = {"allegro/herbert-base-cased": 514} _lowerCAmelCase : Optional[Any] = {} class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = HerbertTokenizer def __init__( self , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case="<s>" , __snake_case="<unk>" , __snake_case="<pad>" , __snake_case="<mask>" , __snake_case="</s>" , **__snake_case , ) -> Optional[Any]: '''simple docstring''' super().__init__( __snake_case , __snake_case , tokenizer_file=__snake_case , cls_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , sep_token=__snake_case , **__snake_case , ) def __magic_name__ ( self , __snake_case , __snake_case = None ) -> List[int]: '''simple docstring''' __a =[self.cls_token_id] __a =[self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __magic_name__ ( self , __snake_case , __snake_case = None , __snake_case = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is None: return [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case )) + [1] def __magic_name__ ( self , __snake_case , __snake_case = None ) -> List[int]: '''simple docstring''' __a =[self.sep_token_id] __a =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __magic_name__ ( self , __snake_case , __snake_case = None ) -> Tuple[str]: '''simple docstring''' __a =self._tokenizer.model.save(__snake_case , name=__snake_case ) return tuple(__snake_case )
350
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Tuple = { "configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MegatronBertForCausalLM", "MegatronBertForMaskedLM", "MegatronBertForMultipleChoice", "MegatronBertForNextSentencePrediction", "MegatronBertForPreTraining", "MegatronBertForQuestionAnswering", "MegatronBertForSequenceClassification", "MegatronBertForTokenClassification", "MegatronBertModel", "MegatronBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys _lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
0
from __future__ import annotations from statistics import mean def UpperCamelCase_( _snake_case : list[int] , _snake_case : list[int] , _snake_case : int ): """simple docstring""" __a =[0] * no_of_processes __a =[0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(_snake_case ): __a =burst_time[i] __a =[] __a =0 __a =0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __a =[] __a =-1 for i in range(_snake_case ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(_snake_case ) if len(_snake_case ) > 0: __a =ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __a =i total_time += burst_time[target_process] completed += 1 __a =0 __a =( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def UpperCamelCase_( _snake_case : list[int] , _snake_case : int , _snake_case : list[int] ): """simple docstring""" __a =[0] * no_of_processes for i in range(_snake_case ): __a =burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("[TEST CASE 01]") _lowerCAmelCase : Union[str, Any] = 4 _lowerCAmelCase : Tuple = [2, 5, 3, 7] _lowerCAmelCase : Union[str, Any] = [0, 0, 0, 0] _lowerCAmelCase : Optional[Any] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) _lowerCAmelCase : Optional[Any] = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time") for i, process_id in enumerate(list(range(1, 5))): print( f'''{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t''' f'''{waiting_time[i]}\t\t\t\t{turn_around_time[i]}''' ) print(f'''\nAverage waiting time = {mean(waiting_time):.5f}''') print(f'''Average turnaround time = {mean(turn_around_time):.5f}''')
351
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __magic_name__ : @staticmethod def __magic_name__ ( *__snake_case , **__snake_case ) -> List[str]: '''simple docstring''' pass def UpperCamelCase_( _snake_case : Image ): """simple docstring""" __a =hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __magic_name__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def __magic_name__ ( self , __snake_case , __snake_case , __snake_case ) -> Dict: '''simple docstring''' __a =DepthEstimationPipeline(model=__snake_case , image_processor=__snake_case ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __magic_name__ ( self , __snake_case , __snake_case ) -> Tuple: '''simple docstring''' __a =depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , __snake_case ) import datasets __a =datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) __a =depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , __snake_case , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' pass @slow @require_torch def __magic_name__ ( self ) -> int: '''simple docstring''' __a ='Intel/dpt-large' __a =pipeline('depth-estimation' , model=__snake_case ) __a =depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) __a =hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.662 ) @require_torch def __magic_name__ ( self ) -> Any: '''simple docstring''' # This is highly irregular to have no small tests. self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
308
0
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = ['image_processor', 'tokenizer'] SCREAMING_SNAKE_CASE = 'AutoImageProcessor' SCREAMING_SNAKE_CASE = 'AutoTokenizer' def __init__( self , __snake_case , __snake_case ) -> Union[str, Any]: '''simple docstring''' super().__init__(__snake_case , __snake_case ) __a =self.image_processor def __call__( self , __snake_case=None , __snake_case=None , __snake_case=None , **__snake_case ) -> int: '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: __a =self.tokenizer(__snake_case , return_tensors=__snake_case , **__snake_case ) if images is not None: __a =self.image_processor(__snake_case , return_tensors=__snake_case , **__snake_case ) if text is not None and images is not None: __a =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__snake_case ) , tensor_type=__snake_case ) def __magic_name__ ( self , *__snake_case , **__snake_case ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def __magic_name__ ( self , *__snake_case , **__snake_case ) -> List[Any]: '''simple docstring''' return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
352
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _lowerCAmelCase : Optional[int] = logging.getLogger(__name__) _lowerCAmelCase : Any = "pytorch_model.bin" @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co.'} , ) @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field(metadata={'help': 'A csv or a json file containing the training data.'} ) SCREAMING_SNAKE_CASE = dataclasses.field(metadata={'help': 'A csv or a json file containing the data to predict on.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the validation data.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'The name of the task to train on.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'The list of labels for the task.'} ) @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field( metadata={'help': 'The output directory where the model predictions and checkpoints will be written.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default='accuracy' , metadata={'help': 'The evaluation metric used for the task.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default='no' , metadata={ 'help': 'The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]' } , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=1_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0 , metadata={ 'help': 'How much the specified evaluation metric must improve to satisfy early stopping conditions.' } , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the confidence score.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the validation performance.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to fine-tune on labeled data after pseudo training.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0 , metadata={'help': 'Confidence threshold for pseudo-labeled data filtering.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=1_0_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Random seed for initialization.'} , ) def UpperCamelCase_( _snake_case : int , _snake_case : str , _snake_case : Optional[int] , _snake_case : str , _snake_case : Union[str, Any] , _snake_case : List[Any] ): """simple docstring""" __a =datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: __a =dataset.filter(lambda _snake_case : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 __a =int(eval_result * len(_snake_case ) ) print(_snake_case ) __a =dataset.sort('probability' , reverse=_snake_case ) __a =dataset.select(range(_snake_case ) ) __a =dataset.remove_columns(['label', 'probability'] ) __a =dataset.rename_column('prediction' , 'label' ) __a =dataset.map(lambda _snake_case : {"label": idalabel[example["label"]]} ) __a =dataset.shuffle(seed=args.seed ) __a =os.path.join(_snake_case , F'train_pseudo.{args.data_file_extension}' ) if args.data_file_extension == "csv": dataset.to_csv(_snake_case , index=_snake_case ) else: dataset.to_json(_snake_case ) def UpperCamelCase_( _snake_case : List[Any] , _snake_case : str , _snake_case : int , _snake_case : Optional[int] , **_snake_case : List[str] ): """simple docstring""" __a =Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() __a =STModelArguments(model_name_or_path=_snake_case ) __a =STDataArguments(train_file=_snake_case , infer_file=_snake_case ) __a =STTrainingArguments(output_dir=_snake_case ) __a =argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(_snake_case ).items(): setattr(_snake_case , _snake_case , _snake_case ) for key, value in kwargs.items(): if hasattr(_snake_case , _snake_case ): setattr(_snake_case , _snake_case , _snake_case ) # Sanity checks __a ={} __a =None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None __a =args.train_file __a =args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None __a =args.eval_file for key in data_files: __a =data_files[key].split('.' )[-1] assert extension in ["csv", "json"], F'`{key}_file` should be a csv or a json file.' if args.data_file_extension is None: __a =extension else: assert extension == args.data_file_extension, F'`{key}_file` should be a {args.data_file_extension} file`.' assert ( args.eval_metric in datasets.list_metrics() ), F'{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('Creating the initial data directory for self-training...' ) __a =F'{args.output_dir}/self-train_iter-{{}}'.format __a =data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=_snake_case ) os.makedirs(_snake_case , exist_ok=_snake_case ) accelerator.wait_for_everyone() __a =None __a =None __a =0 __a =False # Show the progress bar __a =tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): __a =data_dir_format(_snake_case ) assert os.path.exists(_snake_case ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 __a =os.path.join(_snake_case , 'stage-1' ) __a ={ 'accelerator': accelerator, 'model_name_or_path': args.model_name_or_path, 'cache_dir': args.cache_dir, 'do_train': True, 'train_file': data_files['train'] if iteration == 0 else data_files['train_pseudo'], 'do_eval': True if args.eval_file is not None else False, 'eval_file': data_files['eval'], 'do_predict': True, 'infer_file': data_files['infer'], 'task_name': args.task_name, 'label_list': args.label_list, 'output_dir': current_output_dir, 'eval_metric': args.eval_metric, 'evaluation_strategy': args.evaluation_strategy, 'early_stopping_patience': args.early_stopping_patience, 'early_stopping_threshold': args.early_stopping_threshold, 'seed': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(_snake_case , _snake_case ): arguments_dict.update({key: value} ) __a =os.path.join(_snake_case , 'best-checkpoint' , _snake_case ) if os.path.exists(_snake_case ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.' , _snake_case , _snake_case , ) else: logger.info('***** Running self-training: iteration: %d, stage: 1 *****' , _snake_case ) finetune(**_snake_case ) accelerator.wait_for_everyone() assert os.path.exists(_snake_case ) logger.info('Self-training job completed: iteration: %d, stage: 1.' , _snake_case ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data __a =os.path.join(_snake_case , 'best-checkpoint' ) __a =os.path.join(_snake_case , 'stage-2' ) # Update arguments_dict __a =model_path __a =data_files['train'] __a =current_output_dir __a =os.path.join(_snake_case , 'best-checkpoint' , _snake_case ) if os.path.exists(_snake_case ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.' , _snake_case , _snake_case , ) else: logger.info('***** Running self-training: iteration: %d, stage: 2 *****' , _snake_case ) finetune(**_snake_case ) accelerator.wait_for_everyone() assert os.path.exists(_snake_case ) logger.info('Self-training job completed: iteration: %d, stage: 2.' , _snake_case ) __a =iteration __a =data_dir_format(iteration + 1 ) __a =AutoConfig.from_pretrained(os.path.join(_snake_case , 'best-checkpoint' ) ) __a =config.idalabel __a =os.path.join(_snake_case , 'eval_results_best-checkpoint.json' ) __a =os.path.join(_snake_case , 'test_results_best-checkpoint.json' ) assert os.path.exists(_snake_case ) with open(_snake_case , 'r' ) as f: __a =float(json.load(_snake_case )[args.eval_metric] ) __a =os.path.join(_snake_case , 'infer_output_best-checkpoint.csv' ) assert os.path.exists(_snake_case ) # Loading the dataset from local csv or json files. __a =load_dataset(args.data_file_extension , data_files={'data': data_files['infer']} )['data'] __a =load_dataset('csv' , data_files={'data': infer_output_file} )['data'] if accelerator.is_main_process: os.makedirs(_snake_case , exist_ok=_snake_case ) shutil.copy(_snake_case , os.path.join(_snake_case , F'eval_results_iter-{iteration}.json' ) ) if os.path.exists(_snake_case ): shutil.copy(_snake_case , os.path.join(_snake_case , F'test_results_iter-{iteration}.json' ) ) create_pseudo_labeled_data(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) accelerator.wait_for_everyone() __a =os.path.join(_snake_case , F'train_pseudo.{args.data_file_extension}' ) if args.evaluation_strategy != IntervalStrategy.NO.value: __a =eval_result if best_iteration is None: __a =new_iteration __a =new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: __a =new_iteration __a =new_eval_result __a =0 else: if new_eval_result == best_eval_result: __a =new_iteration __a =new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: __a =True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('Best iteration: %d' , _snake_case ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , _snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_snake_case , F'eval_results_iter-{iteration}.json' ) , os.path.join(_snake_case , 'eval_results_best-iteration.json' ) , ) else: # Assume that the last iteration is the best logger.info('Best iteration: %d' , args.max_selftrain_iterations - 1 ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , _snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_snake_case , F'eval_results_iter-{args.max_selftrain_iterations - 1}.json' ) , os.path.join(_snake_case , 'eval_results_best-iteration.json' ) , )
308
0
from __future__ import annotations def UpperCamelCase_( _snake_case : float , _snake_case : float , _snake_case : float , ): """simple docstring""" if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif stress < 0: raise ValueError('Stress cannot be negative' ) elif tangential_force < 0: raise ValueError('Tangential Force cannot be negative' ) elif area < 0: raise ValueError('Area cannot be negative' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
353
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Any = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right _lowerCAmelCase : List[Any] = 256_047 _lowerCAmelCase : Dict = 256_145 @require_sentencepiece @require_tokenizers class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = NllbTokenizer SCREAMING_SNAKE_CASE = NllbTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = {} def __magic_name__ ( self ) -> int: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __a =NllbTokenizer(__snake_case , keep_accents=__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self ) -> int: '''simple docstring''' __a =NllbTokenizer(__snake_case , keep_accents=__snake_case ) __a =tokenizer.tokenize('This is a test' ) self.assertListEqual(__snake_case , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __a =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __a =tokenizer.convert_tokens_to_ids(__snake_case ) self.assertListEqual( __snake_case , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __a =tokenizer.convert_ids_to_tokens(__snake_case ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-nllb', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __a =self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __a =self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) __a =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=True __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=False __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) @require_torch def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' if not self.test_seqaseq: return __a =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Longer text that will definitely require truncation. __a =[ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for' ' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons' ' will only worsen the violence and misery for millions of people.', ] __a =[ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al' ' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi' ' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] try: __a =tokenizer.prepare_seqaseq_batch( src_texts=__snake_case , tgt_texts=__snake_case , max_length=3 , max_target_length=10 , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='ron_Latn' , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified __a =tokenizer.prepare_seqaseq_batch( __snake_case , tgt_texts=__snake_case , max_length=3 , return_tensors='pt' ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) __a =tokenizer.prepare_seqaseq_batch( src_texts=__snake_case , max_length=3 , max_target_length=10 , return_tensors='pt' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn('decoder_input_ids' , __snake_case ) @unittest.skip('Unfortunately way too slow to build a BPE with SentencePiece.' ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' pass def __magic_name__ ( self ) -> Tuple: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __a =[AddedToken('<special>' , lstrip=__snake_case )] __a =self.rust_tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case ) __a =tokenizer_r.encode('Hey this is a <special> token' ) __a =tokenizer_r.encode('<special>' , add_special_tokens=__snake_case )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: __a =self.rust_tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case , ) __a =self.tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case ) __a =tokenizer_p.encode('Hey this is a <special> token' ) __a =tokenizer_cr.encode('Hey this is a <special> token' ) self.assertEqual(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class __magic_name__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = 'facebook/nllb-200-distilled-600M' SCREAMING_SNAKE_CASE = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] SCREAMING_SNAKE_CASE = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] SCREAMING_SNAKE_CASE = [ 2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 8_1_6_5, 2_4_8_0_6_6, 1_4_7_3_4, 9_5_0, 1_1_3_5, 1_0_5_7_2_1, 3_5_7_3, 8_3, 2_7_3_5_2, 1_0_8, 4_9_4_8_6, 2, ] @classmethod def __magic_name__ ( cls ) -> Tuple: '''simple docstring''' __a =NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang='eng_Latn' , tgt_lang='ron_Latn' ) __a =1 return cls def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Arab'] , 25_6001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Latn'] , 25_6002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['fra_Latn'] , 25_6057 ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' self.assertIn(__snake_case , self.tokenizer.all_special_ids ) # fmt: off __a =[RO_CODE, 4254, 9_8068, 11_2923, 3_9072, 3909, 713, 10_2767, 26, 1_7314, 3_5642, 1_4683, 3_3118, 2022, 6_6987, 2, 25_6047] # fmt: on __a =self.tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) __a =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertNotIn(self.tokenizer.eos_token , __snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , __snake_case ) __a =10 __a =self.tokenizer(__snake_case , max_length=__snake_case , truncation=__snake_case ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , __snake_case ) self.assertEqual(len(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_6203, 3] ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =tempfile.mkdtemp() __a =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__snake_case ) __a =NllbTokenizer.from_pretrained(__snake_case ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __snake_case ) @require_torch def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) __a =shift_tokens_right( batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['ron_Latn'] ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) __a =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) self.assertEqual(__snake_case , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =self.tokenizer(self.src_text , padding=__snake_case , truncation=__snake_case , max_length=3 , return_tensors='pt' ) __a =self.tokenizer( text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=10 , return_tensors='pt' ) __a =targets['input_ids'] __a =shift_tokens_right( __snake_case , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( nested_simplify(__snake_case ) , { # A, test, EOS, en_XX 'input_ids': [[25_6047, 70, 7356, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_6057, } , ) @require_torch def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =True __a =self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2, 25_6047] ) __a =False __a =self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [25_6047, 1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2] )
308
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class __magic_name__ ( unittest.TestCase ): @slow def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =TFAutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' ) __a =AutoTokenizer.from_pretrained('google/mt5-small' ) __a =tokenizer('Hello there' , return_tensors='tf' ).input_ids __a =tokenizer('Hi I am' , return_tensors='tf' ).input_ids __a =model(__snake_case , labels=__snake_case ).loss __a =-tf.math.reduce_mean(__snake_case ).numpy() __a =-21.22_8168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
354
def UpperCamelCase_( _snake_case : str , _snake_case : int ): """simple docstring""" return [sentence[i : i + ngram_size] for i in range(len(_snake_case ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
308
0
from functools import lru_cache @lru_cache def UpperCamelCase_( _snake_case : int ): """simple docstring""" if num < 0: raise ValueError('Number should not be negative.' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
355
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class __magic_name__ ( pl.LightningModule ): def __init__( self , __snake_case ) -> List[Any]: '''simple docstring''' super().__init__() __a =model __a =2 __a =nn.Linear(self.model.config.hidden_size , self.num_labels ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' pass def UpperCamelCase_( _snake_case : str , _snake_case : str , _snake_case : str ): """simple docstring""" __a =LongformerModel.from_pretrained(_snake_case ) __a =LightningModel(_snake_case ) __a =torch.load(_snake_case , map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model __a =LongformerForQuestionAnswering.from_pretrained(_snake_case ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(_snake_case ) print(F'Conversion successful. Model saved under {pytorch_dump_folder_path}' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowerCAmelCase : Optional[int] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
308
0
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def UpperCamelCase_( _snake_case : str , _snake_case : complex , _snake_case : str = "x" , _snake_case : float = 10**-10 , _snake_case : int = 1 , ): """simple docstring""" __a =symbols(_snake_case ) __a =lambdify(_snake_case , _snake_case ) __a =lambdify(_snake_case , diff(_snake_case , _snake_case ) ) __a =starting_point while True: if diff_function(_snake_case ) != 0: __a =prev_guess - multiplicity * func(_snake_case ) / diff_function( _snake_case ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess __a =next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''') # Find root of polynomial # Find fourth Root of 5 print(f'''The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}''') # Find value of e print( "The root of log(y) - 1 = 0 is ", f'''{newton_raphson("log(y) - 1", 2, variable="y")}''', ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", f'''{newton_raphson("exp(x) - 1", 10, precision=0.005)}''', ) # Find root of cos(x) print(f'''The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}''')
356
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") _lowerCAmelCase : Optional[Any] = logging.getLogger(__name__) @dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) SCREAMING_SNAKE_CASE = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) SCREAMING_SNAKE_CASE = field( default=1_0_2_4 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the training data.'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the validation data.'} ) SCREAMING_SNAKE_CASE = field(default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the test data.'} ) def __magic_name__ ( self ) -> str: '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: __a =self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __a =self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) SCREAMING_SNAKE_CASE = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def UpperCamelCase_( ): """simple docstring""" __a =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __a , __a , __a =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __a , __a , __a =parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) __a =training_args.get_process_log_level() logger.setLevel(_snake_case ) datasets.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __a =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __a =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __a =load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __a ={'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __a =data_args.train_file.split('.' )[-1] __a =data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __a =data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(F'load a local file for {key}: {data_files[key]}' ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files __a =load_dataset('csv' , data_files=_snake_case , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __a =load_dataset('json' , data_files=_snake_case , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __a =raw_datasets['train'].features['label'].names __a =len(_snake_case ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __a =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __a =TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=_snake_case , ) __a =BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __a ='max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __a =False # Some models have set the order of the labels to use, so let's make sure we do use it. __a ={'Refused': 0, 'Entailed': 1} __a ={0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __a =min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(_snake_case : Tuple ): # Tokenize the texts def _convert_table_text_to_pandas(_snake_case : Optional[Any] ): __a =[_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] __a =pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __a =examples['statement'] __a =list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) __a =tokenizer(_snake_case , _snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case ) __a =examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): __a =raw_datasets.map( _snake_case , batched=_snake_case , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) __a =raw_datasets['train'] if data_args.max_train_samples is not None: __a =train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) __a =raw_datasets['validation'] if data_args.max_eval_samples is not None: __a =eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) __a =raw_datasets['test'] if data_args.max_predict_samples is not None: __a =predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(_snake_case ) ) , 3 ): logger.info(F'Sample {index} of the training set: {train_dataset[index]}.' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_snake_case : EvalPrediction ): __a =p.predictions[0] if isinstance(p.predictions , _snake_case ) else p.predictions __a =np.argmax(_snake_case , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __a =default_data_collator elif training_args.fpaa: __a =DataCollatorWithPadding(_snake_case , pad_to_multiple_of=8 ) else: __a =None # Initialize our Trainer __a =Trainer( model=_snake_case , args=_snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_snake_case , tokenizer=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: __a =None if training_args.resume_from_checkpoint is not None: __a =training_args.resume_from_checkpoint elif last_checkpoint is not None: __a =last_checkpoint __a =trainer.train(resume_from_checkpoint=_snake_case ) __a =train_result.metrics __a =( data_args.max_train_samples if data_args.max_train_samples is not None else len(_snake_case ) ) __a =min(_snake_case , len(_snake_case ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , _snake_case ) trainer.save_metrics('train' , _snake_case ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __a =trainer.evaluate(eval_dataset=_snake_case ) __a =data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_snake_case ) __a =min(_snake_case , len(_snake_case ) ) trainer.log_metrics('eval' , _snake_case ) trainer.save_metrics('eval' , _snake_case ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __a =predict_dataset.remove_columns('label' ) __a =trainer.predict(_snake_case , metric_key_prefix='predict' ).predictions __a =np.argmax(_snake_case , axis=1 ) __a =os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(_snake_case , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(_snake_case ): __a =label_list[item] writer.write(F'{index}\t{item}\n' ) __a ={'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**_snake_case ) else: trainer.create_model_card(**_snake_case ) def UpperCamelCase_( _snake_case : Union[str, Any] ): """simple docstring""" main() if __name__ == "__main__": main()
308
0
_lowerCAmelCase : int = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def UpperCamelCase_( ): """simple docstring""" __a =input('Enter message: ' ) __a =input('Enter key [alphanumeric]: ' ) __a =input('Encrypt/Decrypt [e/d]: ' ) if mode.lower().startswith('e' ): __a ='encrypt' __a =encrypt_message(_snake_case , _snake_case ) elif mode.lower().startswith('d' ): __a ='decrypt' __a =decrypt_message(_snake_case , _snake_case ) print(F'\n{mode.title()}ed message:' ) print(_snake_case ) def UpperCamelCase_( _snake_case : str , _snake_case : str ): """simple docstring""" return translate_message(_snake_case , _snake_case , 'encrypt' ) def UpperCamelCase_( _snake_case : str , _snake_case : str ): """simple docstring""" return translate_message(_snake_case , _snake_case , 'decrypt' ) def UpperCamelCase_( _snake_case : str , _snake_case : str , _snake_case : str ): """simple docstring""" __a =[] __a =0 __a =key.upper() for symbol in message: __a =LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_snake_case ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_snake_case ): __a =0 else: translated.append(_snake_case ) return "".join(_snake_case ) if __name__ == "__main__": main()
357
from __future__ import annotations import time import numpy as np _lowerCAmelCase : List[str] = [8, 5, 9, 7] _lowerCAmelCase : List[str] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] _lowerCAmelCase : List[Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class __magic_name__ : def __init__( self , __snake_case , __snake_case , __snake_case , ) -> None: '''simple docstring''' __a =claim_vector __a =allocated_resources_table __a =maximum_claim_table def __magic_name__ ( self ) -> list[int]: '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def __magic_name__ ( self ) -> list[int]: '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def __magic_name__ ( self ) -> list[list[int]]: '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__snake_case ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def __magic_name__ ( self ) -> dict[int, list[int]]: '''simple docstring''' return {self.__need().index(__snake_case ): i for i in self.__need()} def __magic_name__ ( self , **__snake_case ) -> None: '''simple docstring''' __a =self.__need() __a =self.__allocated_resources_table __a =self.__available_resources() __a =self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: __a =False for each_need in need_list: __a =True for index, need in enumerate(__snake_case ): if need > available_resources[index]: __a =False break if execution: __a =True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __a =original_need_index print(f'Process {process_number + 1} is executing.' ) # remove the process run from stack need_list.remove(__snake_case ) # update available/freed resources stack __a =np.array(__snake_case ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(__snake_case ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( f'P{self.__allocated_resources_table.index(__snake_case ) + 1}' + ' '.join(f'{it:>8}' for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( f'P{self.__maximum_claim_table.index(__snake_case ) + 1}' + ' '.join(f'{it:>8}' for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(__snake_case ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(__snake_case ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
308
0
"""simple docstring""" def UpperCamelCase_( _snake_case : list , _snake_case : list , _snake_case : int , _snake_case : int , _snake_case : int ): """simple docstring""" if index == number_of_items: return 0 __a =0 __a =0 __a =knapsack(_snake_case , _snake_case , _snake_case , _snake_case , index + 1 ) if weights[index] <= max_weight: __a =values[index] + knapsack( _snake_case , _snake_case , _snake_case , max_weight - weights[index] , index + 1 ) return max(_snake_case , _snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
358
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency _lowerCAmelCase : Tuple = { "E": 12.70, "T": 9.06, "A": 8.17, "O": 7.51, "I": 6.97, "N": 6.75, "S": 6.33, "H": 6.09, "R": 5.99, "D": 4.25, "L": 4.03, "C": 2.78, "U": 2.76, "M": 2.41, "W": 2.36, "F": 2.23, "G": 2.02, "Y": 1.97, "P": 1.93, "B": 1.29, "V": 0.98, "K": 0.77, "J": 0.15, "X": 0.15, "Q": 0.10, "Z": 0.07, } _lowerCAmelCase : Optional[int] = "ETAOINSHRDLCUMWFGYPBVKJXQZ" _lowerCAmelCase : Any = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a ={letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def UpperCamelCase_( _snake_case : tuple ): """simple docstring""" return x[0] def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =get_letter_count(_snake_case ) __a ={ freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(_snake_case ) __a ={} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=_snake_case ) __a =''.join(freq_to_letter[freq] ) __a =list(freq_to_letter_str.items() ) freq_pairs.sort(key=_snake_case , reverse=_snake_case ) __a =[freq_pair[1] for freq_pair in freq_pairs] return "".join(_snake_case ) def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =get_frequency_order(_snake_case ) __a =0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
308
0
from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) def UpperCamelCase_( _snake_case : Optional[Any] , _snake_case : List[Any] , _snake_case : Union[str, Any] ): """simple docstring""" return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def UpperCamelCase_( _snake_case : np.ndarray , _snake_case : Optional[str] , _snake_case : Optional[str] = None ): """simple docstring""" __a =tesseract_config if tesseract_config is not None else '' # apply OCR __a =to_pil_image(_snake_case ) __a , __a =pil_image.size __a =pytesseract.image_to_data(_snake_case , lang=_snake_case , output_type='dict' , config=_snake_case ) __a , __a , __a , __a , __a =data['text'], data['left'], data['top'], data['width'], data['height'] # filter empty words and corresponding coordinates __a =[idx for idx, word in enumerate(_snake_case ) if not word.strip()] __a =[word for idx, word in enumerate(_snake_case ) if idx not in irrelevant_indices] __a =[coord for idx, coord in enumerate(_snake_case ) if idx not in irrelevant_indices] __a =[coord for idx, coord in enumerate(_snake_case ) if idx not in irrelevant_indices] __a =[coord for idx, coord in enumerate(_snake_case ) if idx not in irrelevant_indices] __a =[coord for idx, coord in enumerate(_snake_case ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __a =[] for x, y, w, h in zip(_snake_case , _snake_case , _snake_case , _snake_case ): __a =[x, y, x + w, y + h] actual_boxes.append(_snake_case ) # finally, normalize the bounding boxes __a =[] for box in actual_boxes: normalized_boxes.append(normalize_box(_snake_case , _snake_case , _snake_case ) ) assert len(_snake_case ) == len(_snake_case ), "Not as many words as there are bounding boxes" return words, normalized_boxes class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = ['pixel_values'] def __init__( self , __snake_case = True , __snake_case = None , __snake_case = PILImageResampling.BILINEAR , __snake_case = True , __snake_case = None , __snake_case = "" , **__snake_case , ) -> None: '''simple docstring''' super().__init__(**__snake_case ) __a =size if size is not None else {'height': 224, 'width': 224} __a =get_size_dict(__snake_case ) __a =do_resize __a =size __a =resample __a =apply_ocr __a =ocr_lang __a =tesseract_config def __magic_name__ ( self , __snake_case , __snake_case , __snake_case = PILImageResampling.BILINEAR , __snake_case = None , **__snake_case , ) -> np.ndarray: '''simple docstring''' __a =get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) __a =(size['height'], size['width']) return resize(__snake_case , size=__snake_case , resample=__snake_case , data_format=__snake_case , **__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = ChannelDimension.FIRST , **__snake_case , ) -> PIL.Image.Image: '''simple docstring''' __a =do_resize if do_resize is not None else self.do_resize __a =size if size is not None else self.size __a =get_size_dict(__snake_case ) __a =resample if resample is not None else self.resample __a =apply_ocr if apply_ocr is not None else self.apply_ocr __a =ocr_lang if ocr_lang is not None else self.ocr_lang __a =tesseract_config if tesseract_config is not None else self.tesseract_config __a =make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) # All transformations expect numpy arrays. __a =[to_numpy_array(__snake_case ) for image in images] if apply_ocr: requires_backends(self , 'pytesseract' ) __a =[] __a =[] for image in images: __a , __a =apply_tesseract(__snake_case , __snake_case , __snake_case ) words_batch.append(__snake_case ) boxes_batch.append(__snake_case ) if do_resize: __a =[self.resize(image=__snake_case , size=__snake_case , resample=__snake_case ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) __a =[flip_channel_order(__snake_case ) for image in images] __a =[to_channel_dimension_format(__snake_case , __snake_case ) for image in images] __a =BatchFeature(data={'pixel_values': images} , tensor_type=__snake_case ) if apply_ocr: __a =words_batch __a =boxes_batch return data
359
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : int = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'swin2sr' SCREAMING_SNAKE_CASE = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , __snake_case=64 , __snake_case=1 , __snake_case=3 , __snake_case=180 , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=8 , __snake_case=2.0 , __snake_case=True , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.1 , __snake_case="gelu" , __snake_case=False , __snake_case=0.02 , __snake_case=1e-5 , __snake_case=2 , __snake_case=1.0 , __snake_case="1conv" , __snake_case="pixelshuffle" , **__snake_case , ) -> Dict: '''simple docstring''' super().__init__(**__snake_case ) __a =image_size __a =patch_size __a =num_channels __a =embed_dim __a =depths __a =len(__snake_case ) __a =num_heads __a =window_size __a =mlp_ratio __a =qkv_bias __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =drop_path_rate __a =hidden_act __a =use_absolute_embeddings __a =layer_norm_eps __a =initializer_range __a =upscale __a =img_range __a =resi_connection __a =upsampler
308
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _lowerCAmelCase : str = logging.get_logger(__name__) def UpperCamelCase_( _snake_case : List[Any] , _snake_case : Any ): """simple docstring""" __a =b.T __a =np.sum(np.square(_snake_case ) , axis=1 ) __a =np.sum(np.square(_snake_case ) , axis=0 ) __a =np.matmul(_snake_case , _snake_case ) __a =aa[:, None] - 2 * ab + ba[None, :] return d def UpperCamelCase_( _snake_case : str , _snake_case : Union[str, Any] ): """simple docstring""" __a =x.reshape(-1 , 3 ) __a =squared_euclidean_distance(_snake_case , _snake_case ) return np.argmin(_snake_case , axis=1 ) class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = ['pixel_values'] def __init__( self , __snake_case = None , __snake_case = True , __snake_case = None , __snake_case = PILImageResampling.BILINEAR , __snake_case = True , __snake_case = True , **__snake_case , ) -> None: '''simple docstring''' super().__init__(**__snake_case ) __a =size if size is not None else {'height': 256, 'width': 256} __a =get_size_dict(__snake_case ) __a =np.array(__snake_case ) if clusters is not None else None __a =do_resize __a =size __a =resample __a =do_normalize __a =do_color_quantize def __magic_name__ ( self , __snake_case , __snake_case , __snake_case = PILImageResampling.BILINEAR , __snake_case = None , **__snake_case , ) -> np.ndarray: '''simple docstring''' __a =get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(f'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( __snake_case , size=(size['height'], size['width']) , resample=__snake_case , data_format=__snake_case , **__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case = None , ) -> np.ndarray: '''simple docstring''' __a =rescale(image=__snake_case , scale=1 / 127.5 , data_format=__snake_case ) __a =image - 1 return image def __magic_name__ ( self , __snake_case , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = ChannelDimension.FIRST , **__snake_case , ) -> PIL.Image.Image: '''simple docstring''' __a =do_resize if do_resize is not None else self.do_resize __a =size if size is not None else self.size __a =get_size_dict(__snake_case ) __a =resample if resample is not None else self.resample __a =do_normalize if do_normalize is not None else self.do_normalize __a =do_color_quantize if do_color_quantize is not None else self.do_color_quantize __a =clusters if clusters is not None else self.clusters __a =np.array(__snake_case ) __a =make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_color_quantize and clusters is None: raise ValueError('Clusters must be specified if do_color_quantize is True.' ) # All transformations expect numpy arrays. __a =[to_numpy_array(__snake_case ) for image in images] if do_resize: __a =[self.resize(image=__snake_case , size=__snake_case , resample=__snake_case ) for image in images] if do_normalize: __a =[self.normalize(image=__snake_case ) for image in images] if do_color_quantize: __a =[to_channel_dimension_format(__snake_case , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) __a =np.array(__snake_case ) __a =color_quantize(__snake_case , __snake_case ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) __a =images.shape[0] __a =images.reshape(__snake_case , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. __a =list(__snake_case ) else: __a =[to_channel_dimension_format(__snake_case , __snake_case ) for image in images] __a ={'input_ids': images} return BatchFeature(data=__snake_case , tensor_type=__snake_case )
360
import os def UpperCamelCase_( _snake_case : str = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(_snake_case ) , _snake_case ) ) as input_file: __a =[ [int(_snake_case ) for element in line.split(',' )] for line in input_file.readlines() ] __a =len(_snake_case ) __a =len(matrix[0] ) __a =[[-1 for _ in range(_snake_case )] for _ in range(_snake_case )] for i in range(_snake_case ): __a =matrix[i][0] for j in range(1 , _snake_case ): for i in range(_snake_case ): __a =minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _snake_case ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
308
0
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 4_2 SCREAMING_SNAKE_CASE = 4_2 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> int: '''simple docstring''' __a =[] __a =[] for i in range(self.num_layers ): __a =self.in_channels if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =resnets __a =attentions if self.add_downsample: __a =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> Optional[Any]: '''simple docstring''' __a =() for resnet, attn in zip(self.resnets , self.attentions ): __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __a =self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 4_2 SCREAMING_SNAKE_CASE = 4_2 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> int: '''simple docstring''' __a =[] for i in range(self.num_layers ): __a =self.in_channels if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets if self.add_downsample: __a =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case=True ) -> Optional[int]: '''simple docstring''' __a =() for resnet in self.resnets: __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __a =self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 4_2 SCREAMING_SNAKE_CASE = 4_2 SCREAMING_SNAKE_CASE = 4_2 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =[] __a =[] for i in range(self.num_layers ): __a =self.in_channels if (i == self.num_layers - 1) else self.out_channels __a =self.prev_output_channel if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =resnets __a =attentions if self.add_upsample: __a =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[Any]: '''simple docstring''' for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states __a =res_hidden_states_tuple[-1] __a =res_hidden_states_tuple[:-1] __a =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __a =self.upsamplers_a(__snake_case ) return hidden_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 4_2 SCREAMING_SNAKE_CASE = 4_2 SCREAMING_SNAKE_CASE = 4_2 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =[] for i in range(self.num_layers ): __a =self.in_channels if (i == self.num_layers - 1) else self.out_channels __a =self.prev_output_channel if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets if self.add_upsample: __a =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[Any]: '''simple docstring''' for resnet in self.resnets: # pop res hidden states __a =res_hidden_states_tuple[-1] __a =res_hidden_states_tuple[:-1] __a =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __a =self.upsamplers_a(__snake_case ) return hidden_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 4_2 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =[ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] __a =[] for _ in range(self.num_layers ): __a =FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets __a =attentions def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[str]: '''simple docstring''' __a =self.resnets[0](__snake_case , __snake_case ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) return hidden_states
361
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _lowerCAmelCase : Any = logging.get_logger(__name__) class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , *__snake_case , **__snake_case ) -> None: '''simple docstring''' warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
308
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _lowerCAmelCase : str = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : int = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys _lowerCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
362
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : int = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
0
from PIL import Image def UpperCamelCase_( _snake_case : Image , _snake_case : float ): """simple docstring""" def brightness(_snake_case : int ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(_snake_case ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change brightness to 100 _lowerCAmelCase : str = change_brightness(img, 100) brigt_img.save("image_data/lena_brightness.png", format="png")
363
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'yolos' def __init__( self , __snake_case=768 , __snake_case=12 , __snake_case=12 , __snake_case=3072 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.02 , __snake_case=1e-12 , __snake_case=[512, 864] , __snake_case=16 , __snake_case=3 , __snake_case=True , __snake_case=100 , __snake_case=True , __snake_case=False , __snake_case=1 , __snake_case=5 , __snake_case=2 , __snake_case=5 , __snake_case=2 , __snake_case=0.1 , **__snake_case , ) -> str: '''simple docstring''' super().__init__(**__snake_case ) __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =intermediate_size __a =hidden_act __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =initializer_range __a =layer_norm_eps __a =image_size __a =patch_size __a =num_channels __a =qkv_bias __a =num_detection_tokens __a =use_mid_position_embeddings __a =auxiliary_loss # Hungarian matcher __a =class_cost __a =bbox_cost __a =giou_cost # Loss coefficients __a =bbox_loss_coefficient __a =giou_loss_coefficient __a =eos_coefficient class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = version.parse('1.11' ) @property def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __magic_name__ ( self ) -> float: '''simple docstring''' return 1e-4 @property def __magic_name__ ( self ) -> int: '''simple docstring''' return 12
308
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { "alibaba-damo/mgp-str-base": "https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json", } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'mgp-str' def __init__( self , __snake_case=[32, 128] , __snake_case=4 , __snake_case=3 , __snake_case=27 , __snake_case=38 , __snake_case=5_0257 , __snake_case=3_0522 , __snake_case=768 , __snake_case=12 , __snake_case=12 , __snake_case=4.0 , __snake_case=True , __snake_case=False , __snake_case=1e-5 , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.0 , __snake_case=False , __snake_case=0.02 , **__snake_case , ) -> Optional[Any]: '''simple docstring''' super().__init__(**__snake_case ) __a =image_size __a =patch_size __a =num_channels __a =max_token_length __a =num_character_labels __a =num_bpe_labels __a =num_wordpiece_labels __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =mlp_ratio __a =distilled __a =layer_norm_eps __a =drop_rate __a =qkv_bias __a =attn_drop_rate __a =drop_path_rate __a =output_aa_attentions __a =initializer_range
364
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def UpperCamelCase_( _snake_case : Optional[Any] ): """simple docstring""" __a =model.config __a =DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) __a =MBartConfig( is_decoder=_snake_case , is_encoder_decoder=_snake_case , add_cross_attention=_snake_case , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=_snake_case , add_final_layer_norm=_snake_case , ) return encoder_config, decoder_config def UpperCamelCase_( _snake_case : Tuple ): """simple docstring""" if "encoder.model" in name: __a =name.replace('encoder.model' , 'encoder' ) if "decoder.model" in name: __a =name.replace('decoder.model' , 'decoder' ) if "patch_embed.proj" in name: __a =name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __a =name.replace('patch_embed.norm' , 'embeddings.norm' ) if name.startswith('encoder' ): if "layers" in name: __a ='encoder.' + name if "attn.proj" in name: __a =name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "mask" not in name: __a =name.replace('attn' , 'attention.self' ) if "norm1" in name: __a =name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __a =name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __a =name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __a =name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": __a ='encoder.layernorm.weight' if name == "encoder.norm.bias": __a ='encoder.layernorm.bias' return name def UpperCamelCase_( _snake_case : Tuple , _snake_case : str ): """simple docstring""" for key in orig_state_dict.copy().keys(): __a =orig_state_dict.pop(_snake_case ) if "qkv" in key: __a =key.split('.' ) __a =int(key_split[3] ) __a =int(key_split[5] ) __a =model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __a =val[:dim, :] __a =val[dim : dim * 2, :] __a =val[-dim:, :] else: __a =val[:dim] __a =val[dim : dim * 2] __a =val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: __a =val return orig_state_dict def UpperCamelCase_( _snake_case : Tuple , _snake_case : Union[str, Any]=None , _snake_case : List[Any]=False ): """simple docstring""" __a =DonutModel.from_pretrained(_snake_case ).eval() # load HuggingFace model __a , __a =get_configs(_snake_case ) __a =DonutSwinModel(_snake_case ) __a =MBartForCausalLM(_snake_case ) __a =VisionEncoderDecoderModel(encoder=_snake_case , decoder=_snake_case ) model.eval() __a =original_model.state_dict() __a =convert_state_dict(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) # verify results on scanned document __a =load_dataset('hf-internal-testing/example-documents' ) __a =dataset['test'][0]['image'].convert('RGB' ) __a =XLMRobertaTokenizerFast.from_pretrained(_snake_case , from_slow=_snake_case ) __a =DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) __a =DonutProcessor(_snake_case , _snake_case ) __a =processor(_snake_case , return_tensors='pt' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": __a ='<s_docvqa><s_question>{user_input}</s_question><s_answer>' __a ='When is the coffee break?' __a =task_prompt.replace('{user_input}' , _snake_case ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": __a ='<s_rvlcdip>' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: __a ='<s_cord>' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": __a ='s_cord-v2>' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": __a ='<s_zhtrainticket>' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt __a ='hello world' else: raise ValueError('Model name not supported' ) __a =original_model.decoder.tokenizer(_snake_case , add_special_tokens=_snake_case , return_tensors='pt' )[ 'input_ids' ] __a =original_model.encoder.model.patch_embed(_snake_case ) __a , __a =model.encoder.embeddings(_snake_case ) assert torch.allclose(_snake_case , _snake_case , atol=1e-3 ) # verify encoder hidden states __a =original_model.encoder(_snake_case ) __a =model.encoder(_snake_case ).last_hidden_state assert torch.allclose(_snake_case , _snake_case , atol=1e-2 ) # verify decoder hidden states __a =original_model(_snake_case , _snake_case , _snake_case ).logits __a =model(_snake_case , decoder_input_ids=_snake_case ).logits assert torch.allclose(_snake_case , _snake_case , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(_snake_case ) processor.save_pretrained(_snake_case ) if push_to_hub: model.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) processor.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) _lowerCAmelCase : List[Any] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
308
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = ['image_processor', 'tokenizer'] SCREAMING_SNAKE_CASE = 'CLIPImageProcessor' SCREAMING_SNAKE_CASE = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , __snake_case=None , __snake_case=None , **__snake_case ) -> Optional[int]: '''simple docstring''' __a =None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __snake_case , ) __a =kwargs.pop('feature_extractor' ) __a =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__snake_case , __snake_case ) def __call__( self , __snake_case=None , __snake_case=None , __snake_case=None , **__snake_case ) -> Tuple: '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: __a =self.tokenizer(__snake_case , return_tensors=__snake_case , **__snake_case ) if images is not None: __a =self.image_processor(__snake_case , return_tensors=__snake_case , **__snake_case ) if text is not None and images is not None: __a =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__snake_case ) , tensor_type=__snake_case ) def __magic_name__ ( self , *__snake_case , **__snake_case ) -> List[str]: '''simple docstring''' return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def __magic_name__ ( self , *__snake_case , **__snake_case ) -> Any: '''simple docstring''' return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =self.tokenizer.model_input_names __a =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __snake_case , ) return self.image_processor_class @property def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __snake_case , ) return self.image_processor
365
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer SCREAMING_SNAKE_CASE = False def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' super().setUp() __a =['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] __a =dict(zip(__snake_case , range(len(__snake_case ) ) ) ) __a =['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] __a ={'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__snake_case ) ) def __magic_name__ ( self , **__snake_case ) -> Any: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def __magic_name__ ( self , __snake_case ) -> List[Any]: '''simple docstring''' __a ='adapt act apte' __a ='adapt act apte' return input_text, output_text def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __a ='adapt act apte' __a =['adapt', 'act', 'ap@@', 'te'] __a =tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) __a =[tokenizer.bos_token] + tokens + [tokenizer.eos_token] __a =[0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1384] __a ='I am a small frog.' __a =tok([src_text] , padding=__snake_case , truncation=__snake_case )['input_ids'] __a =tok.batch_decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) __a ='I am a small frog .' __a ='.' __a =tok(__snake_case )['input_ids'] __a =tok(__snake_case )['input_ids'] assert encoded[-1] == encoded_dot[0]
308
0
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def UpperCamelCase_( _snake_case : Union[str, Any]=32 , _snake_case : Any=10 , _snake_case : Optional[Any]=100 , _snake_case : List[Any]=1026 , _snake_case : List[str]=True , _snake_case : str="data/tokenized_stories_train_wikitext103.jbl" , _snake_case : List[str]="igf_context_pairs.jbl" , ): """simple docstring""" set_seed(3 ) # generate train_data and objective_set __a , __a =generate_datasets( _snake_case , _snake_case , number=_snake_case , min_len=1026 , trim=_snake_case ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? __a =torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # load pretrained model __a =load_gpta('gpt2' ).to(_snake_case ) print('computing perplexity on objective set' ) __a =compute_perplexity(_snake_case , _snake_case , _snake_case ).item() print('perplexity on objective set:' , _snake_case ) # collect igf pairs and save to file demo.jbl collect_objective_set(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def UpperCamelCase_( _snake_case : Optional[Any] , _snake_case : str=15 , _snake_case : Dict=128 , _snake_case : Union[str, Any]=100 , _snake_case : Dict="igf_model.pt" , ): """simple docstring""" set_seed(42 ) # Load pre-trained model __a =GPTaLMHeadModel.from_pretrained('gpt2' ) # Initialize secondary learner to use embedding weights of model __a =SecondaryLearner(_snake_case ) # Train secondary learner __a =train_secondary_learner( _snake_case , _snake_case , max_epochs=_snake_case , batch_size=_snake_case , eval_freq=100 , igf_model_path=_snake_case , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def UpperCamelCase_( _snake_case : Optional[Any] , _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : List[str]=32 , _snake_case : int=1000 , _snake_case : Union[str, Any]=16 , _snake_case : str=1.0 , _snake_case : Union[str, Any]=recopy_gpta , _snake_case : Union[str, Any]=None , _snake_case : int=10 , _snake_case : Any="gpt2_finetuned.pt" , ): """simple docstring""" __a =torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) __a =RandomSampler(_snake_case ) __a =DataLoader(_snake_case , sampler=_snake_case ) __a =max_steps // (len(_snake_case )) + 1 __a =0 __a =torch.zeros((1, context_len) , dtype=torch.long , device=_snake_case ) __a , __a , __a =recopy_model(_snake_case , _snake_case , _snake_case ) model.train() if secondary_learner is not None: secondary_learner.to(_snake_case ) secondary_learner.eval() __a =[] __a =0 __a =[] __a =[] # Compute the performance of the transformer model at the beginning __a =compute_perplexity(_snake_case , _snake_case , _snake_case ) test_perps.append(_snake_case ) print('Test perplexity, step' , _snake_case , ':' , _snake_case ) for epoch in range(int(_snake_case ) ): for step, example in enumerate(_snake_case ): torch.cuda.empty_cache() __a =random.randint(0 , example.size(2 ) - context_len - 1 ) __a =example[0, 0, start : start + context_len] lm_optimizer.zero_grad() __a =model(_snake_case , labels=_snake_case ) __a =True if secondary_learner is not None: __a =secondary_learner.forward( torch.tensor(_snake_case , dtype=torch.long , device=_snake_case ).unsqueeze(0 ) )[0].item() observed_qs.append(float(_snake_case ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: __a =-1 if predicted_q < threshold: __a =False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) __a =outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() __a =0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: __a =compute_perplexity(_snake_case , _snake_case , _snake_case ) test_perps.append(_snake_case ) print('Test perplexity, step' , _snake_case , ':' , _snake_case ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , _snake_case ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def UpperCamelCase_( ): """simple docstring""" __a =argparse.ArgumentParser(description='Fine-tune a transformer model with IGF on a language modeling task' ) # Required parameters parser.add_argument( '--data_dir' , default=_snake_case , type=_snake_case , required=_snake_case , help='The input data dir. Should contain data files for WikiText.' , ) parser.add_argument( '--model_name_or_path' , default=_snake_case , type=_snake_case , required=_snake_case , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--data_file' , type=_snake_case , default=_snake_case , help=( 'A jbl file containing tokenized data which can be split as objective dataset, ' 'train_dataset and test_dataset.' ) , ) parser.add_argument( '--igf_data_file' , type=_snake_case , default=_snake_case , help='A jbl file containing the context and information gain pairs to train secondary learner.' , ) parser.add_argument( '--output_dir' , default=_snake_case , type=_snake_case , required=_snake_case , help='The output directory where the final fine-tuned model is stored.' , ) parser.add_argument( '--tokenizer_name' , default=_snake_case , type=_snake_case , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument('--seed' , type=_snake_case , default=_snake_case , help='A seed for reproducible training.' ) parser.add_argument( '--context_len' , default=32 , type=_snake_case , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--size_objective_set' , default=100 , type=_snake_case , help='number of articles that are long enough to be used as our objective set' , ) parser.add_argument( '--eval_freq' , default=100 , type=_snake_case , help='secondary model evaluation is triggered at eval_freq' ) parser.add_argument('--max_steps' , default=1000 , type=_snake_case , help='To calculate training epochs' ) parser.add_argument( '--secondary_learner_batch_size' , default=128 , type=_snake_case , help='batch size of training data for secondary learner' , ) parser.add_argument( '--batch_size' , default=16 , type=_snake_case , help='batch size of training data of language model(gpt2) ' ) parser.add_argument( '--eval_interval' , default=10 , type=_snake_case , help=( 'decay the selectivity of our secondary learner filter from' '1 standard deviation above average to 1 below average after 10 batches' ) , ) parser.add_argument( '--number' , default=100 , type=_snake_case , help='The number of examples split to be used as objective_set/test_data' ) parser.add_argument( '--min_len' , default=1026 , type=_snake_case , help='The minimum length of the article to be used as objective set' ) parser.add_argument( '--secondary_learner_max_epochs' , default=15 , type=_snake_case , help='number of epochs to train secondary learner' ) parser.add_argument('--trim' , default=_snake_case , type=_snake_case , help='truncate the example if it exceeds context length' ) parser.add_argument( '--threshold' , default=1.0 , type=_snake_case , help=( 'The threshold value used by secondary learner to filter the train_data and allow only' ' informative data as input to the model' ) , ) parser.add_argument('--finetuned_model_name' , default='gpt2_finetuned.pt' , type=_snake_case , help='finetuned_model_name' ) parser.add_argument( '--recopy_model' , default=_snake_case , type=_snake_case , help='Reset the model to the original pretrained GPT-2 weights after each iteration' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=_snake_case , data_file='data/tokenized_stories_train_wikitext103.jbl' , igf_data_file='igf_context_pairs.jbl' , ) # Load train data for secondary learner __a =joblib.load('data/IGF_values.jbl' ) # Train secondary learner __a =training_secondary_learner( _snake_case , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='igf_model.pt' , ) # load pretrained gpt2 model __a =GPTaLMHeadModel.from_pretrained('gpt2' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model __a , __a =generate_datasets( context_len=32 , file='data/tokenized_stories_train_wikitext103.jbl' , number=100 , min_len=1026 , trim=_snake_case ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( _snake_case , _snake_case , _snake_case , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=_snake_case , secondary_learner=_snake_case , eval_interval=10 , finetuned_model_name='gpt2_finetuned.pt' , ) if __name__ == "__main__": main()
366
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __magic_name__ ( unittest.TestCase , lowerCAmelCase_ ): def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =load_tool('text-to-speech' ) self.tool.setup() def __magic_name__ ( self ) -> Dict: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) __a =self.tool('hey' ) __a =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) __a =self.tool('hey' ) __a =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) )
308
0
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def UpperCamelCase_( ): """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(_snake_case ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def UpperCamelCase_( ): """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def UpperCamelCase_( ): """simple docstring""" with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(_snake_case ): http_head('https://huggingface.co' )
367
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> int: '''simple docstring''' __a =[] __a =[] for i in range(self.num_layers ): __a =self.in_channels if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =resnets __a =attentions if self.add_downsample: __a =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> Optional[Any]: '''simple docstring''' __a =() for resnet, attn in zip(self.resnets , self.attentions ): __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __a =self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> int: '''simple docstring''' __a =[] for i in range(self.num_layers ): __a =self.in_channels if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets if self.add_downsample: __a =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case=True ) -> Optional[int]: '''simple docstring''' __a =() for resnet in self.resnets: __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __a =self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =[] __a =[] for i in range(self.num_layers ): __a =self.in_channels if (i == self.num_layers - 1) else self.out_channels __a =self.prev_output_channel if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =resnets __a =attentions if self.add_upsample: __a =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[Any]: '''simple docstring''' for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states __a =res_hidden_states_tuple[-1] __a =res_hidden_states_tuple[:-1] __a =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __a =self.upsamplers_a(__snake_case ) return hidden_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =[] for i in range(self.num_layers ): __a =self.in_channels if (i == self.num_layers - 1) else self.out_channels __a =self.prev_output_channel if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets if self.add_upsample: __a =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[Any]: '''simple docstring''' for resnet in self.resnets: # pop res hidden states __a =res_hidden_states_tuple[-1] __a =res_hidden_states_tuple[:-1] __a =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __a =self.upsamplers_a(__snake_case ) return hidden_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # there is always at least one resnet __a =[ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] __a =[] for _ in range(self.num_layers ): __a =FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets __a =attentions def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[str]: '''simple docstring''' __a =self.resnets[0](__snake_case , __snake_case ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) return hidden_states
308
0
import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline _lowerCAmelCase : List[str] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def UpperCamelCase_( _snake_case : Optional[int] , _snake_case : tuple , _snake_case : Path , _snake_case : Any , _snake_case : Any , _snake_case : Union[str, Any] , _snake_case : Union[str, Any] , _snake_case : int=False , ): """simple docstring""" output_path.parent.mkdir(parents=_snake_case , exist_ok=_snake_case ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( _snake_case , _snake_case , f=output_path.as_posix() , input_names=_snake_case , output_names=_snake_case , dynamic_axes=_snake_case , do_constant_folding=_snake_case , use_external_data_format=_snake_case , enable_onnx_checker=_snake_case , opset_version=_snake_case , ) else: export( _snake_case , _snake_case , f=output_path.as_posix() , input_names=_snake_case , output_names=_snake_case , dynamic_axes=_snake_case , do_constant_folding=_snake_case , opset_version=_snake_case , ) @torch.no_grad() def UpperCamelCase_( _snake_case : str , _snake_case : str , _snake_case : int , _snake_case : bool = False ): """simple docstring""" __a =torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __a ='cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: __a ='cpu' __a =StableDiffusionPipeline.from_pretrained(_snake_case , torch_dtype=_snake_case ).to(_snake_case ) __a =Path(_snake_case ) # TEXT ENCODER __a =pipeline.text_encoder.config.max_position_embeddings __a =pipeline.text_encoder.config.hidden_size __a =pipeline.tokenizer( 'A sample prompt' , padding='max_length' , max_length=pipeline.tokenizer.model_max_length , truncation=_snake_case , return_tensors='pt' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=_snake_case , dtype=torch.intaa )) , output_path=output_path / 'text_encoder' / 'model.onnx' , ordered_input_names=['input_ids'] , output_names=['last_hidden_state', 'pooler_output'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'sequence'}, } , opset=_snake_case , ) del pipeline.text_encoder # UNET __a =pipeline.unet.config.in_channels __a =pipeline.unet.config.sample_size __a =output_path / 'unet' / 'model.onnx' onnx_export( pipeline.unet , model_args=( torch.randn(2 , _snake_case , _snake_case , _snake_case ).to(device=_snake_case , dtype=_snake_case ), torch.randn(2 ).to(device=_snake_case , dtype=_snake_case ), torch.randn(2 , _snake_case , _snake_case ).to(device=_snake_case , dtype=_snake_case ), False, ) , output_path=_snake_case , ordered_input_names=['sample', 'timestep', 'encoder_hidden_states', 'return_dict'] , output_names=['out_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'timestep': {0: 'batch'}, 'encoder_hidden_states': {0: 'batch', 1: 'sequence'}, } , opset=_snake_case , use_external_data_format=_snake_case , ) __a =str(unet_path.absolute().as_posix() ) __a =os.path.dirname(_snake_case ) __a =onnx.load(_snake_case ) # clean up existing tensor files shutil.rmtree(_snake_case ) os.mkdir(_snake_case ) # collate external tensor files into one onnx.save_model( _snake_case , _snake_case , save_as_external_data=_snake_case , all_tensors_to_one_file=_snake_case , location='weights.pb' , convert_attribute=_snake_case , ) del pipeline.unet # VAE ENCODER __a =pipeline.vae __a =vae_encoder.config.in_channels __a =vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder __a =lambda _snake_case , _snake_case : vae_encoder.encode(_snake_case , _snake_case )[0].sample() onnx_export( _snake_case , model_args=( torch.randn(1 , _snake_case , _snake_case , _snake_case ).to(device=_snake_case , dtype=_snake_case ), False, ) , output_path=output_path / 'vae_encoder' / 'model.onnx' , ordered_input_names=['sample', 'return_dict'] , output_names=['latent_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=_snake_case , ) # VAE DECODER __a =pipeline.vae __a =vae_decoder.config.latent_channels __a =vae_decoder.config.out_channels # forward only through the decoder part __a =vae_encoder.decode onnx_export( _snake_case , model_args=( torch.randn(1 , _snake_case , _snake_case , _snake_case ).to(device=_snake_case , dtype=_snake_case ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=_snake_case , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: __a =pipeline.safety_checker __a =safety_checker.config.vision_config.num_channels __a =safety_checker.config.vision_config.image_size __a =safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , _snake_case , _snake_case , _snake_case , ).to(device=_snake_case , dtype=_snake_case ), torch.randn(1 , _snake_case , _snake_case , _snake_case ).to(device=_snake_case , dtype=_snake_case ), ) , output_path=output_path / 'safety_checker' / 'model.onnx' , ordered_input_names=['clip_input', 'images'] , output_names=['out_images', 'has_nsfw_concepts'] , dynamic_axes={ 'clip_input': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'images': {0: 'batch', 1: 'height', 2: 'width', 3: 'channels'}, } , opset=_snake_case , ) del pipeline.safety_checker __a =OnnxRuntimeModel.from_pretrained(output_path / 'safety_checker' ) __a =pipeline.feature_extractor else: __a =None __a =None __a =OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_encoder' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_decoder' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'text_encoder' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / 'unet' ) , scheduler=pipeline.scheduler , safety_checker=_snake_case , feature_extractor=_snake_case , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(_snake_case ) print('ONNX pipeline saved to' , _snake_case ) del pipeline del onnx_pipeline __a =OnnxStableDiffusionPipeline.from_pretrained(_snake_case , provider='CPUExecutionProvider' ) print('ONNX pipeline is loadable' ) if __name__ == "__main__": _lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") _lowerCAmelCase : List[str] = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
368
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_5_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self ) -> int: '''simple docstring''' if self.framework == "pytorch": subprocess.run( f'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding='utf-8' , check=__snake_case , ) assert hasattr(self , 'env' ) def __magic_name__ ( self , __snake_case ) -> int: '''simple docstring''' __a =f'{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}' # distributed data settings __a ={'smdistributed': {'dataparallel': {'enabled': True}}} if self.script != 'run_ddp.py' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__snake_case , instance_count=__snake_case , instance_type=self.instance_type , debugger_hook_config=__snake_case , hyperparameters={**self.env.distributed_hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__snake_case , py_version='py36' , ) def __magic_name__ ( self , __snake_case ) -> Optional[Any]: '''simple docstring''' TrainingJobAnalytics(__snake_case ).export_csv(f'{self.env.test_path}/{job_name}_metrics.csv' ) @parameterized.expand([(2,)] ) def __magic_name__ ( self , __snake_case ) -> Optional[int]: '''simple docstring''' # create estimator __a =self.create_estimator(__snake_case ) # run training estimator.fit() # result dataframe __a =TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __a =list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) __a =list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __a =( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'{estimator.latest_training_job.name}.json' , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , __snake_case )
308
0
from __future__ import annotations import time import numpy as np _lowerCAmelCase : List[str] = [8, 5, 9, 7] _lowerCAmelCase : List[str] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] _lowerCAmelCase : List[Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class __magic_name__ : def __init__( self , __snake_case , __snake_case , __snake_case , ) -> None: '''simple docstring''' __a =claim_vector __a =allocated_resources_table __a =maximum_claim_table def __magic_name__ ( self ) -> list[int]: '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def __magic_name__ ( self ) -> list[int]: '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def __magic_name__ ( self ) -> list[list[int]]: '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__snake_case ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def __magic_name__ ( self ) -> dict[int, list[int]]: '''simple docstring''' return {self.__need().index(__snake_case ): i for i in self.__need()} def __magic_name__ ( self , **__snake_case ) -> None: '''simple docstring''' __a =self.__need() __a =self.__allocated_resources_table __a =self.__available_resources() __a =self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: __a =False for each_need in need_list: __a =True for index, need in enumerate(__snake_case ): if need > available_resources[index]: __a =False break if execution: __a =True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __a =original_need_index print(f'Process {process_number + 1} is executing.' ) # remove the process run from stack need_list.remove(__snake_case ) # update available/freed resources stack __a =np.array(__snake_case ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(__snake_case ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( f'P{self.__allocated_resources_table.index(__snake_case ) + 1}' + ' '.join(f'{it:>8}' for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( f'P{self.__maximum_claim_table.index(__snake_case ) + 1}' + ' '.join(f'{it:>8}' for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(__snake_case ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(__snake_case ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
369
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _lowerCAmelCase : List[Any] = logging.getLogger(__name__) _lowerCAmelCase : Optional[Any] = "Hello world! cécé herlolip" _lowerCAmelCase : str = namedtuple( "BertAbsConfig", [ "temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout", ], ) def UpperCamelCase_( _snake_case : str , _snake_case : List[Any] ): """simple docstring""" __a =BertAbsConfig( temp_dir='.' , finetune_bert=_snake_case , large=_snake_case , share_emb=_snake_case , use_bert_emb=_snake_case , encoder='bert' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) __a =torch.load(_snake_case , lambda _snake_case , _snake_case : storage ) __a =AbsSummarizer(_snake_case , torch.device('cpu' ) , _snake_case ) original.eval() __a =BertAbsSummarizer(_snake_case , torch.device('cpu' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('convert the model' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('Make sure that the models\' outputs are identical' ) __a =BertTokenizer.from_pretrained('bert-base-uncased' ) # prepare the model inputs __a =tokenizer.encode('This is sample éàalj\'-.' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_snake_case )) ) __a =torch.tensor(_snake_case ).unsqueeze(0 ) __a =tokenizer.encode('This is sample 3 éàalj\'-.' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_snake_case )) ) __a =torch.tensor(_snake_case ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __a =encoder_input_ids __a =decoder_input_ids __a =__a =None __a =None __a =__a =None __a =__a =None __a =None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __a =original(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )[0] __a =original.generator(_snake_case ) __a =new_model( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )[0] __a =new_model.generator(_snake_case ) __a =torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_snake_case ) ) __a =torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_snake_case ) ) __a =torch.allclose(_snake_case , _snake_case , atol=1e-3 ) if are_identical: logging.info('all weights are equal up to 1e-3' ) else: raise ValueError('the weights are different. The new model is likely different from the original one.' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('saving the model\'s state dictionary' ) torch.save( new_model.state_dict() , './bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--bertabs_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model.", ) _lowerCAmelCase : Optional[Any] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
308
0
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer SCREAMING_SNAKE_CASE = False def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' super().setUp() __a =['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] __a =dict(zip(__snake_case , range(len(__snake_case ) ) ) ) __a =['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] __a ={'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__snake_case ) ) def __magic_name__ ( self , **__snake_case ) -> Any: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def __magic_name__ ( self , __snake_case ) -> List[Any]: '''simple docstring''' __a ='adapt act apte' __a ='adapt act apte' return input_text, output_text def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __a ='adapt act apte' __a =['adapt', 'act', 'ap@@', 'te'] __a =tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) __a =[tokenizer.bos_token] + tokens + [tokenizer.eos_token] __a =[0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1384] __a ='I am a small frog.' __a =tok([src_text] , padding=__snake_case , truncation=__snake_case )['input_ids'] __a =tok.batch_decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) __a ='I am a small frog .' __a ='.' __a =tok(__snake_case )['input_ids'] __a =tok(__snake_case )['input_ids'] assert encoded[-1] == encoded_dot[0]
370
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ : def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=False , __snake_case=False , __snake_case=False , __snake_case=2 , __snake_case=99 , __snake_case=0 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=0.1 , __snake_case=0.1 , __snake_case=512 , __snake_case=2 , __snake_case=0.02 , __snake_case=2 , __snake_case=4 , __snake_case="last" , __snake_case=True , __snake_case=None , __snake_case=0 , ) -> Optional[Any]: '''simple docstring''' __a =parent __a =batch_size __a =seq_length __a =is_training __a =use_input_lengths __a =use_token_type_ids __a =use_labels __a =gelu_activation __a =sinusoidal_embeddings __a =causal __a =asm __a =n_langs __a =vocab_size __a =n_special __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =max_position_embeddings __a =type_sequence_label_size __a =initializer_range __a =num_labels __a =num_choices __a =summary_type __a =use_proj __a =scope __a =bos_token_id def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a =random_attention_mask([self.batch_size, self.seq_length] ) __a =None if self.use_input_lengths: __a =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __a =None if self.use_token_type_ids: __a =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __a =None __a =None __a =None if self.use_labels: __a =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a =ids_tensor([self.batch_size] , 2 ).float() __a =ids_tensor([self.batch_size] , self.num_choices ) __a =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __magic_name__ ( self ) -> Any: '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> List[Any]: '''simple docstring''' __a =XLMModel(config=__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , lengths=__snake_case , langs=__snake_case ) __a =model(__snake_case , langs=__snake_case ) __a =model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Optional[int]: '''simple docstring''' __a =XLMWithLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Dict: '''simple docstring''' __a =XLMForQuestionAnsweringSimple(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) __a =outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> List[Any]: '''simple docstring''' __a =XLMForQuestionAnswering(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , p_mask=__snake_case , ) __a =model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , ) ((__a) , ) =result_with_labels.to_tuple() __a =model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) ((__a) , ) =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Optional[Any]: '''simple docstring''' __a =XLMForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Any: '''simple docstring''' __a =self.num_labels __a =XLMForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Tuple: '''simple docstring''' __a =self.num_choices __a =XLMForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() __a =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) =config_and_inputs __a ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable SCREAMING_SNAKE_CASE = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> int: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __magic_name__ ( self , __snake_case , __snake_case , __snake_case=False ) -> str: '''simple docstring''' __a =super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __a =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) __a =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =XLMModelTester(self ) __a =ConfigTester(self , config_class=__snake_case , emb_dim=37 ) def __magic_name__ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=False , __snake_case=1 ) -> Optional[Any]: '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_attentions in attentions] , [True] * len(__snake_case ) ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__snake_case ): # adds PAD dummy token __a =min_length + idx + 1 __a =min_length + idx + 1 __a =( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__snake_case ) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=False , __snake_case=1 ) -> Dict: '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_hidden_states in hidden_states] , [True] * len(__snake_case ) , ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__snake_case ): # adds PAD dummy token __a =min_length + idx + 1 __a =(batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__snake_case ) , ) pass @slow def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a =XLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class __magic_name__ ( unittest.TestCase ): @slow def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(__snake_case ) __a =torch.tensor([[14, 447]] , dtype=torch.long , device=__snake_case ) # the president __a =[ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __a =model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __snake_case )
308
0
"""simple docstring""" from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _lowerCAmelCase : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ ): @register_to_config def __init__( self , __snake_case , __snake_case = None , __snake_case = None ) -> Dict: '''simple docstring''' super().__init__() __a =learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" __a =torch.zeros(__snake_case , __snake_case ) else: __a =None __a =torch.nn.Parameter(__snake_case ) class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 4_2 SCREAMING_SNAKE_CASE = 4_2 SCREAMING_SNAKE_CASE = 4_2 SCREAMING_SNAKE_CASE = 4_2 SCREAMING_SNAKE_CASE = 4_2 SCREAMING_SNAKE_CASE = 4_2 def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Any: '''simple docstring''' super().__init__() self.register_modules( vqvae=__snake_case , transformer=__snake_case , text_encoder=__snake_case , tokenizer=__snake_case , scheduler=__snake_case , learned_classifier_free_sampling_embeddings=__snake_case , ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case ) -> str: '''simple docstring''' __a =len(__snake_case ) if isinstance(__snake_case , __snake_case ) else 1 # get prompt text embeddings __a =self.tokenizer( __snake_case , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) __a =text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __a =self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f' {self.tokenizer.model_max_length} tokens: {removed_text}' ) __a =text_input_ids[:, : self.tokenizer.model_max_length] __a =self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 __a =prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=__snake_case ) # duplicate text embeddings for each generation per prompt __a =prompt_embeds.repeat_interleave(__snake_case , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: __a =self.learned_classifier_free_sampling_embeddings.embeddings __a =negative_prompt_embeds.unsqueeze(0 ).repeat(__snake_case , 1 , 1 ) else: __a =[''] * batch_size __a =text_input_ids.shape[-1] __a =self.tokenizer( __snake_case , padding='max_length' , max_length=__snake_case , truncation=__snake_case , return_tensors='pt' , ) __a =self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings __a =negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=__snake_case ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __a =negative_prompt_embeds.shape[1] __a =negative_prompt_embeds.repeat(1 , __snake_case , 1 ) __a =negative_prompt_embeds.view(batch_size * num_images_per_prompt , __snake_case , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __a =torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , __snake_case , __snake_case = 100 , __snake_case = 5.0 , __snake_case = 1.0 , __snake_case = 1 , __snake_case = None , __snake_case = None , __snake_case = "pil" , __snake_case = True , __snake_case = None , __snake_case = 1 , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' if isinstance(__snake_case , __snake_case ): __a =1 elif isinstance(__snake_case , __snake_case ): __a =len(__snake_case ) else: raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(__snake_case )}' ) __a =batch_size * num_images_per_prompt __a =guidance_scale > 1.0 __a =self._encode_prompt(__snake_case , __snake_case , __snake_case ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__snake_case , __snake_case ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(__snake_case )}.' ) # get the initial completely masked latents unless the user supplied it __a =(batch_size, self.transformer.num_latent_pixels) if latents is None: __a =self.transformer.num_vector_embeds - 1 __a =torch.full(__snake_case , __snake_case ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( 'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,' f' {self.transformer.num_vector_embeds - 1} (inclusive).' ) __a =latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__snake_case , device=self.device ) __a =self.scheduler.timesteps.to(self.device ) __a =latents for i, t in enumerate(self.progress_bar(__snake_case ) ): # expand the sample if we are doing classifier free guidance __a =torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` __a =self.transformer(__snake_case , encoder_hidden_states=__snake_case , timestep=__snake_case ).sample if do_classifier_free_guidance: __a , __a =model_output.chunk(2 ) __a =model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(__snake_case , dim=1 , keepdim=__snake_case ) __a =self.truncate(__snake_case , __snake_case ) # remove `log(0)`'s (`-inf`s) __a =model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 __a =self.scheduler.step(__snake_case , timestep=__snake_case , sample=__snake_case , generator=__snake_case ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__snake_case , __snake_case , __snake_case ) __a =self.vqvae.config.vq_embed_dim __a =(batch_size, self.transformer.height, self.transformer.width, embedding_channels) __a =self.vqvae.quantize.get_codebook_entry(__snake_case , shape=__snake_case ) __a =self.vqvae.decode(__snake_case , force_not_quantize=__snake_case ).sample __a =(image / 2 + 0.5).clamp(0 , 1 ) __a =image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __a =self.numpy_to_pil(__snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case ) -> torch.FloatTensor: '''simple docstring''' __a , __a =torch.sort(__snake_case , 1 , descending=__snake_case ) __a =torch.exp(__snake_case ) __a =sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out __a =torch.full_like(keep_mask[:, 0:1, :] , __snake_case ) __a =torch.cat((all_true, keep_mask) , dim=1 ) __a =keep_mask[:, :-1, :] __a =keep_mask.gather(1 , indices.argsort(1 ) ) __a =log_p_x_0.clone() __a =-torch.inf # -inf = log(0) return rv
371
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake _lowerCAmelCase : Optional[Any] = numpy.array([0, 0]) _lowerCAmelCase : Dict = numpy.array([0.5, 0.8660254]) _lowerCAmelCase : Any = numpy.array([1, 0]) _lowerCAmelCase : int = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCamelCase_( _snake_case : list[numpy.ndarray] , _snake_case : int ): """simple docstring""" __a =initial_vectors for _ in range(_snake_case ): __a =iteration_step(_snake_case ) return vectors def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =[] for i, start_vector in enumerate(vectors[:-1] ): __a =vectors[i + 1] new_vectors.append(_snake_case ) __a =end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCamelCase_( _snake_case : numpy.ndarray , _snake_case : float ): """simple docstring""" __a =numpy.radians(_snake_case ) __a , __a =numpy.cos(_snake_case ), numpy.sin(_snake_case ) __a =numpy.array(((c, -s), (s, c)) ) return numpy.dot(_snake_case , _snake_case ) def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() __a , __a =zip(*_snake_case ) plt.plot(_snake_case , _snake_case ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : List[Any] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
308
0
from __future__ import annotations import math from collections.abc import Callable def SCREAMING_SNAKE_CASE_( _snake_case : Callable[[int | float], int | float] , _snake_case : int | float , _snake_case : int | float , _snake_case : int = 100 , ): """simple docstring""" __a =x_start __a =fnc(_snake_case ) __a =0.0 for _ in range(_snake_case ): # Approximates curve as a sequence of linear lines and sums their length __a =(x_end - x_start) / steps + xa __a =fnc(_snake_case ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step __a =xa __a =fxa return length if __name__ == "__main__": def SCREAMING_SNAKE_CASE_( _snake_case : Dict ): """simple docstring""" return math.sin(10 * x ) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") _lowerCAmelCase : Union[str, Any] = 10 while i <= 100_000: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
350
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Tuple = { "configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MegatronBertForCausalLM", "MegatronBertForMaskedLM", "MegatronBertForMultipleChoice", "MegatronBertForNextSentencePrediction", "MegatronBertForPreTraining", "MegatronBertForQuestionAnswering", "MegatronBertForSequenceClassification", "MegatronBertForTokenClassification", "MegatronBertModel", "MegatronBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys _lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
0
from math import sqrt def UpperCamelCase_( _snake_case : int ): """simple docstring""" __a =0 for i in range(1 , int(sqrt(_snake_case ) + 1 ) ): if n % i == 0 and i != sqrt(_snake_case ): total += i + n // i elif i == sqrt(_snake_case ): total += i return total - n def UpperCamelCase_( _snake_case : int = 10000 ): """simple docstring""" __a =sum( i for i in range(1 , _snake_case ) if sum_of_divisors(sum_of_divisors(_snake_case ) ) == i and sum_of_divisors(_snake_case ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
351
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __magic_name__ : @staticmethod def __magic_name__ ( *__snake_case , **__snake_case ) -> List[str]: '''simple docstring''' pass def UpperCamelCase_( _snake_case : Image ): """simple docstring""" __a =hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __magic_name__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def __magic_name__ ( self , __snake_case , __snake_case , __snake_case ) -> Dict: '''simple docstring''' __a =DepthEstimationPipeline(model=__snake_case , image_processor=__snake_case ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __magic_name__ ( self , __snake_case , __snake_case ) -> Tuple: '''simple docstring''' __a =depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , __snake_case ) import datasets __a =datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) __a =depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , __snake_case , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' pass @slow @require_torch def __magic_name__ ( self ) -> int: '''simple docstring''' __a ='Intel/dpt-large' __a =pipeline('depth-estimation' , model=__snake_case ) __a =depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) __a =hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.662 ) @require_torch def __magic_name__ ( self ) -> Any: '''simple docstring''' # This is highly irregular to have no small tests. self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
308
0
from __future__ import annotations def UpperCamelCase_( _snake_case : int = 4 ): """simple docstring""" __a =abs(_snake_case ) or 4 return [[1 + x + y * row_size for x in range(_snake_case )] for y in range(_snake_case )] def UpperCamelCase_( _snake_case : list[list[int]] ): """simple docstring""" return reverse_row(transpose(_snake_case ) ) # OR.. transpose(reverse_column(matrix)) def UpperCamelCase_( _snake_case : list[list[int]] ): """simple docstring""" return reverse_row(reverse_column(_snake_case ) ) # OR.. reverse_column(reverse_row(matrix)) def UpperCamelCase_( _snake_case : list[list[int]] ): """simple docstring""" return reverse_column(transpose(_snake_case ) ) # OR.. transpose(reverse_row(matrix)) def UpperCamelCase_( _snake_case : list[list[int]] ): """simple docstring""" __a =[list(_snake_case ) for x in zip(*_snake_case )] return matrix def UpperCamelCase_( _snake_case : list[list[int]] ): """simple docstring""" __a =matrix[::-1] return matrix def UpperCamelCase_( _snake_case : list[list[int]] ): """simple docstring""" __a =[x[::-1] for x in matrix] return matrix def UpperCamelCase_( _snake_case : list[list[int]] ): """simple docstring""" for i in matrix: print(*_snake_case ) if __name__ == "__main__": _lowerCAmelCase : Any = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 90 counterclockwise:\n") print_matrix(rotate_aa(matrix)) _lowerCAmelCase : Union[str, Any] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 180:\n") print_matrix(rotate_aaa(matrix)) _lowerCAmelCase : Any = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 270 counterclockwise:\n") print_matrix(rotate_aaa(matrix))
352
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _lowerCAmelCase : Optional[int] = logging.getLogger(__name__) _lowerCAmelCase : Any = "pytorch_model.bin" @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co.'} , ) @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field(metadata={'help': 'A csv or a json file containing the training data.'} ) SCREAMING_SNAKE_CASE = dataclasses.field(metadata={'help': 'A csv or a json file containing the data to predict on.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the validation data.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'The name of the task to train on.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'The list of labels for the task.'} ) @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field( metadata={'help': 'The output directory where the model predictions and checkpoints will be written.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default='accuracy' , metadata={'help': 'The evaluation metric used for the task.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default='no' , metadata={ 'help': 'The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]' } , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=1_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0 , metadata={ 'help': 'How much the specified evaluation metric must improve to satisfy early stopping conditions.' } , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the confidence score.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the validation performance.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to fine-tune on labeled data after pseudo training.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0 , metadata={'help': 'Confidence threshold for pseudo-labeled data filtering.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=1_0_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Random seed for initialization.'} , ) def UpperCamelCase_( _snake_case : int , _snake_case : str , _snake_case : Optional[int] , _snake_case : str , _snake_case : Union[str, Any] , _snake_case : List[Any] ): """simple docstring""" __a =datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: __a =dataset.filter(lambda _snake_case : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 __a =int(eval_result * len(_snake_case ) ) print(_snake_case ) __a =dataset.sort('probability' , reverse=_snake_case ) __a =dataset.select(range(_snake_case ) ) __a =dataset.remove_columns(['label', 'probability'] ) __a =dataset.rename_column('prediction' , 'label' ) __a =dataset.map(lambda _snake_case : {"label": idalabel[example["label"]]} ) __a =dataset.shuffle(seed=args.seed ) __a =os.path.join(_snake_case , F'train_pseudo.{args.data_file_extension}' ) if args.data_file_extension == "csv": dataset.to_csv(_snake_case , index=_snake_case ) else: dataset.to_json(_snake_case ) def UpperCamelCase_( _snake_case : List[Any] , _snake_case : str , _snake_case : int , _snake_case : Optional[int] , **_snake_case : List[str] ): """simple docstring""" __a =Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() __a =STModelArguments(model_name_or_path=_snake_case ) __a =STDataArguments(train_file=_snake_case , infer_file=_snake_case ) __a =STTrainingArguments(output_dir=_snake_case ) __a =argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(_snake_case ).items(): setattr(_snake_case , _snake_case , _snake_case ) for key, value in kwargs.items(): if hasattr(_snake_case , _snake_case ): setattr(_snake_case , _snake_case , _snake_case ) # Sanity checks __a ={} __a =None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None __a =args.train_file __a =args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None __a =args.eval_file for key in data_files: __a =data_files[key].split('.' )[-1] assert extension in ["csv", "json"], F'`{key}_file` should be a csv or a json file.' if args.data_file_extension is None: __a =extension else: assert extension == args.data_file_extension, F'`{key}_file` should be a {args.data_file_extension} file`.' assert ( args.eval_metric in datasets.list_metrics() ), F'{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('Creating the initial data directory for self-training...' ) __a =F'{args.output_dir}/self-train_iter-{{}}'.format __a =data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=_snake_case ) os.makedirs(_snake_case , exist_ok=_snake_case ) accelerator.wait_for_everyone() __a =None __a =None __a =0 __a =False # Show the progress bar __a =tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): __a =data_dir_format(_snake_case ) assert os.path.exists(_snake_case ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 __a =os.path.join(_snake_case , 'stage-1' ) __a ={ 'accelerator': accelerator, 'model_name_or_path': args.model_name_or_path, 'cache_dir': args.cache_dir, 'do_train': True, 'train_file': data_files['train'] if iteration == 0 else data_files['train_pseudo'], 'do_eval': True if args.eval_file is not None else False, 'eval_file': data_files['eval'], 'do_predict': True, 'infer_file': data_files['infer'], 'task_name': args.task_name, 'label_list': args.label_list, 'output_dir': current_output_dir, 'eval_metric': args.eval_metric, 'evaluation_strategy': args.evaluation_strategy, 'early_stopping_patience': args.early_stopping_patience, 'early_stopping_threshold': args.early_stopping_threshold, 'seed': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(_snake_case , _snake_case ): arguments_dict.update({key: value} ) __a =os.path.join(_snake_case , 'best-checkpoint' , _snake_case ) if os.path.exists(_snake_case ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.' , _snake_case , _snake_case , ) else: logger.info('***** Running self-training: iteration: %d, stage: 1 *****' , _snake_case ) finetune(**_snake_case ) accelerator.wait_for_everyone() assert os.path.exists(_snake_case ) logger.info('Self-training job completed: iteration: %d, stage: 1.' , _snake_case ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data __a =os.path.join(_snake_case , 'best-checkpoint' ) __a =os.path.join(_snake_case , 'stage-2' ) # Update arguments_dict __a =model_path __a =data_files['train'] __a =current_output_dir __a =os.path.join(_snake_case , 'best-checkpoint' , _snake_case ) if os.path.exists(_snake_case ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.' , _snake_case , _snake_case , ) else: logger.info('***** Running self-training: iteration: %d, stage: 2 *****' , _snake_case ) finetune(**_snake_case ) accelerator.wait_for_everyone() assert os.path.exists(_snake_case ) logger.info('Self-training job completed: iteration: %d, stage: 2.' , _snake_case ) __a =iteration __a =data_dir_format(iteration + 1 ) __a =AutoConfig.from_pretrained(os.path.join(_snake_case , 'best-checkpoint' ) ) __a =config.idalabel __a =os.path.join(_snake_case , 'eval_results_best-checkpoint.json' ) __a =os.path.join(_snake_case , 'test_results_best-checkpoint.json' ) assert os.path.exists(_snake_case ) with open(_snake_case , 'r' ) as f: __a =float(json.load(_snake_case )[args.eval_metric] ) __a =os.path.join(_snake_case , 'infer_output_best-checkpoint.csv' ) assert os.path.exists(_snake_case ) # Loading the dataset from local csv or json files. __a =load_dataset(args.data_file_extension , data_files={'data': data_files['infer']} )['data'] __a =load_dataset('csv' , data_files={'data': infer_output_file} )['data'] if accelerator.is_main_process: os.makedirs(_snake_case , exist_ok=_snake_case ) shutil.copy(_snake_case , os.path.join(_snake_case , F'eval_results_iter-{iteration}.json' ) ) if os.path.exists(_snake_case ): shutil.copy(_snake_case , os.path.join(_snake_case , F'test_results_iter-{iteration}.json' ) ) create_pseudo_labeled_data(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) accelerator.wait_for_everyone() __a =os.path.join(_snake_case , F'train_pseudo.{args.data_file_extension}' ) if args.evaluation_strategy != IntervalStrategy.NO.value: __a =eval_result if best_iteration is None: __a =new_iteration __a =new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: __a =new_iteration __a =new_eval_result __a =0 else: if new_eval_result == best_eval_result: __a =new_iteration __a =new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: __a =True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('Best iteration: %d' , _snake_case ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , _snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_snake_case , F'eval_results_iter-{iteration}.json' ) , os.path.join(_snake_case , 'eval_results_best-iteration.json' ) , ) else: # Assume that the last iteration is the best logger.info('Best iteration: %d' , args.max_selftrain_iterations - 1 ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , _snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_snake_case , F'eval_results_iter-{args.max_selftrain_iterations - 1}.json' ) , os.path.join(_snake_case , 'eval_results_best-iteration.json' ) , )
308
0
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _lowerCAmelCase : Optional[int] = logging.getLogger(__name__) _lowerCAmelCase : Any = "pytorch_model.bin" @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co.'} , ) @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field(metadata={'help': 'A csv or a json file containing the training data.'} ) SCREAMING_SNAKE_CASE = dataclasses.field(metadata={'help': 'A csv or a json file containing the data to predict on.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the validation data.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'The name of the task to train on.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'The list of labels for the task.'} ) @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field( metadata={'help': 'The output directory where the model predictions and checkpoints will be written.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default='accuracy' , metadata={'help': 'The evaluation metric used for the task.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default='no' , metadata={ 'help': 'The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]' } , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=1_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0 , metadata={ 'help': 'How much the specified evaluation metric must improve to satisfy early stopping conditions.' } , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the confidence score.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the validation performance.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to fine-tune on labeled data after pseudo training.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0 , metadata={'help': 'Confidence threshold for pseudo-labeled data filtering.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=1_0_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Random seed for initialization.'} , ) def UpperCamelCase_( _snake_case : int , _snake_case : str , _snake_case : Optional[int] , _snake_case : str , _snake_case : Union[str, Any] , _snake_case : List[Any] ): """simple docstring""" __a =datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: __a =dataset.filter(lambda _snake_case : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 __a =int(eval_result * len(_snake_case ) ) print(_snake_case ) __a =dataset.sort('probability' , reverse=_snake_case ) __a =dataset.select(range(_snake_case ) ) __a =dataset.remove_columns(['label', 'probability'] ) __a =dataset.rename_column('prediction' , 'label' ) __a =dataset.map(lambda _snake_case : {"label": idalabel[example["label"]]} ) __a =dataset.shuffle(seed=args.seed ) __a =os.path.join(_snake_case , F'train_pseudo.{args.data_file_extension}' ) if args.data_file_extension == "csv": dataset.to_csv(_snake_case , index=_snake_case ) else: dataset.to_json(_snake_case ) def UpperCamelCase_( _snake_case : List[Any] , _snake_case : str , _snake_case : int , _snake_case : Optional[int] , **_snake_case : List[str] ): """simple docstring""" __a =Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() __a =STModelArguments(model_name_or_path=_snake_case ) __a =STDataArguments(train_file=_snake_case , infer_file=_snake_case ) __a =STTrainingArguments(output_dir=_snake_case ) __a =argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(_snake_case ).items(): setattr(_snake_case , _snake_case , _snake_case ) for key, value in kwargs.items(): if hasattr(_snake_case , _snake_case ): setattr(_snake_case , _snake_case , _snake_case ) # Sanity checks __a ={} __a =None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None __a =args.train_file __a =args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None __a =args.eval_file for key in data_files: __a =data_files[key].split('.' )[-1] assert extension in ["csv", "json"], F'`{key}_file` should be a csv or a json file.' if args.data_file_extension is None: __a =extension else: assert extension == args.data_file_extension, F'`{key}_file` should be a {args.data_file_extension} file`.' assert ( args.eval_metric in datasets.list_metrics() ), F'{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('Creating the initial data directory for self-training...' ) __a =F'{args.output_dir}/self-train_iter-{{}}'.format __a =data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=_snake_case ) os.makedirs(_snake_case , exist_ok=_snake_case ) accelerator.wait_for_everyone() __a =None __a =None __a =0 __a =False # Show the progress bar __a =tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): __a =data_dir_format(_snake_case ) assert os.path.exists(_snake_case ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 __a =os.path.join(_snake_case , 'stage-1' ) __a ={ 'accelerator': accelerator, 'model_name_or_path': args.model_name_or_path, 'cache_dir': args.cache_dir, 'do_train': True, 'train_file': data_files['train'] if iteration == 0 else data_files['train_pseudo'], 'do_eval': True if args.eval_file is not None else False, 'eval_file': data_files['eval'], 'do_predict': True, 'infer_file': data_files['infer'], 'task_name': args.task_name, 'label_list': args.label_list, 'output_dir': current_output_dir, 'eval_metric': args.eval_metric, 'evaluation_strategy': args.evaluation_strategy, 'early_stopping_patience': args.early_stopping_patience, 'early_stopping_threshold': args.early_stopping_threshold, 'seed': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(_snake_case , _snake_case ): arguments_dict.update({key: value} ) __a =os.path.join(_snake_case , 'best-checkpoint' , _snake_case ) if os.path.exists(_snake_case ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.' , _snake_case , _snake_case , ) else: logger.info('***** Running self-training: iteration: %d, stage: 1 *****' , _snake_case ) finetune(**_snake_case ) accelerator.wait_for_everyone() assert os.path.exists(_snake_case ) logger.info('Self-training job completed: iteration: %d, stage: 1.' , _snake_case ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data __a =os.path.join(_snake_case , 'best-checkpoint' ) __a =os.path.join(_snake_case , 'stage-2' ) # Update arguments_dict __a =model_path __a =data_files['train'] __a =current_output_dir __a =os.path.join(_snake_case , 'best-checkpoint' , _snake_case ) if os.path.exists(_snake_case ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.' , _snake_case , _snake_case , ) else: logger.info('***** Running self-training: iteration: %d, stage: 2 *****' , _snake_case ) finetune(**_snake_case ) accelerator.wait_for_everyone() assert os.path.exists(_snake_case ) logger.info('Self-training job completed: iteration: %d, stage: 2.' , _snake_case ) __a =iteration __a =data_dir_format(iteration + 1 ) __a =AutoConfig.from_pretrained(os.path.join(_snake_case , 'best-checkpoint' ) ) __a =config.idalabel __a =os.path.join(_snake_case , 'eval_results_best-checkpoint.json' ) __a =os.path.join(_snake_case , 'test_results_best-checkpoint.json' ) assert os.path.exists(_snake_case ) with open(_snake_case , 'r' ) as f: __a =float(json.load(_snake_case )[args.eval_metric] ) __a =os.path.join(_snake_case , 'infer_output_best-checkpoint.csv' ) assert os.path.exists(_snake_case ) # Loading the dataset from local csv or json files. __a =load_dataset(args.data_file_extension , data_files={'data': data_files['infer']} )['data'] __a =load_dataset('csv' , data_files={'data': infer_output_file} )['data'] if accelerator.is_main_process: os.makedirs(_snake_case , exist_ok=_snake_case ) shutil.copy(_snake_case , os.path.join(_snake_case , F'eval_results_iter-{iteration}.json' ) ) if os.path.exists(_snake_case ): shutil.copy(_snake_case , os.path.join(_snake_case , F'test_results_iter-{iteration}.json' ) ) create_pseudo_labeled_data(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) accelerator.wait_for_everyone() __a =os.path.join(_snake_case , F'train_pseudo.{args.data_file_extension}' ) if args.evaluation_strategy != IntervalStrategy.NO.value: __a =eval_result if best_iteration is None: __a =new_iteration __a =new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: __a =new_iteration __a =new_eval_result __a =0 else: if new_eval_result == best_eval_result: __a =new_iteration __a =new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: __a =True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('Best iteration: %d' , _snake_case ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , _snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_snake_case , F'eval_results_iter-{iteration}.json' ) , os.path.join(_snake_case , 'eval_results_best-iteration.json' ) , ) else: # Assume that the last iteration is the best logger.info('Best iteration: %d' , args.max_selftrain_iterations - 1 ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , _snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_snake_case , F'eval_results_iter-{args.max_selftrain_iterations - 1}.json' ) , os.path.join(_snake_case , 'eval_results_best-iteration.json' ) , )
353
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Any = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right _lowerCAmelCase : List[Any] = 256_047 _lowerCAmelCase : Dict = 256_145 @require_sentencepiece @require_tokenizers class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = NllbTokenizer SCREAMING_SNAKE_CASE = NllbTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = {} def __magic_name__ ( self ) -> int: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __a =NllbTokenizer(__snake_case , keep_accents=__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self ) -> int: '''simple docstring''' __a =NllbTokenizer(__snake_case , keep_accents=__snake_case ) __a =tokenizer.tokenize('This is a test' ) self.assertListEqual(__snake_case , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __a =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __a =tokenizer.convert_tokens_to_ids(__snake_case ) self.assertListEqual( __snake_case , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __a =tokenizer.convert_ids_to_tokens(__snake_case ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-nllb', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __a =self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __a =self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) __a =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=True __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=False __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) @require_torch def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' if not self.test_seqaseq: return __a =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Longer text that will definitely require truncation. __a =[ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for' ' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons' ' will only worsen the violence and misery for millions of people.', ] __a =[ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al' ' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi' ' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] try: __a =tokenizer.prepare_seqaseq_batch( src_texts=__snake_case , tgt_texts=__snake_case , max_length=3 , max_target_length=10 , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='ron_Latn' , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified __a =tokenizer.prepare_seqaseq_batch( __snake_case , tgt_texts=__snake_case , max_length=3 , return_tensors='pt' ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) __a =tokenizer.prepare_seqaseq_batch( src_texts=__snake_case , max_length=3 , max_target_length=10 , return_tensors='pt' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn('decoder_input_ids' , __snake_case ) @unittest.skip('Unfortunately way too slow to build a BPE with SentencePiece.' ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' pass def __magic_name__ ( self ) -> Tuple: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __a =[AddedToken('<special>' , lstrip=__snake_case )] __a =self.rust_tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case ) __a =tokenizer_r.encode('Hey this is a <special> token' ) __a =tokenizer_r.encode('<special>' , add_special_tokens=__snake_case )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: __a =self.rust_tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case , ) __a =self.tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case ) __a =tokenizer_p.encode('Hey this is a <special> token' ) __a =tokenizer_cr.encode('Hey this is a <special> token' ) self.assertEqual(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class __magic_name__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = 'facebook/nllb-200-distilled-600M' SCREAMING_SNAKE_CASE = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] SCREAMING_SNAKE_CASE = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] SCREAMING_SNAKE_CASE = [ 2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 8_1_6_5, 2_4_8_0_6_6, 1_4_7_3_4, 9_5_0, 1_1_3_5, 1_0_5_7_2_1, 3_5_7_3, 8_3, 2_7_3_5_2, 1_0_8, 4_9_4_8_6, 2, ] @classmethod def __magic_name__ ( cls ) -> Tuple: '''simple docstring''' __a =NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang='eng_Latn' , tgt_lang='ron_Latn' ) __a =1 return cls def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Arab'] , 25_6001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Latn'] , 25_6002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['fra_Latn'] , 25_6057 ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' self.assertIn(__snake_case , self.tokenizer.all_special_ids ) # fmt: off __a =[RO_CODE, 4254, 9_8068, 11_2923, 3_9072, 3909, 713, 10_2767, 26, 1_7314, 3_5642, 1_4683, 3_3118, 2022, 6_6987, 2, 25_6047] # fmt: on __a =self.tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) __a =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertNotIn(self.tokenizer.eos_token , __snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , __snake_case ) __a =10 __a =self.tokenizer(__snake_case , max_length=__snake_case , truncation=__snake_case ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , __snake_case ) self.assertEqual(len(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_6203, 3] ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =tempfile.mkdtemp() __a =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__snake_case ) __a =NllbTokenizer.from_pretrained(__snake_case ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __snake_case ) @require_torch def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) __a =shift_tokens_right( batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['ron_Latn'] ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) __a =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) self.assertEqual(__snake_case , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =self.tokenizer(self.src_text , padding=__snake_case , truncation=__snake_case , max_length=3 , return_tensors='pt' ) __a =self.tokenizer( text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=10 , return_tensors='pt' ) __a =targets['input_ids'] __a =shift_tokens_right( __snake_case , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( nested_simplify(__snake_case ) , { # A, test, EOS, en_XX 'input_ids': [[25_6047, 70, 7356, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_6057, } , ) @require_torch def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =True __a =self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2, 25_6047] ) __a =False __a =self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [25_6047, 1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2] )
308
0
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand _lowerCAmelCase : Optional[Any] = ( "4S 3H 2C 7S 5H", "9D 8H 2C 6S 7H", "2D 6D 9D TH 7D", "TC 8C 2S JH 6C", "JH 8S TH AH QH", "TS KS 5S 9S AC", "KD 6S 9D TH AD", "KS 8D 4D 9S 4S", # pair "8C 4S KH JS 4D", # pair "QH 8H KD JH 8S", # pair "KC 4H KS 2H 8D", # pair "KD 4S KC 3H 8S", # pair "AH 8S AS KC JH", # pair "3H 4C 4H 3S 2H", # 2 pairs "5S 5D 2C KH KH", # 2 pairs "3C KH 5D 5S KH", # 2 pairs "AS 3C KH AD KH", # 2 pairs "7C 7S 3S 7H 5S", # 3 of a kind "7C 7S KH 2H 7H", # 3 of a kind "AC KH QH AH AS", # 3 of a kind "2H 4D 3C AS 5S", # straight (low ace) "3C 5C 4C 2C 6H", # straight "6S 8S 7S 5H 9H", # straight "JS QS 9H TS KH", # straight "QC KH TS JS AH", # straight (high ace) "8C 9C 5C 3C TC", # flush "3S 8S 9S 5S KS", # flush "4C 5C 9C 8C KC", # flush "JH 8H AH KH QH", # flush "3D 2H 3H 2C 2D", # full house "2H 2C 3S 3H 3D", # full house "KH KC 3S 3H 3D", # full house "JC 6H JS JD JH", # 4 of a kind "JC 7H JS JD JH", # 4 of a kind "JC KH JS JD JH", # 4 of a kind "2S AS 4S 5S 3S", # straight flush (low ace) "2D 6D 3D 4D 5D", # straight flush "5C 6C 3C 7C 4C", # straight flush "JH 9H TH KH QH", # straight flush "JH AH TH KH QH", # royal flush (high ace straight flush) ) _lowerCAmelCase : Optional[Any] = ( ("2H 3H 4H 5H 6H", "KS AS TS QS JS", "Loss"), ("2H 3H 4H 5H 6H", "AS AD AC AH JD", "Win"), ("AS AH 2H AD AC", "JS JD JC JH 3D", "Win"), ("2S AH 2H AS AC", "JS JD JC JH AD", "Loss"), ("2S AH 2H AS AC", "2H 3H 5H 6H 7H", "Win"), ("AS 3S 4S 8S 2S", "2H 3H 5H 6H 7H", "Win"), ("2H 3H 5H 6H 7H", "2S 3H 4H 5S 6C", "Win"), ("2S 3H 4H 5S 6C", "3D 4C 5H 6H 2S", "Tie"), ("2S 3H 4H 5S 6C", "AH AC 5H 6H AS", "Win"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H AS", "Loss"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H 7S", "Win"), ("6S AD 7H 4S AS", "AH AC 5H 6H 7S", "Loss"), ("2S AH 4H 5S KC", "AH AC 5H 6H 7S", "Loss"), ("2S 3H 6H 7S 9C", "7H 3C TH 6H 9S", "Loss"), ("4S 5H 6H TS AC", "3S 5H 6H TS AC", "Win"), ("2S AH 4H 5S 6C", "AD 4C 5H 6H 2C", "Tie"), ("AS AH 3H AD AC", "AS AH 2H AD AC", "Win"), ("AH AC 5H 5C QS", "AH AC 5H 5C KS", "Loss"), ("AH AC 5H 5C QS", "KH KC 5H 5C QS", "Win"), ("7C 7S KH 2H 7H", "3C 3S AH 2H 3H", "Win"), ("3C 3S AH 2H 3H", "7C 7S KH 2H 7H", "Loss"), ("6H 5H 4H 3H 2H", "5H 4H 3H 2H AH", "Win"), ("5H 4H 3H 2H AH", "5H 4H 3H 2H AH", "Tie"), ("5H 4H 3H 2H AH", "6H 5H 4H 3H 2H", "Loss"), ("AH AD KS KC AC", "AH KD KH AC KC", "Win"), ("2H 4D 3C AS 5S", "2H 4D 3C 6S 5S", "Loss"), ("2H 3S 3C 3H 2S", "3S 3C 2S 2H 2D", "Win"), ("4D 6D 5D 2D JH", "3S 8S 3H TC KH", "Loss"), ("4S 6C 8S 3S 7S", "AD KS 2D 7D 7C", "Loss"), ("6S 4C 7H 8C 3H", "5H JC AH 9D 9C", "Loss"), ("9D 9H JH TC QH", "3C 2S JS 5C 7H", "Win"), ("2H TC 8S AD 9S", "4H TS 7H 2C 5C", "Win"), ("9D 3S 2C 7S 7C", "JC TD 3C TC 9H", "Loss"), ) _lowerCAmelCase : List[Any] = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", True), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", False), ("AS 3S 4S 8S 2S", True), ) _lowerCAmelCase : Tuple = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", False), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", True), ) _lowerCAmelCase : int = ( ("2H 4D 3C AS 5S", True, [5, 4, 3, 2, 14]), ("2H 5D 3C AS 5S", False, [14, 5, 5, 3, 2]), ("JH QD KC AS TS", False, [14, 13, 12, 11, 10]), ("9D 3S 2C 7S 7C", False, [9, 7, 7, 3, 2]), ) _lowerCAmelCase : Optional[int] = ( ("JH AH TH KH QH", 0), ("JH 9H TH KH QH", 0), ("JC KH JS JD JH", 7), ("KH KC 3S 3H 3D", 6), ("8C 9C 5C 3C TC", 0), ("JS QS 9H TS KH", 0), ("7C 7S KH 2H 7H", 3), ("3C KH 5D 5S KH", 2), ("QH 8H KD JH 8S", 1), ("2D 6D 9D TH 7D", 0), ) _lowerCAmelCase : Optional[int] = ( ("JH AH TH KH QH", 23), ("JH 9H TH KH QH", 22), ("JC KH JS JD JH", 21), ("KH KC 3S 3H 3D", 20), ("8C 9C 5C 3C TC", 19), ("JS QS 9H TS KH", 18), ("7C 7S KH 2H 7H", 17), ("3C KH 5D 5S KH", 16), ("QH 8H KD JH 8S", 15), ("2D 6D 9D TH 7D", 14), ) def UpperCamelCase_( ): """simple docstring""" __a , __a =randrange(len(_snake_case ) ), randrange(len(_snake_case ) ) __a =['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] __a , __a =SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def UpperCamelCase_( _snake_case : int = 100 ): """simple docstring""" return (generate_random_hand() for _ in range(_snake_case )) @pytest.mark.parametrize('hand, expected' , _snake_case ) def UpperCamelCase_( _snake_case : List[Any] , _snake_case : Union[str, Any] ): """simple docstring""" assert PokerHand(_snake_case )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , _snake_case ) def UpperCamelCase_( _snake_case : Any , _snake_case : int ): """simple docstring""" assert PokerHand(_snake_case )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , _snake_case ) def UpperCamelCase_( _snake_case : int , _snake_case : List[str] , _snake_case : Any ): """simple docstring""" __a =PokerHand(_snake_case ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , _snake_case ) def UpperCamelCase_( _snake_case : Optional[int] , _snake_case : str ): """simple docstring""" assert PokerHand(_snake_case )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , _snake_case ) def UpperCamelCase_( _snake_case : List[str] , _snake_case : Tuple ): """simple docstring""" assert PokerHand(_snake_case )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , _snake_case ) def UpperCamelCase_( _snake_case : List[Any] , _snake_case : List[str] , _snake_case : str ): """simple docstring""" assert PokerHand(_snake_case ).compare_with(PokerHand(_snake_case ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def UpperCamelCase_( _snake_case : Optional[int] , _snake_case : List[str] , _snake_case : Optional[Any] ): """simple docstring""" assert PokerHand(_snake_case ).compare_with(PokerHand(_snake_case ) ) == expected def UpperCamelCase_( ): """simple docstring""" __a =[PokerHand(_snake_case ) for hand in SORTED_HANDS] __a =poker_hands.copy() shuffle(_snake_case ) __a =chain(sorted(_snake_case ) ) for index, hand in enumerate(_snake_case ): assert hand == poker_hands[index] def UpperCamelCase_( ): """simple docstring""" __a =[PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=_snake_case ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def UpperCamelCase_( ): """simple docstring""" __a =PokerHand('2C 4S AS 3D 5C' ) __a =True __a =[5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def UpperCamelCase_( ): """simple docstring""" __a =0 __a =os.path.abspath(os.path.dirname(_snake_case ) ) __a =os.path.join(_snake_case , 'poker_hands.txt' ) with open(_snake_case ) as file_hand: for line in file_hand: __a =line[:14].strip() __a =line[15:].strip() __a , __a =PokerHand(_snake_case ), PokerHand(_snake_case ) __a =player.compare_with(_snake_case ) if output == "Win": answer += 1 assert answer == 376
354
def UpperCamelCase_( _snake_case : str , _snake_case : int ): """simple docstring""" return [sentence[i : i + ngram_size] for i in range(len(_snake_case ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
308
0
from __future__ import annotations from random import choice def UpperCamelCase_( _snake_case : Any ): """simple docstring""" return choice(_snake_case ) def UpperCamelCase_( _snake_case : list[int] , _snake_case : int ): """simple docstring""" __a =random_pivot(_snake_case ) # partition based on pivot # linear time __a =[e for e in lst if e < pivot] __a =[e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(_snake_case ) == k - 1: return pivot # pivot is in elements bigger than k elif len(_snake_case ) < k - 1: return kth_number(_snake_case , k - len(_snake_case ) - 1 ) # pivot is in elements smaller than k else: return kth_number(_snake_case , _snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
355
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class __magic_name__ ( pl.LightningModule ): def __init__( self , __snake_case ) -> List[Any]: '''simple docstring''' super().__init__() __a =model __a =2 __a =nn.Linear(self.model.config.hidden_size , self.num_labels ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' pass def UpperCamelCase_( _snake_case : str , _snake_case : str , _snake_case : str ): """simple docstring""" __a =LongformerModel.from_pretrained(_snake_case ) __a =LightningModel(_snake_case ) __a =torch.load(_snake_case , map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model __a =LongformerForQuestionAnswering.from_pretrained(_snake_case ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(_snake_case ) print(F'Conversion successful. Model saved under {pytorch_dump_folder_path}' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowerCAmelCase : Optional[int] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
308
0
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset _lowerCAmelCase : Optional[Any] = "bert-base-cased" _lowerCAmelCase : Optional[Any] = "google/pegasus-xsum" _lowerCAmelCase : Tuple = [" Sam ate lunch today.", "Sams lunch ingredients."] _lowerCAmelCase : List[Any] = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"] _lowerCAmelCase : Optional[Any] = "patrickvonplaten/t5-tiny-random" _lowerCAmelCase : List[Any] = "sshleifer/bart-tiny-random" _lowerCAmelCase : List[str] = "sshleifer/tiny-mbart" _lowerCAmelCase : Dict = "sshleifer/tiny-marian-en-de" def UpperCamelCase_( _snake_case : Path , _snake_case : list ): """simple docstring""" __a ='\n'.join(_snake_case ) Path(_snake_case ).open('w' ).writelines(_snake_case ) def UpperCamelCase_( _snake_case : List[str] ): """simple docstring""" for split in ["train", "val", "test"]: _dump_articles(os.path.join(_snake_case , F'{split}.source' ) , _snake_case ) _dump_articles(os.path.join(_snake_case , F'{split}.target' ) , _snake_case ) return tmp_dir class __magic_name__ ( lowerCAmelCase_ ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def __magic_name__ ( self , __snake_case ) -> Dict: '''simple docstring''' __a =AutoTokenizer.from_pretrained(__snake_case ) __a =make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __a =max(len(tokenizer.encode(__snake_case ) ) for a in ARTICLES ) __a =max(len(tokenizer.encode(__snake_case ) ) for a in SUMMARIES ) __a =4 __a =8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated __a , __a ='ro_RO', 'de_DE' # ignored for all but mbart, but never causes error. __a =SeqaSeqDataset( __snake_case , data_dir=__snake_case , type_path='train' , max_source_length=__snake_case , max_target_length=__snake_case , src_lang=__snake_case , tgt_lang=__snake_case , ) __a =DataLoader(__snake_case , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(__snake_case , __snake_case ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place __a =shift_tokens_right(batch['labels'] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __magic_name__ ( self , __snake_case ) -> int: '''simple docstring''' __a =AutoTokenizer.from_pretrained(__snake_case ) __a =make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __a =max(len(tokenizer.encode(__snake_case ) ) for a in ARTICLES ) __a =max(len(tokenizer.encode(__snake_case ) ) for a in SUMMARIES ) __a =4 __a =LegacySeqaSeqDataset( __snake_case , data_dir=__snake_case , type_path='train' , max_source_length=20 , max_target_length=__snake_case , ) __a =DataLoader(__snake_case , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =AutoTokenizer.from_pretrained('facebook/mbart-large-cc25' ) __a =Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) __a =tmp_dir.joinpath('train.source' ).open().readlines() __a =Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(__snake_case , __snake_case , 128 , __snake_case ) __a ={x.name for x in tmp_dir.iterdir()} __a ={x.name for x in save_dir.iterdir()} __a =save_dir.joinpath('train.source' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(__snake_case ) < len(__snake_case ) assert len(__snake_case ) == 1 assert len(packed_examples[0] ) == sum(len(__snake_case ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq' ) def __magic_name__ ( self ) -> Any: '''simple docstring''' if not FAIRSEQ_AVAILABLE: return __a , __a , __a =self._get_dataset(max_len=64 ) __a =64 __a =ds.make_dynamic_sampler(__snake_case , required_batch_size_multiple=__snake_case ) __a =[len(__snake_case ) for x in batch_sampler] assert len(set(__snake_case ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(__snake_case ) == len(__snake_case ) # no dropped or added examples __a =DataLoader(__snake_case , batch_sampler=__snake_case , collate_fn=ds.collate_fn , num_workers=2 ) __a =[] __a =[] for batch in data_loader: __a =batch['input_ids'].shape __a =src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple __a =np.product(batch['input_ids'].shape ) num_src_per_batch.append(__snake_case ) if num_src_tokens > (max_tokens * 1.1): failures.append(__snake_case ) assert num_src_per_batch[0] == max(__snake_case ) if failures: raise AssertionError(f'too many tokens in {len(__snake_case )} batches' ) def __magic_name__ ( self ) -> int: '''simple docstring''' __a , __a , __a =self._get_dataset(max_len=512 ) __a =2 __a =ds.make_sortish_sampler(__snake_case , shuffle=__snake_case ) __a =DataLoader(__snake_case , batch_size=__snake_case , collate_fn=ds.collate_fn , num_workers=2 ) __a =DataLoader(__snake_case , batch_size=__snake_case , collate_fn=ds.collate_fn , num_workers=2 , sampler=__snake_case ) __a =tokenizer.pad_token_id def count_pad_tokens(__snake_case , __snake_case="input_ids" ): return [batch[k].eq(__snake_case ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(__snake_case , k='labels' ) ) < sum(count_pad_tokens(__snake_case , k='labels' ) ) assert sum(count_pad_tokens(__snake_case ) ) < sum(count_pad_tokens(__snake_case ) ) assert len(__snake_case ) == len(__snake_case ) def __magic_name__ ( self , __snake_case=1000 , __snake_case=128 ) -> Optional[Any]: '''simple docstring''' if os.getenv('USE_REAL_DATA' , __snake_case ): __a ='examples/seq2seq/wmt_en_ro' __a =max_len * 2 * 64 if not Path(__snake_case ).joinpath('train.len' ).exists(): save_len_file(__snake_case , __snake_case ) else: __a ='examples/seq2seq/test_data/wmt_en_ro' __a =max_len * 4 save_len_file(__snake_case , __snake_case ) __a =AutoTokenizer.from_pretrained(__snake_case ) __a =SeqaSeqDataset( __snake_case , data_dir=__snake_case , type_path='train' , max_source_length=__snake_case , max_target_length=__snake_case , n_obs=__snake_case , ) return ds, max_tokens, tokenizer def __magic_name__ ( self ) -> Any: '''simple docstring''' __a , __a , __a =self._get_dataset() __a =set(DistributedSortishSampler(__snake_case , 256 , num_replicas=2 , rank=0 , add_extra_examples=__snake_case ) ) __a =set(DistributedSortishSampler(__snake_case , 256 , num_replicas=2 , rank=1 , add_extra_examples=__snake_case ) ) assert idsa.intersection(__snake_case ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def __magic_name__ ( self , __snake_case ) -> Any: '''simple docstring''' __a =AutoTokenizer.from_pretrained(__snake_case , use_fast=__snake_case ) if tok_name == MBART_TINY: __a =SeqaSeqDataset( __snake_case , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , ) __a =train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: __a =SeqaSeqDataset( __snake_case , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , ) __a =train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(__snake_case ) == 1 if tok_name == BART_TINY else len(__snake_case ) == 0
356
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") _lowerCAmelCase : Optional[Any] = logging.getLogger(__name__) @dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) SCREAMING_SNAKE_CASE = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) SCREAMING_SNAKE_CASE = field( default=1_0_2_4 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the training data.'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the validation data.'} ) SCREAMING_SNAKE_CASE = field(default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the test data.'} ) def __magic_name__ ( self ) -> str: '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: __a =self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __a =self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) SCREAMING_SNAKE_CASE = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def UpperCamelCase_( ): """simple docstring""" __a =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __a , __a , __a =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __a , __a , __a =parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) __a =training_args.get_process_log_level() logger.setLevel(_snake_case ) datasets.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __a =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __a =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __a =load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __a ={'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __a =data_args.train_file.split('.' )[-1] __a =data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __a =data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(F'load a local file for {key}: {data_files[key]}' ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files __a =load_dataset('csv' , data_files=_snake_case , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __a =load_dataset('json' , data_files=_snake_case , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __a =raw_datasets['train'].features['label'].names __a =len(_snake_case ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __a =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __a =TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=_snake_case , ) __a =BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __a ='max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __a =False # Some models have set the order of the labels to use, so let's make sure we do use it. __a ={'Refused': 0, 'Entailed': 1} __a ={0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __a =min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(_snake_case : Tuple ): # Tokenize the texts def _convert_table_text_to_pandas(_snake_case : Optional[Any] ): __a =[_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] __a =pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __a =examples['statement'] __a =list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) __a =tokenizer(_snake_case , _snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case ) __a =examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): __a =raw_datasets.map( _snake_case , batched=_snake_case , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) __a =raw_datasets['train'] if data_args.max_train_samples is not None: __a =train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) __a =raw_datasets['validation'] if data_args.max_eval_samples is not None: __a =eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) __a =raw_datasets['test'] if data_args.max_predict_samples is not None: __a =predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(_snake_case ) ) , 3 ): logger.info(F'Sample {index} of the training set: {train_dataset[index]}.' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_snake_case : EvalPrediction ): __a =p.predictions[0] if isinstance(p.predictions , _snake_case ) else p.predictions __a =np.argmax(_snake_case , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __a =default_data_collator elif training_args.fpaa: __a =DataCollatorWithPadding(_snake_case , pad_to_multiple_of=8 ) else: __a =None # Initialize our Trainer __a =Trainer( model=_snake_case , args=_snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_snake_case , tokenizer=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: __a =None if training_args.resume_from_checkpoint is not None: __a =training_args.resume_from_checkpoint elif last_checkpoint is not None: __a =last_checkpoint __a =trainer.train(resume_from_checkpoint=_snake_case ) __a =train_result.metrics __a =( data_args.max_train_samples if data_args.max_train_samples is not None else len(_snake_case ) ) __a =min(_snake_case , len(_snake_case ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , _snake_case ) trainer.save_metrics('train' , _snake_case ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __a =trainer.evaluate(eval_dataset=_snake_case ) __a =data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_snake_case ) __a =min(_snake_case , len(_snake_case ) ) trainer.log_metrics('eval' , _snake_case ) trainer.save_metrics('eval' , _snake_case ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __a =predict_dataset.remove_columns('label' ) __a =trainer.predict(_snake_case , metric_key_prefix='predict' ).predictions __a =np.argmax(_snake_case , axis=1 ) __a =os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(_snake_case , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(_snake_case ): __a =label_list[item] writer.write(F'{index}\t{item}\n' ) __a ={'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**_snake_case ) else: trainer.create_model_card(**_snake_case ) def UpperCamelCase_( _snake_case : Union[str, Any] ): """simple docstring""" main() if __name__ == "__main__": main()
308
0
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __magic_name__ ( tf.keras.layers.Layer ): def __init__( self , __snake_case , __snake_case , __snake_case = None , __snake_case = None ) -> Optional[int]: '''simple docstring''' super().__init__() __a =pad_token_id __a =max_length __a =vocab __a =merges __a =BytePairTokenizer(__snake_case , __snake_case , sequence_length=__snake_case ) @classmethod def __magic_name__ ( cls , __snake_case , *__snake_case , **__snake_case ) -> str: '''simple docstring''' __a =[' '.join(__snake_case ) for m in tokenizer.bpe_ranks.keys()] __a =tokenizer.get_vocab() return cls(__snake_case , __snake_case , *__snake_case , **__snake_case ) @classmethod def __magic_name__ ( cls , __snake_case , *__snake_case , **__snake_case ) -> str: '''simple docstring''' __a =GPTaTokenizer.from_pretrained(__snake_case , *__snake_case , **__snake_case ) return cls.from_tokenizer(__snake_case , *__snake_case , **__snake_case ) @classmethod def __magic_name__ ( cls , __snake_case ) -> List[str]: '''simple docstring''' return cls(**__snake_case ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def __magic_name__ ( self , __snake_case , __snake_case = None ) -> int: '''simple docstring''' __a =self.tf_tokenizer(__snake_case ) __a =tf.ones_like(__snake_case ) if self.pad_token_id is not None: # pad the tokens up to max length __a =max_length if max_length is not None else self.max_length if max_length is not None: __a , __a =pad_model_inputs( __snake_case , max_seq_length=__snake_case , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
357
from __future__ import annotations import time import numpy as np _lowerCAmelCase : List[str] = [8, 5, 9, 7] _lowerCAmelCase : List[str] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] _lowerCAmelCase : List[Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class __magic_name__ : def __init__( self , __snake_case , __snake_case , __snake_case , ) -> None: '''simple docstring''' __a =claim_vector __a =allocated_resources_table __a =maximum_claim_table def __magic_name__ ( self ) -> list[int]: '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def __magic_name__ ( self ) -> list[int]: '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def __magic_name__ ( self ) -> list[list[int]]: '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__snake_case ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def __magic_name__ ( self ) -> dict[int, list[int]]: '''simple docstring''' return {self.__need().index(__snake_case ): i for i in self.__need()} def __magic_name__ ( self , **__snake_case ) -> None: '''simple docstring''' __a =self.__need() __a =self.__allocated_resources_table __a =self.__available_resources() __a =self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: __a =False for each_need in need_list: __a =True for index, need in enumerate(__snake_case ): if need > available_resources[index]: __a =False break if execution: __a =True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __a =original_need_index print(f'Process {process_number + 1} is executing.' ) # remove the process run from stack need_list.remove(__snake_case ) # update available/freed resources stack __a =np.array(__snake_case ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(__snake_case ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( f'P{self.__allocated_resources_table.index(__snake_case ) + 1}' + ' '.join(f'{it:>8}' for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( f'P{self.__maximum_claim_table.index(__snake_case ) + 1}' + ' '.join(f'{it:>8}' for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(__snake_case ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(__snake_case ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
308
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __magic_name__ ( unittest.TestCase ): def __init__( self , __snake_case , __snake_case=7 , __snake_case=3 , __snake_case=18 , __snake_case=30 , __snake_case=400 , __snake_case=True , __snake_case=None , __snake_case=True , __snake_case=None , __snake_case=True , ) -> Optional[Any]: '''simple docstring''' __a =size if size is not None else {'shortest_edge': 20} __a =crop_size if crop_size is not None else {'height': 18, 'width': 18} __a =parent __a =batch_size __a =num_channels __a =image_size __a =min_resolution __a =max_resolution __a =do_resize __a =size __a =do_center_crop __a =crop_size __a =do_flip_channel_order def __magic_name__ ( self ) -> Dict: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = MobileViTImageProcessor if is_vision_available() else None def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =MobileViTImageProcessingTester(self ) @property def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , 'do_resize' ) ) self.assertTrue(hasattr(__snake_case , 'size' ) ) self.assertTrue(hasattr(__snake_case , 'do_center_crop' ) ) self.assertTrue(hasattr(__snake_case , 'center_crop' ) ) self.assertTrue(hasattr(__snake_case , 'do_flip_channel_order' ) ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) __a =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def __magic_name__ ( self ) -> Tuple: '''simple docstring''' pass def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a =prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input __a =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __a =image_processing(__snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a =prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input __a =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __a =image_processing(__snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a =prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input __a =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __a =image_processing(__snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
358
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency _lowerCAmelCase : Tuple = { "E": 12.70, "T": 9.06, "A": 8.17, "O": 7.51, "I": 6.97, "N": 6.75, "S": 6.33, "H": 6.09, "R": 5.99, "D": 4.25, "L": 4.03, "C": 2.78, "U": 2.76, "M": 2.41, "W": 2.36, "F": 2.23, "G": 2.02, "Y": 1.97, "P": 1.93, "B": 1.29, "V": 0.98, "K": 0.77, "J": 0.15, "X": 0.15, "Q": 0.10, "Z": 0.07, } _lowerCAmelCase : Optional[int] = "ETAOINSHRDLCUMWFGYPBVKJXQZ" _lowerCAmelCase : Any = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a ={letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def UpperCamelCase_( _snake_case : tuple ): """simple docstring""" return x[0] def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =get_letter_count(_snake_case ) __a ={ freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(_snake_case ) __a ={} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=_snake_case ) __a =''.join(freq_to_letter[freq] ) __a =list(freq_to_letter_str.items() ) freq_pairs.sort(key=_snake_case , reverse=_snake_case ) __a =[freq_pair[1] for freq_pair in freq_pairs] return "".join(_snake_case ) def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =get_frequency_order(_snake_case ) __a =0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
308
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class __magic_name__ ( unittest.TestCase ): @slow def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =TFCamembertModel.from_pretrained('jplu/tf-camembert-base' ) __a =tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __a =model(__snake_case )['last_hidden_state'] __a =tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , __snake_case ) # compare the actual values for a slice. __a =tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
359
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : int = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'swin2sr' SCREAMING_SNAKE_CASE = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , __snake_case=64 , __snake_case=1 , __snake_case=3 , __snake_case=180 , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=8 , __snake_case=2.0 , __snake_case=True , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.1 , __snake_case="gelu" , __snake_case=False , __snake_case=0.02 , __snake_case=1e-5 , __snake_case=2 , __snake_case=1.0 , __snake_case="1conv" , __snake_case="pixelshuffle" , **__snake_case , ) -> Dict: '''simple docstring''' super().__init__(**__snake_case ) __a =image_size __a =patch_size __a =num_channels __a =embed_dim __a =depths __a =len(__snake_case ) __a =num_heads __a =window_size __a =mlp_ratio __a =qkv_bias __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =drop_path_rate __a =hidden_act __a =use_absolute_embeddings __a =layer_norm_eps __a =initializer_range __a =upscale __a =img_range __a =resi_connection __a =upsampler
308
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class __magic_name__ ( unittest.TestCase ): def __init__( self , __snake_case , __snake_case=7 , __snake_case=3 , __snake_case=30 , __snake_case=400 , __snake_case=True , __snake_case=None , __snake_case=True , __snake_case=[0.5, 0.5, 0.5] , __snake_case=[0.5, 0.5, 0.5] , __snake_case=True , __snake_case=1 / 255 , __snake_case=True , ) -> List[Any]: '''simple docstring''' __a =size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} __a =parent __a =batch_size __a =num_channels __a =min_resolution __a =max_resolution __a =do_resize __a =size __a =do_normalize __a =image_mean __a =image_std __a =do_rescale __a =rescale_factor __a =do_pad def __magic_name__ ( self ) -> List[str]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __magic_name__ ( self , __snake_case , __snake_case=False ) -> List[str]: '''simple docstring''' if not batched: __a =image_inputs[0] if isinstance(__snake_case , Image.Image ): __a , __a =image.size else: __a , __a =image.shape[1], image.shape[2] if w < h: __a =int(self.size['shortest_edge'] * h / w ) __a =self.size['shortest_edge'] elif w > h: __a =self.size['shortest_edge'] __a =int(self.size['shortest_edge'] * w / h ) else: __a =self.size['shortest_edge'] __a =self.size['shortest_edge'] else: __a =[] for image in image_inputs: __a , __a =self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __a =max(__snake_case , key=lambda __snake_case : item[0] )[0] __a =max(__snake_case , key=lambda __snake_case : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = DetaImageProcessor if is_vision_available() else None def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =DetaImageProcessingTester(self ) @property def __magic_name__ ( self ) -> Dict: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , 'image_mean' ) ) self.assertTrue(hasattr(__snake_case , 'image_std' ) ) self.assertTrue(hasattr(__snake_case , 'do_normalize' ) ) self.assertTrue(hasattr(__snake_case , 'do_resize' ) ) self.assertTrue(hasattr(__snake_case , 'do_rescale' ) ) self.assertTrue(hasattr(__snake_case , 'do_pad' ) ) self.assertTrue(hasattr(__snake_case , 'size' ) ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , __snake_case ) def __magic_name__ ( self ) -> int: '''simple docstring''' pass def __magic_name__ ( self ) -> str: '''simple docstring''' __a =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a =prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input __a =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __a , __a =self.image_processor_tester.get_expected_values(__snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __a , __a =self.image_processor_tester.get_expected_values(__snake_case , batched=__snake_case ) __a =image_processing(__snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a =prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input __a =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __a , __a =self.image_processor_tester.get_expected_values(__snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __a =image_processing(__snake_case , return_tensors='pt' ).pixel_values __a , __a =self.image_processor_tester.get_expected_values(__snake_case , batched=__snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a =prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input __a =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __a , __a =self.image_processor_tester.get_expected_values(__snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __a =image_processing(__snake_case , return_tensors='pt' ).pixel_values __a , __a =self.image_processor_tester.get_expected_values(__snake_case , batched=__snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __magic_name__ ( self ) -> int: '''simple docstring''' __a =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: __a =json.loads(f.read() ) __a ={'image_id': 3_9769, 'annotations': target} # encode them __a =DetaImageProcessor() __a =image_processing(images=__snake_case , annotations=__snake_case , return_tensors='pt' ) # verify pixel values __a =torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , __snake_case ) __a =torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , __snake_case , atol=1e-4 ) ) # verify area __a =torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , __snake_case ) ) # verify boxes __a =torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , __snake_case ) __a =torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , __snake_case , atol=1e-3 ) ) # verify image_id __a =torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , __snake_case ) ) # verify is_crowd __a =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , __snake_case ) ) # verify class_labels __a =torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , __snake_case ) ) # verify orig_size __a =torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , __snake_case ) ) # verify size __a =torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , __snake_case ) ) @slow def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: __a =json.loads(f.read() ) __a ={'file_name': '000000039769.png', 'image_id': 3_9769, 'segments_info': target} __a =pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them __a =DetaImageProcessor(format='coco_panoptic' ) __a =image_processing(images=__snake_case , annotations=__snake_case , masks_path=__snake_case , return_tensors='pt' ) # verify pixel values __a =torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , __snake_case ) __a =torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , __snake_case , atol=1e-4 ) ) # verify area __a =torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , __snake_case ) ) # verify boxes __a =torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , __snake_case ) __a =torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , __snake_case , atol=1e-3 ) ) # verify image_id __a =torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , __snake_case ) ) # verify is_crowd __a =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , __snake_case ) ) # verify class_labels __a =torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , __snake_case ) ) # verify masks __a =82_2873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , __snake_case ) # verify orig_size __a =torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , __snake_case ) ) # verify size __a =torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , __snake_case ) )
360
import os def UpperCamelCase_( _snake_case : str = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(_snake_case ) , _snake_case ) ) as input_file: __a =[ [int(_snake_case ) for element in line.split(',' )] for line in input_file.readlines() ] __a =len(_snake_case ) __a =len(matrix[0] ) __a =[[-1 for _ in range(_snake_case )] for _ in range(_snake_case )] for i in range(_snake_case ): __a =matrix[i][0] for j in range(1 , _snake_case ): for i in range(_snake_case ): __a =minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _snake_case ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
308
0
# using dfs for finding eulerian path traversal def UpperCamelCase_( _snake_case : int , _snake_case : Tuple , _snake_case : Any , _snake_case : Optional[int]=None ): """simple docstring""" __a =(path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: __a , __a =True, True __a =dfs(_snake_case , _snake_case , _snake_case , _snake_case ) return path def UpperCamelCase_( _snake_case : int , _snake_case : Optional[Any] ): """simple docstring""" __a =0 __a =-1 for i in range(_snake_case ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 __a =i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def UpperCamelCase_( _snake_case : Optional[int] , _snake_case : Tuple ): """simple docstring""" __a =[[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] __a , __a =check_circuit_or_path(_snake_case , _snake_case ) if check == 3: print('graph is not Eulerian' ) print('no path' ) return __a =1 if check == 2: __a =odd_node print('graph has a Euler path' ) if check == 1: print('graph has a Euler cycle' ) __a =dfs(_snake_case , _snake_case , _snake_case ) print(_snake_case ) def UpperCamelCase_( ): """simple docstring""" __a ={1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} __a ={1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} __a ={1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} __a ={1: [2, 3], 2: [1, 3], 3: [1, 2]} __a ={ 1: [], 2: [] # all degree is zero } __a =10 check_euler(_snake_case , _snake_case ) check_euler(_snake_case , _snake_case ) check_euler(_snake_case , _snake_case ) check_euler(_snake_case , _snake_case ) check_euler(_snake_case , _snake_case ) if __name__ == "__main__": main()
361
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _lowerCAmelCase : Any = logging.get_logger(__name__) class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , *__snake_case , **__snake_case ) -> None: '''simple docstring''' warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
308
0
import requests from bsa import BeautifulSoup def UpperCamelCase_( _snake_case : str , _snake_case : dict ): """simple docstring""" __a =BeautifulSoup(requests.get(_snake_case , params=_snake_case ).content , 'html.parser' ) __a =soup.find('div' , attrs={'class': 'gs_ri'} ) __a =div.find('div' , attrs={'class': 'gs_fl'} ).find_all('a' ) return anchors[2].get_text() if __name__ == "__main__": _lowerCAmelCase : Tuple = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2_018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
362
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : int = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) def UpperCamelCase_( _snake_case : List[str] ): """simple docstring""" if isinstance(_snake_case , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(_snake_case , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(_snake_case ): return [[videos]] raise ValueError(F'Could not make batched video from {videos}' ) class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = ['pixel_values'] def __init__( self , __snake_case = True , __snake_case = None , __snake_case = PILImageResampling.BILINEAR , __snake_case = True , __snake_case = None , __snake_case = True , __snake_case = 1 / 255 , __snake_case = True , __snake_case = None , __snake_case = None , **__snake_case , ) -> None: '''simple docstring''' super().__init__(**__snake_case ) __a =size if size is not None else {'shortest_edge': 224} __a =get_size_dict(__snake_case , default_to_square=__snake_case ) __a =crop_size if crop_size is not None else {'height': 224, 'width': 224} __a =get_size_dict(__snake_case , param_name='crop_size' ) __a =do_resize __a =size __a =do_center_crop __a =crop_size __a =resample __a =do_rescale __a =rescale_factor __a =do_normalize __a =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __a =image_std if image_std is not None else IMAGENET_STANDARD_STD def __magic_name__ ( self , __snake_case , __snake_case , __snake_case = PILImageResampling.BILINEAR , __snake_case = None , **__snake_case , ) -> np.ndarray: '''simple docstring''' __a =get_size_dict(__snake_case , default_to_square=__snake_case ) if "shortest_edge" in size: __a =get_resize_output_image_size(__snake_case , size['shortest_edge'] , default_to_square=__snake_case ) elif "height" in size and "width" in size: __a =(size['height'], size['width']) else: raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(__snake_case , size=__snake_case , resample=__snake_case , data_format=__snake_case , **__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case = None , **__snake_case , ) -> np.ndarray: '''simple docstring''' __a =get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(__snake_case , size=(size['height'], size['width']) , data_format=__snake_case , **__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case = None , **__snake_case , ) -> str: '''simple docstring''' return rescale(__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case = None , **__snake_case , ) -> np.ndarray: '''simple docstring''' return normalize(__snake_case , mean=__snake_case , std=__snake_case , data_format=__snake_case , **__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __a =to_numpy_array(__snake_case ) if do_resize: __a =self.resize(image=__snake_case , size=__snake_case , resample=__snake_case ) if do_center_crop: __a =self.center_crop(__snake_case , size=__snake_case ) if do_rescale: __a =self.rescale(image=__snake_case , scale=__snake_case ) if do_normalize: __a =self.normalize(image=__snake_case , mean=__snake_case , std=__snake_case ) __a =to_channel_dimension_format(__snake_case , __snake_case ) return image def __magic_name__ ( self , __snake_case , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = ChannelDimension.FIRST , **__snake_case , ) -> PIL.Image.Image: '''simple docstring''' __a =do_resize if do_resize is not None else self.do_resize __a =resample if resample is not None else self.resample __a =do_center_crop if do_center_crop is not None else self.do_center_crop __a =do_rescale if do_rescale is not None else self.do_rescale __a =rescale_factor if rescale_factor is not None else self.rescale_factor __a =do_normalize if do_normalize is not None else self.do_normalize __a =image_mean if image_mean is not None else self.image_mean __a =image_std if image_std is not None else self.image_std __a =size if size is not None else self.size __a =get_size_dict(__snake_case , default_to_square=__snake_case ) __a =crop_size if crop_size is not None else self.crop_size __a =get_size_dict(__snake_case , param_name='crop_size' ) if not valid_images(__snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) __a =make_batched(__snake_case ) __a =[ [ self._preprocess_image( image=__snake_case , do_resize=__snake_case , size=__snake_case , resample=__snake_case , do_center_crop=__snake_case , crop_size=__snake_case , do_rescale=__snake_case , rescale_factor=__snake_case , do_normalize=__snake_case , image_mean=__snake_case , image_std=__snake_case , data_format=__snake_case , ) for img in video ] for video in videos ] __a ={'pixel_values': videos} return BatchFeature(data=__snake_case , tensor_type=__snake_case )
363
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'yolos' def __init__( self , __snake_case=768 , __snake_case=12 , __snake_case=12 , __snake_case=3072 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.02 , __snake_case=1e-12 , __snake_case=[512, 864] , __snake_case=16 , __snake_case=3 , __snake_case=True , __snake_case=100 , __snake_case=True , __snake_case=False , __snake_case=1 , __snake_case=5 , __snake_case=2 , __snake_case=5 , __snake_case=2 , __snake_case=0.1 , **__snake_case , ) -> str: '''simple docstring''' super().__init__(**__snake_case ) __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =intermediate_size __a =hidden_act __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =initializer_range __a =layer_norm_eps __a =image_size __a =patch_size __a =num_channels __a =qkv_bias __a =num_detection_tokens __a =use_mid_position_embeddings __a =auxiliary_loss # Hungarian matcher __a =class_cost __a =bbox_cost __a =giou_cost # Loss coefficients __a =bbox_loss_coefficient __a =giou_loss_coefficient __a =eos_coefficient class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = version.parse('1.11' ) @property def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __magic_name__ ( self ) -> float: '''simple docstring''' return 1e-4 @property def __magic_name__ ( self ) -> int: '''simple docstring''' return 12
308
0
import heapq def UpperCamelCase_( _snake_case : dict ): """simple docstring""" __a =[] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(_snake_case , [-1 * len(_snake_case ), (key, value)] ) # chosen_vertices = set of chosen vertices __a =set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices __a =heapq.heappop(_snake_case )[1][0] chosen_vertices.add(_snake_case ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: __a =elem[1][1].index(_snake_case ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(_snake_case ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : int = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f'''Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}''')
364
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def UpperCamelCase_( _snake_case : Optional[Any] ): """simple docstring""" __a =model.config __a =DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) __a =MBartConfig( is_decoder=_snake_case , is_encoder_decoder=_snake_case , add_cross_attention=_snake_case , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=_snake_case , add_final_layer_norm=_snake_case , ) return encoder_config, decoder_config def UpperCamelCase_( _snake_case : Tuple ): """simple docstring""" if "encoder.model" in name: __a =name.replace('encoder.model' , 'encoder' ) if "decoder.model" in name: __a =name.replace('decoder.model' , 'decoder' ) if "patch_embed.proj" in name: __a =name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __a =name.replace('patch_embed.norm' , 'embeddings.norm' ) if name.startswith('encoder' ): if "layers" in name: __a ='encoder.' + name if "attn.proj" in name: __a =name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "mask" not in name: __a =name.replace('attn' , 'attention.self' ) if "norm1" in name: __a =name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __a =name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __a =name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __a =name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": __a ='encoder.layernorm.weight' if name == "encoder.norm.bias": __a ='encoder.layernorm.bias' return name def UpperCamelCase_( _snake_case : Tuple , _snake_case : str ): """simple docstring""" for key in orig_state_dict.copy().keys(): __a =orig_state_dict.pop(_snake_case ) if "qkv" in key: __a =key.split('.' ) __a =int(key_split[3] ) __a =int(key_split[5] ) __a =model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __a =val[:dim, :] __a =val[dim : dim * 2, :] __a =val[-dim:, :] else: __a =val[:dim] __a =val[dim : dim * 2] __a =val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: __a =val return orig_state_dict def UpperCamelCase_( _snake_case : Tuple , _snake_case : Union[str, Any]=None , _snake_case : List[Any]=False ): """simple docstring""" __a =DonutModel.from_pretrained(_snake_case ).eval() # load HuggingFace model __a , __a =get_configs(_snake_case ) __a =DonutSwinModel(_snake_case ) __a =MBartForCausalLM(_snake_case ) __a =VisionEncoderDecoderModel(encoder=_snake_case , decoder=_snake_case ) model.eval() __a =original_model.state_dict() __a =convert_state_dict(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) # verify results on scanned document __a =load_dataset('hf-internal-testing/example-documents' ) __a =dataset['test'][0]['image'].convert('RGB' ) __a =XLMRobertaTokenizerFast.from_pretrained(_snake_case , from_slow=_snake_case ) __a =DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) __a =DonutProcessor(_snake_case , _snake_case ) __a =processor(_snake_case , return_tensors='pt' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": __a ='<s_docvqa><s_question>{user_input}</s_question><s_answer>' __a ='When is the coffee break?' __a =task_prompt.replace('{user_input}' , _snake_case ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": __a ='<s_rvlcdip>' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: __a ='<s_cord>' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": __a ='s_cord-v2>' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": __a ='<s_zhtrainticket>' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt __a ='hello world' else: raise ValueError('Model name not supported' ) __a =original_model.decoder.tokenizer(_snake_case , add_special_tokens=_snake_case , return_tensors='pt' )[ 'input_ids' ] __a =original_model.encoder.model.patch_embed(_snake_case ) __a , __a =model.encoder.embeddings(_snake_case ) assert torch.allclose(_snake_case , _snake_case , atol=1e-3 ) # verify encoder hidden states __a =original_model.encoder(_snake_case ) __a =model.encoder(_snake_case ).last_hidden_state assert torch.allclose(_snake_case , _snake_case , atol=1e-2 ) # verify decoder hidden states __a =original_model(_snake_case , _snake_case , _snake_case ).logits __a =model(_snake_case , decoder_input_ids=_snake_case ).logits assert torch.allclose(_snake_case , _snake_case , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(_snake_case ) processor.save_pretrained(_snake_case ) if push_to_hub: model.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) processor.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) _lowerCAmelCase : List[Any] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
308
0
from math import ceil def UpperCamelCase_( _snake_case : int , _snake_case : Any ): """simple docstring""" __a =list(range(0 , _snake_case ) ) __a =[item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check __a =[] for i in device_map_blocks: if device_map_blocks.count(_snake_case ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(_snake_case ) # Missing blocks __a =[i for i in blocks if i not in device_map_blocks] __a =[i for i in device_map_blocks if i not in blocks] if len(_snake_case ) != 0: raise ValueError( 'Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.' ' These attention blocks were specified more than once: ' + str(_snake_case ) ) if len(_snake_case ) != 0: raise ValueError( 'There are attention blocks for this model that are not specified in the device_map. Add these attention ' 'blocks to a device on the device_map: ' + str(_snake_case ) ) if len(_snake_case ) != 0: raise ValueError( 'The device_map contains more attention blocks than this model has. Remove these from the device_map:' + str(_snake_case ) ) def UpperCamelCase_( _snake_case : Optional[int] , _snake_case : Optional[int] ): """simple docstring""" __a =list(range(_snake_case ) ) __a =int(ceil(n_layers / len(_snake_case ) ) ) __a =[layers[i : i + n_blocks] for i in range(0 , _snake_case , _snake_case )] return dict(zip(_snake_case , _snake_case ) )
365
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer SCREAMING_SNAKE_CASE = False def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' super().setUp() __a =['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] __a =dict(zip(__snake_case , range(len(__snake_case ) ) ) ) __a =['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] __a ={'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__snake_case ) ) def __magic_name__ ( self , **__snake_case ) -> Any: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def __magic_name__ ( self , __snake_case ) -> List[Any]: '''simple docstring''' __a ='adapt act apte' __a ='adapt act apte' return input_text, output_text def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __a ='adapt act apte' __a =['adapt', 'act', 'ap@@', 'te'] __a =tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) __a =[tokenizer.bos_token] + tokens + [tokenizer.eos_token] __a =[0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1384] __a ='I am a small frog.' __a =tok([src_text] , padding=__snake_case , truncation=__snake_case )['input_ids'] __a =tok.batch_decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) __a ='I am a small frog .' __a ='.' __a =tok(__snake_case )['input_ids'] __a =tok(__snake_case )['input_ids'] assert encoded[-1] == encoded_dot[0]
308
0
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = (DPMSolverSDEScheduler,) SCREAMING_SNAKE_CASE = 1_0 def __magic_name__ ( self , **__snake_case ) -> Union[str, Any]: '''simple docstring''' __a ={ 'num_train_timesteps': 1100, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'noise_sampler_seed': 0, } config.update(**__snake_case ) return config def __magic_name__ ( self ) -> int: '''simple docstring''' for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=__snake_case ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=__snake_case , beta_end=__snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__snake_case ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__snake_case ) def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =self.scheduler_classes[0] __a =self.get_scheduler_config() __a =scheduler_class(**__snake_case ) scheduler.set_timesteps(self.num_inference_steps ) __a =self.dummy_model() __a =self.dummy_sample_deter * scheduler.init_noise_sigma __a =sample.to(__snake_case ) for i, t in enumerate(scheduler.timesteps ): __a =scheduler.scale_model_input(__snake_case , __snake_case ) __a =model(__snake_case , __snake_case ) __a =scheduler.step(__snake_case , __snake_case , __snake_case ) __a =output.prev_sample __a =torch.sum(torch.abs(__snake_case ) ) __a =torch.mean(torch.abs(__snake_case ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875 ) < 1e-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406 ) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652 ) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1e-3 def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.scheduler_classes[0] __a =self.get_scheduler_config(prediction_type='v_prediction' ) __a =scheduler_class(**__snake_case ) scheduler.set_timesteps(self.num_inference_steps ) __a =self.dummy_model() __a =self.dummy_sample_deter * scheduler.init_noise_sigma __a =sample.to(__snake_case ) for i, t in enumerate(scheduler.timesteps ): __a =scheduler.scale_model_input(__snake_case , __snake_case ) __a =model(__snake_case , __snake_case ) __a =scheduler.step(__snake_case , __snake_case , __snake_case ) __a =output.prev_sample __a =torch.sum(torch.abs(__snake_case ) ) __a =torch.mean(torch.abs(__snake_case ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453 ) < 1e-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703 ) < 1e-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297 ) < 1e-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125 ) < 1e-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621 ) < 1e-3 def __magic_name__ ( self ) -> str: '''simple docstring''' __a =self.scheduler_classes[0] __a =self.get_scheduler_config() __a =scheduler_class(**__snake_case ) scheduler.set_timesteps(self.num_inference_steps , device=__snake_case ) __a =self.dummy_model() __a =self.dummy_sample_deter.to(__snake_case ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __a =scheduler.scale_model_input(__snake_case , __snake_case ) __a =model(__snake_case , __snake_case ) __a =scheduler.step(__snake_case , __snake_case , __snake_case ) __a =output.prev_sample __a =torch.sum(torch.abs(__snake_case ) ) __a =torch.mean(torch.abs(__snake_case ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938 ) < 1e-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312 ) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771 ) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1e-3 def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.scheduler_classes[0] __a =self.get_scheduler_config() __a =scheduler_class(**__snake_case , use_karras_sigmas=__snake_case ) scheduler.set_timesteps(self.num_inference_steps , device=__snake_case ) __a =self.dummy_model() __a =self.dummy_sample_deter.to(__snake_case ) * scheduler.init_noise_sigma __a =sample.to(__snake_case ) for t in scheduler.timesteps: __a =scheduler.scale_model_input(__snake_case , __snake_case ) __a =model(__snake_case , __snake_case ) __a =scheduler.step(__snake_case , __snake_case , __snake_case ) __a =output.prev_sample __a =torch.sum(torch.abs(__snake_case ) ) __a =torch.mean(torch.abs(__snake_case ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188 ) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125 ) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1e-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672 ) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1e-2
366
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __magic_name__ ( unittest.TestCase , lowerCAmelCase_ ): def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =load_tool('text-to-speech' ) self.tool.setup() def __magic_name__ ( self ) -> Dict: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) __a =self.tool('hey' ) __a =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) __a =self.tool('hey' ) __a =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) )
308
0
import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) def UpperCamelCase_( _snake_case : Optional[int] , _snake_case : Optional[Any] , _snake_case : str , _snake_case : Any=False ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( 'Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise if not is_sharded: __a =os.path.abspath(_snake_case ) logger.info(F'Loading PyTorch weights from {pt_path}' ) __a =torch.load(_snake_case , map_location='cpu' ) logger.info(F'PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.' ) __a =convert_pytorch_state_dict_to_flax(_snake_case , _snake_case ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files __a =convert_pytorch_sharded_state_dict_to_flax(_snake_case , _snake_case ) return flax_state_dict def UpperCamelCase_( _snake_case : Tuple[str] , _snake_case : np.ndarray , _snake_case : Dict[str, jnp.ndarray] , _snake_case : str , ): """simple docstring""" def is_key_or_prefix_key_in_dict(_snake_case : Tuple[str] ) -> bool: return len(set(_snake_case ) & {key, (model_prefix,) + key} ) > 0 # layer norm __a =pt_tuple_key[:-1] + ('scale',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(_snake_case ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean __a =pt_tuple_key[:-1] + ('mean',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(_snake_case ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var __a =pt_tuple_key[:-1] + ('var',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(_snake_case ): return renamed_pt_tuple_key, pt_tensor # embedding __a =pt_tuple_key[:-1] + ('embedding',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(_snake_case ): return renamed_pt_tuple_key, pt_tensor # conv layer __a =pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(_snake_case ): __a =pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer __a =pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(_snake_case ): __a =pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight __a =pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias __a =pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 __a =None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): __a =pt_tuple_key[-2] + '_g' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): __a =pt_tuple_key[-2] + '_v' if name is not None: __a =pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCamelCase_( _snake_case : Dict , _snake_case : List[Any] ): """simple docstring""" __a ={k: v.numpy() for k, v in pt_state_dict.items()} __a =flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: __a =flax_model.params['params'] else: __a =flax_model.params __a =flatten_dict(_snake_case ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: __a =flatten_dict(flax_model.params['batch_stats'] ) random_flax_state_dict.update(_snake_case ) __a ={} __a =(model_prefix not in flax_model_params) and ( model_prefix in {k.split('.' )[0] for k in pt_state_dict.keys()} ) __a =(model_prefix in flax_model_params) and ( model_prefix not in {k.split('.' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __a =tuple(pt_key.split('.' ) ) # remove base model prefix if necessary __a =pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: __a =pt_tuple_key[1:] # Correctly rename weight parameters __a , __a =rename_key_and_reshape_tensor( _snake_case , _snake_case , _snake_case , _snake_case ) # add model prefix if necessary __a =(model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: __a =(model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: __a =jnp.asarray(_snake_case ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_snake_case , _snake_case ) continue # also add unexpected weight so that warning is thrown __a =jnp.asarray(_snake_case ) else: # also add unexpected weight so that warning is thrown __a =jnp.asarray(_snake_case ) return unflatten_dict(_snake_case ) def UpperCamelCase_( _snake_case : int , _snake_case : str ): """simple docstring""" import torch # Load the index __a ={} for shard_file in shard_filenames: # load using msgpack utils __a =torch.load(_snake_case ) __a ={k: v.numpy() for k, v in pt_state_dict.items()} __a =flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: __a =flax_model.params['params'] __a =flatten_dict(_snake_case ) random_flax_state_dict.update(flatten_dict(flax_model.params['batch_stats'] ) ) else: __a =flax_model.params __a =flatten_dict(_snake_case ) __a =(model_prefix not in flax_model_params) and ( model_prefix in {k.split('.' )[0] for k in pt_state_dict.keys()} ) __a =(model_prefix in flax_model_params) and ( model_prefix not in {k.split('.' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __a =tuple(pt_key.split('.' ) ) # remove base model prefix if necessary __a =pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: __a =pt_tuple_key[1:] # Correctly rename weight parameters __a , __a =rename_key_and_reshape_tensor( _snake_case , _snake_case , _snake_case , _snake_case ) # add model prefix if necessary __a =(model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: __a =(model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: __a =jnp.asarray(_snake_case ) continue if "var" in flax_key[-1]: __a =jnp.asarray(_snake_case ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_snake_case , _snake_case ) continue # also add unexpected weight so that warning is thrown __a =jnp.asarray(_snake_case ) else: # also add unexpected weight so that warning is thrown __a =jnp.asarray(_snake_case ) return unflatten_dict(_snake_case ) def UpperCamelCase_( _snake_case : Union[str, Any] , _snake_case : Optional[Any] ): """simple docstring""" __a =os.path.abspath(_snake_case ) logger.info(F'Loading Flax weights from {flax_checkpoint_path}' ) # import correct flax class __a =getattr(_snake_case , 'Flax' + model.__class__.__name__ ) # load flax weight dict with open(_snake_case , 'rb' ) as state_f: try: __a =from_bytes(_snake_case , state_f.read() ) except UnpicklingError: raise EnvironmentError(F'Unable to convert {flax_checkpoint_path} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(_snake_case , _snake_case ) def UpperCamelCase_( _snake_case : Tuple , _snake_case : Dict ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( 'Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise # check if we have bf16 weights __a =flatten_dict(jax.tree_util.tree_map(lambda _snake_case : x.dtype == jnp.bfloataa , _snake_case ) ).values() if any(_snake_case ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( 'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ' 'before loading those in PyTorch model.' ) __a =jax.tree_util.tree_map( lambda _snake_case : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _snake_case ) __a =flatten_dict(_snake_case ) __a =pt_model.state_dict() __a =(pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('.' )[0] for k in pt_model_dict.keys()} ) __a =(pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('.' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys __a =[] __a =set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): __a =flax_key_tuple[0] == pt_model.base_model_prefix __a ='.'.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: __a =flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: __a =(pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(_snake_case ) not in pt_model_dict: # conv layer __a =flax_key_tuple[:-1] + ('weight',) __a =jnp.transpose(_snake_case , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_snake_case ) not in pt_model_dict: # linear layer __a =flax_key_tuple[:-1] + ('weight',) __a =flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: __a =flax_key_tuple[:-1] + ('weight',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: __a =flax_key_tuple[:-1] + ('running_mean',) elif "var" in flax_key_tuple[-1]: __a =flax_key_tuple[:-1] + ('running_var',) if "batch_stats" in flax_state: __a ='.'.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: __a ='.'.join(_snake_case ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. __a ={} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: __a =key.split('.' ) __a =None if key_components[-3::2] == ["parametrizations", "original0"]: __a =key_components[-2] + '_g' elif key_components[-3::2] == ["parametrizations", "original1"]: __a =key_components[-2] + '_v' if name is not None: __a =key_components[:-3] + [name] __a ='.'.join(_snake_case ) __a =key if flax_key in special_pt_names: __a =special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict __a =np.asarray(_snake_case ) if not isinstance(_snake_case , np.ndarray ) else flax_tensor __a =torch.from_numpy(_snake_case ) # remove from missing keys missing_keys.remove(_snake_case ) else: # weight is not expected by PyTorch model unexpected_keys.append(_snake_case ) pt_model.load_state_dict(_snake_case ) # re-transform missing_keys to list __a =list(_snake_case ) if len(_snake_case ) > 0: logger.warning( 'Some weights of the Flax model were not used when initializing the PyTorch model' F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' ' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This' F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' ' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a' ' FlaxBertForSequenceClassification model).' ) else: logger.warning(F'All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n' ) if len(_snake_case ) > 0: logger.warning( F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' ' use it for predictions and inference.' ) else: logger.warning( F'All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n' 'If your task is similar to the task the model of the checkpoint was trained on, ' F'you can already use {pt_model.__class__.__name__} for predictions without further training.' ) return pt_model
367
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> int: '''simple docstring''' __a =[] __a =[] for i in range(self.num_layers ): __a =self.in_channels if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =resnets __a =attentions if self.add_downsample: __a =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> Optional[Any]: '''simple docstring''' __a =() for resnet, attn in zip(self.resnets , self.attentions ): __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __a =self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> int: '''simple docstring''' __a =[] for i in range(self.num_layers ): __a =self.in_channels if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets if self.add_downsample: __a =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case=True ) -> Optional[int]: '''simple docstring''' __a =() for resnet in self.resnets: __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __a =self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =[] __a =[] for i in range(self.num_layers ): __a =self.in_channels if (i == self.num_layers - 1) else self.out_channels __a =self.prev_output_channel if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =resnets __a =attentions if self.add_upsample: __a =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[Any]: '''simple docstring''' for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states __a =res_hidden_states_tuple[-1] __a =res_hidden_states_tuple[:-1] __a =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __a =self.upsamplers_a(__snake_case ) return hidden_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =[] for i in range(self.num_layers ): __a =self.in_channels if (i == self.num_layers - 1) else self.out_channels __a =self.prev_output_channel if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets if self.add_upsample: __a =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[Any]: '''simple docstring''' for resnet in self.resnets: # pop res hidden states __a =res_hidden_states_tuple[-1] __a =res_hidden_states_tuple[:-1] __a =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __a =self.upsamplers_a(__snake_case ) return hidden_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # there is always at least one resnet __a =[ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] __a =[] for _ in range(self.num_layers ): __a =FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets __a =attentions def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[str]: '''simple docstring''' __a =self.resnets[0](__snake_case , __snake_case ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) return hidden_states
308
0
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = (UnCLIPScheduler,) def __magic_name__ ( self , **__snake_case ) -> Dict: '''simple docstring''' __a ={ 'num_train_timesteps': 1000, 'variance_type': 'fixed_small_log', 'clip_sample': True, 'clip_sample_range': 1.0, 'prediction_type': 'epsilon', } config.update(**__snake_case ) return config def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=__snake_case ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=__snake_case ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__snake_case ) def __magic_name__ ( self ) -> Tuple: '''simple docstring''' for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=__snake_case ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=__snake_case ) def __magic_name__ ( self ) -> str: '''simple docstring''' for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=__snake_case , prev_timestep=__snake_case ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =self.scheduler_classes[0] __a =self.get_scheduler_config(variance_type='fixed_small_log' ) __a =scheduler_class(**__snake_case ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.054_9625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.999_4987 ) ) < 1e-5 def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =self.scheduler_classes[0] __a =self.get_scheduler_config(variance_type='learned_range' ) __a =scheduler_class(**__snake_case ) __a =0.5 assert scheduler._get_variance(1 , predicted_variance=__snake_case ) - -10.171_2790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=__snake_case ) - -5.799_8052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=__snake_case ) - -0.001_0011 < 1e-5 def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =self.scheduler_classes[0] __a =self.get_scheduler_config() __a =scheduler_class(**__snake_case ) __a =scheduler.timesteps __a =self.dummy_model() __a =self.dummy_sample_deter __a =torch.manual_seed(0 ) for i, t in enumerate(__snake_case ): # 1. predict noise residual __a =model(__snake_case , __snake_case ) # 2. predict previous mean of sample x_t-1 __a =scheduler.step(__snake_case , __snake_case , __snake_case , generator=__snake_case ).prev_sample __a =pred_prev_sample __a =torch.sum(torch.abs(__snake_case ) ) __a =torch.mean(torch.abs(__snake_case ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1e-2 assert abs(result_mean.item() - 0.328_4743 ) < 1e-3 def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =self.scheduler_classes[0] __a =self.get_scheduler_config() __a =scheduler_class(**__snake_case ) scheduler.set_timesteps(25 ) __a =scheduler.timesteps __a =self.dummy_model() __a =self.dummy_sample_deter __a =torch.manual_seed(0 ) for i, t in enumerate(__snake_case ): # 1. predict noise residual __a =model(__snake_case , __snake_case ) if i + 1 == timesteps.shape[0]: __a =None else: __a =timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __a =scheduler.step( __snake_case , __snake_case , __snake_case , prev_timestep=__snake_case , generator=__snake_case ).prev_sample __a =pred_prev_sample __a =torch.sum(torch.abs(__snake_case ) ) __a =torch.mean(torch.abs(__snake_case ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1e-2 assert abs(result_mean.item() - 0.336_2038 ) < 1e-3 def __magic_name__ ( self ) -> List[str]: '''simple docstring''' pass def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' pass
368
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_5_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self ) -> int: '''simple docstring''' if self.framework == "pytorch": subprocess.run( f'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding='utf-8' , check=__snake_case , ) assert hasattr(self , 'env' ) def __magic_name__ ( self , __snake_case ) -> int: '''simple docstring''' __a =f'{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}' # distributed data settings __a ={'smdistributed': {'dataparallel': {'enabled': True}}} if self.script != 'run_ddp.py' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__snake_case , instance_count=__snake_case , instance_type=self.instance_type , debugger_hook_config=__snake_case , hyperparameters={**self.env.distributed_hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__snake_case , py_version='py36' , ) def __magic_name__ ( self , __snake_case ) -> Optional[Any]: '''simple docstring''' TrainingJobAnalytics(__snake_case ).export_csv(f'{self.env.test_path}/{job_name}_metrics.csv' ) @parameterized.expand([(2,)] ) def __magic_name__ ( self , __snake_case ) -> Optional[int]: '''simple docstring''' # create estimator __a =self.create_estimator(__snake_case ) # run training estimator.fit() # result dataframe __a =TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __a =list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) __a =list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __a =( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'{estimator.latest_training_job.name}.json' , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , __snake_case )
308
0
from collections.abc import Callable class __magic_name__ : def __init__( self , __snake_case = None ) -> None: '''simple docstring''' __a =[] # Stores indexes of each item for supporting updates and deletion. __a ={} # Stores current size of heap. __a =0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. __a =key or (lambda __snake_case : x) def __magic_name__ ( self , __snake_case ) -> int | None: '''simple docstring''' return int((i - 1) / 2 ) if i > 0 else None def __magic_name__ ( self , __snake_case ) -> int | None: '''simple docstring''' __a =int(2 * i + 1 ) return left if 0 < left < self.size else None def __magic_name__ ( self , __snake_case ) -> int | None: '''simple docstring''' __a =int(2 * i + 2 ) return right if 0 < right < self.size else None def __magic_name__ ( self , __snake_case , __snake_case ) -> None: '''simple docstring''' __a , __a =( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. __a , __a =self.arr[j], self.arr[i] def __magic_name__ ( self , __snake_case , __snake_case ) -> bool: '''simple docstring''' return self.arr[i][1] < self.arr[j][1] def __magic_name__ ( self , __snake_case ) -> int: '''simple docstring''' __a =self._left(__snake_case ) __a =self._right(__snake_case ) __a =i if left is not None and not self._cmp(__snake_case , __snake_case ): __a =left if right is not None and not self._cmp(__snake_case , __snake_case ): __a =right return valid_parent def __magic_name__ ( self , __snake_case ) -> None: '''simple docstring''' __a =self._parent(__snake_case ) while parent is not None and not self._cmp(__snake_case , __snake_case ): self._swap(__snake_case , __snake_case ) __a , __a =parent, self._parent(__snake_case ) def __magic_name__ ( self , __snake_case ) -> None: '''simple docstring''' __a =self._get_valid_parent(__snake_case ) while valid_parent != index: self._swap(__snake_case , __snake_case ) __a , __a =valid_parent, self._get_valid_parent(__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case ) -> None: '''simple docstring''' if item not in self.pos_map: return __a =self.pos_map[item] __a =[item, self.key(__snake_case )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(__snake_case ) self._heapify_down(__snake_case ) def __magic_name__ ( self , __snake_case ) -> None: '''simple docstring''' if item not in self.pos_map: return __a =self.pos_map[item] del self.pos_map[item] __a =self.arr[self.size - 1] __a =index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(__snake_case ) self._heapify_down(__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case ) -> None: '''simple docstring''' __a =len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(__snake_case )] ) else: __a =[item, self.key(__snake_case )] __a =self.size self.size += 1 self._heapify_up(self.size - 1 ) def __magic_name__ ( self ) -> tuple | None: '''simple docstring''' return self.arr[0] if self.size else None def __magic_name__ ( self ) -> tuple | None: '''simple docstring''' __a =self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def UpperCamelCase_( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
369
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _lowerCAmelCase : List[Any] = logging.getLogger(__name__) _lowerCAmelCase : Optional[Any] = "Hello world! cécé herlolip" _lowerCAmelCase : str = namedtuple( "BertAbsConfig", [ "temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout", ], ) def UpperCamelCase_( _snake_case : str , _snake_case : List[Any] ): """simple docstring""" __a =BertAbsConfig( temp_dir='.' , finetune_bert=_snake_case , large=_snake_case , share_emb=_snake_case , use_bert_emb=_snake_case , encoder='bert' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) __a =torch.load(_snake_case , lambda _snake_case , _snake_case : storage ) __a =AbsSummarizer(_snake_case , torch.device('cpu' ) , _snake_case ) original.eval() __a =BertAbsSummarizer(_snake_case , torch.device('cpu' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('convert the model' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('Make sure that the models\' outputs are identical' ) __a =BertTokenizer.from_pretrained('bert-base-uncased' ) # prepare the model inputs __a =tokenizer.encode('This is sample éàalj\'-.' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_snake_case )) ) __a =torch.tensor(_snake_case ).unsqueeze(0 ) __a =tokenizer.encode('This is sample 3 éàalj\'-.' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_snake_case )) ) __a =torch.tensor(_snake_case ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __a =encoder_input_ids __a =decoder_input_ids __a =__a =None __a =None __a =__a =None __a =__a =None __a =None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __a =original(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )[0] __a =original.generator(_snake_case ) __a =new_model( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )[0] __a =new_model.generator(_snake_case ) __a =torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_snake_case ) ) __a =torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_snake_case ) ) __a =torch.allclose(_snake_case , _snake_case , atol=1e-3 ) if are_identical: logging.info('all weights are equal up to 1e-3' ) else: raise ValueError('the weights are different. The new model is likely different from the original one.' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('saving the model\'s state dictionary' ) torch.save( new_model.state_dict() , './bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--bertabs_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model.", ) _lowerCAmelCase : Optional[Any] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
308
0
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def UpperCamelCase_( _snake_case : Optional[int] , _snake_case : Dict , _snake_case : Union[str, Any] ): """simple docstring""" __a =1.5 __a =int(factor * num_class_images ) __a =ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=_snake_case , aesthetic_weight=0.1 ) os.makedirs(F'{class_data_dir}/images' , exist_ok=_snake_case ) if len(list(Path(F'{class_data_dir}/images' ).iterdir() ) ) >= num_class_images: return while True: __a =client.query(text=_snake_case ) if len(_snake_case ) >= factor * num_class_images or num_images > 1e4: break else: __a =int(factor * num_images ) __a =ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=_snake_case , aesthetic_weight=0.1 , ) __a =0 __a =0 __a =tqdm(desc='downloading real regularization images' , total=_snake_case ) with open(F'{class_data_dir}/caption.txt' , 'w' ) as fa, open(F'{class_data_dir}/urls.txt' , 'w' ) as fa, open( F'{class_data_dir}/images.txt' , 'w' ) as fa: while total < num_class_images: __a =class_images[count] count += 1 try: __a =requests.get(images['url'] ) if img.status_code == 200: __a =Image.open(BytesIO(img.content ) ) with open(F'{class_data_dir}/images/{total}.jpg' , 'wb' ) as f: f.write(img.content ) fa.write(images['caption'] + '\n' ) fa.write(images['url'] + '\n' ) fa.write(F'{class_data_dir}/images/{total}.jpg' + '\n' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def UpperCamelCase_( ): """simple docstring""" __a =argparse.ArgumentParser('' , add_help=_snake_case ) parser.add_argument('--class_prompt' , help='text prompt to retrieve images' , required=_snake_case , type=_snake_case ) parser.add_argument('--class_data_dir' , help='path to save images' , required=_snake_case , type=_snake_case ) parser.add_argument('--num_class_images' , help='number of images to download' , default=200 , type=_snake_case ) return parser.parse_args() if __name__ == "__main__": _lowerCAmelCase : List[Any] = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
370
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ : def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=False , __snake_case=False , __snake_case=False , __snake_case=2 , __snake_case=99 , __snake_case=0 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=0.1 , __snake_case=0.1 , __snake_case=512 , __snake_case=2 , __snake_case=0.02 , __snake_case=2 , __snake_case=4 , __snake_case="last" , __snake_case=True , __snake_case=None , __snake_case=0 , ) -> Optional[Any]: '''simple docstring''' __a =parent __a =batch_size __a =seq_length __a =is_training __a =use_input_lengths __a =use_token_type_ids __a =use_labels __a =gelu_activation __a =sinusoidal_embeddings __a =causal __a =asm __a =n_langs __a =vocab_size __a =n_special __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =max_position_embeddings __a =type_sequence_label_size __a =initializer_range __a =num_labels __a =num_choices __a =summary_type __a =use_proj __a =scope __a =bos_token_id def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a =random_attention_mask([self.batch_size, self.seq_length] ) __a =None if self.use_input_lengths: __a =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __a =None if self.use_token_type_ids: __a =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __a =None __a =None __a =None if self.use_labels: __a =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a =ids_tensor([self.batch_size] , 2 ).float() __a =ids_tensor([self.batch_size] , self.num_choices ) __a =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __magic_name__ ( self ) -> Any: '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> List[Any]: '''simple docstring''' __a =XLMModel(config=__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , lengths=__snake_case , langs=__snake_case ) __a =model(__snake_case , langs=__snake_case ) __a =model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Optional[int]: '''simple docstring''' __a =XLMWithLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Dict: '''simple docstring''' __a =XLMForQuestionAnsweringSimple(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) __a =outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> List[Any]: '''simple docstring''' __a =XLMForQuestionAnswering(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , p_mask=__snake_case , ) __a =model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , ) ((__a) , ) =result_with_labels.to_tuple() __a =model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) ((__a) , ) =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Optional[Any]: '''simple docstring''' __a =XLMForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Any: '''simple docstring''' __a =self.num_labels __a =XLMForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Tuple: '''simple docstring''' __a =self.num_choices __a =XLMForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() __a =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) =config_and_inputs __a ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable SCREAMING_SNAKE_CASE = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> int: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __magic_name__ ( self , __snake_case , __snake_case , __snake_case=False ) -> str: '''simple docstring''' __a =super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __a =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) __a =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =XLMModelTester(self ) __a =ConfigTester(self , config_class=__snake_case , emb_dim=37 ) def __magic_name__ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=False , __snake_case=1 ) -> Optional[Any]: '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_attentions in attentions] , [True] * len(__snake_case ) ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__snake_case ): # adds PAD dummy token __a =min_length + idx + 1 __a =min_length + idx + 1 __a =( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__snake_case ) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=False , __snake_case=1 ) -> Dict: '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_hidden_states in hidden_states] , [True] * len(__snake_case ) , ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__snake_case ): # adds PAD dummy token __a =min_length + idx + 1 __a =(batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__snake_case ) , ) pass @slow def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a =XLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class __magic_name__ ( unittest.TestCase ): @slow def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(__snake_case ) __a =torch.tensor([[14, 447]] , dtype=torch.long , device=__snake_case ) # the president __a =[ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __a =model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __snake_case )
308
0
"""simple docstring""" class __magic_name__ : def __init__( self , __snake_case ) -> Optional[Any]: '''simple docstring''' __a =n __a =[None] * self.n __a =0 # index of the first element __a =0 __a =0 def __len__( self ) -> int: '''simple docstring''' return self.size def __magic_name__ ( self ) -> bool: '''simple docstring''' return self.size == 0 def __magic_name__ ( self ) -> Any: '''simple docstring''' return False if self.is_empty() else self.array[self.front] def __magic_name__ ( self , __snake_case ) -> int: '''simple docstring''' if self.size >= self.n: raise Exception('QUEUE IS FULL' ) __a =data __a =(self.rear + 1) % self.n self.size += 1 return self def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' if self.size == 0: raise Exception('UNDERFLOW' ) __a =self.array[self.front] __a =None __a =(self.front + 1) % self.n self.size -= 1 return temp
371
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake _lowerCAmelCase : Optional[Any] = numpy.array([0, 0]) _lowerCAmelCase : Dict = numpy.array([0.5, 0.8660254]) _lowerCAmelCase : Any = numpy.array([1, 0]) _lowerCAmelCase : int = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCamelCase_( _snake_case : list[numpy.ndarray] , _snake_case : int ): """simple docstring""" __a =initial_vectors for _ in range(_snake_case ): __a =iteration_step(_snake_case ) return vectors def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =[] for i, start_vector in enumerate(vectors[:-1] ): __a =vectors[i + 1] new_vectors.append(_snake_case ) __a =end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCamelCase_( _snake_case : numpy.ndarray , _snake_case : float ): """simple docstring""" __a =numpy.radians(_snake_case ) __a , __a =numpy.cos(_snake_case ), numpy.sin(_snake_case ) __a =numpy.array(((c, -s), (s, c)) ) return numpy.dot(_snake_case , _snake_case ) def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() __a , __a =zip(*_snake_case ) plt.plot(_snake_case , _snake_case ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : List[Any] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
308
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ): if index == number_of_items: return 0 lowerCAmelCase = 0 lowerCAmelCase = 0 lowerCAmelCase = knapsack(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , index + 1 ) if weights[index] <= max_weight: lowerCAmelCase = values[index] + knapsack( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , max_weight - weights[index] , index + 1 ) return max(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
309
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] | None = None ): lowerCAmelCase = word_bank or [] # create a table lowerCAmelCase = len(_UpperCAmelCase ) + 1 lowerCAmelCase = [] for _ in range(_UpperCAmelCase ): table.append([] ) # seed value lowerCAmelCase = [[]] # because empty string has empty combination # iterate through the indices for i in range(_UpperCAmelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_UpperCAmelCase )] == word: lowerCAmelCase = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_UpperCAmelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_UpperCAmelCase )]: combination.reverse() return table[len(_UpperCAmelCase )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
309
1
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class a : def __init__( self , _snake_case=2 , _snake_case=3 , _snake_case=64 , _snake_case=None ): """simple docstring""" lowerCAmelCase = np.random.default_rng(_snake_case ) lowerCAmelCase = length lowerCAmelCase = rng.normal(size=(length,) ).astype(np.floataa ) lowerCAmelCase = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self ): """simple docstring""" return self.length def __getitem__( self , _snake_case ): """simple docstring""" return {"x": self.x[i], "y": self.y[i]} class a ( torch.nn.Module ): def __init__( self , _snake_case=0 , _snake_case=0 , _snake_case=False ): """simple docstring""" super().__init__() lowerCAmelCase = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowerCAmelCase = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowerCAmelCase = True def UpperCamelCase__ ( self , _snake_case=None ): """simple docstring""" if self.first_batch: print(F'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) lowerCAmelCase = False return x * self.a[0] + self.b[0] class a ( torch.nn.Module ): def __init__( self , _snake_case=0 , _snake_case=0 , _snake_case=False ): """simple docstring""" super().__init__() lowerCAmelCase = torch.nn.Parameter(torch.tensor(_snake_case ).float() ) lowerCAmelCase = torch.nn.Parameter(torch.tensor(_snake_case ).float() ) lowerCAmelCase = True def UpperCamelCase__ ( self , _snake_case=None ): """simple docstring""" if self.first_batch: print(F'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) lowerCAmelCase = False return x * self.a + self.b def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int = 16 ): from datasets import load_dataset from transformers import AutoTokenizer lowerCAmelCase = AutoTokenizer.from_pretrained('bert-base-cased' ) lowerCAmelCase = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} lowerCAmelCase = load_dataset('csv' , data_files=_UpperCAmelCase ) lowerCAmelCase = datasets['train'].unique('label' ) lowerCAmelCase = {v: i for i, v in enumerate(_UpperCAmelCase )} def tokenize_function(_UpperCAmelCase : Tuple ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' ) if "label" in examples: lowerCAmelCase = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCAmelCase = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(_UpperCAmelCase : List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_UpperCAmelCase , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(_UpperCAmelCase , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. lowerCAmelCase = DataLoader(tokenized_datasets['train'] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=2 ) lowerCAmelCase = DataLoader(tokenized_datasets['validation'] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
309
"""simple docstring""" import re def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): if len(re.findall('[ATCG]' , _UpperCAmelCase ) ) != len(_UpperCAmelCase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
309
1
"""simple docstring""" import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets __UpperCamelCase : List[Any] = '''\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } ''' __UpperCamelCase : List[Any] = '''\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve ''' __UpperCamelCase : Optional[int] = ''' Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: "c" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric(\'mauve\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def UpperCamelCase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/krishnap25/mauve' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/krishnap25/mauve'] , reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] , ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case="auto" , _snake_case=-1 , _snake_case=0.9 , _snake_case=5 , _snake_case=5_00 , _snake_case="gpt2-large" , _snake_case=-1 , _snake_case=10_24 , _snake_case=25 , _snake_case=5 , _snake_case=True , _snake_case=25 , ): """simple docstring""" lowerCAmelCase = compute_mauve( p_text=_snake_case , q_text=_snake_case , p_features=_snake_case , q_features=_snake_case , p_tokens=_snake_case , q_tokens=_snake_case , num_buckets=_snake_case , pca_max_data=_snake_case , kmeans_explained_var=_snake_case , kmeans_num_redo=_snake_case , kmeans_max_iter=_snake_case , featurize_model_name=_snake_case , device_id=_snake_case , max_text_length=_snake_case , divergence_curve_discretization_size=_snake_case , mauve_scaling_factor=_snake_case , verbose=_snake_case , seed=_snake_case , ) return out
309
"""simple docstring""" import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () __UpperCamelCase : List[Any] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). __UpperCamelCase : str = [0, 25, 50] __UpperCamelCase : int = [25, 50, 75] __UpperCamelCase : str = fuzz.membership.trimf(X, abca) __UpperCamelCase : Tuple = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. __UpperCamelCase : Dict = np.ones(75) __UpperCamelCase : str = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) __UpperCamelCase : Optional[Any] = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) __UpperCamelCase : Dict = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) __UpperCamelCase : Dict = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) __UpperCamelCase : List[str] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] __UpperCamelCase : List[str] = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) __UpperCamelCase : Tuple = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] __UpperCamelCase : Union[str, Any] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] __UpperCamelCase : Dict = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
309
1
"""simple docstring""" import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType __UpperCamelCase : Optional[List[str]] = None __UpperCamelCase : Any = '''<''' if sys.byteorder == '''little''' else '''>''' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image __UpperCamelCase : Optional[int] = [ np.dtype('''|b1'''), np.dtype('''|u1'''), np.dtype('''<u2'''), np.dtype('''>u2'''), np.dtype('''<i2'''), np.dtype('''>i2'''), np.dtype('''<u4'''), np.dtype('''>u4'''), np.dtype('''<i4'''), np.dtype('''>i4'''), np.dtype('''<f4'''), np.dtype('''>f4'''), np.dtype('''<f8'''), np.dtype('''>f8'''), ] @dataclass class a : snake_case__ = True snake_case__ = None # Automatically constructed snake_case__ = "PIL.Image.Image" snake_case__ = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) snake_case__ = field(default='''Image''' , init=a__ , repr=a__ ) def __call__( self ): """simple docstring""" return self.pa_type def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if isinstance(_snake_case , _snake_case ): lowerCAmelCase = np.array(_snake_case ) if isinstance(_snake_case , _snake_case ): return {"path": value, "bytes": None} elif isinstance(_snake_case , _snake_case ): return {"path": None, "bytes": value} elif isinstance(_snake_case , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(_snake_case ) elif isinstance(_snake_case , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(_snake_case ) elif value.get('path' ) is not None and os.path.isfile(value['path'] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('path' )} elif value.get('bytes' ) is not None or value.get('path' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('bytes' ), "path": value.get('path' )} else: raise ValueError( F'An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def UpperCamelCase__ ( self , _snake_case , _snake_case=None ): """simple docstring""" if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Image(decode=True) instead.' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support decoding images, please install \'Pillow\'.' ) if token_per_repo_id is None: lowerCAmelCase = {} lowerCAmelCase ,lowerCAmelCase = value['path'], value['bytes'] if bytes_ is None: if path is None: raise ValueError(F'An image should have one of \'path\' or \'bytes\' but both are None in {value}.' ) else: if is_local_path(_snake_case ): lowerCAmelCase = PIL.Image.open(_snake_case ) else: lowerCAmelCase = path.split('::' )[-1] try: lowerCAmelCase = string_to_dict(_snake_case , config.HUB_DATASETS_URL )['repo_id'] lowerCAmelCase = token_per_repo_id.get(_snake_case ) except ValueError: lowerCAmelCase = None with xopen(_snake_case , 'rb' , use_auth_token=_snake_case ) as f: lowerCAmelCase = BytesIO(f.read() ) lowerCAmelCase = PIL.Image.open(bytes_ ) else: lowerCAmelCase = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def UpperCamelCase__ ( self ): """simple docstring""" from .features import Value return ( self if self.decode else { "bytes": Value('binary' ), "path": Value('string' ), } ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if pa.types.is_string(storage.type ): lowerCAmelCase = pa.array([None] * len(_snake_case ) , type=pa.binary() ) lowerCAmelCase = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowerCAmelCase = pa.array([None] * len(_snake_case ) , type=pa.string() ) lowerCAmelCase = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('bytes' ) >= 0: lowerCAmelCase = storage.field('bytes' ) else: lowerCAmelCase = pa.array([None] * len(_snake_case ) , type=pa.binary() ) if storage.type.get_field_index('path' ) >= 0: lowerCAmelCase = storage.field('path' ) else: lowerCAmelCase = pa.array([None] * len(_snake_case ) , type=pa.string() ) lowerCAmelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): lowerCAmelCase = pa.array( [encode_np_array(np.array(_snake_case ) )['bytes'] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) lowerCAmelCase = pa.array([None] * len(_snake_case ) , type=pa.string() ) lowerCAmelCase = pa.StructArray.from_arrays( [bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(_snake_case , self.pa_type ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" @no_op_if_value_is_null def path_to_bytes(_snake_case ): with xopen(_snake_case , 'rb' ) as f: lowerCAmelCase = f.read() return bytes_ lowerCAmelCase = pa.array( [ (path_to_bytes(x['path'] ) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowerCAmelCase = pa.array( [os.path.basename(_snake_case ) if path is not None else None for path in storage.field('path' ).to_pylist()] , type=pa.string() , ) lowerCAmelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(_snake_case , self.pa_type ) def _SCREAMING_SNAKE_CASE (): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() lowerCAmelCase = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : "PIL.Image.Image" ): lowerCAmelCase = BytesIO() if image.format in list_image_compression_formats(): lowerCAmelCase = image.format else: lowerCAmelCase = 'PNG' if image.mode in ['1', 'L', 'LA', 'RGB', 'RGBA'] else 'TIFF' image.save(_UpperCAmelCase , format=_UpperCAmelCase ) return buffer.getvalue() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : "PIL.Image.Image" ): if hasattr(_UpperCAmelCase , 'filename' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(_UpperCAmelCase )} def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : np.ndarray ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) lowerCAmelCase = array.dtype lowerCAmelCase = dtype.byteorder if dtype.byteorder != '=' else _NATIVE_BYTEORDER lowerCAmelCase = dtype.kind lowerCAmelCase = dtype.itemsize lowerCAmelCase = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: lowerCAmelCase = np.dtype('|u1' ) if dtype_kind not in ["u", "i"]: raise TypeError( F'Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.' ) if dtype is not dest_dtype: warnings.warn(F'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: lowerCAmelCase = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: lowerCAmelCase = dtype_byteorder + dtype_kind + str(_UpperCAmelCase ) lowerCAmelCase = np.dtype(_UpperCAmelCase ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}' ) lowerCAmelCase = PIL.Image.fromarray(array.astype(_UpperCAmelCase ) ) return {"path": None, "bytes": image_to_bytes(_UpperCAmelCase )} def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if objs: lowerCAmelCase ,lowerCAmelCase = first_non_null_value(_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(_UpperCAmelCase , np.ndarray ): lowerCAmelCase = no_op_if_value_is_null(_UpperCAmelCase ) return [obj_to_image_dict_func(_UpperCAmelCase ) for obj in objs] elif isinstance(_UpperCAmelCase , PIL.Image.Image ): lowerCAmelCase = no_op_if_value_is_null(_UpperCAmelCase ) return [obj_to_image_dict_func(_UpperCAmelCase ) for obj in objs] else: return objs else: return objs
309
"""simple docstring""" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[int] , _UpperCAmelCase : str ): lowerCAmelCase = int(_UpperCAmelCase ) # Initialize Result lowerCAmelCase = [] # Traverse through all denomination for denomination in reversed(_UpperCAmelCase ): # Find denominations while int(_UpperCAmelCase ) >= int(_UpperCAmelCase ): total_value -= int(_UpperCAmelCase ) answer.append(_UpperCAmelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": __UpperCamelCase : Any = [] __UpperCamelCase : List[Any] = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): __UpperCamelCase : Any = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(f'''Denomination {i}: ''').strip())) __UpperCamelCase : int = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter __UpperCamelCase : List[str] = [1, 2, 5, 10, 20, 50, 100, 500, 2000] __UpperCamelCase : Any = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(f'''Following is minimal change for {value}: ''') __UpperCamelCase : List[str] = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
309
1
"""simple docstring""" import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='''%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s''', datefmt='''%Y-%m-%d %H:%M:%S''', level=os.environ.get('''LOGLEVEL''', '''INFO''').upper(), stream=sys.stdout, ) __UpperCamelCase : Dict = logging.getLogger(__name__) __UpperCamelCase : Dict = {'''facebook/bart-base''': BartForConditionalGeneration} __UpperCamelCase : List[str] = {'''facebook/bart-base''': BartTokenizer} def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=_UpperCAmelCase , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=_UpperCAmelCase , default=_UpperCAmelCase , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=_UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=_UpperCAmelCase , ) parser.add_argument( '--config_name' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=_UpperCAmelCase , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Where to store the final ONNX file.' ) lowerCAmelCase = parser.parse_args() return args def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str="cpu" ): lowerCAmelCase = model_dict[model_name].from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase ) lowerCAmelCase = tokenizer_dict[model_name].from_pretrained(_UpperCAmelCase ) if model_name in ["facebook/bart-base"]: lowerCAmelCase = 0 lowerCAmelCase = None lowerCAmelCase = 0 return huggingface_model, tokenizer def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ): model.eval() lowerCAmelCase = None lowerCAmelCase = torch.jit.script(BARTBeamSearchGenerator(_UpperCAmelCase ) ) with torch.no_grad(): lowerCAmelCase = 'My friends are cool but they eat too many carbs.' lowerCAmelCase = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors='pt' ).to(model.device ) lowerCAmelCase = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=_UpperCAmelCase , max_length=_UpperCAmelCase , early_stopping=_UpperCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( _UpperCAmelCase , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , _UpperCAmelCase , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=_UpperCAmelCase , ) logger.info('Model exported to {}'.format(_UpperCAmelCase ) ) lowerCAmelCase = remove_dup_initializers(os.path.abspath(_UpperCAmelCase ) ) logger.info('Deduplicated and optimized model written to {}'.format(_UpperCAmelCase ) ) lowerCAmelCase = onnxruntime.InferenceSession(_UpperCAmelCase ) lowerCAmelCase = ort_sess.run( _UpperCAmelCase , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(_UpperCAmelCase ), 'max_length': np.array(_UpperCAmelCase ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = parse_args() lowerCAmelCase = 5 lowerCAmelCase = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() lowerCAmelCase = torch.device(args.device ) lowerCAmelCase ,lowerCAmelCase = load_model_tokenizer(args.model_name_or_path , _UpperCAmelCase ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(_UpperCAmelCase ) if args.max_length: lowerCAmelCase = args.max_length if args.num_beams: lowerCAmelCase = args.num_beams if args.output_file_path: lowerCAmelCase = args.output_file_path else: lowerCAmelCase = 'BART.onnx' logger.info('Exporting model to ONNX' ) export_and_validate_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
309
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class a : def __init__( self , _snake_case , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = 13 lowerCAmelCase = 7 lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = 99 lowerCAmelCase = 32 lowerCAmelCase = 2 lowerCAmelCase = 4 lowerCAmelCase = 37 lowerCAmelCase = 'gelu' lowerCAmelCase = 0.1 lowerCAmelCase = 0.1 lowerCAmelCase = 5_12 lowerCAmelCase = 16 lowerCAmelCase = 2 lowerCAmelCase = 0.02 lowerCAmelCase = 3 lowerCAmelCase = 4 lowerCAmelCase = None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = self.prepare_config_and_inputs() lowerCAmelCase = True lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFEsmModel(config=_snake_case ) lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase = model(_snake_case ) lowerCAmelCase = [input_ids, input_mask] lowerCAmelCase = model(_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = TFEsmModel(config=_snake_case ) lowerCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } lowerCAmelCase = model(_snake_case ) lowerCAmelCase = [input_ids, input_mask] lowerCAmelCase = model(_snake_case , encoder_hidden_states=_snake_case ) # Also check the case where encoder outputs are not passed lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFEsmForMaskedLM(config=_snake_case ) lowerCAmelCase = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFEsmForTokenClassification(config=_snake_case ) lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class a ( a__ , a__ , unittest.TestCase ): snake_case__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) snake_case__ = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = TFEsmModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @unittest.skip('Protein models do not support embedding resizing.' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip('Protein models do not support embedding resizing.' ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(_snake_case ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowerCAmelCase = model.get_bias() assert isinstance(_snake_case , _snake_case ) for k, v in name.items(): assert isinstance(_snake_case , tf.Variable ) else: lowerCAmelCase = model.get_output_embeddings() assert x is None lowerCAmelCase = model.get_bias() assert name is None @require_tf class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) lowerCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase = model(_snake_case )[0] lowerCAmelCase = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , _snake_case ) # compare the actual values for a slice. lowerCAmelCase = tf.constant( [ [ [8.921_518, -10.589_814, -6.4_671_307], [-6.3_967_156, -13.911_377, -1.1_211_915], [-7.781_247, -13.951_557, -3.740_592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) lowerCAmelCase = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCAmelCase = model(_snake_case )[0] # compare the actual values for a slice. lowerCAmelCase = tf.constant( [ [ [0.14_443_092, 0.54_125_327, 0.3_247_739], [0.30_340_484, 0.00_526_676, 0.31_077_722], [0.32_278_043, -0.24_987_096, 0.3_414_628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
309
1
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __UpperCamelCase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name __UpperCamelCase : Optional[Any] = ''' Examples: ```py >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior") >>> pipe_prior.to("cuda") >>> prompt = "red cat, 4k photo" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> zero_image_emb = out.negative_image_embeds >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder") >>> pipe.to("cuda") >>> image = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=50, ... ).images >>> image[0].save("cat.png") ``` ''' def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int]=8 ): lowerCAmelCase = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowerCAmelCase = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class a ( a__ ): def __init__( self , _snake_case , _snake_case , _snake_case , ): """simple docstring""" super().__init__() self.register_modules( unet=_snake_case , scheduler=_snake_case , movq=_snake_case , ) lowerCAmelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" if latents is None: lowerCAmelCase = randn_tensor(_snake_case , generator=_snake_case , device=_snake_case , dtype=_snake_case ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) lowerCAmelCase = latents.to(_snake_case ) lowerCAmelCase = latents * scheduler.init_noise_sigma return latents def UpperCamelCase__ ( self , _snake_case=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowerCAmelCase = torch.device(F'cuda:{gpu_id}' ) lowerCAmelCase = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_snake_case , _snake_case ) def UpperCamelCase__ ( self , _snake_case=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) lowerCAmelCase = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_snake_case ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowerCAmelCase = None for cpu_offloaded_model in [self.unet, self.movq]: lowerCAmelCase ,lowerCAmelCase = cpu_offload_with_hook(_snake_case , _snake_case , prev_module_hook=_snake_case ) # We'll offload the last model manually. lowerCAmelCase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase__ ( self ): """simple docstring""" if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_snake_case , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_snake_case ) def __call__( self , _snake_case , _snake_case , _snake_case = 5_12 , _snake_case = 5_12 , _snake_case = 1_00 , _snake_case = 4.0 , _snake_case = 1 , _snake_case = None , _snake_case = None , _snake_case = "pil" , _snake_case = True , ): """simple docstring""" lowerCAmelCase = self._execution_device lowerCAmelCase = guidance_scale > 1.0 if isinstance(_snake_case , _snake_case ): lowerCAmelCase = torch.cat(_snake_case , dim=0 ) lowerCAmelCase = image_embeds.shape[0] * num_images_per_prompt if isinstance(_snake_case , _snake_case ): lowerCAmelCase = torch.cat(_snake_case , dim=0 ) if do_classifier_free_guidance: lowerCAmelCase = image_embeds.repeat_interleave(_snake_case , dim=0 ) lowerCAmelCase = negative_image_embeds.repeat_interleave(_snake_case , dim=0 ) lowerCAmelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_snake_case ) self.scheduler.set_timesteps(_snake_case , device=_snake_case ) lowerCAmelCase = self.scheduler.timesteps lowerCAmelCase = self.unet.config.in_channels lowerCAmelCase ,lowerCAmelCase = downscale_height_and_width(_snake_case , _snake_case , self.movq_scale_factor ) # create initial latent lowerCAmelCase = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , _snake_case , _snake_case , _snake_case , self.scheduler , ) for i, t in enumerate(self.progress_bar(_snake_case ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase = {'image_embeds': image_embeds} lowerCAmelCase = self.unet( sample=_snake_case , timestep=_snake_case , encoder_hidden_states=_snake_case , added_cond_kwargs=_snake_case , return_dict=_snake_case , )[0] if do_classifier_free_guidance: lowerCAmelCase ,lowerCAmelCase = noise_pred.split(latents.shape[1] , dim=1 ) lowerCAmelCase ,lowerCAmelCase = noise_pred.chunk(2 ) lowerCAmelCase ,lowerCAmelCase = variance_pred.chunk(2 ) lowerCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowerCAmelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowerCAmelCase ,lowerCAmelCase = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase = self.scheduler.step( _snake_case , _snake_case , _snake_case , generator=_snake_case , )[0] # post-processing lowerCAmelCase = self.movq.decode(_snake_case , force_not_quantize=_snake_case )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: lowerCAmelCase = image * 0.5 + 0.5 lowerCAmelCase = image.clamp(0 , 1 ) lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCAmelCase = self.numpy_to_pil(_snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=_snake_case )
309
"""simple docstring""" import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : Dict = '''▁''' __UpperCamelCase : Optional[int] = {'''vocab_file''': '''vocab.txt''', '''sentencepiece_model_ckpt''': '''sentencepiece.bpe.model'''} __UpperCamelCase : str = { '''sentencepiece_model_file''': '''sentencepiece.bpe.model''', '''vocab_file''': '''vocab.txt''', } __UpperCamelCase : Tuple = { '''vocab_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', }, '''sentencepiece_model_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', }, } __UpperCamelCase : Optional[Any] = { '''ernie-m-base''': 514, '''ernie-m-large''': 514, } __UpperCamelCase : str = { '''ernie-m-base''': {'''do_lower_case''': False}, '''ernie-m-large''': {'''do_lower_case''': False}, } class a ( a__ ): snake_case__ = ["input_ids"] snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_INIT_CONFIGURATION snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = RESOURCE_FILES_NAMES def __init__( self , _snake_case , _snake_case=None , _snake_case=False , _snake_case="utf8" , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case = None , **_snake_case , ): """simple docstring""" lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , vocab_file=_snake_case , encoding=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) lowerCAmelCase = do_lower_case lowerCAmelCase = sentencepiece_model_ckpt lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_snake_case ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: lowerCAmelCase = self.load_vocab(filepath=_snake_case ) else: lowerCAmelCase = {self.sp_model.id_to_piece(_snake_case ): id for id in range(self.sp_model.get_piece_size() )} lowerCAmelCase = {v: k for k, v in self.vocab.items()} def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if text is None: return None lowerCAmelCase = self.tokenize(_snake_case ) lowerCAmelCase ,lowerCAmelCase = '', [] for i, ch in enumerate(_snake_case ): if ch in self.SP_CHAR_MAPPING: lowerCAmelCase = self.SP_CHAR_MAPPING.get(_snake_case ) else: lowerCAmelCase = unicodedata.normalize('NFKC' , _snake_case ) if self.is_whitespace(_snake_case ): continue normalized_text += ch char_mapping.extend([i] * len(_snake_case ) ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = normalized_text, [], 0 if self.do_lower_case: lowerCAmelCase = text.lower() for token in split_tokens: if token[:1] == "▁": lowerCAmelCase = token[1:] lowerCAmelCase = text[offset:].index(_snake_case ) + offset lowerCAmelCase = start + len(_snake_case ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) lowerCAmelCase = end return token_mapping @property def UpperCamelCase__ ( self ): """simple docstring""" return len(self.vocab ) def UpperCamelCase__ ( self ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self ): """simple docstring""" lowerCAmelCase = self.__dict__.copy() lowerCAmelCase = None return state def __setstate__( self , _snake_case ): """simple docstring""" lowerCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCAmelCase = {} lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return "".join((self.SP_CHAR_MAPPING.get(_snake_case , _snake_case ) for c in text) ) def UpperCamelCase__ ( self , _snake_case , _snake_case=False , _snake_case=64 , _snake_case=0.1 ): """simple docstring""" if self.sp_model_kwargs.get('enable_sampling' ) is True: lowerCAmelCase = True if self.sp_model_kwargs.get('alpha' ) is not None: lowerCAmelCase = self.sp_model_kwargs.get('alpha' ) if self.sp_model_kwargs.get('nbest_size' ) is not None: lowerCAmelCase = self.sp_model_kwargs.get('nbest_size' ) if not enable_sampling: lowerCAmelCase = self.sp_model.EncodeAsPieces(_snake_case ) else: lowerCAmelCase = self.sp_model.SampleEncodeAsPieces(_snake_case , _snake_case , _snake_case ) lowerCAmelCase = [] for pi, piece in enumerate(_snake_case ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(_snake_case ) and pi != 0: new_pieces.append(_snake_case ) continue else: continue lowerCAmelCase = 0 for i, chunk in enumerate(_snake_case ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(_snake_case ) or self.is_punct(_snake_case ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(_snake_case ) lowerCAmelCase = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowerCAmelCase = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowerCAmelCase = i if len(_snake_case ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = ''.join(_snake_case ).replace(_snake_case , ' ' ).strip() return out_string def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = self.convert_ids_to_tokens(_snake_case ) lowerCAmelCase = ''.join(_snake_case ).replace(_snake_case , ' ' ).strip() return out_string def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return self.vocab.get(_snake_case , self.vocab.get(self.unk_token ) ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return self.reverse_vocab.get(_snake_case , self.unk_token ) def UpperCamelCase__ ( self , _snake_case , _snake_case=None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] lowerCAmelCase = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def UpperCamelCase__ ( self , _snake_case , _snake_case=None ): """simple docstring""" if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def UpperCamelCase__ ( self , _snake_case , _snake_case=None , _snake_case=False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) + [1] return [1] + ([0] * len(_snake_case )) + [1] def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" if token_ids_a is None: # [CLS] X [SEP] return (len(_snake_case ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(_snake_case ) + 1) + [1] * (len(_snake_case ) + 3) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if "\u4e00" <= char <= "\u9fff": return True return False def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if char in ",;:.?!~,;:。?!《》【】": return True return False def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(_snake_case ) == 1: lowerCAmelCase = unicodedata.category(_snake_case ) if cat == "Zs": return True return False def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = {} with io.open(_snake_case , 'r' , encoding='utf-8' ) as f: for index, line in enumerate(_snake_case ): lowerCAmelCase = line.rstrip('\n' ) lowerCAmelCase = int(_snake_case ) return token_to_idx def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = 0 if os.path.isdir(_snake_case ): lowerCAmelCase = os.path.join( _snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: lowerCAmelCase = (filename_prefix + '-' if filename_prefix else '') + save_directory with open(_snake_case , 'w' , encoding='utf-8' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda _snake_case : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ' Please check that the vocabulary is not corrupted!' ) lowerCAmelCase = token_index writer.write(token + '\n' ) index += 1 lowerCAmelCase = os.path.join(_snake_case , 'sentencepiece.bpe.model' ) with open(_snake_case , 'wb' ) as fi: lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (vocab_file,)
309
1
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class a ( a__ ): snake_case__ = 42 class a ( a__ , a__ ): @register_to_config def __init__( self , _snake_case = 6_55_36 , _snake_case = None , _snake_case = 2 , _snake_case = 2 , _snake_case = 0 , _snake_case = "fourier" , _snake_case = True , _snake_case = False , _snake_case = 0.0 , _snake_case = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , _snake_case = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , _snake_case = "UNetMidBlock1D" , _snake_case = None , _snake_case = (32, 32, 64) , _snake_case = None , _snake_case = 8 , _snake_case = 1 , _snake_case = False , ): """simple docstring""" super().__init__() lowerCAmelCase = sample_size # time if time_embedding_type == "fourier": lowerCAmelCase = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=_snake_case , log=_snake_case , flip_sin_to_cos=_snake_case ) lowerCAmelCase = 2 * block_out_channels[0] elif time_embedding_type == "positional": lowerCAmelCase = Timesteps( block_out_channels[0] , flip_sin_to_cos=_snake_case , downscale_freq_shift=_snake_case ) lowerCAmelCase = block_out_channels[0] if use_timestep_embedding: lowerCAmelCase = block_out_channels[0] * 4 lowerCAmelCase = TimestepEmbedding( in_channels=_snake_case , time_embed_dim=_snake_case , act_fn=_snake_case , out_dim=block_out_channels[0] , ) lowerCAmelCase = nn.ModuleList([] ) lowerCAmelCase = None lowerCAmelCase = nn.ModuleList([] ) lowerCAmelCase = None # down lowerCAmelCase = in_channels for i, down_block_type in enumerate(_snake_case ): lowerCAmelCase = output_channel lowerCAmelCase = block_out_channels[i] if i == 0: input_channel += extra_in_channels lowerCAmelCase = i == len(_snake_case ) - 1 lowerCAmelCase = get_down_block( _snake_case , num_layers=_snake_case , in_channels=_snake_case , out_channels=_snake_case , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(_snake_case ) # mid lowerCAmelCase = get_mid_block( _snake_case , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=_snake_case , add_downsample=_snake_case , ) # up lowerCAmelCase = list(reversed(_snake_case ) ) lowerCAmelCase = reversed_block_out_channels[0] if out_block_type is None: lowerCAmelCase = out_channels else: lowerCAmelCase = block_out_channels[0] for i, up_block_type in enumerate(_snake_case ): lowerCAmelCase = output_channel lowerCAmelCase = ( reversed_block_out_channels[i + 1] if i < len(_snake_case ) - 1 else final_upsample_channels ) lowerCAmelCase = i == len(_snake_case ) - 1 lowerCAmelCase = get_up_block( _snake_case , num_layers=_snake_case , in_channels=_snake_case , out_channels=_snake_case , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(_snake_case ) lowerCAmelCase = output_channel # out lowerCAmelCase = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) lowerCAmelCase = get_out_block( out_block_type=_snake_case , num_groups_out=_snake_case , embed_dim=block_out_channels[0] , out_channels=_snake_case , act_fn=_snake_case , fc_dim=block_out_channels[-1] // 4 , ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case = True , ): """simple docstring""" lowerCAmelCase = timestep if not torch.is_tensor(_snake_case ): lowerCAmelCase = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(_snake_case ) and len(timesteps.shape ) == 0: lowerCAmelCase = timesteps[None].to(sample.device ) lowerCAmelCase = self.time_proj(_snake_case ) if self.config.use_timestep_embedding: lowerCAmelCase = self.time_mlp(_snake_case ) else: lowerCAmelCase = timestep_embed[..., None] lowerCAmelCase = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) lowerCAmelCase = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down lowerCAmelCase = () for downsample_block in self.down_blocks: lowerCAmelCase ,lowerCAmelCase = downsample_block(hidden_states=_snake_case , temb=_snake_case ) down_block_res_samples += res_samples # 3. mid if self.mid_block: lowerCAmelCase = self.mid_block(_snake_case , _snake_case ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): lowerCAmelCase = down_block_res_samples[-1:] lowerCAmelCase = down_block_res_samples[:-1] lowerCAmelCase = upsample_block(_snake_case , res_hidden_states_tuple=_snake_case , temb=_snake_case ) # 5. post-process if self.out_block: lowerCAmelCase = self.out_block(_snake_case , _snake_case ) if not return_dict: return (sample,) return UNetaDOutput(sample=_snake_case )
309
"""simple docstring""" import argparse import os import torch from transformers.utils import WEIGHTS_NAME __UpperCamelCase : int = ['''small''', '''medium''', '''large'''] __UpperCamelCase : str = '''lm_head.decoder.weight''' __UpperCamelCase : Dict = '''lm_head.weight''' def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = torch.load(_UpperCAmelCase ) lowerCAmelCase = d.pop(_UpperCAmelCase ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) torch.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) if __name__ == "__main__": __UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--dialogpt_path''', default='''.''', type=str) __UpperCamelCase : Optional[int] = parser.parse_args() for MODEL in DIALOGPT_MODELS: __UpperCamelCase : Dict = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''') __UpperCamelCase : str = f'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
309
1
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" debug_launcher(test_script.main ) def UpperCamelCase__ ( self ): """simple docstring""" debug_launcher(test_ops.main )
309
"""simple docstring""" __UpperCamelCase : Dict = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} __UpperCamelCase : str = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[int, list[int]] , _UpperCAmelCase : int , _UpperCAmelCase : list[bool] ): lowerCAmelCase = True lowerCAmelCase = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) order.append(_UpperCAmelCase ) return order def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[int, list[int]] , _UpperCAmelCase : int , _UpperCAmelCase : list[bool] ): lowerCAmelCase = True lowerCAmelCase = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return component def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[int, list[int]] ): lowerCAmelCase = len(_UpperCAmelCase ) * [False] lowerCAmelCase = {vert: [] for vert in range(len(_UpperCAmelCase ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(_UpperCAmelCase ) lowerCAmelCase = [] for i, was_visited in enumerate(_UpperCAmelCase ): if not was_visited: order += topology_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = [] lowerCAmelCase = len(_UpperCAmelCase ) * [False] for i in range(len(_UpperCAmelCase ) ): lowerCAmelCase = order[len(_UpperCAmelCase ) - i - 1] if not visited[vert]: lowerCAmelCase = find_components(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) components_list.append(_UpperCAmelCase ) return components_list
309
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : Optional[Any] = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class a ( a__ ): snake_case__ = '''yolos''' def __init__( self , _snake_case=7_68 , _snake_case=12 , _snake_case=12 , _snake_case=30_72 , _snake_case="gelu" , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=[5_12, 8_64] , _snake_case=16 , _snake_case=3 , _snake_case=True , _snake_case=1_00 , _snake_case=True , _snake_case=False , _snake_case=1 , _snake_case=5 , _snake_case=2 , _snake_case=5 , _snake_case=2 , _snake_case=0.1 , **_snake_case , ): """simple docstring""" super().__init__(**_snake_case ) lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = image_size lowerCAmelCase = patch_size lowerCAmelCase = num_channels lowerCAmelCase = qkv_bias lowerCAmelCase = num_detection_tokens lowerCAmelCase = use_mid_position_embeddings lowerCAmelCase = auxiliary_loss # Hungarian matcher lowerCAmelCase = class_cost lowerCAmelCase = bbox_cost lowerCAmelCase = giou_cost # Loss coefficients lowerCAmelCase = bbox_loss_coefficient lowerCAmelCase = giou_loss_coefficient lowerCAmelCase = eos_coefficient class a ( a__ ): snake_case__ = version.parse('''1.11''' ) @property def UpperCamelCase__ ( self ): """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def UpperCamelCase__ ( self ): """simple docstring""" return 1E-4 @property def UpperCamelCase__ ( self ): """simple docstring""" return 12
309
"""simple docstring""" import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) @dataclass class a : snake_case__ = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(glue_processors.keys() )} ) snake_case__ = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) snake_case__ = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) snake_case__ = field( default=a__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.task_name.lower() class a ( a__ ): snake_case__ = '''train''' snake_case__ = '''dev''' snake_case__ = '''test''' class a ( a__ ): snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 def __init__( self , _snake_case , _snake_case , _snake_case = None , _snake_case = Split.train , _snake_case = None , ): """simple docstring""" warnings.warn( 'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , _snake_case , ) lowerCAmelCase = args lowerCAmelCase = glue_processors[args.task_name]() lowerCAmelCase = glue_output_modes[args.task_name] if isinstance(_snake_case , _snake_case ): try: lowerCAmelCase = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) # Load data features from cache or dataset file lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , ) lowerCAmelCase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCAmelCase ,lowerCAmelCase = label_list[2], label_list[1] lowerCAmelCase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCAmelCase = cached_features_file + '.lock' with FileLock(_snake_case ): if os.path.exists(_snake_case ) and not args.overwrite_cache: lowerCAmelCase = time.time() lowerCAmelCase = torch.load(_snake_case ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) else: logger.info(F'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: lowerCAmelCase = self.processor.get_test_examples(args.data_dir ) else: lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: lowerCAmelCase = examples[:limit_length] lowerCAmelCase = glue_convert_examples_to_features( _snake_case , _snake_case , max_length=args.max_seq_length , label_list=_snake_case , output_mode=self.output_mode , ) lowerCAmelCase = time.time() torch.save(self.features , _snake_case ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , _snake_case ): """simple docstring""" return self.features[i] def UpperCamelCase__ ( self ): """simple docstring""" return self.label_list
309
1
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : Tuple = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] ): for attribute in key.split('.' ): lowerCAmelCase = getattr(_UpperCAmelCase , _UpperCAmelCase ) if weight_type is not None: lowerCAmelCase = getattr(_UpperCAmelCase , _UpperCAmelCase ).shape else: lowerCAmelCase = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": lowerCAmelCase = value elif weight_type == "weight_g": lowerCAmelCase = value elif weight_type == "weight_v": lowerCAmelCase = value elif weight_type == "bias": lowerCAmelCase = value else: lowerCAmelCase = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ): lowerCAmelCase = [] lowerCAmelCase = fairseq_model.state_dict() lowerCAmelCase = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , hf_model.config.feat_extract_norm == 'group' , ) lowerCAmelCase = True else: for key, mapped_key in MAPPING.items(): lowerCAmelCase = 'hubert.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or (key.split('w2v_model.' )[-1] == name.split('.' )[0] and not is_finetuned): lowerCAmelCase = True if "*" in mapped_key: lowerCAmelCase = name.split(_UpperCAmelCase )[0].split('.' )[-2] lowerCAmelCase = mapped_key.replace('*' , _UpperCAmelCase ) if "weight_g" in name: lowerCAmelCase = 'weight_g' elif "weight_v" in name: lowerCAmelCase = 'weight_v' elif "weight" in name: lowerCAmelCase = 'weight' elif "bias" in name: lowerCAmelCase = 'bias' else: lowerCAmelCase = None set_recursively(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) continue if not is_used: unused_weights.append(_UpperCAmelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] ): lowerCAmelCase = full_name.split('conv_layers.' )[-1] lowerCAmelCase = name.split('.' ) lowerCAmelCase = int(items[0] ) lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowerCAmelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowerCAmelCase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) lowerCAmelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) lowerCAmelCase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(_UpperCAmelCase ) @torch.no_grad() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Any=True ): if config_path is not None: lowerCAmelCase = HubertConfig.from_pretrained(_UpperCAmelCase ) else: lowerCAmelCase = HubertConfig() if is_finetuned: if dict_path: lowerCAmelCase = Dictionary.load(_UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCAmelCase = target_dict.pad_index lowerCAmelCase = target_dict.bos_index lowerCAmelCase = target_dict.eos_index lowerCAmelCase = len(target_dict.symbols ) lowerCAmelCase = os.path.join(_UpperCAmelCase , 'vocab.json' ) if not os.path.isdir(_UpperCAmelCase ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(_UpperCAmelCase ) ) return os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(target_dict.indices , _UpperCAmelCase ) lowerCAmelCase = WavaVecaCTCTokenizer( _UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=_UpperCAmelCase , ) lowerCAmelCase = True if config.feat_extract_norm == 'layer' else False lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , ) lowerCAmelCase = WavaVecaProcessor(feature_extractor=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) processor.save_pretrained(_UpperCAmelCase ) lowerCAmelCase = HubertForCTC(_UpperCAmelCase ) else: lowerCAmelCase = HubertModel(_UpperCAmelCase ) if is_finetuned: lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowerCAmelCase = model[0].eval() recursively_load_weights(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) hf_wavavec.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __UpperCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) __UpperCamelCase : List[str] = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
309
"""simple docstring""" import os from collections.abc import Iterator def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "." ): for dir_path, dir_names, filenames in os.walk(_UpperCAmelCase ): lowerCAmelCase = [d for d in dir_names if d != 'scripts' and d[0] not in '._'] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_UpperCAmelCase )[1] in (".py", ".ipynb"): yield os.path.join(_UpperCAmelCase , _UpperCAmelCase ).lstrip('./' ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): return F'{i * " "}*' if i else "\n##" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_UpperCAmelCase ) or old_parts[i] != new_part) and new_part: print(F'{md_prefix(_UpperCAmelCase )} {new_part.replace("_" , " " ).title()}' ) return new_path def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "." ): lowerCAmelCase = '' for filepath in sorted(good_file_paths(_UpperCAmelCase ) ): lowerCAmelCase ,lowerCAmelCase = os.path.split(_UpperCAmelCase ) if filepath != old_path: lowerCAmelCase = print_path(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = (filepath.count(os.sep ) + 1) if filepath else 0 lowerCAmelCase = F'{filepath}/{filename}'.replace(' ' , '%20' ) lowerCAmelCase = os.path.splitext(filename.replace('_' , ' ' ).title() )[0] print(F'{md_prefix(_UpperCAmelCase )} [{filename}]({url})' ) if __name__ == "__main__": print_directory_md('''.''')
309
1
"""simple docstring""" import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = 8 # DPR tok lowerCAmelCase = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] lowerCAmelCase = os.path.join(self.tmpdirname , 'dpr_tokenizer' ) os.makedirs(_snake_case , exist_ok=_snake_case ) lowerCAmelCase = os.path.join(_snake_case , DPR_VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) # BART tok lowerCAmelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] lowerCAmelCase = dict(zip(_snake_case , range(len(_snake_case ) ) ) ) lowerCAmelCase = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] lowerCAmelCase = {'unk_token': '<unk>'} lowerCAmelCase = os.path.join(self.tmpdirname , 'bart_tokenizer' ) os.makedirs(_snake_case , exist_ok=_snake_case ) lowerCAmelCase = os.path.join(_snake_case , BART_VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase = os.path.join(_snake_case , BART_VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_snake_case ) ) def UpperCamelCase__ ( self ): """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def UpperCamelCase__ ( self ): """simple docstring""" return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def UpperCamelCase__ ( self ): """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer' ) ) def UpperCamelCase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = Dataset.from_dict( { 'id': ['0', '1'], 'text': ['foo', 'bar'], 'title': ['Foo', 'Bar'], 'embeddings': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('embeddings' , string_factory='Flat' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_dummy_dataset() lowerCAmelCase = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('transformers.models.rag.retrieval_rag.load_dataset' ) as mock_load_dataset: lowerCAmelCase = dataset lowerCAmelCase = RagRetriever( _snake_case , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = self.get_dummy_dataset() lowerCAmelCase = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='custom' , ) if from_disk: lowerCAmelCase = os.path.join(self.tmpdirname , 'dataset' ) lowerCAmelCase = os.path.join(self.tmpdirname , 'index.faiss' ) dataset.get_index('embeddings' ).save(os.path.join(self.tmpdirname , 'index.faiss' ) ) dataset.drop_index('embeddings' ) dataset.save_to_disk(os.path.join(self.tmpdirname , 'dataset' ) ) del dataset lowerCAmelCase = RagRetriever( _snake_case , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: lowerCAmelCase = RagRetriever( _snake_case , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , _snake_case ) , ) return retriever def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = Dataset.from_dict( { 'id': ['0', '1'], 'text': ['foo', 'bar'], 'title': ['Foo', 'Bar'], 'embeddings': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('embeddings' , string_factory='Flat' , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCAmelCase = os.path.join(self.tmpdirname , 'hf_bert_base.hnswSQ8_correct_phi_128.c_index' ) dataset.save_faiss_index('embeddings' , index_file_name + '.index.dpr' ) pickle.dump(dataset['id'] , open(index_file_name + '.index_meta.dpr' , 'wb' ) ) lowerCAmelCase = os.path.join(self.tmpdirname , 'psgs_w100.tsv.pkl' ) lowerCAmelCase = {sample['id']: [sample['text'], sample['title']] for sample in dataset} pickle.dump(_snake_case , open(_snake_case , 'wb' ) ) lowerCAmelCase = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='legacy' , index_path=self.tmpdirname , ) lowerCAmelCase = RagRetriever( _snake_case , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 1 lowerCAmelCase = self.get_dummy_canonical_hf_index_retriever() lowerCAmelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = retriever.retrieve(_snake_case , n_docs=_snake_case ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_snake_case ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) , _snake_case ) self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('transformers.models.rag.retrieval_rag.load_dataset' ) as mock_load_dataset: lowerCAmelCase = self.get_dummy_dataset() retriever.save_pretrained(_snake_case ) lowerCAmelCase = RagRetriever.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) lowerCAmelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCAmelCase = retriever.retrieve(_snake_case , n_docs=1 ) self.assertTrue(out is not None ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 1 lowerCAmelCase = self.get_dummy_custom_hf_index_retriever(from_disk=_snake_case ) lowerCAmelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = retriever.retrieve(_snake_case , n_docs=_snake_case ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_snake_case ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) , _snake_case ) self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_dummy_custom_hf_index_retriever(from_disk=_snake_case ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_snake_case ) lowerCAmelCase = RagRetriever.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) lowerCAmelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCAmelCase = retriever.retrieve(_snake_case , n_docs=1 ) self.assertTrue(out is not None ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 1 lowerCAmelCase = self.get_dummy_custom_hf_index_retriever(from_disk=_snake_case ) lowerCAmelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = retriever.retrieve(_snake_case , n_docs=_snake_case ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_snake_case ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) , _snake_case ) self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_dummy_custom_hf_index_retriever(from_disk=_snake_case ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_snake_case ) lowerCAmelCase = RagRetriever.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) lowerCAmelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCAmelCase = retriever.retrieve(_snake_case , n_docs=1 ) self.assertTrue(out is not None ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 1 lowerCAmelCase = self.get_dummy_legacy_index_retriever() lowerCAmelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = retriever.retrieve(_snake_case , n_docs=_snake_case ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_snake_case ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['text', 'title'] ) self.assertEqual(len(doc_dicts[0]['text'] ) , _snake_case ) self.assertEqual(doc_dicts[0]['text'][0] , 'bar' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['text'][0] , 'foo' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_snake_case ) lowerCAmelCase = RagRetriever.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) lowerCAmelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCAmelCase = retriever.retrieve(_snake_case , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def UpperCamelCase__ ( self ): """simple docstring""" import torch lowerCAmelCase = 1 lowerCAmelCase = self.get_dummy_canonical_hf_index_retriever() lowerCAmelCase = [[5, 7], [10, 11]] lowerCAmelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCAmelCase = retriever(_snake_case , _snake_case , prefix=retriever.config.generator.prefix , n_docs=_snake_case ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = ( out['context_input_ids'], out['context_attention_mask'], out['retrieved_doc_embeds'], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(_snake_case , _snake_case ) self.assertIsInstance(_snake_case , _snake_case ) self.assertIsInstance(_snake_case , np.ndarray ) lowerCAmelCase = retriever( _snake_case , _snake_case , prefix=retriever.config.generator.prefix , n_docs=_snake_case , return_tensors='pt' , ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = ( # noqa: F841 out['context_input_ids'], out['context_attention_mask'], out['retrieved_doc_embeds'], out['doc_ids'], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(_snake_case , torch.Tensor ) self.assertIsInstance(_snake_case , torch.Tensor ) self.assertIsInstance(_snake_case , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_dpr_ctx_encoder_tokenizer() lowerCAmelCase = 1 lowerCAmelCase = self.get_dummy_custom_hf_index_retriever(from_disk=_snake_case ) retriever.set_ctx_encoder_tokenizer(_snake_case ) lowerCAmelCase = [[5, 7], [10, 11]] lowerCAmelCase = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) lowerCAmelCase = retriever(_snake_case , _snake_case , prefix=retriever.config.generator.prefix , n_docs=_snake_case ) self.assertEqual( len(_snake_case ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('tokenized_doc_ids', 'tokenized_doc_attention_mask') ) , _snake_case ) # check for doc token related keys in dictionary.
309
"""simple docstring""" import os from datetime import datetime as dt from github import Github __UpperCamelCase : int = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''enhancement''', '''new pipeline/model''', '''new scheduler''', '''wip''', ] def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = Github(os.environ['GITHUB_TOKEN'] ) lowerCAmelCase = g.get_repo('huggingface/diffusers' ) lowerCAmelCase = repo.get_issues(state='open' ) for issue in open_issues: lowerCAmelCase = sorted(issue.get_comments() , key=lambda _UpperCAmelCase : i.created_at , reverse=_UpperCAmelCase ) lowerCAmelCase = comments[0] if len(_UpperCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open' ) issue.remove_from_labels('stale' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) issue.add_to_labels('stale' ) if __name__ == "__main__": main()
309
1
"""simple docstring""" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 100 ): lowerCAmelCase = (n * (n + 1) // 2) ** 2 lowerCAmelCase = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f'''{solution() = }''')
309
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCamelCase : Any = { '''configuration_layoutlmv2''': ['''LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv2Config'''], '''processing_layoutlmv2''': ['''LayoutLMv2Processor'''], '''tokenization_layoutlmv2''': ['''LayoutLMv2Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = ['''LayoutLMv2TokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = ['''LayoutLMv2FeatureExtractor'''] __UpperCamelCase : Optional[int] = ['''LayoutLMv2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ '''LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv2ForQuestionAnswering''', '''LayoutLMv2ForSequenceClassification''', '''LayoutLMv2ForTokenClassification''', '''LayoutLMv2Layer''', '''LayoutLMv2Model''', '''LayoutLMv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
309
1
"""simple docstring""" import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class a ( unittest.TestCase ): def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=5 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=4 , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_attention_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_choices def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_attention_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = config_and_inputs lowerCAmelCase = True lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class a ( a__ , unittest.TestCase ): snake_case__ = True snake_case__ = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = FlaxBertModelTester(self ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = FlaxBertModel.from_pretrained('bert-base-cased' ) lowerCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(_snake_case )
309
"""simple docstring""" import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) class a ( a__ ): def __init__( self , *_snake_case , **_snake_case ): """simple docstring""" warnings.warn( 'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PoolFormerImageProcessor instead.' , _snake_case , ) super().__init__(*_snake_case , **_snake_case )
309
1
"""simple docstring""" import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput __UpperCamelCase : Optional[Any] = '''scheduler_config.json''' class a ( a__ ): snake_case__ = 1 snake_case__ = 2 snake_case__ = 3 snake_case__ = 4 snake_case__ = 5 @dataclass class a ( a__ ): snake_case__ = 42 class a : snake_case__ = SCHEDULER_CONFIG_NAME snake_case__ = ['''dtype'''] snake_case__ = [] snake_case__ = True @classmethod def UpperCamelCase__ ( cls , _snake_case = None , _snake_case = None , _snake_case=False , **_snake_case , ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = cls.load_config( pretrained_model_name_or_path=_snake_case , subfolder=_snake_case , return_unused_kwargs=_snake_case , **_snake_case , ) lowerCAmelCase ,lowerCAmelCase = cls.from_config(_snake_case , return_unused_kwargs=_snake_case , **_snake_case ) if hasattr(_snake_case , 'create_state' ) and getattr(_snake_case , 'has_state' , _snake_case ): lowerCAmelCase = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def UpperCamelCase__ ( self , _snake_case , _snake_case = False , **_snake_case ): """simple docstring""" self.save_config(save_directory=_snake_case , push_to_hub=_snake_case , **_snake_case ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self._get_compatibles() @classmethod def UpperCamelCase__ ( cls ): """simple docstring""" lowerCAmelCase = list(set([cls.__name__] + cls._compatibles ) ) lowerCAmelCase = importlib.import_module(__name__.split('.' )[0] ) lowerCAmelCase = [ getattr(_snake_case , _snake_case ) for c in compatible_classes_str if hasattr(_snake_case , _snake_case ) ] return compatible_classes def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : Tuple[int] ): assert len(_UpperCAmelCase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(_UpperCAmelCase ) - x.ndim) ) , _UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : List[Any]=0.999 , _UpperCAmelCase : Union[str, Any]=jnp.floataa ): def alpha_bar(_UpperCAmelCase : Optional[Any] ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 lowerCAmelCase = [] for i in range(_UpperCAmelCase ): lowerCAmelCase = i / num_diffusion_timesteps lowerCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(_UpperCAmelCase ) / alpha_bar(_UpperCAmelCase ) , _UpperCAmelCase ) ) return jnp.array(_UpperCAmelCase , dtype=_UpperCAmelCase ) @flax.struct.dataclass class a : snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 @classmethod def UpperCamelCase__ ( cls , _snake_case ): """simple docstring""" lowerCAmelCase = scheduler.config if config.trained_betas is not None: lowerCAmelCase = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": lowerCAmelCase = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowerCAmelCase = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowerCAmelCase = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( F'beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}' ) lowerCAmelCase = 1.0 - betas lowerCAmelCase = jnp.cumprod(_snake_case , axis=0 ) return cls( alphas=_snake_case , betas=_snake_case , alphas_cumprod=_snake_case , ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : CommonSchedulerState , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray ): lowerCAmelCase = state.alphas_cumprod lowerCAmelCase = alphas_cumprod[timesteps] ** 0.5 lowerCAmelCase = sqrt_alpha_prod.flatten() lowerCAmelCase = broadcast_to_shape_from_left(_UpperCAmelCase , original_samples.shape ) lowerCAmelCase = (1 - alphas_cumprod[timesteps]) ** 0.5 lowerCAmelCase = sqrt_one_minus_alpha_prod.flatten() lowerCAmelCase = broadcast_to_shape_from_left(_UpperCAmelCase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : CommonSchedulerState , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray ): lowerCAmelCase ,lowerCAmelCase = get_sqrt_alpha_prod(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : CommonSchedulerState , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray , _UpperCAmelCase : jnp.ndarray ): lowerCAmelCase ,lowerCAmelCase = get_sqrt_alpha_prod(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
309
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. __UpperCamelCase : str = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. __UpperCamelCase : Optional[Any] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. __UpperCamelCase : Dict = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = len([g for position, g in enumerate(_UpperCAmelCase ) if g == main_target[position]] ) return (item, float(_UpperCAmelCase )) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = random.randint(0 , len(_UpperCAmelCase ) - 1 ) lowerCAmelCase = parent_a[:random_slice] + parent_a[random_slice:] lowerCAmelCase = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] ): lowerCAmelCase = list(_UpperCAmelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: lowerCAmelCase = random.choice(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : tuple[str, float] , _UpperCAmelCase : list[tuple[str, float]] , _UpperCAmelCase : list[str] , ): lowerCAmelCase = [] # Generate more children proportionally to the fitness score. lowerCAmelCase = int(parent_a[1] * 100 ) + 1 lowerCAmelCase = 10 if child_n >= 10 else child_n for _ in range(_UpperCAmelCase ): lowerCAmelCase = population_score[random.randint(0 , _UpperCAmelCase )][0] lowerCAmelCase ,lowerCAmelCase = crossover(parent_a[0] , _UpperCAmelCase ) # Append new string to the population list. pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) ) pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) ) return pop def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] , _UpperCAmelCase : bool = True ): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: lowerCAmelCase = F'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(_UpperCAmelCase ) # Verify that the target contains no genes besides the ones inside genes variable. lowerCAmelCase = sorted({c for c in target if c not in genes} ) if not_in_genes_list: lowerCAmelCase = F'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(_UpperCAmelCase ) # Generate random starting population. lowerCAmelCase = [] for _ in range(_UpperCAmelCase ): population.append(''.join([random.choice(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) )] ) ) # Just some logs to know what the algorithms is doing. lowerCAmelCase ,lowerCAmelCase = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_UpperCAmelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. lowerCAmelCase = [evaluate(_UpperCAmelCase , _UpperCAmelCase ) for item in population] # Check if there is a matching evolution. lowerCAmelCase = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] , reverse=_UpperCAmelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'\nGeneration: {generation}' F'\nTotal Population:{total_population}' F'\nBest score: {population_score[0][1]}' F'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. lowerCAmelCase = population[: int(N_POPULATION / 3 )] population.clear() population.extend(_UpperCAmelCase ) # Normalize population score to be between 0 and 1. lowerCAmelCase = [ (item, score / len(_UpperCAmelCase )) for item, score in population_score ] # This is selection for i in range(_UpperCAmelCase ): population.extend(select(population_score[int(_UpperCAmelCase )] , _UpperCAmelCase , _UpperCAmelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_UpperCAmelCase ) > N_POPULATION: break if __name__ == "__main__": __UpperCamelCase : Tuple = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) __UpperCamelCase : str = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase : Dict = basic(target_str, genes_list) print( f'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
309
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : str = {'''vocab_file''': '''sentencepiece.bpe.model'''} __UpperCamelCase : Union[str, Any] = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', } } __UpperCamelCase : int = { '''camembert-base''': 512, } __UpperCamelCase : List[Any] = '''▁''' class a ( a__ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ['''input_ids''', '''attention_mask'''] def __init__( self , _snake_case , _snake_case="<s>" , _snake_case="</s>" , _snake_case="</s>" , _snake_case="<s>" , _snake_case="<unk>" , _snake_case="<pad>" , _snake_case="<mask>" , _snake_case=["<s>NOTUSED", "</s>NOTUSED"] , _snake_case = None , **_snake_case , ): """simple docstring""" lowerCAmelCase = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else mask_token lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_snake_case , eos_token=_snake_case , unk_token=_snake_case , sep_token=_snake_case , cls_token=_snake_case , pad_token=_snake_case , mask_token=_snake_case , additional_special_tokens=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_snake_case ) ) lowerCAmelCase = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> lowerCAmelCase = {'<s>NOTUSED': 0, '<pad>': 1, '</s>NOTUSED': 2, '<unk>': 3} lowerCAmelCase = len(self.fairseq_tokens_to_ids ) lowerCAmelCase = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) lowerCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] lowerCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase__ ( self , _snake_case , _snake_case = None , _snake_case = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case , token_ids_a=_snake_case , already_has_special_tokens=_snake_case ) if token_ids_a is None: return [1] + ([0] * len(_snake_case )) + [1] return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) + [1] def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCamelCase__ ( self ): """simple docstring""" return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return self.sp_model.encode(_snake_case , out_type=_snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(_snake_case ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(_snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = [] lowerCAmelCase = '' lowerCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_snake_case ) + token lowerCAmelCase = True lowerCAmelCase = [] else: current_sub_tokens.append(_snake_case ) lowerCAmelCase = False out_string += self.sp_model.decode(_snake_case ) return out_string.strip() def __getstate__( self ): """simple docstring""" lowerCAmelCase = self.__dict__.copy() lowerCAmelCase = None return state def __setstate__( self , _snake_case ): """simple docstring""" lowerCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCAmelCase = {} lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" if not os.path.isdir(_snake_case ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase = os.path.join( _snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case , 'wb' ) as fi: lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
309
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a : def __init__( self ): """simple docstring""" lowerCAmelCase = '' lowerCAmelCase = '' lowerCAmelCase = [] lowerCAmelCase = 0 lowerCAmelCase = 2_56 lowerCAmelCase = 0 lowerCAmelCase = 0 lowerCAmelCase = 0 lowerCAmelCase = 0 def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = cva.imread(_snake_case , 0 ) lowerCAmelCase = copy.deepcopy(self.img ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = plt.hist(self.img.ravel() , 2_56 , [0, 2_56] , label='x' ) lowerCAmelCase = np.sum(_snake_case ) for i in range(len(_snake_case ) ): lowerCAmelCase = x[i] / self.k self.sk += prk lowerCAmelCase = (self.L - 1) * self.sk if self.rem != 0: lowerCAmelCase = int(last % last ) lowerCAmelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(_snake_case ) lowerCAmelCase = int(np.ma.count(self.img ) / self.img[1].size ) lowerCAmelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowerCAmelCase = self.img[j][i] if num != self.last_list[num]: lowerCAmelCase = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def UpperCamelCase__ ( self ): """simple docstring""" plt.hist(self.img.ravel() , 2_56 , [0, 2_56] ) def UpperCamelCase__ ( self ): """simple docstring""" cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(50_00 ) cva.destroyAllWindows() if __name__ == "__main__": __UpperCamelCase : int = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') __UpperCamelCase : List[Any] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
309
1
"""simple docstring""" import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __UpperCamelCase : Tuple = trt.Logger(trt.Logger.WARNING) __UpperCamelCase : Dict = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __UpperCamelCase : Any = logging.getLogger(__name__) __UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=384, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=128, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) __UpperCamelCase : Optional[int] = parser.parse_args() if args.tokenizer_name: __UpperCamelCase : List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) __UpperCamelCase : Optional[Any] = args.per_device_eval_batch_size __UpperCamelCase : Union[str, Any] = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __UpperCamelCase : List[str] = True __UpperCamelCase : int = '''temp_engine/bert-fp32.engine''' if args.fpaa: __UpperCamelCase : Optional[Any] = '''temp_engine/bert-fp16.engine''' if args.inta: __UpperCamelCase : int = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') __UpperCamelCase : Tuple = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __UpperCamelCase : Optional[int] = [network.get_input(i) for i in range(network.num_inputs)] __UpperCamelCase : Any = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __UpperCamelCase : Dict = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __UpperCamelCase : Tuple = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __UpperCamelCase : Optional[Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ): lowerCAmelCase = np.asarray(inputs['input_ids'] , dtype=np.intaa ) lowerCAmelCase = np.asarray(inputs['attention_mask'] , dtype=np.intaa ) lowerCAmelCase = np.asarray(inputs['token_type_ids'] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , _UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , _UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , _UpperCAmelCase ) # start time lowerCAmelCase = time.time() # Run inference context.execute_async( bindings=[int(_UpperCAmelCase ) for d_inp in d_inputs] + [int(_UpperCAmelCase ), int(_UpperCAmelCase )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) cuda.memcpy_dtoh_async(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Synchronize the stream and take time stream.synchronize() # end time lowerCAmelCase = time.time() lowerCAmelCase = end_time - start_time lowerCAmelCase = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __UpperCamelCase : Tuple = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __UpperCamelCase : Optional[Any] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __UpperCamelCase : List[str] = raw_datasets['''validation'''].column_names __UpperCamelCase : Any = '''question''' if '''question''' in column_names else column_names[0] __UpperCamelCase : Optional[int] = '''context''' if '''context''' in column_names else column_names[1] __UpperCamelCase : Optional[int] = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __UpperCamelCase : List[Any] = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) __UpperCamelCase : Optional[int] = min(args.max_seq_length, tokenizer.model_max_length) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] ): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace lowerCAmelCase = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. lowerCAmelCase = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation='only_second' if pad_on_right else 'only_first' , max_length=_UpperCAmelCase , stride=args.doc_stride , return_overflowing_tokens=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , padding='max_length' , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. lowerCAmelCase = tokenized_examples.pop('overflow_to_sample_mapping' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. lowerCAmelCase = [] for i in range(len(tokenized_examples['input_ids'] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). lowerCAmelCase = tokenized_examples.sequence_ids(_UpperCAmelCase ) lowerCAmelCase = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. lowerCAmelCase = sample_mapping[i] tokenized_examples["example_id"].append(examples['id'][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. lowerCAmelCase = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['offset_mapping'][i] ) ] return tokenized_examples __UpperCamelCase : Any = raw_datasets['''validation'''] # Validation Feature Creation __UpperCamelCase : Union[str, Any] = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) __UpperCamelCase : Any = default_data_collator __UpperCamelCase : Tuple = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) __UpperCamelCase : Optional[Any] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Dict="eval" ): # Post-processing: we match the start logits and end logits to answers in the original context. lowerCAmelCase = postprocess_qa_predictions( examples=_UpperCAmelCase , features=_UpperCAmelCase , predictions=_UpperCAmelCase , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=_UpperCAmelCase , ) # Format the result to the format the metric expects. if args.version_2_with_negative: lowerCAmelCase = [ {'id': k, 'prediction_text': v, 'no_answer_probability': 0.0} for k, v in predictions.items() ] else: lowerCAmelCase = [{'id': k, 'prediction_text': v} for k, v in predictions.items()] lowerCAmelCase = [{'id': ex['id'], 'answers': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=_UpperCAmelCase , label_ids=_UpperCAmelCase ) __UpperCamelCase : int = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] ): return trt.volume(engine.get_binding_shape(_UpperCAmelCase ) ) * engine.get_binding_dtype(_UpperCAmelCase ).itemsize # Allocate device memory for inputs and outputs. __UpperCamelCase : Union[str, Any] = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __UpperCamelCase : Dict = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __UpperCamelCase : Optional[Any] = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __UpperCamelCase : List[str] = cuda.mem_alloc(h_outputa.nbytes) __UpperCamelCase : int = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __UpperCamelCase : Union[str, Any] = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(f''' Num examples = {len(eval_dataset)}''') logger.info(f''' Batch size = {args.per_device_eval_batch_size}''') __UpperCamelCase : Tuple = 0.0 __UpperCamelCase : Optional[Any] = 0 __UpperCamelCase : Tuple = timeit.default_timer() __UpperCamelCase : Tuple = None for step, batch in enumerate(eval_dataloader): __UpperCamelCase ,__UpperCamelCase : List[str] = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __UpperCamelCase ,__UpperCamelCase : str = outputs __UpperCamelCase : List[Any] = torch.tensor(start_logits) __UpperCamelCase : Optional[int] = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __UpperCamelCase : List[Any] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __UpperCamelCase : Any = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __UpperCamelCase : Optional[Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __UpperCamelCase : int = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __UpperCamelCase : List[Any] = nested_truncate(all_preds, len(eval_dataset)) __UpperCamelCase : List[str] = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 1000 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 1000)) logger.info('''Total Number of Inference = %d''', niter) __UpperCamelCase : List[str] = post_processing_function(eval_examples, eval_dataset, all_preds) __UpperCamelCase : Union[str, Any] = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'''Evaluation metrics: {eval_metric}''')
309
"""simple docstring""" import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( 'split_dict' , [ SplitDict(), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 , dataset_name='my_dataset' )} ), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 )} ), SplitDict({'train': SplitInfo()} ), ] , ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : SplitDict ): lowerCAmelCase = split_dict._to_yaml_list() assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) lowerCAmelCase = SplitDict._from_yaml_list(_UpperCAmelCase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump lowerCAmelCase = None # the split name of split_dict takes over the name of the split info object lowerCAmelCase = split_name assert split_dict == reloaded @pytest.mark.parametrize( 'split_info' , [SplitInfo(), SplitInfo(dataset_name=_UpperCAmelCase ), SplitInfo(dataset_name='my_dataset' )] ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] ): # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files lowerCAmelCase = asdict(SplitDict({'train': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
309
1
"""simple docstring""" __UpperCamelCase : dict[str, float] = { "joule": 1.0, "kilojoule": 1000, "megajoule": 100_0000, "gigajoule": 10_0000_0000, "wattsecond": 1.0, "watthour": 3600, "kilowatthour": 360_0000, "newtonmeter": 1.0, "calorie_nutr": 4186.8, "kilocalorie_nutr": 418_6800.00, "electronvolt": 1.602_176_634e-19, "britishthermalunit_it": 1055.0_5585, "footpound": 1.35_58_18, } def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : float ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: lowerCAmelCase = ( F'Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n' F'Valid values are: {", ".join(_UpperCAmelCase )}' ) raise ValueError(_UpperCAmelCase ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
309
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __UpperCamelCase : Any = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] ): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): from diffusers.utils.testing_utils import pytest_terminal_summary_main lowerCAmelCase = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(_UpperCAmelCase , id=_UpperCAmelCase )
309
1
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. __UpperCamelCase : str = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. __UpperCamelCase : Optional[Any] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. __UpperCamelCase : Dict = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = len([g for position, g in enumerate(_UpperCAmelCase ) if g == main_target[position]] ) return (item, float(_UpperCAmelCase )) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = random.randint(0 , len(_UpperCAmelCase ) - 1 ) lowerCAmelCase = parent_a[:random_slice] + parent_a[random_slice:] lowerCAmelCase = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] ): lowerCAmelCase = list(_UpperCAmelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: lowerCAmelCase = random.choice(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : tuple[str, float] , _UpperCAmelCase : list[tuple[str, float]] , _UpperCAmelCase : list[str] , ): lowerCAmelCase = [] # Generate more children proportionally to the fitness score. lowerCAmelCase = int(parent_a[1] * 100 ) + 1 lowerCAmelCase = 10 if child_n >= 10 else child_n for _ in range(_UpperCAmelCase ): lowerCAmelCase = population_score[random.randint(0 , _UpperCAmelCase )][0] lowerCAmelCase ,lowerCAmelCase = crossover(parent_a[0] , _UpperCAmelCase ) # Append new string to the population list. pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) ) pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) ) return pop def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] , _UpperCAmelCase : bool = True ): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: lowerCAmelCase = F'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(_UpperCAmelCase ) # Verify that the target contains no genes besides the ones inside genes variable. lowerCAmelCase = sorted({c for c in target if c not in genes} ) if not_in_genes_list: lowerCAmelCase = F'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(_UpperCAmelCase ) # Generate random starting population. lowerCAmelCase = [] for _ in range(_UpperCAmelCase ): population.append(''.join([random.choice(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) )] ) ) # Just some logs to know what the algorithms is doing. lowerCAmelCase ,lowerCAmelCase = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_UpperCAmelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. lowerCAmelCase = [evaluate(_UpperCAmelCase , _UpperCAmelCase ) for item in population] # Check if there is a matching evolution. lowerCAmelCase = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] , reverse=_UpperCAmelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'\nGeneration: {generation}' F'\nTotal Population:{total_population}' F'\nBest score: {population_score[0][1]}' F'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. lowerCAmelCase = population[: int(N_POPULATION / 3 )] population.clear() population.extend(_UpperCAmelCase ) # Normalize population score to be between 0 and 1. lowerCAmelCase = [ (item, score / len(_UpperCAmelCase )) for item, score in population_score ] # This is selection for i in range(_UpperCAmelCase ): population.extend(select(population_score[int(_UpperCAmelCase )] , _UpperCAmelCase , _UpperCAmelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_UpperCAmelCase ) > N_POPULATION: break if __name__ == "__main__": __UpperCamelCase : Tuple = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) __UpperCamelCase : str = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase : Dict = basic(target_str, genes_list) print( f'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
309
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class a ( unittest.TestCase ): def __init__( self , _snake_case , _snake_case=7 , _snake_case=3 , _snake_case=18 , _snake_case=30 , _snake_case=4_00 , _snake_case=True , _snake_case=None , _snake_case=True , _snake_case=None , _snake_case=True , ): """simple docstring""" lowerCAmelCase = size if size is not None else {'shortest_edge': 20} lowerCAmelCase = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = num_channels lowerCAmelCase = image_size lowerCAmelCase = min_resolution lowerCAmelCase = max_resolution lowerCAmelCase = do_resize lowerCAmelCase = size lowerCAmelCase = do_center_crop lowerCAmelCase = crop_size lowerCAmelCase = do_flip_channel_order def UpperCamelCase__ ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class a ( a__ , unittest.TestCase ): snake_case__ = MobileViTImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = MobileViTImageProcessingTester(self ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_snake_case , 'do_resize' ) ) self.assertTrue(hasattr(_snake_case , 'size' ) ) self.assertTrue(hasattr(_snake_case , 'do_center_crop' ) ) self.assertTrue(hasattr(_snake_case , 'center_crop' ) ) self.assertTrue(hasattr(_snake_case , 'do_flip_channel_order' ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , Image.Image ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , numpify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , np.ndarray ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , torchify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , torch.Tensor ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
309
1
"""simple docstring""" import enum import shutil import sys __UpperCamelCase ,__UpperCamelCase : str = shutil.get_terminal_size() __UpperCamelCase : List[Any] = {'''UP''': '''A''', '''DOWN''': '''B''', '''RIGHT''': '''C''', '''LEFT''': '''D'''} class a ( enum.Enum ): snake_case__ = 0 snake_case__ = 1 def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int]="" ): sys.stdout.write(str(_UpperCAmelCase ) + end ) sys.stdout.flush() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict="" ): forceWrite(F'\u001b[{color}m{content}\u001b[0m' , _UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (): forceWrite('\r' ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : str ): forceWrite(F'\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}' ) def _SCREAMING_SNAKE_CASE (): forceWrite(' ' * TERMINAL_WIDTH ) reset_cursor() def _SCREAMING_SNAKE_CASE (): reset_cursor() forceWrite('-' * TERMINAL_WIDTH )
309
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" debug_launcher(test_script.main ) def UpperCamelCase__ ( self ): """simple docstring""" debug_launcher(test_ops.main )
309
1
"""simple docstring""" from sklearn.metrics import recall_score import datasets __UpperCamelCase : Optional[int] = ''' Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. ''' __UpperCamelCase : Union[str, Any] = ''' Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric(\'recall\') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {\'recall\': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric(\'recall\') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {\'recall\': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric(\'recall\') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {\'recall\': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric(\'recall\') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'recall\': array([1., 0., 0.])} ''' __UpperCamelCase : List[str] = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def UpperCamelCase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32' ) ), 'references': datasets.Sequence(datasets.Value('int32' ) ), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) , reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'] , ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case=None , _snake_case=1 , _snake_case="binary" , _snake_case=None , _snake_case="warn" , ): """simple docstring""" lowerCAmelCase = recall_score( _snake_case , _snake_case , labels=_snake_case , pos_label=_snake_case , average=_snake_case , sample_weight=_snake_case , zero_division=_snake_case , ) return {"recall": float(_snake_case ) if score.size == 1 else score}
309
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[list[float]] ): lowerCAmelCase = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(_UpperCAmelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix lowerCAmelCase = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creates a copy of the matrix with swapped positions of the elements lowerCAmelCase = [[0.0, 0.0], [0.0, 0.0]] lowerCAmelCase ,lowerCAmelCase = matrix[1][1], matrix[0][0] lowerCAmelCase ,lowerCAmelCase = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(_UpperCAmelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(_UpperCAmelCase ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule lowerCAmelCase = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creating cofactor matrix lowerCAmelCase = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] lowerCAmelCase = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) lowerCAmelCase = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) lowerCAmelCase = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) lowerCAmelCase = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) lowerCAmelCase = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) lowerCAmelCase = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) lowerCAmelCase = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) lowerCAmelCase = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) lowerCAmelCase = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) lowerCAmelCase = array(_UpperCAmelCase ) for i in range(3 ): for j in range(3 ): lowerCAmelCase = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix lowerCAmelCase = array(_UpperCAmelCase ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(_UpperCAmelCase ) # Calculate the inverse of the matrix return [[float(d(_UpperCAmelCase ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('Please provide a matrix of size 2x2 or 3x3.' )
309
1
"""simple docstring""" import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ): # Initialise PyTorch model lowerCAmelCase = BertConfig.from_json_file(_UpperCAmelCase ) print(F'Building PyTorch model from configuration: {config}' ) lowerCAmelCase = BertForPreTraining(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , _UpperCAmelCase ) if __name__ == "__main__": __UpperCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __UpperCamelCase : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
309
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Dict = { '''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''], '''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''], '''processing_mctct''': ['''MCTCTProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ '''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MCTCTForCTC''', '''MCTCTModel''', '''MCTCTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys __UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
309
1
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class a ( a__ ): snake_case__ = (DPMSolverSinglestepScheduler,) snake_case__ = (('''num_inference_steps''', 2_5),) def UpperCamelCase__ ( self , **_snake_case ): """simple docstring""" lowerCAmelCase = { 'num_train_timesteps': 10_00, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'prediction_type': 'epsilon', 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': 'dpmsolver++', 'solver_type': 'midpoint', 'lambda_min_clipped': -float('inf' ), 'variance_type': None, } config.update(**_snake_case ) return config def UpperCamelCase__ ( self , _snake_case=0 , **_snake_case ): """simple docstring""" lowerCAmelCase = dict(self.forward_default_kwargs ) lowerCAmelCase = kwargs.pop('num_inference_steps' , _snake_case ) lowerCAmelCase = self.dummy_sample lowerCAmelCase = 0.1 * sample lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCAmelCase = self.get_scheduler_config(**_snake_case ) lowerCAmelCase = scheduler_class(**_snake_case ) scheduler.set_timesteps(_snake_case ) # copy over dummy past residuals lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case ) lowerCAmelCase = scheduler_class.from_pretrained(_snake_case ) new_scheduler.set_timesteps(_snake_case ) # copy over dummy past residuals lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCAmelCase ,lowerCAmelCase = sample, sample for t in range(_snake_case , time_step + scheduler.config.solver_order + 1 ): lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample lowerCAmelCase = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self , _snake_case=0 , **_snake_case ): """simple docstring""" lowerCAmelCase = dict(self.forward_default_kwargs ) lowerCAmelCase = kwargs.pop('num_inference_steps' , _snake_case ) lowerCAmelCase = self.dummy_sample lowerCAmelCase = 0.1 * sample lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**_snake_case ) scheduler.set_timesteps(_snake_case ) # copy over dummy past residuals (must be after setting timesteps) lowerCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case ) lowerCAmelCase = scheduler_class.from_pretrained(_snake_case ) # copy over dummy past residuals new_scheduler.set_timesteps(_snake_case ) # copy over dummy past residual (must be after setting timesteps) lowerCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample lowerCAmelCase = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self , _snake_case=None , **_snake_case ): """simple docstring""" if scheduler is None: lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config(**_snake_case ) lowerCAmelCase = scheduler_class(**_snake_case ) lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config(**_snake_case ) lowerCAmelCase = scheduler_class(**_snake_case ) lowerCAmelCase = 10 lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(_snake_case ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase = model(_snake_case , _snake_case ) lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case ).prev_sample return sample def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) lowerCAmelCase = 50 lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(_snake_case ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): lowerCAmelCase = model(_snake_case , _snake_case ) lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case ).prev_sample lowerCAmelCase = torch.mean(torch.abs(_snake_case ) ) assert abs(result_mean.item() - 0.2_574 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) lowerCAmelCase = self.full_loop(scheduler=_snake_case ) lowerCAmelCase = torch.mean(torch.abs(_snake_case ) ) assert abs(result_mean.item() - 0.2_791 ) < 1E-3 lowerCAmelCase = DEISMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) lowerCAmelCase = self.full_loop(scheduler=_snake_case ) lowerCAmelCase = torch.mean(torch.abs(_snake_case ) ) assert abs(result_mean.item() - 0.2_791 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" self.check_over_configs(thresholding=_snake_case ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_snake_case , prediction_type=_snake_case , sample_max_value=_snake_case , algorithm_type='dpmsolver++' , solver_order=_snake_case , solver_type=_snake_case , ) def UpperCamelCase__ ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , algorithm_type=_snake_case , ) lowerCAmelCase = self.full_loop( solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , algorithm_type=_snake_case , ) assert not torch.isnan(_snake_case ).any(), "Samples have nan numbers" def UpperCamelCase__ ( self ): """simple docstring""" self.check_over_configs(lower_order_final=_snake_case ) self.check_over_configs(lower_order_final=_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" self.check_over_configs(lambda_min_clipped=-float('inf' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def UpperCamelCase__ ( self ): """simple docstring""" self.check_over_configs(variance_type=_snake_case ) self.check_over_configs(variance_type='learned_range' ) def UpperCamelCase__ ( self ): """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=_snake_case , time_step=0 ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.full_loop() lowerCAmelCase = torch.mean(torch.abs(_snake_case ) ) assert abs(result_mean.item() - 0.2_791 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.full_loop(use_karras_sigmas=_snake_case ) lowerCAmelCase = torch.mean(torch.abs(_snake_case ) ) assert abs(result_mean.item() - 0.2_248 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.full_loop(prediction_type='v_prediction' ) lowerCAmelCase = torch.mean(torch.abs(_snake_case ) ) assert abs(result_mean.item() - 0.1_453 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.full_loop(prediction_type='v_prediction' , use_karras_sigmas=_snake_case ) lowerCAmelCase = torch.mean(torch.abs(_snake_case ) ) assert abs(result_mean.item() - 0.0_649 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config(thresholding=_snake_case , dynamic_thresholding_ratio=0 ) lowerCAmelCase = scheduler_class(**_snake_case ) lowerCAmelCase = 10 lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(_snake_case ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase = model(_snake_case , _snake_case ) lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case ).prev_sample assert sample.dtype == torch.floataa
309
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer __UpperCamelCase : Dict = logging.get_logger(__name__) __UpperCamelCase : str = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase : Optional[int] = { '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } __UpperCamelCase : str = { '''distilbert-base-uncased''': 512, '''distilbert-base-uncased-distilled-squad''': 512, '''distilbert-base-cased''': 512, '''distilbert-base-cased-distilled-squad''': 512, '''distilbert-base-german-cased''': 512, '''distilbert-base-multilingual-cased''': 512, } __UpperCamelCase : Any = { '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class a ( a__ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = PRETRAINED_INIT_CONFIGURATION snake_case__ = ['''input_ids''', '''attention_mask'''] snake_case__ = DistilBertTokenizer def __init__( self , _snake_case=None , _snake_case=None , _snake_case=True , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case=True , _snake_case=None , **_snake_case , ): """simple docstring""" super().__init__( _snake_case , tokenizer_file=_snake_case , do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , tokenize_chinese_chars=_snake_case , strip_accents=_snake_case , **_snake_case , ) lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _snake_case ) != do_lower_case or normalizer_state.get('strip_accents' , _snake_case ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _snake_case ) != tokenize_chinese_chars ): lowerCAmelCase = getattr(_snake_case , normalizer_state.pop('type' ) ) lowerCAmelCase = do_lower_case lowerCAmelCase = strip_accents lowerCAmelCase = tokenize_chinese_chars lowerCAmelCase = normalizer_class(**_snake_case ) lowerCAmelCase = do_lower_case def UpperCamelCase__ ( self , _snake_case , _snake_case=None ): """simple docstring""" lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = self._tokenizer.model.save(_snake_case , name=_snake_case ) return tuple(_snake_case )
309
1
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[int] , _UpperCAmelCase : list[int] , _UpperCAmelCase : list[int] , _UpperCAmelCase : list[list[str]] , _UpperCAmelCase : int , ): lowerCAmelCase = len(_UpperCAmelCase ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['. ' * i + 'Q ' + '. ' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(_UpperCAmelCase ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _UpperCAmelCase , _UpperCAmelCase , ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): lowerCAmelCase = [] depth_first_search([] , [] , [] , _UpperCAmelCase , _UpperCAmelCase ) # Print all the boards for board in boards: for column in board: print(_UpperCAmelCase ) print('' ) print(len(_UpperCAmelCase ) , 'solutions were found.' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
309
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] | None = None ): lowerCAmelCase = word_bank or [] # create a table lowerCAmelCase = len(_UpperCAmelCase ) + 1 lowerCAmelCase = [] for _ in range(_UpperCAmelCase ): table.append([] ) # seed value lowerCAmelCase = [[]] # because empty string has empty combination # iterate through the indices for i in range(_UpperCAmelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_UpperCAmelCase )] == word: lowerCAmelCase = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_UpperCAmelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_UpperCAmelCase )]: combination.reverse() return table[len(_UpperCAmelCase )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
309
1
"""simple docstring""" import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( 'split_dict' , [ SplitDict(), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 , dataset_name='my_dataset' )} ), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 )} ), SplitDict({'train': SplitInfo()} ), ] , ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : SplitDict ): lowerCAmelCase = split_dict._to_yaml_list() assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) lowerCAmelCase = SplitDict._from_yaml_list(_UpperCAmelCase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump lowerCAmelCase = None # the split name of split_dict takes over the name of the split info object lowerCAmelCase = split_name assert split_dict == reloaded @pytest.mark.parametrize( 'split_info' , [SplitInfo(), SplitInfo(dataset_name=_UpperCAmelCase ), SplitInfo(dataset_name='my_dataset' )] ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] ): # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files lowerCAmelCase = asdict(SplitDict({'train': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
309
"""simple docstring""" import re def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): if len(re.findall('[ATCG]' , _UpperCAmelCase ) ) != len(_UpperCAmelCase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
309
1
"""simple docstring""" import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : str=False ): try: import torch # noqa: F401 except ImportError: logger.error( 'Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise if not is_sharded: lowerCAmelCase = os.path.abspath(_UpperCAmelCase ) logger.info(F'Loading PyTorch weights from {pt_path}' ) lowerCAmelCase = torch.load(_UpperCAmelCase , map_location='cpu' ) logger.info(F'PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.' ) lowerCAmelCase = convert_pytorch_state_dict_to_flax(_UpperCAmelCase , _UpperCAmelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files lowerCAmelCase = convert_pytorch_sharded_state_dict_to_flax(_UpperCAmelCase , _UpperCAmelCase ) return flax_state_dict def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple[str] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, jnp.ndarray] , _UpperCAmelCase : str , ): def is_key_or_prefix_key_in_dict(_UpperCAmelCase : Tuple[str] ) -> bool: return len(set(_UpperCAmelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm lowerCAmelCase = pt_tuple_key[:-1] + ('scale',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(_UpperCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean lowerCAmelCase = pt_tuple_key[:-1] + ('mean',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(_UpperCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var lowerCAmelCase = pt_tuple_key[:-1] + ('var',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(_UpperCAmelCase ): return renamed_pt_tuple_key, pt_tensor # embedding lowerCAmelCase = pt_tuple_key[:-1] + ('embedding',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(_UpperCAmelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer lowerCAmelCase = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(_UpperCAmelCase ): lowerCAmelCase = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCAmelCase = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(_UpperCAmelCase ): lowerCAmelCase = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCAmelCase = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCAmelCase = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 lowerCAmelCase = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): lowerCAmelCase = pt_tuple_key[-2] + '_g' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): lowerCAmelCase = pt_tuple_key[-2] + '_v' if name is not None: lowerCAmelCase = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] ): # convert pytorch tensor to numpy lowerCAmelCase = {k: v.numpy() for k, v in pt_state_dict.items()} lowerCAmelCase = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: lowerCAmelCase = flax_model.params['params'] else: lowerCAmelCase = flax_model.params lowerCAmelCase = flatten_dict(_UpperCAmelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowerCAmelCase = flatten_dict(flax_model.params['batch_stats'] ) random_flax_state_dict.update(_UpperCAmelCase ) lowerCAmelCase = {} lowerCAmelCase = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('.' )[0] for k in pt_state_dict.keys()} ) lowerCAmelCase = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('.' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCAmelCase = tuple(pt_key.split('.' ) ) # remove base model prefix if necessary lowerCAmelCase = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowerCAmelCase = pt_tuple_key[1:] # Correctly rename weight parameters lowerCAmelCase ,lowerCAmelCase = rename_key_and_reshape_tensor( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # add model prefix if necessary lowerCAmelCase = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowerCAmelCase = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: lowerCAmelCase = jnp.asarray(_UpperCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) continue # also add unexpected weight so that warning is thrown lowerCAmelCase = jnp.asarray(_UpperCAmelCase ) else: # also add unexpected weight so that warning is thrown lowerCAmelCase = jnp.asarray(_UpperCAmelCase ) return unflatten_dict(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int] ): import torch # Load the index lowerCAmelCase = {} for shard_file in shard_filenames: # load using msgpack utils lowerCAmelCase = torch.load(_UpperCAmelCase ) lowerCAmelCase = {k: v.numpy() for k, v in pt_state_dict.items()} lowerCAmelCase = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowerCAmelCase = flax_model.params['params'] lowerCAmelCase = flatten_dict(_UpperCAmelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params['batch_stats'] ) ) else: lowerCAmelCase = flax_model.params lowerCAmelCase = flatten_dict(_UpperCAmelCase ) lowerCAmelCase = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('.' )[0] for k in pt_state_dict.keys()} ) lowerCAmelCase = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('.' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCAmelCase = tuple(pt_key.split('.' ) ) # remove base model prefix if necessary lowerCAmelCase = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowerCAmelCase = pt_tuple_key[1:] # Correctly rename weight parameters lowerCAmelCase ,lowerCAmelCase = rename_key_and_reshape_tensor( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # add model prefix if necessary lowerCAmelCase = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowerCAmelCase = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: lowerCAmelCase = jnp.asarray(_UpperCAmelCase ) continue if "var" in flax_key[-1]: lowerCAmelCase = jnp.asarray(_UpperCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) continue # also add unexpected weight so that warning is thrown lowerCAmelCase = jnp.asarray(_UpperCAmelCase ) else: # also add unexpected weight so that warning is thrown lowerCAmelCase = jnp.asarray(_UpperCAmelCase ) return unflatten_dict(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] ): lowerCAmelCase = os.path.abspath(_UpperCAmelCase ) logger.info(F'Loading Flax weights from {flax_checkpoint_path}' ) # import correct flax class lowerCAmelCase = getattr(_UpperCAmelCase , 'Flax' + model.__class__.__name__ ) # load flax weight dict with open(_UpperCAmelCase , 'rb' ) as state_f: try: lowerCAmelCase = from_bytes(_UpperCAmelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(F'Unable to convert {flax_checkpoint_path} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(_UpperCAmelCase , _UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] ): try: import torch # noqa: F401 except ImportError: logger.error( 'Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise # check if we have bf16 weights lowerCAmelCase = flatten_dict(jax.tree_util.tree_map(lambda _UpperCAmelCase : x.dtype == jnp.bfloataa , _UpperCAmelCase ) ).values() if any(_UpperCAmelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( 'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ' 'before loading those in PyTorch model.' ) lowerCAmelCase = jax.tree_util.tree_map( lambda _UpperCAmelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _UpperCAmelCase ) lowerCAmelCase = flatten_dict(_UpperCAmelCase ) lowerCAmelCase = pt_model.state_dict() lowerCAmelCase = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('.' )[0] for k in pt_model_dict.keys()} ) lowerCAmelCase = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('.' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys lowerCAmelCase = [] lowerCAmelCase = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowerCAmelCase = flax_key_tuple[0] == pt_model.base_model_prefix lowerCAmelCase = '.'.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: lowerCAmelCase = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: lowerCAmelCase = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(_UpperCAmelCase ) not in pt_model_dict: # conv layer lowerCAmelCase = flax_key_tuple[:-1] + ('weight',) lowerCAmelCase = jnp.transpose(_UpperCAmelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_UpperCAmelCase ) not in pt_model_dict: # linear layer lowerCAmelCase = flax_key_tuple[:-1] + ('weight',) lowerCAmelCase = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: lowerCAmelCase = flax_key_tuple[:-1] + ('weight',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: lowerCAmelCase = flax_key_tuple[:-1] + ('running_mean',) elif "var" in flax_key_tuple[-1]: lowerCAmelCase = flax_key_tuple[:-1] + ('running_var',) if "batch_stats" in flax_state: lowerCAmelCase = '.'.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: lowerCAmelCase = '.'.join(_UpperCAmelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. lowerCAmelCase = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: lowerCAmelCase = key.split('.' ) lowerCAmelCase = None if key_components[-3::2] == ["parametrizations", "original0"]: lowerCAmelCase = key_components[-2] + '_g' elif key_components[-3::2] == ["parametrizations", "original1"]: lowerCAmelCase = key_components[-2] + '_v' if name is not None: lowerCAmelCase = key_components[:-3] + [name] lowerCAmelCase = '.'.join(_UpperCAmelCase ) lowerCAmelCase = key if flax_key in special_pt_names: lowerCAmelCase = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict lowerCAmelCase = np.asarray(_UpperCAmelCase ) if not isinstance(_UpperCAmelCase , np.ndarray ) else flax_tensor lowerCAmelCase = torch.from_numpy(_UpperCAmelCase ) # remove from missing keys missing_keys.remove(_UpperCAmelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(_UpperCAmelCase ) pt_model.load_state_dict(_UpperCAmelCase ) # re-transform missing_keys to list lowerCAmelCase = list(_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: logger.warning( 'Some weights of the Flax model were not used when initializing the PyTorch model' F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' ' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This' F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' ' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a' ' FlaxBertForSequenceClassification model).' ) else: logger.warning(F'All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n' ) if len(_UpperCAmelCase ) > 0: logger.warning( F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' ' use it for predictions and inference.' ) else: logger.warning( F'All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n' 'If your task is similar to the task the model of the checkpoint was trained on, ' F'you can already use {pt_model.__class__.__name__} for predictions without further training.' ) return pt_model
309
"""simple docstring""" import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () __UpperCamelCase : List[Any] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). __UpperCamelCase : str = [0, 25, 50] __UpperCamelCase : int = [25, 50, 75] __UpperCamelCase : str = fuzz.membership.trimf(X, abca) __UpperCamelCase : Tuple = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. __UpperCamelCase : Dict = np.ones(75) __UpperCamelCase : str = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) __UpperCamelCase : Optional[Any] = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) __UpperCamelCase : Dict = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) __UpperCamelCase : Dict = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) __UpperCamelCase : List[str] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] __UpperCamelCase : List[str] = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) __UpperCamelCase : Tuple = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] __UpperCamelCase : Union[str, Any] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] __UpperCamelCase : Dict = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
309
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/config.json''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/config.json''' # See all FNet models at https://huggingface.co/models?filter=fnet } class a ( a__ ): snake_case__ = '''fnet''' def __init__( self , _snake_case=3_20_00 , _snake_case=7_68 , _snake_case=12 , _snake_case=30_72 , _snake_case="gelu_new" , _snake_case=0.1 , _snake_case=5_12 , _snake_case=4 , _snake_case=0.02 , _snake_case=1E-12 , _snake_case=False , _snake_case=5_12 , _snake_case=3 , _snake_case=1 , _snake_case=2 , **_snake_case , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case ) lowerCAmelCase = vocab_size lowerCAmelCase = max_position_embeddings lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = initializer_range lowerCAmelCase = type_vocab_size lowerCAmelCase = layer_norm_eps lowerCAmelCase = use_tpu_fourier_optimizations lowerCAmelCase = tpu_short_seq_length
309
"""simple docstring""" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[int] , _UpperCAmelCase : str ): lowerCAmelCase = int(_UpperCAmelCase ) # Initialize Result lowerCAmelCase = [] # Traverse through all denomination for denomination in reversed(_UpperCAmelCase ): # Find denominations while int(_UpperCAmelCase ) >= int(_UpperCAmelCase ): total_value -= int(_UpperCAmelCase ) answer.append(_UpperCAmelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": __UpperCamelCase : Any = [] __UpperCamelCase : List[Any] = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): __UpperCamelCase : Any = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(f'''Denomination {i}: ''').strip())) __UpperCamelCase : int = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter __UpperCamelCase : List[str] = [1, 2, 5, 10, 20, 50, 100, 500, 2000] __UpperCamelCase : Any = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(f'''Following is minimal change for {value}: ''') __UpperCamelCase : List[str] = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
309
1
"""simple docstring""" from collections.abc import Callable def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Callable[[float], float] , _UpperCAmelCase : float , _UpperCAmelCase : float ): lowerCAmelCase = a lowerCAmelCase = b if function(_UpperCAmelCase ) == 0: # one of the a or b is a root for the function return a elif function(_UpperCAmelCase ) == 0: return b elif ( function(_UpperCAmelCase ) * function(_UpperCAmelCase ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: lowerCAmelCase = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_UpperCAmelCase ) == 0: return mid elif function(_UpperCAmelCase ) * function(_UpperCAmelCase ) < 0: lowerCAmelCase = mid else: lowerCAmelCase = mid lowerCAmelCase = start + (end - start) / 2.0 return mid def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : float ): return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
309
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class a : def __init__( self , _snake_case , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = 13 lowerCAmelCase = 7 lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = 99 lowerCAmelCase = 32 lowerCAmelCase = 2 lowerCAmelCase = 4 lowerCAmelCase = 37 lowerCAmelCase = 'gelu' lowerCAmelCase = 0.1 lowerCAmelCase = 0.1 lowerCAmelCase = 5_12 lowerCAmelCase = 16 lowerCAmelCase = 2 lowerCAmelCase = 0.02 lowerCAmelCase = 3 lowerCAmelCase = 4 lowerCAmelCase = None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = self.prepare_config_and_inputs() lowerCAmelCase = True lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFEsmModel(config=_snake_case ) lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase = model(_snake_case ) lowerCAmelCase = [input_ids, input_mask] lowerCAmelCase = model(_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = TFEsmModel(config=_snake_case ) lowerCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } lowerCAmelCase = model(_snake_case ) lowerCAmelCase = [input_ids, input_mask] lowerCAmelCase = model(_snake_case , encoder_hidden_states=_snake_case ) # Also check the case where encoder outputs are not passed lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFEsmForMaskedLM(config=_snake_case ) lowerCAmelCase = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFEsmForTokenClassification(config=_snake_case ) lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class a ( a__ , a__ , unittest.TestCase ): snake_case__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) snake_case__ = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = TFEsmModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @unittest.skip('Protein models do not support embedding resizing.' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip('Protein models do not support embedding resizing.' ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(_snake_case ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowerCAmelCase = model.get_bias() assert isinstance(_snake_case , _snake_case ) for k, v in name.items(): assert isinstance(_snake_case , tf.Variable ) else: lowerCAmelCase = model.get_output_embeddings() assert x is None lowerCAmelCase = model.get_bias() assert name is None @require_tf class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) lowerCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase = model(_snake_case )[0] lowerCAmelCase = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , _snake_case ) # compare the actual values for a slice. lowerCAmelCase = tf.constant( [ [ [8.921_518, -10.589_814, -6.4_671_307], [-6.3_967_156, -13.911_377, -1.1_211_915], [-7.781_247, -13.951_557, -3.740_592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) lowerCAmelCase = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCAmelCase = model(_snake_case )[0] # compare the actual values for a slice. lowerCAmelCase = tf.constant( [ [ [0.14_443_092, 0.54_125_327, 0.3_247_739], [0.30_340_484, 0.00_526_676, 0.31_077_722], [0.32_278_043, -0.24_987_096, 0.3_414_628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
309
1
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class a : def __init__( self , _snake_case , _snake_case=None , _snake_case=None , _snake_case=None , _snake_case="resnet50" , _snake_case=3 , _snake_case=32 , _snake_case=3 , _snake_case=True , _snake_case=True , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = out_indices if out_indices is not None else [4] lowerCAmelCase = stage_names lowerCAmelCase = out_features lowerCAmelCase = backbone lowerCAmelCase = batch_size lowerCAmelCase = image_size lowerCAmelCase = num_channels lowerCAmelCase = use_pretrained_backbone lowerCAmelCase = is_training def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase = self.get_config() return config, pixel_values def UpperCamelCase__ ( self ): """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TimmBackbone(config=_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): lowerCAmelCase = model(_snake_case ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase ,lowerCAmelCase = config_and_inputs lowerCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class a ( a__ , a__ , a__ , unittest.TestCase ): snake_case__ = (TimmBackbone,) if is_torch_available() else () snake_case__ = {'''feature-extraction''': TimmBackbone} if is_torch_available() else {} snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TimmBackboneModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 'resnet18' lowerCAmelCase = 'microsoft/resnet-18' lowerCAmelCase = AutoBackbone.from_pretrained(_snake_case , use_timm_backbone=_snake_case ) lowerCAmelCase = AutoBackbone.from_pretrained(_snake_case ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) lowerCAmelCase = AutoBackbone.from_pretrained(_snake_case , use_timm_backbone=_snake_case , out_indices=[1, 2, 3] ) lowerCAmelCase = AutoBackbone.from_pretrained(_snake_case , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip('Safetensors is not supported by timm.' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(_snake_case ) lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase = [*signature.parameters.keys()] lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = True lowerCAmelCase = self.has_attentions # no need to test all models as different heads yield the same functionality lowerCAmelCase = self.all_model_classes[0] lowerCAmelCase = model_class(_snake_case ) model.to(_snake_case ) lowerCAmelCase = self._prepare_for_class(_snake_case , _snake_case ) lowerCAmelCase = model(**_snake_case ) lowerCAmelCase = outputs[0][-1] # Encoder-/Decoder-only models lowerCAmelCase = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: lowerCAmelCase = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=_snake_case ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(**_snake_case ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None lowerCAmelCase = copy.deepcopy(_snake_case ) lowerCAmelCase = None lowerCAmelCase = model_class(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(**_snake_case ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights lowerCAmelCase = copy.deepcopy(_snake_case ) lowerCAmelCase = False lowerCAmelCase = model_class(_snake_case ) model.to(_snake_case ) model.eval() lowerCAmelCase = model(**_snake_case )
309
"""simple docstring""" import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : Dict = '''▁''' __UpperCamelCase : Optional[int] = {'''vocab_file''': '''vocab.txt''', '''sentencepiece_model_ckpt''': '''sentencepiece.bpe.model'''} __UpperCamelCase : str = { '''sentencepiece_model_file''': '''sentencepiece.bpe.model''', '''vocab_file''': '''vocab.txt''', } __UpperCamelCase : Tuple = { '''vocab_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''', }, '''sentencepiece_model_file''': { '''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', '''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''', }, } __UpperCamelCase : Optional[Any] = { '''ernie-m-base''': 514, '''ernie-m-large''': 514, } __UpperCamelCase : str = { '''ernie-m-base''': {'''do_lower_case''': False}, '''ernie-m-large''': {'''do_lower_case''': False}, } class a ( a__ ): snake_case__ = ["input_ids"] snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_INIT_CONFIGURATION snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = RESOURCE_FILES_NAMES def __init__( self , _snake_case , _snake_case=None , _snake_case=False , _snake_case="utf8" , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case = None , **_snake_case , ): """simple docstring""" lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , vocab_file=_snake_case , encoding=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) lowerCAmelCase = do_lower_case lowerCAmelCase = sentencepiece_model_ckpt lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_snake_case ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: lowerCAmelCase = self.load_vocab(filepath=_snake_case ) else: lowerCAmelCase = {self.sp_model.id_to_piece(_snake_case ): id for id in range(self.sp_model.get_piece_size() )} lowerCAmelCase = {v: k for k, v in self.vocab.items()} def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if text is None: return None lowerCAmelCase = self.tokenize(_snake_case ) lowerCAmelCase ,lowerCAmelCase = '', [] for i, ch in enumerate(_snake_case ): if ch in self.SP_CHAR_MAPPING: lowerCAmelCase = self.SP_CHAR_MAPPING.get(_snake_case ) else: lowerCAmelCase = unicodedata.normalize('NFKC' , _snake_case ) if self.is_whitespace(_snake_case ): continue normalized_text += ch char_mapping.extend([i] * len(_snake_case ) ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = normalized_text, [], 0 if self.do_lower_case: lowerCAmelCase = text.lower() for token in split_tokens: if token[:1] == "▁": lowerCAmelCase = token[1:] lowerCAmelCase = text[offset:].index(_snake_case ) + offset lowerCAmelCase = start + len(_snake_case ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) lowerCAmelCase = end return token_mapping @property def UpperCamelCase__ ( self ): """simple docstring""" return len(self.vocab ) def UpperCamelCase__ ( self ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self ): """simple docstring""" lowerCAmelCase = self.__dict__.copy() lowerCAmelCase = None return state def __setstate__( self , _snake_case ): """simple docstring""" lowerCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCAmelCase = {} lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return "".join((self.SP_CHAR_MAPPING.get(_snake_case , _snake_case ) for c in text) ) def UpperCamelCase__ ( self , _snake_case , _snake_case=False , _snake_case=64 , _snake_case=0.1 ): """simple docstring""" if self.sp_model_kwargs.get('enable_sampling' ) is True: lowerCAmelCase = True if self.sp_model_kwargs.get('alpha' ) is not None: lowerCAmelCase = self.sp_model_kwargs.get('alpha' ) if self.sp_model_kwargs.get('nbest_size' ) is not None: lowerCAmelCase = self.sp_model_kwargs.get('nbest_size' ) if not enable_sampling: lowerCAmelCase = self.sp_model.EncodeAsPieces(_snake_case ) else: lowerCAmelCase = self.sp_model.SampleEncodeAsPieces(_snake_case , _snake_case , _snake_case ) lowerCAmelCase = [] for pi, piece in enumerate(_snake_case ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(_snake_case ) and pi != 0: new_pieces.append(_snake_case ) continue else: continue lowerCAmelCase = 0 for i, chunk in enumerate(_snake_case ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(_snake_case ) or self.is_punct(_snake_case ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(_snake_case ) lowerCAmelCase = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowerCAmelCase = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowerCAmelCase = i if len(_snake_case ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = ''.join(_snake_case ).replace(_snake_case , ' ' ).strip() return out_string def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = self.convert_ids_to_tokens(_snake_case ) lowerCAmelCase = ''.join(_snake_case ).replace(_snake_case , ' ' ).strip() return out_string def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return self.vocab.get(_snake_case , self.vocab.get(self.unk_token ) ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return self.reverse_vocab.get(_snake_case , self.unk_token ) def UpperCamelCase__ ( self , _snake_case , _snake_case=None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] lowerCAmelCase = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def UpperCamelCase__ ( self , _snake_case , _snake_case=None ): """simple docstring""" if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def UpperCamelCase__ ( self , _snake_case , _snake_case=None , _snake_case=False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) + [1] return [1] + ([0] * len(_snake_case )) + [1] def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" if token_ids_a is None: # [CLS] X [SEP] return (len(_snake_case ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(_snake_case ) + 1) + [1] * (len(_snake_case ) + 3) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if "\u4e00" <= char <= "\u9fff": return True return False def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if char in ",;:.?!~,;:。?!《》【】": return True return False def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(_snake_case ) == 1: lowerCAmelCase = unicodedata.category(_snake_case ) if cat == "Zs": return True return False def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = {} with io.open(_snake_case , 'r' , encoding='utf-8' ) as f: for index, line in enumerate(_snake_case ): lowerCAmelCase = line.rstrip('\n' ) lowerCAmelCase = int(_snake_case ) return token_to_idx def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = 0 if os.path.isdir(_snake_case ): lowerCAmelCase = os.path.join( _snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: lowerCAmelCase = (filename_prefix + '-' if filename_prefix else '') + save_directory with open(_snake_case , 'w' , encoding='utf-8' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda _snake_case : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ' Please check that the vocabulary is not corrupted!' ) lowerCAmelCase = token_index writer.write(token + '\n' ) index += 1 lowerCAmelCase = os.path.join(_snake_case , 'sentencepiece.bpe.model' ) with open(_snake_case , 'wb' ) as fi: lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (vocab_file,)
309
1
"""simple docstring""" import string import numpy def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : int ): return b if a == 0 else greatest_common_divisor(b % a , _UpperCAmelCase ) class a : snake_case__ = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) snake_case__ = numpy.vectorize(lambda a__ : x % 3_6 ) snake_case__ = numpy.vectorize(a__ ) def __init__( self , _snake_case ): """simple docstring""" lowerCAmelCase = self.modulus(_snake_case ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key lowerCAmelCase = encrypt_key.shape[0] def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return self.key_string.index(_snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return self.key_string[round(_snake_case )] def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: lowerCAmelCase = det % len(self.key_string ) lowerCAmelCase = len(self.key_string ) if greatest_common_divisor(_snake_case , len(self.key_string ) ) != 1: lowerCAmelCase = ( F'determinant modular {req_l} of encryption key({det}) ' F'is not co prime w.r.t {req_l}.\nTry another key.' ) raise ValueError(_snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = [char for char in text.upper() if char in self.key_string] lowerCAmelCase = chars[-1] while len(_snake_case ) % self.break_key != 0: chars.append(_snake_case ) return "".join(_snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = self.process_text(text.upper() ) lowerCAmelCase = '' for i in range(0 , len(_snake_case ) - self.break_key + 1 , self.break_key ): lowerCAmelCase = text[i : i + self.break_key] lowerCAmelCase = [self.replace_letters(_snake_case ) for char in batch] lowerCAmelCase = numpy.array([vec] ).T lowerCAmelCase = self.modulus(self.encrypt_key.dot(_snake_case ) ).T.tolist()[ 0 ] lowerCAmelCase = ''.join( self.replace_digits(_snake_case ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: lowerCAmelCase = det % len(self.key_string ) lowerCAmelCase = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: lowerCAmelCase = i break lowerCAmelCase = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(_snake_case ) ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = self.make_decrypt_key() lowerCAmelCase = self.process_text(text.upper() ) lowerCAmelCase = '' for i in range(0 , len(_snake_case ) - self.break_key + 1 , self.break_key ): lowerCAmelCase = text[i : i + self.break_key] lowerCAmelCase = [self.replace_letters(_snake_case ) for char in batch] lowerCAmelCase = numpy.array([vec] ).T lowerCAmelCase = self.modulus(decrypt_key.dot(_snake_case ) ).T.tolist()[0] lowerCAmelCase = ''.join( self.replace_digits(_snake_case ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = int(input('Enter the order of the encryption key: ' ) ) lowerCAmelCase = [] print('Enter each row of the encryption key with space separated integers' ) for _ in range(_UpperCAmelCase ): lowerCAmelCase = [int(_UpperCAmelCase ) for x in input().split()] hill_matrix.append(_UpperCAmelCase ) lowerCAmelCase = HillCipher(numpy.array(_UpperCAmelCase ) ) print('Would you like to encrypt or decrypt some text? (1 or 2)' ) lowerCAmelCase = input('\n1. Encrypt\n2. Decrypt\n' ) if option == "1": lowerCAmelCase = input('What text would you like to encrypt?: ' ) print('Your encrypted text is:' ) print(hc.encrypt(_UpperCAmelCase ) ) elif option == "2": lowerCAmelCase = input('What text would you like to decrypt?: ' ) print('Your decrypted text is:' ) print(hc.decrypt(_UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
309
"""simple docstring""" import argparse import os import torch from transformers.utils import WEIGHTS_NAME __UpperCamelCase : int = ['''small''', '''medium''', '''large'''] __UpperCamelCase : str = '''lm_head.decoder.weight''' __UpperCamelCase : Dict = '''lm_head.weight''' def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = torch.load(_UpperCAmelCase ) lowerCAmelCase = d.pop(_UpperCAmelCase ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) torch.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) if __name__ == "__main__": __UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--dialogpt_path''', default='''.''', type=str) __UpperCamelCase : Optional[int] = parser.parse_args() for MODEL in DIALOGPT_MODELS: __UpperCamelCase : Dict = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''') __UpperCamelCase : str = f'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
309
1
"""simple docstring""" import sys def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any ): lowerCAmelCase = len(_UpperCAmelCase ) lowerCAmelCase = [[0 for x in range(_UpperCAmelCase )] for x in range(_UpperCAmelCase )] lowerCAmelCase = [[0 for x in range(_UpperCAmelCase )] for x in range(_UpperCAmelCase )] for chain_length in range(2 , _UpperCAmelCase ): for a in range(1 , n - chain_length + 1 ): lowerCAmelCase = a + chain_length - 1 lowerCAmelCase = sys.maxsize for c in range(_UpperCAmelCase , _UpperCAmelCase ): lowerCAmelCase = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: lowerCAmelCase = cost lowerCAmelCase = c return matrix, sol def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict ): if i == j: print('A' + str(_UpperCAmelCase ) , end=' ' ) else: print('(' , end=' ' ) print_optiomal_solution(_UpperCAmelCase , _UpperCAmelCase , optimal_solution[i][j] ) print_optiomal_solution(_UpperCAmelCase , optimal_solution[i][j] + 1 , _UpperCAmelCase ) print(')' , end=' ' ) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = [30, 35, 15, 5, 10, 20, 25] lowerCAmelCase = len(_UpperCAmelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 lowerCAmelCase ,lowerCAmelCase = matrix_chain_order(_UpperCAmelCase ) print('No. of Operation required: ' + str(matrix[1][n - 1] ) ) print_optiomal_solution(_UpperCAmelCase , 1 , n - 1 ) if __name__ == "__main__": main()
309
"""simple docstring""" __UpperCamelCase : Dict = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} __UpperCamelCase : str = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[int, list[int]] , _UpperCAmelCase : int , _UpperCAmelCase : list[bool] ): lowerCAmelCase = True lowerCAmelCase = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) order.append(_UpperCAmelCase ) return order def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[int, list[int]] , _UpperCAmelCase : int , _UpperCAmelCase : list[bool] ): lowerCAmelCase = True lowerCAmelCase = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return component def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : dict[int, list[int]] ): lowerCAmelCase = len(_UpperCAmelCase ) * [False] lowerCAmelCase = {vert: [] for vert in range(len(_UpperCAmelCase ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(_UpperCAmelCase ) lowerCAmelCase = [] for i, was_visited in enumerate(_UpperCAmelCase ): if not was_visited: order += topology_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = [] lowerCAmelCase = len(_UpperCAmelCase ) * [False] for i in range(len(_UpperCAmelCase ) ): lowerCAmelCase = order[len(_UpperCAmelCase ) - i - 1] if not visited[vert]: lowerCAmelCase = find_components(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) components_list.append(_UpperCAmelCase ) return components_list
309
1
"""simple docstring""" __UpperCamelCase : int = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : float ): assert type(_UpperCAmelCase ) in (int, float) and decimal == int(_UpperCAmelCase ) lowerCAmelCase = int(_UpperCAmelCase ) lowerCAmelCase = '' lowerCAmelCase = False if decimal < 0: lowerCAmelCase = True decimal *= -1 while decimal > 0: lowerCAmelCase ,lowerCAmelCase = divmod(_UpperCAmelCase , 16 ) lowerCAmelCase = values[remainder] + hexadecimal lowerCAmelCase = '0x' + hexadecimal if negative: lowerCAmelCase = '-' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
309
"""simple docstring""" import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) @dataclass class a : snake_case__ = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(glue_processors.keys() )} ) snake_case__ = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) snake_case__ = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) snake_case__ = field( default=a__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.task_name.lower() class a ( a__ ): snake_case__ = '''train''' snake_case__ = '''dev''' snake_case__ = '''test''' class a ( a__ ): snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 def __init__( self , _snake_case , _snake_case , _snake_case = None , _snake_case = Split.train , _snake_case = None , ): """simple docstring""" warnings.warn( 'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , _snake_case , ) lowerCAmelCase = args lowerCAmelCase = glue_processors[args.task_name]() lowerCAmelCase = glue_output_modes[args.task_name] if isinstance(_snake_case , _snake_case ): try: lowerCAmelCase = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) # Load data features from cache or dataset file lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , ) lowerCAmelCase = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCAmelCase ,lowerCAmelCase = label_list[2], label_list[1] lowerCAmelCase = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCAmelCase = cached_features_file + '.lock' with FileLock(_snake_case ): if os.path.exists(_snake_case ) and not args.overwrite_cache: lowerCAmelCase = time.time() lowerCAmelCase = torch.load(_snake_case ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) else: logger.info(F'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: lowerCAmelCase = self.processor.get_test_examples(args.data_dir ) else: lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: lowerCAmelCase = examples[:limit_length] lowerCAmelCase = glue_convert_examples_to_features( _snake_case , _snake_case , max_length=args.max_seq_length , label_list=_snake_case , output_mode=self.output_mode , ) lowerCAmelCase = time.time() torch.save(self.features , _snake_case ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , _snake_case ): """simple docstring""" return self.features[i] def UpperCamelCase__ ( self ): """simple docstring""" return self.label_list
309
1
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata __UpperCamelCase : Union[str, Any] = '''''' if version.parse(importlib_metadata.version('''jiwer''')) < version.parse('''2.3.0'''): class a ( tr.AbstractTransform ): def __init__( self , _snake_case = " " ): """simple docstring""" lowerCAmelCase = sentence_delimiter def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return list(_snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = [] for sent_idx, sentence in enumerate(_snake_case ): chars.extend(self.process_string(_snake_case ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(_snake_case ) - 1: chars.append(self.sentence_delimiter ) return chars __UpperCamelCase : Optional[int] = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: __UpperCamelCase : List[Any] = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) __UpperCamelCase : Any = '''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' __UpperCamelCase : List[str] = '''\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. ''' __UpperCamelCase : Optional[int] = ''' Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> cer = datasets.load_metric("cer") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def UpperCamelCase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/jitsi/jiwer/'] , reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', 'https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates', ] , ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case=False ): """simple docstring""" if concatenate_texts: return jiwer.compute_measures( _snake_case , _snake_case , truth_transform=_snake_case , hypothesis_transform=_snake_case , )["wer"] lowerCAmelCase = 0 lowerCAmelCase = 0 for prediction, reference in zip(_snake_case , _snake_case ): lowerCAmelCase = jiwer.compute_measures( _snake_case , _snake_case , truth_transform=_snake_case , hypothesis_transform=_snake_case , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
309
"""simple docstring""" import os from collections.abc import Iterator def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "." ): for dir_path, dir_names, filenames in os.walk(_UpperCAmelCase ): lowerCAmelCase = [d for d in dir_names if d != 'scripts' and d[0] not in '._'] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_UpperCAmelCase )[1] in (".py", ".ipynb"): yield os.path.join(_UpperCAmelCase , _UpperCAmelCase ).lstrip('./' ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): return F'{i * " "}*' if i else "\n##" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_UpperCAmelCase ) or old_parts[i] != new_part) and new_part: print(F'{md_prefix(_UpperCAmelCase )} {new_part.replace("_" , " " ).title()}' ) return new_path def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str = "." ): lowerCAmelCase = '' for filepath in sorted(good_file_paths(_UpperCAmelCase ) ): lowerCAmelCase ,lowerCAmelCase = os.path.split(_UpperCAmelCase ) if filepath != old_path: lowerCAmelCase = print_path(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = (filepath.count(os.sep ) + 1) if filepath else 0 lowerCAmelCase = F'{filepath}/{filename}'.replace(' ' , '%20' ) lowerCAmelCase = os.path.splitext(filename.replace('_' , ' ' ).title() )[0] print(F'{md_prefix(_UpperCAmelCase )} [{filename}]({url})' ) if __name__ == "__main__": print_directory_md('''.''')
309
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCamelCase : int = { '''configuration_nezha''': ['''NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NezhaConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = [ '''NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NezhaForNextSentencePrediction''', '''NezhaForMaskedLM''', '''NezhaForPreTraining''', '''NezhaForMultipleChoice''', '''NezhaForQuestionAnswering''', '''NezhaForSequenceClassification''', '''NezhaForTokenClassification''', '''NezhaModel''', '''NezhaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys __UpperCamelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
309
"""simple docstring""" import os from datetime import datetime as dt from github import Github __UpperCamelCase : int = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''enhancement''', '''new pipeline/model''', '''new scheduler''', '''wip''', ] def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = Github(os.environ['GITHUB_TOKEN'] ) lowerCAmelCase = g.get_repo('huggingface/diffusers' ) lowerCAmelCase = repo.get_issues(state='open' ) for issue in open_issues: lowerCAmelCase = sorted(issue.get_comments() , key=lambda _UpperCAmelCase : i.created_at , reverse=_UpperCAmelCase ) lowerCAmelCase = comments[0] if len(_UpperCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open' ) issue.remove_from_labels('stale' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) issue.add_to_labels('stale' ) if __name__ == "__main__": main()
309
1
"""simple docstring""" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or number < 0: raise ValueError('Input must be a non-negative integer' ) lowerCAmelCase = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
309
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCamelCase : Any = { '''configuration_layoutlmv2''': ['''LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv2Config'''], '''processing_layoutlmv2''': ['''LayoutLMv2Processor'''], '''tokenization_layoutlmv2''': ['''LayoutLMv2Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = ['''LayoutLMv2TokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = ['''LayoutLMv2FeatureExtractor'''] __UpperCamelCase : Optional[int] = ['''LayoutLMv2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ '''LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv2ForQuestionAnswering''', '''LayoutLMv2ForSequenceClassification''', '''LayoutLMv2ForTokenClassification''', '''LayoutLMv2Layer''', '''LayoutLMv2Model''', '''LayoutLMv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
309
1
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] ): lowerCAmelCase = 384 if "tiny" in model_name: lowerCAmelCase = [3, 3, 9, 3] lowerCAmelCase = [96, 192, 384, 768] if "small" in model_name: lowerCAmelCase = [3, 3, 27, 3] lowerCAmelCase = [96, 192, 384, 768] if "base" in model_name: lowerCAmelCase = [3, 3, 27, 3] lowerCAmelCase = [128, 256, 512, 1024] lowerCAmelCase = 512 if "large" in model_name: lowerCAmelCase = [3, 3, 27, 3] lowerCAmelCase = [192, 384, 768, 1536] lowerCAmelCase = 768 if "xlarge" in model_name: lowerCAmelCase = [3, 3, 27, 3] lowerCAmelCase = [256, 512, 1024, 2048] lowerCAmelCase = 1024 # set label information lowerCAmelCase = 150 lowerCAmelCase = 'huggingface/label-files' lowerCAmelCase = 'ade20k-id2label.json' lowerCAmelCase = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type='dataset' ) , 'r' ) ) lowerCAmelCase = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCAmelCase = {v: k for k, v in idalabel.items()} lowerCAmelCase = ConvNextConfig( depths=_UpperCAmelCase , hidden_sizes=_UpperCAmelCase , out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) lowerCAmelCase = UperNetConfig( backbone_config=_UpperCAmelCase , auxiliary_in_channels=_UpperCAmelCase , num_labels=_UpperCAmelCase , idalabel=_UpperCAmelCase , labelaid=_UpperCAmelCase , ) return config def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): lowerCAmelCase = [] # fmt: off # stem rename_keys.append(('backbone.downsample_layers.0.0.weight', 'backbone.embeddings.patch_embeddings.weight') ) rename_keys.append(('backbone.downsample_layers.0.0.bias', 'backbone.embeddings.patch_embeddings.bias') ) rename_keys.append(('backbone.downsample_layers.0.1.weight', 'backbone.embeddings.layernorm.weight') ) rename_keys.append(('backbone.downsample_layers.0.1.bias', 'backbone.embeddings.layernorm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.stages.{i}.{j}.gamma', F'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') ) rename_keys.append((F'backbone.stages.{i}.{j}.depthwise_conv.weight', F'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.depthwise_conv.bias', F'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.norm.weight', F'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.norm.bias', F'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv1.weight', F'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv1.bias', F'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv2.weight', F'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv2.bias', F'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') ) if i > 0: rename_keys.append((F'backbone.downsample_layers.{i}.0.weight', F'backbone.encoder.stages.{i}.downsampling_layer.0.weight') ) rename_keys.append((F'backbone.downsample_layers.{i}.0.bias', F'backbone.encoder.stages.{i}.downsampling_layer.0.bias') ) rename_keys.append((F'backbone.downsample_layers.{i}.1.weight', F'backbone.encoder.stages.{i}.downsampling_layer.1.weight') ) rename_keys.append((F'backbone.downsample_layers.{i}.1.bias', F'backbone.encoder.stages.{i}.downsampling_layer.1.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] ): lowerCAmelCase = dct.pop(_UpperCAmelCase ) lowerCAmelCase = val def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Dict ): lowerCAmelCase = { 'upernet-convnext-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth', 'upernet-convnext-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth', 'upernet-convnext-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth', 'upernet-convnext-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth', 'upernet-convnext-xlarge': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth', } lowerCAmelCase = model_name_to_url[model_name] lowerCAmelCase = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location='cpu' )['state_dict'] lowerCAmelCase = get_upernet_config(_UpperCAmelCase ) lowerCAmelCase = UperNetForSemanticSegmentation(_UpperCAmelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): lowerCAmelCase = state_dict.pop(_UpperCAmelCase ) if "bn" in key: lowerCAmelCase = key.replace('bn' , 'batch_norm' ) lowerCAmelCase = val # rename keys lowerCAmelCase = create_rename_keys(_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) # verify on image lowerCAmelCase = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' lowerCAmelCase = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert('RGB' ) lowerCAmelCase = SegformerImageProcessor() lowerCAmelCase = processor(_UpperCAmelCase , return_tensors='pt' ).pixel_values with torch.no_grad(): lowerCAmelCase = model(_UpperCAmelCase ) if model_name == "upernet-convnext-tiny": lowerCAmelCase = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": lowerCAmelCase = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": lowerCAmelCase = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": lowerCAmelCase = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": lowerCAmelCase = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print('Logits:' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , _UpperCAmelCase , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_UpperCAmelCase ) print(F'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: print(F'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(F'openmmlab/{model_name}' ) processor.push_to_hub(F'openmmlab/{model_name}' ) if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-convnext-tiny''', type=str, choices=[f'''upernet-convnext-{size}''' for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']], help='''Name of the ConvNext UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __UpperCamelCase : Optional[int] = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
309
"""simple docstring""" import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) class a ( a__ ): def __init__( self , *_snake_case , **_snake_case ): """simple docstring""" warnings.warn( 'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PoolFormerImageProcessor instead.' , _snake_case , ) super().__init__(*_snake_case , **_snake_case )
309
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): lowerCAmelCase = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['stage2', 'stage3', 'stage4'] , ) lowerCAmelCase = DetaConfig( backbone_config=_UpperCAmelCase , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=_UpperCAmelCase , with_box_refine=_UpperCAmelCase , two_stage=_UpperCAmelCase , ) # set labels lowerCAmelCase = 'huggingface/label-files' if "o365" in model_name: lowerCAmelCase = 366 lowerCAmelCase = 'object365-id2label.json' else: lowerCAmelCase = 91 lowerCAmelCase = 'coco-detection-id2label.json' lowerCAmelCase = num_labels lowerCAmelCase = json.load(open(cached_download(hf_hub_url(_UpperCAmelCase , _UpperCAmelCase , repo_type='dataset' ) ) , 'r' ) ) lowerCAmelCase = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCAmelCase = idalabel lowerCAmelCase = {v: k for k, v in idalabel.items()} return config def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple ): lowerCAmelCase = [] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.norm1.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.norm1.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.norm2.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.norm2.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.0.body.layers.{i}.downsample.reduction.weight', F'model.backbone.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.downsample.norm.weight', F'model.backbone.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.0.body.layers.{i}.downsample.norm.bias', F'model.backbone.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight', F'model.encoder.layers.{i}.self_attn.sampling_offsets.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias', F'model.encoder.layers.{i}.self_attn.sampling_offsets.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.attention_weights.weight', F'model.encoder.layers.{i}.self_attn.attention_weights.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.attention_weights.bias', F'model.encoder.layers.{i}.self_attn.attention_weights.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.value_proj.weight', F'model.encoder.layers.{i}.self_attn.value_proj.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.value_proj.bias', F'model.encoder.layers.{i}.self_attn.value_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.output_proj.weight', F'model.encoder.layers.{i}.self_attn.output_proj.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.self_attn.output_proj.bias', F'model.encoder.layers.{i}.self_attn.output_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.weight', F'model.encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'model.encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'model.encoder.layers.{i}.fc1.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'model.encoder.layers.{i}.fc1.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'model.encoder.layers.{i}.fc2.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'model.encoder.layers.{i}.fc2.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'model.encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'model.encoder.layers.{i}.final_layer_norm.bias') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight', F'model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias', F'model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.attention_weights.weight', F'model.decoder.layers.{i}.encoder_attn.attention_weights.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.attention_weights.bias', F'model.decoder.layers.{i}.encoder_attn.attention_weights.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.value_proj.weight', F'model.decoder.layers.{i}.encoder_attn.value_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.value_proj.bias', F'model.decoder.layers.{i}.encoder_attn.value_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.output_proj.weight', F'model.decoder.layers.{i}.encoder_attn.output_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.cross_attn.output_proj.bias', F'model.decoder.layers.{i}.encoder_attn.output_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.weight', F'model.decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'model.decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'model.decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'model.decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm2.weight', F'model.decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm2.bias', F'model.decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'model.decoder.layers.{i}.fc1.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'model.decoder.layers.{i}.fc1.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'model.decoder.layers.{i}.fc2.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'model.decoder.layers.{i}.fc2.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'model.decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'model.decoder.layers.{i}.final_layer_norm.bias') ) # fmt: on return rename_keys def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : str ): lowerCAmelCase = dct.pop(_UpperCAmelCase ) lowerCAmelCase = val def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] ): lowerCAmelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowerCAmelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowerCAmelCase = state_dict.pop(F'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight' ) lowerCAmelCase = state_dict.pop(F'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase = in_proj_weight[:dim, :] lowerCAmelCase = in_proj_bias[: dim] lowerCAmelCase = in_proj_weight[ dim : dim * 2, : ] lowerCAmelCase = in_proj_bias[ dim : dim * 2 ] lowerCAmelCase = in_proj_weight[ -dim :, : ] lowerCAmelCase = in_proj_bias[-dim :] # fmt: on def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Any ): # transformer decoder self-attention layers lowerCAmelCase = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention lowerCAmelCase = state_dict.pop(F'transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) lowerCAmelCase = state_dict.pop(F'transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase = in_proj_weight[:hidden_size, :] lowerCAmelCase = in_proj_bias[:hidden_size] lowerCAmelCase = in_proj_weight[ hidden_size : hidden_size * 2, : ] lowerCAmelCase = in_proj_bias[hidden_size : hidden_size * 2] lowerCAmelCase = in_proj_weight[-hidden_size:, :] lowerCAmelCase = in_proj_bias[-hidden_size:] def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return im @torch.no_grad() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Any ): lowerCAmelCase = get_deta_config(_UpperCAmelCase ) # load original state dict if model_name == "deta-swin-large": lowerCAmelCase = hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": lowerCAmelCase = hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(F'Model name {model_name} not supported' ) lowerCAmelCase = torch.load(_UpperCAmelCase , map_location='cpu' )['model'] # original state dict for name, param in state_dict.items(): print(_UpperCAmelCase , param.shape ) # rename keys lowerCAmelCase = create_rename_keys(_UpperCAmelCase ) for src, dest in rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) read_in_swin_q_k_v(_UpperCAmelCase , config.backbone_config ) read_in_decoder_q_k_v(_UpperCAmelCase , _UpperCAmelCase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: lowerCAmelCase = state_dict.pop(_UpperCAmelCase ) lowerCAmelCase = val if "input_proj" in key: lowerCAmelCase = state_dict.pop(_UpperCAmelCase ) lowerCAmelCase = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: lowerCAmelCase = state_dict.pop(_UpperCAmelCase ) lowerCAmelCase = val # finally, create HuggingFace model and load state dict lowerCAmelCase = DetaForObjectDetection(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() lowerCAmelCase = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(_UpperCAmelCase ) # load image processor lowerCAmelCase = DetaImageProcessor(format='coco_detection' ) # verify our conversion on image lowerCAmelCase = prepare_img() lowerCAmelCase = processor(images=_UpperCAmelCase , return_tensors='pt' ) lowerCAmelCase = encoding['pixel_values'] lowerCAmelCase = model(pixel_values.to(_UpperCAmelCase ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": lowerCAmelCase = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) lowerCAmelCase = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": lowerCAmelCase = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) lowerCAmelCase = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(_UpperCAmelCase ) , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(_UpperCAmelCase ) , atol=1e-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(F'Saving PyTorch model and processor to {pytorch_dump_folder_path}...' ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) processor.save_pretrained(_UpperCAmelCase ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(F'jozhang97/{model_name}' ) processor.push_to_hub(F'jozhang97/{model_name}' ) if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument( '''--model_name''', type=str, default='''deta-swin-large''', choices=['''deta-swin-large''', '''deta-swin-large-o365'''], help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __UpperCamelCase : List[Any] = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
309
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. __UpperCamelCase : str = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. __UpperCamelCase : Optional[Any] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. __UpperCamelCase : Dict = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = len([g for position, g in enumerate(_UpperCAmelCase ) if g == main_target[position]] ) return (item, float(_UpperCAmelCase )) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = random.randint(0 , len(_UpperCAmelCase ) - 1 ) lowerCAmelCase = parent_a[:random_slice] + parent_a[random_slice:] lowerCAmelCase = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] ): lowerCAmelCase = list(_UpperCAmelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: lowerCAmelCase = random.choice(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : tuple[str, float] , _UpperCAmelCase : list[tuple[str, float]] , _UpperCAmelCase : list[str] , ): lowerCAmelCase = [] # Generate more children proportionally to the fitness score. lowerCAmelCase = int(parent_a[1] * 100 ) + 1 lowerCAmelCase = 10 if child_n >= 10 else child_n for _ in range(_UpperCAmelCase ): lowerCAmelCase = population_score[random.randint(0 , _UpperCAmelCase )][0] lowerCAmelCase ,lowerCAmelCase = crossover(parent_a[0] , _UpperCAmelCase ) # Append new string to the population list. pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) ) pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) ) return pop def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] , _UpperCAmelCase : bool = True ): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: lowerCAmelCase = F'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(_UpperCAmelCase ) # Verify that the target contains no genes besides the ones inside genes variable. lowerCAmelCase = sorted({c for c in target if c not in genes} ) if not_in_genes_list: lowerCAmelCase = F'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(_UpperCAmelCase ) # Generate random starting population. lowerCAmelCase = [] for _ in range(_UpperCAmelCase ): population.append(''.join([random.choice(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) )] ) ) # Just some logs to know what the algorithms is doing. lowerCAmelCase ,lowerCAmelCase = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_UpperCAmelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. lowerCAmelCase = [evaluate(_UpperCAmelCase , _UpperCAmelCase ) for item in population] # Check if there is a matching evolution. lowerCAmelCase = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] , reverse=_UpperCAmelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'\nGeneration: {generation}' F'\nTotal Population:{total_population}' F'\nBest score: {population_score[0][1]}' F'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. lowerCAmelCase = population[: int(N_POPULATION / 3 )] population.clear() population.extend(_UpperCAmelCase ) # Normalize population score to be between 0 and 1. lowerCAmelCase = [ (item, score / len(_UpperCAmelCase )) for item, score in population_score ] # This is selection for i in range(_UpperCAmelCase ): population.extend(select(population_score[int(_UpperCAmelCase )] , _UpperCAmelCase , _UpperCAmelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_UpperCAmelCase ) > N_POPULATION: break if __name__ == "__main__": __UpperCamelCase : Tuple = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) __UpperCamelCase : str = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase : Dict = basic(target_str, genes_list) print( f'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
309
1
"""simple docstring""" import copy import random from transformers import CLIPTokenizer class a ( a__ ): def __init__( self , *_snake_case , **_snake_case ): """simple docstring""" super().__init__(*_snake_case , **_snake_case ) lowerCAmelCase = {} def UpperCamelCase__ ( self , _snake_case , *_snake_case , **_snake_case ): """simple docstring""" lowerCAmelCase = super().add_tokens(_snake_case , *_snake_case , **_snake_case ) if num_added_tokens == 0: raise ValueError( F'The tokenizer already contains the token {placeholder_token}. Please pass a different' ' `placeholder_token` that is not already in the tokenizer.' ) def UpperCamelCase__ ( self , _snake_case , *_snake_case , _snake_case=1 , **_snake_case ): """simple docstring""" lowerCAmelCase = [] if num_vec_per_token == 1: self.try_adding_tokens(_snake_case , *_snake_case , **_snake_case ) output.append(_snake_case ) else: lowerCAmelCase = [] for i in range(_snake_case ): lowerCAmelCase = placeholder_token + F'_{i}' self.try_adding_tokens(_snake_case , *_snake_case , **_snake_case ) output.append(_snake_case ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F'The tokenizer already has placeholder token {token} that can get confused with' F' {placeholder_token}keep placeholder tokens independent' ) lowerCAmelCase = output def UpperCamelCase__ ( self , _snake_case , _snake_case=False , _snake_case=1.0 ): """simple docstring""" if isinstance(_snake_case , _snake_case ): lowerCAmelCase = [] for i in range(len(_snake_case ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=_snake_case ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: lowerCAmelCase = self.token_map[placeholder_token] lowerCAmelCase = tokens[: 1 + int(len(_snake_case ) * prop_tokens_to_load )] if vector_shuffle: lowerCAmelCase = copy.copy(_snake_case ) random.shuffle(_snake_case ) lowerCAmelCase = text.replace(_snake_case , ' '.join(_snake_case ) ) return text def __call__( self , _snake_case , *_snake_case , _snake_case=False , _snake_case=1.0 , **_snake_case ): """simple docstring""" return super().__call__( self.replace_placeholder_tokens_in_text( _snake_case , vector_shuffle=_snake_case , prop_tokens_to_load=_snake_case ) , *_snake_case , **_snake_case , ) def UpperCamelCase__ ( self , _snake_case , *_snake_case , _snake_case=False , _snake_case=1.0 , **_snake_case ): """simple docstring""" return super().encode( self.replace_placeholder_tokens_in_text( _snake_case , vector_shuffle=_snake_case , prop_tokens_to_load=_snake_case ) , *_snake_case , **_snake_case , )
309
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a : def __init__( self ): """simple docstring""" lowerCAmelCase = '' lowerCAmelCase = '' lowerCAmelCase = [] lowerCAmelCase = 0 lowerCAmelCase = 2_56 lowerCAmelCase = 0 lowerCAmelCase = 0 lowerCAmelCase = 0 lowerCAmelCase = 0 def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = cva.imread(_snake_case , 0 ) lowerCAmelCase = copy.deepcopy(self.img ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = plt.hist(self.img.ravel() , 2_56 , [0, 2_56] , label='x' ) lowerCAmelCase = np.sum(_snake_case ) for i in range(len(_snake_case ) ): lowerCAmelCase = x[i] / self.k self.sk += prk lowerCAmelCase = (self.L - 1) * self.sk if self.rem != 0: lowerCAmelCase = int(last % last ) lowerCAmelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(_snake_case ) lowerCAmelCase = int(np.ma.count(self.img ) / self.img[1].size ) lowerCAmelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): lowerCAmelCase = self.img[j][i] if num != self.last_list[num]: lowerCAmelCase = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def UpperCamelCase__ ( self ): """simple docstring""" plt.hist(self.img.ravel() , 2_56 , [0, 2_56] ) def UpperCamelCase__ ( self ): """simple docstring""" cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(50_00 ) cva.destroyAllWindows() if __name__ == "__main__": __UpperCamelCase : int = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') __UpperCamelCase : List[Any] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
309
1
"""simple docstring""" import sys from collections import defaultdict class a : def __init__( self ): """simple docstring""" lowerCAmelCase = [] def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return self.node_position[vertex] def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = pos def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: lowerCAmelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: lowerCAmelCase = 2 * start + 1 else: lowerCAmelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: lowerCAmelCase ,lowerCAmelCase = heap[smallest_child], positions[smallest_child] lowerCAmelCase ,lowerCAmelCase = ( heap[start], positions[start], ) lowerCAmelCase ,lowerCAmelCase = temp, tempa lowerCAmelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , _snake_case ) self.top_to_bottom(_snake_case , _snake_case , _snake_case , _snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = position[index] while index != 0: lowerCAmelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: lowerCAmelCase = heap[parent] lowerCAmelCase = position[parent] self.set_position(position[parent] , _snake_case ) else: lowerCAmelCase = val lowerCAmelCase = temp self.set_position(_snake_case , _snake_case ) break lowerCAmelCase = parent else: lowerCAmelCase = val lowerCAmelCase = temp self.set_position(_snake_case , 0 ) def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = len(_snake_case ) // 2 - 1 for i in range(_snake_case , -1 , -1 ): self.top_to_bottom(_snake_case , _snake_case , len(_snake_case ) , _snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = positions[0] lowerCAmelCase = sys.maxsize self.top_to_bottom(_snake_case , 0 , len(_snake_case ) , _snake_case ) return temp def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): lowerCAmelCase = Heap() lowerCAmelCase = [0] * len(_UpperCAmelCase ) lowerCAmelCase = [-1] * len(_UpperCAmelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph lowerCAmelCase = [] # Heap of Distance of vertices from their neighboring vertex lowerCAmelCase = [] for vertex in range(len(_UpperCAmelCase ) ): distance_tv.append(sys.maxsize ) positions.append(_UpperCAmelCase ) heap.node_position.append(_UpperCAmelCase ) lowerCAmelCase = [] lowerCAmelCase = 1 lowerCAmelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: lowerCAmelCase = 0 lowerCAmelCase = distance heap.heapify(_UpperCAmelCase , _UpperCAmelCase ) for _ in range(1 , len(_UpperCAmelCase ) ): lowerCAmelCase = heap.delete_minimum(_UpperCAmelCase , _UpperCAmelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) lowerCAmelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(_UpperCAmelCase )] ): lowerCAmelCase = distance heap.bottom_to_top( _UpperCAmelCase , heap.get_position(_UpperCAmelCase ) , _UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __UpperCamelCase : List[str] = int(input('''Enter number of edges: ''').strip()) __UpperCamelCase : str = defaultdict(list) for _ in range(edges_number): __UpperCamelCase : Any = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
309
"""simple docstring""" import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( 'split_dict' , [ SplitDict(), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 , dataset_name='my_dataset' )} ), SplitDict({'train': SplitInfo(name='train' , num_bytes=1337 , num_examples=42 )} ), SplitDict({'train': SplitInfo()} ), ] , ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : SplitDict ): lowerCAmelCase = split_dict._to_yaml_list() assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) lowerCAmelCase = SplitDict._from_yaml_list(_UpperCAmelCase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump lowerCAmelCase = None # the split name of split_dict takes over the name of the split info object lowerCAmelCase = split_name assert split_dict == reloaded @pytest.mark.parametrize( 'split_info' , [SplitInfo(), SplitInfo(dataset_name=_UpperCAmelCase ), SplitInfo(dataset_name='my_dataset' )] ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] ): # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files lowerCAmelCase = asdict(SplitDict({'train': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
309
1
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __UpperCamelCase : List[str] = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, '''r''', encoding='''utf-8''') as f: __UpperCamelCase : Optional[int] = json.load(f) @require_torch class a ( unittest.TestCase ): def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" return FSMTTokenizer.from_pretrained(_snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = FSMTForConditionalGeneration.from_pretrained(_snake_case ).to(_snake_case ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = F'facebook/wmt19-{pair}' lowerCAmelCase = self.get_tokenizer(_snake_case ) lowerCAmelCase = self.get_model(_snake_case ) lowerCAmelCase = bleu_data[pair]['src'] lowerCAmelCase = bleu_data[pair]['tgt'] lowerCAmelCase = tokenizer(_snake_case , return_tensors='pt' , truncation=_snake_case , padding='longest' ).to(_snake_case ) lowerCAmelCase = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowerCAmelCase = tokenizer.batch_decode( _snake_case , skip_special_tokens=_snake_case , clean_up_tokenization_spaces=_snake_case ) lowerCAmelCase = calculate_bleu(_snake_case , _snake_case ) print(_snake_case ) self.assertGreaterEqual(scores['bleu'] , _snake_case )
309
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __UpperCamelCase : Any = abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] ): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): from diffusers.utils.testing_utils import pytest_terminal_summary_main lowerCAmelCase = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(_UpperCAmelCase , id=_UpperCAmelCase )
309
1
"""simple docstring""" from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
309
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class a ( unittest.TestCase ): def __init__( self , _snake_case , _snake_case=7 , _snake_case=3 , _snake_case=18 , _snake_case=30 , _snake_case=4_00 , _snake_case=True , _snake_case=None , _snake_case=True , _snake_case=None , _snake_case=True , ): """simple docstring""" lowerCAmelCase = size if size is not None else {'shortest_edge': 20} lowerCAmelCase = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = num_channels lowerCAmelCase = image_size lowerCAmelCase = min_resolution lowerCAmelCase = max_resolution lowerCAmelCase = do_resize lowerCAmelCase = size lowerCAmelCase = do_center_crop lowerCAmelCase = crop_size lowerCAmelCase = do_flip_channel_order def UpperCamelCase__ ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class a ( a__ , unittest.TestCase ): snake_case__ = MobileViTImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = MobileViTImageProcessingTester(self ) @property def UpperCamelCase__ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_snake_case , 'do_resize' ) ) self.assertTrue(hasattr(_snake_case , 'size' ) ) self.assertTrue(hasattr(_snake_case , 'do_center_crop' ) ) self.assertTrue(hasattr(_snake_case , 'center_crop' ) ) self.assertTrue(hasattr(_snake_case , 'do_flip_channel_order' ) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , Image.Image ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , numpify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , np.ndarray ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , torchify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , torch.Tensor ) # Test not batched input lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase = image_processing(_snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
309
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCamelCase : Any = { '''configuration_layoutlmv2''': ['''LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv2Config'''], '''processing_layoutlmv2''': ['''LayoutLMv2Processor'''], '''tokenization_layoutlmv2''': ['''LayoutLMv2Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = ['''LayoutLMv2TokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = ['''LayoutLMv2FeatureExtractor'''] __UpperCamelCase : Optional[int] = ['''LayoutLMv2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ '''LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv2ForQuestionAnswering''', '''LayoutLMv2ForSequenceClassification''', '''LayoutLMv2ForTokenClassification''', '''LayoutLMv2Layer''', '''LayoutLMv2Model''', '''LayoutLMv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
309
"""simple docstring""" import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" debug_launcher(test_script.main ) def UpperCamelCase__ ( self ): """simple docstring""" debug_launcher(test_ops.main )
309
1
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = tempfile.mkdtemp() # fmt: off lowerCAmelCase = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowerCAmelCase = dict(zip(_snake_case , range(len(_snake_case ) ) ) ) lowerCAmelCase = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowerCAmelCase = {'unk_token': '<unk>'} lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_snake_case ) ) lowerCAmelCase = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_145_466, 0.4_578_275, 0.40_821_073], 'image_std': [0.26_862_954, 0.26_130_258, 0.27_577_711], } lowerCAmelCase = os.path.join(self.tmpdirname , _snake_case ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(_snake_case , _snake_case ) def UpperCamelCase__ ( self , **_snake_case ): """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **_snake_case ) def UpperCamelCase__ ( self , **_snake_case ): """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_snake_case ) def UpperCamelCase__ ( self , **_snake_case ): """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] lowerCAmelCase = [Image.fromarray(np.moveaxis(_snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = self.get_rust_tokenizer() lowerCAmelCase = self.get_image_processor() lowerCAmelCase = CLIPSegProcessor(tokenizer=_snake_case , image_processor=_snake_case ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=_snake_case ) lowerCAmelCase = CLIPSegProcessor(tokenizer=_snake_case , image_processor=_snake_case ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _snake_case ) self.assertIsInstance(processor_fast.tokenizer , _snake_case ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _snake_case ) self.assertIsInstance(processor_fast.image_processor , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCAmelCase = self.get_image_processor(do_normalize=_snake_case , padding_value=1.0 ) lowerCAmelCase = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_snake_case , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _snake_case ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = CLIPSegProcessor(tokenizer=_snake_case , image_processor=_snake_case ) lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = image_processor(_snake_case , return_tensors='np' ) lowerCAmelCase = processor(images=_snake_case , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = CLIPSegProcessor(tokenizer=_snake_case , image_processor=_snake_case ) lowerCAmelCase = 'lower newer' lowerCAmelCase = processor(text=_snake_case ) lowerCAmelCase = tokenizer(_snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = CLIPSegProcessor(tokenizer=_snake_case , image_processor=_snake_case ) lowerCAmelCase = 'lower newer' lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = processor(text=_snake_case , images=_snake_case ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_snake_case ): processor() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = CLIPSegProcessor(tokenizer=_snake_case , image_processor=_snake_case ) lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = processor(images=_snake_case , visual_prompt=_snake_case ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'conditional_pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_snake_case ): processor() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = CLIPSegProcessor(tokenizer=_snake_case , image_processor=_snake_case ) lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase = processor.batch_decode(_snake_case ) lowerCAmelCase = tokenizer.batch_decode(_snake_case ) self.assertListEqual(_snake_case , _snake_case )
309
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[list[float]] ): lowerCAmelCase = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(_UpperCAmelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix lowerCAmelCase = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creates a copy of the matrix with swapped positions of the elements lowerCAmelCase = [[0.0, 0.0], [0.0, 0.0]] lowerCAmelCase ,lowerCAmelCase = matrix[1][1], matrix[0][0] lowerCAmelCase ,lowerCAmelCase = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(_UpperCAmelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(_UpperCAmelCase ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule lowerCAmelCase = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creating cofactor matrix lowerCAmelCase = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] lowerCAmelCase = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) lowerCAmelCase = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) lowerCAmelCase = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) lowerCAmelCase = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) lowerCAmelCase = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) lowerCAmelCase = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) lowerCAmelCase = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) lowerCAmelCase = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) lowerCAmelCase = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) lowerCAmelCase = array(_UpperCAmelCase ) for i in range(3 ): for j in range(3 ): lowerCAmelCase = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix lowerCAmelCase = array(_UpperCAmelCase ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(_UpperCAmelCase ) # Calculate the inverse of the matrix return [[float(d(_UpperCAmelCase ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('Please provide a matrix of size 2x2 or 3x3.' )
309
1
"""simple docstring""" from __future__ import annotations import math def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : float , _UpperCAmelCase : int ): lowerCAmelCase = u for i in range(1 , _UpperCAmelCase ): lowerCAmelCase = temp * (u - i) return temp def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = int(input('enter the numbers of values: ' ) ) lowerCAmelCase = [] for _ in range(_UpperCAmelCase ): y.append([] ) for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): y[i].append(_UpperCAmelCase ) lowerCAmelCase = 0 print('enter the values of parameters in a list: ' ) lowerCAmelCase = list(map(_UpperCAmelCase , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(_UpperCAmelCase ): lowerCAmelCase = float(input() ) lowerCAmelCase = int(input('enter the value to interpolate: ' ) ) lowerCAmelCase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , _UpperCAmelCase ): for j in range(n - i ): lowerCAmelCase = y[j + 1][i - 1] - y[j][i - 1] lowerCAmelCase = y[0][0] for i in range(1 , _UpperCAmelCase ): summ += (ucal(_UpperCAmelCase , _UpperCAmelCase ) * y[0][i]) / math.factorial(_UpperCAmelCase ) print(F'the value at {value} is {summ}' ) if __name__ == "__main__": main()
309
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Dict = { '''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''], '''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''], '''processing_mctct''': ['''MCTCTProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ '''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MCTCTForCTC''', '''MCTCTModel''', '''MCTCTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys __UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
309
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : List[Any] = { '''BridgeTower/bridgetower-base''': '''https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json''', '''BridgeTower/bridgetower-base-itm-mlm''': ( '''https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json''' ), } class a ( a__ ): snake_case__ = '''bridgetower_vision_model''' def __init__( self , _snake_case=7_68 , _snake_case=12 , _snake_case=3 , _snake_case=16 , _snake_case=2_88 , _snake_case=1 , _snake_case=1E-05 , _snake_case=False , _snake_case=True , _snake_case=False , **_snake_case , ): """simple docstring""" super().__init__(**_snake_case ) lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_channels lowerCAmelCase = patch_size lowerCAmelCase = image_size lowerCAmelCase = initializer_factor lowerCAmelCase = layer_norm_eps lowerCAmelCase = stop_gradient lowerCAmelCase = share_layernorm lowerCAmelCase = remove_last_layer @classmethod def UpperCamelCase__ ( cls , _snake_case , **_snake_case ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = cls.get_config_dict(_snake_case , **_snake_case ) if config_dict.get('model_type' ) == "bridgetower": lowerCAmelCase = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_snake_case , **_snake_case ) class a ( a__ ): snake_case__ = '''bridgetower_text_model''' def __init__( self , _snake_case=5_02_65 , _snake_case=7_68 , _snake_case=12 , _snake_case=12 , _snake_case=1 , _snake_case=30_72 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_14 , _snake_case=1 , _snake_case=1E-05 , _snake_case=1 , _snake_case=0 , _snake_case=2 , _snake_case="absolute" , _snake_case=True , **_snake_case , ): """simple docstring""" super().__init__(**_snake_case ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = initializer_factor lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = layer_norm_eps lowerCAmelCase = position_embedding_type lowerCAmelCase = use_cache lowerCAmelCase = pad_token_id lowerCAmelCase = bos_token_id lowerCAmelCase = eos_token_id @classmethod def UpperCamelCase__ ( cls , _snake_case , **_snake_case ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = cls.get_config_dict(_snake_case , **_snake_case ) if config_dict.get('model_type' ) == "bridgetower": lowerCAmelCase = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_snake_case , **_snake_case ) class a ( a__ ): snake_case__ = '''bridgetower''' def __init__( self , _snake_case=True , _snake_case="gelu" , _snake_case=7_68 , _snake_case=1 , _snake_case=1E-05 , _snake_case=False , _snake_case="add" , _snake_case=12 , _snake_case=6 , _snake_case=False , _snake_case=False , _snake_case=None , _snake_case=None , **_snake_case , ): """simple docstring""" lowerCAmelCase = kwargs.pop('text_config_dict' , _snake_case ) lowerCAmelCase = kwargs.pop('vision_config_dict' , _snake_case ) super().__init__(**_snake_case ) lowerCAmelCase = share_cross_modal_transformer_layers lowerCAmelCase = hidden_act lowerCAmelCase = hidden_size lowerCAmelCase = initializer_factor lowerCAmelCase = layer_norm_eps lowerCAmelCase = share_link_tower_layers lowerCAmelCase = link_tower_type lowerCAmelCase = num_attention_heads lowerCAmelCase = num_hidden_layers lowerCAmelCase = tie_word_embeddings lowerCAmelCase = init_layernorm_from_vision_encoder if text_config is None: lowerCAmelCase = {} logger.info('`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.' ) if vision_config is None: lowerCAmelCase = {} logger.info('`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.' ) lowerCAmelCase = BridgeTowerTextConfig(**_snake_case ) lowerCAmelCase = BridgeTowerVisionConfig(**_snake_case ) @classmethod def UpperCamelCase__ ( cls , _snake_case , _snake_case , **_snake_case ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = copy.deepcopy(self.__dict__ ) lowerCAmelCase = self.text_config.to_dict() lowerCAmelCase = self.vision_config.to_dict() lowerCAmelCase = self.__class__.model_type return output
309
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer __UpperCamelCase : Dict = logging.get_logger(__name__) __UpperCamelCase : str = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase : Optional[int] = { '''vocab_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json''' ), '''distilbert-base-german-cased''': ( '''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json''' ), '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json''' ), }, } __UpperCamelCase : str = { '''distilbert-base-uncased''': 512, '''distilbert-base-uncased-distilled-squad''': 512, '''distilbert-base-cased''': 512, '''distilbert-base-cased-distilled-squad''': 512, '''distilbert-base-german-cased''': 512, '''distilbert-base-multilingual-cased''': 512, } __UpperCamelCase : Any = { '''distilbert-base-uncased''': {'''do_lower_case''': True}, '''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True}, '''distilbert-base-cased''': {'''do_lower_case''': False}, '''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False}, '''distilbert-base-german-cased''': {'''do_lower_case''': False}, '''distilbert-base-multilingual-cased''': {'''do_lower_case''': False}, } class a ( a__ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = PRETRAINED_INIT_CONFIGURATION snake_case__ = ['''input_ids''', '''attention_mask'''] snake_case__ = DistilBertTokenizer def __init__( self , _snake_case=None , _snake_case=None , _snake_case=True , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case=True , _snake_case=None , **_snake_case , ): """simple docstring""" super().__init__( _snake_case , tokenizer_file=_snake_case , do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , tokenize_chinese_chars=_snake_case , strip_accents=_snake_case , **_snake_case , ) lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _snake_case ) != do_lower_case or normalizer_state.get('strip_accents' , _snake_case ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _snake_case ) != tokenize_chinese_chars ): lowerCAmelCase = getattr(_snake_case , normalizer_state.pop('type' ) ) lowerCAmelCase = do_lower_case lowerCAmelCase = strip_accents lowerCAmelCase = tokenize_chinese_chars lowerCAmelCase = normalizer_class(**_snake_case ) lowerCAmelCase = do_lower_case def UpperCamelCase__ ( self , _snake_case , _snake_case=None ): """simple docstring""" lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = self._tokenizer.model.save(_snake_case , name=_snake_case ) return tuple(_snake_case )
309
1
"""simple docstring""" import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict , _UpperCAmelCase : str ): lowerCAmelCase = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' lowerCAmelCase = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ).convert('RGB' ) lowerCAmelCase = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.4814_5466, 0.457_8275, 0.4082_1073) , (0.2686_2954, 0.2613_0258, 0.2757_7711) ), ] ) lowerCAmelCase = transform(_UpperCAmelCase ).unsqueeze(0 ).to(_UpperCAmelCase ) return image def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict ): if "visual_encoder" in key: lowerCAmelCase = re.sub('visual_encoder*' , 'vision_model.encoder' , _UpperCAmelCase ) if "blocks" in key: lowerCAmelCase = re.sub(R'blocks' , 'layers' , _UpperCAmelCase ) if "attn" in key: lowerCAmelCase = re.sub(R'attn' , 'self_attn' , _UpperCAmelCase ) if "norm1" in key: lowerCAmelCase = re.sub(R'norm1' , 'layer_norm1' , _UpperCAmelCase ) if "norm2" in key: lowerCAmelCase = re.sub(R'norm2' , 'layer_norm2' , _UpperCAmelCase ) if "encoder.norm" in key: lowerCAmelCase = re.sub(R'encoder.norm' , 'post_layernorm' , _UpperCAmelCase ) if "encoder.patch_embed.proj" in key: lowerCAmelCase = re.sub(R'encoder.patch_embed.proj' , 'embeddings.patch_embedding' , _UpperCAmelCase ) if "encoder.pos_embed" in key: lowerCAmelCase = re.sub(R'encoder.pos_embed' , 'embeddings.position_embedding' , _UpperCAmelCase ) if "encoder.cls_token" in key: lowerCAmelCase = re.sub(R'encoder.cls_token' , 'embeddings.class_embedding' , _UpperCAmelCase ) if "self_attn" in key: lowerCAmelCase = re.sub(R'self_attn.proj' , 'self_attn.projection' , _UpperCAmelCase ) return key @torch.no_grad() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] , _UpperCAmelCase : str=None ): if config_path is not None: lowerCAmelCase = BlipConfig.from_pretrained(_UpperCAmelCase ) else: lowerCAmelCase = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) lowerCAmelCase = BlipForConditionalGeneration(_UpperCAmelCase ).eval() lowerCAmelCase = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth' lowerCAmelCase = blip_decoder(pretrained=_UpperCAmelCase , image_size=384 , vit='base' ) lowerCAmelCase = pt_model.eval() lowerCAmelCase = pt_model.state_dict() for key in modified_state_dict.copy(): lowerCAmelCase = modified_state_dict.pop(_UpperCAmelCase ) lowerCAmelCase = rename_key(_UpperCAmelCase ) lowerCAmelCase = value hf_model.load_state_dict(_UpperCAmelCase ) lowerCAmelCase = 384 lowerCAmelCase = load_demo_image(image_size=_UpperCAmelCase , device='cpu' ) lowerCAmelCase = BertTokenizer.from_pretrained('bert-base-uncased' ) lowerCAmelCase = tokenizer(['a picture of'] ).input_ids lowerCAmelCase = hf_model.generate(_UpperCAmelCase , _UpperCAmelCase ) assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] lowerCAmelCase = hf_model.generate(_UpperCAmelCase ) assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(_UpperCAmelCase ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' lowerCAmelCase = ( 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth' ) lowerCAmelCase = blip_vqa(pretrained=_UpperCAmelCase , image_size=_UpperCAmelCase , vit='base' ) vqa_model.eval() lowerCAmelCase = vqa_model.state_dict() for key in modified_state_dict.copy(): lowerCAmelCase = modified_state_dict.pop(_UpperCAmelCase ) lowerCAmelCase = rename_key(_UpperCAmelCase ) lowerCAmelCase = value lowerCAmelCase = BlipForQuestionAnswering(_UpperCAmelCase ) hf_vqa_model.load_state_dict(_UpperCAmelCase ) lowerCAmelCase = ['How many dogs are in this image?'] lowerCAmelCase = tokenizer(_UpperCAmelCase , return_tensors='pt' ).input_ids lowerCAmelCase = hf_vqa_model.generate(_UpperCAmelCase , _UpperCAmelCase ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '_vqa' ) lowerCAmelCase = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth' lowerCAmelCase = blip_itm(pretrained=_UpperCAmelCase , image_size=_UpperCAmelCase , vit='base' ) itm_model.eval() lowerCAmelCase = itm_model.state_dict() for key in modified_state_dict.copy(): lowerCAmelCase = modified_state_dict.pop(_UpperCAmelCase ) lowerCAmelCase = rename_key(_UpperCAmelCase ) lowerCAmelCase = value lowerCAmelCase = BlipForImageTextRetrieval(_UpperCAmelCase ) lowerCAmelCase = ['A picture of a woman with a dog sitting in a beach'] lowerCAmelCase = tokenizer( _UpperCAmelCase , return_tensors='pt' , padding='max_length' , truncation=_UpperCAmelCase , max_length=35 , ).input_ids hf_itm_model.load_state_dict(_UpperCAmelCase ) hf_itm_model.eval() lowerCAmelCase = hf_itm_model(_UpperCAmelCase , _UpperCAmelCase , use_itm_head=_UpperCAmelCase ) lowerCAmelCase = hf_itm_model(_UpperCAmelCase , _UpperCAmelCase , use_itm_head=_UpperCAmelCase ) assert out[0].item() == 0.2110_6874_9427_7954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_5698_8453_8650_5127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '_itm' ) if __name__ == "__main__": __UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') __UpperCamelCase : List[Any] = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
309
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] | None = None ): lowerCAmelCase = word_bank or [] # create a table lowerCAmelCase = len(_UpperCAmelCase ) + 1 lowerCAmelCase = [] for _ in range(_UpperCAmelCase ): table.append([] ) # seed value lowerCAmelCase = [[]] # because empty string has empty combination # iterate through the indices for i in range(_UpperCAmelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_UpperCAmelCase )] == word: lowerCAmelCase = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_UpperCAmelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_UpperCAmelCase )]: combination.reverse() return table[len(_UpperCAmelCase )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
309
1
"""simple docstring""" import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 'laion/clap-htsat-unfused' lowerCAmelCase = tempfile.mkdtemp() def UpperCamelCase__ ( self , **_snake_case ): """simple docstring""" return RobertaTokenizer.from_pretrained(self.checkpoint , **_snake_case ) def UpperCamelCase__ ( self , **_snake_case ): """simple docstring""" return ClapFeatureExtractor.from_pretrained(self.checkpoint , **_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = self.get_feature_extractor() lowerCAmelCase = ClapProcessor(tokenizer=_snake_case , feature_extractor=_snake_case ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _snake_case ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCAmelCase = self.get_feature_extractor(do_normalize=_snake_case , padding_value=1.0 ) lowerCAmelCase = ClapProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_snake_case , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _snake_case ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_feature_extractor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = ClapProcessor(tokenizer=_snake_case , feature_extractor=_snake_case ) lowerCAmelCase = floats_list((3, 10_00) ) lowerCAmelCase = feature_extractor(_snake_case , return_tensors='np' ) lowerCAmelCase = processor(audios=_snake_case , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_feature_extractor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = ClapProcessor(tokenizer=_snake_case , feature_extractor=_snake_case ) lowerCAmelCase = 'This is a test string' lowerCAmelCase = processor(text=_snake_case ) lowerCAmelCase = tokenizer(_snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_feature_extractor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = ClapProcessor(tokenizer=_snake_case , feature_extractor=_snake_case ) lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase = processor.batch_decode(_snake_case ) lowerCAmelCase = tokenizer.batch_decode(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_feature_extractor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = ClapProcessor(tokenizer=_snake_case , feature_extractor=_snake_case ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
309
"""simple docstring""" import re def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): if len(re.findall('[ATCG]' , _UpperCAmelCase ) ) != len(_UpperCAmelCase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
309
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu __UpperCamelCase : List[Any] = False class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase__ ( self ): """simple docstring""" return 12 @property def UpperCamelCase__ ( self ): """simple docstring""" return 12 @property def UpperCamelCase__ ( self ): """simple docstring""" return 32 @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(_snake_case ) @property def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase = 12 lowerCAmelCase = 12 lowerCAmelCase = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } lowerCAmelCase = TransformeraDModel(**_snake_case ) return model def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 'cpu' lowerCAmelCase = self.dummy_vqvae lowerCAmelCase = self.dummy_text_encoder lowerCAmelCase = self.dummy_tokenizer lowerCAmelCase = self.dummy_transformer lowerCAmelCase = VQDiffusionScheduler(self.num_embed ) lowerCAmelCase = LearnedClassifierFreeSamplingEmbeddings(learnable=_snake_case ) lowerCAmelCase = VQDiffusionPipeline( vqvae=_snake_case , text_encoder=_snake_case , tokenizer=_snake_case , transformer=_snake_case , scheduler=_snake_case , learned_classifier_free_sampling_embeddings=_snake_case , ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = 'teddy bear playing in the pool' lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(0 ) lowerCAmelCase = pipe([prompt] , generator=_snake_case , num_inference_steps=2 , output_type='np' ) lowerCAmelCase = output.images lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(0 ) lowerCAmelCase = pipe( [prompt] , generator=_snake_case , output_type='np' , return_dict=_snake_case , num_inference_steps=2 )[0] lowerCAmelCase = image[0, -3:, -3:, -1] lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) lowerCAmelCase = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 'cpu' lowerCAmelCase = self.dummy_vqvae lowerCAmelCase = self.dummy_text_encoder lowerCAmelCase = self.dummy_tokenizer lowerCAmelCase = self.dummy_transformer lowerCAmelCase = VQDiffusionScheduler(self.num_embed ) lowerCAmelCase = LearnedClassifierFreeSamplingEmbeddings( learnable=_snake_case , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) lowerCAmelCase = VQDiffusionPipeline( vqvae=_snake_case , text_encoder=_snake_case , tokenizer=_snake_case , transformer=_snake_case , scheduler=_snake_case , learned_classifier_free_sampling_embeddings=_snake_case , ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = 'teddy bear playing in the pool' lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(0 ) lowerCAmelCase = pipe([prompt] , generator=_snake_case , num_inference_steps=2 , output_type='np' ) lowerCAmelCase = output.images lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(0 ) lowerCAmelCase = pipe( [prompt] , generator=_snake_case , output_type='np' , return_dict=_snake_case , num_inference_steps=2 )[0] lowerCAmelCase = image[0, -3:, -3:, -1] lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) lowerCAmelCase = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' ) lowerCAmelCase = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' ) lowerCAmelCase = pipeline.to(_snake_case ) pipeline.set_progress_bar_config(disable=_snake_case ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(0 ) lowerCAmelCase = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=_snake_case , output_type='np' , ) lowerCAmelCase = output.images[0] assert image.shape == (2_56, 2_56, 3) assert np.abs(expected_image - image ).max() < 2.0
309
"""simple docstring""" import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () __UpperCamelCase : List[Any] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). __UpperCamelCase : str = [0, 25, 50] __UpperCamelCase : int = [25, 50, 75] __UpperCamelCase : str = fuzz.membership.trimf(X, abca) __UpperCamelCase : Tuple = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. __UpperCamelCase : Dict = np.ones(75) __UpperCamelCase : str = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) __UpperCamelCase : Optional[Any] = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) __UpperCamelCase : Dict = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) __UpperCamelCase : Dict = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) __UpperCamelCase : List[str] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] __UpperCamelCase : List[str] = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) __UpperCamelCase : Tuple = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] __UpperCamelCase : Union[str, Any] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] __UpperCamelCase : Dict = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
309
1
"""simple docstring""" import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __UpperCamelCase : List[str] = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) __UpperCamelCase : Tuple = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) __UpperCamelCase : Dict = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) __UpperCamelCase : Union[str, Any] = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) __UpperCamelCase : List[str] = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 14]), ('''2H 5D 3C AS 5S''', False, [14, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [14, 13, 12, 11, 10]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) __UpperCamelCase : List[Any] = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) __UpperCamelCase : Union[str, Any] = ( ('''JH AH TH KH QH''', 23), ('''JH 9H TH KH QH''', 22), ('''JC KH JS JD JH''', 21), ('''KH KC 3S 3H 3D''', 20), ('''8C 9C 5C 3C TC''', 19), ('''JS QS 9H TS KH''', 18), ('''7C 7S KH 2H 7H''', 17), ('''3C KH 5D 5S KH''', 16), ('''QH 8H KD JH 8S''', 15), ('''2D 6D 9D TH 7D''', 14), ) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase ,lowerCAmelCase = randrange(len(_UpperCAmelCase ) ), randrange(len(_UpperCAmelCase ) ) lowerCAmelCase = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] lowerCAmelCase ,lowerCAmelCase = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int = 100 ): return (generate_random_hand() for _ in range(_UpperCAmelCase )) @pytest.mark.parametrize('hand, expected' , _UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] , _UpperCAmelCase : Any ): assert PokerHand(_UpperCAmelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , _UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : Optional[int] ): assert PokerHand(_UpperCAmelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , _UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ): lowerCAmelCase = PokerHand(_UpperCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , _UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] ): assert PokerHand(_UpperCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , _UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] ): assert PokerHand(_UpperCAmelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , _UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] ): assert PokerHand(_UpperCAmelCase ).compare_with(PokerHand(_UpperCAmelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] ): assert PokerHand(_UpperCAmelCase ).compare_with(PokerHand(_UpperCAmelCase ) ) == expected def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = [PokerHand(_UpperCAmelCase ) for hand in SORTED_HANDS] lowerCAmelCase = poker_hands.copy() shuffle(_UpperCAmelCase ) lowerCAmelCase = chain(sorted(_UpperCAmelCase ) ) for index, hand in enumerate(_UpperCAmelCase ): assert hand == poker_hands[index] def _SCREAMING_SNAKE_CASE (): # Test that five high straights are compared correctly. lowerCAmelCase = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=_UpperCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _SCREAMING_SNAKE_CASE (): # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. lowerCAmelCase = PokerHand('2C 4S AS 3D 5C' ) lowerCAmelCase = True lowerCAmelCase = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _SCREAMING_SNAKE_CASE (): # Problem number 54 from Project Euler # Testing from poker_hands.txt file lowerCAmelCase = 0 lowerCAmelCase = os.path.abspath(os.path.dirname(_UpperCAmelCase ) ) lowerCAmelCase = os.path.join(_UpperCAmelCase , 'poker_hands.txt' ) with open(_UpperCAmelCase ) as file_hand: for line in file_hand: lowerCAmelCase = line[:14].strip() lowerCAmelCase = line[15:].strip() lowerCAmelCase ,lowerCAmelCase = PokerHand(_UpperCAmelCase ), PokerHand(_UpperCAmelCase ) lowerCAmelCase = player.compare_with(_UpperCAmelCase ) if output == "Win": answer += 1 assert answer == 376
309
"""simple docstring""" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[int] , _UpperCAmelCase : str ): lowerCAmelCase = int(_UpperCAmelCase ) # Initialize Result lowerCAmelCase = [] # Traverse through all denomination for denomination in reversed(_UpperCAmelCase ): # Find denominations while int(_UpperCAmelCase ) >= int(_UpperCAmelCase ): total_value -= int(_UpperCAmelCase ) answer.append(_UpperCAmelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": __UpperCamelCase : Any = [] __UpperCamelCase : List[Any] = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): __UpperCamelCase : Any = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(f'''Denomination {i}: ''').strip())) __UpperCamelCase : int = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter __UpperCamelCase : List[str] = [1, 2, 5, 10, 20, 50, 100, 500, 2000] __UpperCamelCase : Any = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(f'''Following is minimal change for {value}: ''') __UpperCamelCase : List[str] = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
309
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class a : def __init__( self , _snake_case , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = 13 lowerCAmelCase = 7 lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = 99 lowerCAmelCase = 32 lowerCAmelCase = 2 lowerCAmelCase = 4 lowerCAmelCase = 37 lowerCAmelCase = 'gelu' lowerCAmelCase = 0.1 lowerCAmelCase = 0.1 lowerCAmelCase = 5_12 lowerCAmelCase = 16 lowerCAmelCase = 2 lowerCAmelCase = 0.02 lowerCAmelCase = 3 lowerCAmelCase = 4 lowerCAmelCase = None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = self.prepare_config_and_inputs() lowerCAmelCase = True lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFEsmModel(config=_snake_case ) lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase = model(_snake_case ) lowerCAmelCase = [input_ids, input_mask] lowerCAmelCase = model(_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = TFEsmModel(config=_snake_case ) lowerCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } lowerCAmelCase = model(_snake_case ) lowerCAmelCase = [input_ids, input_mask] lowerCAmelCase = model(_snake_case , encoder_hidden_states=_snake_case ) # Also check the case where encoder outputs are not passed lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFEsmForMaskedLM(config=_snake_case ) lowerCAmelCase = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFEsmForTokenClassification(config=_snake_case ) lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class a ( a__ , a__ , unittest.TestCase ): snake_case__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) snake_case__ = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = TFEsmModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @unittest.skip('Protein models do not support embedding resizing.' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip('Protein models do not support embedding resizing.' ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(_snake_case ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowerCAmelCase = model.get_bias() assert isinstance(_snake_case , _snake_case ) for k, v in name.items(): assert isinstance(_snake_case , tf.Variable ) else: lowerCAmelCase = model.get_output_embeddings() assert x is None lowerCAmelCase = model.get_bias() assert name is None @require_tf class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) lowerCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase = model(_snake_case )[0] lowerCAmelCase = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , _snake_case ) # compare the actual values for a slice. lowerCAmelCase = tf.constant( [ [ [8.921_518, -10.589_814, -6.4_671_307], [-6.3_967_156, -13.911_377, -1.1_211_915], [-7.781_247, -13.951_557, -3.740_592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) lowerCAmelCase = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCAmelCase = model(_snake_case )[0] # compare the actual values for a slice. lowerCAmelCase = tf.constant( [ [ [0.14_443_092, 0.54_125_327, 0.3_247_739], [0.30_340_484, 0.00_526_676, 0.31_077_722], [0.32_278_043, -0.24_987_096, 0.3_414_628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
309
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class a : def __init__( self , _snake_case , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = 13 lowerCAmelCase = 7 lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = 99 lowerCAmelCase = 32 lowerCAmelCase = 2 lowerCAmelCase = 4 lowerCAmelCase = 37 lowerCAmelCase = 'gelu' lowerCAmelCase = 0.1 lowerCAmelCase = 0.1 lowerCAmelCase = 5_12 lowerCAmelCase = 16 lowerCAmelCase = 2 lowerCAmelCase = 0.02 lowerCAmelCase = 3 lowerCAmelCase = 4 lowerCAmelCase = None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = self.prepare_config_and_inputs() lowerCAmelCase = True lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFEsmModel(config=_snake_case ) lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase = model(_snake_case ) lowerCAmelCase = [input_ids, input_mask] lowerCAmelCase = model(_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = TFEsmModel(config=_snake_case ) lowerCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } lowerCAmelCase = model(_snake_case ) lowerCAmelCase = [input_ids, input_mask] lowerCAmelCase = model(_snake_case , encoder_hidden_states=_snake_case ) # Also check the case where encoder outputs are not passed lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFEsmForMaskedLM(config=_snake_case ) lowerCAmelCase = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFEsmForTokenClassification(config=_snake_case ) lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class a ( a__ , a__ , unittest.TestCase ): snake_case__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) snake_case__ = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = TFEsmModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @unittest.skip('Protein models do not support embedding resizing.' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip('Protein models do not support embedding resizing.' ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(_snake_case ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowerCAmelCase = model.get_bias() assert isinstance(_snake_case , _snake_case ) for k, v in name.items(): assert isinstance(_snake_case , tf.Variable ) else: lowerCAmelCase = model.get_output_embeddings() assert x is None lowerCAmelCase = model.get_bias() assert name is None @require_tf class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) lowerCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase = model(_snake_case )[0] lowerCAmelCase = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , _snake_case ) # compare the actual values for a slice. lowerCAmelCase = tf.constant( [ [ [8.921_518, -10.589_814, -6.4_671_307], [-6.3_967_156, -13.911_377, -1.1_211_915], [-7.781_247, -13.951_557, -3.740_592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) lowerCAmelCase = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCAmelCase = model(_snake_case )[0] # compare the actual values for a slice. lowerCAmelCase = tf.constant( [ [ [0.14_443_092, 0.54_125_327, 0.3_247_739], [0.30_340_484, 0.00_526_676, 0.31_077_722], [0.32_278_043, -0.24_987_096, 0.3_414_628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
309
1