code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from math import factorial def UpperCamelCase_( _snake_case : int = 100 ): """simple docstring""" return sum(int(_snake_case ) for x in str(factorial(_snake_case ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
308
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __magic_name__ : @staticmethod def __magic_name__ ( *__snake_case , **__snake_case ) -> List[str]: '''simple docstring''' pass def UpperCamelCase_( _snake_case : Image ): """simple docstring""" __a =hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __magic_name__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def __magic_name__ ( self , __snake_case , __snake_case , __snake_case ) -> Dict: '''simple docstring''' __a =DepthEstimationPipeline(model=__snake_case , image_processor=__snake_case ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __magic_name__ ( self , __snake_case , __snake_case ) -> Tuple: '''simple docstring''' __a =depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , __snake_case ) import datasets __a =datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) __a =depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , __snake_case , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' pass @slow @require_torch def __magic_name__ ( self ) -> int: '''simple docstring''' __a ='Intel/dpt-large' __a =pipeline('depth-estimation' , model=__snake_case ) __a =depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) __a =hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.662 ) @require_torch def __magic_name__ ( self ) -> Any: '''simple docstring''' # This is highly irregular to have no small tests. self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
308
1
_lowerCAmelCase : Dict = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def UpperCamelCase_( _snake_case : List[Any] , _snake_case : Tuple , _snake_case : Any , _snake_case : Dict ): """simple docstring""" __a =[False] * len(_snake_case ) __a =[s] __a =True while queue: __a =queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_snake_case ) __a =True __a =u return visited[t] def UpperCamelCase_( _snake_case : int , _snake_case : Optional[int] , _snake_case : Union[str, Any] ): """simple docstring""" __a =[-1] * (len(_snake_case )) __a =0 __a =[] __a =[i[:] for i in graph] # Record original cut, copy. while bfs(_snake_case , _snake_case , _snake_case , _snake_case ): __a =float('Inf' ) __a =sink while s != source: # Find the minimum value in select path __a =min(_snake_case , graph[parent[s]][s] ) __a =parent[s] max_flow += path_flow __a =sink while v != source: __a =parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __a =parent[v] for i in range(len(_snake_case ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
308
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _lowerCAmelCase : Optional[int] = logging.getLogger(__name__) _lowerCAmelCase : Any = "pytorch_model.bin" @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co.'} , ) @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field(metadata={'help': 'A csv or a json file containing the training data.'} ) SCREAMING_SNAKE_CASE = dataclasses.field(metadata={'help': 'A csv or a json file containing the data to predict on.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the validation data.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'The name of the task to train on.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'The list of labels for the task.'} ) @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field( metadata={'help': 'The output directory where the model predictions and checkpoints will be written.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default='accuracy' , metadata={'help': 'The evaluation metric used for the task.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default='no' , metadata={ 'help': 'The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]' } , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=1_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0 , metadata={ 'help': 'How much the specified evaluation metric must improve to satisfy early stopping conditions.' } , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the confidence score.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the validation performance.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to fine-tune on labeled data after pseudo training.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0 , metadata={'help': 'Confidence threshold for pseudo-labeled data filtering.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=1_0_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Random seed for initialization.'} , ) def UpperCamelCase_( _snake_case : int , _snake_case : str , _snake_case : Optional[int] , _snake_case : str , _snake_case : Union[str, Any] , _snake_case : List[Any] ): """simple docstring""" __a =datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: __a =dataset.filter(lambda _snake_case : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 __a =int(eval_result * len(_snake_case ) ) print(_snake_case ) __a =dataset.sort('probability' , reverse=_snake_case ) __a =dataset.select(range(_snake_case ) ) __a =dataset.remove_columns(['label', 'probability'] ) __a =dataset.rename_column('prediction' , 'label' ) __a =dataset.map(lambda _snake_case : {"label": idalabel[example["label"]]} ) __a =dataset.shuffle(seed=args.seed ) __a =os.path.join(_snake_case , F'train_pseudo.{args.data_file_extension}' ) if args.data_file_extension == "csv": dataset.to_csv(_snake_case , index=_snake_case ) else: dataset.to_json(_snake_case ) def UpperCamelCase_( _snake_case : List[Any] , _snake_case : str , _snake_case : int , _snake_case : Optional[int] , **_snake_case : List[str] ): """simple docstring""" __a =Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() __a =STModelArguments(model_name_or_path=_snake_case ) __a =STDataArguments(train_file=_snake_case , infer_file=_snake_case ) __a =STTrainingArguments(output_dir=_snake_case ) __a =argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(_snake_case ).items(): setattr(_snake_case , _snake_case , _snake_case ) for key, value in kwargs.items(): if hasattr(_snake_case , _snake_case ): setattr(_snake_case , _snake_case , _snake_case ) # Sanity checks __a ={} __a =None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None __a =args.train_file __a =args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None __a =args.eval_file for key in data_files: __a =data_files[key].split('.' )[-1] assert extension in ["csv", "json"], F'`{key}_file` should be a csv or a json file.' if args.data_file_extension is None: __a =extension else: assert extension == args.data_file_extension, F'`{key}_file` should be a {args.data_file_extension} file`.' assert ( args.eval_metric in datasets.list_metrics() ), F'{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('Creating the initial data directory for self-training...' ) __a =F'{args.output_dir}/self-train_iter-{{}}'.format __a =data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=_snake_case ) os.makedirs(_snake_case , exist_ok=_snake_case ) accelerator.wait_for_everyone() __a =None __a =None __a =0 __a =False # Show the progress bar __a =tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): __a =data_dir_format(_snake_case ) assert os.path.exists(_snake_case ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 __a =os.path.join(_snake_case , 'stage-1' ) __a ={ 'accelerator': accelerator, 'model_name_or_path': args.model_name_or_path, 'cache_dir': args.cache_dir, 'do_train': True, 'train_file': data_files['train'] if iteration == 0 else data_files['train_pseudo'], 'do_eval': True if args.eval_file is not None else False, 'eval_file': data_files['eval'], 'do_predict': True, 'infer_file': data_files['infer'], 'task_name': args.task_name, 'label_list': args.label_list, 'output_dir': current_output_dir, 'eval_metric': args.eval_metric, 'evaluation_strategy': args.evaluation_strategy, 'early_stopping_patience': args.early_stopping_patience, 'early_stopping_threshold': args.early_stopping_threshold, 'seed': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(_snake_case , _snake_case ): arguments_dict.update({key: value} ) __a =os.path.join(_snake_case , 'best-checkpoint' , _snake_case ) if os.path.exists(_snake_case ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.' , _snake_case , _snake_case , ) else: logger.info('***** Running self-training: iteration: %d, stage: 1 *****' , _snake_case ) finetune(**_snake_case ) accelerator.wait_for_everyone() assert os.path.exists(_snake_case ) logger.info('Self-training job completed: iteration: %d, stage: 1.' , _snake_case ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data __a =os.path.join(_snake_case , 'best-checkpoint' ) __a =os.path.join(_snake_case , 'stage-2' ) # Update arguments_dict __a =model_path __a =data_files['train'] __a =current_output_dir __a =os.path.join(_snake_case , 'best-checkpoint' , _snake_case ) if os.path.exists(_snake_case ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.' , _snake_case , _snake_case , ) else: logger.info('***** Running self-training: iteration: %d, stage: 2 *****' , _snake_case ) finetune(**_snake_case ) accelerator.wait_for_everyone() assert os.path.exists(_snake_case ) logger.info('Self-training job completed: iteration: %d, stage: 2.' , _snake_case ) __a =iteration __a =data_dir_format(iteration + 1 ) __a =AutoConfig.from_pretrained(os.path.join(_snake_case , 'best-checkpoint' ) ) __a =config.idalabel __a =os.path.join(_snake_case , 'eval_results_best-checkpoint.json' ) __a =os.path.join(_snake_case , 'test_results_best-checkpoint.json' ) assert os.path.exists(_snake_case ) with open(_snake_case , 'r' ) as f: __a =float(json.load(_snake_case )[args.eval_metric] ) __a =os.path.join(_snake_case , 'infer_output_best-checkpoint.csv' ) assert os.path.exists(_snake_case ) # Loading the dataset from local csv or json files. __a =load_dataset(args.data_file_extension , data_files={'data': data_files['infer']} )['data'] __a =load_dataset('csv' , data_files={'data': infer_output_file} )['data'] if accelerator.is_main_process: os.makedirs(_snake_case , exist_ok=_snake_case ) shutil.copy(_snake_case , os.path.join(_snake_case , F'eval_results_iter-{iteration}.json' ) ) if os.path.exists(_snake_case ): shutil.copy(_snake_case , os.path.join(_snake_case , F'test_results_iter-{iteration}.json' ) ) create_pseudo_labeled_data(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) accelerator.wait_for_everyone() __a =os.path.join(_snake_case , F'train_pseudo.{args.data_file_extension}' ) if args.evaluation_strategy != IntervalStrategy.NO.value: __a =eval_result if best_iteration is None: __a =new_iteration __a =new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: __a =new_iteration __a =new_eval_result __a =0 else: if new_eval_result == best_eval_result: __a =new_iteration __a =new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: __a =True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('Best iteration: %d' , _snake_case ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , _snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_snake_case , F'eval_results_iter-{iteration}.json' ) , os.path.join(_snake_case , 'eval_results_best-iteration.json' ) , ) else: # Assume that the last iteration is the best logger.info('Best iteration: %d' , args.max_selftrain_iterations - 1 ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , _snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_snake_case , F'eval_results_iter-{args.max_selftrain_iterations - 1}.json' ) , os.path.join(_snake_case , 'eval_results_best-iteration.json' ) , )
308
1
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig _lowerCAmelCase : Dict = logging.get_logger(__name__) class __magic_name__ : def __init__( self , __snake_case , __snake_case ) -> List[Any]: '''simple docstring''' __a =question_encoder __a =generator __a =self.question_encoder def __magic_name__ ( self , __snake_case ) -> Union[str, Any]: '''simple docstring''' if os.path.isfile(__snake_case ): raise ValueError(f'Provided path ({save_directory}) should be a directory, not a file' ) os.makedirs(__snake_case , exist_ok=__snake_case ) __a =os.path.join(__snake_case , 'question_encoder_tokenizer' ) __a =os.path.join(__snake_case , 'generator_tokenizer' ) self.question_encoder.save_pretrained(__snake_case ) self.generator.save_pretrained(__snake_case ) @classmethod def __magic_name__ ( cls , __snake_case , **__snake_case ) -> Tuple: '''simple docstring''' # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer __a =kwargs.pop('config' , __snake_case ) if config is None: __a =RagConfig.from_pretrained(__snake_case ) __a =AutoTokenizer.from_pretrained( __snake_case , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) __a =AutoTokenizer.from_pretrained( __snake_case , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=__snake_case , generator=__snake_case ) def __call__( self , *__snake_case , **__snake_case ) -> Union[str, Any]: '''simple docstring''' return self.current_tokenizer(*__snake_case , **__snake_case ) def __magic_name__ ( self , *__snake_case , **__snake_case ) -> List[Any]: '''simple docstring''' return self.generator.batch_decode(*__snake_case , **__snake_case ) def __magic_name__ ( self , *__snake_case , **__snake_case ) -> str: '''simple docstring''' return self.generator.decode(*__snake_case , **__snake_case ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =self.question_encoder def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =self.generator def __magic_name__ ( self , __snake_case , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = "longest" , __snake_case = None , __snake_case = True , **__snake_case , ) -> BatchEncoding: '''simple docstring''' warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , __snake_case , ) if max_length is None: __a =self.current_tokenizer.model_max_length __a =self( __snake_case , add_special_tokens=__snake_case , return_tensors=__snake_case , max_length=__snake_case , padding=__snake_case , truncation=__snake_case , **__snake_case , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: __a =self.current_tokenizer.model_max_length __a =self( text_target=__snake_case , add_special_tokens=__snake_case , return_tensors=__snake_case , padding=__snake_case , max_length=__snake_case , truncation=__snake_case , **__snake_case , ) __a =labels['input_ids'] return model_inputs
308
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Any = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right _lowerCAmelCase : List[Any] = 256_047 _lowerCAmelCase : Dict = 256_145 @require_sentencepiece @require_tokenizers class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = NllbTokenizer SCREAMING_SNAKE_CASE = NllbTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = {} def __magic_name__ ( self ) -> int: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __a =NllbTokenizer(__snake_case , keep_accents=__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self ) -> int: '''simple docstring''' __a =NllbTokenizer(__snake_case , keep_accents=__snake_case ) __a =tokenizer.tokenize('This is a test' ) self.assertListEqual(__snake_case , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __a =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __a =tokenizer.convert_tokens_to_ids(__snake_case ) self.assertListEqual( __snake_case , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __a =tokenizer.convert_ids_to_tokens(__snake_case ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-nllb', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __a =self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __a =self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) __a =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=True __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=False __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) @require_torch def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' if not self.test_seqaseq: return __a =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Longer text that will definitely require truncation. __a =[ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for' ' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons' ' will only worsen the violence and misery for millions of people.', ] __a =[ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al' ' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi' ' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] try: __a =tokenizer.prepare_seqaseq_batch( src_texts=__snake_case , tgt_texts=__snake_case , max_length=3 , max_target_length=10 , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='ron_Latn' , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified __a =tokenizer.prepare_seqaseq_batch( __snake_case , tgt_texts=__snake_case , max_length=3 , return_tensors='pt' ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) __a =tokenizer.prepare_seqaseq_batch( src_texts=__snake_case , max_length=3 , max_target_length=10 , return_tensors='pt' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn('decoder_input_ids' , __snake_case ) @unittest.skip('Unfortunately way too slow to build a BPE with SentencePiece.' ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' pass def __magic_name__ ( self ) -> Tuple: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __a =[AddedToken('<special>' , lstrip=__snake_case )] __a =self.rust_tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case ) __a =tokenizer_r.encode('Hey this is a <special> token' ) __a =tokenizer_r.encode('<special>' , add_special_tokens=__snake_case )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: __a =self.rust_tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case , ) __a =self.tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case ) __a =tokenizer_p.encode('Hey this is a <special> token' ) __a =tokenizer_cr.encode('Hey this is a <special> token' ) self.assertEqual(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class __magic_name__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = 'facebook/nllb-200-distilled-600M' SCREAMING_SNAKE_CASE = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] SCREAMING_SNAKE_CASE = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] SCREAMING_SNAKE_CASE = [ 2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 8_1_6_5, 2_4_8_0_6_6, 1_4_7_3_4, 9_5_0, 1_1_3_5, 1_0_5_7_2_1, 3_5_7_3, 8_3, 2_7_3_5_2, 1_0_8, 4_9_4_8_6, 2, ] @classmethod def __magic_name__ ( cls ) -> Tuple: '''simple docstring''' __a =NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang='eng_Latn' , tgt_lang='ron_Latn' ) __a =1 return cls def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Arab'] , 25_6001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Latn'] , 25_6002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['fra_Latn'] , 25_6057 ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' self.assertIn(__snake_case , self.tokenizer.all_special_ids ) # fmt: off __a =[RO_CODE, 4254, 9_8068, 11_2923, 3_9072, 3909, 713, 10_2767, 26, 1_7314, 3_5642, 1_4683, 3_3118, 2022, 6_6987, 2, 25_6047] # fmt: on __a =self.tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) __a =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertNotIn(self.tokenizer.eos_token , __snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , __snake_case ) __a =10 __a =self.tokenizer(__snake_case , max_length=__snake_case , truncation=__snake_case ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , __snake_case ) self.assertEqual(len(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_6203, 3] ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =tempfile.mkdtemp() __a =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__snake_case ) __a =NllbTokenizer.from_pretrained(__snake_case ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __snake_case ) @require_torch def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) __a =shift_tokens_right( batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['ron_Latn'] ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) __a =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) self.assertEqual(__snake_case , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =self.tokenizer(self.src_text , padding=__snake_case , truncation=__snake_case , max_length=3 , return_tensors='pt' ) __a =self.tokenizer( text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=10 , return_tensors='pt' ) __a =targets['input_ids'] __a =shift_tokens_right( __snake_case , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( nested_simplify(__snake_case ) , { # A, test, EOS, en_XX 'input_ids': [[25_6047, 70, 7356, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_6057, } , ) @require_torch def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =True __a =self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2, 25_6047] ) __a =False __a =self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [25_6047, 1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2] )
308
1
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = ['image_processor', 'tokenizer'] SCREAMING_SNAKE_CASE = 'AutoImageProcessor' SCREAMING_SNAKE_CASE = 'AutoTokenizer' def __init__( self , __snake_case , __snake_case ) -> Union[str, Any]: '''simple docstring''' super().__init__(__snake_case , __snake_case ) __a =self.image_processor def __call__( self , __snake_case=None , __snake_case=None , __snake_case=None , **__snake_case ) -> int: '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: __a =self.tokenizer(__snake_case , return_tensors=__snake_case , **__snake_case ) if images is not None: __a =self.image_processor(__snake_case , return_tensors=__snake_case , **__snake_case ) if text is not None and images is not None: __a =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__snake_case ) , tensor_type=__snake_case ) def __magic_name__ ( self , *__snake_case , **__snake_case ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def __magic_name__ ( self , *__snake_case , **__snake_case ) -> List[Any]: '''simple docstring''' return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
308
def UpperCamelCase_( _snake_case : str , _snake_case : int ): """simple docstring""" return [sentence[i : i + ngram_size] for i in range(len(_snake_case ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
308
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : int = logging.get_logger(__name__) _lowerCAmelCase : str = {"vocab_file": "sentencepiece.bpe.model"} _lowerCAmelCase : Any = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, } _lowerCAmelCase : str = { "moussaKam/mbarthez": 1_024, "moussaKam/barthez": 1_024, "moussaKam/barthez-orangesum-title": 1_024, } _lowerCAmelCase : Optional[Any] = "▁" class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] def __init__( self , __snake_case , __snake_case="<s>" , __snake_case="</s>" , __snake_case="</s>" , __snake_case="<s>" , __snake_case="<unk>" , __snake_case="<pad>" , __snake_case="<mask>" , __snake_case = None , **__snake_case , ) -> None: '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it __a =AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token __a ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) __a =vocab_file __a =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__snake_case ) ) __a ={'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} __a =len(self.sp_model ) - 1 __a ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def __magic_name__ ( self , __snake_case , __snake_case = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __a =[self.cls_token_id] __a =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __magic_name__ ( self , __snake_case , __snake_case = None , __snake_case = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is None: return [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1, 1] + ([0] * len(__snake_case )) + [1] def __magic_name__ ( self , __snake_case , __snake_case = None ) -> List[int]: '''simple docstring''' __a =[self.sep_token_id] __a =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __magic_name__ ( self ) -> str: '''simple docstring''' return len(self.sp_model ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a ={self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __magic_name__ ( self , __snake_case ) -> List[str]: '''simple docstring''' return self.sp_model.encode(__snake_case , out_type=__snake_case ) def __magic_name__ ( self , __snake_case ) -> Any: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __a =self.sp_model.PieceToId(__snake_case ) return spm_id if spm_id else self.unk_token_id def __magic_name__ ( self , __snake_case ) -> List[Any]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__snake_case ) def __magic_name__ ( self , __snake_case ) -> Dict: '''simple docstring''' __a =[] __a ='' __a =False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__snake_case ) + token __a =True __a =[] else: current_sub_tokens.append(__snake_case ) __a =False out_string += self.sp_model.decode(__snake_case ) return out_string.strip() def __getstate__( self ) -> Union[str, Any]: '''simple docstring''' __a =self.__dict__.copy() __a =None return state def __setstate__( self , __snake_case ) -> str: '''simple docstring''' __a =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __a ={} __a =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __magic_name__ ( self , __snake_case , __snake_case = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(__snake_case ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __a =os.path.join( __snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __snake_case ) elif not os.path.isfile(self.vocab_file ): with open(__snake_case , 'wb' ) as fi: __a =self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (out_vocab_file,)
308
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class __magic_name__ ( pl.LightningModule ): def __init__( self , __snake_case ) -> List[Any]: '''simple docstring''' super().__init__() __a =model __a =2 __a =nn.Linear(self.model.config.hidden_size , self.num_labels ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' pass def UpperCamelCase_( _snake_case : str , _snake_case : str , _snake_case : str ): """simple docstring""" __a =LongformerModel.from_pretrained(_snake_case ) __a =LightningModel(_snake_case ) __a =torch.load(_snake_case , map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model __a =LongformerForQuestionAnswering.from_pretrained(_snake_case ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(_snake_case ) print(F'Conversion successful. Model saved under {pytorch_dump_folder_path}' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowerCAmelCase : Optional[int] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
308
1
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("ignore", category=UserWarning, module="torch.optim.lr_scheduler") class __magic_name__ : def __init__( self , __snake_case , __snake_case , __snake_case = True , __snake_case = False ) -> Optional[int]: '''simple docstring''' __a =scheduler __a =optimizers if isinstance(__snake_case , (list, tuple) ) else [optimizers] __a =split_batches __a =step_with_optimizer __a =GradientState() def __magic_name__ ( self , *__snake_case , **__snake_case ) -> Tuple: '''simple docstring''' if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*__snake_case , **__snake_case ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*__snake_case , **__snake_case ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step __a =AcceleratorState().num_processes for _ in range(__snake_case ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , 'total_steps' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*__snake_case , **__snake_case ) else: self.scheduler.step(*__snake_case , **__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' return self.scheduler.get_last_lr() def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' return self.scheduler.state_dict() def __magic_name__ ( self , __snake_case ) -> List[Any]: '''simple docstring''' self.scheduler.load_state_dict(__snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' return self.scheduler.get_lr() def __magic_name__ ( self , *__snake_case , **__snake_case ) -> Optional[Any]: '''simple docstring''' return self.scheduler.print_lr(*__snake_case , **__snake_case )
308
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") _lowerCAmelCase : Optional[Any] = logging.getLogger(__name__) @dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) SCREAMING_SNAKE_CASE = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) SCREAMING_SNAKE_CASE = field( default=1_0_2_4 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the training data.'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the validation data.'} ) SCREAMING_SNAKE_CASE = field(default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the test data.'} ) def __magic_name__ ( self ) -> str: '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: __a =self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __a =self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) SCREAMING_SNAKE_CASE = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def UpperCamelCase_( ): """simple docstring""" __a =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __a , __a , __a =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __a , __a , __a =parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) __a =training_args.get_process_log_level() logger.setLevel(_snake_case ) datasets.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __a =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __a =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __a =load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __a ={'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __a =data_args.train_file.split('.' )[-1] __a =data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __a =data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(F'load a local file for {key}: {data_files[key]}' ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files __a =load_dataset('csv' , data_files=_snake_case , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __a =load_dataset('json' , data_files=_snake_case , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __a =raw_datasets['train'].features['label'].names __a =len(_snake_case ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __a =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __a =TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=_snake_case , ) __a =BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __a ='max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __a =False # Some models have set the order of the labels to use, so let's make sure we do use it. __a ={'Refused': 0, 'Entailed': 1} __a ={0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __a =min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(_snake_case : Tuple ): # Tokenize the texts def _convert_table_text_to_pandas(_snake_case : Optional[Any] ): __a =[_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] __a =pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __a =examples['statement'] __a =list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) __a =tokenizer(_snake_case , _snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case ) __a =examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): __a =raw_datasets.map( _snake_case , batched=_snake_case , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) __a =raw_datasets['train'] if data_args.max_train_samples is not None: __a =train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) __a =raw_datasets['validation'] if data_args.max_eval_samples is not None: __a =eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) __a =raw_datasets['test'] if data_args.max_predict_samples is not None: __a =predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(_snake_case ) ) , 3 ): logger.info(F'Sample {index} of the training set: {train_dataset[index]}.' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_snake_case : EvalPrediction ): __a =p.predictions[0] if isinstance(p.predictions , _snake_case ) else p.predictions __a =np.argmax(_snake_case , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __a =default_data_collator elif training_args.fpaa: __a =DataCollatorWithPadding(_snake_case , pad_to_multiple_of=8 ) else: __a =None # Initialize our Trainer __a =Trainer( model=_snake_case , args=_snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_snake_case , tokenizer=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: __a =None if training_args.resume_from_checkpoint is not None: __a =training_args.resume_from_checkpoint elif last_checkpoint is not None: __a =last_checkpoint __a =trainer.train(resume_from_checkpoint=_snake_case ) __a =train_result.metrics __a =( data_args.max_train_samples if data_args.max_train_samples is not None else len(_snake_case ) ) __a =min(_snake_case , len(_snake_case ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , _snake_case ) trainer.save_metrics('train' , _snake_case ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __a =trainer.evaluate(eval_dataset=_snake_case ) __a =data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_snake_case ) __a =min(_snake_case , len(_snake_case ) ) trainer.log_metrics('eval' , _snake_case ) trainer.save_metrics('eval' , _snake_case ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __a =predict_dataset.remove_columns('label' ) __a =trainer.predict(_snake_case , metric_key_prefix='predict' ).predictions __a =np.argmax(_snake_case , axis=1 ) __a =os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(_snake_case , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(_snake_case ): __a =label_list[item] writer.write(F'{index}\t{item}\n' ) __a ={'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**_snake_case ) else: trainer.create_model_card(**_snake_case ) def UpperCamelCase_( _snake_case : Union[str, Any] ): """simple docstring""" main() if __name__ == "__main__": main()
308
1
def UpperCamelCase_( _snake_case : str = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" __a =set() # Replace all the whitespace in our sentence __a =input_str.replace(' ' , '' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(_snake_case ) == 26 def UpperCamelCase_( _snake_case : str = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" __a =[False] * 26 for char in input_str: if char.islower(): __a =True elif char.isupper(): __a =True return all(_snake_case ) def UpperCamelCase_( _snake_case : str = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def UpperCamelCase_( ): """simple docstring""" from timeit import timeit __a ='from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest' print(timeit('is_pangram()' , setup=_snake_case ) ) print(timeit('is_pangram_faster()' , setup=_snake_case ) ) print(timeit('is_pangram_fastest()' , setup=_snake_case ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
308
from __future__ import annotations import time import numpy as np _lowerCAmelCase : List[str] = [8, 5, 9, 7] _lowerCAmelCase : List[str] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] _lowerCAmelCase : List[Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class __magic_name__ : def __init__( self , __snake_case , __snake_case , __snake_case , ) -> None: '''simple docstring''' __a =claim_vector __a =allocated_resources_table __a =maximum_claim_table def __magic_name__ ( self ) -> list[int]: '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def __magic_name__ ( self ) -> list[int]: '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def __magic_name__ ( self ) -> list[list[int]]: '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__snake_case ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def __magic_name__ ( self ) -> dict[int, list[int]]: '''simple docstring''' return {self.__need().index(__snake_case ): i for i in self.__need()} def __magic_name__ ( self , **__snake_case ) -> None: '''simple docstring''' __a =self.__need() __a =self.__allocated_resources_table __a =self.__available_resources() __a =self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: __a =False for each_need in need_list: __a =True for index, need in enumerate(__snake_case ): if need > available_resources[index]: __a =False break if execution: __a =True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __a =original_need_index print(f'Process {process_number + 1} is executing.' ) # remove the process run from stack need_list.remove(__snake_case ) # update available/freed resources stack __a =np.array(__snake_case ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(__snake_case ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( f'P{self.__allocated_resources_table.index(__snake_case ) + 1}' + ' '.join(f'{it:>8}' for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( f'P{self.__maximum_claim_table.index(__snake_case ) + 1}' + ' '.join(f'{it:>8}' for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(__snake_case ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(__snake_case ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
308
1
def UpperCamelCase_( _snake_case : str , _snake_case : int ): """simple docstring""" __a =word.split() def justify(_snake_case : list , _snake_case : int , _snake_case : int ) -> str: __a =max_width - width __a =len(_snake_case ) if len(_snake_case ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: __a =words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] __a =spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] __a =( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(_snake_case ): num_spaces_between_words_list[i] += 1 __a =[] for i in range(_snake_case ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ' ' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(_snake_case ) __a =[] __a =[] __a =0 for word in words: if width + len(_snake_case ) + len(_snake_case ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(_snake_case ) width += len(_snake_case ) else: # justify the line and add it to result answer.append(justify(_snake_case , _snake_case , _snake_case ) ) # reset new line and new width __a , __a =[word], len(_snake_case ) __a =max_width - width - len(_snake_case ) answer.append(' '.join(_snake_case ) + (remaining_spaces + 1) * ' ' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
308
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency _lowerCAmelCase : Tuple = { "E": 12.70, "T": 9.06, "A": 8.17, "O": 7.51, "I": 6.97, "N": 6.75, "S": 6.33, "H": 6.09, "R": 5.99, "D": 4.25, "L": 4.03, "C": 2.78, "U": 2.76, "M": 2.41, "W": 2.36, "F": 2.23, "G": 2.02, "Y": 1.97, "P": 1.93, "B": 1.29, "V": 0.98, "K": 0.77, "J": 0.15, "X": 0.15, "Q": 0.10, "Z": 0.07, } _lowerCAmelCase : Optional[int] = "ETAOINSHRDLCUMWFGYPBVKJXQZ" _lowerCAmelCase : Any = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a ={letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def UpperCamelCase_( _snake_case : tuple ): """simple docstring""" return x[0] def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =get_letter_count(_snake_case ) __a ={ freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(_snake_case ) __a ={} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=_snake_case ) __a =''.join(freq_to_letter[freq] ) __a =list(freq_to_letter_str.items() ) freq_pairs.sort(key=_snake_case , reverse=_snake_case ) __a =[freq_pair[1] for freq_pair in freq_pairs] return "".join(_snake_case ) def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =get_frequency_order(_snake_case ) __a =0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
308
1
from math import ceil def UpperCamelCase_( _snake_case : int , _snake_case : Any ): """simple docstring""" __a =list(range(0 , _snake_case ) ) __a =[item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check __a =[] for i in device_map_blocks: if device_map_blocks.count(_snake_case ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(_snake_case ) # Missing blocks __a =[i for i in blocks if i not in device_map_blocks] __a =[i for i in device_map_blocks if i not in blocks] if len(_snake_case ) != 0: raise ValueError( 'Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.' ' These attention blocks were specified more than once: ' + str(_snake_case ) ) if len(_snake_case ) != 0: raise ValueError( 'There are attention blocks for this model that are not specified in the device_map. Add these attention ' 'blocks to a device on the device_map: ' + str(_snake_case ) ) if len(_snake_case ) != 0: raise ValueError( 'The device_map contains more attention blocks than this model has. Remove these from the device_map:' + str(_snake_case ) ) def UpperCamelCase_( _snake_case : Optional[int] , _snake_case : Optional[int] ): """simple docstring""" __a =list(range(_snake_case ) ) __a =int(ceil(n_layers / len(_snake_case ) ) ) __a =[layers[i : i + n_blocks] for i in range(0 , _snake_case , _snake_case )] return dict(zip(_snake_case , _snake_case ) )
308
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : int = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'swin2sr' SCREAMING_SNAKE_CASE = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , __snake_case=64 , __snake_case=1 , __snake_case=3 , __snake_case=180 , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=8 , __snake_case=2.0 , __snake_case=True , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.1 , __snake_case="gelu" , __snake_case=False , __snake_case=0.02 , __snake_case=1e-5 , __snake_case=2 , __snake_case=1.0 , __snake_case="1conv" , __snake_case="pixelshuffle" , **__snake_case , ) -> Dict: '''simple docstring''' super().__init__(**__snake_case ) __a =image_size __a =patch_size __a =num_channels __a =embed_dim __a =depths __a =len(__snake_case ) __a =num_heads __a =window_size __a =mlp_ratio __a =qkv_bias __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =drop_path_rate __a =hidden_act __a =use_absolute_embeddings __a =layer_norm_eps __a =initializer_range __a =upscale __a =img_range __a =resi_connection __a =upsampler
308
1
import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) def UpperCamelCase_( _snake_case : Optional[int] , _snake_case : Optional[Any] , _snake_case : str , _snake_case : Any=False ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( 'Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise if not is_sharded: __a =os.path.abspath(_snake_case ) logger.info(F'Loading PyTorch weights from {pt_path}' ) __a =torch.load(_snake_case , map_location='cpu' ) logger.info(F'PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.' ) __a =convert_pytorch_state_dict_to_flax(_snake_case , _snake_case ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files __a =convert_pytorch_sharded_state_dict_to_flax(_snake_case , _snake_case ) return flax_state_dict def UpperCamelCase_( _snake_case : Tuple[str] , _snake_case : np.ndarray , _snake_case : Dict[str, jnp.ndarray] , _snake_case : str , ): """simple docstring""" def is_key_or_prefix_key_in_dict(_snake_case : Tuple[str] ) -> bool: return len(set(_snake_case ) & {key, (model_prefix,) + key} ) > 0 # layer norm __a =pt_tuple_key[:-1] + ('scale',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(_snake_case ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean __a =pt_tuple_key[:-1] + ('mean',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(_snake_case ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var __a =pt_tuple_key[:-1] + ('var',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(_snake_case ): return renamed_pt_tuple_key, pt_tensor # embedding __a =pt_tuple_key[:-1] + ('embedding',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(_snake_case ): return renamed_pt_tuple_key, pt_tensor # conv layer __a =pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(_snake_case ): __a =pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer __a =pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(_snake_case ): __a =pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight __a =pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias __a =pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 __a =None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): __a =pt_tuple_key[-2] + '_g' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): __a =pt_tuple_key[-2] + '_v' if name is not None: __a =pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCamelCase_( _snake_case : Dict , _snake_case : List[Any] ): """simple docstring""" __a ={k: v.numpy() for k, v in pt_state_dict.items()} __a =flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: __a =flax_model.params['params'] else: __a =flax_model.params __a =flatten_dict(_snake_case ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: __a =flatten_dict(flax_model.params['batch_stats'] ) random_flax_state_dict.update(_snake_case ) __a ={} __a =(model_prefix not in flax_model_params) and ( model_prefix in {k.split('.' )[0] for k in pt_state_dict.keys()} ) __a =(model_prefix in flax_model_params) and ( model_prefix not in {k.split('.' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __a =tuple(pt_key.split('.' ) ) # remove base model prefix if necessary __a =pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: __a =pt_tuple_key[1:] # Correctly rename weight parameters __a , __a =rename_key_and_reshape_tensor( _snake_case , _snake_case , _snake_case , _snake_case ) # add model prefix if necessary __a =(model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: __a =(model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: __a =jnp.asarray(_snake_case ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_snake_case , _snake_case ) continue # also add unexpected weight so that warning is thrown __a =jnp.asarray(_snake_case ) else: # also add unexpected weight so that warning is thrown __a =jnp.asarray(_snake_case ) return unflatten_dict(_snake_case ) def UpperCamelCase_( _snake_case : int , _snake_case : str ): """simple docstring""" import torch # Load the index __a ={} for shard_file in shard_filenames: # load using msgpack utils __a =torch.load(_snake_case ) __a ={k: v.numpy() for k, v in pt_state_dict.items()} __a =flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: __a =flax_model.params['params'] __a =flatten_dict(_snake_case ) random_flax_state_dict.update(flatten_dict(flax_model.params['batch_stats'] ) ) else: __a =flax_model.params __a =flatten_dict(_snake_case ) __a =(model_prefix not in flax_model_params) and ( model_prefix in {k.split('.' )[0] for k in pt_state_dict.keys()} ) __a =(model_prefix in flax_model_params) and ( model_prefix not in {k.split('.' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __a =tuple(pt_key.split('.' ) ) # remove base model prefix if necessary __a =pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: __a =pt_tuple_key[1:] # Correctly rename weight parameters __a , __a =rename_key_and_reshape_tensor( _snake_case , _snake_case , _snake_case , _snake_case ) # add model prefix if necessary __a =(model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: __a =(model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: __a =jnp.asarray(_snake_case ) continue if "var" in flax_key[-1]: __a =jnp.asarray(_snake_case ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_snake_case , _snake_case ) continue # also add unexpected weight so that warning is thrown __a =jnp.asarray(_snake_case ) else: # also add unexpected weight so that warning is thrown __a =jnp.asarray(_snake_case ) return unflatten_dict(_snake_case ) def UpperCamelCase_( _snake_case : Union[str, Any] , _snake_case : Optional[Any] ): """simple docstring""" __a =os.path.abspath(_snake_case ) logger.info(F'Loading Flax weights from {flax_checkpoint_path}' ) # import correct flax class __a =getattr(_snake_case , 'Flax' + model.__class__.__name__ ) # load flax weight dict with open(_snake_case , 'rb' ) as state_f: try: __a =from_bytes(_snake_case , state_f.read() ) except UnpicklingError: raise EnvironmentError(F'Unable to convert {flax_checkpoint_path} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(_snake_case , _snake_case ) def UpperCamelCase_( _snake_case : Tuple , _snake_case : Dict ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( 'Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise # check if we have bf16 weights __a =flatten_dict(jax.tree_util.tree_map(lambda _snake_case : x.dtype == jnp.bfloataa , _snake_case ) ).values() if any(_snake_case ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( 'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ' 'before loading those in PyTorch model.' ) __a =jax.tree_util.tree_map( lambda _snake_case : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _snake_case ) __a =flatten_dict(_snake_case ) __a =pt_model.state_dict() __a =(pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('.' )[0] for k in pt_model_dict.keys()} ) __a =(pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('.' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys __a =[] __a =set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): __a =flax_key_tuple[0] == pt_model.base_model_prefix __a ='.'.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: __a =flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: __a =(pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(_snake_case ) not in pt_model_dict: # conv layer __a =flax_key_tuple[:-1] + ('weight',) __a =jnp.transpose(_snake_case , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_snake_case ) not in pt_model_dict: # linear layer __a =flax_key_tuple[:-1] + ('weight',) __a =flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: __a =flax_key_tuple[:-1] + ('weight',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: __a =flax_key_tuple[:-1] + ('running_mean',) elif "var" in flax_key_tuple[-1]: __a =flax_key_tuple[:-1] + ('running_var',) if "batch_stats" in flax_state: __a ='.'.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: __a ='.'.join(_snake_case ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. __a ={} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: __a =key.split('.' ) __a =None if key_components[-3::2] == ["parametrizations", "original0"]: __a =key_components[-2] + '_g' elif key_components[-3::2] == ["parametrizations", "original1"]: __a =key_components[-2] + '_v' if name is not None: __a =key_components[:-3] + [name] __a ='.'.join(_snake_case ) __a =key if flax_key in special_pt_names: __a =special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict __a =np.asarray(_snake_case ) if not isinstance(_snake_case , np.ndarray ) else flax_tensor __a =torch.from_numpy(_snake_case ) # remove from missing keys missing_keys.remove(_snake_case ) else: # weight is not expected by PyTorch model unexpected_keys.append(_snake_case ) pt_model.load_state_dict(_snake_case ) # re-transform missing_keys to list __a =list(_snake_case ) if len(_snake_case ) > 0: logger.warning( 'Some weights of the Flax model were not used when initializing the PyTorch model' F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' ' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This' F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' ' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a' ' FlaxBertForSequenceClassification model).' ) else: logger.warning(F'All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n' ) if len(_snake_case ) > 0: logger.warning( F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' ' use it for predictions and inference.' ) else: logger.warning( F'All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n' 'If your task is similar to the task the model of the checkpoint was trained on, ' F'you can already use {pt_model.__class__.__name__} for predictions without further training.' ) return pt_model
308
import os def UpperCamelCase_( _snake_case : str = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(_snake_case ) , _snake_case ) ) as input_file: __a =[ [int(_snake_case ) for element in line.split(',' )] for line in input_file.readlines() ] __a =len(_snake_case ) __a =len(matrix[0] ) __a =[[-1 for _ in range(_snake_case )] for _ in range(_snake_case )] for i in range(_snake_case ): __a =matrix[i][0] for j in range(1 , _snake_case ): for i in range(_snake_case ): __a =minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _snake_case ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
308
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class __magic_name__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = StableDiffusionLDMaDPipeline SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_IMAGE_PARAMS def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) __a =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) __a =DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) torch.manual_seed(0 ) __a =AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) __a =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __a =CLIPTextModel(__snake_case ) __a =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __a ={ 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __magic_name__ ( self , __snake_case , __snake_case=0 ) -> Union[str, Any]: '''simple docstring''' if str(__snake_case ).startswith('mps' ): __a =torch.manual_seed(__snake_case ) else: __a =torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __a ={ 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a ='cpu' # ensure determinism for the device-dependent torch.Generator __a =self.get_dummy_components() __a =StableDiffusionLDMaDPipeline(**__snake_case ) __a =ldmad_pipe.to(__snake_case ) ldmad_pipe.set_progress_bar_config(disable=__snake_case ) __a =self.get_dummy_inputs(__snake_case ) __a =ldmad_pipe(**__snake_case ) __a , __a =output.rgb, output.depth __a =rgb[0, -3:, -3:, -1] __a =depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) __a =np.array( [0.3733_8176, 0.7_0247, 0.7420_3193, 0.5164_3604, 0.5825_6793, 0.6093_2136, 0.418_1095, 0.4835_5877, 0.4653_5262] ) __a =np.array([103.4_6727, 85.81_2004, 87.84_9236] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1e-2 def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.get_dummy_components() __a =StableDiffusionLDMaDPipeline(**__snake_case ) __a =ldmad_pipe.to(__snake_case ) ldmad_pipe.set_progress_bar_config(disable=__snake_case ) __a =self.get_dummy_inputs(__snake_case ) __a =3 * [inputs['prompt']] # forward __a =ldmad_pipe(**__snake_case ) __a , __a =output.rgb, output.depth __a =rgb_slice_a[0, -3:, -3:, -1] __a =depth_slice_a[0, -3:, -1] __a =self.get_dummy_inputs(__snake_case ) __a =3 * [inputs.pop('prompt' )] __a =ldmad_pipe.tokenizer( __snake_case , padding='max_length' , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=__snake_case , return_tensors='pt' , ) __a =text_inputs['input_ids'].to(__snake_case ) __a =ldmad_pipe.text_encoder(__snake_case )[0] __a =prompt_embeds # forward __a =ldmad_pipe(**__snake_case ) __a , __a =output.rgb, output.depth __a =rgb_slice_a[0, -3:, -3:, -1] __a =depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1e-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1e-4 def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a ='cpu' # ensure determinism for the device-dependent torch.Generator __a =self.get_dummy_components() __a =PNDMScheduler(skip_prk_steps=__snake_case ) __a =StableDiffusionLDMaDPipeline(**__snake_case ) __a =ldmad_pipe.to(__snake_case ) ldmad_pipe.set_progress_bar_config(disable=__snake_case ) __a =self.get_dummy_inputs(__snake_case ) __a ='french fries' __a =ldmad_pipe(**__snake_case , negative_prompt=__snake_case ) __a , __a =output.rgb, output.depth __a =rgb[0, -3:, -3:, -1] __a =depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) __a =np.array( [0.3_7044, 0.7181_1503, 0.722_3251, 0.4860_3675, 0.563_8391, 0.636_4948, 0.4283_3704, 0.490_1315, 0.4792_6217] ) __a =np.array([107.8_4738, 84.6_2802, 89.96_2135] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1e-2 @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self , __snake_case , __snake_case="cpu" , __snake_case=torch.floataa , __snake_case=0 ) -> Optional[int]: '''simple docstring''' __a =torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __a =np.random.RandomState(__snake_case ).standard_normal((1, 4, 64, 64) ) __a =torch.from_numpy(__snake_case ).to(device=__snake_case , dtype=__snake_case ) __a ={ 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d' ) __a =ldmad_pipe.to(__snake_case ) ldmad_pipe.set_progress_bar_config(disable=__snake_case ) __a =self.get_inputs(__snake_case ) __a =ldmad_pipe(**__snake_case ) __a , __a =output.rgb, output.depth __a =rgb[0, -3:, -3:, -1].flatten() __a =rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) __a =np.array( [0.5380_5465, 0.5670_7305, 0.548_6515, 0.5701_2236, 0.581_4511, 0.5625_3487, 0.5484_3014, 0.5509_2263, 0.645_9706] ) __a =np.array( [0.926_3781, 0.667_8672, 0.548_6515, 0.9220_2145, 0.6783_1135, 0.5625_3487, 0.924_1694, 0.755_1478, 0.645_9706] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3e-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3e-3 @nightly @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self , __snake_case , __snake_case="cpu" , __snake_case=torch.floataa , __snake_case=0 ) -> Optional[int]: '''simple docstring''' __a =torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __a =np.random.RandomState(__snake_case ).standard_normal((1, 4, 64, 64) ) __a =torch.from_numpy(__snake_case ).to(device=__snake_case , dtype=__snake_case ) __a ={ 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d' ).to(__snake_case ) ldmad_pipe.set_progress_bar_config(disable=__snake_case ) __a =self.get_inputs(__snake_case ) __a =ldmad_pipe(**__snake_case ) __a , __a =output.rgb, output.depth __a =0.49_5586 __a =0.3379_5515 __a =112.4_8518 __a =98.48_9746 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3 def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d-4c' ).to(__snake_case ) ldmad_pipe.set_progress_bar_config(disable=__snake_case ) __a =self.get_inputs(__snake_case ) __a =ldmad_pipe(**__snake_case ) __a , __a =output.rgb, output.depth __a =0.419_4127 __a =0.3537_5586 __a =0.563_8502 __a =0.3468_6103 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3
308
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _lowerCAmelCase : Any = logging.get_logger(__name__) class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , *__snake_case , **__snake_case ) -> None: '''simple docstring''' warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
308
1
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def UpperCamelCase_( _snake_case : Optional[int] ): """simple docstring""" def wrapper(*_snake_case : Union[str, Any] , **_snake_case : List[str] ): __a =timeit.default_timer() __a =func(*_snake_case , **_snake_case ) __a =timeit.default_timer() - starttime return delta __a =func.__name__ return wrapper def UpperCamelCase_( _snake_case : dict , _snake_case : List[Any]=100 , _snake_case : Tuple=None ): """simple docstring""" __a =[] __a =seq_shapes or {} for i in range(_snake_case ): __a ={} for col_id, (k, v) in enumerate(features.items() ): if isinstance(_snake_case , _ArrayXD ): __a =np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(_snake_case , datasets.Value ): if v.dtype == "string": __a ='The small grey turtle was surprisingly fast when challenged.' else: __a =np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(_snake_case , datasets.Sequence ): while isinstance(_snake_case , datasets.Sequence ): __a =v.feature __a =seq_shapes[k] __a =np.random.rand(*_snake_case ).astype(v.dtype ) __a =data dummy_data.append((i, example) ) return dummy_data def UpperCamelCase_( _snake_case : str , _snake_case : Any , _snake_case : List[str]=100 , _snake_case : Union[str, Any]=None ): """simple docstring""" __a =generate_examples(_snake_case , num_examples=_snake_case , seq_shapes=_snake_case ) with ArrowWriter(features=_snake_case , path=_snake_case ) as writer: for key, record in dummy_data: __a =features.encode_example(_snake_case ) writer.write(_snake_case ) __a , __a =writer.finalize() if not num_final_examples == num_examples: raise ValueError( F'Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.' ) __a =datasets.Dataset.from_file(filename=_snake_case , info=datasets.DatasetInfo(features=_snake_case ) ) return dataset
308
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : int = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
1
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _lowerCAmelCase : Any = abspath(join(dirname(dirname(dirname(__file__))), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def UpperCamelCase_( _snake_case : str ): """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(_snake_case ) def UpperCamelCase_( _snake_case : Optional[Any] ): """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main __a =terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(_snake_case , id=_snake_case )
308
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'yolos' def __init__( self , __snake_case=768 , __snake_case=12 , __snake_case=12 , __snake_case=3072 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.02 , __snake_case=1e-12 , __snake_case=[512, 864] , __snake_case=16 , __snake_case=3 , __snake_case=True , __snake_case=100 , __snake_case=True , __snake_case=False , __snake_case=1 , __snake_case=5 , __snake_case=2 , __snake_case=5 , __snake_case=2 , __snake_case=0.1 , **__snake_case , ) -> str: '''simple docstring''' super().__init__(**__snake_case ) __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =intermediate_size __a =hidden_act __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =initializer_range __a =layer_norm_eps __a =image_size __a =patch_size __a =num_channels __a =qkv_bias __a =num_detection_tokens __a =use_mid_position_embeddings __a =auxiliary_loss # Hungarian matcher __a =class_cost __a =bbox_cost __a =giou_cost # Loss coefficients __a =bbox_loss_coefficient __a =giou_loss_coefficient __a =eos_coefficient class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = version.parse('1.11' ) @property def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __magic_name__ ( self ) -> float: '''simple docstring''' return 1e-4 @property def __magic_name__ ( self ) -> int: '''simple docstring''' return 12
308
1
import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _lowerCAmelCase : str = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.encoder.norm.weight", "encoder.layernorm.weight"), ("transformer.encoder.norm.bias", "encoder.layernorm.bias"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) def UpperCamelCase_( _snake_case : Any , _snake_case : int , _snake_case : str ): """simple docstring""" __a =state_dict.pop(_snake_case ) __a =val def UpperCamelCase_( _snake_case : Dict ): """simple docstring""" __a =OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __a =key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) __a =value else: __a =value return new_state_dict def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a ='' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __a =state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) __a =state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __a =in_proj_weight[:256, :] __a =in_proj_bias[:256] __a =in_proj_weight[256:512, :] __a =in_proj_bias[256:512] __a =in_proj_weight[-256:, :] __a =in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention __a =state_dict.pop(F'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) __a =state_dict.pop(F'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __a =in_proj_weight[:256, :] __a =in_proj_bias[:256] __a =in_proj_weight[256:512, :] __a =in_proj_bias[256:512] __a =in_proj_weight[-256:, :] __a =in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention __a =state_dict.pop( F'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) __a =state_dict.pop(F'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict __a =in_proj_weight_cross_attn[:256, :] __a =in_proj_bias_cross_attn[:256] __a =in_proj_weight_cross_attn[256:512, :] __a =in_proj_bias_cross_attn[256:512] __a =in_proj_weight_cross_attn[-256:, :] __a =in_proj_bias_cross_attn[-256:] def UpperCamelCase_( _snake_case : Any , _snake_case : List[Any] ): """simple docstring""" __a , __a =image.size __a =max(_snake_case , _snake_case ) __a =800 if 'detection' in checkpoint_url else 1000 __a =target_max_size / current_max_size __a =image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def UpperCamelCase_( _snake_case : int ): """simple docstring""" __a =F.to_tensor(_snake_case ) __a =F.normalize(_snake_case , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def UpperCamelCase_( _snake_case : int , _snake_case : Tuple , _snake_case : int ): """simple docstring""" logger.info('Converting model...' ) # load original state dict __a =torch.hub.load_state_dict_from_url(_snake_case , map_location='cpu' ) # rename keys for src, dest in rename_keys: rename_key(_snake_case , _snake_case , _snake_case ) __a =rename_backbone_keys(_snake_case ) # query, key and value matrices need special treatment read_in_q_k_v(_snake_case ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __a ='model.' for key in state_dict.copy().keys(): if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): __a =state_dict.pop(_snake_case ) __a =val # create HuggingFace model and load state dict __a =TableTransformerConfig( backbone='resnet18' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: __a =15 __a =2 __a ={0: 'table', 1: 'table rotated'} __a =idalabel __a ={v: k for k, v in idalabel.items()} else: __a =125 __a =6 __a ={ 0: 'table', 1: 'table column', 2: 'table row', 3: 'table column header', 4: 'table projected row header', 5: 'table spanning cell', } __a =idalabel __a ={v: k for k, v in idalabel.items()} __a =DetrImageProcessor( format='coco_detection' , max_size=800 if 'detection' in checkpoint_url else 1000 ) __a =TableTransformerForObjectDetection(_snake_case ) model.load_state_dict(_snake_case ) model.eval() # verify our conversion __a ='example_pdf.png' if 'detection' in checkpoint_url else 'example_table.png' __a =hf_hub_download(repo_id='nielsr/example-pdf' , repo_type='dataset' , filename=_snake_case ) __a =Image.open(_snake_case ).convert('RGB' ) __a =normalize(resize(_snake_case , _snake_case ) ).unsqueeze(0 ) __a =model(_snake_case ) if "detection" in checkpoint_url: __a =(1, 15, 3) __a =torch.tensor( [[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] ) __a =torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] ) else: __a =(1, 125, 7) __a =torch.tensor( [[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] ) __a =torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , _snake_case , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , _snake_case , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) model.save_pretrained(_snake_case ) image_processor.save_pretrained(_snake_case ) if push_to_hub: # Push model to HF hub logger.info('Pushing model to the hub...' ) __a =( 'microsoft/table-transformer-detection' if 'detection' in checkpoint_url else 'microsoft/table-transformer-structure-recognition' ) model.push_to_hub(_snake_case ) image_processor.push_to_hub(_snake_case ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", type=str, choices=[ "https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", "https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth", ], help="URL of the Table Transformer checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _lowerCAmelCase : Optional[int] = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
308
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def UpperCamelCase_( _snake_case : Optional[Any] ): """simple docstring""" __a =model.config __a =DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) __a =MBartConfig( is_decoder=_snake_case , is_encoder_decoder=_snake_case , add_cross_attention=_snake_case , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=_snake_case , add_final_layer_norm=_snake_case , ) return encoder_config, decoder_config def UpperCamelCase_( _snake_case : Tuple ): """simple docstring""" if "encoder.model" in name: __a =name.replace('encoder.model' , 'encoder' ) if "decoder.model" in name: __a =name.replace('decoder.model' , 'decoder' ) if "patch_embed.proj" in name: __a =name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __a =name.replace('patch_embed.norm' , 'embeddings.norm' ) if name.startswith('encoder' ): if "layers" in name: __a ='encoder.' + name if "attn.proj" in name: __a =name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "mask" not in name: __a =name.replace('attn' , 'attention.self' ) if "norm1" in name: __a =name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __a =name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __a =name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __a =name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": __a ='encoder.layernorm.weight' if name == "encoder.norm.bias": __a ='encoder.layernorm.bias' return name def UpperCamelCase_( _snake_case : Tuple , _snake_case : str ): """simple docstring""" for key in orig_state_dict.copy().keys(): __a =orig_state_dict.pop(_snake_case ) if "qkv" in key: __a =key.split('.' ) __a =int(key_split[3] ) __a =int(key_split[5] ) __a =model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __a =val[:dim, :] __a =val[dim : dim * 2, :] __a =val[-dim:, :] else: __a =val[:dim] __a =val[dim : dim * 2] __a =val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: __a =val return orig_state_dict def UpperCamelCase_( _snake_case : Tuple , _snake_case : Union[str, Any]=None , _snake_case : List[Any]=False ): """simple docstring""" __a =DonutModel.from_pretrained(_snake_case ).eval() # load HuggingFace model __a , __a =get_configs(_snake_case ) __a =DonutSwinModel(_snake_case ) __a =MBartForCausalLM(_snake_case ) __a =VisionEncoderDecoderModel(encoder=_snake_case , decoder=_snake_case ) model.eval() __a =original_model.state_dict() __a =convert_state_dict(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) # verify results on scanned document __a =load_dataset('hf-internal-testing/example-documents' ) __a =dataset['test'][0]['image'].convert('RGB' ) __a =XLMRobertaTokenizerFast.from_pretrained(_snake_case , from_slow=_snake_case ) __a =DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) __a =DonutProcessor(_snake_case , _snake_case ) __a =processor(_snake_case , return_tensors='pt' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": __a ='<s_docvqa><s_question>{user_input}</s_question><s_answer>' __a ='When is the coffee break?' __a =task_prompt.replace('{user_input}' , _snake_case ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": __a ='<s_rvlcdip>' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: __a ='<s_cord>' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": __a ='s_cord-v2>' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": __a ='<s_zhtrainticket>' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt __a ='hello world' else: raise ValueError('Model name not supported' ) __a =original_model.decoder.tokenizer(_snake_case , add_special_tokens=_snake_case , return_tensors='pt' )[ 'input_ids' ] __a =original_model.encoder.model.patch_embed(_snake_case ) __a , __a =model.encoder.embeddings(_snake_case ) assert torch.allclose(_snake_case , _snake_case , atol=1e-3 ) # verify encoder hidden states __a =original_model.encoder(_snake_case ) __a =model.encoder(_snake_case ).last_hidden_state assert torch.allclose(_snake_case , _snake_case , atol=1e-2 ) # verify decoder hidden states __a =original_model(_snake_case , _snake_case , _snake_case ).logits __a =model(_snake_case , decoder_input_ids=_snake_case ).logits assert torch.allclose(_snake_case , _snake_case , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(_snake_case ) processor.save_pretrained(_snake_case ) if push_to_hub: model.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) processor.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) _lowerCAmelCase : List[Any] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
308
1
# using dfs for finding eulerian path traversal def UpperCamelCase_( _snake_case : int , _snake_case : Tuple , _snake_case : Any , _snake_case : Optional[int]=None ): """simple docstring""" __a =(path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: __a , __a =True, True __a =dfs(_snake_case , _snake_case , _snake_case , _snake_case ) return path def UpperCamelCase_( _snake_case : int , _snake_case : Optional[Any] ): """simple docstring""" __a =0 __a =-1 for i in range(_snake_case ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 __a =i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def UpperCamelCase_( _snake_case : Optional[int] , _snake_case : Tuple ): """simple docstring""" __a =[[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] __a , __a =check_circuit_or_path(_snake_case , _snake_case ) if check == 3: print('graph is not Eulerian' ) print('no path' ) return __a =1 if check == 2: __a =odd_node print('graph has a Euler path' ) if check == 1: print('graph has a Euler cycle' ) __a =dfs(_snake_case , _snake_case , _snake_case ) print(_snake_case ) def UpperCamelCase_( ): """simple docstring""" __a ={1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} __a ={1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} __a ={1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} __a ={1: [2, 3], 2: [1, 3], 3: [1, 2]} __a ={ 1: [], 2: [] # all degree is zero } __a =10 check_euler(_snake_case , _snake_case ) check_euler(_snake_case , _snake_case ) check_euler(_snake_case , _snake_case ) check_euler(_snake_case , _snake_case ) check_euler(_snake_case , _snake_case ) if __name__ == "__main__": main()
308
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer SCREAMING_SNAKE_CASE = False def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' super().setUp() __a =['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] __a =dict(zip(__snake_case , range(len(__snake_case ) ) ) ) __a =['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] __a ={'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__snake_case ) ) def __magic_name__ ( self , **__snake_case ) -> Any: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def __magic_name__ ( self , __snake_case ) -> List[Any]: '''simple docstring''' __a ='adapt act apte' __a ='adapt act apte' return input_text, output_text def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __a ='adapt act apte' __a =['adapt', 'act', 'ap@@', 'te'] __a =tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) __a =[tokenizer.bos_token] + tokens + [tokenizer.eos_token] __a =[0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1384] __a ='I am a small frog.' __a =tok([src_text] , padding=__snake_case , truncation=__snake_case )['input_ids'] __a =tok.batch_decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) __a ='I am a small frog .' __a ='.' __a =tok(__snake_case )['input_ids'] __a =tok(__snake_case )['input_ids'] assert encoded[-1] == encoded_dot[0]
308
1
from __future__ import annotations def UpperCamelCase_( _snake_case : int , _snake_case : int ): """simple docstring""" if b == 0: return (1, 0) ((__a) , (__a)) =extended_euclid(_snake_case , a % b ) __a =a // b return (y, x - k * y) def UpperCamelCase_( _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : int ): """simple docstring""" ((__a) , (__a)) =extended_euclid(_snake_case , _snake_case ) __a =na * na __a =ra * x * na + ra * y * na return (n % m + m) % m def UpperCamelCase_( _snake_case : int , _snake_case : int ): """simple docstring""" ((__a) , (__a)) =extended_euclid(_snake_case , _snake_case ) if b < 0: __a =(b % n + n) % n return b def UpperCamelCase_( _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : int ): """simple docstring""" __a , __a =invert_modulo(_snake_case , _snake_case ), invert_modulo(_snake_case , _snake_case ) __a =na * na __a =ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
308
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __magic_name__ ( unittest.TestCase , lowerCAmelCase_ ): def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =load_tool('text-to-speech' ) self.tool.setup() def __magic_name__ ( self ) -> Dict: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) __a =self.tool('hey' ) __a =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) __a =self.tool('hey' ) __a =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) )
308
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : Any = "▁" _lowerCAmelCase : Optional[Any] = {"vocab_file": "spiece.model"} _lowerCAmelCase : List[Any] = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"} } _lowerCAmelCase : Union[str, Any] = { "google/pegasus-xsum": 512, } _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] def __init__( self , __snake_case , __snake_case="<pad>" , __snake_case="</s>" , __snake_case="<unk>" , __snake_case="<mask_2>" , __snake_case="<mask_1>" , __snake_case=None , __snake_case=103 , __snake_case = None , **__snake_case , ) -> None: '''simple docstring''' __a =offset if additional_special_tokens is not None: if not isinstance(__snake_case , __snake_case ): raise TypeError( f'additional_special_tokens should be of type {type(__snake_case )}, but is' f' {type(__snake_case )}' ) __a =( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'<unk_{i}>' for i in range(len(__snake_case ) , self.offset - 1 ) ] if len(set(__snake_case ) ) != len(__snake_case ): raise ValueError( 'Please make sure that the provided additional_special_tokens do not contain an incorrectly' f' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.' ) __a =additional_special_tokens_extended else: __a =[mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'<unk_{i}>' for i in range(2 , self.offset )] __a ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__snake_case , unk_token=__snake_case , mask_token=__snake_case , pad_token=__snake_case , mask_token_sent=__snake_case , offset=__snake_case , additional_special_tokens=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) __a =mask_token_sent __a =vocab_file __a =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__snake_case ) # add special tokens to encoder dict __a ={ 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) __a ={v: k for k, v in self.encoder.items()} @property def __magic_name__ ( self ) -> int: '''simple docstring''' return len(self.sp_model ) + self.offset def __magic_name__ ( self ) -> Dict[str, int]: '''simple docstring''' __a ={self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Optional[Any]: '''simple docstring''' __a =self.__dict__.copy() __a =None return state def __setstate__( self , __snake_case ) -> str: '''simple docstring''' __a =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __a ={} __a =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __magic_name__ ( self , __snake_case ) -> List[str]: '''simple docstring''' return self.sp_model.encode(__snake_case , out_type=__snake_case ) def __magic_name__ ( self , __snake_case ) -> int: '''simple docstring''' if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] __a =self.sp_model.piece_to_id(__snake_case ) return sp_id + self.offset def __magic_name__ ( self , __snake_case ) -> str: '''simple docstring''' if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: __a =self.sp_model.IdToPiece(index - self.offset ) return token def __magic_name__ ( self , __snake_case ) -> Any: '''simple docstring''' __a =[] __a ='' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__snake_case ) + token __a =[] else: current_sub_tokens.append(__snake_case ) out_string += self.sp_model.decode(__snake_case ) return out_string.strip() def __magic_name__ ( self , __snake_case=False ) -> Union[str, Any]: '''simple docstring''' return 1 def __magic_name__ ( self , __snake_case ) -> Optional[int]: '''simple docstring''' __a =set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def __magic_name__ ( self , __snake_case , __snake_case = None , __snake_case = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(__snake_case ) elif token_ids_a is None: return self._special_token_mask(__snake_case ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def __magic_name__ ( self , __snake_case , __snake_case=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __magic_name__ ( self , __snake_case , __snake_case = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(__snake_case ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __a =os.path.join( __snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __snake_case ) elif not os.path.isfile(self.vocab_file ): with open(__snake_case , 'wb' ) as fi: __a =self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (out_vocab_file,)
308
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> int: '''simple docstring''' __a =[] __a =[] for i in range(self.num_layers ): __a =self.in_channels if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =resnets __a =attentions if self.add_downsample: __a =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> Optional[Any]: '''simple docstring''' __a =() for resnet, attn in zip(self.resnets , self.attentions ): __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __a =self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> int: '''simple docstring''' __a =[] for i in range(self.num_layers ): __a =self.in_channels if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets if self.add_downsample: __a =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case=True ) -> Optional[int]: '''simple docstring''' __a =() for resnet in self.resnets: __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __a =self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =[] __a =[] for i in range(self.num_layers ): __a =self.in_channels if (i == self.num_layers - 1) else self.out_channels __a =self.prev_output_channel if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =resnets __a =attentions if self.add_upsample: __a =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[Any]: '''simple docstring''' for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states __a =res_hidden_states_tuple[-1] __a =res_hidden_states_tuple[:-1] __a =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __a =self.upsamplers_a(__snake_case ) return hidden_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =[] for i in range(self.num_layers ): __a =self.in_channels if (i == self.num_layers - 1) else self.out_channels __a =self.prev_output_channel if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets if self.add_upsample: __a =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[Any]: '''simple docstring''' for resnet in self.resnets: # pop res hidden states __a =res_hidden_states_tuple[-1] __a =res_hidden_states_tuple[:-1] __a =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __a =self.upsamplers_a(__snake_case ) return hidden_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # there is always at least one resnet __a =[ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] __a =[] for _ in range(self.num_layers ): __a =FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets __a =attentions def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[str]: '''simple docstring''' __a =self.resnets[0](__snake_case , __snake_case ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) return hidden_states
308
1
import argparse from collections import defaultdict import yaml _lowerCAmelCase : Union[str, Any] = "docs/source/en/_toctree.yml" def UpperCamelCase_( _snake_case : Dict ): """simple docstring""" __a =defaultdict(_snake_case ) __a =[] __a =[] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'local': doc['local'], 'title': doc['title']} ) else: new_doc_list.append(_snake_case ) __a =new_doc_list __a =[key for key, value in counts.items() if value > 1] __a =[] for duplicate_key in duplicates: __a =list({doc['title'] for doc in doc_list if doc['local'] == duplicate_key} ) if len(_snake_case ) > 1: raise ValueError( F'{duplicate_key} is present several times in the documentation table of content at ' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if 'local' not in counts or counts[doc['local']] == 1] ) __a =sorted(_snake_case , key=lambda _snake_case : s["title"].lower() ) # "overview" gets special treatment and is always first if len(_snake_case ) > 1: raise ValueError('{doc_list} has two \'overview\' docs which is not allowed.' ) overview_doc.extend(_snake_case ) # Sort return overview_doc def UpperCamelCase_( _snake_case : int=False ): """simple docstring""" with open(_snake_case , encoding='utf-8' ) as f: __a =yaml.safe_load(f.read() ) # Get to the API doc __a =0 while content[api_idx]["title"] != "API": api_idx += 1 __a =content[api_idx]['sections'] # Then to the model doc __a =0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 __a =api_doc[scheduler_idx]['sections'] __a =clean_doc_toc(_snake_case ) __a =False if new_scheduler_doc != scheduler_doc: __a =True if overwrite: __a =new_scheduler_doc if diff: if overwrite: __a =api_doc with open(_snake_case , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(_snake_case , allow_unicode=_snake_case ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) def UpperCamelCase_( _snake_case : Optional[Any]=False ): """simple docstring""" with open(_snake_case , encoding='utf-8' ) as f: __a =yaml.safe_load(f.read() ) # Get to the API doc __a =0 while content[api_idx]["title"] != "API": api_idx += 1 __a =content[api_idx]['sections'] # Then to the model doc __a =0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 __a =False __a =api_doc[pipeline_idx]['sections'] __a =[] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: __a =pipeline_doc['section'] __a =clean_doc_toc(_snake_case ) if overwrite: __a =new_sub_pipeline_doc new_pipeline_docs.append(_snake_case ) # sort overall pipeline doc __a =clean_doc_toc(_snake_case ) if new_pipeline_docs != pipeline_docs: __a =True if overwrite: __a =new_pipeline_docs if diff: if overwrite: __a =api_doc with open(_snake_case , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(_snake_case , allow_unicode=_snake_case ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": _lowerCAmelCase : str = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") _lowerCAmelCase : Any = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
308
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_5_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self ) -> int: '''simple docstring''' if self.framework == "pytorch": subprocess.run( f'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding='utf-8' , check=__snake_case , ) assert hasattr(self , 'env' ) def __magic_name__ ( self , __snake_case ) -> int: '''simple docstring''' __a =f'{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}' # distributed data settings __a ={'smdistributed': {'dataparallel': {'enabled': True}}} if self.script != 'run_ddp.py' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__snake_case , instance_count=__snake_case , instance_type=self.instance_type , debugger_hook_config=__snake_case , hyperparameters={**self.env.distributed_hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__snake_case , py_version='py36' , ) def __magic_name__ ( self , __snake_case ) -> Optional[Any]: '''simple docstring''' TrainingJobAnalytics(__snake_case ).export_csv(f'{self.env.test_path}/{job_name}_metrics.csv' ) @parameterized.expand([(2,)] ) def __magic_name__ ( self , __snake_case ) -> Optional[int]: '''simple docstring''' # create estimator __a =self.create_estimator(__snake_case ) # run training estimator.fit() # result dataframe __a =TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __a =list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) __a =list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __a =( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'{estimator.latest_training_job.name}.json' , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , __snake_case )
308
1
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> int: '''simple docstring''' __a =[] __a =[] for i in range(self.num_layers ): __a =self.in_channels if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =resnets __a =attentions if self.add_downsample: __a =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> Optional[Any]: '''simple docstring''' __a =() for resnet, attn in zip(self.resnets , self.attentions ): __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __a =self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> int: '''simple docstring''' __a =[] for i in range(self.num_layers ): __a =self.in_channels if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets if self.add_downsample: __a =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case=True ) -> Optional[int]: '''simple docstring''' __a =() for resnet in self.resnets: __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __a =self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =[] __a =[] for i in range(self.num_layers ): __a =self.in_channels if (i == self.num_layers - 1) else self.out_channels __a =self.prev_output_channel if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =resnets __a =attentions if self.add_upsample: __a =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[Any]: '''simple docstring''' for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states __a =res_hidden_states_tuple[-1] __a =res_hidden_states_tuple[:-1] __a =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __a =self.upsamplers_a(__snake_case ) return hidden_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =[] for i in range(self.num_layers ): __a =self.in_channels if (i == self.num_layers - 1) else self.out_channels __a =self.prev_output_channel if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets if self.add_upsample: __a =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[Any]: '''simple docstring''' for resnet in self.resnets: # pop res hidden states __a =res_hidden_states_tuple[-1] __a =res_hidden_states_tuple[:-1] __a =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __a =self.upsamplers_a(__snake_case ) return hidden_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # there is always at least one resnet __a =[ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] __a =[] for _ in range(self.num_layers ): __a =FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets __a =attentions def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[str]: '''simple docstring''' __a =self.resnets[0](__snake_case , __snake_case ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) return hidden_states
308
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _lowerCAmelCase : List[Any] = logging.getLogger(__name__) _lowerCAmelCase : Optional[Any] = "Hello world! cécé herlolip" _lowerCAmelCase : str = namedtuple( "BertAbsConfig", [ "temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout", ], ) def UpperCamelCase_( _snake_case : str , _snake_case : List[Any] ): """simple docstring""" __a =BertAbsConfig( temp_dir='.' , finetune_bert=_snake_case , large=_snake_case , share_emb=_snake_case , use_bert_emb=_snake_case , encoder='bert' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) __a =torch.load(_snake_case , lambda _snake_case , _snake_case : storage ) __a =AbsSummarizer(_snake_case , torch.device('cpu' ) , _snake_case ) original.eval() __a =BertAbsSummarizer(_snake_case , torch.device('cpu' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('convert the model' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('Make sure that the models\' outputs are identical' ) __a =BertTokenizer.from_pretrained('bert-base-uncased' ) # prepare the model inputs __a =tokenizer.encode('This is sample éàalj\'-.' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_snake_case )) ) __a =torch.tensor(_snake_case ).unsqueeze(0 ) __a =tokenizer.encode('This is sample 3 éàalj\'-.' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_snake_case )) ) __a =torch.tensor(_snake_case ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __a =encoder_input_ids __a =decoder_input_ids __a =__a =None __a =None __a =__a =None __a =__a =None __a =None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __a =original(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )[0] __a =original.generator(_snake_case ) __a =new_model( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )[0] __a =new_model.generator(_snake_case ) __a =torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_snake_case ) ) __a =torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_snake_case ) ) __a =torch.allclose(_snake_case , _snake_case , atol=1e-3 ) if are_identical: logging.info('all weights are equal up to 1e-3' ) else: raise ValueError('the weights are different. The new model is likely different from the original one.' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('saving the model\'s state dictionary' ) torch.save( new_model.state_dict() , './bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--bertabs_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model.", ) _lowerCAmelCase : Optional[Any] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
308
1
def UpperCamelCase_( _snake_case : str , _snake_case : int ): """simple docstring""" return [sentence[i : i + ngram_size] for i in range(len(_snake_case ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
308
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ : def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=False , __snake_case=False , __snake_case=False , __snake_case=2 , __snake_case=99 , __snake_case=0 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=0.1 , __snake_case=0.1 , __snake_case=512 , __snake_case=2 , __snake_case=0.02 , __snake_case=2 , __snake_case=4 , __snake_case="last" , __snake_case=True , __snake_case=None , __snake_case=0 , ) -> Optional[Any]: '''simple docstring''' __a =parent __a =batch_size __a =seq_length __a =is_training __a =use_input_lengths __a =use_token_type_ids __a =use_labels __a =gelu_activation __a =sinusoidal_embeddings __a =causal __a =asm __a =n_langs __a =vocab_size __a =n_special __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =max_position_embeddings __a =type_sequence_label_size __a =initializer_range __a =num_labels __a =num_choices __a =summary_type __a =use_proj __a =scope __a =bos_token_id def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a =random_attention_mask([self.batch_size, self.seq_length] ) __a =None if self.use_input_lengths: __a =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __a =None if self.use_token_type_ids: __a =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __a =None __a =None __a =None if self.use_labels: __a =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a =ids_tensor([self.batch_size] , 2 ).float() __a =ids_tensor([self.batch_size] , self.num_choices ) __a =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __magic_name__ ( self ) -> Any: '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> List[Any]: '''simple docstring''' __a =XLMModel(config=__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , lengths=__snake_case , langs=__snake_case ) __a =model(__snake_case , langs=__snake_case ) __a =model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Optional[int]: '''simple docstring''' __a =XLMWithLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Dict: '''simple docstring''' __a =XLMForQuestionAnsweringSimple(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) __a =outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> List[Any]: '''simple docstring''' __a =XLMForQuestionAnswering(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , p_mask=__snake_case , ) __a =model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , ) ((__a) , ) =result_with_labels.to_tuple() __a =model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) ((__a) , ) =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Optional[Any]: '''simple docstring''' __a =XLMForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Any: '''simple docstring''' __a =self.num_labels __a =XLMForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Tuple: '''simple docstring''' __a =self.num_choices __a =XLMForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() __a =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) =config_and_inputs __a ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable SCREAMING_SNAKE_CASE = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> int: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __magic_name__ ( self , __snake_case , __snake_case , __snake_case=False ) -> str: '''simple docstring''' __a =super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __a =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) __a =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =XLMModelTester(self ) __a =ConfigTester(self , config_class=__snake_case , emb_dim=37 ) def __magic_name__ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=False , __snake_case=1 ) -> Optional[Any]: '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_attentions in attentions] , [True] * len(__snake_case ) ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__snake_case ): # adds PAD dummy token __a =min_length + idx + 1 __a =min_length + idx + 1 __a =( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__snake_case ) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=False , __snake_case=1 ) -> Dict: '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_hidden_states in hidden_states] , [True] * len(__snake_case ) , ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__snake_case ): # adds PAD dummy token __a =min_length + idx + 1 __a =(batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__snake_case ) , ) pass @slow def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a =XLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class __magic_name__ ( unittest.TestCase ): @slow def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(__snake_case ) __a =torch.tensor([[14, 447]] , dtype=torch.long , device=__snake_case ) # the president __a =[ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __a =model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __snake_case )
308
1
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin _lowerCAmelCase : Optional[Any] = "\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n" class __magic_name__ ( unittest.TestCase , lowerCAmelCase_ ): def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =load_tool('text-question-answering' ) self.tool.setup() __a =load_tool('text-question-answering' , remote=__snake_case ) def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =self.tool(__snake_case , 'What did Hugging Face do in April 2021?' ) self.assertEqual(__snake_case , 'launched the BigScience Research Workshop' ) def __magic_name__ ( self ) -> str: '''simple docstring''' __a =self.remote_tool(__snake_case , 'What did Hugging Face do in April 2021?' ) self.assertEqual(__snake_case , 'launched the BigScience Research Workshop' ) def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =self.tool(text=__snake_case , question='What did Hugging Face do in April 2021?' ) self.assertEqual(__snake_case , 'launched the BigScience Research Workshop' ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =self.remote_tool(text=__snake_case , question='What did Hugging Face do in April 2021?' ) self.assertEqual(__snake_case , 'launched the BigScience Research Workshop' )
308
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake _lowerCAmelCase : Optional[Any] = numpy.array([0, 0]) _lowerCAmelCase : Dict = numpy.array([0.5, 0.8660254]) _lowerCAmelCase : Any = numpy.array([1, 0]) _lowerCAmelCase : int = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCamelCase_( _snake_case : list[numpy.ndarray] , _snake_case : int ): """simple docstring""" __a =initial_vectors for _ in range(_snake_case ): __a =iteration_step(_snake_case ) return vectors def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =[] for i, start_vector in enumerate(vectors[:-1] ): __a =vectors[i + 1] new_vectors.append(_snake_case ) __a =end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCamelCase_( _snake_case : numpy.ndarray , _snake_case : float ): """simple docstring""" __a =numpy.radians(_snake_case ) __a , __a =numpy.cos(_snake_case ), numpy.sin(_snake_case ) __a =numpy.array(((c, -s), (s, c)) ) return numpy.dot(_snake_case , _snake_case ) def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() __a , __a =zip(*_snake_case ) plt.plot(_snake_case , _snake_case ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : List[Any] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
308
1
import requests from bsa import BeautifulSoup def UpperCamelCase_( _snake_case : str , _snake_case : dict ): """simple docstring""" __a =BeautifulSoup(requests.get(_snake_case , params=_snake_case ).content , 'html.parser' ) __a =soup.find('div' , attrs={'class': 'gs_ri'} ) __a =div.find('div' , attrs={'class': 'gs_fl'} ).find_all('a' ) return anchors[2].get_text() if __name__ == "__main__": _lowerCAmelCase : Tuple = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2_018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
308
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Tuple = { "configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MegatronBertForCausalLM", "MegatronBertForMaskedLM", "MegatronBertForMultipleChoice", "MegatronBertForNextSentencePrediction", "MegatronBertForPreTraining", "MegatronBertForQuestionAnswering", "MegatronBertForSequenceClassification", "MegatronBertForTokenClassification", "MegatronBertModel", "MegatronBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys _lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
1
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(".") def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ' F'{test_file} instead.' ) __a =components[-1] if not test_fn.endswith('py' ): raise ValueError(F'`test_file` should be a python file. Got {test_fn} instead.' ) if not test_fn.startswith('test_modeling_' ): raise ValueError( F'`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.' ) __a =components[:-1] + [test_fn.replace('.py' , '' )] __a ='.'.join(_snake_case ) return test_module_path def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =get_module_path(_snake_case ) __a =importlib.import_module(_snake_case ) return test_module def UpperCamelCase_( _snake_case : Union[str, Any] ): """simple docstring""" __a =[] __a =get_test_module(_snake_case ) for attr in dir(_snake_case ): if attr.endswith('ModelTester' ): tester_classes.append(getattr(_snake_case , _snake_case ) ) # sort with class names return sorted(_snake_case , key=lambda _snake_case : x.__name__ ) def UpperCamelCase_( _snake_case : Dict ): """simple docstring""" __a =[] __a =get_test_module(_snake_case ) for attr in dir(_snake_case ): __a =getattr(_snake_case , _snake_case ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). __a =getattr(_snake_case , 'all_model_classes' , [] ) if len(_snake_case ) > 0: test_classes.append(_snake_case ) # sort with class names return sorted(_snake_case , key=lambda _snake_case : x.__name__ ) def UpperCamelCase_( _snake_case : int ): """simple docstring""" __a =get_test_classes(_snake_case ) __a =set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(_snake_case , key=lambda _snake_case : x.__name__ ) def UpperCamelCase_( _snake_case : Union[str, Any] ): """simple docstring""" __a =test_class() if hasattr(_snake_case , 'setUp' ): test.setUp() __a =None if hasattr(_snake_case , 'model_tester' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: __a =test.model_tester.__class__ return model_tester def UpperCamelCase_( _snake_case : int , _snake_case : Tuple ): """simple docstring""" __a =get_test_classes(_snake_case ) __a =[] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(_snake_case ) # sort with class names return sorted(_snake_case , key=lambda _snake_case : x.__name__ ) def UpperCamelCase_( _snake_case : List[str] , _snake_case : Optional[int] ): """simple docstring""" __a =get_test_classes_for_model(_snake_case , _snake_case ) __a =[] for test_class in test_classes: __a =get_model_tester_from_test_class(_snake_case ) if tester_class is not None: tester_classes.append(_snake_case ) # sort with class names return sorted(_snake_case , key=lambda _snake_case : x.__name__ ) def UpperCamelCase_( _snake_case : Tuple ): """simple docstring""" __a =get_test_classes(_snake_case ) __a ={test_class: get_model_tester_from_test_class(_snake_case ) for test_class in test_classes} return test_tester_mapping def UpperCamelCase_( _snake_case : Union[str, Any] ): """simple docstring""" __a =get_model_classes(_snake_case ) __a ={ model_class: get_test_classes_for_model(_snake_case , _snake_case ) for model_class in model_classes } return model_test_mapping def UpperCamelCase_( _snake_case : Dict ): """simple docstring""" __a =get_model_classes(_snake_case ) __a ={ model_class: get_tester_classes_for_model(_snake_case , _snake_case ) for model_class in model_classes } return model_to_tester_mapping def UpperCamelCase_( _snake_case : Optional[int] ): """simple docstring""" if isinstance(_snake_case , _snake_case ): return o elif isinstance(_snake_case , _snake_case ): return o.__name__ elif isinstance(_snake_case , (list, tuple) ): return [to_json(_snake_case ) for x in o] elif isinstance(_snake_case , _snake_case ): return {to_json(_snake_case ): to_json(_snake_case ) for k, v in o.items()} else: return o
308
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __magic_name__ : @staticmethod def __magic_name__ ( *__snake_case , **__snake_case ) -> List[str]: '''simple docstring''' pass def UpperCamelCase_( _snake_case : Image ): """simple docstring""" __a =hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __magic_name__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def __magic_name__ ( self , __snake_case , __snake_case , __snake_case ) -> Dict: '''simple docstring''' __a =DepthEstimationPipeline(model=__snake_case , image_processor=__snake_case ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __magic_name__ ( self , __snake_case , __snake_case ) -> Tuple: '''simple docstring''' __a =depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , __snake_case ) import datasets __a =datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) __a =depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , __snake_case , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' pass @slow @require_torch def __magic_name__ ( self ) -> int: '''simple docstring''' __a ='Intel/dpt-large' __a =pipeline('depth-estimation' , model=__snake_case ) __a =depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) __a =hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.662 ) @require_torch def __magic_name__ ( self ) -> Any: '''simple docstring''' # This is highly irregular to have no small tests. self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
308
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase : str = { "configuration_convbert": ["CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvBertConfig", "ConvBertOnnxConfig"], "tokenization_convbert": ["ConvBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Union[str, Any] = ["ConvBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Union[str, Any] = [ "CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvBertForMaskedLM", "ConvBertForMultipleChoice", "ConvBertForQuestionAnswering", "ConvBertForSequenceClassification", "ConvBertForTokenClassification", "ConvBertLayer", "ConvBertModel", "ConvBertPreTrainedModel", "load_tf_weights_in_convbert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = [ "TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFConvBertForMaskedLM", "TFConvBertForMultipleChoice", "TFConvBertForQuestionAnswering", "TFConvBertForSequenceClassification", "TFConvBertForTokenClassification", "TFConvBertLayer", "TFConvBertModel", "TFConvBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys _lowerCAmelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _lowerCAmelCase : Optional[int] = logging.getLogger(__name__) _lowerCAmelCase : Any = "pytorch_model.bin" @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co.'} , ) @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field(metadata={'help': 'A csv or a json file containing the training data.'} ) SCREAMING_SNAKE_CASE = dataclasses.field(metadata={'help': 'A csv or a json file containing the data to predict on.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the validation data.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'The name of the task to train on.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'The list of labels for the task.'} ) @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field( metadata={'help': 'The output directory where the model predictions and checkpoints will be written.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default='accuracy' , metadata={'help': 'The evaluation metric used for the task.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default='no' , metadata={ 'help': 'The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]' } , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=1_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0 , metadata={ 'help': 'How much the specified evaluation metric must improve to satisfy early stopping conditions.' } , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the confidence score.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the validation performance.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to fine-tune on labeled data after pseudo training.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0 , metadata={'help': 'Confidence threshold for pseudo-labeled data filtering.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=1_0_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Random seed for initialization.'} , ) def UpperCamelCase_( _snake_case : int , _snake_case : str , _snake_case : Optional[int] , _snake_case : str , _snake_case : Union[str, Any] , _snake_case : List[Any] ): """simple docstring""" __a =datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: __a =dataset.filter(lambda _snake_case : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 __a =int(eval_result * len(_snake_case ) ) print(_snake_case ) __a =dataset.sort('probability' , reverse=_snake_case ) __a =dataset.select(range(_snake_case ) ) __a =dataset.remove_columns(['label', 'probability'] ) __a =dataset.rename_column('prediction' , 'label' ) __a =dataset.map(lambda _snake_case : {"label": idalabel[example["label"]]} ) __a =dataset.shuffle(seed=args.seed ) __a =os.path.join(_snake_case , F'train_pseudo.{args.data_file_extension}' ) if args.data_file_extension == "csv": dataset.to_csv(_snake_case , index=_snake_case ) else: dataset.to_json(_snake_case ) def UpperCamelCase_( _snake_case : List[Any] , _snake_case : str , _snake_case : int , _snake_case : Optional[int] , **_snake_case : List[str] ): """simple docstring""" __a =Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() __a =STModelArguments(model_name_or_path=_snake_case ) __a =STDataArguments(train_file=_snake_case , infer_file=_snake_case ) __a =STTrainingArguments(output_dir=_snake_case ) __a =argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(_snake_case ).items(): setattr(_snake_case , _snake_case , _snake_case ) for key, value in kwargs.items(): if hasattr(_snake_case , _snake_case ): setattr(_snake_case , _snake_case , _snake_case ) # Sanity checks __a ={} __a =None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None __a =args.train_file __a =args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None __a =args.eval_file for key in data_files: __a =data_files[key].split('.' )[-1] assert extension in ["csv", "json"], F'`{key}_file` should be a csv or a json file.' if args.data_file_extension is None: __a =extension else: assert extension == args.data_file_extension, F'`{key}_file` should be a {args.data_file_extension} file`.' assert ( args.eval_metric in datasets.list_metrics() ), F'{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('Creating the initial data directory for self-training...' ) __a =F'{args.output_dir}/self-train_iter-{{}}'.format __a =data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=_snake_case ) os.makedirs(_snake_case , exist_ok=_snake_case ) accelerator.wait_for_everyone() __a =None __a =None __a =0 __a =False # Show the progress bar __a =tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): __a =data_dir_format(_snake_case ) assert os.path.exists(_snake_case ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 __a =os.path.join(_snake_case , 'stage-1' ) __a ={ 'accelerator': accelerator, 'model_name_or_path': args.model_name_or_path, 'cache_dir': args.cache_dir, 'do_train': True, 'train_file': data_files['train'] if iteration == 0 else data_files['train_pseudo'], 'do_eval': True if args.eval_file is not None else False, 'eval_file': data_files['eval'], 'do_predict': True, 'infer_file': data_files['infer'], 'task_name': args.task_name, 'label_list': args.label_list, 'output_dir': current_output_dir, 'eval_metric': args.eval_metric, 'evaluation_strategy': args.evaluation_strategy, 'early_stopping_patience': args.early_stopping_patience, 'early_stopping_threshold': args.early_stopping_threshold, 'seed': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(_snake_case , _snake_case ): arguments_dict.update({key: value} ) __a =os.path.join(_snake_case , 'best-checkpoint' , _snake_case ) if os.path.exists(_snake_case ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.' , _snake_case , _snake_case , ) else: logger.info('***** Running self-training: iteration: %d, stage: 1 *****' , _snake_case ) finetune(**_snake_case ) accelerator.wait_for_everyone() assert os.path.exists(_snake_case ) logger.info('Self-training job completed: iteration: %d, stage: 1.' , _snake_case ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data __a =os.path.join(_snake_case , 'best-checkpoint' ) __a =os.path.join(_snake_case , 'stage-2' ) # Update arguments_dict __a =model_path __a =data_files['train'] __a =current_output_dir __a =os.path.join(_snake_case , 'best-checkpoint' , _snake_case ) if os.path.exists(_snake_case ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.' , _snake_case , _snake_case , ) else: logger.info('***** Running self-training: iteration: %d, stage: 2 *****' , _snake_case ) finetune(**_snake_case ) accelerator.wait_for_everyone() assert os.path.exists(_snake_case ) logger.info('Self-training job completed: iteration: %d, stage: 2.' , _snake_case ) __a =iteration __a =data_dir_format(iteration + 1 ) __a =AutoConfig.from_pretrained(os.path.join(_snake_case , 'best-checkpoint' ) ) __a =config.idalabel __a =os.path.join(_snake_case , 'eval_results_best-checkpoint.json' ) __a =os.path.join(_snake_case , 'test_results_best-checkpoint.json' ) assert os.path.exists(_snake_case ) with open(_snake_case , 'r' ) as f: __a =float(json.load(_snake_case )[args.eval_metric] ) __a =os.path.join(_snake_case , 'infer_output_best-checkpoint.csv' ) assert os.path.exists(_snake_case ) # Loading the dataset from local csv or json files. __a =load_dataset(args.data_file_extension , data_files={'data': data_files['infer']} )['data'] __a =load_dataset('csv' , data_files={'data': infer_output_file} )['data'] if accelerator.is_main_process: os.makedirs(_snake_case , exist_ok=_snake_case ) shutil.copy(_snake_case , os.path.join(_snake_case , F'eval_results_iter-{iteration}.json' ) ) if os.path.exists(_snake_case ): shutil.copy(_snake_case , os.path.join(_snake_case , F'test_results_iter-{iteration}.json' ) ) create_pseudo_labeled_data(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) accelerator.wait_for_everyone() __a =os.path.join(_snake_case , F'train_pseudo.{args.data_file_extension}' ) if args.evaluation_strategy != IntervalStrategy.NO.value: __a =eval_result if best_iteration is None: __a =new_iteration __a =new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: __a =new_iteration __a =new_eval_result __a =0 else: if new_eval_result == best_eval_result: __a =new_iteration __a =new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: __a =True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('Best iteration: %d' , _snake_case ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , _snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_snake_case , F'eval_results_iter-{iteration}.json' ) , os.path.join(_snake_case , 'eval_results_best-iteration.json' ) , ) else: # Assume that the last iteration is the best logger.info('Best iteration: %d' , args.max_selftrain_iterations - 1 ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , _snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_snake_case , F'eval_results_iter-{args.max_selftrain_iterations - 1}.json' ) , os.path.join(_snake_case , 'eval_results_best-iteration.json' ) , )
308
1
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm _lowerCAmelCase : int = logging.get_logger(__name__) @dataclass class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self , **__snake_case ) -> Tuple: '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __a =deprecated_arg[3:] setattr(self , __snake_case , not kwargs.pop(__snake_case ) ) logger.warning( f'{deprecated_arg} is depreciated. Please use --no_{positive_arg} or' f' {positive_arg}={kwargs[positive_arg]}' ) __a =kwargs.pop('torchscript' , self.torchscript ) __a =kwargs.pop('torch_xla_tpu_print_metrics' , self.torch_xla_tpu_print_metrics ) __a =kwargs.pop('fp16_opt_level' , self.fpaa_opt_level ) super().__init__(**__snake_case ) SCREAMING_SNAKE_CASE = field(default=lowerCAmelCase_ , metadata={'help': 'Trace the models using torchscript'} ) SCREAMING_SNAKE_CASE = field(default=lowerCAmelCase_ , metadata={'help': 'Print Xla/PyTorch tpu metrics'} ) SCREAMING_SNAKE_CASE = field( default='O1' , metadata={ 'help': ( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ' 'See details at https://nvidia.github.io/apex/amp.html' ) } , ) @cached_property def __magic_name__ ( self ) -> Tuple["torch.device", int]: '''simple docstring''' requires_backends(self , ['torch'] ) logger.info('PyTorch: setting up devices' ) if not self.cuda: __a =torch.device('cpu' ) __a =0 elif is_torch_tpu_available(): __a =xm.xla_device() __a =0 else: __a =torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) __a =torch.cuda.device_count() return device, n_gpu @property def __magic_name__ ( self ) -> str: '''simple docstring''' return is_torch_tpu_available() and self.tpu @property def __magic_name__ ( self ) -> int: '''simple docstring''' requires_backends(self , ['torch'] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def __magic_name__ ( self ) -> "torch.device": '''simple docstring''' requires_backends(self , ['torch'] ) return self._setup_devices[0] @property def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['torch'] ) return self._setup_devices[1] @property def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' return self.n_gpu > 0
308
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Any = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right _lowerCAmelCase : List[Any] = 256_047 _lowerCAmelCase : Dict = 256_145 @require_sentencepiece @require_tokenizers class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = NllbTokenizer SCREAMING_SNAKE_CASE = NllbTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = {} def __magic_name__ ( self ) -> int: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __a =NllbTokenizer(__snake_case , keep_accents=__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self ) -> int: '''simple docstring''' __a =NllbTokenizer(__snake_case , keep_accents=__snake_case ) __a =tokenizer.tokenize('This is a test' ) self.assertListEqual(__snake_case , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __a =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __a =tokenizer.convert_tokens_to_ids(__snake_case ) self.assertListEqual( __snake_case , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __a =tokenizer.convert_ids_to_tokens(__snake_case ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-nllb', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __a =self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __a =self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) __a =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=True __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=False __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) @require_torch def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' if not self.test_seqaseq: return __a =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Longer text that will definitely require truncation. __a =[ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for' ' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons' ' will only worsen the violence and misery for millions of people.', ] __a =[ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al' ' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi' ' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] try: __a =tokenizer.prepare_seqaseq_batch( src_texts=__snake_case , tgt_texts=__snake_case , max_length=3 , max_target_length=10 , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='ron_Latn' , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified __a =tokenizer.prepare_seqaseq_batch( __snake_case , tgt_texts=__snake_case , max_length=3 , return_tensors='pt' ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) __a =tokenizer.prepare_seqaseq_batch( src_texts=__snake_case , max_length=3 , max_target_length=10 , return_tensors='pt' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn('decoder_input_ids' , __snake_case ) @unittest.skip('Unfortunately way too slow to build a BPE with SentencePiece.' ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' pass def __magic_name__ ( self ) -> Tuple: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __a =[AddedToken('<special>' , lstrip=__snake_case )] __a =self.rust_tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case ) __a =tokenizer_r.encode('Hey this is a <special> token' ) __a =tokenizer_r.encode('<special>' , add_special_tokens=__snake_case )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: __a =self.rust_tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case , ) __a =self.tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case ) __a =tokenizer_p.encode('Hey this is a <special> token' ) __a =tokenizer_cr.encode('Hey this is a <special> token' ) self.assertEqual(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class __magic_name__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = 'facebook/nllb-200-distilled-600M' SCREAMING_SNAKE_CASE = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] SCREAMING_SNAKE_CASE = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] SCREAMING_SNAKE_CASE = [ 2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 8_1_6_5, 2_4_8_0_6_6, 1_4_7_3_4, 9_5_0, 1_1_3_5, 1_0_5_7_2_1, 3_5_7_3, 8_3, 2_7_3_5_2, 1_0_8, 4_9_4_8_6, 2, ] @classmethod def __magic_name__ ( cls ) -> Tuple: '''simple docstring''' __a =NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang='eng_Latn' , tgt_lang='ron_Latn' ) __a =1 return cls def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Arab'] , 25_6001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Latn'] , 25_6002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['fra_Latn'] , 25_6057 ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' self.assertIn(__snake_case , self.tokenizer.all_special_ids ) # fmt: off __a =[RO_CODE, 4254, 9_8068, 11_2923, 3_9072, 3909, 713, 10_2767, 26, 1_7314, 3_5642, 1_4683, 3_3118, 2022, 6_6987, 2, 25_6047] # fmt: on __a =self.tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) __a =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertNotIn(self.tokenizer.eos_token , __snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , __snake_case ) __a =10 __a =self.tokenizer(__snake_case , max_length=__snake_case , truncation=__snake_case ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , __snake_case ) self.assertEqual(len(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_6203, 3] ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =tempfile.mkdtemp() __a =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__snake_case ) __a =NllbTokenizer.from_pretrained(__snake_case ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __snake_case ) @require_torch def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) __a =shift_tokens_right( batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['ron_Latn'] ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) __a =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) self.assertEqual(__snake_case , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =self.tokenizer(self.src_text , padding=__snake_case , truncation=__snake_case , max_length=3 , return_tensors='pt' ) __a =self.tokenizer( text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=10 , return_tensors='pt' ) __a =targets['input_ids'] __a =shift_tokens_right( __snake_case , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( nested_simplify(__snake_case ) , { # A, test, EOS, en_XX 'input_ids': [[25_6047, 70, 7356, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_6057, } , ) @require_torch def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =True __a =self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2, 25_6047] ) __a =False __a =self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [25_6047, 1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2] )
308
1
from __future__ import annotations import time import numpy as np _lowerCAmelCase : List[str] = [8, 5, 9, 7] _lowerCAmelCase : List[str] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] _lowerCAmelCase : List[Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class __magic_name__ : def __init__( self , __snake_case , __snake_case , __snake_case , ) -> None: '''simple docstring''' __a =claim_vector __a =allocated_resources_table __a =maximum_claim_table def __magic_name__ ( self ) -> list[int]: '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def __magic_name__ ( self ) -> list[int]: '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def __magic_name__ ( self ) -> list[list[int]]: '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__snake_case ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def __magic_name__ ( self ) -> dict[int, list[int]]: '''simple docstring''' return {self.__need().index(__snake_case ): i for i in self.__need()} def __magic_name__ ( self , **__snake_case ) -> None: '''simple docstring''' __a =self.__need() __a =self.__allocated_resources_table __a =self.__available_resources() __a =self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: __a =False for each_need in need_list: __a =True for index, need in enumerate(__snake_case ): if need > available_resources[index]: __a =False break if execution: __a =True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __a =original_need_index print(f'Process {process_number + 1} is executing.' ) # remove the process run from stack need_list.remove(__snake_case ) # update available/freed resources stack __a =np.array(__snake_case ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(__snake_case ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( f'P{self.__allocated_resources_table.index(__snake_case ) + 1}' + ' '.join(f'{it:>8}' for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( f'P{self.__maximum_claim_table.index(__snake_case ) + 1}' + ' '.join(f'{it:>8}' for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(__snake_case ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(__snake_case ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
308
def UpperCamelCase_( _snake_case : str , _snake_case : int ): """simple docstring""" return [sentence[i : i + ngram_size] for i in range(len(_snake_case ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
308
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[Any] = logging.get_logger(__name__) _lowerCAmelCase : Union[str, Any] = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'ibert' def __init__( self , __snake_case=3_0522 , __snake_case=768 , __snake_case=12 , __snake_case=12 , __snake_case=3072 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=512 , __snake_case=2 , __snake_case=0.02 , __snake_case=1e-12 , __snake_case=1 , __snake_case=0 , __snake_case=2 , __snake_case="absolute" , __snake_case=False , __snake_case="none" , **__snake_case , ) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) __a =vocab_size __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =hidden_act __a =intermediate_size __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =max_position_embeddings __a =type_vocab_size __a =initializer_range __a =layer_norm_eps __a =position_embedding_type __a =quant_mode __a =force_dequant class __magic_name__ ( lowerCAmelCase_ ): @property def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": __a ={0: 'batch', 1: 'choice', 2: 'sequence'} else: __a ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
308
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class __magic_name__ ( pl.LightningModule ): def __init__( self , __snake_case ) -> List[Any]: '''simple docstring''' super().__init__() __a =model __a =2 __a =nn.Linear(self.model.config.hidden_size , self.num_labels ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' pass def UpperCamelCase_( _snake_case : str , _snake_case : str , _snake_case : str ): """simple docstring""" __a =LongformerModel.from_pretrained(_snake_case ) __a =LightningModel(_snake_case ) __a =torch.load(_snake_case , map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model __a =LongformerForQuestionAnswering.from_pretrained(_snake_case ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(_snake_case ) print(F'Conversion successful. Model saved under {pytorch_dump_folder_path}' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowerCAmelCase : Optional[int] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
308
1
def UpperCamelCase_( _snake_case : list ): """simple docstring""" if len(_snake_case ) <= 1: return lst __a =1 while i < len(_snake_case ): if lst[i - 1] <= lst[i]: i += 1 else: __a , __a =lst[i], lst[i - 1] i -= 1 if i == 0: __a =1 return lst if __name__ == "__main__": _lowerCAmelCase : Optional[int] = input("Enter numbers separated by a comma:\n").strip() _lowerCAmelCase : Tuple = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
308
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") _lowerCAmelCase : Optional[Any] = logging.getLogger(__name__) @dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) SCREAMING_SNAKE_CASE = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) SCREAMING_SNAKE_CASE = field( default=1_0_2_4 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the training data.'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the validation data.'} ) SCREAMING_SNAKE_CASE = field(default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the test data.'} ) def __magic_name__ ( self ) -> str: '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: __a =self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __a =self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) SCREAMING_SNAKE_CASE = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def UpperCamelCase_( ): """simple docstring""" __a =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __a , __a , __a =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __a , __a , __a =parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) __a =training_args.get_process_log_level() logger.setLevel(_snake_case ) datasets.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __a =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __a =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __a =load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __a ={'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __a =data_args.train_file.split('.' )[-1] __a =data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __a =data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(F'load a local file for {key}: {data_files[key]}' ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files __a =load_dataset('csv' , data_files=_snake_case , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __a =load_dataset('json' , data_files=_snake_case , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __a =raw_datasets['train'].features['label'].names __a =len(_snake_case ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __a =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __a =TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=_snake_case , ) __a =BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __a ='max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __a =False # Some models have set the order of the labels to use, so let's make sure we do use it. __a ={'Refused': 0, 'Entailed': 1} __a ={0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __a =min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(_snake_case : Tuple ): # Tokenize the texts def _convert_table_text_to_pandas(_snake_case : Optional[Any] ): __a =[_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] __a =pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __a =examples['statement'] __a =list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) __a =tokenizer(_snake_case , _snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case ) __a =examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): __a =raw_datasets.map( _snake_case , batched=_snake_case , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) __a =raw_datasets['train'] if data_args.max_train_samples is not None: __a =train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) __a =raw_datasets['validation'] if data_args.max_eval_samples is not None: __a =eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) __a =raw_datasets['test'] if data_args.max_predict_samples is not None: __a =predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(_snake_case ) ) , 3 ): logger.info(F'Sample {index} of the training set: {train_dataset[index]}.' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_snake_case : EvalPrediction ): __a =p.predictions[0] if isinstance(p.predictions , _snake_case ) else p.predictions __a =np.argmax(_snake_case , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __a =default_data_collator elif training_args.fpaa: __a =DataCollatorWithPadding(_snake_case , pad_to_multiple_of=8 ) else: __a =None # Initialize our Trainer __a =Trainer( model=_snake_case , args=_snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_snake_case , tokenizer=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: __a =None if training_args.resume_from_checkpoint is not None: __a =training_args.resume_from_checkpoint elif last_checkpoint is not None: __a =last_checkpoint __a =trainer.train(resume_from_checkpoint=_snake_case ) __a =train_result.metrics __a =( data_args.max_train_samples if data_args.max_train_samples is not None else len(_snake_case ) ) __a =min(_snake_case , len(_snake_case ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , _snake_case ) trainer.save_metrics('train' , _snake_case ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __a =trainer.evaluate(eval_dataset=_snake_case ) __a =data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_snake_case ) __a =min(_snake_case , len(_snake_case ) ) trainer.log_metrics('eval' , _snake_case ) trainer.save_metrics('eval' , _snake_case ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __a =predict_dataset.remove_columns('label' ) __a =trainer.predict(_snake_case , metric_key_prefix='predict' ).predictions __a =np.argmax(_snake_case , axis=1 ) __a =os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(_snake_case , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(_snake_case ): __a =label_list[item] writer.write(F'{index}\t{item}\n' ) __a ={'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**_snake_case ) else: trainer.create_model_card(**_snake_case ) def UpperCamelCase_( _snake_case : Union[str, Any] ): """simple docstring""" main() if __name__ == "__main__": main()
308
1
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase : List[str] = { "facebook/mask2former-swin-small-coco-instance": ( "https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'mask2former' SCREAMING_SNAKE_CASE = ['swin'] SCREAMING_SNAKE_CASE = {'hidden_size': 'hidden_dim'} def __init__( self , __snake_case = None , __snake_case = 256 , __snake_case = 256 , __snake_case = 256 , __snake_case = 1024 , __snake_case = "relu" , __snake_case = 6 , __snake_case = 10 , __snake_case = 8 , __snake_case = 0.0 , __snake_case = 2048 , __snake_case = False , __snake_case = False , __snake_case = 4 , __snake_case = 255 , __snake_case = 100 , __snake_case = 0.1 , __snake_case = 2.0 , __snake_case = 5.0 , __snake_case = 5.0 , __snake_case = 1_2544 , __snake_case = 3.0 , __snake_case = 0.75 , __snake_case = 0.02 , __snake_case = 1.0 , __snake_case = True , __snake_case = [4, 8, 16, 32] , __snake_case = None , **__snake_case , ) -> str: '''simple docstring''' if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' ) __a =CONFIG_MAPPING['swin']( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=__snake_case , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(__snake_case , __snake_case ): __a =backbone_config.pop('model_type' ) __a =CONFIG_MAPPING[backbone_model_type] __a =config_class.from_dict(__snake_case ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ' f'Supported model types: {",".join(self.backbones_supported )}' ) __a =backbone_config __a =feature_size __a =mask_feature_size __a =hidden_dim __a =encoder_feedforward_dim __a =activation_function __a =encoder_layers __a =decoder_layers __a =num_attention_heads __a =dropout __a =dim_feedforward __a =pre_norm __a =enforce_input_projection __a =common_stride __a =ignore_value __a =num_queries __a =no_object_weight __a =class_weight __a =mask_weight __a =dice_weight __a =train_num_points __a =oversample_ratio __a =importance_sample_ratio __a =init_std __a =init_xavier_std __a =use_auxiliary_loss __a =feature_strides __a =output_auxiliary_logits __a =decoder_layers super().__init__(**__snake_case ) @classmethod def __magic_name__ ( cls , __snake_case , **__snake_case ) -> str: '''simple docstring''' return cls( backbone_config=__snake_case , **__snake_case , ) def __magic_name__ ( self ) -> Dict[str, any]: '''simple docstring''' __a =copy.deepcopy(self.__dict__ ) __a =self.backbone_config.to_dict() __a =self.__class__.model_type return output
308
from __future__ import annotations import time import numpy as np _lowerCAmelCase : List[str] = [8, 5, 9, 7] _lowerCAmelCase : List[str] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] _lowerCAmelCase : List[Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class __magic_name__ : def __init__( self , __snake_case , __snake_case , __snake_case , ) -> None: '''simple docstring''' __a =claim_vector __a =allocated_resources_table __a =maximum_claim_table def __magic_name__ ( self ) -> list[int]: '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def __magic_name__ ( self ) -> list[int]: '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def __magic_name__ ( self ) -> list[list[int]]: '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__snake_case ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def __magic_name__ ( self ) -> dict[int, list[int]]: '''simple docstring''' return {self.__need().index(__snake_case ): i for i in self.__need()} def __magic_name__ ( self , **__snake_case ) -> None: '''simple docstring''' __a =self.__need() __a =self.__allocated_resources_table __a =self.__available_resources() __a =self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: __a =False for each_need in need_list: __a =True for index, need in enumerate(__snake_case ): if need > available_resources[index]: __a =False break if execution: __a =True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __a =original_need_index print(f'Process {process_number + 1} is executing.' ) # remove the process run from stack need_list.remove(__snake_case ) # update available/freed resources stack __a =np.array(__snake_case ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(__snake_case ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( f'P{self.__allocated_resources_table.index(__snake_case ) + 1}' + ' '.join(f'{it:>8}' for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( f'P{self.__maximum_claim_table.index(__snake_case ) + 1}' + ' '.join(f'{it:>8}' for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(__snake_case ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(__snake_case ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
308
1
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def UpperCamelCase_( ): """simple docstring""" __a =ArgumentParser( description=( 'PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=_snake_case , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=_snake_case , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=_snake_case ) return parser.parse_args() def UpperCamelCase_( ): """simple docstring""" __a =parse_args() # Import training_script as a module. __a =Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __a =script_fpath.stem __a =importlib.import_module(_snake_case ) # Patch sys.argv __a =[args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
308
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency _lowerCAmelCase : Tuple = { "E": 12.70, "T": 9.06, "A": 8.17, "O": 7.51, "I": 6.97, "N": 6.75, "S": 6.33, "H": 6.09, "R": 5.99, "D": 4.25, "L": 4.03, "C": 2.78, "U": 2.76, "M": 2.41, "W": 2.36, "F": 2.23, "G": 2.02, "Y": 1.97, "P": 1.93, "B": 1.29, "V": 0.98, "K": 0.77, "J": 0.15, "X": 0.15, "Q": 0.10, "Z": 0.07, } _lowerCAmelCase : Optional[int] = "ETAOINSHRDLCUMWFGYPBVKJXQZ" _lowerCAmelCase : Any = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a ={letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def UpperCamelCase_( _snake_case : tuple ): """simple docstring""" return x[0] def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =get_letter_count(_snake_case ) __a ={ freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(_snake_case ) __a ={} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=_snake_case ) __a =''.join(freq_to_letter[freq] ) __a =list(freq_to_letter_str.items() ) freq_pairs.sort(key=_snake_case , reverse=_snake_case ) __a =[freq_pair[1] for freq_pair in freq_pairs] return "".join(_snake_case ) def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =get_frequency_order(_snake_case ) __a =0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
308
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCAmelCase : Any = {"configuration_mra": ["MRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MraConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ "MRA_PRETRAINED_MODEL_ARCHIVE_LIST", "MraForMaskedLM", "MraForMultipleChoice", "MraForQuestionAnswering", "MraForSequenceClassification", "MraForTokenClassification", "MraLayer", "MraModel", "MraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys _lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure)
308
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : int = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'swin2sr' SCREAMING_SNAKE_CASE = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , __snake_case=64 , __snake_case=1 , __snake_case=3 , __snake_case=180 , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=8 , __snake_case=2.0 , __snake_case=True , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.1 , __snake_case="gelu" , __snake_case=False , __snake_case=0.02 , __snake_case=1e-5 , __snake_case=2 , __snake_case=1.0 , __snake_case="1conv" , __snake_case="pixelshuffle" , **__snake_case , ) -> Dict: '''simple docstring''' super().__init__(**__snake_case ) __a =image_size __a =patch_size __a =num_channels __a =embed_dim __a =depths __a =len(__snake_case ) __a =num_heads __a =window_size __a =mlp_ratio __a =qkv_bias __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =drop_path_rate __a =hidden_act __a =use_absolute_embeddings __a =layer_norm_eps __a =initializer_range __a =upscale __a =img_range __a =resi_connection __a =upsampler
308
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _lowerCAmelCase : str = logging.get_logger(__name__) def UpperCamelCase_( _snake_case : List[Any] , _snake_case : Any ): """simple docstring""" __a =b.T __a =np.sum(np.square(_snake_case ) , axis=1 ) __a =np.sum(np.square(_snake_case ) , axis=0 ) __a =np.matmul(_snake_case , _snake_case ) __a =aa[:, None] - 2 * ab + ba[None, :] return d def UpperCamelCase_( _snake_case : str , _snake_case : Union[str, Any] ): """simple docstring""" __a =x.reshape(-1 , 3 ) __a =squared_euclidean_distance(_snake_case , _snake_case ) return np.argmin(_snake_case , axis=1 ) class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = ['pixel_values'] def __init__( self , __snake_case = None , __snake_case = True , __snake_case = None , __snake_case = PILImageResampling.BILINEAR , __snake_case = True , __snake_case = True , **__snake_case , ) -> None: '''simple docstring''' super().__init__(**__snake_case ) __a =size if size is not None else {'height': 256, 'width': 256} __a =get_size_dict(__snake_case ) __a =np.array(__snake_case ) if clusters is not None else None __a =do_resize __a =size __a =resample __a =do_normalize __a =do_color_quantize def __magic_name__ ( self , __snake_case , __snake_case , __snake_case = PILImageResampling.BILINEAR , __snake_case = None , **__snake_case , ) -> np.ndarray: '''simple docstring''' __a =get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(f'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( __snake_case , size=(size['height'], size['width']) , resample=__snake_case , data_format=__snake_case , **__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case = None , ) -> np.ndarray: '''simple docstring''' __a =rescale(image=__snake_case , scale=1 / 127.5 , data_format=__snake_case ) __a =image - 1 return image def __magic_name__ ( self , __snake_case , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = ChannelDimension.FIRST , **__snake_case , ) -> PIL.Image.Image: '''simple docstring''' __a =do_resize if do_resize is not None else self.do_resize __a =size if size is not None else self.size __a =get_size_dict(__snake_case ) __a =resample if resample is not None else self.resample __a =do_normalize if do_normalize is not None else self.do_normalize __a =do_color_quantize if do_color_quantize is not None else self.do_color_quantize __a =clusters if clusters is not None else self.clusters __a =np.array(__snake_case ) __a =make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_color_quantize and clusters is None: raise ValueError('Clusters must be specified if do_color_quantize is True.' ) # All transformations expect numpy arrays. __a =[to_numpy_array(__snake_case ) for image in images] if do_resize: __a =[self.resize(image=__snake_case , size=__snake_case , resample=__snake_case ) for image in images] if do_normalize: __a =[self.normalize(image=__snake_case ) for image in images] if do_color_quantize: __a =[to_channel_dimension_format(__snake_case , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) __a =np.array(__snake_case ) __a =color_quantize(__snake_case , __snake_case ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) __a =images.shape[0] __a =images.reshape(__snake_case , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. __a =list(__snake_case ) else: __a =[to_channel_dimension_format(__snake_case , __snake_case ) for image in images] __a ={'input_ids': images} return BatchFeature(data=__snake_case , tensor_type=__snake_case )
308
import os def UpperCamelCase_( _snake_case : str = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(_snake_case ) , _snake_case ) ) as input_file: __a =[ [int(_snake_case ) for element in line.split(',' )] for line in input_file.readlines() ] __a =len(_snake_case ) __a =len(matrix[0] ) __a =[[-1 for _ in range(_snake_case )] for _ in range(_snake_case )] for i in range(_snake_case ): __a =matrix[i][0] for j in range(1 , _snake_case ): for i in range(_snake_case ): __a =minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _snake_case ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
308
1
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 _lowerCAmelCase : Union[str, Any] = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class __magic_name__ : def __init__( self , __snake_case = 14 ) -> None: '''simple docstring''' if group not in primes: raise ValueError('Unsupported Group' ) __a =primes[group]['prime'] __a =primes[group]['generator'] __a =int(hexlify(urandom(32 ) ) , base=16 ) def __magic_name__ ( self ) -> str: '''simple docstring''' return hex(self.__private_key )[2:] def __magic_name__ ( self ) -> str: '''simple docstring''' __a =pow(self.generator , self.__private_key , self.prime ) return hex(__snake_case )[2:] def __magic_name__ ( self , __snake_case ) -> bool: '''simple docstring''' # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(__snake_case , (self.prime - 1) // 2 , self.prime ) == 1 ) def __magic_name__ ( self , __snake_case ) -> str: '''simple docstring''' __a =int(__snake_case , base=16 ) if not self.is_valid_public_key(__snake_case ): raise ValueError('Invalid public key' ) __a =pow(__snake_case , self.__private_key , self.prime ) return shaaaa(str(__snake_case ).encode() ).hexdigest() @staticmethod def __magic_name__ ( __snake_case , __snake_case ) -> bool: '''simple docstring''' # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(__snake_case , (prime - 1) // 2 , __snake_case ) == 1 ) @staticmethod def __magic_name__ ( __snake_case , __snake_case , __snake_case = 14 ) -> str: '''simple docstring''' __a =int(__snake_case , base=16 ) __a =int(__snake_case , base=16 ) __a =primes[group]['prime'] if not DiffieHellman.is_valid_public_key_static(__snake_case , __snake_case ): raise ValueError('Invalid public key' ) __a =pow(__snake_case , __snake_case , __snake_case ) return shaaaa(str(__snake_case ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
308
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _lowerCAmelCase : Any = logging.get_logger(__name__) class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , *__snake_case , **__snake_case ) -> None: '''simple docstring''' warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
308
1
from __future__ import annotations def UpperCamelCase_( _snake_case : float , _snake_case : float , _snake_case : float , ): """simple docstring""" if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif stress < 0: raise ValueError('Stress cannot be negative' ) elif tangential_force < 0: raise ValueError('Tangential Force cannot be negative' ) elif area < 0: raise ValueError('Area cannot be negative' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
308
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : int = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
1
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _lowerCAmelCase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name _lowerCAmelCase : Union[str, Any] = "\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)[\"depth\"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline(\"depth-estimation\")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to(\"cuda\")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to(\"cuda\")\n\n\n >>> img = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/cat.png\"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\")\n\n >>> prompt = \"A robot, 4k photo\"\n >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\"\n\n >>> generator = torch.Generator(device=\"cuda\").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save(\"robot_cat.png\")\n ```\n" def UpperCamelCase_( _snake_case : Dict , _snake_case : int , _snake_case : List[Any]=8 ): """simple docstring""" __a =height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __a =width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , __snake_case , __snake_case , __snake_case , ) -> Optional[int]: '''simple docstring''' super().__init__() self.register_modules( unet=__snake_case , scheduler=__snake_case , movq=__snake_case , ) __a =2 ** (len(self.movq.config.block_out_channels ) - 1) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> Optional[Any]: '''simple docstring''' if latents is None: __a =randn_tensor(__snake_case , generator=__snake_case , device=__snake_case , dtype=__snake_case ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) __a =latents.to(__snake_case ) __a =latents * scheduler.init_noise_sigma return latents def __magic_name__ ( self , __snake_case=0 ) -> List[str]: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) __a =torch.device(f'cuda:{gpu_id}' ) __a =[ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__snake_case , __snake_case ) def __magic_name__ ( self , __snake_case=0 ) -> List[str]: '''simple docstring''' if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) __a =torch.device(f'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=__snake_case ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __a =None for cpu_offloaded_model in [self.unet, self.movq]: __a , __a =cpu_offload_with_hook(__snake_case , __snake_case , prev_module_hook=__snake_case ) # We'll offload the last model manually. __a =hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __magic_name__ ( self ) -> Any: '''simple docstring''' if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(__snake_case , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__snake_case ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case = 512 , __snake_case = 512 , __snake_case = 100 , __snake_case = 4.0 , __snake_case = 1 , __snake_case = None , __snake_case = None , __snake_case = "pil" , __snake_case = True , ) -> str: '''simple docstring''' __a =self._execution_device __a =guidance_scale > 1.0 if isinstance(__snake_case , __snake_case ): __a =torch.cat(__snake_case , dim=0 ) if isinstance(__snake_case , __snake_case ): __a =torch.cat(__snake_case , dim=0 ) if isinstance(__snake_case , __snake_case ): __a =torch.cat(__snake_case , dim=0 ) __a =image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __a =image_embeds.repeat_interleave(__snake_case , dim=0 ) __a =negative_image_embeds.repeat_interleave(__snake_case , dim=0 ) __a =hint.repeat_interleave(__snake_case , dim=0 ) __a =torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=__snake_case ) __a =torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=__snake_case ) self.scheduler.set_timesteps(__snake_case , device=__snake_case ) __a =self.scheduler.timesteps __a =self.movq.config.latent_channels __a , __a =downscale_height_and_width(__snake_case , __snake_case , self.movq_scale_factor ) # create initial latent __a =self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , __snake_case , __snake_case , __snake_case , self.scheduler , ) for i, t in enumerate(self.progress_bar(__snake_case ) ): # expand the latents if we are doing classifier free guidance __a =torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __a ={'image_embeds': image_embeds, 'hint': hint} __a =self.unet( sample=__snake_case , timestep=__snake_case , encoder_hidden_states=__snake_case , added_cond_kwargs=__snake_case , return_dict=__snake_case , )[0] if do_classifier_free_guidance: __a , __a =noise_pred.split(latents.shape[1] , dim=1 ) __a , __a =noise_pred.chunk(2 ) __a , __a =variance_pred.chunk(2 ) __a =noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __a =torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __a , __a =noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __a =self.scheduler.step( __snake_case , __snake_case , __snake_case , generator=__snake_case , )[0] # post-processing __a =self.movq.decode(__snake_case , force_not_quantize=__snake_case )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: __a =image * 0.5 + 0.5 __a =image.clamp(0 , 1 ) __a =image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __a =self.numpy_to_pil(__snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=__snake_case )
308
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'yolos' def __init__( self , __snake_case=768 , __snake_case=12 , __snake_case=12 , __snake_case=3072 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.02 , __snake_case=1e-12 , __snake_case=[512, 864] , __snake_case=16 , __snake_case=3 , __snake_case=True , __snake_case=100 , __snake_case=True , __snake_case=False , __snake_case=1 , __snake_case=5 , __snake_case=2 , __snake_case=5 , __snake_case=2 , __snake_case=0.1 , **__snake_case , ) -> str: '''simple docstring''' super().__init__(**__snake_case ) __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =intermediate_size __a =hidden_act __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =initializer_range __a =layer_norm_eps __a =image_size __a =patch_size __a =num_channels __a =qkv_bias __a =num_detection_tokens __a =use_mid_position_embeddings __a =auxiliary_loss # Hungarian matcher __a =class_cost __a =bbox_cost __a =giou_cost # Loss coefficients __a =bbox_loss_coefficient __a =giou_loss_coefficient __a =eos_coefficient class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = version.parse('1.11' ) @property def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __magic_name__ ( self ) -> float: '''simple docstring''' return 1e-4 @property def __magic_name__ ( self ) -> int: '''simple docstring''' return 12
308
1
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline _lowerCAmelCase : int = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase_ ) class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , **__snake_case ) -> Dict: '''simple docstring''' super().__init__(**__snake_case ) if self.framework != "pt": raise ValueError(f'The {self.__class__} is only available in PyTorch.' ) # No specific FOR_XXX available yet def __call__( self , __snake_case , **__snake_case ) -> Union[str, Any]: '''simple docstring''' return super().__call__(__snake_case , **__snake_case ) def __magic_name__ ( self , **__snake_case ) -> str: '''simple docstring''' __a ={} if "candidate_labels" in kwargs: __a =kwargs['candidate_labels'] if "hypothesis_template" in kwargs: __a =kwargs['hypothesis_template'] return preprocess_params, {}, {} def __magic_name__ ( self , __snake_case , __snake_case=None , __snake_case="This is a sound of {}." ) -> Optional[int]: '''simple docstring''' if isinstance(__snake_case , __snake_case ): if audio.startswith('http://' ) or audio.startswith('https://' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png __a =requests.get(__snake_case ).content else: with open(__snake_case , 'rb' ) as f: __a =f.read() if isinstance(__snake_case , __snake_case ): __a =ffmpeg_read(__snake_case , self.feature_extractor.sampling_rate ) if not isinstance(__snake_case , np.ndarray ): raise ValueError('We expect a numpy ndarray as input' ) if len(audio.shape ) != 1: raise ValueError('We expect a single channel audio input for ZeroShotAudioClassificationPipeline' ) __a =self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='pt' ) __a =candidate_labels __a =[hypothesis_template.format(__snake_case ) for x in candidate_labels] __a =self.tokenizer(__snake_case , return_tensors=self.framework , padding=__snake_case ) __a =[text_inputs] return inputs def __magic_name__ ( self , __snake_case ) -> List[str]: '''simple docstring''' __a =model_inputs.pop('candidate_labels' ) __a =model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , __snake_case ): __a =text_inputs[0] else: # Batching case. __a =text_inputs[0][0] __a =self.model(**__snake_case , **__snake_case ) __a ={ 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_audio, } return model_outputs def __magic_name__ ( self , __snake_case ) -> Optional[int]: '''simple docstring''' __a =model_outputs.pop('candidate_labels' ) __a =model_outputs['logits'][0] if self.framework == "pt": __a =logits.softmax(dim=0 ) __a =probs.tolist() else: raise ValueError('`tf` framework not supported.' ) __a =[ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(__snake_case , __snake_case ) , key=lambda __snake_case : -x[0] ) ] return result
308
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def UpperCamelCase_( _snake_case : Optional[Any] ): """simple docstring""" __a =model.config __a =DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) __a =MBartConfig( is_decoder=_snake_case , is_encoder_decoder=_snake_case , add_cross_attention=_snake_case , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=_snake_case , add_final_layer_norm=_snake_case , ) return encoder_config, decoder_config def UpperCamelCase_( _snake_case : Tuple ): """simple docstring""" if "encoder.model" in name: __a =name.replace('encoder.model' , 'encoder' ) if "decoder.model" in name: __a =name.replace('decoder.model' , 'decoder' ) if "patch_embed.proj" in name: __a =name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __a =name.replace('patch_embed.norm' , 'embeddings.norm' ) if name.startswith('encoder' ): if "layers" in name: __a ='encoder.' + name if "attn.proj" in name: __a =name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "mask" not in name: __a =name.replace('attn' , 'attention.self' ) if "norm1" in name: __a =name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __a =name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __a =name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __a =name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": __a ='encoder.layernorm.weight' if name == "encoder.norm.bias": __a ='encoder.layernorm.bias' return name def UpperCamelCase_( _snake_case : Tuple , _snake_case : str ): """simple docstring""" for key in orig_state_dict.copy().keys(): __a =orig_state_dict.pop(_snake_case ) if "qkv" in key: __a =key.split('.' ) __a =int(key_split[3] ) __a =int(key_split[5] ) __a =model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __a =val[:dim, :] __a =val[dim : dim * 2, :] __a =val[-dim:, :] else: __a =val[:dim] __a =val[dim : dim * 2] __a =val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: __a =val return orig_state_dict def UpperCamelCase_( _snake_case : Tuple , _snake_case : Union[str, Any]=None , _snake_case : List[Any]=False ): """simple docstring""" __a =DonutModel.from_pretrained(_snake_case ).eval() # load HuggingFace model __a , __a =get_configs(_snake_case ) __a =DonutSwinModel(_snake_case ) __a =MBartForCausalLM(_snake_case ) __a =VisionEncoderDecoderModel(encoder=_snake_case , decoder=_snake_case ) model.eval() __a =original_model.state_dict() __a =convert_state_dict(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) # verify results on scanned document __a =load_dataset('hf-internal-testing/example-documents' ) __a =dataset['test'][0]['image'].convert('RGB' ) __a =XLMRobertaTokenizerFast.from_pretrained(_snake_case , from_slow=_snake_case ) __a =DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) __a =DonutProcessor(_snake_case , _snake_case ) __a =processor(_snake_case , return_tensors='pt' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": __a ='<s_docvqa><s_question>{user_input}</s_question><s_answer>' __a ='When is the coffee break?' __a =task_prompt.replace('{user_input}' , _snake_case ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": __a ='<s_rvlcdip>' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: __a ='<s_cord>' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": __a ='s_cord-v2>' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": __a ='<s_zhtrainticket>' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt __a ='hello world' else: raise ValueError('Model name not supported' ) __a =original_model.decoder.tokenizer(_snake_case , add_special_tokens=_snake_case , return_tensors='pt' )[ 'input_ids' ] __a =original_model.encoder.model.patch_embed(_snake_case ) __a , __a =model.encoder.embeddings(_snake_case ) assert torch.allclose(_snake_case , _snake_case , atol=1e-3 ) # verify encoder hidden states __a =original_model.encoder(_snake_case ) __a =model.encoder(_snake_case ).last_hidden_state assert torch.allclose(_snake_case , _snake_case , atol=1e-2 ) # verify decoder hidden states __a =original_model(_snake_case , _snake_case , _snake_case ).logits __a =model(_snake_case , decoder_input_ids=_snake_case ).logits assert torch.allclose(_snake_case , _snake_case , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(_snake_case ) processor.save_pretrained(_snake_case ) if push_to_hub: model.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) processor.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) _lowerCAmelCase : List[Any] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
308
1
from __future__ import annotations from typing import Any def UpperCamelCase_( _snake_case : list[Any] ): """simple docstring""" create_state_space_tree(_snake_case , [] , 0 ) def UpperCamelCase_( _snake_case : list[Any] , _snake_case : list[Any] , _snake_case : int ): """simple docstring""" if index == len(_snake_case ): print(_snake_case ) return create_state_space_tree(_snake_case , _snake_case , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(_snake_case , _snake_case , index + 1 ) current_subsequence.pop() if __name__ == "__main__": _lowerCAmelCase : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["A", "B", "C"]) generate_all_subsequences(seq)
308
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer SCREAMING_SNAKE_CASE = False def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' super().setUp() __a =['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] __a =dict(zip(__snake_case , range(len(__snake_case ) ) ) ) __a =['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] __a ={'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__snake_case ) ) def __magic_name__ ( self , **__snake_case ) -> Any: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def __magic_name__ ( self , __snake_case ) -> List[Any]: '''simple docstring''' __a ='adapt act apte' __a ='adapt act apte' return input_text, output_text def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __a ='adapt act apte' __a =['adapt', 'act', 'ap@@', 'te'] __a =tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) __a =[tokenizer.bos_token] + tokens + [tokenizer.eos_token] __a =[0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1384] __a ='I am a small frog.' __a =tok([src_text] , padding=__snake_case , truncation=__snake_case )['input_ids'] __a =tok.batch_decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) __a ='I am a small frog .' __a ='.' __a =tok(__snake_case )['input_ids'] __a =tok(__snake_case )['input_ids'] assert encoded[-1] == encoded_dot[0]
308
1
import os from datetime import datetime as dt from github import Github _lowerCAmelCase : str = [ "good first issue", "good second issue", "good difficult issue", "enhancement", "new pipeline/model", "new scheduler", "wip", ] def UpperCamelCase_( ): """simple docstring""" __a =Github(os.environ['GITHUB_TOKEN'] ) __a =g.get_repo('huggingface/diffusers' ) __a =repo.get_issues(state='open' ) for issue in open_issues: __a =sorted(issue.get_comments() , key=lambda _snake_case : i.created_at , reverse=_snake_case ) __a =comments[0] if len(_snake_case ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open' ) issue.remove_from_labels('stale' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) issue.add_to_labels('stale' ) if __name__ == "__main__": main()
308
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __magic_name__ ( unittest.TestCase , lowerCAmelCase_ ): def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =load_tool('text-to-speech' ) self.tool.setup() def __magic_name__ ( self ) -> Dict: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) __a =self.tool('hey' ) __a =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) __a =self.tool('hey' ) __a =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) )
308
1
_lowerCAmelCase : int = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def UpperCamelCase_( ): """simple docstring""" __a =input('Enter message: ' ) __a =input('Enter key [alphanumeric]: ' ) __a =input('Encrypt/Decrypt [e/d]: ' ) if mode.lower().startswith('e' ): __a ='encrypt' __a =encrypt_message(_snake_case , _snake_case ) elif mode.lower().startswith('d' ): __a ='decrypt' __a =decrypt_message(_snake_case , _snake_case ) print(F'\n{mode.title()}ed message:' ) print(_snake_case ) def UpperCamelCase_( _snake_case : str , _snake_case : str ): """simple docstring""" return translate_message(_snake_case , _snake_case , 'encrypt' ) def UpperCamelCase_( _snake_case : str , _snake_case : str ): """simple docstring""" return translate_message(_snake_case , _snake_case , 'decrypt' ) def UpperCamelCase_( _snake_case : str , _snake_case : str , _snake_case : str ): """simple docstring""" __a =[] __a =0 __a =key.upper() for symbol in message: __a =LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_snake_case ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_snake_case ): __a =0 else: translated.append(_snake_case ) return "".join(_snake_case ) if __name__ == "__main__": main()
308
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> int: '''simple docstring''' __a =[] __a =[] for i in range(self.num_layers ): __a =self.in_channels if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =resnets __a =attentions if self.add_downsample: __a =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> Optional[Any]: '''simple docstring''' __a =() for resnet, attn in zip(self.resnets , self.attentions ): __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __a =self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> int: '''simple docstring''' __a =[] for i in range(self.num_layers ): __a =self.in_channels if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets if self.add_downsample: __a =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case=True ) -> Optional[int]: '''simple docstring''' __a =() for resnet in self.resnets: __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __a =self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =[] __a =[] for i in range(self.num_layers ): __a =self.in_channels if (i == self.num_layers - 1) else self.out_channels __a =self.prev_output_channel if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =resnets __a =attentions if self.add_upsample: __a =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[Any]: '''simple docstring''' for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states __a =res_hidden_states_tuple[-1] __a =res_hidden_states_tuple[:-1] __a =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __a =self.upsamplers_a(__snake_case ) return hidden_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =[] for i in range(self.num_layers ): __a =self.in_channels if (i == self.num_layers - 1) else self.out_channels __a =self.prev_output_channel if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets if self.add_upsample: __a =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[Any]: '''simple docstring''' for resnet in self.resnets: # pop res hidden states __a =res_hidden_states_tuple[-1] __a =res_hidden_states_tuple[:-1] __a =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __a =self.upsamplers_a(__snake_case ) return hidden_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # there is always at least one resnet __a =[ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] __a =[] for _ in range(self.num_layers ): __a =FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets __a =attentions def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[str]: '''simple docstring''' __a =self.resnets[0](__snake_case , __snake_case ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) return hidden_states
308
1
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = {"vocab_file": "vocab.txt"} _lowerCAmelCase : Any = { "vocab_file": { "openbmb/cpm-ant-10b": "https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt", }, } _lowerCAmelCase : List[str] = { "openbmb/cpm-ant-10b": 1_024, } def UpperCamelCase_( _snake_case : Dict ): """simple docstring""" __a =collections.OrderedDict() with open(_snake_case , 'r' , encoding='utf-8' ) as reader: __a =reader.readlines() for index, token in enumerate(_snake_case ): __a =token.rstrip('\n' ) __a =index return vocab class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , __snake_case , __snake_case="<unk>" , __snake_case=200 ) -> int: '''simple docstring''' __a =vocab __a =unk_token __a =max_input_chars_per_word def __magic_name__ ( self , __snake_case ) -> Dict: '''simple docstring''' __a =list(__snake_case ) if len(__snake_case ) > self.max_input_chars_per_word: return [self.unk_token] __a =0 __a =[] while start < len(__snake_case ): __a =len(__snake_case ) __a =None while start < end: __a =''.join(chars[start:end] ) if substr in self.vocab: __a =substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(__snake_case ) __a =end return sub_tokens class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] SCREAMING_SNAKE_CASE = False def __init__( self , __snake_case , __snake_case="<d>" , __snake_case="</d>" , __snake_case="<s>" , __snake_case="</s>" , __snake_case="<pad>" , __snake_case="<unk>" , __snake_case="</n>" , __snake_case="</_>" , __snake_case="left" , **__snake_case , ) -> List[str]: '''simple docstring''' requires_backends(self , ['jieba'] ) super().__init__( bod_token=__snake_case , eod_token=__snake_case , bos_token=__snake_case , eos_token=__snake_case , pad_token=__snake_case , unk_token=__snake_case , line_token=__snake_case , space_token=__snake_case , padding_side=__snake_case , **__snake_case , ) __a =bod_token __a =eod_token __a =load_vocab(__snake_case ) __a =self.encoder[space_token] __a =self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] __a =collections.OrderedDict(sorted(self.encoder.items() , key=lambda __snake_case : x[1] ) ) __a ={v: k for k, v in self.encoder.items()} __a =WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __magic_name__ ( self ) -> List[str]: '''simple docstring''' return self.encoder[self.bod_token] @property def __magic_name__ ( self ) -> Tuple: '''simple docstring''' return self.encoder[self.eod_token] @property def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' return self.encoder["\n"] @property def __magic_name__ ( self ) -> int: '''simple docstring''' return len(self.encoder ) def __magic_name__ ( self ) -> str: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self , __snake_case ) -> Union[str, Any]: '''simple docstring''' __a =[] for x in jieba.cut(__snake_case , cut_all=__snake_case ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(__snake_case ) ) return output_tokens def __magic_name__ ( self , __snake_case , **__snake_case ) -> str: '''simple docstring''' __a =[i for i in token_ids if i >= 0] __a =[ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(__snake_case , **__snake_case ) def __magic_name__ ( self , __snake_case ) -> Tuple: '''simple docstring''' return token in self.encoder def __magic_name__ ( self , __snake_case ) -> str: '''simple docstring''' return "".join(__snake_case ) def __magic_name__ ( self , __snake_case ) -> str: '''simple docstring''' return self.encoder.get(__snake_case , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self , __snake_case ) -> List[Any]: '''simple docstring''' return self.decoder.get(__snake_case , self.unk_token ) def __magic_name__ ( self , __snake_case , __snake_case = None ) -> Tuple[str]: '''simple docstring''' if os.path.isdir(__snake_case ): __a =os.path.join( __snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: __a =(filename_prefix + '-' if filename_prefix else '') + save_directory __a =0 if " " in self.encoder: __a =self.encoder[' '] del self.encoder[" "] if "\n" in self.encoder: __a =self.encoder['\n'] del self.encoder["\n"] __a =collections.OrderedDict(sorted(self.encoder.items() , key=lambda __snake_case : x[1] ) ) with open(__snake_case , 'w' , encoding='utf-8' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ' Please check that the vocabulary is not corrupted!' ) __a =token_index writer.write(token + '\n' ) index += 1 return (vocab_file,) def __magic_name__ ( self , __snake_case , __snake_case = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __magic_name__ ( self , __snake_case , __snake_case = None , __snake_case = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is not None: return [1] + ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case )) return [1] + ([0] * len(__snake_case ))
308
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_5_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self ) -> int: '''simple docstring''' if self.framework == "pytorch": subprocess.run( f'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding='utf-8' , check=__snake_case , ) assert hasattr(self , 'env' ) def __magic_name__ ( self , __snake_case ) -> int: '''simple docstring''' __a =f'{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}' # distributed data settings __a ={'smdistributed': {'dataparallel': {'enabled': True}}} if self.script != 'run_ddp.py' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__snake_case , instance_count=__snake_case , instance_type=self.instance_type , debugger_hook_config=__snake_case , hyperparameters={**self.env.distributed_hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__snake_case , py_version='py36' , ) def __magic_name__ ( self , __snake_case ) -> Optional[Any]: '''simple docstring''' TrainingJobAnalytics(__snake_case ).export_csv(f'{self.env.test_path}/{job_name}_metrics.csv' ) @parameterized.expand([(2,)] ) def __magic_name__ ( self , __snake_case ) -> Optional[int]: '''simple docstring''' # create estimator __a =self.create_estimator(__snake_case ) # run training estimator.fit() # result dataframe __a =TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __a =list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) __a =list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __a =( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'{estimator.latest_training_job.name}.json' , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , __snake_case )
308
1
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __magic_name__ : @staticmethod def __magic_name__ ( *__snake_case , **__snake_case ) -> List[str]: '''simple docstring''' pass def UpperCamelCase_( _snake_case : Image ): """simple docstring""" __a =hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __magic_name__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def __magic_name__ ( self , __snake_case , __snake_case , __snake_case ) -> Dict: '''simple docstring''' __a =DepthEstimationPipeline(model=__snake_case , image_processor=__snake_case ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __magic_name__ ( self , __snake_case , __snake_case ) -> Tuple: '''simple docstring''' __a =depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , __snake_case ) import datasets __a =datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) __a =depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , __snake_case , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' pass @slow @require_torch def __magic_name__ ( self ) -> int: '''simple docstring''' __a ='Intel/dpt-large' __a =pipeline('depth-estimation' , model=__snake_case ) __a =depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) __a =hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.662 ) @require_torch def __magic_name__ ( self ) -> Any: '''simple docstring''' # This is highly irregular to have no small tests. self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
308
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _lowerCAmelCase : List[Any] = logging.getLogger(__name__) _lowerCAmelCase : Optional[Any] = "Hello world! cécé herlolip" _lowerCAmelCase : str = namedtuple( "BertAbsConfig", [ "temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout", ], ) def UpperCamelCase_( _snake_case : str , _snake_case : List[Any] ): """simple docstring""" __a =BertAbsConfig( temp_dir='.' , finetune_bert=_snake_case , large=_snake_case , share_emb=_snake_case , use_bert_emb=_snake_case , encoder='bert' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) __a =torch.load(_snake_case , lambda _snake_case , _snake_case : storage ) __a =AbsSummarizer(_snake_case , torch.device('cpu' ) , _snake_case ) original.eval() __a =BertAbsSummarizer(_snake_case , torch.device('cpu' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('convert the model' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('Make sure that the models\' outputs are identical' ) __a =BertTokenizer.from_pretrained('bert-base-uncased' ) # prepare the model inputs __a =tokenizer.encode('This is sample éàalj\'-.' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_snake_case )) ) __a =torch.tensor(_snake_case ).unsqueeze(0 ) __a =tokenizer.encode('This is sample 3 éàalj\'-.' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_snake_case )) ) __a =torch.tensor(_snake_case ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __a =encoder_input_ids __a =decoder_input_ids __a =__a =None __a =None __a =__a =None __a =__a =None __a =None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __a =original(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )[0] __a =original.generator(_snake_case ) __a =new_model( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )[0] __a =new_model.generator(_snake_case ) __a =torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_snake_case ) ) __a =torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_snake_case ) ) __a =torch.allclose(_snake_case , _snake_case , atol=1e-3 ) if are_identical: logging.info('all weights are equal up to 1e-3' ) else: raise ValueError('the weights are different. The new model is likely different from the original one.' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('saving the model\'s state dictionary' ) torch.save( new_model.state_dict() , './bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--bertabs_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model.", ) _lowerCAmelCase : Optional[Any] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
308
1
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def UpperCamelCase_( ): """simple docstring""" __a =argparse.ArgumentParser() parser.add_argument( '-m' , '--pretrained_model_name_or_path' , type=_snake_case , default=_snake_case , required=_snake_case , help='Path to pretrained model or model identifier from huggingface.co/models.' , ) parser.add_argument( '-c' , '--caption' , type=_snake_case , default='robotic cat with wings' , help='Text used to generate images.' , ) parser.add_argument( '-n' , '--images_num' , type=_snake_case , default=4 , help='How much images to generate.' , ) parser.add_argument( '-s' , '--seed' , type=_snake_case , default=42 , help='Seed for random process.' , ) parser.add_argument( '-ci' , '--cuda_id' , type=_snake_case , default=0 , help='cuda_id.' , ) __a =parser.parse_args() return args def UpperCamelCase_( _snake_case : Any , _snake_case : Tuple , _snake_case : Optional[int] ): """simple docstring""" if not len(_snake_case ) == rows * cols: raise ValueError('The specified number of rows and columns are not correct.' ) __a , __a =imgs[0].size __a =Image.new('RGB' , size=(cols * w, rows * h) ) __a , __a =grid.size for i, img in enumerate(_snake_case ): grid.paste(_snake_case , box=(i % cols * w, i // cols * h) ) return grid def UpperCamelCase_( _snake_case : List[Any] , _snake_case : Union[str, Any]="robotic cat with wings" , _snake_case : Union[str, Any]=7.5 , _snake_case : Any=50 , _snake_case : Any=1 , _snake_case : Dict=42 , ): """simple docstring""" __a =torch.Generator(pipeline.device ).manual_seed(_snake_case ) __a =pipeline( _snake_case , guidance_scale=_snake_case , num_inference_steps=_snake_case , generator=_snake_case , num_images_per_prompt=_snake_case , ).images __a =int(math.sqrt(_snake_case ) ) __a =image_grid(_snake_case , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images _lowerCAmelCase : Any = parse_args() # Load models and create wrapper for stable diffusion _lowerCAmelCase : List[str] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer") _lowerCAmelCase : Any = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder") _lowerCAmelCase : Union[str, Any] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae") _lowerCAmelCase : List[Any] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet") _lowerCAmelCase : Any = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) _lowerCAmelCase : List[str] = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, "best_model.pt")): _lowerCAmelCase : Optional[Any] = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, "unet", unet) else: _lowerCAmelCase : List[Any] = unet.to(torch.device("cuda", args.cuda_id)) _lowerCAmelCase : Optional[int] = pipeline.to(unet.device) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, "{}.png".format("_".join(args.caption.split())))) _lowerCAmelCase : Union[str, Any] = os.path.join(args.pretrained_model_name_or_path, "_".join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, "{}.png".format(idx + 1)))
308
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ : def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=False , __snake_case=False , __snake_case=False , __snake_case=2 , __snake_case=99 , __snake_case=0 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=0.1 , __snake_case=0.1 , __snake_case=512 , __snake_case=2 , __snake_case=0.02 , __snake_case=2 , __snake_case=4 , __snake_case="last" , __snake_case=True , __snake_case=None , __snake_case=0 , ) -> Optional[Any]: '''simple docstring''' __a =parent __a =batch_size __a =seq_length __a =is_training __a =use_input_lengths __a =use_token_type_ids __a =use_labels __a =gelu_activation __a =sinusoidal_embeddings __a =causal __a =asm __a =n_langs __a =vocab_size __a =n_special __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =max_position_embeddings __a =type_sequence_label_size __a =initializer_range __a =num_labels __a =num_choices __a =summary_type __a =use_proj __a =scope __a =bos_token_id def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a =random_attention_mask([self.batch_size, self.seq_length] ) __a =None if self.use_input_lengths: __a =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __a =None if self.use_token_type_ids: __a =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __a =None __a =None __a =None if self.use_labels: __a =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a =ids_tensor([self.batch_size] , 2 ).float() __a =ids_tensor([self.batch_size] , self.num_choices ) __a =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __magic_name__ ( self ) -> Any: '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> List[Any]: '''simple docstring''' __a =XLMModel(config=__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , lengths=__snake_case , langs=__snake_case ) __a =model(__snake_case , langs=__snake_case ) __a =model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Optional[int]: '''simple docstring''' __a =XLMWithLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Dict: '''simple docstring''' __a =XLMForQuestionAnsweringSimple(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) __a =outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> List[Any]: '''simple docstring''' __a =XLMForQuestionAnswering(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , p_mask=__snake_case , ) __a =model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , ) ((__a) , ) =result_with_labels.to_tuple() __a =model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) ((__a) , ) =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Optional[Any]: '''simple docstring''' __a =XLMForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Any: '''simple docstring''' __a =self.num_labels __a =XLMForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Tuple: '''simple docstring''' __a =self.num_choices __a =XLMForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() __a =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) =config_and_inputs __a ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable SCREAMING_SNAKE_CASE = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> int: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __magic_name__ ( self , __snake_case , __snake_case , __snake_case=False ) -> str: '''simple docstring''' __a =super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __a =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) __a =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =XLMModelTester(self ) __a =ConfigTester(self , config_class=__snake_case , emb_dim=37 ) def __magic_name__ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=False , __snake_case=1 ) -> Optional[Any]: '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_attentions in attentions] , [True] * len(__snake_case ) ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__snake_case ): # adds PAD dummy token __a =min_length + idx + 1 __a =min_length + idx + 1 __a =( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__snake_case ) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=False , __snake_case=1 ) -> Dict: '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_hidden_states in hidden_states] , [True] * len(__snake_case ) , ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__snake_case ): # adds PAD dummy token __a =min_length + idx + 1 __a =(batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__snake_case ) , ) pass @slow def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a =XLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class __magic_name__ ( unittest.TestCase ): @slow def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(__snake_case ) __a =torch.tensor([[14, 447]] , dtype=torch.long , device=__snake_case ) # the president __a =[ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __a =model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __snake_case )
308
1
import logging import os import threading import time try: import warnings except ImportError: _lowerCAmelCase : List[Any] = None try: import msvcrt except ImportError: _lowerCAmelCase : Dict = None try: import fcntl except ImportError: _lowerCAmelCase : List[str] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: _lowerCAmelCase : Union[str, Any] = OSError # Data # ------------------------------------------------ _lowerCAmelCase : Any = [ "Timeout", "BaseFileLock", "WindowsFileLock", "UnixFileLock", "SoftFileLock", "FileLock", ] _lowerCAmelCase : Optional[Any] = "3.0.12" _lowerCAmelCase : Dict = None def UpperCamelCase_( ): """simple docstring""" global _logger __a =_logger or logging.getLogger(__name__ ) return _logger class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , __snake_case ) -> str: '''simple docstring''' __a =lock_file return None def __str__( self ) -> List[str]: '''simple docstring''' __a =f'The file lock \'{self.lock_file}\' could not be acquired.' return temp class __magic_name__ : def __init__( self , __snake_case ) -> List[str]: '''simple docstring''' __a =lock return None def __enter__( self ) -> str: '''simple docstring''' return self.lock def __exit__( self , __snake_case , __snake_case , __snake_case ) -> Union[str, Any]: '''simple docstring''' self.lock.release() return None class __magic_name__ : def __init__( self , __snake_case , __snake_case=-1 , __snake_case=None ) -> Dict: '''simple docstring''' __a =max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long __a =self.hash_filename_if_too_long(__snake_case , __snake_case ) # The path to the lock file. __a =lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __a =None # The default timeout value. __a =timeout # We use this lock primarily for the lock counter. __a =threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __a =0 return None @property def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' return self._lock_file @property def __magic_name__ ( self ) -> int: '''simple docstring''' return self._timeout @timeout.setter def __magic_name__ ( self , __snake_case ) -> str: '''simple docstring''' __a =float(__snake_case ) return None def __magic_name__ ( self ) -> Dict: '''simple docstring''' raise NotImplementedError() def __magic_name__ ( self ) -> List[str]: '''simple docstring''' raise NotImplementedError() @property def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' return self._lock_file_fd is not None def __magic_name__ ( self , __snake_case=None , __snake_case=0.05 ) -> Dict: '''simple docstring''' # Use the default timeout, if no timeout is provided. if timeout is None: __a =self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __a =id(self ) __a =self._lock_file __a =time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f'Attempting to acquire lock {lock_id} on {lock_filename}' ) self._acquire() if self.is_locked: logger().debug(f'Lock {lock_id} acquired on {lock_filename}' ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f'Timeout on acquiring lock {lock_id} on {lock_filename}' ) raise Timeout(self._lock_file ) else: logger().debug( f'Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...' ) time.sleep(__snake_case ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __a =max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def __magic_name__ ( self , __snake_case=False ) -> Optional[Any]: '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __a =id(self ) __a =self._lock_file logger().debug(f'Attempting to release lock {lock_id} on {lock_filename}' ) self._release() __a =0 logger().debug(f'Lock {lock_id} released on {lock_filename}' ) return None def __enter__( self ) -> Tuple: '''simple docstring''' self.acquire() return self def __exit__( self , __snake_case , __snake_case , __snake_case ) -> Any: '''simple docstring''' self.release() return None def __del__( self ) -> List[str]: '''simple docstring''' self.release(force=__snake_case ) return None def __magic_name__ ( self , __snake_case , __snake_case ) -> str: '''simple docstring''' __a =os.path.basename(__snake_case ) if len(__snake_case ) > max_length and max_length > 0: __a =os.path.dirname(__snake_case ) __a =str(hash(__snake_case ) ) __a =filename[: max_length - len(__snake_case ) - 8] + '...' + hashed_filename + '.lock' return os.path.join(__snake_case , __snake_case ) else: return path class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , __snake_case , __snake_case=-1 , __snake_case=None ) -> Tuple: '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(__snake_case , timeout=__snake_case , max_filename_length=__snake_case ) __a ='\\\\?\\' + relative_to_absolute_path(self.lock_file ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __a =os.open(self._lock_file , __snake_case ) except OSError: pass else: try: msvcrt.locking(__snake_case , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__snake_case ) else: __a =fd return None def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =self._lock_file_fd __a =None msvcrt.locking(__snake_case , msvcrt.LK_UNLCK , 1 ) os.close(__snake_case ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , __snake_case , __snake_case=-1 , __snake_case=None ) -> Optional[int]: '''simple docstring''' __a =os.statvfs(os.path.dirname(__snake_case ) ).f_namemax super().__init__(__snake_case , timeout=__snake_case , max_filename_length=__snake_case ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =os.O_RDWR | os.O_CREAT | os.O_TRUNC __a =os.open(self._lock_file , __snake_case ) try: fcntl.flock(__snake_case , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__snake_case ) else: __a =fd return None def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition __a =self._lock_file_fd __a =None fcntl.flock(__snake_case , fcntl.LOCK_UN ) os.close(__snake_case ) return None class __magic_name__ ( lowerCAmelCase_ ): def __magic_name__ ( self ) -> int: '''simple docstring''' __a =os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __a =os.open(self._lock_file , __snake_case ) except OSError: pass else: __a =fd return None def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' os.close(self._lock_file_fd ) __a =None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None _lowerCAmelCase : Any = None if msvcrt: _lowerCAmelCase : List[Any] = WindowsFileLock elif fcntl: _lowerCAmelCase : Optional[Any] = UnixFileLock else: _lowerCAmelCase : List[str] = SoftFileLock if warnings is not None: warnings.warn("only soft file lock is available")
308
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake _lowerCAmelCase : Optional[Any] = numpy.array([0, 0]) _lowerCAmelCase : Dict = numpy.array([0.5, 0.8660254]) _lowerCAmelCase : Any = numpy.array([1, 0]) _lowerCAmelCase : int = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCamelCase_( _snake_case : list[numpy.ndarray] , _snake_case : int ): """simple docstring""" __a =initial_vectors for _ in range(_snake_case ): __a =iteration_step(_snake_case ) return vectors def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =[] for i, start_vector in enumerate(vectors[:-1] ): __a =vectors[i + 1] new_vectors.append(_snake_case ) __a =end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCamelCase_( _snake_case : numpy.ndarray , _snake_case : float ): """simple docstring""" __a =numpy.radians(_snake_case ) __a , __a =numpy.cos(_snake_case ), numpy.sin(_snake_case ) __a =numpy.array(((c, -s), (s, c)) ) return numpy.dot(_snake_case , _snake_case ) def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() __a , __a =zip(*_snake_case ) plt.plot(_snake_case , _snake_case ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : List[Any] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
308
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Union[str, Any] = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Union[str, Any] = [ "FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetBackbone", "FocalNetModel", "FocalNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys _lowerCAmelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Tuple = { "configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MegatronBertForCausalLM", "MegatronBertForMaskedLM", "MegatronBertForMultipleChoice", "MegatronBertForNextSentencePrediction", "MegatronBertForPreTraining", "MegatronBertForQuestionAnswering", "MegatronBertForSequenceClassification", "MegatronBertForTokenClassification", "MegatronBertModel", "MegatronBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys _lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
1
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class __magic_name__ ( unittest.TestCase ): def __init__( self , __snake_case ) -> Any: '''simple docstring''' __a =parent def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' return {} def UpperCamelCase_( ): """simple docstring""" __a ='<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR="FFFFFF">\n <HR>\n <a href="http://google.com">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style="color:#0000FF">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>' __a ='\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n ' return [html_string_a, html_string_a] @require_bsa class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = MarkupLMFeatureExtractor if is_bsa_available() else None def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =MarkupLMFeatureExtractionTester(self ) @property def __magic_name__ ( self ) -> Any: '''simple docstring''' return self.feature_extract_tester.prepare_feat_extract_dict() def __magic_name__ ( self ) -> int: '''simple docstring''' # Initialize feature_extractor __a =self.feature_extraction_class() # Test not batched input __a =get_html_strings()[0] __a =feature_extractor(__snake_case ) # fmt: off __a =[['sample document', 'Goog', 'This is one header', 'This is a another Header', 'Travel from', 'SFO to JFK', 'on May 2, 2015 at 2:00 pm. For details go to confirm.com', 'Traveler', 'name', 'is', 'John Doe']] __a =[['/html/head/title', '/html/body/a', '/html/body/h1', '/html/body/h2', '/html/body/p', '/html/body/p/p/b[1]', '/html/body/p/p/b[2]/i', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/b', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/p']] # fmt: on self.assertEqual(encoding.nodes , __snake_case ) self.assertEqual(encoding.xpaths , __snake_case ) # Test batched __a =get_html_strings() __a =feature_extractor(__snake_case ) # fmt: off __a =expected_nodes + [['My First Heading', 'My first paragraph.']] __a =expected_xpaths + [['/html/body/h1', '/html/body/p']] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , __snake_case ) self.assertEqual(encoding.xpaths , __snake_case )
308
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __magic_name__ : @staticmethod def __magic_name__ ( *__snake_case , **__snake_case ) -> List[str]: '''simple docstring''' pass def UpperCamelCase_( _snake_case : Image ): """simple docstring""" __a =hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __magic_name__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def __magic_name__ ( self , __snake_case , __snake_case , __snake_case ) -> Dict: '''simple docstring''' __a =DepthEstimationPipeline(model=__snake_case , image_processor=__snake_case ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __magic_name__ ( self , __snake_case , __snake_case ) -> Tuple: '''simple docstring''' __a =depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , __snake_case ) import datasets __a =datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) __a =depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , __snake_case , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' pass @slow @require_torch def __magic_name__ ( self ) -> int: '''simple docstring''' __a ='Intel/dpt-large' __a =pipeline('depth-estimation' , model=__snake_case ) __a =depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) __a =hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.662 ) @require_torch def __magic_name__ ( self ) -> Any: '''simple docstring''' # This is highly irregular to have no small tests. self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
308
1
from __future__ import annotations import math from collections.abc import Callable def UpperCamelCase_( _snake_case : Callable[[int | float], int | float] , _snake_case : int | float , _snake_case : int | float , _snake_case : int = 100 , ): """simple docstring""" __a =x_start __a =fnc(_snake_case ) __a =0.0 for _ in range(_snake_case ): # Approximates curve as a sequence of linear lines and sums their length __a =(x_end - x_start) / steps + xa __a =fnc(_snake_case ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step __a =xa __a =fxa return length if __name__ == "__main__": def UpperCamelCase_( _snake_case : Dict ): """simple docstring""" return math.sin(10 * x ) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") _lowerCAmelCase : Union[str, Any] = 10 while i <= 100_000: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
308
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _lowerCAmelCase : Optional[int] = logging.getLogger(__name__) _lowerCAmelCase : Any = "pytorch_model.bin" @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co.'} , ) @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field(metadata={'help': 'A csv or a json file containing the training data.'} ) SCREAMING_SNAKE_CASE = dataclasses.field(metadata={'help': 'A csv or a json file containing the data to predict on.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the validation data.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'The name of the task to train on.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'The list of labels for the task.'} ) @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field( metadata={'help': 'The output directory where the model predictions and checkpoints will be written.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default='accuracy' , metadata={'help': 'The evaluation metric used for the task.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default='no' , metadata={ 'help': 'The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]' } , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=1_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0 , metadata={ 'help': 'How much the specified evaluation metric must improve to satisfy early stopping conditions.' } , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the confidence score.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the validation performance.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to fine-tune on labeled data after pseudo training.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0 , metadata={'help': 'Confidence threshold for pseudo-labeled data filtering.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=1_0_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Random seed for initialization.'} , ) def UpperCamelCase_( _snake_case : int , _snake_case : str , _snake_case : Optional[int] , _snake_case : str , _snake_case : Union[str, Any] , _snake_case : List[Any] ): """simple docstring""" __a =datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: __a =dataset.filter(lambda _snake_case : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 __a =int(eval_result * len(_snake_case ) ) print(_snake_case ) __a =dataset.sort('probability' , reverse=_snake_case ) __a =dataset.select(range(_snake_case ) ) __a =dataset.remove_columns(['label', 'probability'] ) __a =dataset.rename_column('prediction' , 'label' ) __a =dataset.map(lambda _snake_case : {"label": idalabel[example["label"]]} ) __a =dataset.shuffle(seed=args.seed ) __a =os.path.join(_snake_case , F'train_pseudo.{args.data_file_extension}' ) if args.data_file_extension == "csv": dataset.to_csv(_snake_case , index=_snake_case ) else: dataset.to_json(_snake_case ) def UpperCamelCase_( _snake_case : List[Any] , _snake_case : str , _snake_case : int , _snake_case : Optional[int] , **_snake_case : List[str] ): """simple docstring""" __a =Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() __a =STModelArguments(model_name_or_path=_snake_case ) __a =STDataArguments(train_file=_snake_case , infer_file=_snake_case ) __a =STTrainingArguments(output_dir=_snake_case ) __a =argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(_snake_case ).items(): setattr(_snake_case , _snake_case , _snake_case ) for key, value in kwargs.items(): if hasattr(_snake_case , _snake_case ): setattr(_snake_case , _snake_case , _snake_case ) # Sanity checks __a ={} __a =None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None __a =args.train_file __a =args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None __a =args.eval_file for key in data_files: __a =data_files[key].split('.' )[-1] assert extension in ["csv", "json"], F'`{key}_file` should be a csv or a json file.' if args.data_file_extension is None: __a =extension else: assert extension == args.data_file_extension, F'`{key}_file` should be a {args.data_file_extension} file`.' assert ( args.eval_metric in datasets.list_metrics() ), F'{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('Creating the initial data directory for self-training...' ) __a =F'{args.output_dir}/self-train_iter-{{}}'.format __a =data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=_snake_case ) os.makedirs(_snake_case , exist_ok=_snake_case ) accelerator.wait_for_everyone() __a =None __a =None __a =0 __a =False # Show the progress bar __a =tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): __a =data_dir_format(_snake_case ) assert os.path.exists(_snake_case ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 __a =os.path.join(_snake_case , 'stage-1' ) __a ={ 'accelerator': accelerator, 'model_name_or_path': args.model_name_or_path, 'cache_dir': args.cache_dir, 'do_train': True, 'train_file': data_files['train'] if iteration == 0 else data_files['train_pseudo'], 'do_eval': True if args.eval_file is not None else False, 'eval_file': data_files['eval'], 'do_predict': True, 'infer_file': data_files['infer'], 'task_name': args.task_name, 'label_list': args.label_list, 'output_dir': current_output_dir, 'eval_metric': args.eval_metric, 'evaluation_strategy': args.evaluation_strategy, 'early_stopping_patience': args.early_stopping_patience, 'early_stopping_threshold': args.early_stopping_threshold, 'seed': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(_snake_case , _snake_case ): arguments_dict.update({key: value} ) __a =os.path.join(_snake_case , 'best-checkpoint' , _snake_case ) if os.path.exists(_snake_case ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.' , _snake_case , _snake_case , ) else: logger.info('***** Running self-training: iteration: %d, stage: 1 *****' , _snake_case ) finetune(**_snake_case ) accelerator.wait_for_everyone() assert os.path.exists(_snake_case ) logger.info('Self-training job completed: iteration: %d, stage: 1.' , _snake_case ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data __a =os.path.join(_snake_case , 'best-checkpoint' ) __a =os.path.join(_snake_case , 'stage-2' ) # Update arguments_dict __a =model_path __a =data_files['train'] __a =current_output_dir __a =os.path.join(_snake_case , 'best-checkpoint' , _snake_case ) if os.path.exists(_snake_case ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.' , _snake_case , _snake_case , ) else: logger.info('***** Running self-training: iteration: %d, stage: 2 *****' , _snake_case ) finetune(**_snake_case ) accelerator.wait_for_everyone() assert os.path.exists(_snake_case ) logger.info('Self-training job completed: iteration: %d, stage: 2.' , _snake_case ) __a =iteration __a =data_dir_format(iteration + 1 ) __a =AutoConfig.from_pretrained(os.path.join(_snake_case , 'best-checkpoint' ) ) __a =config.idalabel __a =os.path.join(_snake_case , 'eval_results_best-checkpoint.json' ) __a =os.path.join(_snake_case , 'test_results_best-checkpoint.json' ) assert os.path.exists(_snake_case ) with open(_snake_case , 'r' ) as f: __a =float(json.load(_snake_case )[args.eval_metric] ) __a =os.path.join(_snake_case , 'infer_output_best-checkpoint.csv' ) assert os.path.exists(_snake_case ) # Loading the dataset from local csv or json files. __a =load_dataset(args.data_file_extension , data_files={'data': data_files['infer']} )['data'] __a =load_dataset('csv' , data_files={'data': infer_output_file} )['data'] if accelerator.is_main_process: os.makedirs(_snake_case , exist_ok=_snake_case ) shutil.copy(_snake_case , os.path.join(_snake_case , F'eval_results_iter-{iteration}.json' ) ) if os.path.exists(_snake_case ): shutil.copy(_snake_case , os.path.join(_snake_case , F'test_results_iter-{iteration}.json' ) ) create_pseudo_labeled_data(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) accelerator.wait_for_everyone() __a =os.path.join(_snake_case , F'train_pseudo.{args.data_file_extension}' ) if args.evaluation_strategy != IntervalStrategy.NO.value: __a =eval_result if best_iteration is None: __a =new_iteration __a =new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: __a =new_iteration __a =new_eval_result __a =0 else: if new_eval_result == best_eval_result: __a =new_iteration __a =new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: __a =True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('Best iteration: %d' , _snake_case ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , _snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_snake_case , F'eval_results_iter-{iteration}.json' ) , os.path.join(_snake_case , 'eval_results_best-iteration.json' ) , ) else: # Assume that the last iteration is the best logger.info('Best iteration: %d' , args.max_selftrain_iterations - 1 ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , _snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_snake_case , F'eval_results_iter-{args.max_selftrain_iterations - 1}.json' ) , os.path.join(_snake_case , 'eval_results_best-iteration.json' ) , )
308
1
def UpperCamelCase_( _snake_case : str ): """simple docstring""" return " ".join( ''.join(word[::-1] ) if len(_snake_case ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("Hey wollef sroirraw"))
308
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Any = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right _lowerCAmelCase : List[Any] = 256_047 _lowerCAmelCase : Dict = 256_145 @require_sentencepiece @require_tokenizers class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = NllbTokenizer SCREAMING_SNAKE_CASE = NllbTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = {} def __magic_name__ ( self ) -> int: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __a =NllbTokenizer(__snake_case , keep_accents=__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self ) -> int: '''simple docstring''' __a =NllbTokenizer(__snake_case , keep_accents=__snake_case ) __a =tokenizer.tokenize('This is a test' ) self.assertListEqual(__snake_case , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __a =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __a =tokenizer.convert_tokens_to_ids(__snake_case ) self.assertListEqual( __snake_case , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __a =tokenizer.convert_ids_to_tokens(__snake_case ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-nllb', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __a =self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __a =self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) __a =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=True __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=False __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) @require_torch def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' if not self.test_seqaseq: return __a =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Longer text that will definitely require truncation. __a =[ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for' ' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons' ' will only worsen the violence and misery for millions of people.', ] __a =[ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al' ' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi' ' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] try: __a =tokenizer.prepare_seqaseq_batch( src_texts=__snake_case , tgt_texts=__snake_case , max_length=3 , max_target_length=10 , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='ron_Latn' , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified __a =tokenizer.prepare_seqaseq_batch( __snake_case , tgt_texts=__snake_case , max_length=3 , return_tensors='pt' ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) __a =tokenizer.prepare_seqaseq_batch( src_texts=__snake_case , max_length=3 , max_target_length=10 , return_tensors='pt' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn('decoder_input_ids' , __snake_case ) @unittest.skip('Unfortunately way too slow to build a BPE with SentencePiece.' ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' pass def __magic_name__ ( self ) -> Tuple: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __a =[AddedToken('<special>' , lstrip=__snake_case )] __a =self.rust_tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case ) __a =tokenizer_r.encode('Hey this is a <special> token' ) __a =tokenizer_r.encode('<special>' , add_special_tokens=__snake_case )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: __a =self.rust_tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case , ) __a =self.tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case ) __a =tokenizer_p.encode('Hey this is a <special> token' ) __a =tokenizer_cr.encode('Hey this is a <special> token' ) self.assertEqual(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class __magic_name__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = 'facebook/nllb-200-distilled-600M' SCREAMING_SNAKE_CASE = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] SCREAMING_SNAKE_CASE = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] SCREAMING_SNAKE_CASE = [ 2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 8_1_6_5, 2_4_8_0_6_6, 1_4_7_3_4, 9_5_0, 1_1_3_5, 1_0_5_7_2_1, 3_5_7_3, 8_3, 2_7_3_5_2, 1_0_8, 4_9_4_8_6, 2, ] @classmethod def __magic_name__ ( cls ) -> Tuple: '''simple docstring''' __a =NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang='eng_Latn' , tgt_lang='ron_Latn' ) __a =1 return cls def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Arab'] , 25_6001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Latn'] , 25_6002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['fra_Latn'] , 25_6057 ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' self.assertIn(__snake_case , self.tokenizer.all_special_ids ) # fmt: off __a =[RO_CODE, 4254, 9_8068, 11_2923, 3_9072, 3909, 713, 10_2767, 26, 1_7314, 3_5642, 1_4683, 3_3118, 2022, 6_6987, 2, 25_6047] # fmt: on __a =self.tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) __a =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertNotIn(self.tokenizer.eos_token , __snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , __snake_case ) __a =10 __a =self.tokenizer(__snake_case , max_length=__snake_case , truncation=__snake_case ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , __snake_case ) self.assertEqual(len(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_6203, 3] ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =tempfile.mkdtemp() __a =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__snake_case ) __a =NllbTokenizer.from_pretrained(__snake_case ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __snake_case ) @require_torch def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) __a =shift_tokens_right( batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['ron_Latn'] ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) __a =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) self.assertEqual(__snake_case , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =self.tokenizer(self.src_text , padding=__snake_case , truncation=__snake_case , max_length=3 , return_tensors='pt' ) __a =self.tokenizer( text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=10 , return_tensors='pt' ) __a =targets['input_ids'] __a =shift_tokens_right( __snake_case , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( nested_simplify(__snake_case ) , { # A, test, EOS, en_XX 'input_ids': [[25_6047, 70, 7356, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_6057, } , ) @require_torch def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =True __a =self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2, 25_6047] ) __a =False __a =self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [25_6047, 1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2] )
308
1
def UpperCamelCase_( _snake_case : str , _snake_case : str ): """simple docstring""" assert x is not None assert y is not None __a =len(_snake_case ) __a =len(_snake_case ) # declaring the array for storing the dp values __a =[[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): __a =1 if x[i - 1] == y[j - 1] else 0 __a =max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) __a ='' __a , __a =m, n while i > 0 and j > 0: __a =1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: __a =x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": _lowerCAmelCase : List[Any] = "AGGTAB" _lowerCAmelCase : List[Any] = "GXTXAYB" _lowerCAmelCase : Any = 4 _lowerCAmelCase : List[Any] = "GTAB" _lowerCAmelCase , _lowerCAmelCase : Optional[int] = longest_common_subsequence(a, b) print("len =", ln, ", sub-sequence =", subseq) import doctest doctest.testmod()
308
def UpperCamelCase_( _snake_case : str , _snake_case : int ): """simple docstring""" return [sentence[i : i + ngram_size] for i in range(len(_snake_case ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
308
1
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = ['input_features'] def __init__( self , __snake_case=80 , __snake_case=1_6000 , __snake_case=160 , __snake_case=30 , __snake_case=400 , __snake_case=0.0 , __snake_case=False , **__snake_case , ) -> Any: '''simple docstring''' super().__init__( feature_size=__snake_case , sampling_rate=__snake_case , padding_value=__snake_case , return_attention_mask=__snake_case , **__snake_case , ) __a =n_fft __a =hop_length __a =chunk_length __a =chunk_length * sampling_rate __a =self.n_samples // hop_length __a =sampling_rate __a =mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__snake_case , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=__snake_case , norm='slaney' , mel_scale='slaney' , ) def __magic_name__ ( self , __snake_case ) -> np.ndarray: '''simple docstring''' __a =spectrogram( __snake_case , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='log10' , ) __a =log_spec[:, :-1] __a =np.maximum(__snake_case , log_spec.max() - 8.0 ) __a =(log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __magic_name__ ( __snake_case , __snake_case , __snake_case = 0.0 ) -> List[np.ndarray]: '''simple docstring''' if attention_mask is not None: __a =np.array(__snake_case , np.intaa ) __a =[] for vector, length in zip(__snake_case , attention_mask.sum(-1 ) ): __a =(vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: __a =padding_value normed_input_values.append(__snake_case ) else: __a =[(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self , __snake_case , __snake_case = True , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = "max_length" , __snake_case = None , __snake_case = None , __snake_case = None , **__snake_case , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' f' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' f' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) __a =isinstance(__snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) __a =is_batched_numpy or ( isinstance(__snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __a =[np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__snake_case , np.ndarray ): __a =np.asarray(__snake_case , dtype=np.floataa ) elif isinstance(__snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __a =raw_speech.astype(np.floataa ) # always return batch if not is_batched: __a =[np.asarray([raw_speech] ).T] __a =BatchFeature({'input_features': raw_speech} ) # convert into correct format for padding __a =self.pad( __snake_case , padding=__snake_case , max_length=max_length if max_length else self.n_samples , truncation=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: __a =self.zero_mean_unit_var_norm( padded_inputs['input_features'] , attention_mask=padded_inputs['attention_mask'] , padding_value=self.padding_value , ) __a =np.stack(padded_inputs['input_features'] , axis=0 ) # make sure list is in array format __a =padded_inputs.get('input_features' ).transpose(2 , 0 , 1 ) __a =[self._np_extract_fbank_features(__snake_case ) for waveform in input_features[0]] if isinstance(input_features[0] , __snake_case ): __a =[np.asarray(__snake_case , dtype=np.floataa ) for feature in input_features] else: __a =input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) __a =padded_inputs['attention_mask'][:, :: self.hop_length] if return_tensors is not None: __a =padded_inputs.convert_to_tensors(__snake_case ) return padded_inputs def __magic_name__ ( self ) -> Dict[str, Any]: '''simple docstring''' __a =copy.deepcopy(self.__dict__ ) __a =self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
308
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class __magic_name__ ( pl.LightningModule ): def __init__( self , __snake_case ) -> List[Any]: '''simple docstring''' super().__init__() __a =model __a =2 __a =nn.Linear(self.model.config.hidden_size , self.num_labels ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' pass def UpperCamelCase_( _snake_case : str , _snake_case : str , _snake_case : str ): """simple docstring""" __a =LongformerModel.from_pretrained(_snake_case ) __a =LightningModel(_snake_case ) __a =torch.load(_snake_case , map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model __a =LongformerForQuestionAnswering.from_pretrained(_snake_case ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(_snake_case ) print(F'Conversion successful. Model saved under {pytorch_dump_folder_path}' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowerCAmelCase : Optional[int] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
308
1
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
308
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") _lowerCAmelCase : Optional[Any] = logging.getLogger(__name__) @dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) SCREAMING_SNAKE_CASE = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) SCREAMING_SNAKE_CASE = field( default=1_0_2_4 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the training data.'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the validation data.'} ) SCREAMING_SNAKE_CASE = field(default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the test data.'} ) def __magic_name__ ( self ) -> str: '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: __a =self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __a =self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) SCREAMING_SNAKE_CASE = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def UpperCamelCase_( ): """simple docstring""" __a =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __a , __a , __a =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __a , __a , __a =parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) __a =training_args.get_process_log_level() logger.setLevel(_snake_case ) datasets.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __a =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __a =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __a =load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __a ={'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __a =data_args.train_file.split('.' )[-1] __a =data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __a =data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(F'load a local file for {key}: {data_files[key]}' ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files __a =load_dataset('csv' , data_files=_snake_case , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __a =load_dataset('json' , data_files=_snake_case , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __a =raw_datasets['train'].features['label'].names __a =len(_snake_case ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __a =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __a =TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=_snake_case , ) __a =BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __a ='max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __a =False # Some models have set the order of the labels to use, so let's make sure we do use it. __a ={'Refused': 0, 'Entailed': 1} __a ={0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __a =min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(_snake_case : Tuple ): # Tokenize the texts def _convert_table_text_to_pandas(_snake_case : Optional[Any] ): __a =[_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] __a =pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __a =examples['statement'] __a =list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) __a =tokenizer(_snake_case , _snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case ) __a =examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): __a =raw_datasets.map( _snake_case , batched=_snake_case , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) __a =raw_datasets['train'] if data_args.max_train_samples is not None: __a =train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) __a =raw_datasets['validation'] if data_args.max_eval_samples is not None: __a =eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) __a =raw_datasets['test'] if data_args.max_predict_samples is not None: __a =predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(_snake_case ) ) , 3 ): logger.info(F'Sample {index} of the training set: {train_dataset[index]}.' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_snake_case : EvalPrediction ): __a =p.predictions[0] if isinstance(p.predictions , _snake_case ) else p.predictions __a =np.argmax(_snake_case , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __a =default_data_collator elif training_args.fpaa: __a =DataCollatorWithPadding(_snake_case , pad_to_multiple_of=8 ) else: __a =None # Initialize our Trainer __a =Trainer( model=_snake_case , args=_snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_snake_case , tokenizer=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: __a =None if training_args.resume_from_checkpoint is not None: __a =training_args.resume_from_checkpoint elif last_checkpoint is not None: __a =last_checkpoint __a =trainer.train(resume_from_checkpoint=_snake_case ) __a =train_result.metrics __a =( data_args.max_train_samples if data_args.max_train_samples is not None else len(_snake_case ) ) __a =min(_snake_case , len(_snake_case ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , _snake_case ) trainer.save_metrics('train' , _snake_case ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __a =trainer.evaluate(eval_dataset=_snake_case ) __a =data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_snake_case ) __a =min(_snake_case , len(_snake_case ) ) trainer.log_metrics('eval' , _snake_case ) trainer.save_metrics('eval' , _snake_case ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __a =predict_dataset.remove_columns('label' ) __a =trainer.predict(_snake_case , metric_key_prefix='predict' ).predictions __a =np.argmax(_snake_case , axis=1 ) __a =os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(_snake_case , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(_snake_case ): __a =label_list[item] writer.write(F'{index}\t{item}\n' ) __a ={'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**_snake_case ) else: trainer.create_model_card(**_snake_case ) def UpperCamelCase_( _snake_case : Union[str, Any] ): """simple docstring""" main() if __name__ == "__main__": main()
308
1
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class __magic_name__ ( datasets.BeamBasedBuilder ): def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({'content': datasets.Value('string' )} ) , supervised_keys=__snake_case , ) def __magic_name__ ( self , __snake_case , __snake_case ) -> List[str]: '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_dummy_examples()} )] def __magic_name__ ( self , __snake_case , __snake_case ) -> Optional[Any]: '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__snake_case ) class __magic_name__ ( datasets.BeamBasedBuilder ): def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) , supervised_keys=__snake_case , ) def __magic_name__ ( self , __snake_case , __snake_case ) -> List[str]: '''simple docstring''' return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_nested_examples()} ) ] def __magic_name__ ( self , __snake_case , __snake_case ) -> Optional[int]: '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__snake_case ) def UpperCamelCase_( ): """simple docstring""" return [(i, {"content": content}) for i, content in enumerate(['foo', 'bar', 'foobar'] )] def UpperCamelCase_( ): """simple docstring""" return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['foo', 'bar', 'foobar'] )] class __magic_name__ ( lowerCAmelCase_ ): @require_beam def __magic_name__ ( self ) -> str: '''simple docstring''' __a =len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: __a =DummyBeamDataset(cache_dir=__snake_case , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__snake_case , builder.name , 'default' , '0.0.0' , f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) __a =builder.as_dataset() self.assertEqual(dset['train'].num_rows , __snake_case ) self.assertEqual(dset['train'].info.splits['train'].num_examples , __snake_case ) self.assertDictEqual(dset['train'][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__snake_case , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' import apache_beam as beam __a =beam.io.parquetio.WriteToParquet __a =len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: __a =DummyBeamDataset(cache_dir=__snake_case , beam_runner='DirectRunner' ) with patch('apache_beam.io.parquetio.WriteToParquet' ) as write_parquet_mock: __a =partial(__snake_case , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( __snake_case , builder.name , 'default' , '0.0.0' , f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertTrue( os.path.exists( os.path.join( __snake_case , builder.name , 'default' , '0.0.0' , f'{builder.name}-train-00000-of-00002.arrow' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) __a =builder.as_dataset() self.assertEqual(dset['train'].num_rows , __snake_case ) self.assertEqual(dset['train'].info.splits['train'].num_examples , __snake_case ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['train']['content'] ) , sorted(['foo', 'bar', 'foobar'] ) ) self.assertTrue( os.path.exists(os.path.join(__snake_case , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_cache_dir: __a =DummyBeamDataset(cache_dir=__snake_case ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def __magic_name__ ( self ) -> str: '''simple docstring''' __a =len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: __a =NestedBeamDataset(cache_dir=__snake_case , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__snake_case , builder.name , 'default' , '0.0.0' , f'{builder.name}-train.arrow' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) ) __a =builder.as_dataset() self.assertEqual(dset['train'].num_rows , __snake_case ) self.assertEqual(dset['train'].info.splits['train'].num_examples , __snake_case ) self.assertDictEqual(dset['train'][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__snake_case , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset
308
from __future__ import annotations import time import numpy as np _lowerCAmelCase : List[str] = [8, 5, 9, 7] _lowerCAmelCase : List[str] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] _lowerCAmelCase : List[Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class __magic_name__ : def __init__( self , __snake_case , __snake_case , __snake_case , ) -> None: '''simple docstring''' __a =claim_vector __a =allocated_resources_table __a =maximum_claim_table def __magic_name__ ( self ) -> list[int]: '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def __magic_name__ ( self ) -> list[int]: '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def __magic_name__ ( self ) -> list[list[int]]: '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__snake_case ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def __magic_name__ ( self ) -> dict[int, list[int]]: '''simple docstring''' return {self.__need().index(__snake_case ): i for i in self.__need()} def __magic_name__ ( self , **__snake_case ) -> None: '''simple docstring''' __a =self.__need() __a =self.__allocated_resources_table __a =self.__available_resources() __a =self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: __a =False for each_need in need_list: __a =True for index, need in enumerate(__snake_case ): if need > available_resources[index]: __a =False break if execution: __a =True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __a =original_need_index print(f'Process {process_number + 1} is executing.' ) # remove the process run from stack need_list.remove(__snake_case ) # update available/freed resources stack __a =np.array(__snake_case ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(__snake_case ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( f'P{self.__allocated_resources_table.index(__snake_case ) + 1}' + ' '.join(f'{it:>8}' for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( f'P{self.__maximum_claim_table.index(__snake_case ) + 1}' + ' '.join(f'{it:>8}' for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(__snake_case ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(__snake_case ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
308
1
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class __magic_name__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = MODEL_FOR_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='pt' ) # Using `do_sample=False` to force deterministic output __a =text_generator('This is a test' , do_sample=__snake_case ) self.assertEqual( __snake_case , [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ] , ) __a =text_generator(['This is a test', 'This is a second test'] ) self.assertEqual( __snake_case , [ [ { 'generated_text': ( 'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.' ' oscope. FiliFili@@' ) } ], [ { 'generated_text': ( 'This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy' ' oscope. oscope. FiliFili@@' ) } ], ] , ) __a =text_generator('This is a test' , do_sample=__snake_case , num_return_sequences=2 , return_tensors=__snake_case ) self.assertEqual( __snake_case , [ {'generated_token_ids': ANY(__snake_case )}, {'generated_token_ids': ANY(__snake_case )}, ] , ) __a =text_generator.model.config.eos_token_id __a ='<pad>' __a =text_generator( ['This is a test', 'This is a second test'] , do_sample=__snake_case , num_return_sequences=2 , batch_size=2 , return_tensors=__snake_case , ) self.assertEqual( __snake_case , [ [ {'generated_token_ids': ANY(__snake_case )}, {'generated_token_ids': ANY(__snake_case )}, ], [ {'generated_token_ids': ANY(__snake_case )}, {'generated_token_ids': ANY(__snake_case )}, ], ] , ) @require_tf def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='tf' ) # Using `do_sample=False` to force deterministic output __a =text_generator('This is a test' , do_sample=__snake_case ) self.assertEqual( __snake_case , [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ] , ) __a =text_generator(['This is a test', 'This is a second test'] , do_sample=__snake_case ) self.assertEqual( __snake_case , [ [ { 'generated_text': ( 'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵' ' please,' ) } ], [ { 'generated_text': ( 'This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes' ' Cannes 閲閲Cannes Cannes Cannes 攵 please,' ) } ], ] , ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case ) -> Any: '''simple docstring''' __a =TextGenerationPipeline(model=__snake_case , tokenizer=__snake_case ) return text_generator, ["This is a test", "Another test"] def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a ='Hello I believe in' __a =pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) __a =text_generator(__snake_case ) self.assertEqual( __snake_case , [{'generated_text': 'Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'}] , ) __a =text_generator(__snake_case , stop_sequence=' fe' ) self.assertEqual(__snake_case , [{'generated_text': 'Hello I believe in fe'}] ) def __magic_name__ ( self , __snake_case , __snake_case ) -> Tuple: '''simple docstring''' __a =text_generator.model __a =text_generator.tokenizer __a =text_generator('This is a test' ) self.assertEqual(__snake_case , [{'generated_text': ANY(__snake_case )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) __a =text_generator('This is a test' , return_full_text=__snake_case ) self.assertEqual(__snake_case , [{'generated_text': ANY(__snake_case )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) __a =pipeline(task='text-generation' , model=__snake_case , tokenizer=__snake_case , return_full_text=__snake_case ) __a =text_generator('This is a test' ) self.assertEqual(__snake_case , [{'generated_text': ANY(__snake_case )}] ) self.assertNotIn('This is a test' , outputs[0]['generated_text'] ) __a =text_generator('This is a test' , return_full_text=__snake_case ) self.assertEqual(__snake_case , [{'generated_text': ANY(__snake_case )}] ) self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) ) __a =text_generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=__snake_case ) self.assertEqual( __snake_case , [ [{'generated_text': ANY(__snake_case )}, {'generated_text': ANY(__snake_case )}], [{'generated_text': ANY(__snake_case )}, {'generated_text': ANY(__snake_case )}], ] , ) if text_generator.tokenizer.pad_token is not None: __a =text_generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=__snake_case ) self.assertEqual( __snake_case , [ [{'generated_text': ANY(__snake_case )}, {'generated_text': ANY(__snake_case )}], [{'generated_text': ANY(__snake_case )}, {'generated_text': ANY(__snake_case )}], ] , ) with self.assertRaises(__snake_case ): __a =text_generator('test' , return_full_text=__snake_case , return_text=__snake_case ) with self.assertRaises(__snake_case ): __a =text_generator('test' , return_full_text=__snake_case , return_tensors=__snake_case ) with self.assertRaises(__snake_case ): __a =text_generator('test' , return_text=__snake_case , return_tensors=__snake_case ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): __a =text_generator('' ) self.assertEqual(__snake_case , [{'generated_text': ANY(__snake_case )}] ) else: with self.assertRaises((ValueError, AssertionError) ): __a =text_generator('' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. __a =['RwkvForCausalLM', 'XGLMForCausalLM', 'GPTNeoXForCausalLM'] if ( tokenizer.model_max_length < 1_0000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('This is a test' * 500 , max_new_tokens=20 ) __a =text_generator('This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(__snake_case ): text_generator( 'This is a test' * 500 , handle_long_generation='hole' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' import torch # Classic `model_kwargs` __a =pipeline( model='hf-internal-testing/tiny-random-bloom' , model_kwargs={'device_map': 'auto', 'torch_dtype': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) __a =pipe('This is a test' ) self.assertEqual( __snake_case , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) __a =pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) __a =pipe('This is a test' ) self.assertEqual( __snake_case , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 __a =pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) __a =pipe('This is a test' ) self.assertEqual( __snake_case , [ { 'generated_text': ( 'This is a test test test test test test test test test test test test test test test test' ' test' ) } ] , ) @require_torch @require_torch_gpu def __magic_name__ ( self ) -> Tuple: '''simple docstring''' import torch __a =pipeline(model='hf-internal-testing/tiny-random-bloom' , device=0 , torch_dtype=torch.floataa ) pipe('This is a test' ) @require_torch @require_accelerate @require_torch_gpu def __magic_name__ ( self ) -> int: '''simple docstring''' import torch __a =pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.floataa ) pipe('This is a test' , do_sample=__snake_case , top_p=0.5 ) def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a ='Hello world' __a =pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' ) if text_generator.model.framework == "tf": __a =logging.get_logger('transformers.generation.tf_utils' ) else: __a =logging.get_logger('transformers.generation.utils' ) __a ='Both `max_new_tokens`' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(__snake_case ) as cl: __a =text_generator(__snake_case , max_length=10 , max_new_tokens=1 ) self.assertIn(__snake_case , cl.out ) # The user only sets one -> no warning with CaptureLogger(__snake_case ) as cl: __a =text_generator(__snake_case , max_new_tokens=1 ) self.assertNotIn(__snake_case , cl.out ) with CaptureLogger(__snake_case ) as cl: __a =text_generator(__snake_case , max_length=10 ) self.assertNotIn(__snake_case , cl.out )
308
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency _lowerCAmelCase : Tuple = { "E": 12.70, "T": 9.06, "A": 8.17, "O": 7.51, "I": 6.97, "N": 6.75, "S": 6.33, "H": 6.09, "R": 5.99, "D": 4.25, "L": 4.03, "C": 2.78, "U": 2.76, "M": 2.41, "W": 2.36, "F": 2.23, "G": 2.02, "Y": 1.97, "P": 1.93, "B": 1.29, "V": 0.98, "K": 0.77, "J": 0.15, "X": 0.15, "Q": 0.10, "Z": 0.07, } _lowerCAmelCase : Optional[int] = "ETAOINSHRDLCUMWFGYPBVKJXQZ" _lowerCAmelCase : Any = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a ={letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def UpperCamelCase_( _snake_case : tuple ): """simple docstring""" return x[0] def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =get_letter_count(_snake_case ) __a ={ freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(_snake_case ) __a ={} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=_snake_case ) __a =''.join(freq_to_letter[freq] ) __a =list(freq_to_letter_str.items() ) freq_pairs.sort(key=_snake_case , reverse=_snake_case ) __a =[freq_pair[1] for freq_pair in freq_pairs] return "".join(_snake_case ) def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =get_frequency_order(_snake_case ) __a =0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
308
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def UpperCamelCase_( _snake_case : Optional[int] , _snake_case : Any , _snake_case : Optional[int] , _snake_case : str , _snake_case : List[Any] ): """simple docstring""" for attribute in key.split('.' ): __a =getattr(_snake_case , _snake_case ) if weight_type is not None: __a =getattr(_snake_case , _snake_case ).shape else: __a =hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": __a =value elif weight_type == "weight_g": __a =value elif weight_type == "weight_v": __a =value elif weight_type == "bias": __a =value else: __a =value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def UpperCamelCase_( _snake_case : Tuple , _snake_case : str , _snake_case : int ): """simple docstring""" __a =[] __a =fairseq_model.state_dict() __a =hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __a =False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == 'group' , ) __a =True else: for key, mapped_key in MAPPING.items(): __a ='sew.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __a =True if "*" in mapped_key: __a =name.split(_snake_case )[0].split('.' )[-2] __a =mapped_key.replace('*' , _snake_case ) if "weight_g" in name: __a ='weight_g' elif "weight_v" in name: __a ='weight_v' elif "weight" in name: __a ='weight' elif "bias" in name: __a ='bias' else: __a =None set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) continue if not is_used: unused_weights.append(_snake_case ) logger.warning(F'Unused weights: {unused_weights}' ) def UpperCamelCase_( _snake_case : List[str] , _snake_case : Any , _snake_case : Optional[Any] , _snake_case : int , _snake_case : Dict ): """simple docstring""" __a =full_name.split('conv_layers.' )[-1] __a =name.split('.' ) __a =int(items[0] ) __a =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __a =value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __a =value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) __a =value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __a =value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(_snake_case ) def UpperCamelCase_( _snake_case : Union[str, Any] , _snake_case : Any ): """simple docstring""" __a =SEWConfig() if is_finetuned: __a =model.wav_encoder.wav_model.cfg else: __a =model.cfg __a =fs_config.conv_bias __a =eval(fs_config.conv_feature_layers ) __a =[x[0] for x in conv_layers] __a =[x[1] for x in conv_layers] __a =[x[2] for x in conv_layers] __a ='gelu' __a ='layer' if fs_config.extractor_mode == 'layer_norm' else 'group' __a =0.0 __a =fs_config.activation_fn.name __a =fs_config.encoder_embed_dim __a =0.02 __a =fs_config.encoder_ffn_embed_dim __a =1e-5 __a =fs_config.encoder_layerdrop __a =fs_config.encoder_attention_heads __a =fs_config.conv_pos_groups __a =fs_config.conv_pos __a =len(_snake_case ) __a =fs_config.encoder_layers __a =fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: __a =model.cfg __a =fs_config.final_dropout __a =fs_config.layerdrop __a =fs_config.activation_dropout __a =fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 __a =fs_config.attention_dropout __a =fs_config.dropout_input __a =fs_config.dropout __a =fs_config.mask_channel_length __a =fs_config.mask_channel_prob __a =fs_config.mask_length __a =fs_config.mask_prob __a ='Wav2Vec2FeatureExtractor' __a ='Wav2Vec2CTCTokenizer' return config @torch.no_grad() def UpperCamelCase_( _snake_case : str , _snake_case : Optional[int] , _snake_case : List[Any]=None , _snake_case : Optional[int]=None , _snake_case : Dict=True ): """simple docstring""" if is_finetuned: __a , __a , __a =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: __a , __a , __a =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: __a =SEWConfig.from_pretrained(_snake_case ) else: __a =convert_config(model[0] , _snake_case ) __a =model[0].eval() __a =True if config.feat_extract_norm == 'layer' else False __a =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) if is_finetuned: if dict_path: __a =Dictionary.load(_snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __a =target_dict.pad_index __a =target_dict.bos_index __a =target_dict.pad_index __a =target_dict.bos_index __a =target_dict.eos_index __a =len(target_dict.symbols ) __a =os.path.join(_snake_case , 'vocab.json' ) if not os.path.isdir(_snake_case ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(_snake_case ) ) return os.makedirs(_snake_case , exist_ok=_snake_case ) with open(_snake_case , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(target_dict.indices , _snake_case ) __a =WavaVecaCTCTokenizer( _snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=_snake_case , ) __a =WavaVecaProcessor(feature_extractor=_snake_case , tokenizer=_snake_case ) processor.save_pretrained(_snake_case ) __a =SEWForCTC(_snake_case ) else: __a =SEWModel(_snake_case ) feature_extractor.save_pretrained(_snake_case ) recursively_load_weights(_snake_case , _snake_case , _snake_case ) hf_model.save_pretrained(_snake_case ) if __name__ == "__main__": _lowerCAmelCase : str = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _lowerCAmelCase : str = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
308
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : int = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'swin2sr' SCREAMING_SNAKE_CASE = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , __snake_case=64 , __snake_case=1 , __snake_case=3 , __snake_case=180 , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=8 , __snake_case=2.0 , __snake_case=True , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.1 , __snake_case="gelu" , __snake_case=False , __snake_case=0.02 , __snake_case=1e-5 , __snake_case=2 , __snake_case=1.0 , __snake_case="1conv" , __snake_case="pixelshuffle" , **__snake_case , ) -> Dict: '''simple docstring''' super().__init__(**__snake_case ) __a =image_size __a =patch_size __a =num_channels __a =embed_dim __a =depths __a =len(__snake_case ) __a =num_heads __a =window_size __a =mlp_ratio __a =qkv_bias __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =drop_path_rate __a =hidden_act __a =use_absolute_embeddings __a =layer_norm_eps __a =initializer_range __a =upscale __a =img_range __a =resi_connection __a =upsampler
308
1
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor _lowerCAmelCase : Tuple = logging.get_logger(__name__) class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , *__snake_case , **__snake_case ) -> None: '''simple docstring''' warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
308
import os def UpperCamelCase_( _snake_case : str = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(_snake_case ) , _snake_case ) ) as input_file: __a =[ [int(_snake_case ) for element in line.split(',' )] for line in input_file.readlines() ] __a =len(_snake_case ) __a =len(matrix[0] ) __a =[[-1 for _ in range(_snake_case )] for _ in range(_snake_case )] for i in range(_snake_case ): __a =matrix[i][0] for j in range(1 , _snake_case ): for i in range(_snake_case ): __a =minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _snake_case ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
308
1
import heapq def UpperCamelCase_( _snake_case : dict ): """simple docstring""" __a =[] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(_snake_case , [-1 * len(_snake_case ), (key, value)] ) # chosen_vertices = set of chosen vertices __a =set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices __a =heapq.heappop(_snake_case )[1][0] chosen_vertices.add(_snake_case ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: __a =elem[1][1].index(_snake_case ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(_snake_case ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : int = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f'''Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}''')
308
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _lowerCAmelCase : Any = logging.get_logger(__name__) class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , *__snake_case , **__snake_case ) -> None: '''simple docstring''' warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
308
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : str = { "microsoft/unispeech-sat-base-100h-libri-ft": ( "https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'unispeech-sat' def __init__( self , __snake_case=32 , __snake_case=768 , __snake_case=12 , __snake_case=12 , __snake_case=3072 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=0.1 , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.1 , __snake_case=0.1 , __snake_case=0.02 , __snake_case=1e-5 , __snake_case="group" , __snake_case="gelu" , __snake_case=(512, 512, 512, 512, 512, 512, 512) , __snake_case=(5, 2, 2, 2, 2, 2, 2) , __snake_case=(10, 3, 3, 3, 3, 2, 2) , __snake_case=False , __snake_case=128 , __snake_case=16 , __snake_case=False , __snake_case=True , __snake_case=0.05 , __snake_case=10 , __snake_case=2 , __snake_case=0.0 , __snake_case=10 , __snake_case=0 , __snake_case=320 , __snake_case=2 , __snake_case=0.1 , __snake_case=100 , __snake_case=256 , __snake_case=256 , __snake_case=0.1 , __snake_case="mean" , __snake_case=False , __snake_case=False , __snake_case=256 , __snake_case=(512, 512, 512, 512, 1500) , __snake_case=(5, 3, 3, 1, 1) , __snake_case=(1, 2, 3, 1, 1) , __snake_case=512 , __snake_case=0 , __snake_case=1 , __snake_case=2 , __snake_case=504 , **__snake_case , ) -> Optional[Any]: '''simple docstring''' super().__init__(**__snake_case , pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case ) __a =hidden_size __a =feat_extract_norm __a =feat_extract_activation __a =list(__snake_case ) __a =list(__snake_case ) __a =list(__snake_case ) __a =conv_bias __a =num_conv_pos_embeddings __a =num_conv_pos_embedding_groups __a =len(self.conv_dim ) __a =num_hidden_layers __a =intermediate_size __a =hidden_act __a =num_attention_heads __a =hidden_dropout __a =attention_dropout __a =activation_dropout __a =feat_proj_dropout __a =final_dropout __a =layerdrop __a =layer_norm_eps __a =initializer_range __a =vocab_size __a =num_clusters __a =do_stable_layer_norm __a =use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' f' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __a =apply_spec_augment __a =mask_time_prob __a =mask_time_length __a =mask_time_min_masks __a =mask_feature_prob __a =mask_feature_length __a =mask_feature_min_masks # parameters for pretraining with codevector quantized representations __a =num_codevectors_per_group __a =num_codevector_groups __a =contrastive_logits_temperature __a =feat_quantizer_dropout __a =num_negatives __a =codevector_dim __a =proj_codevector_dim __a =diversity_loss_weight # ctc loss __a =ctc_loss_reduction __a =ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. __a =classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __a =list(__snake_case ) __a =list(__snake_case ) __a =list(__snake_case ) __a =xvector_output_dim @property def __magic_name__ ( self ) -> List[str]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
308
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : int = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
1
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = KandinskyVaaInpaintPipeline SCREAMING_SNAKE_CASE = ['image_embeds', 'negative_image_embeds', 'image', 'mask_image'] SCREAMING_SNAKE_CASE = [ 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] SCREAMING_SNAKE_CASE = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] SCREAMING_SNAKE_CASE = False @property def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' return 32 @property def __magic_name__ ( self ) -> int: '''simple docstring''' return 32 @property def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' return self.time_input_dim @property def __magic_name__ ( self ) -> str: '''simple docstring''' return self.time_input_dim * 4 @property def __magic_name__ ( self ) -> List[str]: '''simple docstring''' return 100 @property def __magic_name__ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) __a ={ 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } __a =UNetaDConditionModel(**__snake_case ) return model @property def __magic_name__ ( self ) -> Tuple: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) __a =VQModel(**self.dummy_movq_kwargs ) return model def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.dummy_unet __a =self.dummy_movq __a =DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=__snake_case , set_alpha_to_one=__snake_case , steps_offset=1 , prediction_type='epsilon' , thresholding=__snake_case , ) __a ={ 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def __magic_name__ ( self , __snake_case , __snake_case=0 ) -> str: '''simple docstring''' __a =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__snake_case ) ).to(__snake_case ) __a =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __snake_case ) # create init_image __a =floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) __a =image.cpu().permute(0 , 2 , 3 , 1 )[0] __a =Image.fromarray(np.uinta(__snake_case ) ).convert('RGB' ).resize((256, 256) ) # create mask __a =np.ones((64, 64) , dtype=np.floataa ) __a =0 if str(__snake_case ).startswith('mps' ): __a =torch.manual_seed(__snake_case ) else: __a =torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __a ={ 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a ='cpu' __a =self.get_dummy_components() __a =self.pipeline_class(**__snake_case ) __a =pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __a =pipe(**self.get_dummy_inputs(__snake_case ) ) __a =output.images __a =pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] __a =image[0, -3:, -3:, -1] __a =image_from_tuple[0, -3:, -3:, -1] print(f'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) __a =np.array( [0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def __magic_name__ ( self ) -> int: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self ) -> str: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy' ) __a =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) __a =np.ones((768, 768) , dtype=np.floataa ) __a =0 __a ='a hat' __a =KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) __a =KandinskyVaaInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder-inpaint' , torch_dtype=torch.floataa ) __a =pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) __a =torch.Generator(device='cpu' ).manual_seed(0 ) __a , __a =pipe_prior( __snake_case , generator=__snake_case , num_inference_steps=5 , negative_prompt='' , ).to_tuple() __a =pipeline( image=__snake_case , mask_image=__snake_case , image_embeds=__snake_case , negative_image_embeds=__snake_case , generator=__snake_case , num_inference_steps=100 , height=768 , width=768 , output_type='np' , ) __a =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
308
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'yolos' def __init__( self , __snake_case=768 , __snake_case=12 , __snake_case=12 , __snake_case=3072 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.02 , __snake_case=1e-12 , __snake_case=[512, 864] , __snake_case=16 , __snake_case=3 , __snake_case=True , __snake_case=100 , __snake_case=True , __snake_case=False , __snake_case=1 , __snake_case=5 , __snake_case=2 , __snake_case=5 , __snake_case=2 , __snake_case=0.1 , **__snake_case , ) -> str: '''simple docstring''' super().__init__(**__snake_case ) __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =intermediate_size __a =hidden_act __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =initializer_range __a =layer_norm_eps __a =image_size __a =patch_size __a =num_channels __a =qkv_bias __a =num_detection_tokens __a =use_mid_position_embeddings __a =auxiliary_loss # Hungarian matcher __a =class_cost __a =bbox_cost __a =giou_cost # Loss coefficients __a =bbox_loss_coefficient __a =giou_loss_coefficient __a =eos_coefficient class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = version.parse('1.11' ) @property def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __magic_name__ ( self ) -> float: '''simple docstring''' return 1e-4 @property def __magic_name__ ( self ) -> int: '''simple docstring''' return 12
308
1
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Union[str, Any] = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = DebertaVaTokenizer SCREAMING_SNAKE_CASE = DebertaVaTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __a =DebertaVaTokenizer(__snake_case , unk_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self , __snake_case ) -> Dict: '''simple docstring''' __a ='this is a test' __a ='this is a test' return input_text, output_text def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a ='<pad>' __a =0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '[PAD]' ) self.assertEqual(len(__snake_case ) , 3_0001 ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' # fmt: off __a =' \tHeLLo!how \n Are yoU? ' __a =['▁hello', '!', 'how', '▁are', '▁you', '?'] # fmt: on __a =DebertaVaTokenizer(__snake_case , do_lower_case=__snake_case ) __a =tokenizer.convert_ids_to_tokens(tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) ) self.assertListEqual(__snake_case , __snake_case ) __a =DebertaVaTokenizerFast(__snake_case , do_lower_case=__snake_case ) __a =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) ) self.assertListEqual(__snake_case , __snake_case ) @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.' ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.' ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' pass def __magic_name__ ( self ) -> str: '''simple docstring''' # fmt: off __a ='I was born in 92000, and this is falsé.' __a =['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on __a =DebertaVaTokenizer(__snake_case , split_by_punct=__snake_case ) __a =tokenizer.convert_ids_to_tokens(tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) ) self.assertListEqual(__snake_case , __snake_case ) __a =DebertaVaTokenizerFast(__snake_case , split_by_punct=__snake_case ) __a =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) ) self.assertListEqual(__snake_case , __snake_case ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # fmt: off __a ='I was born in 92000, and this is falsé.' __a =['▁i', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on __a =DebertaVaTokenizer(__snake_case , do_lower_case=__snake_case , split_by_punct=__snake_case ) __a =tokenizer.convert_ids_to_tokens(tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) ) self.assertListEqual(__snake_case , __snake_case ) __a =DebertaVaTokenizerFast(__snake_case , do_lower_case=__snake_case , split_by_punct=__snake_case ) __a =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) ) self.assertListEqual(__snake_case , __snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' # fmt: off __a ='I was born in 92000, and this is falsé.' __a =['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on __a =DebertaVaTokenizer(__snake_case , do_lower_case=__snake_case , split_by_punct=__snake_case ) __a =tokenizer.convert_ids_to_tokens(tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) ) self.assertListEqual(__snake_case , __snake_case ) __a =DebertaVaTokenizerFast(__snake_case , do_lower_case=__snake_case , split_by_punct=__snake_case ) __a =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) ) self.assertListEqual(__snake_case , __snake_case ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' # fmt: off __a ='I was born in 92000, and this is falsé.' __a =['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on __a =DebertaVaTokenizer(__snake_case , do_lower_case=__snake_case , split_by_punct=__snake_case ) __a =tokenizer.convert_ids_to_tokens(tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) ) self.assertListEqual(__snake_case , __snake_case ) __a =DebertaVaTokenizerFast(__snake_case , do_lower_case=__snake_case , split_by_punct=__snake_case ) __a =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) ) self.assertListEqual(__snake_case , __snake_case ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' # fmt: off __a =' \tHeLLo!how \n Are yoU? ' __a =['▁', '<unk>', 'e', '<unk>', 'o', '!', 'how', '▁', '<unk>', 're', '▁yo', '<unk>', '?'] # fmt: on __a =DebertaVaTokenizer(__snake_case , do_lower_case=__snake_case , split_by_punct=__snake_case ) __a =tokenizer.convert_ids_to_tokens(tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) ) self.assertListEqual(__snake_case , __snake_case ) __a =DebertaVaTokenizerFast(__snake_case , do_lower_case=__snake_case , split_by_punct=__snake_case ) __a =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) ) self.assertListEqual(__snake_case , __snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.get_tokenizer() __a =self.get_rust_tokenizer() __a ='I was born in 92000, and this is falsé.' __a =tokenizer.convert_ids_to_tokens(tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) ) __a =rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) ) self.assertListEqual(__snake_case , __snake_case ) __a =tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) __a =rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) __a =self.get_rust_tokenizer() __a =tokenizer.encode(__snake_case ) __a =rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a ='This is a test' __a =[13, 1, 4398, 25, 21, 1289] __a =['▁', 'T', 'his', '▁is', '▁a', '▁test'] __a =['▁', '<unk>', 'his', '▁is', '▁a', '▁test'] __a =DebertaVaTokenizer(__snake_case , keep_accents=__snake_case ) __a =DebertaVaTokenizerFast(__snake_case , keep_accents=__snake_case ) __a =tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) __a =tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) __a =tokenizer.convert_ids_to_tokens(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) __a =rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) __a =rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) __a =rust_tokenizer.convert_ids_to_tokens(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # fmt: off __a ='I was born in 92000, and this is falsé.' __a =[13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] __a =['▁', 'I', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.', ] __a =['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on __a =tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) __a =tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) __a =tokenizer.convert_ids_to_tokens(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) __a =rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) __a =rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) __a =rust_tokenizer.convert_ids_to_tokens(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =DebertaVaTokenizer(__snake_case ) __a =tokenizer.encode('sequence builders' ) __a =tokenizer.encode('multi-sequence build' ) __a =tokenizer.build_inputs_with_special_tokens(__snake_case ) __a =tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , __snake_case ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , __snake_case , ) @slow def __magic_name__ ( self ) -> List[str]: '''simple docstring''' # fmt: off __a ={'input_ids': [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name='microsoft/deberta-v2-xlarge' , revision='ad6e42c1532ddf3a15c39246b63f5559d558b670' , )
308
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def UpperCamelCase_( _snake_case : Optional[Any] ): """simple docstring""" __a =model.config __a =DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) __a =MBartConfig( is_decoder=_snake_case , is_encoder_decoder=_snake_case , add_cross_attention=_snake_case , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=_snake_case , add_final_layer_norm=_snake_case , ) return encoder_config, decoder_config def UpperCamelCase_( _snake_case : Tuple ): """simple docstring""" if "encoder.model" in name: __a =name.replace('encoder.model' , 'encoder' ) if "decoder.model" in name: __a =name.replace('decoder.model' , 'decoder' ) if "patch_embed.proj" in name: __a =name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __a =name.replace('patch_embed.norm' , 'embeddings.norm' ) if name.startswith('encoder' ): if "layers" in name: __a ='encoder.' + name if "attn.proj" in name: __a =name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "mask" not in name: __a =name.replace('attn' , 'attention.self' ) if "norm1" in name: __a =name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __a =name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __a =name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __a =name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": __a ='encoder.layernorm.weight' if name == "encoder.norm.bias": __a ='encoder.layernorm.bias' return name def UpperCamelCase_( _snake_case : Tuple , _snake_case : str ): """simple docstring""" for key in orig_state_dict.copy().keys(): __a =orig_state_dict.pop(_snake_case ) if "qkv" in key: __a =key.split('.' ) __a =int(key_split[3] ) __a =int(key_split[5] ) __a =model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __a =val[:dim, :] __a =val[dim : dim * 2, :] __a =val[-dim:, :] else: __a =val[:dim] __a =val[dim : dim * 2] __a =val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: __a =val return orig_state_dict def UpperCamelCase_( _snake_case : Tuple , _snake_case : Union[str, Any]=None , _snake_case : List[Any]=False ): """simple docstring""" __a =DonutModel.from_pretrained(_snake_case ).eval() # load HuggingFace model __a , __a =get_configs(_snake_case ) __a =DonutSwinModel(_snake_case ) __a =MBartForCausalLM(_snake_case ) __a =VisionEncoderDecoderModel(encoder=_snake_case , decoder=_snake_case ) model.eval() __a =original_model.state_dict() __a =convert_state_dict(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) # verify results on scanned document __a =load_dataset('hf-internal-testing/example-documents' ) __a =dataset['test'][0]['image'].convert('RGB' ) __a =XLMRobertaTokenizerFast.from_pretrained(_snake_case , from_slow=_snake_case ) __a =DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) __a =DonutProcessor(_snake_case , _snake_case ) __a =processor(_snake_case , return_tensors='pt' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": __a ='<s_docvqa><s_question>{user_input}</s_question><s_answer>' __a ='When is the coffee break?' __a =task_prompt.replace('{user_input}' , _snake_case ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": __a ='<s_rvlcdip>' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: __a ='<s_cord>' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": __a ='s_cord-v2>' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": __a ='<s_zhtrainticket>' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt __a ='hello world' else: raise ValueError('Model name not supported' ) __a =original_model.decoder.tokenizer(_snake_case , add_special_tokens=_snake_case , return_tensors='pt' )[ 'input_ids' ] __a =original_model.encoder.model.patch_embed(_snake_case ) __a , __a =model.encoder.embeddings(_snake_case ) assert torch.allclose(_snake_case , _snake_case , atol=1e-3 ) # verify encoder hidden states __a =original_model.encoder(_snake_case ) __a =model.encoder(_snake_case ).last_hidden_state assert torch.allclose(_snake_case , _snake_case , atol=1e-2 ) # verify decoder hidden states __a =original_model(_snake_case , _snake_case , _snake_case ).logits __a =model(_snake_case , decoder_input_ids=_snake_case ).logits assert torch.allclose(_snake_case , _snake_case , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(_snake_case ) processor.save_pretrained(_snake_case ) if push_to_hub: model.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) processor.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) _lowerCAmelCase : List[Any] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
308
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class __magic_name__ : def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=99 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=37 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=512 , __snake_case=16 , __snake_case=2 , __snake_case=0.02 , __snake_case=3 , __snake_case=4 , __snake_case=None , ) -> Dict: '''simple docstring''' __a =parent __a =batch_size __a =seq_length __a =is_training __a =use_token_type_ids __a =use_labels __a =vocab_size __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =intermediate_size __a =hidden_act __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =max_position_embeddings __a =type_vocab_size __a =type_sequence_label_size __a =initializer_range __a =num_labels __a =num_choices __a =scope __a =self.vocab_size - 1 def __magic_name__ ( self ) -> str: '''simple docstring''' __a =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a =None if self.use_token_type_ids: __a =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a =None __a =None __a =None if self.use_labels: __a =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a =ids_tensor([self.batch_size] , self.num_choices ) __a =OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) __a =ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , *__snake_case ) -> Dict: '''simple docstring''' __a =OpenAIGPTModel(config=__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , token_type_ids=__snake_case , head_mask=__snake_case ) __a =model(__snake_case , token_type_ids=__snake_case ) __a =model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , *__snake_case ) -> List[Any]: '''simple docstring''' __a =OpenAIGPTLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , *__snake_case ) -> Optional[int]: '''simple docstring''' __a =OpenAIGPTDoubleHeadsModel(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , *__snake_case ) -> Optional[Any]: '''simple docstring''' __a =self.num_labels __a =OpenAIGPTForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() __a =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a =model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) =config_and_inputs __a ={ 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly SCREAMING_SNAKE_CASE = ( { 'feature-extraction': OpenAIGPTModel, 'text-classification': OpenAIGPTForSequenceClassification, 'text-generation': OpenAIGPTLMHeadModel, 'zero-shot': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> int: '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def __magic_name__ ( self , __snake_case , __snake_case , __snake_case=False ) -> Dict: '''simple docstring''' __a =super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": __a =torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=__snake_case , ) __a =inputs_dict['labels'] __a =inputs_dict['labels'] __a =torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=__snake_case , ) __a =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =OpenAIGPTModelTester(self ) __a =ConfigTester(self , config_class=__snake_case , n_embd=37 ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*__snake_case ) def __magic_name__ ( self ) -> str: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__snake_case ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*__snake_case ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__snake_case ) @slow def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a =OpenAIGPTModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class __magic_name__ ( unittest.TestCase ): @slow def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(__snake_case ) __a =torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=__snake_case ) # the president is __a =[ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 4_0477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the __a =model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].tolist() , __snake_case )
308
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer SCREAMING_SNAKE_CASE = False def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' super().setUp() __a =['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] __a =dict(zip(__snake_case , range(len(__snake_case ) ) ) ) __a =['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] __a ={'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__snake_case ) ) def __magic_name__ ( self , **__snake_case ) -> Any: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def __magic_name__ ( self , __snake_case ) -> List[Any]: '''simple docstring''' __a ='adapt act apte' __a ='adapt act apte' return input_text, output_text def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __a ='adapt act apte' __a =['adapt', 'act', 'ap@@', 'te'] __a =tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) __a =[tokenizer.bos_token] + tokens + [tokenizer.eos_token] __a =[0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1384] __a ='I am a small frog.' __a =tok([src_text] , padding=__snake_case , truncation=__snake_case )['input_ids'] __a =tok.batch_decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) __a ='I am a small frog .' __a ='.' __a =tok(__snake_case )['input_ids'] __a =tok(__snake_case )['input_ids'] assert encoded[-1] == encoded_dot[0]
308
1
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = 42 # [batch_size x 3] SCREAMING_SNAKE_CASE = 42 # [batch_size x 3] SCREAMING_SNAKE_CASE = 42 # [batch_size x 3] SCREAMING_SNAKE_CASE = 42 # [batch_size x 3] SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 def __magic_name__ ( self ) -> Any: '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def __magic_name__ ( self ) -> str: '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def __magic_name__ ( self ) -> torch.Tensor: '''simple docstring''' __a =torch.arange(self.height * self.width ) __a =torch.stack( [ pixel_indices % self.width, torch.div(__snake_case , self.width , rounding_mode='trunc' ), ] , axis=1 , ) return coords @property def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a , *__a =self.shape __a =int(np.prod(__snake_case ) ) __a =self.get_image_coords() __a =torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) __a =self.get_camera_rays(__snake_case ) __a =rays.view(__snake_case , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def __magic_name__ ( self , __snake_case ) -> torch.Tensor: '''simple docstring''' __a , *__a , __a =coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] __a =coords.view(__snake_case , -1 , 2 ) __a =self.resolution() __a =self.fov() __a =(flat.float() / (res - 1)) * 2 - 1 __a =fracs * torch.tan(fov / 2 ) __a =fracs.view(__snake_case , -1 , 2 ) __a =( self.z.view(__snake_case , 1 , 3 ) + self.x.view(__snake_case , 1 , 3 ) * fracs[:, :, :1] + self.y.view(__snake_case , 1 , 3 ) * fracs[:, :, 1:] ) __a =directions / directions.norm(dim=-1 , keepdim=__snake_case ) __a =torch.stack( [ torch.broadcast_to(self.origin.view(__snake_case , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(__snake_case , *__snake_case , 2 , 3 ) def __magic_name__ ( self , __snake_case , __snake_case ) -> "DifferentiableProjectiveCamera": '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=__snake_case , height=__snake_case , x_fov=self.x_fov , y_fov=self.y_fov , ) def UpperCamelCase_( _snake_case : int ): """simple docstring""" __a =[] __a =[] __a =[] __a =[] for theta in np.linspace(0 , 2 * np.pi , num=20 ): __a =np.array([np.sin(_snake_case ), np.cos(_snake_case ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) __a =-z * 4 __a =np.array([np.cos(_snake_case ), -np.sin(_snake_case ), 0.0] ) __a =np.cross(_snake_case , _snake_case ) origins.append(_snake_case ) xs.append(_snake_case ) ys.append(_snake_case ) zs.append(_snake_case ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(_snake_case , axis=0 ) ).float() , x=torch.from_numpy(np.stack(_snake_case , axis=0 ) ).float() , y=torch.from_numpy(np.stack(_snake_case , axis=0 ) ).float() , z=torch.from_numpy(np.stack(_snake_case , axis=0 ) ).float() , width=_snake_case , height=_snake_case , x_fov=0.7 , y_fov=0.7 , shape=(1, len(_snake_case )) , )
308
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __magic_name__ ( unittest.TestCase , lowerCAmelCase_ ): def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =load_tool('text-to-speech' ) self.tool.setup() def __magic_name__ ( self ) -> Dict: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) __a =self.tool('hey' ) __a =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) __a =self.tool('hey' ) __a =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) )
308
1
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = StableDiffusionDiffEditPipeline SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'} SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'} SCREAMING_SNAKE_CASE = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess SCREAMING_SNAKE_CASE = frozenset([] ) def __magic_name__ ( self ) -> Any: '''simple docstring''' torch.manual_seed(0 ) __a =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__snake_case , ) __a =DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) __a =DDIMInverseScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=__snake_case , set_alpha_to_zero=__snake_case , ) torch.manual_seed(0 ) __a =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __a =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) __a =CLIPTextModel(__snake_case ) __a =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __a ={ 'unet': unet, 'scheduler': scheduler, 'inverse_scheduler': inverse_scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __magic_name__ ( self , __snake_case , __snake_case=0 ) -> Optional[Any]: '''simple docstring''' __a =floats_tensor((1, 16, 16) , rng=random.Random(__snake_case ) ).to(__snake_case ) __a =floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(__snake_case ) ).to(__snake_case ) if str(__snake_case ).startswith('mps' ): __a =torch.manual_seed(__snake_case ) else: __a =torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __a ={ 'prompt': 'a dog and a newt', 'mask_image': mask, 'image_latents': latents, 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __magic_name__ ( self , __snake_case , __snake_case=0 ) -> Any: '''simple docstring''' __a =floats_tensor((1, 3, 32, 32) , rng=random.Random(__snake_case ) ).to(__snake_case ) __a =image.cpu().permute(0 , 2 , 3 , 1 )[0] __a =Image.fromarray(np.uinta(__snake_case ) ).convert('RGB' ) if str(__snake_case ).startswith('mps' ): __a =torch.manual_seed(__snake_case ) else: __a =torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __a ={ 'image': image, 'source_prompt': 'a cat and a frog', 'target_prompt': 'a dog and a newt', 'generator': generator, 'num_inference_steps': 2, 'num_maps_per_mask': 2, 'mask_encode_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __magic_name__ ( self , __snake_case , __snake_case=0 ) -> str: '''simple docstring''' __a =floats_tensor((1, 3, 32, 32) , rng=random.Random(__snake_case ) ).to(__snake_case ) __a =image.cpu().permute(0 , 2 , 3 , 1 )[0] __a =Image.fromarray(np.uinta(__snake_case ) ).convert('RGB' ) if str(__snake_case ).startswith('mps' ): __a =torch.manual_seed(__snake_case ) else: __a =torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __a ={ 'image': image, 'prompt': 'a cat and a frog', 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'decode_latents': True, 'output_type': 'numpy', } return inputs def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' if not hasattr(self.pipeline_class , '_optional_components' ): return __a =self.get_dummy_components() __a =self.pipeline_class(**__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(__snake_case , __snake_case , __snake_case ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) __a =self.get_dummy_inputs(__snake_case ) __a =pipe(**__snake_case )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__snake_case ) __a =self.pipeline_class.from_pretrained(__snake_case ) pipe_loaded.to(__snake_case ) pipe_loaded.set_progress_bar_config(disable=__snake_case ) for optional_component in pipe._optional_components: self.assertTrue( getattr(__snake_case , __snake_case ) is None , f'`{optional_component}` did not stay set to None after loading.' , ) __a =self.get_dummy_inputs(__snake_case ) __a =pipe_loaded(**__snake_case )[0] __a =np.abs(output - output_loaded ).max() self.assertLess(__snake_case , 1e-4 ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a ='cpu' __a =self.get_dummy_components() __a =self.pipeline_class(**__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __a =self.get_dummy_mask_inputs(__snake_case ) __a =pipe.generate_mask(**__snake_case ) __a =mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) __a =np.array([0] * 9 ) __a =np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(__snake_case , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a ='cpu' __a =self.get_dummy_components() __a =self.pipeline_class(**__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __a =self.get_dummy_inversion_inputs(__snake_case ) __a =pipe.invert(**__snake_case ).images __a =image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) __a =np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799] , ) __a =np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__snake_case , 1e-3 ) def __magic_name__ ( self ) -> str: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a ='cpu' __a =self.get_dummy_components() __a ={'beta_start': 0.0_0085, 'beta_end': 0.012, 'beta_schedule': 'scaled_linear'} __a =DPMSolverMultistepScheduler(**__snake_case ) __a =DPMSolverMultistepInverseScheduler(**__snake_case ) __a =self.pipeline_class(**__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __a =self.get_dummy_inversion_inputs(__snake_case ) __a =pipe.invert(**__snake_case ).images __a =image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) __a =np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799] , ) __a =np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__snake_case , 1e-3 ) @require_torch_gpu @slow class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def __magic_name__ ( cls ) -> Tuple: '''simple docstring''' __a =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' ) __a =raw_image.convert('RGB' ).resize((768, 768) ) __a =raw_image def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =torch.manual_seed(0 ) __a =StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1' , safety_checker=__snake_case , torch_dtype=torch.floataa ) __a =DDIMScheduler.from_config(pipe.scheduler.config ) __a =DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__snake_case ) __a ='a bowl of fruit' __a ='a bowl of pears' __a =pipe.generate_mask( image=self.raw_image , source_prompt=__snake_case , target_prompt=__snake_case , generator=__snake_case , ) __a =pipe.invert( prompt=__snake_case , image=self.raw_image , inpaint_strength=0.7 , generator=__snake_case ).latents __a =pipe( prompt=__snake_case , mask_image=__snake_case , image_latents=__snake_case , generator=__snake_case , negative_prompt=__snake_case , inpaint_strength=0.7 , output_type='numpy' , ).images[0] __a =( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1 def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =torch.manual_seed(0 ) __a =StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1' , safety_checker=__snake_case , torch_dtype=torch.floataa ) __a =DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __a =DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__snake_case ) __a ='a bowl of fruit' __a ='a bowl of pears' __a =pipe.generate_mask( image=self.raw_image , source_prompt=__snake_case , target_prompt=__snake_case , generator=__snake_case , ) __a =pipe.invert( prompt=__snake_case , image=self.raw_image , inpaint_strength=0.7 , generator=__snake_case , num_inference_steps=25 , ).latents __a =pipe( prompt=__snake_case , mask_image=__snake_case , image_latents=__snake_case , generator=__snake_case , negative_prompt=__snake_case , inpaint_strength=0.7 , num_inference_steps=25 , output_type='numpy' , ).images[0] __a =( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1
308
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> int: '''simple docstring''' __a =[] __a =[] for i in range(self.num_layers ): __a =self.in_channels if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =resnets __a =attentions if self.add_downsample: __a =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> Optional[Any]: '''simple docstring''' __a =() for resnet, attn in zip(self.resnets , self.attentions ): __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __a =self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> int: '''simple docstring''' __a =[] for i in range(self.num_layers ): __a =self.in_channels if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets if self.add_downsample: __a =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case=True ) -> Optional[int]: '''simple docstring''' __a =() for resnet in self.resnets: __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __a =self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =[] __a =[] for i in range(self.num_layers ): __a =self.in_channels if (i == self.num_layers - 1) else self.out_channels __a =self.prev_output_channel if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =resnets __a =attentions if self.add_upsample: __a =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[Any]: '''simple docstring''' for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states __a =res_hidden_states_tuple[-1] __a =res_hidden_states_tuple[:-1] __a =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __a =self.upsamplers_a(__snake_case ) return hidden_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =[] for i in range(self.num_layers ): __a =self.in_channels if (i == self.num_layers - 1) else self.out_channels __a =self.prev_output_channel if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets if self.add_upsample: __a =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[Any]: '''simple docstring''' for resnet in self.resnets: # pop res hidden states __a =res_hidden_states_tuple[-1] __a =res_hidden_states_tuple[:-1] __a =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __a =self.upsamplers_a(__snake_case ) return hidden_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # there is always at least one resnet __a =[ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] __a =[] for _ in range(self.num_layers ): __a =FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets __a =attentions def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[str]: '''simple docstring''' __a =self.resnets[0](__snake_case , __snake_case ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) return hidden_states
308
1
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = CanineTokenizer SCREAMING_SNAKE_CASE = False def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' super().setUp() __a =CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' return CanineTokenizer.from_pretrained('google/canine-s' ) def __magic_name__ ( self , **__snake_case ) -> CanineTokenizer: '''simple docstring''' __a =self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case ) __a =1024 return tokenizer @require_torch def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =self.canine_tokenizer __a =['Life is like a box of chocolates.', 'You never know what you\'re gonna get.'] # fmt: off __a =[5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0] # fmt: on __a =tokenizer(__snake_case , padding=__snake_case , return_tensors='pt' ) self.assertIsInstance(__snake_case , __snake_case ) __a =list(batch.input_ids.numpy()[0] ) self.assertListEqual(__snake_case , __snake_case ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =self.canine_tokenizer __a =['Once there was a man.', 'He wrote a test in HuggingFace Tranformers.'] __a =tokenizer(__snake_case , padding=__snake_case , return_tensors='pt' ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn('input_ids' , __snake_case ) self.assertIn('attention_mask' , __snake_case ) self.assertIn('token_type_ids' , __snake_case ) @require_torch def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =self.canine_tokenizer __a =[ 'What\'s the weater?', 'It\'s about 25 degrees.', ] __a =tokenizer( text_target=__snake_case , max_length=32 , padding='max_length' , truncation=__snake_case , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' # safety check on max_len default value so we are sure the test works __a =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __a =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __a =tempfile.mkdtemp() __a =' He is very happy, UNwant\u00E9d,running' __a =tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) tokenizer.save_pretrained(__snake_case ) __a =tokenizer.__class__.from_pretrained(__snake_case ) __a =after_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) shutil.rmtree(__snake_case ) __a =self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc __a =tempfile.mkdtemp() __a =' He is very happy, UNwant\u00E9d,running' __a =tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __a =chr(0Xe007 ) additional_special_tokens.append(__snake_case ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) __a =tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) tokenizer.save_pretrained(__snake_case ) __a =tokenizer.__class__.from_pretrained(__snake_case ) __a =after_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) self.assertIn(__snake_case , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __a =tokenizer.__class__.from_pretrained(__snake_case , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__snake_case ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =self.get_tokenizers(do_lower_case=__snake_case ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): __a , __a =self.get_clean_sequence(__snake_case ) # a special token for Canine can be defined as follows: __a =0Xe005 __a =chr(__snake_case ) tokenizer.add_special_tokens({'cls_token': special_token} ) __a =tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertEqual(len(__snake_case ) , 1 ) __a =tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__snake_case ) __a =tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) __a =tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) __a =tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertEqual(__snake_case , input_encoded + special_token_id ) __a =tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) self.assertTrue(special_token not in decoded ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.get_tokenizers(do_lower_case=__snake_case ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): __a =chr(0Xe005 ) __a =chr(0Xe006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__snake_case ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({'additional_special_tokens': [SPECIAL_TOKEN_2]} ) __a =tokenizer.tokenize(__snake_case ) __a =tokenizer.tokenize(__snake_case ) self.assertEqual(len(__snake_case ) , 1 ) self.assertEqual(len(__snake_case ) , 1 ) self.assertEqual(token_a[0] , __snake_case ) self.assertEqual(token_a[0] , __snake_case ) @require_tokenizers def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.get_tokenizers(do_lower_case=__snake_case ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # a special token for Canine can be defined as follows: __a =0Xe006 __a =chr(__snake_case ) __a =AddedToken(__snake_case , lstrip=__snake_case ) tokenizer.add_special_tokens({'additional_special_tokens': [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__snake_case ) tokenizer.from_pretrained(__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =[] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__snake_case ) with open(os.path.join(__snake_case , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: __a =json.load(__snake_case ) with open(os.path.join(__snake_case , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: __a =json.load(__snake_case ) # a special token for Canine can be defined as follows: __a =0Xe006 __a =chr(__snake_case ) __a =[new_token_a] __a =[new_token_a] with open(os.path.join(__snake_case , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(__snake_case , __snake_case ) with open(os.path.join(__snake_case , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(__snake_case , __snake_case ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __a =tokenizer_class.from_pretrained(__snake_case , extra_ids=0 ) self.assertIn(__snake_case , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) __a =0Xe007 __a =chr(__snake_case ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __a =[AddedToken(__snake_case , lstrip=__snake_case )] __a =tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , extra_ids=0 ) self.assertIn(__snake_case , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =self.get_tokenizers(do_lower_case=__snake_case ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): __a ='hello world' if self.space_between_special_tokens: __a ='[CLS] hello world [SEP]' else: __a =input __a =tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) __a =tokenizer.decode(__snake_case , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__snake_case , [output, output.lower()] ) def __magic_name__ ( self ) -> str: '''simple docstring''' __a =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): __a =[ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] __a ='a' __a =ord(__snake_case ) for attr in attributes_list: setattr(__snake_case , attr + '_id' , __snake_case ) self.assertEqual(getattr(__snake_case , __snake_case ) , __snake_case ) self.assertEqual(getattr(__snake_case , attr + '_id' ) , __snake_case ) setattr(__snake_case , attr + '_id' , __snake_case ) self.assertEqual(getattr(__snake_case , __snake_case ) , __snake_case ) self.assertEqual(getattr(__snake_case , attr + '_id' ) , __snake_case ) setattr(__snake_case , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(__snake_case , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(__snake_case , 'additional_special_tokens_ids' ) , [] ) __a =0Xe006 __a =chr(__snake_case ) setattr(__snake_case , 'additional_special_tokens_ids' , [additional_special_token_id] ) self.assertListEqual(getattr(__snake_case , 'additional_special_tokens' ) , [additional_special_token] ) self.assertListEqual(getattr(__snake_case , 'additional_special_tokens_ids' ) , [additional_special_token_id] ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' pass def __magic_name__ ( self ) -> List[str]: '''simple docstring''' pass def __magic_name__ ( self ) -> int: '''simple docstring''' pass def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' pass def __magic_name__ ( self ) -> str: '''simple docstring''' pass def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' pass def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' pass def __magic_name__ ( self ) -> Tuple: '''simple docstring''' pass
308
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_5_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self ) -> int: '''simple docstring''' if self.framework == "pytorch": subprocess.run( f'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding='utf-8' , check=__snake_case , ) assert hasattr(self , 'env' ) def __magic_name__ ( self , __snake_case ) -> int: '''simple docstring''' __a =f'{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}' # distributed data settings __a ={'smdistributed': {'dataparallel': {'enabled': True}}} if self.script != 'run_ddp.py' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__snake_case , instance_count=__snake_case , instance_type=self.instance_type , debugger_hook_config=__snake_case , hyperparameters={**self.env.distributed_hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__snake_case , py_version='py36' , ) def __magic_name__ ( self , __snake_case ) -> Optional[Any]: '''simple docstring''' TrainingJobAnalytics(__snake_case ).export_csv(f'{self.env.test_path}/{job_name}_metrics.csv' ) @parameterized.expand([(2,)] ) def __magic_name__ ( self , __snake_case ) -> Optional[int]: '''simple docstring''' # create estimator __a =self.create_estimator(__snake_case ) # run training estimator.fit() # result dataframe __a =TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __a =list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) __a =list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __a =( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'{estimator.latest_training_job.name}.json' , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , __snake_case )
308
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { "alibaba-damo/mgp-str-base": "https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json", } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'mgp-str' def __init__( self , __snake_case=[32, 128] , __snake_case=4 , __snake_case=3 , __snake_case=27 , __snake_case=38 , __snake_case=5_0257 , __snake_case=3_0522 , __snake_case=768 , __snake_case=12 , __snake_case=12 , __snake_case=4.0 , __snake_case=True , __snake_case=False , __snake_case=1e-5 , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.0 , __snake_case=False , __snake_case=0.02 , **__snake_case , ) -> Optional[Any]: '''simple docstring''' super().__init__(**__snake_case ) __a =image_size __a =patch_size __a =num_channels __a =max_token_length __a =num_character_labels __a =num_bpe_labels __a =num_wordpiece_labels __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =mlp_ratio __a =distilled __a =layer_norm_eps __a =drop_rate __a =qkv_bias __a =attn_drop_rate __a =drop_path_rate __a =output_aa_attentions __a =initializer_range
308
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _lowerCAmelCase : List[Any] = logging.getLogger(__name__) _lowerCAmelCase : Optional[Any] = "Hello world! cécé herlolip" _lowerCAmelCase : str = namedtuple( "BertAbsConfig", [ "temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout", ], ) def UpperCamelCase_( _snake_case : str , _snake_case : List[Any] ): """simple docstring""" __a =BertAbsConfig( temp_dir='.' , finetune_bert=_snake_case , large=_snake_case , share_emb=_snake_case , use_bert_emb=_snake_case , encoder='bert' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) __a =torch.load(_snake_case , lambda _snake_case , _snake_case : storage ) __a =AbsSummarizer(_snake_case , torch.device('cpu' ) , _snake_case ) original.eval() __a =BertAbsSummarizer(_snake_case , torch.device('cpu' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('convert the model' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('Make sure that the models\' outputs are identical' ) __a =BertTokenizer.from_pretrained('bert-base-uncased' ) # prepare the model inputs __a =tokenizer.encode('This is sample éàalj\'-.' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_snake_case )) ) __a =torch.tensor(_snake_case ).unsqueeze(0 ) __a =tokenizer.encode('This is sample 3 éàalj\'-.' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_snake_case )) ) __a =torch.tensor(_snake_case ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __a =encoder_input_ids __a =decoder_input_ids __a =__a =None __a =None __a =__a =None __a =__a =None __a =None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __a =original(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )[0] __a =original.generator(_snake_case ) __a =new_model( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )[0] __a =new_model.generator(_snake_case ) __a =torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_snake_case ) ) __a =torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_snake_case ) ) __a =torch.allclose(_snake_case , _snake_case , atol=1e-3 ) if are_identical: logging.info('all weights are equal up to 1e-3' ) else: raise ValueError('the weights are different. The new model is likely different from the original one.' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('saving the model\'s state dictionary' ) torch.save( new_model.state_dict() , './bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--bertabs_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model.", ) _lowerCAmelCase : Optional[Any] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
308
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _lowerCAmelCase : str = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : int = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys _lowerCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ : def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=False , __snake_case=False , __snake_case=False , __snake_case=2 , __snake_case=99 , __snake_case=0 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=0.1 , __snake_case=0.1 , __snake_case=512 , __snake_case=2 , __snake_case=0.02 , __snake_case=2 , __snake_case=4 , __snake_case="last" , __snake_case=True , __snake_case=None , __snake_case=0 , ) -> Optional[Any]: '''simple docstring''' __a =parent __a =batch_size __a =seq_length __a =is_training __a =use_input_lengths __a =use_token_type_ids __a =use_labels __a =gelu_activation __a =sinusoidal_embeddings __a =causal __a =asm __a =n_langs __a =vocab_size __a =n_special __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =max_position_embeddings __a =type_sequence_label_size __a =initializer_range __a =num_labels __a =num_choices __a =summary_type __a =use_proj __a =scope __a =bos_token_id def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a =random_attention_mask([self.batch_size, self.seq_length] ) __a =None if self.use_input_lengths: __a =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __a =None if self.use_token_type_ids: __a =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __a =None __a =None __a =None if self.use_labels: __a =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a =ids_tensor([self.batch_size] , 2 ).float() __a =ids_tensor([self.batch_size] , self.num_choices ) __a =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __magic_name__ ( self ) -> Any: '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> List[Any]: '''simple docstring''' __a =XLMModel(config=__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , lengths=__snake_case , langs=__snake_case ) __a =model(__snake_case , langs=__snake_case ) __a =model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Optional[int]: '''simple docstring''' __a =XLMWithLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Dict: '''simple docstring''' __a =XLMForQuestionAnsweringSimple(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) __a =outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> List[Any]: '''simple docstring''' __a =XLMForQuestionAnswering(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , p_mask=__snake_case , ) __a =model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , ) ((__a) , ) =result_with_labels.to_tuple() __a =model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) ((__a) , ) =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Optional[Any]: '''simple docstring''' __a =XLMForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Any: '''simple docstring''' __a =self.num_labels __a =XLMForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Tuple: '''simple docstring''' __a =self.num_choices __a =XLMForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() __a =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) =config_and_inputs __a ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable SCREAMING_SNAKE_CASE = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> int: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __magic_name__ ( self , __snake_case , __snake_case , __snake_case=False ) -> str: '''simple docstring''' __a =super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __a =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) __a =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =XLMModelTester(self ) __a =ConfigTester(self , config_class=__snake_case , emb_dim=37 ) def __magic_name__ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=False , __snake_case=1 ) -> Optional[Any]: '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_attentions in attentions] , [True] * len(__snake_case ) ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__snake_case ): # adds PAD dummy token __a =min_length + idx + 1 __a =min_length + idx + 1 __a =( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__snake_case ) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=False , __snake_case=1 ) -> Dict: '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_hidden_states in hidden_states] , [True] * len(__snake_case ) , ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__snake_case ): # adds PAD dummy token __a =min_length + idx + 1 __a =(batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__snake_case ) , ) pass @slow def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a =XLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class __magic_name__ ( unittest.TestCase ): @slow def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(__snake_case ) __a =torch.tensor([[14, 447]] , dtype=torch.long , device=__snake_case ) # the president __a =[ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __a =model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __snake_case )
308
1
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel _lowerCAmelCase : str = { "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } _lowerCAmelCase : List[Any] = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc") def UpperCamelCase_( _snake_case : Any , _snake_case : Dict=False ): """simple docstring""" __a , __a =create_model( 'HTSAT-tiny' , 'roberta' , _snake_case , precision='fp32' , device='cuda:0' if torch.cuda.is_available() else 'cpu' , enable_fusion=_snake_case , fusion_type='aff_2d' if enable_fusion else None , ) return model, model_cfg def UpperCamelCase_( _snake_case : Tuple ): """simple docstring""" __a ={} __a =r'.*sequential.(\d+).*' __a =r'.*_projection.(\d+).*' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __a =key.replace(_snake_case , _snake_case ) if re.match(_snake_case , _snake_case ): # replace sequential layers with list __a =re.match(_snake_case , _snake_case ).group(1 ) __a =key.replace(F'sequential.{sequential_layer}.' , F'layers.{int(_snake_case )//3}.linear.' ) elif re.match(_snake_case , _snake_case ): __a =int(re.match(_snake_case , _snake_case ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... __a =1 if projecton_layer == 0 else 2 __a =key.replace(F'_projection.{projecton_layer}.' , F'_projection.linear{transformers_projection_layer}.' ) if "audio" and "qkv" in key: # split qkv into query key and value __a =value __a =mixed_qkv.size(0 ) // 3 __a =mixed_qkv[:qkv_dim] __a =mixed_qkv[qkv_dim : qkv_dim * 2] __a =mixed_qkv[qkv_dim * 2 :] __a =query_layer __a =key_layer __a =value_layer else: __a =value return model_state_dict def UpperCamelCase_( _snake_case : int , _snake_case : Tuple , _snake_case : Optional[int] , _snake_case : Dict=False ): """simple docstring""" __a , __a =init_clap(_snake_case , enable_fusion=_snake_case ) clap_model.eval() __a =clap_model.state_dict() __a =rename_state_dict(_snake_case ) __a =ClapConfig() __a =enable_fusion __a =ClapModel(_snake_case ) # ignore the spectrogram embedding layer model.load_state_dict(_snake_case , strict=_snake_case ) model.save_pretrained(_snake_case ) transformers_config.save_pretrained(_snake_case ) if __name__ == "__main__": _lowerCAmelCase : str = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not") _lowerCAmelCase : List[Any] = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
308
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake _lowerCAmelCase : Optional[Any] = numpy.array([0, 0]) _lowerCAmelCase : Dict = numpy.array([0.5, 0.8660254]) _lowerCAmelCase : Any = numpy.array([1, 0]) _lowerCAmelCase : int = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCamelCase_( _snake_case : list[numpy.ndarray] , _snake_case : int ): """simple docstring""" __a =initial_vectors for _ in range(_snake_case ): __a =iteration_step(_snake_case ) return vectors def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =[] for i, start_vector in enumerate(vectors[:-1] ): __a =vectors[i + 1] new_vectors.append(_snake_case ) __a =end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCamelCase_( _snake_case : numpy.ndarray , _snake_case : float ): """simple docstring""" __a =numpy.radians(_snake_case ) __a , __a =numpy.cos(_snake_case ), numpy.sin(_snake_case ) __a =numpy.array(((c, -s), (s, c)) ) return numpy.dot(_snake_case , _snake_case ) def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() __a , __a =zip(*_snake_case ) plt.plot(_snake_case , _snake_case ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : List[Any] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
308
1
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version _lowerCAmelCase : Dict = get_logger(__name__) class __magic_name__ : SCREAMING_SNAKE_CASE = 'dummy_data' SCREAMING_SNAKE_CASE = 'datasets' SCREAMING_SNAKE_CASE = False def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case = None , __snake_case = False , __snake_case = True , __snake_case = None , ) -> Tuple: '''simple docstring''' __a =0 __a =dataset_name __a =cache_dir __a =use_local_dummy_data __a =config # download_callbacks take a single url as input __a =download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root __a =load_existing_dummy_data # TODO(PVP, QL) might need to make this more general __a =str(__snake_case ) # to be downloaded __a =None __a =None @property def __magic_name__ ( self ) -> Tuple: '''simple docstring''' if self._dummy_file is None: __a =self.download_dummy_data() return self._dummy_file @property def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('dummy' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('dummy' , self.version_name ) @property def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' return os.path.join(self.dummy_data_folder , 'dummy_data.zip' ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) __a =cached_path( __snake_case , cache_dir=self.cache_dir , extract_compressed_file=__snake_case , force_extract=__snake_case ) return os.path.join(__snake_case , self.dummy_file_name ) @property def __magic_name__ ( self ) -> List[str]: '''simple docstring''' return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' if self._bucket_url is None: __a =hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '/' ) ) return self._bucket_url @property def __magic_name__ ( self ) -> str: '''simple docstring''' # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '/' ).split('/' )[:-1] ) def __magic_name__ ( self , __snake_case , *__snake_case ) -> Tuple: '''simple docstring''' if self.load_existing_dummy_data: # dummy data is downloaded and tested __a =self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned __a =self.dummy_file_name # special case when data_url is a dict if isinstance(__snake_case , __snake_case ): return self.create_dummy_data_dict(__snake_case , __snake_case ) elif isinstance(__snake_case , (list, tuple) ): return self.create_dummy_data_list(__snake_case , __snake_case ) else: return self.create_dummy_data_single(__snake_case , __snake_case ) def __magic_name__ ( self , __snake_case , *__snake_case ) -> int: '''simple docstring''' return self.download_and_extract(__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case ) -> Any: '''simple docstring''' return self.download_and_extract(__snake_case ) def __magic_name__ ( self , __snake_case , *__snake_case , **__snake_case ) -> Dict: '''simple docstring''' return path def __magic_name__ ( self ) -> Any: '''simple docstring''' return {} def __magic_name__ ( self , __snake_case , __snake_case ) -> List[Any]: '''simple docstring''' __a ={} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(__snake_case , __snake_case ): for single_url in single_urls: download_callback(__snake_case ) else: __a =single_urls download_callback(__snake_case ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(__snake_case , __snake_case ): __a =[os.path.join(__snake_case , urllib.parse.quote_plus(Path(__snake_case ).name ) ) for x in single_urls] else: __a =single_urls __a =os.path.join(__snake_case , urllib.parse.quote_plus(Path(__snake_case ).name ) ) __a =value # make sure that values are unique if all(isinstance(__snake_case , __snake_case ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique __a ={key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def __magic_name__ ( self , __snake_case , __snake_case ) -> List[Any]: '''simple docstring''' __a =[] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one __a =all(bool(re.findall('[0-9]{3,}-of-[0-9]{3,}' , __snake_case ) ) for url in data_url ) __a =all( url.startswith('https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): __a =[data_url[0]] * len(__snake_case ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(__snake_case ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __a =os.path.join(__snake_case , urllib.parse.quote_plus(single_url.split('/' )[-1] ) ) dummy_data_list.append(__snake_case ) return dummy_data_list def __magic_name__ ( self , __snake_case , __snake_case ) -> int: '''simple docstring''' for download_callback in self.download_callbacks: download_callback(__snake_case ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __a =os.path.join(__snake_case , urllib.parse.quote_plus(data_url.split('/' )[-1] ) ) if os.path.exists(__snake_case ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def __magic_name__ ( self ) -> List[str]: '''simple docstring''' pass def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' pass def __magic_name__ ( self , __snake_case ) -> List[str]: '''simple docstring''' def _iter_archive_members(__snake_case ): # this preserves the order of the members inside the ZIP archive __a =Path(self.dummy_file ).parent __a =path.relative_to(__snake_case ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: __a =zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(__snake_case ) __a =Path(__snake_case ) __a =_iter_archive_members(__snake_case ) if self.use_local_dummy_data else path.rglob('*' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('.', '__') ): yield file_path.relative_to(__snake_case ).as_posix(), file_path.open('rb' ) def __magic_name__ ( self , __snake_case ) -> Dict: '''simple docstring''' if not isinstance(__snake_case , __snake_case ): __a =[paths] for path in paths: if os.path.isfile(__snake_case ): if os.path.basename(__snake_case ).startswith(('.', '__') ): return yield path else: for dirpath, dirnames, filenames in os.walk(__snake_case ): if os.path.basename(__snake_case ).startswith(('.', '__') ): continue dirnames.sort() for filename in sorted(__snake_case ): if filename.startswith(('.', '__') ): continue yield os.path.join(__snake_case , __snake_case )
308
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Tuple = { "configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MegatronBertForCausalLM", "MegatronBertForMaskedLM", "MegatronBertForMultipleChoice", "MegatronBertForNextSentencePrediction", "MegatronBertForPreTraining", "MegatronBertForQuestionAnswering", "MegatronBertForSequenceClassification", "MegatronBertForTokenClassification", "MegatronBertModel", "MegatronBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys _lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
1
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , __snake_case , __snake_case , __snake_case=1024 , __snake_case=1024 , __snake_case=3.6 ) -> Any: '''simple docstring''' __a =tokenizer __a =tokenizer.bos_token_id __a =dataset __a =seq_length __a =seq_length * chars_per_token * num_of_sequences def __iter__( self ) -> List[Any]: '''simple docstring''' __a =iter(self.dataset ) __a =True while more_examples: __a , __a =[], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(__snake_case )['content'] ) buffer_len += len(buffer[-1] ) except StopIteration: __a =False break __a =tokenizer(__snake_case , truncation=__snake_case )['input_ids'] __a =[] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(__snake_case ) , self.seq_length ): __a =all_token_ids[i : i + self.seq_length] if len(__snake_case ) == self.seq_length: yield torch.tensor(__snake_case ) def UpperCamelCase_( _snake_case : Dict ): """simple docstring""" __a ={'streaming': True} __a =load_dataset(args.dataset_name , split='train' , **_snake_case ) __a =ConstantLengthDataset(_snake_case , _snake_case , seq_length=args.seq_length ) __a =DataLoader(_snake_case , batch_size=args.batch_size ) return eval_dataloader def UpperCamelCase_( _snake_case : str ): """simple docstring""" model.eval() __a =[] for step, batch in enumerate(_snake_case ): with torch.no_grad(): __a =model(_snake_case , labels=_snake_case ) __a =outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(_snake_case ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break __a =torch.mean(torch.cat(_snake_case ) ) try: __a =torch.exp(_snake_case ) except OverflowError: __a =float('inf' ) return loss.item(), perplexity.item() # Setup Accelerator _lowerCAmelCase : str = Accelerator() # Parse configuration _lowerCAmelCase : str = HfArgumentParser(EvaluationArguments) _lowerCAmelCase : Optional[Any] = parser.parse_args() set_seed(args.seed) # Logging _lowerCAmelCase : str = logging.getLogger(__name__) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) # Load model and tokenizer _lowerCAmelCase : List[str] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) _lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader _lowerCAmelCase : int = create_dataloader(args) # Prepare everything with our `accelerator`. _lowerCAmelCase , _lowerCAmelCase : Any = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info("Evaluating and saving model after training") _lowerCAmelCase , _lowerCAmelCase : Optional[int] = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
308
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __magic_name__ : @staticmethod def __magic_name__ ( *__snake_case , **__snake_case ) -> List[str]: '''simple docstring''' pass def UpperCamelCase_( _snake_case : Image ): """simple docstring""" __a =hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __magic_name__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def __magic_name__ ( self , __snake_case , __snake_case , __snake_case ) -> Dict: '''simple docstring''' __a =DepthEstimationPipeline(model=__snake_case , image_processor=__snake_case ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __magic_name__ ( self , __snake_case , __snake_case ) -> Tuple: '''simple docstring''' __a =depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , __snake_case ) import datasets __a =datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) __a =depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , __snake_case , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' pass @slow @require_torch def __magic_name__ ( self ) -> int: '''simple docstring''' __a ='Intel/dpt-large' __a =pipeline('depth-estimation' , model=__snake_case ) __a =depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) __a =hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.662 ) @require_torch def __magic_name__ ( self ) -> Any: '''simple docstring''' # This is highly irregular to have no small tests. self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
308
1
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , __snake_case , __snake_case , __snake_case ) -> Optional[int]: '''simple docstring''' __a =dataset __a =process __a =params def __len__( self ) -> Optional[Any]: '''simple docstring''' return len(self.dataset ) def __getitem__( self , __snake_case ) -> Any: '''simple docstring''' __a =self.dataset[i] __a =self.process(__snake_case , **self.params ) return processed class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case=None ) -> str: '''simple docstring''' __a =loader __a =infer __a =params if loader_batch_size == 1: # Let's spare some time by deactivating altogether __a =None __a =loader_batch_size # Internal bookkeeping __a =None __a =None def __len__( self ) -> Dict: '''simple docstring''' return len(self.loader ) def __iter__( self ) -> List[Any]: '''simple docstring''' __a =iter(self.loader ) return self def __magic_name__ ( self ) -> int: '''simple docstring''' if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice __a =self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) __a ={} for k, element in self._loader_batch_data.items(): if isinstance(__snake_case , __snake_case ): # Convert ModelOutput to tuple first __a =element.to_tuple() if isinstance(element[0] , torch.Tensor ): __a =tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): __a =tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(__snake_case , __snake_case ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): __a =tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): __a =tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around __a =None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers __a =element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers __a =np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. __a =element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 __a =self._loader_batch_data.__class__(__snake_case ) self._loader_batch_index += 1 return result def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch __a =next(self.iterator ) __a =self.infer(__snake_case , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(__snake_case , torch.Tensor ): __a =processed else: __a =list(processed.keys() )[0] __a =processed[key] if isinstance(__snake_case , __snake_case ): __a =len(__snake_case ) else: __a =first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. __a =observed_batch_size # Setting internal index to unwrap the batch __a =processed __a =0 return self.loader_batch_item() else: # We're not unrolling batches return processed class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case=None ) -> Tuple: '''simple docstring''' super().__init__(__snake_case , __snake_case , __snake_case ) def __iter__( self ) -> List[str]: '''simple docstring''' __a =iter(self.loader ) __a =None return self def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' if self.subiterator is None: __a =self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item __a =next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators __a =self.infer(next(self.iterator ) , **self.params ) __a =next(self.subiterator ) return processed class __magic_name__ ( lowerCAmelCase_ ): def __iter__( self ) -> Dict: '''simple docstring''' __a =iter(self.loader ) return self def __magic_name__ ( self ) -> int: '''simple docstring''' # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. __a =False __a =[] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: __a =self.loader_batch_item() __a =item.pop('is_last' ) accumulator.append(__snake_case ) if is_last: return accumulator while not is_last: __a =self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(__snake_case , torch.Tensor ): __a =processed else: __a =list(processed.keys() )[0] __a =processed[key] if isinstance(__snake_case , __snake_case ): __a =len(__snake_case ) else: __a =first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. __a =observed_batch_size __a =processed __a =0 while self._loader_batch_index < self.loader_batch_size: __a =self.loader_batch_item() __a =item.pop('is_last' ) accumulator.append(__snake_case ) if is_last: return accumulator else: __a =processed __a =item.pop('is_last' ) accumulator.append(__snake_case ) return accumulator class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , __snake_case , __snake_case ) -> Dict: '''simple docstring''' __a =dataset __a =key def __len__( self ) -> Optional[Any]: '''simple docstring''' return len(self.dataset ) def __getitem__( self , __snake_case ) -> Tuple: '''simple docstring''' return self.dataset[i][self.key] class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , __snake_case , __snake_case , __snake_case ) -> Tuple: '''simple docstring''' __a =dataset __a =keya __a =keya def __len__( self ) -> Optional[int]: '''simple docstring''' return len(self.dataset ) def __getitem__( self , __snake_case ) -> Any: '''simple docstring''' return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
308
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _lowerCAmelCase : Optional[int] = logging.getLogger(__name__) _lowerCAmelCase : Any = "pytorch_model.bin" @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co.'} , ) @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field(metadata={'help': 'A csv or a json file containing the training data.'} ) SCREAMING_SNAKE_CASE = dataclasses.field(metadata={'help': 'A csv or a json file containing the data to predict on.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the validation data.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'The name of the task to train on.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'The list of labels for the task.'} ) @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field( metadata={'help': 'The output directory where the model predictions and checkpoints will be written.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default='accuracy' , metadata={'help': 'The evaluation metric used for the task.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default='no' , metadata={ 'help': 'The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]' } , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=1_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0 , metadata={ 'help': 'How much the specified evaluation metric must improve to satisfy early stopping conditions.' } , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the confidence score.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the validation performance.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to fine-tune on labeled data after pseudo training.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0 , metadata={'help': 'Confidence threshold for pseudo-labeled data filtering.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=1_0_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Random seed for initialization.'} , ) def UpperCamelCase_( _snake_case : int , _snake_case : str , _snake_case : Optional[int] , _snake_case : str , _snake_case : Union[str, Any] , _snake_case : List[Any] ): """simple docstring""" __a =datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: __a =dataset.filter(lambda _snake_case : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 __a =int(eval_result * len(_snake_case ) ) print(_snake_case ) __a =dataset.sort('probability' , reverse=_snake_case ) __a =dataset.select(range(_snake_case ) ) __a =dataset.remove_columns(['label', 'probability'] ) __a =dataset.rename_column('prediction' , 'label' ) __a =dataset.map(lambda _snake_case : {"label": idalabel[example["label"]]} ) __a =dataset.shuffle(seed=args.seed ) __a =os.path.join(_snake_case , F'train_pseudo.{args.data_file_extension}' ) if args.data_file_extension == "csv": dataset.to_csv(_snake_case , index=_snake_case ) else: dataset.to_json(_snake_case ) def UpperCamelCase_( _snake_case : List[Any] , _snake_case : str , _snake_case : int , _snake_case : Optional[int] , **_snake_case : List[str] ): """simple docstring""" __a =Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() __a =STModelArguments(model_name_or_path=_snake_case ) __a =STDataArguments(train_file=_snake_case , infer_file=_snake_case ) __a =STTrainingArguments(output_dir=_snake_case ) __a =argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(_snake_case ).items(): setattr(_snake_case , _snake_case , _snake_case ) for key, value in kwargs.items(): if hasattr(_snake_case , _snake_case ): setattr(_snake_case , _snake_case , _snake_case ) # Sanity checks __a ={} __a =None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None __a =args.train_file __a =args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None __a =args.eval_file for key in data_files: __a =data_files[key].split('.' )[-1] assert extension in ["csv", "json"], F'`{key}_file` should be a csv or a json file.' if args.data_file_extension is None: __a =extension else: assert extension == args.data_file_extension, F'`{key}_file` should be a {args.data_file_extension} file`.' assert ( args.eval_metric in datasets.list_metrics() ), F'{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('Creating the initial data directory for self-training...' ) __a =F'{args.output_dir}/self-train_iter-{{}}'.format __a =data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=_snake_case ) os.makedirs(_snake_case , exist_ok=_snake_case ) accelerator.wait_for_everyone() __a =None __a =None __a =0 __a =False # Show the progress bar __a =tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): __a =data_dir_format(_snake_case ) assert os.path.exists(_snake_case ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 __a =os.path.join(_snake_case , 'stage-1' ) __a ={ 'accelerator': accelerator, 'model_name_or_path': args.model_name_or_path, 'cache_dir': args.cache_dir, 'do_train': True, 'train_file': data_files['train'] if iteration == 0 else data_files['train_pseudo'], 'do_eval': True if args.eval_file is not None else False, 'eval_file': data_files['eval'], 'do_predict': True, 'infer_file': data_files['infer'], 'task_name': args.task_name, 'label_list': args.label_list, 'output_dir': current_output_dir, 'eval_metric': args.eval_metric, 'evaluation_strategy': args.evaluation_strategy, 'early_stopping_patience': args.early_stopping_patience, 'early_stopping_threshold': args.early_stopping_threshold, 'seed': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(_snake_case , _snake_case ): arguments_dict.update({key: value} ) __a =os.path.join(_snake_case , 'best-checkpoint' , _snake_case ) if os.path.exists(_snake_case ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.' , _snake_case , _snake_case , ) else: logger.info('***** Running self-training: iteration: %d, stage: 1 *****' , _snake_case ) finetune(**_snake_case ) accelerator.wait_for_everyone() assert os.path.exists(_snake_case ) logger.info('Self-training job completed: iteration: %d, stage: 1.' , _snake_case ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data __a =os.path.join(_snake_case , 'best-checkpoint' ) __a =os.path.join(_snake_case , 'stage-2' ) # Update arguments_dict __a =model_path __a =data_files['train'] __a =current_output_dir __a =os.path.join(_snake_case , 'best-checkpoint' , _snake_case ) if os.path.exists(_snake_case ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.' , _snake_case , _snake_case , ) else: logger.info('***** Running self-training: iteration: %d, stage: 2 *****' , _snake_case ) finetune(**_snake_case ) accelerator.wait_for_everyone() assert os.path.exists(_snake_case ) logger.info('Self-training job completed: iteration: %d, stage: 2.' , _snake_case ) __a =iteration __a =data_dir_format(iteration + 1 ) __a =AutoConfig.from_pretrained(os.path.join(_snake_case , 'best-checkpoint' ) ) __a =config.idalabel __a =os.path.join(_snake_case , 'eval_results_best-checkpoint.json' ) __a =os.path.join(_snake_case , 'test_results_best-checkpoint.json' ) assert os.path.exists(_snake_case ) with open(_snake_case , 'r' ) as f: __a =float(json.load(_snake_case )[args.eval_metric] ) __a =os.path.join(_snake_case , 'infer_output_best-checkpoint.csv' ) assert os.path.exists(_snake_case ) # Loading the dataset from local csv or json files. __a =load_dataset(args.data_file_extension , data_files={'data': data_files['infer']} )['data'] __a =load_dataset('csv' , data_files={'data': infer_output_file} )['data'] if accelerator.is_main_process: os.makedirs(_snake_case , exist_ok=_snake_case ) shutil.copy(_snake_case , os.path.join(_snake_case , F'eval_results_iter-{iteration}.json' ) ) if os.path.exists(_snake_case ): shutil.copy(_snake_case , os.path.join(_snake_case , F'test_results_iter-{iteration}.json' ) ) create_pseudo_labeled_data(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) accelerator.wait_for_everyone() __a =os.path.join(_snake_case , F'train_pseudo.{args.data_file_extension}' ) if args.evaluation_strategy != IntervalStrategy.NO.value: __a =eval_result if best_iteration is None: __a =new_iteration __a =new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: __a =new_iteration __a =new_eval_result __a =0 else: if new_eval_result == best_eval_result: __a =new_iteration __a =new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: __a =True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('Best iteration: %d' , _snake_case ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , _snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_snake_case , F'eval_results_iter-{iteration}.json' ) , os.path.join(_snake_case , 'eval_results_best-iteration.json' ) , ) else: # Assume that the last iteration is the best logger.info('Best iteration: %d' , args.max_selftrain_iterations - 1 ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , _snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_snake_case , F'eval_results_iter-{args.max_selftrain_iterations - 1}.json' ) , os.path.join(_snake_case , 'eval_results_best-iteration.json' ) , )
308
1
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def UpperCamelCase_( _snake_case : str , _snake_case : complex , _snake_case : str = "x" , _snake_case : float = 10**-10 , _snake_case : int = 1 , ): """simple docstring""" __a =symbols(_snake_case ) __a =lambdify(_snake_case , _snake_case ) __a =lambdify(_snake_case , diff(_snake_case , _snake_case ) ) __a =starting_point while True: if diff_function(_snake_case ) != 0: __a =prev_guess - multiplicity * func(_snake_case ) / diff_function( _snake_case ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess __a =next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''') # Find root of polynomial # Find fourth Root of 5 print(f'''The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}''') # Find value of e print( "The root of log(y) - 1 = 0 is ", f'''{newton_raphson("log(y) - 1", 2, variable="y")}''', ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", f'''{newton_raphson("exp(x) - 1", 10, precision=0.005)}''', ) # Find root of cos(x) print(f'''The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}''')
308
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Any = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right _lowerCAmelCase : List[Any] = 256_047 _lowerCAmelCase : Dict = 256_145 @require_sentencepiece @require_tokenizers class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = NllbTokenizer SCREAMING_SNAKE_CASE = NllbTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = {} def __magic_name__ ( self ) -> int: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __a =NllbTokenizer(__snake_case , keep_accents=__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self ) -> int: '''simple docstring''' __a =NllbTokenizer(__snake_case , keep_accents=__snake_case ) __a =tokenizer.tokenize('This is a test' ) self.assertListEqual(__snake_case , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __a =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __a =tokenizer.convert_tokens_to_ids(__snake_case ) self.assertListEqual( __snake_case , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __a =tokenizer.convert_ids_to_tokens(__snake_case ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-nllb', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __a =self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __a =self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) __a =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=True __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=False __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) @require_torch def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' if not self.test_seqaseq: return __a =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Longer text that will definitely require truncation. __a =[ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for' ' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons' ' will only worsen the violence and misery for millions of people.', ] __a =[ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al' ' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi' ' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] try: __a =tokenizer.prepare_seqaseq_batch( src_texts=__snake_case , tgt_texts=__snake_case , max_length=3 , max_target_length=10 , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='ron_Latn' , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified __a =tokenizer.prepare_seqaseq_batch( __snake_case , tgt_texts=__snake_case , max_length=3 , return_tensors='pt' ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) __a =tokenizer.prepare_seqaseq_batch( src_texts=__snake_case , max_length=3 , max_target_length=10 , return_tensors='pt' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn('decoder_input_ids' , __snake_case ) @unittest.skip('Unfortunately way too slow to build a BPE with SentencePiece.' ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' pass def __magic_name__ ( self ) -> Tuple: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __a =[AddedToken('<special>' , lstrip=__snake_case )] __a =self.rust_tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case ) __a =tokenizer_r.encode('Hey this is a <special> token' ) __a =tokenizer_r.encode('<special>' , add_special_tokens=__snake_case )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: __a =self.rust_tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case , ) __a =self.tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case ) __a =tokenizer_p.encode('Hey this is a <special> token' ) __a =tokenizer_cr.encode('Hey this is a <special> token' ) self.assertEqual(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class __magic_name__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = 'facebook/nllb-200-distilled-600M' SCREAMING_SNAKE_CASE = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] SCREAMING_SNAKE_CASE = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] SCREAMING_SNAKE_CASE = [ 2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 8_1_6_5, 2_4_8_0_6_6, 1_4_7_3_4, 9_5_0, 1_1_3_5, 1_0_5_7_2_1, 3_5_7_3, 8_3, 2_7_3_5_2, 1_0_8, 4_9_4_8_6, 2, ] @classmethod def __magic_name__ ( cls ) -> Tuple: '''simple docstring''' __a =NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang='eng_Latn' , tgt_lang='ron_Latn' ) __a =1 return cls def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Arab'] , 25_6001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Latn'] , 25_6002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['fra_Latn'] , 25_6057 ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' self.assertIn(__snake_case , self.tokenizer.all_special_ids ) # fmt: off __a =[RO_CODE, 4254, 9_8068, 11_2923, 3_9072, 3909, 713, 10_2767, 26, 1_7314, 3_5642, 1_4683, 3_3118, 2022, 6_6987, 2, 25_6047] # fmt: on __a =self.tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) __a =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertNotIn(self.tokenizer.eos_token , __snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , __snake_case ) __a =10 __a =self.tokenizer(__snake_case , max_length=__snake_case , truncation=__snake_case ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , __snake_case ) self.assertEqual(len(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_6203, 3] ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =tempfile.mkdtemp() __a =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__snake_case ) __a =NllbTokenizer.from_pretrained(__snake_case ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __snake_case ) @require_torch def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) __a =shift_tokens_right( batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['ron_Latn'] ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) __a =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) self.assertEqual(__snake_case , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =self.tokenizer(self.src_text , padding=__snake_case , truncation=__snake_case , max_length=3 , return_tensors='pt' ) __a =self.tokenizer( text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=10 , return_tensors='pt' ) __a =targets['input_ids'] __a =shift_tokens_right( __snake_case , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( nested_simplify(__snake_case ) , { # A, test, EOS, en_XX 'input_ids': [[25_6047, 70, 7356, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_6057, } , ) @require_torch def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =True __a =self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2, 25_6047] ) __a =False __a =self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [25_6047, 1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2] )
308
1
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : List[str] = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _lowerCAmelCase : Union[str, Any] = 250_004 _lowerCAmelCase : List[str] = 250_020 @require_sentencepiece @require_tokenizers class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = MBartaaTokenizer SCREAMING_SNAKE_CASE = MBartaaTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True def __magic_name__ ( self ) -> Dict: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __a =MBartaaTokenizer(__snake_case , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a ='<s>' __a =0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(__snake_case ) , 1054 ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1054 ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =MBartaaTokenizer(__snake_case , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=__snake_case ) __a =tokenizer.tokenize('This is a test' ) self.assertListEqual(__snake_case , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __a =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __snake_case , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) __a =tokenizer.convert_tokens_to_ids(__snake_case ) self.assertListEqual( __snake_case , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __a =tokenizer.convert_ids_to_tokens(__snake_case ) self.assertListEqual( __snake_case , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' # fmt: off __a ={'input_ids': [[25_0004, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [25_0004, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_0004, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name='facebook/mbart-large-50' , revision='d3913889c59cd5c9e456b269c376325eabad57e2' , ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __a =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart50', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __a =self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __a =self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) __a =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=True __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=False __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) @require_torch @require_sentencepiece @require_tokenizers class __magic_name__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = 'facebook/mbart-large-50-one-to-many-mmt' SCREAMING_SNAKE_CASE = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] SCREAMING_SNAKE_CASE = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] SCREAMING_SNAKE_CASE = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2] @classmethod def __magic_name__ ( cls ) -> Optional[Any]: '''simple docstring''' __a =MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' ) __a =1 return cls def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 25_0001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 25_0004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 25_0020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['mr_IN'] , 25_0038 ) def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' self.assertIn(__snake_case , self.tokenizer.all_special_ids ) __a =[RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2] __a =self.tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) __a =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertNotIn(self.tokenizer.eos_token , __snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , __snake_case ) __a =10 __a =self.tokenizer(__snake_case , max_length=__snake_case , truncation=__snake_case ).input_ids[0] self.assertEqual(ids[0] , __snake_case ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> int: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_0053, 25_0001] ) def __magic_name__ ( self ) -> int: '''simple docstring''' __a =tempfile.mkdtemp() __a =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__snake_case ) __a =MBartaaTokenizer.from_pretrained(__snake_case ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __snake_case ) @require_torch def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__snake_case , return_tensors='pt' ) __a =shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def __magic_name__ ( self ) -> int: '''simple docstring''' __a =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) __a =shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) __a =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.tokenizer(self.src_text , padding=__snake_case , truncation=__snake_case , max_length=3 , return_tensors='pt' ) __a =self.tokenizer( text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=10 , return_tensors='pt' ) __a =targets['input_ids'] __a =shift_tokens_right(__snake_case , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(__snake_case ) , { # en_XX, A, test, EOS 'input_ids': [[25_0004, 62, 3034, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_0001, } , )
308
def UpperCamelCase_( _snake_case : str , _snake_case : int ): """simple docstring""" return [sentence[i : i + ngram_size] for i in range(len(_snake_case ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
308
1
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def UpperCamelCase_( ): """simple docstring""" __a ='https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' __a =Image.open(requests.get(_snake_case , stream=_snake_case ).raw ).convert('RGB' ) return image def UpperCamelCase_( _snake_case : Dict ): """simple docstring""" __a =[] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'visual_encoder.blocks.{i}.norm1.weight', F'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm1.bias', F'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm2.weight', F'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm2.bias', F'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.qkv.weight', F'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.weight', F'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.bias', F'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.weight', F'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.bias', F'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.weight', F'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.bias', F'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def UpperCamelCase_( _snake_case : Optional[int] , _snake_case : Dict , _snake_case : List[Any] ): """simple docstring""" __a =dct.pop(_snake_case ) __a =val def UpperCamelCase_( _snake_case : int , _snake_case : Any ): """simple docstring""" for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __a =state_dict.pop(F'visual_encoder.blocks.{i}.attn.q_bias' ) __a =state_dict.pop(F'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict __a =torch.cat((q_bias, torch.zeros_like(_snake_case , requires_grad=_snake_case ), v_bias) ) __a =qkv_bias def UpperCamelCase_( _snake_case : Dict , _snake_case : Union[str, Any] ): """simple docstring""" __a =364 if 'coco' in model_name else 224 __a =BlipaVisionConfig(image_size=_snake_case ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: __a =OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=_snake_case ).to_dict() elif "opt-6.7b" in model_name: __a =OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=_snake_case ).to_dict() elif "t5-xl" in model_name: __a =TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __a =TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() __a =BlipaConfig(vision_config=_snake_case , text_config=_snake_case ) return config, image_size @torch.no_grad() def UpperCamelCase_( _snake_case : List[str] , _snake_case : Union[str, Any]=None , _snake_case : Optional[int]=False ): """simple docstring""" __a =( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) __a =tokenizer('\n' , add_special_tokens=_snake_case ).input_ids[0] __a , __a =get_blipa_config(_snake_case , eos_token_id=_snake_case ) __a =BlipaForConditionalGeneration(_snake_case ).eval() __a ={ 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } __a , __a =model_name_to_original[model_name] # load original model print('Loading original model...' ) __a ='cuda' if torch.cuda.is_available() else 'cpu' __a , __a , __a =load_model_and_preprocess( name=_snake_case , model_type=_snake_case , is_eval=_snake_case , device=_snake_case ) original_model.eval() print('Done!' ) # update state dict keys __a =original_model.state_dict() __a =create_rename_keys(_snake_case ) for src, dest in rename_keys: rename_key(_snake_case , _snake_case , _snake_case ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __a =state_dict.pop(_snake_case ) if key.startswith('Qformer.bert' ): __a =key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: __a =key.replace('self' , 'attention' ) if "opt_proj" in key: __a =key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: __a =key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): __a =key.replace('opt' , 'language' ) if key.startswith('t5' ): __a =key.replace('t5' , 'language' ) __a =val # read in qv biases read_in_q_v_bias(_snake_case , _snake_case ) __a , __a =hf_model.load_state_dict(_snake_case , strict=_snake_case ) assert len(_snake_case ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] __a =load_demo_image() __a =vis_processors['eval'](_snake_case ).unsqueeze(0 ).to(_snake_case ) __a =tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(_snake_case ) # create processor __a =BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=_snake_case , image_std=_snake_case ) __a =BlipaProcessor(image_processor=_snake_case , tokenizer=_snake_case ) __a =processor(images=_snake_case , return_tensors='pt' ).pixel_values.to(_snake_case ) # make sure processor creates exact same pixel values assert torch.allclose(_snake_case , _snake_case ) original_model.to(_snake_case ) hf_model.to(_snake_case ) with torch.no_grad(): if "opt" in model_name: __a =original_model({'image': original_pixel_values, 'text_input': ['']} ).logits __a =hf_model(_snake_case , _snake_case ).logits else: __a =original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits __a =input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) __a =hf_model(_snake_case , _snake_case , labels=_snake_case ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": __a =torch.tensor( [[-41.5_850, -4.4_440, -8.9_922], [-47.4_322, -5.9_143, -1.7_340]] , device=_snake_case ) assert torch.allclose(logits[0, :3, :3] , _snake_case , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": __a =torch.tensor( [[-57.0_109, -9.8_967, -12.6_280], [-68.6_578, -12.7_191, -10.5_065]] , device=_snake_case ) else: # cast to same type __a =logits.dtype assert torch.allclose(original_logits.to(_snake_case ) , _snake_case , atol=1e-2 ) print('Looks ok!' ) print('Generating a caption...' ) __a ='' __a =tokenizer(_snake_case , return_tensors='pt' ).input_ids.to(_snake_case ) __a =original_model.generate({'image': original_pixel_values} ) __a =hf_model.generate( _snake_case , _snake_case , do_sample=_snake_case , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , _snake_case ) __a =input_ids.shape[1] __a =processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_snake_case ) __a =[text.strip() for text in output_text] print('HF generation:' , _snake_case ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_snake_case ) hf_model.save_pretrained(_snake_case ) if push_to_hub: processor.push_to_hub(F'nielsr/{model_name}' ) hf_model.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": _lowerCAmelCase : str = argparse.ArgumentParser() _lowerCAmelCase : List[Any] = [ "blip2-opt-2.7b", "blip2-opt-6.7b", "blip2-opt-2.7b-coco", "blip2-opt-6.7b-coco", "blip2-flan-t5-xl", "blip2-flan-t5-xl-coco", "blip2-flan-t5-xxl", ] parser.add_argument( "--model_name", default="blip2-opt-2.7b", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) _lowerCAmelCase : int = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
308
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class __magic_name__ ( pl.LightningModule ): def __init__( self , __snake_case ) -> List[Any]: '''simple docstring''' super().__init__() __a =model __a =2 __a =nn.Linear(self.model.config.hidden_size , self.num_labels ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' pass def UpperCamelCase_( _snake_case : str , _snake_case : str , _snake_case : str ): """simple docstring""" __a =LongformerModel.from_pretrained(_snake_case ) __a =LightningModel(_snake_case ) __a =torch.load(_snake_case , map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model __a =LongformerForQuestionAnswering.from_pretrained(_snake_case ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(_snake_case ) print(F'Conversion successful. Model saved under {pytorch_dump_folder_path}' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowerCAmelCase : Optional[int] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
308
1
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCamelCase_( _snake_case : Any , _snake_case : Optional[int] ): """simple docstring""" __a =old_name if "patch_embed" in old_name: __a , __a , __a =old_name.split('.' ) if layer == "0": __a =old_name.replace('0' , 'convolution1' ) elif layer == "1": __a =old_name.replace('1' , 'batchnorm_before' ) elif layer == "3": __a =old_name.replace('3' , 'convolution2' ) else: __a =old_name.replace('4' , 'batchnorm_after' ) if "network" in old_name and re.search(r'\d\.\d' , _snake_case ): __a =r'\b\d{2}\b' if bool(re.search(_snake_case , _snake_case ) ): __a =re.search(r'\d\.\d\d.' , _snake_case ).group() else: __a =re.search(r'\d\.\d.' , _snake_case ).group() if int(match[0] ) < 6: __a =old_name.replace(_snake_case , '' ) __a =trimmed_name.replace('network' , match[0] + '.meta4D_layers.blocks.' + match[2:-1] ) __a ='intermediate_stages.' + trimmed_name else: __a =old_name.replace(_snake_case , '' ) if int(match[2] ) < num_meta4D_last_stage: __a =trimmed_name.replace('network' , 'meta4D_layers.blocks.' + match[2] ) else: __a =str(int(match[2] ) - num_meta4D_last_stage ) __a =trimmed_name.replace('network' , 'meta3D_layers.blocks.' + layer_index ) if "norm1" in old_name: __a =trimmed_name.replace('norm1' , 'layernorm1' ) elif "norm2" in old_name: __a =trimmed_name.replace('norm2' , 'layernorm2' ) elif "fc1" in old_name: __a =trimmed_name.replace('fc1' , 'linear_in' ) elif "fc2" in old_name: __a =trimmed_name.replace('fc2' , 'linear_out' ) __a ='last_stage.' + trimmed_name elif "network" in old_name and re.search(r'.\d.' , _snake_case ): __a =old_name.replace('network' , 'intermediate_stages' ) if "fc" in new_name: __a =new_name.replace('fc' , 'convolution' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): __a =new_name.replace('norm1' , 'batchnorm_before' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): __a =new_name.replace('norm2' , 'batchnorm_after' ) if "proj" in new_name: __a =new_name.replace('proj' , 'projection' ) if "dist_head" in new_name: __a =new_name.replace('dist_head' , 'distillation_classifier' ) elif "head" in new_name: __a =new_name.replace('head' , 'classifier' ) elif "patch_embed" in new_name: __a ='efficientformer.' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": __a =new_name.replace('norm' , 'layernorm' ) __a ='efficientformer.' + new_name else: __a ='efficientformer.encoder.' + new_name return new_name def UpperCamelCase_( _snake_case : Optional[int] , _snake_case : List[str] ): """simple docstring""" for key in checkpoint.copy().keys(): __a =checkpoint.pop(_snake_case ) __a =val return checkpoint def UpperCamelCase_( ): """simple docstring""" __a ='http://images.cocodataset.org/val2017/000000039769.jpg' __a =Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return image def UpperCamelCase_( _snake_case : Path , _snake_case : Path , _snake_case : Path , _snake_case : bool ): """simple docstring""" __a =torch.load(_snake_case , map_location='cpu' )['model'] __a =EfficientFormerConfig.from_json_file(_snake_case ) __a =EfficientFormerForImageClassificationWithTeacher(_snake_case ) __a ='_'.join(checkpoint_path.split('/' )[-1].split('.' )[0].split('_' )[:-1] ) __a =config.depths[-1] - config.num_metaad_blocks + 1 __a =convert_torch_checkpoint(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) model.eval() __a ={ 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } # prepare image __a =prepare_img() __a =256 __a =224 __a =EfficientFormerImageProcessor( size={'shortest_edge': image_size} , crop_size={'height': crop_size, 'width': crop_size} , resample=pillow_resamplings['bicubic'] , ) __a =processor(images=_snake_case , return_tensors='pt' ).pixel_values # original processing pipeline __a =Compose( [ Resize(_snake_case , interpolation=pillow_resamplings['bicubic'] ), CenterCrop(_snake_case ), ToTensor(), Normalize(_snake_case , _snake_case ), ] ) __a =image_transforms(_snake_case ).unsqueeze(0 ) assert torch.allclose(_snake_case , _snake_case ) __a =model(_snake_case ) __a =outputs.logits __a =(1, 1000) if "l1" in model_name: __a =torch.Tensor( [-0.1_312, 0.4_353, -1.0_499, -0.5_124, 0.4_183, -0.6_793, -1.3_777, -0.0_893, -0.7_358, -2.4_328] ) assert torch.allclose(logits[0, :10] , _snake_case , atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: __a =torch.Tensor( [-1.3_150, -1.5_456, -1.2_556, -0.8_496, -0.7_127, -0.7_897, -0.9_728, -0.3_052, 0.3_751, -0.3_127] ) assert torch.allclose(logits[0, :10] , _snake_case , atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: __a =torch.Tensor( [-1.0_283, -1.4_131, -0.5_644, -1.3_115, -0.5_785, -1.2_049, -0.7_528, 0.1_992, -0.3_822, -0.0_878] ) assert logits.shape == expected_shape else: raise ValueError( F'Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7' ) # Save Checkpoints Path(_snake_case ).mkdir(exist_ok=_snake_case ) model.save_pretrained(_snake_case ) print(F'Checkpoint successfuly converted. Model saved at {pytorch_dump_path}' ) processor.save_pretrained(_snake_case ) print(F'Processor successfuly saved at {pytorch_dump_path}' ) if push_to_hub: print('Pushing model to the hub...' ) model.push_to_hub( repo_id=F'Bearnardd/{pytorch_dump_path}' , commit_message='Add model' , use_temp_dir=_snake_case , ) processor.push_to_hub( repo_id=F'Bearnardd/{pytorch_dump_path}' , commit_message='Add image processor' , use_temp_dir=_snake_case , ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to EfficientFormer pytorch checkpoint.", ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for EfficientFormer model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) parser.set_defaults(push_to_hub=True) _lowerCAmelCase : Optional[Any] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
308
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") _lowerCAmelCase : Optional[Any] = logging.getLogger(__name__) @dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) SCREAMING_SNAKE_CASE = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) SCREAMING_SNAKE_CASE = field( default=1_0_2_4 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the training data.'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the validation data.'} ) SCREAMING_SNAKE_CASE = field(default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the test data.'} ) def __magic_name__ ( self ) -> str: '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: __a =self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __a =self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) SCREAMING_SNAKE_CASE = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def UpperCamelCase_( ): """simple docstring""" __a =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __a , __a , __a =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __a , __a , __a =parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) __a =training_args.get_process_log_level() logger.setLevel(_snake_case ) datasets.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __a =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __a =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __a =load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __a ={'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __a =data_args.train_file.split('.' )[-1] __a =data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __a =data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(F'load a local file for {key}: {data_files[key]}' ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files __a =load_dataset('csv' , data_files=_snake_case , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __a =load_dataset('json' , data_files=_snake_case , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __a =raw_datasets['train'].features['label'].names __a =len(_snake_case ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __a =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __a =TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=_snake_case , ) __a =BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __a ='max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __a =False # Some models have set the order of the labels to use, so let's make sure we do use it. __a ={'Refused': 0, 'Entailed': 1} __a ={0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __a =min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(_snake_case : Tuple ): # Tokenize the texts def _convert_table_text_to_pandas(_snake_case : Optional[Any] ): __a =[_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] __a =pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __a =examples['statement'] __a =list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) __a =tokenizer(_snake_case , _snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case ) __a =examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): __a =raw_datasets.map( _snake_case , batched=_snake_case , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) __a =raw_datasets['train'] if data_args.max_train_samples is not None: __a =train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) __a =raw_datasets['validation'] if data_args.max_eval_samples is not None: __a =eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) __a =raw_datasets['test'] if data_args.max_predict_samples is not None: __a =predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(_snake_case ) ) , 3 ): logger.info(F'Sample {index} of the training set: {train_dataset[index]}.' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_snake_case : EvalPrediction ): __a =p.predictions[0] if isinstance(p.predictions , _snake_case ) else p.predictions __a =np.argmax(_snake_case , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __a =default_data_collator elif training_args.fpaa: __a =DataCollatorWithPadding(_snake_case , pad_to_multiple_of=8 ) else: __a =None # Initialize our Trainer __a =Trainer( model=_snake_case , args=_snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_snake_case , tokenizer=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: __a =None if training_args.resume_from_checkpoint is not None: __a =training_args.resume_from_checkpoint elif last_checkpoint is not None: __a =last_checkpoint __a =trainer.train(resume_from_checkpoint=_snake_case ) __a =train_result.metrics __a =( data_args.max_train_samples if data_args.max_train_samples is not None else len(_snake_case ) ) __a =min(_snake_case , len(_snake_case ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , _snake_case ) trainer.save_metrics('train' , _snake_case ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __a =trainer.evaluate(eval_dataset=_snake_case ) __a =data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_snake_case ) __a =min(_snake_case , len(_snake_case ) ) trainer.log_metrics('eval' , _snake_case ) trainer.save_metrics('eval' , _snake_case ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __a =predict_dataset.remove_columns('label' ) __a =trainer.predict(_snake_case , metric_key_prefix='predict' ).predictions __a =np.argmax(_snake_case , axis=1 ) __a =os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(_snake_case , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(_snake_case ): __a =label_list[item] writer.write(F'{index}\t{item}\n' ) __a ={'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**_snake_case ) else: trainer.create_model_card(**_snake_case ) def UpperCamelCase_( _snake_case : Union[str, Any] ): """simple docstring""" main() if __name__ == "__main__": main()
308
1
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor _lowerCAmelCase : Any = logging.get_logger(__name__) class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , *__snake_case , **__snake_case ) -> None: '''simple docstring''' warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
308
from __future__ import annotations import time import numpy as np _lowerCAmelCase : List[str] = [8, 5, 9, 7] _lowerCAmelCase : List[str] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] _lowerCAmelCase : List[Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class __magic_name__ : def __init__( self , __snake_case , __snake_case , __snake_case , ) -> None: '''simple docstring''' __a =claim_vector __a =allocated_resources_table __a =maximum_claim_table def __magic_name__ ( self ) -> list[int]: '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def __magic_name__ ( self ) -> list[int]: '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def __magic_name__ ( self ) -> list[list[int]]: '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__snake_case ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def __magic_name__ ( self ) -> dict[int, list[int]]: '''simple docstring''' return {self.__need().index(__snake_case ): i for i in self.__need()} def __magic_name__ ( self , **__snake_case ) -> None: '''simple docstring''' __a =self.__need() __a =self.__allocated_resources_table __a =self.__available_resources() __a =self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: __a =False for each_need in need_list: __a =True for index, need in enumerate(__snake_case ): if need > available_resources[index]: __a =False break if execution: __a =True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __a =original_need_index print(f'Process {process_number + 1} is executing.' ) # remove the process run from stack need_list.remove(__snake_case ) # update available/freed resources stack __a =np.array(__snake_case ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(__snake_case ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( f'P{self.__allocated_resources_table.index(__snake_case ) + 1}' + ' '.join(f'{it:>8}' for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( f'P{self.__maximum_claim_table.index(__snake_case ) + 1}' + ' '.join(f'{it:>8}' for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(__snake_case ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(__snake_case ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
308
1
def UpperCamelCase_( _snake_case : int ): """simple docstring""" __a =abs(_snake_case ) __a =0 while n > 0: res += n % 10 n //= 10 return res def UpperCamelCase_( _snake_case : int ): """simple docstring""" __a =abs(_snake_case ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def UpperCamelCase_( _snake_case : int ): """simple docstring""" return sum(int(_snake_case ) for c in str(abs(_snake_case ) ) ) def UpperCamelCase_( ): """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(_snake_case : Callable , _snake_case : int ) -> None: __a =F'{func.__name__}({value})' __a =timeit(F'__main__.{call}' , setup='import __main__' ) print(F'{call:56} = {func(_snake_case )} -- {timing:.4f} seconds' ) for value in (262144, 1125899906842624, 1267650600228229401496703205376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(_snake_case , _snake_case ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
308
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency _lowerCAmelCase : Tuple = { "E": 12.70, "T": 9.06, "A": 8.17, "O": 7.51, "I": 6.97, "N": 6.75, "S": 6.33, "H": 6.09, "R": 5.99, "D": 4.25, "L": 4.03, "C": 2.78, "U": 2.76, "M": 2.41, "W": 2.36, "F": 2.23, "G": 2.02, "Y": 1.97, "P": 1.93, "B": 1.29, "V": 0.98, "K": 0.77, "J": 0.15, "X": 0.15, "Q": 0.10, "Z": 0.07, } _lowerCAmelCase : Optional[int] = "ETAOINSHRDLCUMWFGYPBVKJXQZ" _lowerCAmelCase : Any = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a ={letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def UpperCamelCase_( _snake_case : tuple ): """simple docstring""" return x[0] def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =get_letter_count(_snake_case ) __a ={ freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(_snake_case ) __a ={} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=_snake_case ) __a =''.join(freq_to_letter[freq] ) __a =list(freq_to_letter_str.items() ) freq_pairs.sort(key=_snake_case , reverse=_snake_case ) __a =[freq_pair[1] for freq_pair in freq_pairs] return "".join(_snake_case ) def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =get_frequency_order(_snake_case ) __a =0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
308
1
from random import shuffle import tensorflow as tf from numpy import array def UpperCamelCase_( _snake_case : Optional[int] , _snake_case : Optional[int] ): """simple docstring""" __a =int(_snake_case ) assert noofclusters < len(_snake_case ) # Find out the dimensionality __a =len(vectors[0] ) # Will help select random centroids from among the available vectors __a =list(range(len(_snake_case ) ) ) shuffle(_snake_case ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __a =tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __a =tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __a =[ tf.Variable(vectors[vector_indices[i]] ) for i in range(_snake_case ) ] ##These nodes will assign the centroid Variables the appropriate ##values __a =tf.placeholder('float64' , [dim] ) __a =[] for centroid in centroids: cent_assigns.append(tf.assign(_snake_case , _snake_case ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __a =[tf.Variable(0 ) for i in range(len(_snake_case ) )] ##These nodes will assign an assignment Variable the appropriate ##value __a =tf.placeholder('int32' ) __a =[] for assignment in assignments: cluster_assigns.append(tf.assign(_snake_case , _snake_case ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __a =tf.placeholder('float' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __a =tf.reduce_mean(_snake_case , 0 ) ##Node for computing Euclidean distances # Placeholders for input __a =tf.placeholder('float' , [dim] ) __a =tf.placeholder('float' , [dim] ) __a =tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(_snake_case , _snake_case ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __a =tf.placeholder('float' , [noofclusters] ) __a =tf.argmin(_snake_case , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __a =tf.initialize_all_variables() # Initialize all variables sess.run(_snake_case ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __a =100 for _ in range(_snake_case ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(_snake_case ) ): __a =vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __a =[ sess.run(_snake_case , feed_dict={va: vect, va: sess.run(_snake_case )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __a =sess.run( _snake_case , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(_snake_case ): # Collect all the vectors assigned to this cluster __a =[ vectors[i] for i in range(len(_snake_case ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __a =sess.run( _snake_case , feed_dict={mean_input: array(_snake_case )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __a =sess.run(_snake_case ) __a =sess.run(_snake_case ) return centroids, assignments
308
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : int = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'swin2sr' SCREAMING_SNAKE_CASE = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , __snake_case=64 , __snake_case=1 , __snake_case=3 , __snake_case=180 , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=8 , __snake_case=2.0 , __snake_case=True , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.1 , __snake_case="gelu" , __snake_case=False , __snake_case=0.02 , __snake_case=1e-5 , __snake_case=2 , __snake_case=1.0 , __snake_case="1conv" , __snake_case="pixelshuffle" , **__snake_case , ) -> Dict: '''simple docstring''' super().__init__(**__snake_case ) __a =image_size __a =patch_size __a =num_channels __a =embed_dim __a =depths __a =len(__snake_case ) __a =num_heads __a =window_size __a =mlp_ratio __a =qkv_bias __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =drop_path_rate __a =hidden_act __a =use_absolute_embeddings __a =layer_norm_eps __a =initializer_range __a =upscale __a =img_range __a =resi_connection __a =upsampler
308
1
from functools import lru_cache def UpperCamelCase_( _snake_case : int ): """simple docstring""" __a =2 __a =set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(_snake_case ) if n > 1: factors.add(_snake_case ) return factors @lru_cache def UpperCamelCase_( _snake_case : int ): """simple docstring""" return len(unique_prime_factors(_snake_case ) ) def UpperCamelCase_( _snake_case : list ): """simple docstring""" return len(set(_snake_case ) ) in (0, 1) def UpperCamelCase_( _snake_case : int ): """simple docstring""" __a =2 while True: # Increment each value of a generated range __a =[base + i for i in range(_snake_case )] # Run elements through out unique_prime_factors function # Append our target number to the end. __a =[upf_len(_snake_case ) for x in group] checker.append(_snake_case ) # If all numbers in the list are equal, return the group variable. if equality(_snake_case ): return group # Increment our base variable by 1 base += 1 def UpperCamelCase_( _snake_case : int = 4 ): """simple docstring""" __a =run(_snake_case ) return results[0] if len(_snake_case ) else None if __name__ == "__main__": print(solution())
308
import os def UpperCamelCase_( _snake_case : str = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(_snake_case ) , _snake_case ) ) as input_file: __a =[ [int(_snake_case ) for element in line.split(',' )] for line in input_file.readlines() ] __a =len(_snake_case ) __a =len(matrix[0] ) __a =[[-1 for _ in range(_snake_case )] for _ in range(_snake_case )] for i in range(_snake_case ): __a =matrix[i][0] for j in range(1 , _snake_case ): for i in range(_snake_case ): __a =minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _snake_case ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
308
1
def UpperCamelCase_( ): """simple docstring""" return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(_snake_case , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(f'''{solution() = }''')
308
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _lowerCAmelCase : Any = logging.get_logger(__name__) class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , *__snake_case , **__snake_case ) -> None: '''simple docstring''' warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
308
1
from collections.abc import Callable class __magic_name__ : def __init__( self , __snake_case = None ) -> None: '''simple docstring''' # Stores actual heap items. __a =[] # Stores indexes of each item for supporting updates and deletion. __a ={} # Stores current size of heap. __a =0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. __a =key or (lambda __snake_case : x) def __magic_name__ ( self , __snake_case ) -> int | None: '''simple docstring''' return int((i - 1) / 2 ) if i > 0 else None def __magic_name__ ( self , __snake_case ) -> int | None: '''simple docstring''' __a =int(2 * i + 1 ) return left if 0 < left < self.size else None def __magic_name__ ( self , __snake_case ) -> int | None: '''simple docstring''' __a =int(2 * i + 2 ) return right if 0 < right < self.size else None def __magic_name__ ( self , __snake_case , __snake_case ) -> None: '''simple docstring''' __a , __a =( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. __a , __a =self.arr[j], self.arr[i] def __magic_name__ ( self , __snake_case , __snake_case ) -> bool: '''simple docstring''' return self.arr[i][1] < self.arr[j][1] def __magic_name__ ( self , __snake_case ) -> int: '''simple docstring''' __a =self._left(__snake_case ) __a =self._right(__snake_case ) __a =i if left is not None and not self._cmp(__snake_case , __snake_case ): __a =left if right is not None and not self._cmp(__snake_case , __snake_case ): __a =right return valid_parent def __magic_name__ ( self , __snake_case ) -> None: '''simple docstring''' __a =self._parent(__snake_case ) while parent is not None and not self._cmp(__snake_case , __snake_case ): self._swap(__snake_case , __snake_case ) __a , __a =parent, self._parent(__snake_case ) def __magic_name__ ( self , __snake_case ) -> None: '''simple docstring''' __a =self._get_valid_parent(__snake_case ) while valid_parent != index: self._swap(__snake_case , __snake_case ) __a , __a =valid_parent, self._get_valid_parent(__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case ) -> None: '''simple docstring''' if item not in self.pos_map: return __a =self.pos_map[item] __a =[item, self.key(__snake_case )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(__snake_case ) self._heapify_down(__snake_case ) def __magic_name__ ( self , __snake_case ) -> None: '''simple docstring''' if item not in self.pos_map: return __a =self.pos_map[item] del self.pos_map[item] __a =self.arr[self.size - 1] __a =index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(__snake_case ) self._heapify_down(__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case ) -> None: '''simple docstring''' __a =len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(__snake_case )] ) else: __a =[item, self.key(__snake_case )] __a =self.size self.size += 1 self._heapify_up(self.size - 1 ) def __magic_name__ ( self ) -> tuple | None: '''simple docstring''' return self.arr[0] if self.size else None def __magic_name__ ( self ) -> tuple | None: '''simple docstring''' __a =self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def UpperCamelCase_( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
308
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : int = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _lowerCAmelCase : Dict = logging.get_logger(__name__) if is_vision_available(): import PIL class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = ['pixel_values'] def __init__( self , __snake_case = True , __snake_case = None , __snake_case = PILImageResampling.BICUBIC , __snake_case = True , __snake_case = None , __snake_case = True , __snake_case = 1 / 255 , __snake_case = True , __snake_case = None , __snake_case = None , __snake_case = True , **__snake_case , ) -> None: '''simple docstring''' super().__init__(**__snake_case ) __a =size if size is not None else {'shortest_edge': 224} __a =get_size_dict(__snake_case , default_to_square=__snake_case ) __a =crop_size if crop_size is not None else {'height': 224, 'width': 224} __a =get_size_dict(__snake_case , default_to_square=__snake_case , param_name='crop_size' ) __a =do_resize __a =size __a =resample __a =do_center_crop __a =crop_size __a =do_rescale __a =rescale_factor __a =do_normalize __a =image_mean if image_mean is not None else OPENAI_CLIP_MEAN __a =image_std if image_std is not None else OPENAI_CLIP_STD __a =do_convert_rgb def __magic_name__ ( self , __snake_case , __snake_case , __snake_case = PILImageResampling.BICUBIC , __snake_case = None , **__snake_case , ) -> np.ndarray: '''simple docstring''' __a =get_size_dict(__snake_case , default_to_square=__snake_case ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) __a =get_resize_output_image_size(__snake_case , size=size['shortest_edge'] , default_to_square=__snake_case ) return resize(__snake_case , size=__snake_case , resample=__snake_case , data_format=__snake_case , **__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case = None , **__snake_case , ) -> np.ndarray: '''simple docstring''' __a =get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(__snake_case , size=(size['height'], size['width']) , data_format=__snake_case , **__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case = None , **__snake_case , ) -> List[Any]: '''simple docstring''' return rescale(__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case = None , **__snake_case , ) -> np.ndarray: '''simple docstring''' return normalize(__snake_case , mean=__snake_case , std=__snake_case , data_format=__snake_case , **__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = ChannelDimension.FIRST , **__snake_case , ) -> PIL.Image.Image: '''simple docstring''' __a =do_resize if do_resize is not None else self.do_resize __a =size if size is not None else self.size __a =get_size_dict(__snake_case , param_name='size' , default_to_square=__snake_case ) __a =resample if resample is not None else self.resample __a =do_center_crop if do_center_crop is not None else self.do_center_crop __a =crop_size if crop_size is not None else self.crop_size __a =get_size_dict(__snake_case , param_name='crop_size' , default_to_square=__snake_case ) __a =do_rescale if do_rescale is not None else self.do_rescale __a =rescale_factor if rescale_factor is not None else self.rescale_factor __a =do_normalize if do_normalize is not None else self.do_normalize __a =image_mean if image_mean is not None else self.image_mean __a =image_std if image_std is not None else self.image_std __a =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __a =make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __a =[convert_to_rgb(__snake_case ) for image in images] # All transformations expect numpy arrays. __a =[to_numpy_array(__snake_case ) for image in images] if do_resize: __a =[self.resize(image=__snake_case , size=__snake_case , resample=__snake_case ) for image in images] if do_center_crop: __a =[self.center_crop(image=__snake_case , size=__snake_case ) for image in images] if do_rescale: __a =[self.rescale(image=__snake_case , scale=__snake_case ) for image in images] if do_normalize: __a =[self.normalize(image=__snake_case , mean=__snake_case , std=__snake_case ) for image in images] __a =[to_channel_dimension_format(__snake_case , __snake_case ) for image in images] __a ={'pixel_values': images} return BatchFeature(data=__snake_case , tensor_type=__snake_case )
308
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'yolos' def __init__( self , __snake_case=768 , __snake_case=12 , __snake_case=12 , __snake_case=3072 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.02 , __snake_case=1e-12 , __snake_case=[512, 864] , __snake_case=16 , __snake_case=3 , __snake_case=True , __snake_case=100 , __snake_case=True , __snake_case=False , __snake_case=1 , __snake_case=5 , __snake_case=2 , __snake_case=5 , __snake_case=2 , __snake_case=0.1 , **__snake_case , ) -> str: '''simple docstring''' super().__init__(**__snake_case ) __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =intermediate_size __a =hidden_act __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =initializer_range __a =layer_norm_eps __a =image_size __a =patch_size __a =num_channels __a =qkv_bias __a =num_detection_tokens __a =use_mid_position_embeddings __a =auxiliary_loss # Hungarian matcher __a =class_cost __a =bbox_cost __a =giou_cost # Loss coefficients __a =bbox_loss_coefficient __a =giou_loss_coefficient __a =eos_coefficient class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = version.parse('1.11' ) @property def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __magic_name__ ( self ) -> float: '''simple docstring''' return 1e-4 @property def __magic_name__ ( self ) -> int: '''simple docstring''' return 12
308
1
from math import sqrt def UpperCamelCase_( _snake_case : int ): """simple docstring""" __a =0 for i in range(1 , int(sqrt(_snake_case ) + 1 ) ): if n % i == 0 and i != sqrt(_snake_case ): total += i + n // i elif i == sqrt(_snake_case ): total += i return total - n def UpperCamelCase_( _snake_case : int = 10000 ): """simple docstring""" __a =sum( i for i in range(1 , _snake_case ) if sum_of_divisors(sum_of_divisors(_snake_case ) ) == i and sum_of_divisors(_snake_case ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
308
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def UpperCamelCase_( _snake_case : Optional[Any] ): """simple docstring""" __a =model.config __a =DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) __a =MBartConfig( is_decoder=_snake_case , is_encoder_decoder=_snake_case , add_cross_attention=_snake_case , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=_snake_case , add_final_layer_norm=_snake_case , ) return encoder_config, decoder_config def UpperCamelCase_( _snake_case : Tuple ): """simple docstring""" if "encoder.model" in name: __a =name.replace('encoder.model' , 'encoder' ) if "decoder.model" in name: __a =name.replace('decoder.model' , 'decoder' ) if "patch_embed.proj" in name: __a =name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __a =name.replace('patch_embed.norm' , 'embeddings.norm' ) if name.startswith('encoder' ): if "layers" in name: __a ='encoder.' + name if "attn.proj" in name: __a =name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "mask" not in name: __a =name.replace('attn' , 'attention.self' ) if "norm1" in name: __a =name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __a =name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __a =name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __a =name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": __a ='encoder.layernorm.weight' if name == "encoder.norm.bias": __a ='encoder.layernorm.bias' return name def UpperCamelCase_( _snake_case : Tuple , _snake_case : str ): """simple docstring""" for key in orig_state_dict.copy().keys(): __a =orig_state_dict.pop(_snake_case ) if "qkv" in key: __a =key.split('.' ) __a =int(key_split[3] ) __a =int(key_split[5] ) __a =model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __a =val[:dim, :] __a =val[dim : dim * 2, :] __a =val[-dim:, :] else: __a =val[:dim] __a =val[dim : dim * 2] __a =val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: __a =val return orig_state_dict def UpperCamelCase_( _snake_case : Tuple , _snake_case : Union[str, Any]=None , _snake_case : List[Any]=False ): """simple docstring""" __a =DonutModel.from_pretrained(_snake_case ).eval() # load HuggingFace model __a , __a =get_configs(_snake_case ) __a =DonutSwinModel(_snake_case ) __a =MBartForCausalLM(_snake_case ) __a =VisionEncoderDecoderModel(encoder=_snake_case , decoder=_snake_case ) model.eval() __a =original_model.state_dict() __a =convert_state_dict(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) # verify results on scanned document __a =load_dataset('hf-internal-testing/example-documents' ) __a =dataset['test'][0]['image'].convert('RGB' ) __a =XLMRobertaTokenizerFast.from_pretrained(_snake_case , from_slow=_snake_case ) __a =DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) __a =DonutProcessor(_snake_case , _snake_case ) __a =processor(_snake_case , return_tensors='pt' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": __a ='<s_docvqa><s_question>{user_input}</s_question><s_answer>' __a ='When is the coffee break?' __a =task_prompt.replace('{user_input}' , _snake_case ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": __a ='<s_rvlcdip>' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: __a ='<s_cord>' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": __a ='s_cord-v2>' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": __a ='<s_zhtrainticket>' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt __a ='hello world' else: raise ValueError('Model name not supported' ) __a =original_model.decoder.tokenizer(_snake_case , add_special_tokens=_snake_case , return_tensors='pt' )[ 'input_ids' ] __a =original_model.encoder.model.patch_embed(_snake_case ) __a , __a =model.encoder.embeddings(_snake_case ) assert torch.allclose(_snake_case , _snake_case , atol=1e-3 ) # verify encoder hidden states __a =original_model.encoder(_snake_case ) __a =model.encoder(_snake_case ).last_hidden_state assert torch.allclose(_snake_case , _snake_case , atol=1e-2 ) # verify decoder hidden states __a =original_model(_snake_case , _snake_case , _snake_case ).logits __a =model(_snake_case , decoder_input_ids=_snake_case ).logits assert torch.allclose(_snake_case , _snake_case , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(_snake_case ) processor.save_pretrained(_snake_case ) if push_to_hub: model.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) processor.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) _lowerCAmelCase : List[Any] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
308
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available _lowerCAmelCase : Optional[int] = { "configuration_ernie": ["ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ErnieConfig", "ErnieOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = [ "ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST", "ErnieForCausalLM", "ErnieForMaskedLM", "ErnieForMultipleChoice", "ErnieForNextSentencePrediction", "ErnieForPreTraining", "ErnieForQuestionAnswering", "ErnieForSequenceClassification", "ErnieForTokenClassification", "ErnieModel", "ErniePreTrainedModel", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys _lowerCAmelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer SCREAMING_SNAKE_CASE = False def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' super().setUp() __a =['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] __a =dict(zip(__snake_case , range(len(__snake_case ) ) ) ) __a =['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] __a ={'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__snake_case ) ) def __magic_name__ ( self , **__snake_case ) -> Any: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def __magic_name__ ( self , __snake_case ) -> List[Any]: '''simple docstring''' __a ='adapt act apte' __a ='adapt act apte' return input_text, output_text def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __a ='adapt act apte' __a =['adapt', 'act', 'ap@@', 'te'] __a =tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) __a =[tokenizer.bos_token] + tokens + [tokenizer.eos_token] __a =[0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1384] __a ='I am a small frog.' __a =tok([src_text] , padding=__snake_case , truncation=__snake_case )['input_ids'] __a =tok.batch_decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) __a ='I am a small frog .' __a ='.' __a =tok(__snake_case )['input_ids'] __a =tok(__snake_case )['input_ids'] assert encoded[-1] == encoded_dot[0]
308
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = AltDiffusionPipeline SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_IMAGE_PARAMS def __magic_name__ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) __a =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) __a =DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) torch.manual_seed(0 ) __a =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) __a =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) __a =CLIPTextModel(__snake_case ) __a =XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) __a =77 __a ={ 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __magic_name__ ( self , __snake_case , __snake_case=0 ) -> int: '''simple docstring''' if str(__snake_case ).startswith('mps' ): __a =torch.manual_seed(__snake_case ) else: __a =torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __a ={ 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def __magic_name__ ( self ) -> str: '''simple docstring''' __a ='cpu' # ensure determinism for the device-dependent torch.Generator __a =self.get_dummy_components() torch.manual_seed(0 ) __a =RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder __a =RobertaSeriesModelWithTransformation(__snake_case ) __a =text_encoder __a =AltDiffusionPipeline(**__snake_case ) __a =alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) __a =self.get_dummy_inputs(__snake_case ) __a ='A photo of an astronaut' __a =alt_pipe(**__snake_case ) __a =output.images __a =image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a =np.array( [0.574_8162, 0.6044_7145, 0.4882_1217, 0.5010_0636, 0.543_1185, 0.4576_3683, 0.4965_7696, 0.4813_2733, 0.4757_3093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __magic_name__ ( self ) -> str: '''simple docstring''' __a ='cpu' # ensure determinism for the device-dependent torch.Generator __a =self.get_dummy_components() __a =PNDMScheduler(skip_prk_steps=__snake_case ) torch.manual_seed(0 ) __a =RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder __a =RobertaSeriesModelWithTransformation(__snake_case ) __a =text_encoder __a =AltDiffusionPipeline(**__snake_case ) __a =alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) __a =self.get_dummy_inputs(__snake_case ) __a =alt_pipe(**__snake_case ) __a =output.images __a =image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a =np.array( [0.5160_5093, 0.570_7241, 0.4736_5507, 0.5057_8886, 0.563_3877, 0.464_2503, 0.518_2081, 0.4876_3484, 0.4908_4237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' # make sure here that pndm scheduler skips prk __a =AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , safety_checker=__snake_case ) __a =alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) __a ='A painting of a squirrel eating a burger' __a =torch.manual_seed(0 ) __a =alt_pipe([prompt] , generator=__snake_case , guidance_scale=6.0 , num_inference_steps=20 , output_type='np' ) __a =output.images __a =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __a =np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =DDIMScheduler.from_pretrained('BAAI/AltDiffusion' , subfolder='scheduler' ) __a =AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , scheduler=__snake_case , safety_checker=__snake_case ) __a =alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) __a ='A painting of a squirrel eating a burger' __a =torch.manual_seed(0 ) __a =alt_pipe([prompt] , generator=__snake_case , num_inference_steps=2 , output_type='numpy' ) __a =output.images __a =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __a =np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
308
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __magic_name__ ( unittest.TestCase , lowerCAmelCase_ ): def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =load_tool('text-to-speech' ) self.tool.setup() def __magic_name__ ( self ) -> Dict: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) __a =self.tool('hey' ) __a =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) __a =self.tool('hey' ) __a =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) )
308
1
from ...processing_utils import ProcessorMixin class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'WhisperFeatureExtractor' SCREAMING_SNAKE_CASE = 'WhisperTokenizer' def __init__( self , __snake_case , __snake_case ) -> int: '''simple docstring''' super().__init__(__snake_case , __snake_case ) __a =self.feature_extractor __a =False def __magic_name__ ( self , __snake_case=None , __snake_case=None , __snake_case=True ) -> Union[str, Any]: '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=__snake_case , language=__snake_case , no_timestamps=__snake_case ) def __call__( self , *__snake_case , **__snake_case ) -> int: '''simple docstring''' # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__snake_case , **__snake_case ) __a =kwargs.pop('audio' , __snake_case ) __a =kwargs.pop('sampling_rate' , __snake_case ) __a =kwargs.pop('text' , __snake_case ) if len(__snake_case ) > 0: __a =args[0] __a =args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: __a =self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case ) if text is not None: __a =self.tokenizer(__snake_case , **__snake_case ) if text is None: return inputs elif audio is None: return encodings else: __a =encodings['input_ids'] return inputs def __magic_name__ ( self , *__snake_case , **__snake_case ) -> Optional[int]: '''simple docstring''' return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def __magic_name__ ( self , *__snake_case , **__snake_case ) -> List[Any]: '''simple docstring''' return self.tokenizer.decode(*__snake_case , **__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case="np" ) -> Optional[int]: '''simple docstring''' return self.tokenizer.get_prompt_ids(__snake_case , return_tensors=__snake_case )
308
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> int: '''simple docstring''' __a =[] __a =[] for i in range(self.num_layers ): __a =self.in_channels if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =resnets __a =attentions if self.add_downsample: __a =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> Optional[Any]: '''simple docstring''' __a =() for resnet, attn in zip(self.resnets , self.attentions ): __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __a =self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> int: '''simple docstring''' __a =[] for i in range(self.num_layers ): __a =self.in_channels if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets if self.add_downsample: __a =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case=True ) -> Optional[int]: '''simple docstring''' __a =() for resnet in self.resnets: __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __a =self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =[] __a =[] for i in range(self.num_layers ): __a =self.in_channels if (i == self.num_layers - 1) else self.out_channels __a =self.prev_output_channel if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =resnets __a =attentions if self.add_upsample: __a =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[Any]: '''simple docstring''' for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states __a =res_hidden_states_tuple[-1] __a =res_hidden_states_tuple[:-1] __a =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __a =self.upsamplers_a(__snake_case ) return hidden_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =[] for i in range(self.num_layers ): __a =self.in_channels if (i == self.num_layers - 1) else self.out_channels __a =self.prev_output_channel if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets if self.add_upsample: __a =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[Any]: '''simple docstring''' for resnet in self.resnets: # pop res hidden states __a =res_hidden_states_tuple[-1] __a =res_hidden_states_tuple[:-1] __a =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __a =self.upsamplers_a(__snake_case ) return hidden_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # there is always at least one resnet __a =[ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] __a =[] for _ in range(self.num_layers ): __a =FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets __a =attentions def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[str]: '''simple docstring''' __a =self.resnets[0](__snake_case , __snake_case ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) return hidden_states
308
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[Any] = logging.get_logger(__name__) class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'encoder-decoder' SCREAMING_SNAKE_CASE = True def __init__( self , **__snake_case ) -> str: '''simple docstring''' super().__init__(**__snake_case ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" __a =kwargs.pop('encoder' ) __a =encoder_config.pop('model_type' ) __a =kwargs.pop('decoder' ) __a =decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig __a =AutoConfig.for_model(__snake_case , **__snake_case ) __a =AutoConfig.for_model(__snake_case , **__snake_case ) __a =True @classmethod def __magic_name__ ( cls , __snake_case , __snake_case , **__snake_case ) -> PretrainedConfig: '''simple docstring''' logger.info('Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) __a =True __a =True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__snake_case ) def __magic_name__ ( self ) -> int: '''simple docstring''' __a =copy.deepcopy(self.__dict__ ) __a =self.encoder.to_dict() __a =self.decoder.to_dict() __a =self.__class__.model_type return output
308
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_5_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self ) -> int: '''simple docstring''' if self.framework == "pytorch": subprocess.run( f'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding='utf-8' , check=__snake_case , ) assert hasattr(self , 'env' ) def __magic_name__ ( self , __snake_case ) -> int: '''simple docstring''' __a =f'{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}' # distributed data settings __a ={'smdistributed': {'dataparallel': {'enabled': True}}} if self.script != 'run_ddp.py' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__snake_case , instance_count=__snake_case , instance_type=self.instance_type , debugger_hook_config=__snake_case , hyperparameters={**self.env.distributed_hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__snake_case , py_version='py36' , ) def __magic_name__ ( self , __snake_case ) -> Optional[Any]: '''simple docstring''' TrainingJobAnalytics(__snake_case ).export_csv(f'{self.env.test_path}/{job_name}_metrics.csv' ) @parameterized.expand([(2,)] ) def __magic_name__ ( self , __snake_case ) -> Optional[int]: '''simple docstring''' # create estimator __a =self.create_estimator(__snake_case ) # run training estimator.fit() # result dataframe __a =TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __a =list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) __a =list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __a =( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'{estimator.latest_training_job.name}.json' , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , __snake_case )
308
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class __magic_name__ ( unittest.TestCase ): def __init__( self , __snake_case , __snake_case=7 , __snake_case=3 , __snake_case=30 , __snake_case=400 , __snake_case=True , __snake_case=None , __snake_case=True , __snake_case=[0.5, 0.5, 0.5] , __snake_case=[0.5, 0.5, 0.5] , __snake_case=True , __snake_case=1 / 255 , __snake_case=True , ) -> Tuple: '''simple docstring''' # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __a =size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} __a =parent __a =batch_size __a =num_channels __a =min_resolution __a =max_resolution __a =do_resize __a =size __a =do_normalize __a =image_mean __a =image_std __a =do_rescale __a =rescale_factor __a =do_pad def __magic_name__ ( self ) -> Tuple: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __magic_name__ ( self , __snake_case , __snake_case=False ) -> Optional[Any]: '''simple docstring''' if not batched: __a =image_inputs[0] if isinstance(__snake_case , Image.Image ): __a , __a =image.size else: __a , __a =image.shape[1], image.shape[2] if w < h: __a =int(self.size['shortest_edge'] * h / w ) __a =self.size['shortest_edge'] elif w > h: __a =self.size['shortest_edge'] __a =int(self.size['shortest_edge'] * w / h ) else: __a =self.size['shortest_edge'] __a =self.size['shortest_edge'] else: __a =[] for image in image_inputs: __a , __a =self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __a =max(__snake_case , key=lambda __snake_case : item[0] )[0] __a =max(__snake_case , key=lambda __snake_case : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = DeformableDetrImageProcessor if is_vision_available() else None def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =DeformableDetrImageProcessingTester(self ) @property def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , 'image_mean' ) ) self.assertTrue(hasattr(__snake_case , 'image_std' ) ) self.assertTrue(hasattr(__snake_case , 'do_normalize' ) ) self.assertTrue(hasattr(__snake_case , 'do_resize' ) ) self.assertTrue(hasattr(__snake_case , 'do_rescale' ) ) self.assertTrue(hasattr(__snake_case , 'do_pad' ) ) self.assertTrue(hasattr(__snake_case , 'size' ) ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , __snake_case ) __a =self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__snake_case ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , __snake_case ) def __magic_name__ ( self ) -> Tuple: '''simple docstring''' pass def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' # Initialize image_processing __a =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a =prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input __a =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __a , __a =self.image_processor_tester.get_expected_values(__snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __a , __a =self.image_processor_tester.get_expected_values(__snake_case , batched=__snake_case ) __a =image_processing(__snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' # Initialize image_processing __a =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a =prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input __a =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __a , __a =self.image_processor_tester.get_expected_values(__snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __a =image_processing(__snake_case , return_tensors='pt' ).pixel_values __a , __a =self.image_processor_tester.get_expected_values(__snake_case , batched=__snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # Initialize image_processing __a =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a =prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input __a =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __a , __a =self.image_processor_tester.get_expected_values(__snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __a =image_processing(__snake_case , return_tensors='pt' ).pixel_values __a , __a =self.image_processor_tester.get_expected_values(__snake_case , batched=__snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __magic_name__ ( self ) -> str: '''simple docstring''' # prepare image and target __a =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: __a =json.loads(f.read() ) __a ={'image_id': 3_9769, 'annotations': target} # encode them __a =DeformableDetrImageProcessor() __a =image_processing(images=__snake_case , annotations=__snake_case , return_tensors='pt' ) # verify pixel values __a =torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , __snake_case ) __a =torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , __snake_case , atol=1e-4 ) ) # verify area __a =torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , __snake_case ) ) # verify boxes __a =torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , __snake_case ) __a =torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , __snake_case , atol=1e-3 ) ) # verify image_id __a =torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , __snake_case ) ) # verify is_crowd __a =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , __snake_case ) ) # verify class_labels __a =torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , __snake_case ) ) # verify orig_size __a =torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , __snake_case ) ) # verify size __a =torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , __snake_case ) ) @slow def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' # prepare image, target and masks_path __a =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: __a =json.loads(f.read() ) __a ={'file_name': '000000039769.png', 'image_id': 3_9769, 'segments_info': target} __a =pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them __a =DeformableDetrImageProcessor(format='coco_panoptic' ) __a =image_processing(images=__snake_case , annotations=__snake_case , masks_path=__snake_case , return_tensors='pt' ) # verify pixel values __a =torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , __snake_case ) __a =torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , __snake_case , atol=1e-4 ) ) # verify area __a =torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , __snake_case ) ) # verify boxes __a =torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , __snake_case ) __a =torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , __snake_case , atol=1e-3 ) ) # verify image_id __a =torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , __snake_case ) ) # verify is_crowd __a =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , __snake_case ) ) # verify class_labels __a =torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , __snake_case ) ) # verify masks __a =82_2873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , __snake_case ) # verify orig_size __a =torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , __snake_case ) ) # verify size __a =torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , __snake_case ) )
308
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _lowerCAmelCase : List[Any] = logging.getLogger(__name__) _lowerCAmelCase : Optional[Any] = "Hello world! cécé herlolip" _lowerCAmelCase : str = namedtuple( "BertAbsConfig", [ "temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout", ], ) def UpperCamelCase_( _snake_case : str , _snake_case : List[Any] ): """simple docstring""" __a =BertAbsConfig( temp_dir='.' , finetune_bert=_snake_case , large=_snake_case , share_emb=_snake_case , use_bert_emb=_snake_case , encoder='bert' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) __a =torch.load(_snake_case , lambda _snake_case , _snake_case : storage ) __a =AbsSummarizer(_snake_case , torch.device('cpu' ) , _snake_case ) original.eval() __a =BertAbsSummarizer(_snake_case , torch.device('cpu' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('convert the model' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('Make sure that the models\' outputs are identical' ) __a =BertTokenizer.from_pretrained('bert-base-uncased' ) # prepare the model inputs __a =tokenizer.encode('This is sample éàalj\'-.' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_snake_case )) ) __a =torch.tensor(_snake_case ).unsqueeze(0 ) __a =tokenizer.encode('This is sample 3 éàalj\'-.' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_snake_case )) ) __a =torch.tensor(_snake_case ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __a =encoder_input_ids __a =decoder_input_ids __a =__a =None __a =None __a =__a =None __a =__a =None __a =None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __a =original(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )[0] __a =original.generator(_snake_case ) __a =new_model( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )[0] __a =new_model.generator(_snake_case ) __a =torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_snake_case ) ) __a =torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_snake_case ) ) __a =torch.allclose(_snake_case , _snake_case , atol=1e-3 ) if are_identical: logging.info('all weights are equal up to 1e-3' ) else: raise ValueError('the weights are different. The new model is likely different from the original one.' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('saving the model\'s state dictionary' ) torch.save( new_model.state_dict() , './bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--bertabs_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model.", ) _lowerCAmelCase : Optional[Any] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
308
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __magic_name__ ( unittest.TestCase ): def __init__( self , __snake_case , __snake_case=7 , __snake_case=3 , __snake_case=18 , __snake_case=30 , __snake_case=400 , __snake_case=True , __snake_case=None , __snake_case=True , __snake_case=None , __snake_case=True , ) -> Optional[Any]: '''simple docstring''' __a =size if size is not None else {'shortest_edge': 20} __a =crop_size if crop_size is not None else {'height': 18, 'width': 18} __a =parent __a =batch_size __a =num_channels __a =image_size __a =min_resolution __a =max_resolution __a =do_resize __a =size __a =do_center_crop __a =crop_size __a =do_flip_channel_order def __magic_name__ ( self ) -> Dict: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = MobileViTImageProcessor if is_vision_available() else None def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =MobileViTImageProcessingTester(self ) @property def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , 'do_resize' ) ) self.assertTrue(hasattr(__snake_case , 'size' ) ) self.assertTrue(hasattr(__snake_case , 'do_center_crop' ) ) self.assertTrue(hasattr(__snake_case , 'center_crop' ) ) self.assertTrue(hasattr(__snake_case , 'do_flip_channel_order' ) ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) __a =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def __magic_name__ ( self ) -> Tuple: '''simple docstring''' pass def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' # Initialize image_processing __a =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a =prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input __a =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __a =image_processing(__snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def __magic_name__ ( self ) -> Any: '''simple docstring''' # Initialize image_processing __a =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a =prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input __a =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __a =image_processing(__snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' # Initialize image_processing __a =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a =prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input __a =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __a =image_processing(__snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
308
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ : def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=False , __snake_case=False , __snake_case=False , __snake_case=2 , __snake_case=99 , __snake_case=0 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=0.1 , __snake_case=0.1 , __snake_case=512 , __snake_case=2 , __snake_case=0.02 , __snake_case=2 , __snake_case=4 , __snake_case="last" , __snake_case=True , __snake_case=None , __snake_case=0 , ) -> Optional[Any]: '''simple docstring''' __a =parent __a =batch_size __a =seq_length __a =is_training __a =use_input_lengths __a =use_token_type_ids __a =use_labels __a =gelu_activation __a =sinusoidal_embeddings __a =causal __a =asm __a =n_langs __a =vocab_size __a =n_special __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =max_position_embeddings __a =type_sequence_label_size __a =initializer_range __a =num_labels __a =num_choices __a =summary_type __a =use_proj __a =scope __a =bos_token_id def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a =random_attention_mask([self.batch_size, self.seq_length] ) __a =None if self.use_input_lengths: __a =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __a =None if self.use_token_type_ids: __a =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __a =None __a =None __a =None if self.use_labels: __a =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a =ids_tensor([self.batch_size] , 2 ).float() __a =ids_tensor([self.batch_size] , self.num_choices ) __a =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __magic_name__ ( self ) -> Any: '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> List[Any]: '''simple docstring''' __a =XLMModel(config=__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , lengths=__snake_case , langs=__snake_case ) __a =model(__snake_case , langs=__snake_case ) __a =model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Optional[int]: '''simple docstring''' __a =XLMWithLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Dict: '''simple docstring''' __a =XLMForQuestionAnsweringSimple(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) __a =outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> List[Any]: '''simple docstring''' __a =XLMForQuestionAnswering(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , p_mask=__snake_case , ) __a =model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , ) ((__a) , ) =result_with_labels.to_tuple() __a =model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) ((__a) , ) =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Optional[Any]: '''simple docstring''' __a =XLMForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Any: '''simple docstring''' __a =self.num_labels __a =XLMForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Tuple: '''simple docstring''' __a =self.num_choices __a =XLMForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() __a =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) =config_and_inputs __a ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable SCREAMING_SNAKE_CASE = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> int: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __magic_name__ ( self , __snake_case , __snake_case , __snake_case=False ) -> str: '''simple docstring''' __a =super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __a =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) __a =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =XLMModelTester(self ) __a =ConfigTester(self , config_class=__snake_case , emb_dim=37 ) def __magic_name__ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=False , __snake_case=1 ) -> Optional[Any]: '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_attentions in attentions] , [True] * len(__snake_case ) ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__snake_case ): # adds PAD dummy token __a =min_length + idx + 1 __a =min_length + idx + 1 __a =( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__snake_case ) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=False , __snake_case=1 ) -> Dict: '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_hidden_states in hidden_states] , [True] * len(__snake_case ) , ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__snake_case ): # adds PAD dummy token __a =min_length + idx + 1 __a =(batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__snake_case ) , ) pass @slow def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a =XLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class __magic_name__ ( unittest.TestCase ): @slow def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(__snake_case ) __a =torch.tensor([[14, 447]] , dtype=torch.long , device=__snake_case ) # the president __a =[ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __a =model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __snake_case )
308
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : int = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'swin2sr' SCREAMING_SNAKE_CASE = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , __snake_case=64 , __snake_case=1 , __snake_case=3 , __snake_case=180 , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=8 , __snake_case=2.0 , __snake_case=True , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.1 , __snake_case="gelu" , __snake_case=False , __snake_case=0.02 , __snake_case=1e-5 , __snake_case=2 , __snake_case=1.0 , __snake_case="1conv" , __snake_case="pixelshuffle" , **__snake_case , ) -> Dict: '''simple docstring''' super().__init__(**__snake_case ) __a =image_size __a =patch_size __a =num_channels __a =embed_dim __a =depths __a =len(__snake_case ) __a =num_heads __a =window_size __a =mlp_ratio __a =qkv_bias __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =drop_path_rate __a =hidden_act __a =use_absolute_embeddings __a =layer_norm_eps __a =initializer_range __a =upscale __a =img_range __a =resi_connection __a =upsampler
308
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake _lowerCAmelCase : Optional[Any] = numpy.array([0, 0]) _lowerCAmelCase : Dict = numpy.array([0.5, 0.8660254]) _lowerCAmelCase : Any = numpy.array([1, 0]) _lowerCAmelCase : int = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCamelCase_( _snake_case : list[numpy.ndarray] , _snake_case : int ): """simple docstring""" __a =initial_vectors for _ in range(_snake_case ): __a =iteration_step(_snake_case ) return vectors def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =[] for i, start_vector in enumerate(vectors[:-1] ): __a =vectors[i + 1] new_vectors.append(_snake_case ) __a =end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCamelCase_( _snake_case : numpy.ndarray , _snake_case : float ): """simple docstring""" __a =numpy.radians(_snake_case ) __a , __a =numpy.cos(_snake_case ), numpy.sin(_snake_case ) __a =numpy.array(((c, -s), (s, c)) ) return numpy.dot(_snake_case , _snake_case ) def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() __a , __a =zip(*_snake_case ) plt.plot(_snake_case , _snake_case ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : List[Any] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
308
1
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): @register_to_config def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = False , ) -> Dict: '''simple docstring''' super().__init__() __a =nn.Embedding(__snake_case , __snake_case ) __a =nn.Embedding(__snake_case , __snake_case ) __a =False __a =nn.Dropout(p=__snake_case ) __a =TaConfig( vocab_size=__snake_case , d_model=__snake_case , num_heads=__snake_case , d_kv=__snake_case , d_ff=__snake_case , dropout_rate=__snake_case , feed_forward_proj=__snake_case , is_decoder=__snake_case , is_encoder_decoder=__snake_case , ) __a =nn.ModuleList() for lyr_num in range(__snake_case ): __a =TaBlock(__snake_case ) self.encoders.append(__snake_case ) __a =TaLayerNorm(__snake_case ) __a =nn.Dropout(p=__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case ) -> Optional[int]: '''simple docstring''' __a =self.token_embedder(__snake_case ) __a =encoder_input_tokens.shape[1] __a =torch.arange(__snake_case , device=encoder_input_tokens.device ) x += self.position_encoding(__snake_case ) __a =self.dropout_pre(__snake_case ) # inverted the attention mask __a =encoder_input_tokens.size() __a =self.get_extended_attention_mask(__snake_case , __snake_case ) for lyr in self.encoders: __a =lyr(__snake_case , __snake_case )[0] __a =self.layer_norm(__snake_case ) return self.dropout_post(__snake_case ), encoder_inputs_mask
308
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Tuple = { "configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MegatronBertForCausalLM", "MegatronBertForMaskedLM", "MegatronBertForMultipleChoice", "MegatronBertForNextSentencePrediction", "MegatronBertForPreTraining", "MegatronBertForQuestionAnswering", "MegatronBertForSequenceClassification", "MegatronBertForTokenClassification", "MegatronBertModel", "MegatronBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys _lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
1
import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _lowerCAmelCase : Any = 256 class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = ['melgan'] def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> None: '''simple docstring''' super().__init__() # From MELGAN __a =math.log(1e-5 ) # Matches MelGAN training. __a =4.0 # Largest value for most examples __a =128 self.register_modules( notes_encoder=__snake_case , continuous_encoder=__snake_case , decoder=__snake_case , scheduler=__snake_case , melgan=__snake_case , ) def __magic_name__ ( self , __snake_case , __snake_case=(-1.0, 1.0) , __snake_case=False ) -> Union[str, Any]: '''simple docstring''' __a , __a =output_range if clip: __a =torch.clip(__snake_case , self.min_value , self.max_value ) # Scale to [0, 1]. __a =(features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def __magic_name__ ( self , __snake_case , __snake_case=(-1.0, 1.0) , __snake_case=False ) -> Dict: '''simple docstring''' __a , __a =input_range __a =torch.clip(__snake_case , __snake_case , __snake_case ) if clip else outputs # Scale to [0, 1]. __a =(outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def __magic_name__ ( self , __snake_case , __snake_case , __snake_case ) -> Optional[Any]: '''simple docstring''' __a =input_tokens > 0 __a , __a =self.notes_encoder( encoder_input_tokens=__snake_case , encoder_inputs_mask=__snake_case ) __a , __a =self.continuous_encoder( encoder_inputs=__snake_case , encoder_inputs_mask=__snake_case ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def __magic_name__ ( self , __snake_case , __snake_case , __snake_case ) -> Any: '''simple docstring''' __a =noise_time if not torch.is_tensor(__snake_case ): __a =torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(__snake_case ) and len(timesteps.shape ) == 0: __a =timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __a =timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) __a =self.decoder( encodings_and_masks=__snake_case , decoder_input_tokens=__snake_case , decoder_noise_time=__snake_case ) return logits @torch.no_grad() def __call__( self , __snake_case , __snake_case = None , __snake_case = 100 , __snake_case = True , __snake_case = "numpy" , __snake_case = None , __snake_case = 1 , ) -> Union[AudioPipelineOutput, Tuple]: '''simple docstring''' if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__snake_case , __snake_case ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(__snake_case )}.' ) __a =np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) __a =np.zeros([1, 0, self.n_dims] , np.floataa ) __a =torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=__snake_case , device=self.device ) for i, encoder_input_tokens in enumerate(__snake_case ): if i == 0: __a =torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. __a =torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=__snake_case , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. __a =ones __a =self.scale_features( __snake_case , output_range=[-1.0, 1.0] , clip=__snake_case ) __a =self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=__snake_case , continuous_mask=__snake_case , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop __a =randn_tensor( shape=encoder_continuous_inputs.shape , generator=__snake_case , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(__snake_case ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __a =self.decode( encodings_and_masks=__snake_case , input_tokens=__snake_case , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 __a =self.scheduler.step(__snake_case , __snake_case , __snake_case , generator=__snake_case ).prev_sample __a =self.scale_to_features(__snake_case , input_range=[-1.0, 1.0] ) __a =mel[:1] __a =mel.cpu().float().numpy() __a =np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__snake_case , __snake_case ) logger.info('Generated segment' , __snake_case ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( 'Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( 'Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.' ) if output_type == "numpy": __a =self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: __a =full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=__snake_case )
308
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __magic_name__ : @staticmethod def __magic_name__ ( *__snake_case , **__snake_case ) -> List[str]: '''simple docstring''' pass def UpperCamelCase_( _snake_case : Image ): """simple docstring""" __a =hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __magic_name__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def __magic_name__ ( self , __snake_case , __snake_case , __snake_case ) -> Dict: '''simple docstring''' __a =DepthEstimationPipeline(model=__snake_case , image_processor=__snake_case ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __magic_name__ ( self , __snake_case , __snake_case ) -> Tuple: '''simple docstring''' __a =depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , __snake_case ) import datasets __a =datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) __a =depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , __snake_case , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' pass @slow @require_torch def __magic_name__ ( self ) -> int: '''simple docstring''' __a ='Intel/dpt-large' __a =pipeline('depth-estimation' , model=__snake_case ) __a =depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) __a =hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.662 ) @require_torch def __magic_name__ ( self ) -> Any: '''simple docstring''' # This is highly irregular to have no small tests. self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
308
1
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) def UpperCamelCase_( _snake_case : Any , _snake_case : Union[str, Any] , _snake_case : Tuple ): """simple docstring""" __a =os.path.abspath(_snake_case ) logger.info(F'Converting TensorFlow checkpoint from {tf_path}' ) # Load weights from TF model __a =tf.train.list_variables(_snake_case ) __a =[] __a =[] __a =[] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") __a =full_name.split('/' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(F'Skipping non-model layer {full_name}' ) continue if "optimizer" in full_name: logger.info(F'Skipping optimization layer {full_name}' ) continue if name[0] == "model": # ignore initial 'model' __a =name[1:] # figure out how many levels deep the name is __a =0 for _name in name: if _name.startswith('layer_with_weights' ): depth += 1 else: break layer_depth.append(_snake_case ) # read data __a =tf.train.load_variable(_snake_case , _snake_case ) names.append('/'.join(_snake_case ) ) arrays.append(_snake_case ) logger.info(F'Read a total of {len(_snake_case ):,} layers' ) # Sanity check if len(set(_snake_case ) ) != 1: raise ValueError(F'Found layer names with different depths (layer depth {list(set(_snake_case ) )})' ) __a =list(set(_snake_case ) )[0] if layer_depth != 1: raise ValueError( 'The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP' ' heads.' ) # convert layers logger.info('Converting weights...' ) for full_name, array in zip(_snake_case , _snake_case ): __a =full_name.split('/' ) __a =model __a =[] for i, m_name in enumerate(_snake_case ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('layer_with_weights' ): __a =int(m_name.split('-' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['embeddings', 'LayerNorm'] ) __a =getattr(_snake_case , 'embeddings' ) __a =getattr(_snake_case , 'LayerNorm' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['encoder', 'layer', str(layer_num - 4 )] ) __a =getattr(_snake_case , 'encoder' ) __a =getattr(_snake_case , 'layer' ) __a =pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['pooler', 'dense'] ) __a =getattr(_snake_case , 'pooler' ) __a =getattr(_snake_case , 'dense' ) elif m_name == "embeddings": trace.append('embeddings' ) __a =getattr(_snake_case , 'embeddings' ) if layer_num == 0: trace.append('word_embeddings' ) __a =getattr(_snake_case , 'word_embeddings' ) elif layer_num == 1: trace.append('position_embeddings' ) __a =getattr(_snake_case , 'position_embeddings' ) elif layer_num == 2: trace.append('token_type_embeddings' ) __a =getattr(_snake_case , 'token_type_embeddings' ) else: raise ValueError(F'Unknown embedding layer with name {full_name}' ) trace.append('weight' ) __a =getattr(_snake_case , 'weight' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['attention', 'self'] ) __a =getattr(_snake_case , 'attention' ) __a =getattr(_snake_case , 'self' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['attention', 'output', 'LayerNorm'] ) __a =getattr(_snake_case , 'attention' ) __a =getattr(_snake_case , 'output' ) __a =getattr(_snake_case , 'LayerNorm' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['attention', 'output', 'dense'] ) __a =getattr(_snake_case , 'attention' ) __a =getattr(_snake_case , 'output' ) __a =getattr(_snake_case , 'dense' ) elif m_name == "_output_dense": # output dense trace.extend(['output', 'dense'] ) __a =getattr(_snake_case , 'output' ) __a =getattr(_snake_case , 'dense' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['output', 'LayerNorm'] ) __a =getattr(_snake_case , 'output' ) __a =getattr(_snake_case , 'LayerNorm' ) elif m_name == "_key_dense": # attention key trace.append('key' ) __a =getattr(_snake_case , 'key' ) elif m_name == "_query_dense": # attention query trace.append('query' ) __a =getattr(_snake_case , 'query' ) elif m_name == "_value_dense": # attention value trace.append('value' ) __a =getattr(_snake_case , 'value' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['intermediate', 'dense'] ) __a =getattr(_snake_case , 'intermediate' ) __a =getattr(_snake_case , 'dense' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('output' ) __a =getattr(_snake_case , 'output' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('bias' ) __a =getattr(_snake_case , 'bias' ) elif m_name in ["kernel", "gamma"]: trace.append('weight' ) __a =getattr(_snake_case , 'weight' ) else: logger.warning(F'Ignored {m_name}' ) # for certain layers reshape is necessary __a ='.'.join(_snake_case ) if re.match(r'(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)' , _snake_case ) or re.match( r'(\S+)\.attention\.output\.dense\.weight' , _snake_case ): __a =array.reshape(pointer.data.shape ) if "kernel" in full_name: __a =array.transpose() if pointer.shape == array.shape: __a =torch.from_numpy(_snake_case ) else: raise ValueError( F'Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:' F' {array.shape}' ) logger.info(F'Successfully set variable {full_name} to PyTorch layer {trace}' ) return model def UpperCamelCase_( _snake_case : Tuple , _snake_case : int , _snake_case : Optional[int] ): """simple docstring""" logger.info(F'Loading model based on config from {config_path}...' ) __a =BertConfig.from_json_file(_snake_case ) __a =BertModel(_snake_case ) # Load weights from checkpoint logger.info(F'Loading weights from checkpoint {tf_checkpoint_path}...' ) load_tfa_weights_in_bert(_snake_case , _snake_case , _snake_case ) # Save pytorch-model logger.info(F'Saving PyTorch model to {pytorch_dump_path}...' ) torch.save(model.state_dict() , _snake_case ) if __name__ == "__main__": _lowerCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow 2.x checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model (must include filename).", ) _lowerCAmelCase : List[Any] = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
308
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _lowerCAmelCase : Optional[int] = logging.getLogger(__name__) _lowerCAmelCase : Any = "pytorch_model.bin" @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co.'} , ) @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field(metadata={'help': 'A csv or a json file containing the training data.'} ) SCREAMING_SNAKE_CASE = dataclasses.field(metadata={'help': 'A csv or a json file containing the data to predict on.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the validation data.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'The name of the task to train on.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'The list of labels for the task.'} ) @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field( metadata={'help': 'The output directory where the model predictions and checkpoints will be written.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default='accuracy' , metadata={'help': 'The evaluation metric used for the task.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default='no' , metadata={ 'help': 'The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]' } , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=1_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0 , metadata={ 'help': 'How much the specified evaluation metric must improve to satisfy early stopping conditions.' } , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the confidence score.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the validation performance.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to fine-tune on labeled data after pseudo training.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0 , metadata={'help': 'Confidence threshold for pseudo-labeled data filtering.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=1_0_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Random seed for initialization.'} , ) def UpperCamelCase_( _snake_case : int , _snake_case : str , _snake_case : Optional[int] , _snake_case : str , _snake_case : Union[str, Any] , _snake_case : List[Any] ): """simple docstring""" __a =datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: __a =dataset.filter(lambda _snake_case : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 __a =int(eval_result * len(_snake_case ) ) print(_snake_case ) __a =dataset.sort('probability' , reverse=_snake_case ) __a =dataset.select(range(_snake_case ) ) __a =dataset.remove_columns(['label', 'probability'] ) __a =dataset.rename_column('prediction' , 'label' ) __a =dataset.map(lambda _snake_case : {"label": idalabel[example["label"]]} ) __a =dataset.shuffle(seed=args.seed ) __a =os.path.join(_snake_case , F'train_pseudo.{args.data_file_extension}' ) if args.data_file_extension == "csv": dataset.to_csv(_snake_case , index=_snake_case ) else: dataset.to_json(_snake_case ) def UpperCamelCase_( _snake_case : List[Any] , _snake_case : str , _snake_case : int , _snake_case : Optional[int] , **_snake_case : List[str] ): """simple docstring""" __a =Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() __a =STModelArguments(model_name_or_path=_snake_case ) __a =STDataArguments(train_file=_snake_case , infer_file=_snake_case ) __a =STTrainingArguments(output_dir=_snake_case ) __a =argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(_snake_case ).items(): setattr(_snake_case , _snake_case , _snake_case ) for key, value in kwargs.items(): if hasattr(_snake_case , _snake_case ): setattr(_snake_case , _snake_case , _snake_case ) # Sanity checks __a ={} __a =None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None __a =args.train_file __a =args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None __a =args.eval_file for key in data_files: __a =data_files[key].split('.' )[-1] assert extension in ["csv", "json"], F'`{key}_file` should be a csv or a json file.' if args.data_file_extension is None: __a =extension else: assert extension == args.data_file_extension, F'`{key}_file` should be a {args.data_file_extension} file`.' assert ( args.eval_metric in datasets.list_metrics() ), F'{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('Creating the initial data directory for self-training...' ) __a =F'{args.output_dir}/self-train_iter-{{}}'.format __a =data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=_snake_case ) os.makedirs(_snake_case , exist_ok=_snake_case ) accelerator.wait_for_everyone() __a =None __a =None __a =0 __a =False # Show the progress bar __a =tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): __a =data_dir_format(_snake_case ) assert os.path.exists(_snake_case ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 __a =os.path.join(_snake_case , 'stage-1' ) __a ={ 'accelerator': accelerator, 'model_name_or_path': args.model_name_or_path, 'cache_dir': args.cache_dir, 'do_train': True, 'train_file': data_files['train'] if iteration == 0 else data_files['train_pseudo'], 'do_eval': True if args.eval_file is not None else False, 'eval_file': data_files['eval'], 'do_predict': True, 'infer_file': data_files['infer'], 'task_name': args.task_name, 'label_list': args.label_list, 'output_dir': current_output_dir, 'eval_metric': args.eval_metric, 'evaluation_strategy': args.evaluation_strategy, 'early_stopping_patience': args.early_stopping_patience, 'early_stopping_threshold': args.early_stopping_threshold, 'seed': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(_snake_case , _snake_case ): arguments_dict.update({key: value} ) __a =os.path.join(_snake_case , 'best-checkpoint' , _snake_case ) if os.path.exists(_snake_case ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.' , _snake_case , _snake_case , ) else: logger.info('***** Running self-training: iteration: %d, stage: 1 *****' , _snake_case ) finetune(**_snake_case ) accelerator.wait_for_everyone() assert os.path.exists(_snake_case ) logger.info('Self-training job completed: iteration: %d, stage: 1.' , _snake_case ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data __a =os.path.join(_snake_case , 'best-checkpoint' ) __a =os.path.join(_snake_case , 'stage-2' ) # Update arguments_dict __a =model_path __a =data_files['train'] __a =current_output_dir __a =os.path.join(_snake_case , 'best-checkpoint' , _snake_case ) if os.path.exists(_snake_case ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.' , _snake_case , _snake_case , ) else: logger.info('***** Running self-training: iteration: %d, stage: 2 *****' , _snake_case ) finetune(**_snake_case ) accelerator.wait_for_everyone() assert os.path.exists(_snake_case ) logger.info('Self-training job completed: iteration: %d, stage: 2.' , _snake_case ) __a =iteration __a =data_dir_format(iteration + 1 ) __a =AutoConfig.from_pretrained(os.path.join(_snake_case , 'best-checkpoint' ) ) __a =config.idalabel __a =os.path.join(_snake_case , 'eval_results_best-checkpoint.json' ) __a =os.path.join(_snake_case , 'test_results_best-checkpoint.json' ) assert os.path.exists(_snake_case ) with open(_snake_case , 'r' ) as f: __a =float(json.load(_snake_case )[args.eval_metric] ) __a =os.path.join(_snake_case , 'infer_output_best-checkpoint.csv' ) assert os.path.exists(_snake_case ) # Loading the dataset from local csv or json files. __a =load_dataset(args.data_file_extension , data_files={'data': data_files['infer']} )['data'] __a =load_dataset('csv' , data_files={'data': infer_output_file} )['data'] if accelerator.is_main_process: os.makedirs(_snake_case , exist_ok=_snake_case ) shutil.copy(_snake_case , os.path.join(_snake_case , F'eval_results_iter-{iteration}.json' ) ) if os.path.exists(_snake_case ): shutil.copy(_snake_case , os.path.join(_snake_case , F'test_results_iter-{iteration}.json' ) ) create_pseudo_labeled_data(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) accelerator.wait_for_everyone() __a =os.path.join(_snake_case , F'train_pseudo.{args.data_file_extension}' ) if args.evaluation_strategy != IntervalStrategy.NO.value: __a =eval_result if best_iteration is None: __a =new_iteration __a =new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: __a =new_iteration __a =new_eval_result __a =0 else: if new_eval_result == best_eval_result: __a =new_iteration __a =new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: __a =True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('Best iteration: %d' , _snake_case ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , _snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_snake_case , F'eval_results_iter-{iteration}.json' ) , os.path.join(_snake_case , 'eval_results_best-iteration.json' ) , ) else: # Assume that the last iteration is the best logger.info('Best iteration: %d' , args.max_selftrain_iterations - 1 ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , _snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_snake_case , F'eval_results_iter-{args.max_selftrain_iterations - 1}.json' ) , os.path.join(_snake_case , 'eval_results_best-iteration.json' ) , )
308
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: _lowerCAmelCase : Union[str, Any] = None _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} _lowerCAmelCase : Union[str, Any] = { "vocab_file": { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model", "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model" ), }, "tokenizer_file": { "google/bigbird-roberta-base": ( "https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json" ), "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json" ), }, } _lowerCAmelCase : str = { "google/bigbird-roberta-base": 4_096, "google/bigbird-roberta-large": 4_096, "google/bigbird-base-trivia-itc": 4_096, } _lowerCAmelCase : int = "▁" class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = BigBirdTokenizer SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] SCREAMING_SNAKE_CASE = [] def __init__( self , __snake_case=None , __snake_case=None , __snake_case="<unk>" , __snake_case="<s>" , __snake_case="</s>" , __snake_case="<pad>" , __snake_case="[SEP]" , __snake_case="[MASK]" , __snake_case="[CLS]" , **__snake_case , ) -> Tuple: '''simple docstring''' __a =AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else bos_token __a =AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else eos_token __a =AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else unk_token __a =AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else pad_token __a =AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else cls_token __a =AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else sep_token # Mask token behave like a normal word, i.e. include the space before it __a =AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token super().__init__( __snake_case , tokenizer_file=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , **__snake_case , ) __a =vocab_file __a =False if not self.vocab_file else True def __magic_name__ ( self , __snake_case , __snake_case = None ) -> List[int]: '''simple docstring''' __a =[self.sep_token_id] __a =[self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __magic_name__ ( self , __snake_case , __snake_case = None , __snake_case = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case )) + [1] def __magic_name__ ( self , __snake_case , __snake_case = None ) -> List[int]: '''simple docstring''' __a =[self.sep_token_id] __a =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __magic_name__ ( self , __snake_case , __snake_case = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(__snake_case ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __a =os.path.join( __snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) return (out_vocab_file,)
308
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Any = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right _lowerCAmelCase : List[Any] = 256_047 _lowerCAmelCase : Dict = 256_145 @require_sentencepiece @require_tokenizers class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = NllbTokenizer SCREAMING_SNAKE_CASE = NllbTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = {} def __magic_name__ ( self ) -> int: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __a =NllbTokenizer(__snake_case , keep_accents=__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self ) -> int: '''simple docstring''' __a =NllbTokenizer(__snake_case , keep_accents=__snake_case ) __a =tokenizer.tokenize('This is a test' ) self.assertListEqual(__snake_case , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __a =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __a =tokenizer.convert_tokens_to_ids(__snake_case ) self.assertListEqual( __snake_case , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __a =tokenizer.convert_ids_to_tokens(__snake_case ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-nllb', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __a =self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __a =self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) __a =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=True __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=False __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) @require_torch def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' if not self.test_seqaseq: return __a =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Longer text that will definitely require truncation. __a =[ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for' ' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons' ' will only worsen the violence and misery for millions of people.', ] __a =[ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al' ' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi' ' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] try: __a =tokenizer.prepare_seqaseq_batch( src_texts=__snake_case , tgt_texts=__snake_case , max_length=3 , max_target_length=10 , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='ron_Latn' , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified __a =tokenizer.prepare_seqaseq_batch( __snake_case , tgt_texts=__snake_case , max_length=3 , return_tensors='pt' ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) __a =tokenizer.prepare_seqaseq_batch( src_texts=__snake_case , max_length=3 , max_target_length=10 , return_tensors='pt' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn('decoder_input_ids' , __snake_case ) @unittest.skip('Unfortunately way too slow to build a BPE with SentencePiece.' ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' pass def __magic_name__ ( self ) -> Tuple: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __a =[AddedToken('<special>' , lstrip=__snake_case )] __a =self.rust_tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case ) __a =tokenizer_r.encode('Hey this is a <special> token' ) __a =tokenizer_r.encode('<special>' , add_special_tokens=__snake_case )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: __a =self.rust_tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case , ) __a =self.tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case ) __a =tokenizer_p.encode('Hey this is a <special> token' ) __a =tokenizer_cr.encode('Hey this is a <special> token' ) self.assertEqual(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class __magic_name__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = 'facebook/nllb-200-distilled-600M' SCREAMING_SNAKE_CASE = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] SCREAMING_SNAKE_CASE = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] SCREAMING_SNAKE_CASE = [ 2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 8_1_6_5, 2_4_8_0_6_6, 1_4_7_3_4, 9_5_0, 1_1_3_5, 1_0_5_7_2_1, 3_5_7_3, 8_3, 2_7_3_5_2, 1_0_8, 4_9_4_8_6, 2, ] @classmethod def __magic_name__ ( cls ) -> Tuple: '''simple docstring''' __a =NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang='eng_Latn' , tgt_lang='ron_Latn' ) __a =1 return cls def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Arab'] , 25_6001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Latn'] , 25_6002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['fra_Latn'] , 25_6057 ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' self.assertIn(__snake_case , self.tokenizer.all_special_ids ) # fmt: off __a =[RO_CODE, 4254, 9_8068, 11_2923, 3_9072, 3909, 713, 10_2767, 26, 1_7314, 3_5642, 1_4683, 3_3118, 2022, 6_6987, 2, 25_6047] # fmt: on __a =self.tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) __a =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertNotIn(self.tokenizer.eos_token , __snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , __snake_case ) __a =10 __a =self.tokenizer(__snake_case , max_length=__snake_case , truncation=__snake_case ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , __snake_case ) self.assertEqual(len(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_6203, 3] ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =tempfile.mkdtemp() __a =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__snake_case ) __a =NllbTokenizer.from_pretrained(__snake_case ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __snake_case ) @require_torch def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) __a =shift_tokens_right( batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['ron_Latn'] ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) __a =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) self.assertEqual(__snake_case , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =self.tokenizer(self.src_text , padding=__snake_case , truncation=__snake_case , max_length=3 , return_tensors='pt' ) __a =self.tokenizer( text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=10 , return_tensors='pt' ) __a =targets['input_ids'] __a =shift_tokens_right( __snake_case , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( nested_simplify(__snake_case ) , { # A, test, EOS, en_XX 'input_ids': [[25_6047, 70, 7356, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_6057, } , ) @require_torch def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =True __a =self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2, 25_6047] ) __a =False __a =self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [25_6047, 1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2] )
308
1
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset _lowerCAmelCase : Optional[Any] = "bert-base-cased" _lowerCAmelCase : Optional[Any] = "google/pegasus-xsum" _lowerCAmelCase : Tuple = [" Sam ate lunch today.", "Sams lunch ingredients."] _lowerCAmelCase : List[Any] = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"] _lowerCAmelCase : Optional[Any] = "patrickvonplaten/t5-tiny-random" _lowerCAmelCase : List[Any] = "sshleifer/bart-tiny-random" _lowerCAmelCase : List[str] = "sshleifer/tiny-mbart" _lowerCAmelCase : Dict = "sshleifer/tiny-marian-en-de" def UpperCamelCase_( _snake_case : Path , _snake_case : list ): """simple docstring""" __a ='\n'.join(_snake_case ) Path(_snake_case ).open('w' ).writelines(_snake_case ) def UpperCamelCase_( _snake_case : List[str] ): """simple docstring""" for split in ["train", "val", "test"]: _dump_articles(os.path.join(_snake_case , F'{split}.source' ) , _snake_case ) _dump_articles(os.path.join(_snake_case , F'{split}.target' ) , _snake_case ) return tmp_dir class __magic_name__ ( lowerCAmelCase_ ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def __magic_name__ ( self , __snake_case ) -> Dict: '''simple docstring''' __a =AutoTokenizer.from_pretrained(__snake_case ) __a =make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __a =max(len(tokenizer.encode(__snake_case ) ) for a in ARTICLES ) __a =max(len(tokenizer.encode(__snake_case ) ) for a in SUMMARIES ) __a =4 __a =8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated __a , __a ='ro_RO', 'de_DE' # ignored for all but mbart, but never causes error. __a =SeqaSeqDataset( __snake_case , data_dir=__snake_case , type_path='train' , max_source_length=__snake_case , max_target_length=__snake_case , src_lang=__snake_case , tgt_lang=__snake_case , ) __a =DataLoader(__snake_case , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(__snake_case , __snake_case ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place __a =shift_tokens_right(batch['labels'] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __magic_name__ ( self , __snake_case ) -> int: '''simple docstring''' __a =AutoTokenizer.from_pretrained(__snake_case ) __a =make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __a =max(len(tokenizer.encode(__snake_case ) ) for a in ARTICLES ) __a =max(len(tokenizer.encode(__snake_case ) ) for a in SUMMARIES ) __a =4 __a =LegacySeqaSeqDataset( __snake_case , data_dir=__snake_case , type_path='train' , max_source_length=20 , max_target_length=__snake_case , ) __a =DataLoader(__snake_case , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =AutoTokenizer.from_pretrained('facebook/mbart-large-cc25' ) __a =Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) __a =tmp_dir.joinpath('train.source' ).open().readlines() __a =Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(__snake_case , __snake_case , 128 , __snake_case ) __a ={x.name for x in tmp_dir.iterdir()} __a ={x.name for x in save_dir.iterdir()} __a =save_dir.joinpath('train.source' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(__snake_case ) < len(__snake_case ) assert len(__snake_case ) == 1 assert len(packed_examples[0] ) == sum(len(__snake_case ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq' ) def __magic_name__ ( self ) -> Any: '''simple docstring''' if not FAIRSEQ_AVAILABLE: return __a , __a , __a =self._get_dataset(max_len=64 ) __a =64 __a =ds.make_dynamic_sampler(__snake_case , required_batch_size_multiple=__snake_case ) __a =[len(__snake_case ) for x in batch_sampler] assert len(set(__snake_case ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(__snake_case ) == len(__snake_case ) # no dropped or added examples __a =DataLoader(__snake_case , batch_sampler=__snake_case , collate_fn=ds.collate_fn , num_workers=2 ) __a =[] __a =[] for batch in data_loader: __a =batch['input_ids'].shape __a =src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple __a =np.product(batch['input_ids'].shape ) num_src_per_batch.append(__snake_case ) if num_src_tokens > (max_tokens * 1.1): failures.append(__snake_case ) assert num_src_per_batch[0] == max(__snake_case ) if failures: raise AssertionError(f'too many tokens in {len(__snake_case )} batches' ) def __magic_name__ ( self ) -> int: '''simple docstring''' __a , __a , __a =self._get_dataset(max_len=512 ) __a =2 __a =ds.make_sortish_sampler(__snake_case , shuffle=__snake_case ) __a =DataLoader(__snake_case , batch_size=__snake_case , collate_fn=ds.collate_fn , num_workers=2 ) __a =DataLoader(__snake_case , batch_size=__snake_case , collate_fn=ds.collate_fn , num_workers=2 , sampler=__snake_case ) __a =tokenizer.pad_token_id def count_pad_tokens(__snake_case , __snake_case="input_ids" ): return [batch[k].eq(__snake_case ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(__snake_case , k='labels' ) ) < sum(count_pad_tokens(__snake_case , k='labels' ) ) assert sum(count_pad_tokens(__snake_case ) ) < sum(count_pad_tokens(__snake_case ) ) assert len(__snake_case ) == len(__snake_case ) def __magic_name__ ( self , __snake_case=1000 , __snake_case=128 ) -> Optional[Any]: '''simple docstring''' if os.getenv('USE_REAL_DATA' , __snake_case ): __a ='examples/seq2seq/wmt_en_ro' __a =max_len * 2 * 64 if not Path(__snake_case ).joinpath('train.len' ).exists(): save_len_file(__snake_case , __snake_case ) else: __a ='examples/seq2seq/test_data/wmt_en_ro' __a =max_len * 4 save_len_file(__snake_case , __snake_case ) __a =AutoTokenizer.from_pretrained(__snake_case ) __a =SeqaSeqDataset( __snake_case , data_dir=__snake_case , type_path='train' , max_source_length=__snake_case , max_target_length=__snake_case , n_obs=__snake_case , ) return ds, max_tokens, tokenizer def __magic_name__ ( self ) -> Any: '''simple docstring''' __a , __a , __a =self._get_dataset() __a =set(DistributedSortishSampler(__snake_case , 256 , num_replicas=2 , rank=0 , add_extra_examples=__snake_case ) ) __a =set(DistributedSortishSampler(__snake_case , 256 , num_replicas=2 , rank=1 , add_extra_examples=__snake_case ) ) assert idsa.intersection(__snake_case ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def __magic_name__ ( self , __snake_case ) -> Any: '''simple docstring''' __a =AutoTokenizer.from_pretrained(__snake_case , use_fast=__snake_case ) if tok_name == MBART_TINY: __a =SeqaSeqDataset( __snake_case , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , ) __a =train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: __a =SeqaSeqDataset( __snake_case , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , ) __a =train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(__snake_case ) == 1 if tok_name == BART_TINY else len(__snake_case ) == 0
308
def UpperCamelCase_( _snake_case : str , _snake_case : int ): """simple docstring""" return [sentence[i : i + ngram_size] for i in range(len(_snake_case ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
308
1
def UpperCamelCase_( _snake_case : int ): """simple docstring""" __a =len(_snake_case ) __a =sum(_snake_case ) __a =[[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __a =True for i in range(1 , s + 1 ): __a =False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __a =dp[i][j - 1] if arr[i - 1] <= j: __a =dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __a =s - 2 * j break return diff
308
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class __magic_name__ ( pl.LightningModule ): def __init__( self , __snake_case ) -> List[Any]: '''simple docstring''' super().__init__() __a =model __a =2 __a =nn.Linear(self.model.config.hidden_size , self.num_labels ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' pass def UpperCamelCase_( _snake_case : str , _snake_case : str , _snake_case : str ): """simple docstring""" __a =LongformerModel.from_pretrained(_snake_case ) __a =LightningModel(_snake_case ) __a =torch.load(_snake_case , map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model __a =LongformerForQuestionAnswering.from_pretrained(_snake_case ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(_snake_case ) print(F'Conversion successful. Model saved under {pytorch_dump_folder_path}' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowerCAmelCase : Optional[int] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
308
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _lowerCAmelCase : List[str] = get_tests_dir("fixtures") class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self ) -> Any: '''simple docstring''' # A mock response for an HTTP head request to emulate server down __a =mock.Mock() __a =500 __a ={} __a =HTTPError __a ={} # Download this model to make sure it's in the cache. __a =WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=__snake_case ) as mock_head: __a =WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # This check we did call the fake head request mock_head.assert_called() def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # This test is for deprecated behavior and can be removed in v5 __a =WavaVecaFeatureExtractor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json' ) @is_staging_test class __magic_name__ ( unittest.TestCase ): @classmethod def __magic_name__ ( cls ) -> Union[str, Any]: '''simple docstring''' __a =TOKEN HfFolder.save_token(__snake_case ) @classmethod def __magic_name__ ( cls ) -> Dict: '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-feature-extractor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-feature-extractor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-feature-extractor' ) except HTTPError: pass def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =WavaVecaFeatureExtractor.from_pretrained(__snake_case ) feature_extractor.push_to_hub('test-feature-extractor' , use_auth_token=self._token ) __a =WavaVecaFeatureExtractor.from_pretrained(f'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) # Reset repo delete_repo(token=self._token , repo_id='test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __snake_case , repo_id='test-feature-extractor' , push_to_hub=__snake_case , use_auth_token=self._token ) __a =WavaVecaFeatureExtractor.from_pretrained(f'{USER}/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =WavaVecaFeatureExtractor.from_pretrained(__snake_case ) feature_extractor.push_to_hub('valid_org/test-feature-extractor' , use_auth_token=self._token ) __a =WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __snake_case , repo_id='valid_org/test-feature-extractor-org' , push_to_hub=__snake_case , use_auth_token=self._token ) __a =WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor-org' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__snake_case , getattr(__snake_case , __snake_case ) ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() __a =CustomFeatureExtractor.from_pretrained(__snake_case ) feature_extractor.push_to_hub('test-dynamic-feature-extractor' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor'} , ) __a =AutoFeatureExtractor.from_pretrained( f'{USER}/test-dynamic-feature-extractor' , trust_remote_code=__snake_case ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , 'CustomFeatureExtractor' )
308
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") _lowerCAmelCase : Optional[Any] = logging.getLogger(__name__) @dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) SCREAMING_SNAKE_CASE = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) SCREAMING_SNAKE_CASE = field( default=1_0_2_4 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the training data.'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the validation data.'} ) SCREAMING_SNAKE_CASE = field(default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the test data.'} ) def __magic_name__ ( self ) -> str: '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: __a =self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __a =self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) SCREAMING_SNAKE_CASE = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def UpperCamelCase_( ): """simple docstring""" __a =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __a , __a , __a =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __a , __a , __a =parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) __a =training_args.get_process_log_level() logger.setLevel(_snake_case ) datasets.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __a =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __a =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __a =load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __a ={'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __a =data_args.train_file.split('.' )[-1] __a =data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __a =data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(F'load a local file for {key}: {data_files[key]}' ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files __a =load_dataset('csv' , data_files=_snake_case , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __a =load_dataset('json' , data_files=_snake_case , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __a =raw_datasets['train'].features['label'].names __a =len(_snake_case ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __a =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __a =TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=_snake_case , ) __a =BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __a ='max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __a =False # Some models have set the order of the labels to use, so let's make sure we do use it. __a ={'Refused': 0, 'Entailed': 1} __a ={0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __a =min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(_snake_case : Tuple ): # Tokenize the texts def _convert_table_text_to_pandas(_snake_case : Optional[Any] ): __a =[_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] __a =pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __a =examples['statement'] __a =list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) __a =tokenizer(_snake_case , _snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case ) __a =examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): __a =raw_datasets.map( _snake_case , batched=_snake_case , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) __a =raw_datasets['train'] if data_args.max_train_samples is not None: __a =train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) __a =raw_datasets['validation'] if data_args.max_eval_samples is not None: __a =eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) __a =raw_datasets['test'] if data_args.max_predict_samples is not None: __a =predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(_snake_case ) ) , 3 ): logger.info(F'Sample {index} of the training set: {train_dataset[index]}.' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_snake_case : EvalPrediction ): __a =p.predictions[0] if isinstance(p.predictions , _snake_case ) else p.predictions __a =np.argmax(_snake_case , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __a =default_data_collator elif training_args.fpaa: __a =DataCollatorWithPadding(_snake_case , pad_to_multiple_of=8 ) else: __a =None # Initialize our Trainer __a =Trainer( model=_snake_case , args=_snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_snake_case , tokenizer=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: __a =None if training_args.resume_from_checkpoint is not None: __a =training_args.resume_from_checkpoint elif last_checkpoint is not None: __a =last_checkpoint __a =trainer.train(resume_from_checkpoint=_snake_case ) __a =train_result.metrics __a =( data_args.max_train_samples if data_args.max_train_samples is not None else len(_snake_case ) ) __a =min(_snake_case , len(_snake_case ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , _snake_case ) trainer.save_metrics('train' , _snake_case ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __a =trainer.evaluate(eval_dataset=_snake_case ) __a =data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_snake_case ) __a =min(_snake_case , len(_snake_case ) ) trainer.log_metrics('eval' , _snake_case ) trainer.save_metrics('eval' , _snake_case ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __a =predict_dataset.remove_columns('label' ) __a =trainer.predict(_snake_case , metric_key_prefix='predict' ).predictions __a =np.argmax(_snake_case , axis=1 ) __a =os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(_snake_case , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(_snake_case ): __a =label_list[item] writer.write(F'{index}\t{item}\n' ) __a ={'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**_snake_case ) else: trainer.create_model_card(**_snake_case ) def UpperCamelCase_( _snake_case : Union[str, Any] ): """simple docstring""" main() if __name__ == "__main__": main()
308
1
def UpperCamelCase_( _snake_case : list , _snake_case : list , _snake_case : int , _snake_case : int , _snake_case : int ): """simple docstring""" if index == number_of_items: return 0 __a =0 __a =0 __a =knapsack(_snake_case , _snake_case , _snake_case , _snake_case , index + 1 ) if weights[index] <= max_weight: __a =values[index] + knapsack( _snake_case , _snake_case , _snake_case , max_weight - weights[index] , index + 1 ) return max(_snake_case , _snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
308
from __future__ import annotations import time import numpy as np _lowerCAmelCase : List[str] = [8, 5, 9, 7] _lowerCAmelCase : List[str] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] _lowerCAmelCase : List[Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class __magic_name__ : def __init__( self , __snake_case , __snake_case , __snake_case , ) -> None: '''simple docstring''' __a =claim_vector __a =allocated_resources_table __a =maximum_claim_table def __magic_name__ ( self ) -> list[int]: '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def __magic_name__ ( self ) -> list[int]: '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def __magic_name__ ( self ) -> list[list[int]]: '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__snake_case ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def __magic_name__ ( self ) -> dict[int, list[int]]: '''simple docstring''' return {self.__need().index(__snake_case ): i for i in self.__need()} def __magic_name__ ( self , **__snake_case ) -> None: '''simple docstring''' __a =self.__need() __a =self.__allocated_resources_table __a =self.__available_resources() __a =self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: __a =False for each_need in need_list: __a =True for index, need in enumerate(__snake_case ): if need > available_resources[index]: __a =False break if execution: __a =True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __a =original_need_index print(f'Process {process_number + 1} is executing.' ) # remove the process run from stack need_list.remove(__snake_case ) # update available/freed resources stack __a =np.array(__snake_case ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(__snake_case ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( f'P{self.__allocated_resources_table.index(__snake_case ) + 1}' + ' '.join(f'{it:>8}' for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( f'P{self.__maximum_claim_table.index(__snake_case ) + 1}' + ' '.join(f'{it:>8}' for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(__snake_case ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(__snake_case ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
308
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Optional[int] = { "configuration_luke": ["LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP", "LukeConfig"], "tokenization_luke": ["LukeTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[Any] = [ "LUKE_PRETRAINED_MODEL_ARCHIVE_LIST", "LukeForEntityClassification", "LukeForEntityPairClassification", "LukeForEntitySpanClassification", "LukeForMultipleChoice", "LukeForQuestionAnswering", "LukeForSequenceClassification", "LukeForTokenClassification", "LukeForMaskedLM", "LukeModel", "LukePreTrainedModel", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys _lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency _lowerCAmelCase : Tuple = { "E": 12.70, "T": 9.06, "A": 8.17, "O": 7.51, "I": 6.97, "N": 6.75, "S": 6.33, "H": 6.09, "R": 5.99, "D": 4.25, "L": 4.03, "C": 2.78, "U": 2.76, "M": 2.41, "W": 2.36, "F": 2.23, "G": 2.02, "Y": 1.97, "P": 1.93, "B": 1.29, "V": 0.98, "K": 0.77, "J": 0.15, "X": 0.15, "Q": 0.10, "Z": 0.07, } _lowerCAmelCase : Optional[int] = "ETAOINSHRDLCUMWFGYPBVKJXQZ" _lowerCAmelCase : Any = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a ={letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def UpperCamelCase_( _snake_case : tuple ): """simple docstring""" return x[0] def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =get_letter_count(_snake_case ) __a ={ freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(_snake_case ) __a ={} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=_snake_case ) __a =''.join(freq_to_letter[freq] ) __a =list(freq_to_letter_str.items() ) freq_pairs.sort(key=_snake_case , reverse=_snake_case ) __a =[freq_pair[1] for freq_pair in freq_pairs] return "".join(_snake_case ) def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =get_frequency_order(_snake_case ) __a =0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
308
1
from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging _lowerCAmelCase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Union[str, Any]: '''simple docstring''' super().__init__() if hasattr(scheduler.config , 'steps_offset' ) and scheduler.config.steps_offset != 1: __a =( f'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`' f' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ' 'to update the config accordingly as leaving `steps_offset` might led to incorrect results' ' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,' ' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`' ' file' ) deprecate('steps_offset!=1' , '1.0.0' , __snake_case , standard_warn=__snake_case ) __a =dict(scheduler.config ) __a =1 __a =FrozenDict(__snake_case ) if hasattr(scheduler.config , 'skip_prk_steps' ) and scheduler.config.skip_prk_steps is False: __a =( f'The configuration file of this scheduler: {scheduler} has not set the configuration' ' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make' ' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to' ' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face' ' Hub, it would be very nice if you could open a Pull request for the' ' `scheduler/scheduler_config.json` file' ) deprecate('skip_prk_steps not set' , '1.0.0' , __snake_case , standard_warn=__snake_case ) __a =dict(scheduler.config ) __a =True __a =FrozenDict(__snake_case ) if safety_checker is None: logger.warning( f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure' ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( segmentation_model=__snake_case , segmentation_processor=__snake_case , vae=__snake_case , text_encoder=__snake_case , tokenizer=__snake_case , unet=__snake_case , scheduler=__snake_case , safety_checker=__snake_case , feature_extractor=__snake_case , ) def __magic_name__ ( self , __snake_case = "auto" ) -> Dict: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __a =self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' self.enable_attention_slicing(__snake_case ) def __magic_name__ ( self ) -> str: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) __a =torch.device('cuda' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(__snake_case , __snake_case ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __magic_name__ ( self ) -> int: '''simple docstring''' if self.device != torch.device('meta' ) or not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(__snake_case , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case = 512 , __snake_case = 512 , __snake_case = 50 , __snake_case = 7.5 , __snake_case = None , __snake_case = 1 , __snake_case = 0.0 , __snake_case = None , __snake_case = None , __snake_case = "pil" , __snake_case = True , __snake_case = None , __snake_case = 1 , **__snake_case , ) -> Dict: '''simple docstring''' __a =self.segmentation_processor( text=[text] , images=[image] , padding='max_length' , return_tensors='pt' ).to(self.device ) __a =self.segmentation_model(**__snake_case ) __a =torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() __a =self.numpy_to_pil(__snake_case )[0].resize(image.size ) # Run inpainting pipeline with the generated mask __a =StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=__snake_case , image=__snake_case , mask_image=__snake_case , height=__snake_case , width=__snake_case , num_inference_steps=__snake_case , guidance_scale=__snake_case , negative_prompt=__snake_case , num_images_per_prompt=__snake_case , eta=__snake_case , generator=__snake_case , latents=__snake_case , output_type=__snake_case , return_dict=__snake_case , callback=__snake_case , callback_steps=__snake_case , )
308
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : int = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'swin2sr' SCREAMING_SNAKE_CASE = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , __snake_case=64 , __snake_case=1 , __snake_case=3 , __snake_case=180 , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=8 , __snake_case=2.0 , __snake_case=True , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.1 , __snake_case="gelu" , __snake_case=False , __snake_case=0.02 , __snake_case=1e-5 , __snake_case=2 , __snake_case=1.0 , __snake_case="1conv" , __snake_case="pixelshuffle" , **__snake_case , ) -> Dict: '''simple docstring''' super().__init__(**__snake_case ) __a =image_size __a =patch_size __a =num_channels __a =embed_dim __a =depths __a =len(__snake_case ) __a =num_heads __a =window_size __a =mlp_ratio __a =qkv_bias __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =drop_path_rate __a =hidden_act __a =use_absolute_embeddings __a =layer_norm_eps __a =initializer_range __a =upscale __a =img_range __a =resi_connection __a =upsampler
308
1
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging _lowerCAmelCase : int = logging.get_logger(__name__) class __magic_name__ : SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = None @staticmethod def __magic_name__ ( ) -> Dict: '''simple docstring''' raise NotImplementedError def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , **__snake_case ) -> str: '''simple docstring''' raise NotImplementedError def __magic_name__ ( self , __snake_case ) -> List[Any]: '''simple docstring''' raise NotImplementedError def __magic_name__ ( self ) -> Dict: '''simple docstring''' if not self.is_available(): raise RuntimeError( f'You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.' ) @classmethod def __magic_name__ ( cls ) -> Optional[int]: '''simple docstring''' return f'`pip install {cls.pip_package or cls.name}`' class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'optuna' @staticmethod def __magic_name__ ( ) -> Optional[Any]: '''simple docstring''' return is_optuna_available() def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , **__snake_case ) -> Union[str, Any]: '''simple docstring''' return run_hp_search_optuna(__snake_case , __snake_case , __snake_case , **__snake_case ) def __magic_name__ ( self , __snake_case ) -> Union[str, Any]: '''simple docstring''' return default_hp_space_optuna(__snake_case ) class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'ray' SCREAMING_SNAKE_CASE = '\'ray[tune]\'' @staticmethod def __magic_name__ ( ) -> str: '''simple docstring''' return is_ray_available() def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , **__snake_case ) -> Dict: '''simple docstring''' return run_hp_search_ray(__snake_case , __snake_case , __snake_case , **__snake_case ) def __magic_name__ ( self , __snake_case ) -> Tuple: '''simple docstring''' return default_hp_space_ray(__snake_case ) class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'sigopt' @staticmethod def __magic_name__ ( ) -> Optional[int]: '''simple docstring''' return is_sigopt_available() def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , **__snake_case ) -> int: '''simple docstring''' return run_hp_search_sigopt(__snake_case , __snake_case , __snake_case , **__snake_case ) def __magic_name__ ( self , __snake_case ) -> int: '''simple docstring''' return default_hp_space_sigopt(__snake_case ) class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'wandb' @staticmethod def __magic_name__ ( ) -> Tuple: '''simple docstring''' return is_wandb_available() def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , **__snake_case ) -> int: '''simple docstring''' return run_hp_search_wandb(__snake_case , __snake_case , __snake_case , **__snake_case ) def __magic_name__ ( self , __snake_case ) -> Dict: '''simple docstring''' return default_hp_space_wandb(__snake_case ) _lowerCAmelCase : Any = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def UpperCamelCase_( ): """simple docstring""" __a =[backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(_snake_case ) > 0: __a =available_backends[0].name if len(_snake_case ) > 1: logger.info( F'{len(_snake_case )} hyperparameter search backends available. Using {name} as the default.' ) return name raise RuntimeError( 'No hyperparameter search backend available.\n' + '\n'.join( F' - To install {backend.name} run {backend.pip_install()}' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
308
import os def UpperCamelCase_( _snake_case : str = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(_snake_case ) , _snake_case ) ) as input_file: __a =[ [int(_snake_case ) for element in line.split(',' )] for line in input_file.readlines() ] __a =len(_snake_case ) __a =len(matrix[0] ) __a =[[-1 for _ in range(_snake_case )] for _ in range(_snake_case )] for i in range(_snake_case ): __a =matrix[i][0] for j in range(1 , _snake_case ): for i in range(_snake_case ): __a =minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _snake_case ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
308
1
import requests def UpperCamelCase_( _snake_case : str , _snake_case : str ): """simple docstring""" __a ={'Content-Type': 'application/json'} __a =requests.post(_snake_case , json={'text': message_body} , headers=_snake_case ) if response.status_code != 200: __a =( 'Request to slack returned an error ' F'{response.status_code}, the response is:\n{response.text}' ) raise ValueError(_snake_case ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
308
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _lowerCAmelCase : Any = logging.get_logger(__name__) class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , *__snake_case , **__snake_case ) -> None: '''simple docstring''' warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
308
1
import fire from utils import calculate_rouge, save_json def UpperCamelCase_( _snake_case : Dict , _snake_case : List[Any] , _snake_case : Optional[Any]=None , **_snake_case : Optional[int] ): """simple docstring""" __a =[x.strip() for x in open(_snake_case ).readlines()] __a =[x.strip() for x in open(_snake_case ).readlines()][: len(_snake_case )] __a =calculate_rouge(_snake_case , _snake_case , **_snake_case ) if save_path is not None: save_json(_snake_case , _snake_case , indent=_snake_case ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
308
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : int = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
1