code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
lowerCamelCase__ = range(2, 20 + 1) lowerCamelCase__ = [10**k for k in range(ks[-1] + 1)] lowerCamelCase__ = {} def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: lowerCAmelCase__ : Dict = sum(a_i[j] for j in range(__SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) ) ) lowerCAmelCase__ : Tuple = sum(a_i[j] * base[j] for j in range(min(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) ) ) lowerCAmelCase__ : Optional[Any] = 0, 0 lowerCAmelCase__ : Tuple = n - i lowerCAmelCase__ : Optional[int] = memo.get(__SCREAMING_SNAKE_CASE ) if sub_memo is not None: lowerCAmelCase__ : List[str] = sub_memo.get(__SCREAMING_SNAKE_CASE ) if jumps is not None and len(__SCREAMING_SNAKE_CASE ) > 0: # find and make the largest jump without going over lowerCAmelCase__ : Union[str, Any] = -1 for _k in range(len(__SCREAMING_SNAKE_CASE ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: lowerCAmelCase__ : Any = _k break if max_jump >= 0: lowerCAmelCase__ : Dict = jumps[max_jump] # since the difference between jumps is cached, add c lowerCAmelCase__ : Tuple = diff + c for j in range(min(__SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) ) ): lowerCAmelCase__ : int = divmod(__SCREAMING_SNAKE_CASE , 10 ) if new_c > 0: add(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: lowerCAmelCase__ : Optional[int] = [] else: lowerCAmelCase__ : int = {c: []} lowerCAmelCase__ : Union[str, Any] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps lowerCAmelCase__ : Any = next_term(__SCREAMING_SNAKE_CASE , k - 1 , i + dn , __SCREAMING_SNAKE_CASE ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead lowerCAmelCase__ : Tuple = compute(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , i + dn , __SCREAMING_SNAKE_CASE ) diff += _diff dn += terms_jumped lowerCAmelCase__ : Tuple = sub_memo[c] # keep jumps sorted by # of terms skipped lowerCAmelCase__ : Any = 0 while j < len(__SCREAMING_SNAKE_CASE ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(__SCREAMING_SNAKE_CASE , (diff, dn, k) ) return (diff, dn) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: if i >= n: return 0, i if k > len(__SCREAMING_SNAKE_CASE ): a_i.extend([0 for _ in range(k - len(__SCREAMING_SNAKE_CASE ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) lowerCAmelCase__ : List[Any] = i lowerCAmelCase__ : Optional[int] = 0, 0, 0 for j in range(len(__SCREAMING_SNAKE_CASE ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 lowerCAmelCase__ : int = ds_c + ds_b diff += addend lowerCAmelCase__ : Union[str, Any] = 0 for j in range(__SCREAMING_SNAKE_CASE ): lowerCAmelCase__ : Tuple = a_i[j] + addend lowerCAmelCase__ : Optional[Any] = divmod(__SCREAMING_SNAKE_CASE , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return diff, i - start_i def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: for j in range(__SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) ): lowerCAmelCase__ : List[str] = digits[j] + addend if s >= 10: lowerCAmelCase__ : Union[str, Any] = divmod(__SCREAMING_SNAKE_CASE , 10 ) lowerCAmelCase__ : Dict = addend // 10 + quotient else: lowerCAmelCase__ : Union[str, Any] = s lowerCAmelCase__ : Any = addend // 10 if addend == 0: break while addend > 0: lowerCAmelCase__ : Union[str, Any] = divmod(__SCREAMING_SNAKE_CASE , 10 ) digits.append(__SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = 10**15 ) -> int: lowerCAmelCase__ : Any = [1] lowerCAmelCase__ : Any = 1 lowerCAmelCase__ : Tuple = 0 while True: lowerCAmelCase__ : Union[str, Any] = next_term(__SCREAMING_SNAKE_CASE , 20 , i + dn , __SCREAMING_SNAKE_CASE ) dn += terms_jumped if dn == n - i: break lowerCAmelCase__ : Optional[Any] = 0 for j in range(len(__SCREAMING_SNAKE_CASE ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F"""{solution() = }""")
370
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class A__ : def __init__( self : List[str] , a : Any , a : Dict=13 , a : Optional[Any]=7 , a : Tuple=True , a : Tuple=True , a : Dict=False , a : Optional[Any]=True , a : Dict=99 , a : Tuple=32 , a : Optional[Any]=5 , a : str=4 , a : Union[str, Any]=37 , a : Any="gelu" , a : Dict=0.1 , a : Any=0.1 , a : Optional[int]=512 , a : Union[str, Any]=16 , a : Optional[int]=2 , a : Optional[Any]=0.0_2 , a : List[Any]=3 , a : Any=4 , a : Optional[int]=None , ): '''simple docstring''' lowerCAmelCase__ : List[str] = parent lowerCAmelCase__ : str = batch_size lowerCAmelCase__ : Optional[int] = seq_length lowerCAmelCase__ : Optional[Any] = is_training lowerCAmelCase__ : Tuple = use_input_mask lowerCAmelCase__ : List[Any] = use_token_type_ids lowerCAmelCase__ : str = use_labels lowerCAmelCase__ : Dict = vocab_size lowerCAmelCase__ : Union[str, Any] = hidden_size lowerCAmelCase__ : Optional[int] = num_hidden_layers lowerCAmelCase__ : List[Any] = num_attention_heads lowerCAmelCase__ : int = intermediate_size lowerCAmelCase__ : Union[str, Any] = hidden_act lowerCAmelCase__ : Union[str, Any] = hidden_dropout_prob lowerCAmelCase__ : Any = attention_probs_dropout_prob lowerCAmelCase__ : Dict = max_position_embeddings lowerCAmelCase__ : int = type_vocab_size lowerCAmelCase__ : int = type_sequence_label_size lowerCAmelCase__ : Dict = initializer_range lowerCAmelCase__ : List[str] = num_labels lowerCAmelCase__ : Any = num_choices lowerCAmelCase__ : List[Any] = scope def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ : Tuple = None if self.use_input_mask: lowerCAmelCase__ : str = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ : List[str] = None if self.use_token_type_ids: lowerCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : Dict = None lowerCAmelCase__ : str = None if self.use_labels: lowerCAmelCase__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self : Tuple , a : Dict , a : List[str] , a : str , a : Union[str, Any] , a : Optional[Any] , a : Dict , a : str ): '''simple docstring''' lowerCAmelCase__ : str = LlamaModel(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Dict = model(a , attention_mask=a ) lowerCAmelCase__ : Union[str, Any] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : int , a : Any , a : Union[str, Any] , a : Dict , a : Dict , a : List[Any] , a : Optional[Any] , a : int , a : Dict , a : Tuple , ): '''simple docstring''' lowerCAmelCase__ : int = True lowerCAmelCase__ : Dict = LlamaModel(a ) model.to(a ) model.eval() lowerCAmelCase__ : List[Any] = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , ) lowerCAmelCase__ : Optional[int] = model( a , attention_mask=a , encoder_hidden_states=a , ) lowerCAmelCase__ : Union[str, Any] = model(a , attention_mask=a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : Union[str, Any] , a : int , a : List[Any] , a : int , a : Tuple , a : List[Any] , a : Union[str, Any] , a : Any , a : List[str] , a : List[str] , ): '''simple docstring''' lowerCAmelCase__ : List[Any] = LlamaForCausalLM(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Tuple = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : str , a : Any , a : Tuple , a : str , a : Union[str, Any] , a : Optional[Any] , a : List[Any] , a : Optional[Any] , a : Optional[Any] , a : List[str] , ): '''simple docstring''' lowerCAmelCase__ : str = True lowerCAmelCase__ : Optional[int] = True lowerCAmelCase__ : List[Any] = LlamaForCausalLM(config=a ) model.to(a ) model.eval() # first forward pass lowerCAmelCase__ : List[str] = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , use_cache=a , ) lowerCAmelCase__ : List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase__ : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase__ : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase__ : int = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase__ : Any = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase__ : Union[str, Any] = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , output_hidden_states=a , )['hidden_states'][0] lowerCAmelCase__ : Union[str, Any] = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , past_key_values=a , output_hidden_states=a , )['hidden_states'][0] # select random slice lowerCAmelCase__ : Any = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase__ : Optional[int] = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a , a , atol=1E-3 ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : Any = config_and_inputs lowerCAmelCase__ : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () lowercase = (LlamaForCausalLM,) if is_torch_available() else () lowercase = ( { 'feature-extraction': LlamaModel, 'text-classification': LlamaForSequenceClassification, 'text-generation': LlamaForCausalLM, 'zero-shot': LlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Tuple = LlamaModelTester(self ) lowerCAmelCase__ : str = ConfigTester(self , config_class=a , hidden_size=37 ) def _lowerCamelCase ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase__ : int = type self.model_tester.create_and_check_model(*a ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : int = 3 lowerCAmelCase__ : Dict = input_dict['input_ids'] lowerCAmelCase__ : Optional[Any] = input_ids.ne(1 ).to(a ) lowerCAmelCase__ : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase__ : Tuple = LlamaForSequenceClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : str = model(a , attention_mask=a , labels=a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : List[Any] = 3 lowerCAmelCase__ : List[str] = 'single_label_classification' lowerCAmelCase__ : List[Any] = input_dict['input_ids'] lowerCAmelCase__ : List[Any] = input_ids.ne(1 ).to(a ) lowerCAmelCase__ : Optional[int] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase__ : int = LlamaForSequenceClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : Optional[int] = model(a , attention_mask=a , labels=a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Optional[Any] = 3 lowerCAmelCase__ : Optional[Any] = 'multi_label_classification' lowerCAmelCase__ : List[str] = input_dict['input_ids'] lowerCAmelCase__ : Tuple = input_ids.ne(1 ).to(a ) lowerCAmelCase__ : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase__ : Dict = LlamaForSequenceClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : Dict = model(a , attention_mask=a , labels=a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def _lowerCamelCase ( self : Optional[int] , a : Dict ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Tuple = ids_tensor([1, 10] , config.vocab_size ) lowerCAmelCase__ : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase__ : List[Any] = LlamaModel(a ) original_model.to(a ) original_model.eval() lowerCAmelCase__ : List[Any] = original_model(a ).last_hidden_state lowerCAmelCase__ : str = original_model(a ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase__ : Any = {'type': scaling_type, 'factor': 1_0.0} lowerCAmelCase__ : Union[str, Any] = LlamaModel(a ) scaled_model.to(a ) scaled_model.eval() lowerCAmelCase__ : Union[str, Any] = scaled_model(a ).last_hidden_state lowerCAmelCase__ : Optional[int] = scaled_model(a ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(a , a , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(a , a , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(a , a , atol=1E-5 ) ) @require_torch class A__ ( unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : int = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowerCAmelCase__ : List[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) lowerCAmelCase__ : Any = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 lowerCAmelCase__ : Dict = torch.tensor([[-6.6_5_5_0, -4.1_2_2_7, -4.9_8_5_9, -3.2_4_0_6, 0.8_2_6_2, -3.0_0_3_3, 1.2_9_6_4, -3.3_6_9_9]] ) torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase__ : List[Any] = torch.tensor([-1_2.8_2_8_1, -7.4_4_5_3, -0.4_6_3_9, -8.0_6_2_5, -7.2_5_0_0, -8.0_0_0_0, -6.4_8_8_3, -7.7_6_9_5, -7.8_4_3_8, -7.0_3_1_2, -6.2_1_8_8, -7.1_3_2_8, -1.8_4_9_6, 1.9_9_6_1, -8.6_2_5_0, -6.7_2_2_7, -1_2.8_2_8_1, -6.9_4_9_2, -7.0_7_4_2, -7.7_8_5_2, -7.5_8_2_0, -7.9_0_6_2, -6.9_3_7_5, -7.9_8_0_5, -8.3_4_3_8, -8.1_5_6_2, -8.0_4_6_9, -7.6_2_5_0, -7.7_4_2_2, -7.3_3_9_8,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : str = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowerCAmelCase__ : Optional[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) lowerCAmelCase__ : List[str] = model(torch.tensor(a ) ) # Expected mean on dim = -1 lowerCAmelCase__ : Union[str, Any] = torch.tensor([[-2.0_6_2_2, -1.2_7_9_4, -1.1_6_3_8, -0.9_7_8_8, -1.4_6_0_3, -1.0_2_3_8, -1.7_8_9_3, -1.4_4_1_1]] ) torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase__ : Any = torch.tensor([-8.1_4_0_6, -8.0_5_4_7, 2.7_4_6_1, -1.2_3_4_4, -0.1_4_4_8, -1.8_2_6_2, -1.0_0_2_0, -1.8_1_5_4, -1.6_8_9_5, -1.8_5_1_6, -2.3_5_7_4, -0.9_2_7_7, 3.7_5_9_8, 6.5_7_4_2, -1.2_9_9_8, -0.1_1_7_7, -8.1_4_0_6, -2.9_6_8_8, -2.9_1_9_9, -3.1_6_9_9, -3.5_2_5_4, -2.3_5_5_5, -2.7_9_8_8, -3.4_1_4_1, -2.8_2_6_2, -4.5_1_9_5, -3.3_3_7_9, -3.3_1_6_4, -2.7_8_3_2, -3.0_2_7_3] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : int = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowerCAmelCase__ : Optional[int] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) lowerCAmelCase__ : str = model(torch.tensor(a ) ) # Expected mean on dim = -1 lowerCAmelCase__ : str = torch.tensor([[-0.8_5_6_2, -1.8_5_2_0, -0.7_5_5_1, -0.4_1_6_2, -1.5_1_6_1, -1.2_0_3_8, -2.4_8_2_3, -2.3_2_5_4]] ) torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase__ : List[str] = torch.tensor([-2.2_2_2_7, 4.8_8_2_8, 0.9_0_2_3, -0.4_5_7_8, -0.7_8_7_1, -0.1_0_3_3, -0.6_2_2_1, -0.5_7_8_6, -0.7_8_0_3, -1.0_6_7_4, -1.2_9_2_0, -0.1_5_7_0, 0.8_0_0_8, 2.0_7_2_3, -0.9_4_9_7, 0.2_7_7_1, -2.2_2_2_7, -0.7_6_1_2, -1.4_3_4_6, -1.2_0_6_1, -1.6_4_2_6, -0.3_0_0_0, -0.7_1_3_9, -1.1_9_3_4, -1.8_6_9_1, -1.6_9_7_3, -1.5_9_4_7, -1.2_7_0_5, -0.3_5_2_3, -0.5_5_1_3] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowerCAmelCase__ : List[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) lowerCAmelCase__ : List[str] = model(torch.tensor(a ) ) lowerCAmelCase__ : int = torch.tensor( [[-4.2_3_2_7, -3.3_3_6_0, -4.6_6_6_5, -4.7_6_3_1, -1.8_1_8_0, -3.4_1_7_0, -1.4_2_1_1, -3.1_8_1_0]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) # fmt: off lowerCAmelCase__ : Optional[int] = torch.tensor([-9.4_9_2_2, -3.9_5_5_1, 1.7_9_9_8, -5.6_7_5_8, -5.1_0_5_5, -5.8_9_8_4, -4.8_3_2_0, -6.8_0_8_6, -6.5_3_9_1, -5.6_1_7_2, -5.5_8_2_0, -5.5_3_5_2, 1.7_8_8_1, 3.6_2_8_9, -6.5_1_1_7, -3.4_7_8_5, -9.5_0_0_0, -6.0_3_5_2, -6.8_1_2_5, -6.0_1_9_5, -6.6_8_3_6, -5.4_7_2_7, -6.2_8_1_2, -6.0_3_9_1, -7.3_3_9_8, -7.4_2_9_7, -7.4_8_4_4, -6.5_8_2_0, -5.8_7_8_9, -5.5_3_1_2] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Model is curently gated' ) @slow def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' lowerCAmelCase__ : Tuple = 'Simply put, the theory of relativity states that ' lowerCAmelCase__ : Dict = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) lowerCAmelCase__ : Dict = tokenizer.encode(a , return_tensors='pt' ) lowerCAmelCase__ : str = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=a ) # greedy generation outputs lowerCAmelCase__ : Optional[Any] = model.generate(a , max_new_tokens=64 , top_p=a , temperature=1 , do_sample=a ) lowerCAmelCase__ : Tuple = tokenizer.decode(generated_ids[0] , skip_special_tokens=a ) self.assertEqual(a , a )
307
0
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class A__ ( unittest.TestCase ): lowercase = inspect.getfile(accelerate.test_utils ) lowercase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_cli.py'] ) lowercase = ['''accelerate''', '''launch'''] lowercase = Path.home() / '''.cache/huggingface/accelerate''' lowercase = '''default_config.yaml''' lowercase = config_folder / config_file lowercase = config_folder / '''_default_config.yaml''' lowercase = Path('tests/test_configs' ) @classmethod def _lowerCamelCase ( cls : Any ): '''simple docstring''' if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def _lowerCamelCase ( cls : Dict ): '''simple docstring''' if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Dict = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def _lowerCamelCase ( self : str ): '''simple docstring''' for config in sorted(self.test_config_path.glob('**/*.yaml' ) ): with self.subTest(config_file=__snake_case ): execute_subprocess_async( self.base_cmd + ['--config_file', str(__snake_case ), self.test_file_path] , env=os.environ.copy() ) def _lowerCamelCase ( self : int ): '''simple docstring''' execute_subprocess_async(['accelerate', 'test'] , env=os.environ.copy() ) class A__ ( unittest.TestCase ): lowercase = '''test-tpu''' lowercase = '''us-central1-a''' lowercase = '''ls''' lowercase = ['''accelerate''', '''tpu-config'''] lowercase = '''cd /usr/share''' lowercase = '''tests/test_samples/test_command_file.sh''' lowercase = '''Running gcloud compute tpus tpu-vm ssh''' def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Any = run_command( self.cmd + ['--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug'] , return_stdout=__snake_case , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , __snake_case , ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : List[str] = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=__snake_case , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , __snake_case , ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Tuple = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--debug'] , return_stdout=__snake_case ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , __snake_case , ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : List[Any] = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--debug'] , return_stdout=__snake_case , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , __snake_case , ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Any = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--command', 'echo "Hello World"', '--debug', ] , return_stdout=__snake_case , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all''' , __snake_case , ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command_file', self.command_file, '--debug'] , return_stdout=__snake_case , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , __snake_case , ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command_file', self.command_file, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=__snake_case , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , __snake_case , ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--debug'] , return_stdout=__snake_case , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all''' , __snake_case , ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--accelerate_version', '12.0.0', '--debug', ] , return_stdout=__snake_case , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all''' , __snake_case , )
371
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """microsoft/unispeech-large-1500h-cv""": ( """https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json""" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class A__ ( __magic_name__ ): lowercase = 'unispeech' def __init__( self : Any , a : List[Any]=32 , a : List[Any]=768 , a : Any=12 , a : List[str]=12 , a : List[Any]=3_072 , a : Any="gelu" , a : Dict=0.1 , a : List[str]=0.1 , a : List[str]=0.1 , a : Union[str, Any]=0.0 , a : str=0.0 , a : int=0.1 , a : List[str]=0.1 , a : List[Any]=0.0_2 , a : Optional[int]=1E-5 , a : Optional[int]="group" , a : Optional[Any]="gelu" , a : List[Any]=(512, 512, 512, 512, 512, 512, 512) , a : Optional[Any]=(5, 2, 2, 2, 2, 2, 2) , a : List[str]=(10, 3, 3, 3, 3, 2, 2) , a : Union[str, Any]=False , a : Union[str, Any]=128 , a : Tuple=16 , a : Dict=False , a : str=True , a : str=0.0_5 , a : Union[str, Any]=10 , a : Tuple=2 , a : int=0.0 , a : Optional[Any]=10 , a : List[str]=0 , a : str=320 , a : List[str]=2 , a : Optional[Any]=0.1 , a : Any=100 , a : Dict=256 , a : Any=256 , a : Dict=0.1 , a : List[Any]="mean" , a : Dict=False , a : str=False , a : Optional[int]=256 , a : Any=80 , a : List[Any]=0 , a : Optional[int]=1 , a : int=2 , a : List[Any]=0.5 , **a : int , ): '''simple docstring''' super().__init__(**a , pad_token_id=a , bos_token_id=a , eos_token_id=a ) lowerCAmelCase__ : List[str] = hidden_size lowerCAmelCase__ : List[str] = feat_extract_norm lowerCAmelCase__ : Optional[Any] = feat_extract_activation lowerCAmelCase__ : str = list(a ) lowerCAmelCase__ : List[str] = list(a ) lowerCAmelCase__ : Tuple = list(a ) lowerCAmelCase__ : Dict = conv_bias lowerCAmelCase__ : Optional[int] = num_conv_pos_embeddings lowerCAmelCase__ : Any = num_conv_pos_embedding_groups lowerCAmelCase__ : str = len(self.conv_dim ) lowerCAmelCase__ : Any = num_hidden_layers lowerCAmelCase__ : Dict = intermediate_size lowerCAmelCase__ : Dict = hidden_act lowerCAmelCase__ : Union[str, Any] = num_attention_heads lowerCAmelCase__ : Union[str, Any] = hidden_dropout lowerCAmelCase__ : Tuple = attention_dropout lowerCAmelCase__ : str = activation_dropout lowerCAmelCase__ : Any = feat_proj_dropout lowerCAmelCase__ : List[Any] = final_dropout lowerCAmelCase__ : Tuple = layerdrop lowerCAmelCase__ : Any = layer_norm_eps lowerCAmelCase__ : Dict = initializer_range lowerCAmelCase__ : Optional[Any] = num_ctc_classes lowerCAmelCase__ : Tuple = vocab_size lowerCAmelCase__ : Dict = do_stable_layer_norm lowerCAmelCase__ : List[Any] = use_weighted_layer_sum lowerCAmelCase__ : Any = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase__ : Union[str, Any] = apply_spec_augment lowerCAmelCase__ : Any = mask_time_prob lowerCAmelCase__ : Dict = mask_time_length lowerCAmelCase__ : Tuple = mask_time_min_masks lowerCAmelCase__ : Optional[int] = mask_feature_prob lowerCAmelCase__ : Optional[Any] = mask_feature_length lowerCAmelCase__ : int = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCAmelCase__ : int = num_codevectors_per_group lowerCAmelCase__ : Any = num_codevector_groups lowerCAmelCase__ : Any = contrastive_logits_temperature lowerCAmelCase__ : int = feat_quantizer_dropout lowerCAmelCase__ : List[Any] = num_negatives lowerCAmelCase__ : List[str] = codevector_dim lowerCAmelCase__ : Optional[int] = proj_codevector_dim lowerCAmelCase__ : Dict = diversity_loss_weight # ctc loss lowerCAmelCase__ : Any = ctc_loss_reduction lowerCAmelCase__ : Any = ctc_zero_infinity # pretraining loss lowerCAmelCase__ : Union[str, Any] = replace_prob @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
307
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def lowerCAmelCase__ ( ) -> Tuple: lowerCAmelCase__ : Union[str, Any] = ArgumentParser('Accelerate CLI tool' , usage='accelerate <command> [<args>]' , allow_abbrev=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : str = parser.add_subparsers(help='accelerate command helpers' ) # Register commands get_config_parser(subparsers=SCREAMING_SNAKE_CASE_ ) env_command_parser(subparsers=SCREAMING_SNAKE_CASE_ ) launch_command_parser(subparsers=SCREAMING_SNAKE_CASE_ ) tpu_command_parser(subparsers=SCREAMING_SNAKE_CASE_ ) test_command_parser(subparsers=SCREAMING_SNAKE_CASE_ ) # Let's go lowerCAmelCase__ : Optional[int] = parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE_ , 'func' ): parser.print_help() exit(1 ) # Run args.func(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
350
import torch from torch import nn class A__ ( nn.Module ): def __init__( self : Optional[int] , a : Union[str, Any] , a : str , a : str , a : List[Any] , a : List[Any]=1 , a : Tuple=False ): '''simple docstring''' super().__init__() lowerCAmelCase__ : Dict = n_token lowerCAmelCase__ : Any = d_embed lowerCAmelCase__ : str = d_proj lowerCAmelCase__ : int = cutoffs + [n_token] lowerCAmelCase__ : Union[str, Any] = [0] + self.cutoffs lowerCAmelCase__ : str = div_val lowerCAmelCase__ : Tuple = self.cutoffs[0] lowerCAmelCase__ : Dict = len(self.cutoffs ) - 1 lowerCAmelCase__ : Any = self.shortlist_size + self.n_clusters if self.n_clusters > 0: lowerCAmelCase__ : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) lowerCAmelCase__ : Optional[Any] = nn.Parameter(torch.zeros(self.n_clusters ) ) lowerCAmelCase__ : Optional[int] = nn.ModuleList() lowerCAmelCase__ : Tuple = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(a , a ) ) ) else: self.out_projs.append(a ) self.out_layers.append(nn.Linear(a , a ) ) else: for i in range(len(self.cutoffs ) ): lowerCAmelCase__ , lowerCAmelCase__ : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase__ : Optional[Any] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(a , a ) ) ) self.out_layers.append(nn.Linear(a , r_idx - l_idx ) ) lowerCAmelCase__ : Tuple = keep_order def _lowerCamelCase ( self : Optional[int] , a : List[str] , a : int , a : List[str] , a : str ): '''simple docstring''' if proj is None: lowerCAmelCase__ : Tuple = nn.functional.linear(a , a , bias=a ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: lowerCAmelCase__ : int = nn.functional.linear(a , proj.t().contiguous() ) lowerCAmelCase__ : Tuple = nn.functional.linear(a , a , bias=a ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def _lowerCamelCase ( self : List[str] , a : List[Any] , a : Optional[int]=None , a : Tuple=False ): '''simple docstring''' if labels is not None: # Shift so that tokens < n predict n lowerCAmelCase__ : str = hidden[..., :-1, :].contiguous() lowerCAmelCase__ : Optional[Any] = labels[..., 1:].contiguous() lowerCAmelCase__ : List[Any] = hidden.view(-1 , hidden.size(-1 ) ) lowerCAmelCase__ : Tuple = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('Input and labels should have the same size in the batch dimension.' ) else: lowerCAmelCase__ : Optional[Any] = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: lowerCAmelCase__ : Optional[Any] = self._compute_logit(a , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: lowerCAmelCase__ : str = labels != -100 lowerCAmelCase__ : int = torch.zeros_like(a , dtype=hidden.dtype , device=hidden.device ) lowerCAmelCase__ : List[str] = ( -nn.functional.log_softmax(a , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: lowerCAmelCase__ : Optional[Any] = nn.functional.log_softmax(a , dim=-1 ) else: # construct weights and biases lowerCAmelCase__ , lowerCAmelCase__ : int = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase__ : Any = self.out_layers[0].weight[l_idx:r_idx] lowerCAmelCase__ : Any = self.out_layers[0].bias[l_idx:r_idx] else: lowerCAmelCase__ : Optional[Any] = self.out_layers[i].weight lowerCAmelCase__ : Optional[int] = self.out_layers[i].bias if i == 0: lowerCAmelCase__ : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowerCAmelCase__ : Union[str, Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(a ) biases.append(a ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = weights[0], biases[0], self.out_projs[0] lowerCAmelCase__ : List[Any] = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : Union[str, Any] = nn.functional.log_softmax(a , dim=1 ) if labels is None: lowerCAmelCase__ : Tuple = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: lowerCAmelCase__ : Dict = torch.zeros_like(a , dtype=hidden.dtype , device=hidden.device ) lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : Union[str, Any] = [0] + self.cutoffs for i in range(len(a ) - 1 ): lowerCAmelCase__ , lowerCAmelCase__ : Tuple = cutoff_values[i], cutoff_values[i + 1] if labels is not None: lowerCAmelCase__ : Tuple = (labels >= l_idx) & (labels < r_idx) lowerCAmelCase__ : int = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue lowerCAmelCase__ : Tuple = labels.index_select(0 , a ) - l_idx lowerCAmelCase__ : Any = head_logprob.index_select(0 , a ) lowerCAmelCase__ : Optional[int] = hidden.index_select(0 , a ) else: lowerCAmelCase__ : Any = hidden if i == 0: if labels is not None: lowerCAmelCase__ : Union[str, Any] = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: lowerCAmelCase__ : List[str] = head_logprob[:, : self.cutoffs[0]] else: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = weights[i], biases[i], self.out_projs[i] lowerCAmelCase__ : Union[str, Any] = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : Optional[int] = nn.functional.log_softmax(a , dim=1 ) lowerCAmelCase__ : List[Any] = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: lowerCAmelCase__ : List[str] = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: lowerCAmelCase__ : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i lowerCAmelCase__ : Union[str, Any] = logprob_i if labels is not None: if (hasattr(self , 'keep_order' ) and self.keep_order) or keep_order: out.index_copy_(0 , a , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def _lowerCamelCase ( self : List[Any] , a : Any ): '''simple docstring''' if self.n_clusters == 0: lowerCAmelCase__ : Union[str, Any] = self._compute_logit(a , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(a , dim=-1 ) else: # construct weights and biases lowerCAmelCase__ , lowerCAmelCase__ : str = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase__ : str = self.out_layers[0].weight[l_idx:r_idx] lowerCAmelCase__ : Dict = self.out_layers[0].bias[l_idx:r_idx] else: lowerCAmelCase__ : int = self.out_layers[i].weight lowerCAmelCase__ : int = self.out_layers[i].bias if i == 0: lowerCAmelCase__ : Optional[int] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowerCAmelCase__ : Union[str, Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(a ) biases.append(a ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : str = weights[0], biases[0], self.out_projs[0] lowerCAmelCase__ : Dict = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : List[Any] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) lowerCAmelCase__ : Optional[Any] = nn.functional.log_softmax(a , dim=1 ) lowerCAmelCase__ : List[Any] = [0] + self.cutoffs for i in range(len(a ) - 1 ): lowerCAmelCase__ , lowerCAmelCase__ : str = cutoff_values[i], cutoff_values[i + 1] if i == 0: lowerCAmelCase__ : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = weights[i], biases[i], self.out_projs[i] lowerCAmelCase__ : Dict = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : List[str] = nn.functional.log_softmax(a , dim=1 ) lowerCAmelCase__ : Dict = head_logprob[:, -i] + tail_logprob_i lowerCAmelCase__ : List[str] = logprob_i return out
307
0
import functools def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: # Validation if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not all(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(SCREAMING_SNAKE_CASE_ ) != 3 or not all(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(SCREAMING_SNAKE_CASE_ ) == 0: return 0 if min(SCREAMING_SNAKE_CASE_ ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(SCREAMING_SNAKE_CASE_ ) >= 366: raise ValueError('All days elements should be less than 366' ) lowerCAmelCase__ : str = set(SCREAMING_SNAKE_CASE_ ) @functools.cache def dynamic_programming(SCREAMING_SNAKE_CASE_ ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
351
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowerCamelCase__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} lowerCamelCase__ = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", """emoji""": True, }, } ] lowerCamelCase__ = 0 for log in Path().glob("""*.log"""): lowerCamelCase__ = 0 with open(log, """r""") as f: for line in f: lowerCamelCase__ = json.loads(line) if line.get("""nodeid""", """""") != "": lowerCamelCase__ = line["""nodeid"""] if line.get("""duration""", None) is not None: lowerCamelCase__ = F"""{line["duration"]:.4f}""" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowerCamelCase__ = [] log.unlink() lowerCamelCase__ = """""" lowerCamelCase__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowerCamelCase__ = [] lowerCamelCase__ = {} for test in failed_tests: lowerCamelCase__ = test[0].split("""::""") lowerCamelCase__ = data[0].split("""/""")[-1] if data[0] not in filesafailed: lowerCamelCase__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowerCamelCase__ = [test[0] for test in failed_table] lowerCamelCase__ = list(set(files)) # Count number of instances in failed_tests lowerCamelCase__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowerCamelCase__ = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: lowerCamelCase__ = """Too many failed tests, please see the full report in the Action results.""" lowerCamelCase__ = len(err) + 10 lowerCamelCase__ = message[: 3000 - offset] + F"""\n...\n```\n{err}""" print(F"""### {message}""") else: lowerCamelCase__ = """No failed tests! 🤗""" print(F"""## {message}""") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient lowerCamelCase__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": lowerCamelCase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) lowerCamelCase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) lowerCamelCase__ = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) lowerCamelCase__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) lowerCamelCase__ = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowerCamelCase__ = """""" for i, row in enumerate(test_failures): if row[0] != test_class: lowerCamelCase__ = row[0] else: lowerCamelCase__ = """""" lowerCamelCase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
307
0
import inspect import unittest class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' try: import diffusers # noqa: F401 except ImportError: assert False def _lowerCamelCase ( self : int ): '''simple docstring''' import diffusers from diffusers.dependency_versions_table import deps lowerCAmelCase__ : Any = inspect.getmembers(a , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": lowerCAmelCase__ : Tuple = 'k-diffusion' elif backend == "invisible_watermark": lowerCAmelCase__ : Union[str, Any] = 'invisible-watermark' assert backend in deps, f'''{backend} is not in the deps table!'''
352
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCamelCase__ = imread(r"""digital_image_processing/image_data/lena_small.jpg""") lowerCamelCase__ = cvtColor(img, COLOR_BGR2GRAY) def lowerCAmelCase__ ( ) -> Dict: lowerCAmelCase__ : List[Any] = cn.convert_to_negative(SCREAMING_SNAKE_CASE_ ) # assert negative_img array for at least one True assert negative_img.any() def lowerCAmelCase__ ( ) -> Optional[Any]: with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(SCREAMING_SNAKE_CASE_ , 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def lowerCAmelCase__ ( ) -> Tuple: lowerCAmelCase__ : str = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def lowerCAmelCase__ ( ) -> Tuple: lowerCAmelCase__ : Tuple = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() lowerCAmelCase__ : Optional[Any] = canny.canny(SCREAMING_SNAKE_CASE_ ) # assert canny array for at least one True assert canny_array.any() def lowerCAmelCase__ ( ) -> Optional[int]: assert gg.gaussian_filter(SCREAMING_SNAKE_CASE_ , 5 , sigma=0.9 ).all() def lowerCAmelCase__ ( ) -> Dict: # laplace diagonals lowerCAmelCase__ : Union[str, Any] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowerCAmelCase__ : int = conv.img_convolve(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).astype(SCREAMING_SNAKE_CASE_ ) assert res.any() def lowerCAmelCase__ ( ) -> List[str]: assert med.median_filter(SCREAMING_SNAKE_CASE_ , 3 ).any() def lowerCAmelCase__ ( ) -> Any: lowerCAmelCase__ , lowerCAmelCase__ : str = sob.sobel_filter(SCREAMING_SNAKE_CASE_ ) assert grad.any() and theta.any() def lowerCAmelCase__ ( ) -> Any: lowerCAmelCase__ : int = sp.make_sepia(SCREAMING_SNAKE_CASE_ , 20 ) assert sepia.all() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = "digital_image_processing/image_data/lena_small.jpg" ) -> Optional[Any]: lowerCAmelCase__ : List[Any] = bs.Burkes(imread(SCREAMING_SNAKE_CASE_ , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = "digital_image_processing/image_data/lena_small.jpg" , ) -> Any: lowerCAmelCase__ : Dict = rs.NearestNeighbour(imread(SCREAMING_SNAKE_CASE_ , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def lowerCAmelCase__ ( ) -> int: lowerCAmelCase__ : int = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. lowerCAmelCase__ : List[str] = imread(SCREAMING_SNAKE_CASE_ , 0 ) # Test for get_neighbors_pixel function() return not None lowerCAmelCase__ : str = 0 lowerCAmelCase__ : str = 0 lowerCAmelCase__ : List[str] = image[x_coordinate][y_coordinate] lowerCAmelCase__ : Dict = lbp.get_neighbors_pixel( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCAmelCase__ : List[str] = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): lowerCAmelCase__ : Dict = lbp.local_binary_value(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert lbp_image.any()
307
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = { """configuration_jukebox""": [ """JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """JukeboxConfig""", """JukeboxPriorConfig""", """JukeboxVQVAEConfig""", ], """tokenization_jukebox""": ["""JukeboxTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """JukeboxModel""", """JukeboxPreTrainedModel""", """JukeboxVQVAE""", """JukeboxPrior""", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
354
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.999 , SCREAMING_SNAKE_CASE_="cosine" , ) -> Union[str, Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(SCREAMING_SNAKE_CASE_ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(SCREAMING_SNAKE_CASE_ ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) lowerCAmelCase__ : Tuple = [] for i in range(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : List[Any] = i / num_diffusion_timesteps lowerCAmelCase__ : str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) / alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ) return torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ) class A__ ( __magic_name__ , __magic_name__ ): lowercase = [e.name for e in KarrasDiffusionSchedulers] lowercase = 2 @register_to_config def __init__( self : Union[str, Any] , a : int = 1_000 , a : float = 0.0_0_0_8_5 , a : float = 0.0_1_2 , a : str = "linear" , a : Optional[Union[np.ndarray, List[float]]] = None , a : str = "epsilon" , a : Optional[bool] = False , a : Optional[bool] = False , a : float = 1.0 , a : str = "linspace" , a : int = 0 , ): '''simple docstring''' if trained_betas is not None: lowerCAmelCase__ : List[str] = torch.tensor(a , dtype=torch.floataa ) elif beta_schedule == "linear": lowerCAmelCase__ : List[str] = torch.linspace(a , a , a , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowerCAmelCase__ : Union[str, Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , a , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowerCAmelCase__ : int = betas_for_alpha_bar(a , alpha_transform_type='cosine' ) elif beta_schedule == "exp": lowerCAmelCase__ : List[str] = betas_for_alpha_bar(a , alpha_transform_type='exp' ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) lowerCAmelCase__ : int = 1.0 - self.betas lowerCAmelCase__ : Tuple = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(a , a , a ) lowerCAmelCase__ : Optional[Any] = use_karras_sigmas def _lowerCamelCase ( self : str , a : List[Any] , a : str=None ): '''simple docstring''' if schedule_timesteps is None: lowerCAmelCase__ : List[str] = self.timesteps lowerCAmelCase__ : int = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: lowerCAmelCase__ : List[str] = 1 if len(a ) > 1 else 0 else: lowerCAmelCase__ : Tuple = timestep.cpu().item() if torch.is_tensor(a ) else timestep lowerCAmelCase__ : Tuple = self._index_counter[timestep_int] return indices[pos].item() @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _lowerCamelCase ( self : Tuple , a : torch.FloatTensor , a : Union[float, torch.FloatTensor] , ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.index_for_timestep(a ) lowerCAmelCase__ : Any = self.sigmas[step_index] lowerCAmelCase__ : Optional[Any] = sample / ((sigma**2 + 1) ** 0.5) return sample def _lowerCamelCase ( self : List[str] , a : int , a : Union[str, torch.device] = None , a : Optional[int] = None , ): '''simple docstring''' lowerCAmelCase__ : Any = num_inference_steps lowerCAmelCase__ : Union[str, Any] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowerCAmelCase__ : Union[str, Any] = np.linspace(0 , num_train_timesteps - 1 , a , dtype=a )[::-1].copy() elif self.config.timestep_spacing == "leading": lowerCAmelCase__ : List[Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCAmelCase__ : Dict = (np.arange(0 , a ) * step_ratio).round()[::-1].copy().astype(a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowerCAmelCase__ : Tuple = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCAmelCase__ : int = (np.arange(a , 0 , -step_ratio )).round().copy().astype(a ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) lowerCAmelCase__ : str = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) lowerCAmelCase__ : List[Any] = np.log(a ) lowerCAmelCase__ : Optional[int] = np.interp(a , np.arange(0 , len(a ) ) , a ) if self.config.use_karras_sigmas: lowerCAmelCase__ : str = self._convert_to_karras(in_sigmas=a , num_inference_steps=self.num_inference_steps ) lowerCAmelCase__ : Union[str, Any] = np.array([self._sigma_to_t(a , a ) for sigma in sigmas] ) lowerCAmelCase__ : Tuple = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) lowerCAmelCase__ : Dict = torch.from_numpy(a ).to(device=a ) lowerCAmelCase__ : Union[str, Any] = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) lowerCAmelCase__ : Tuple = torch.from_numpy(a ) lowerCAmelCase__ : List[str] = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(a ).startswith('mps' ): # mps does not support float64 lowerCAmelCase__ : Optional[Any] = timesteps.to(a , dtype=torch.floataa ) else: lowerCAmelCase__ : Any = timesteps.to(device=a ) # empty dt and derivative lowerCAmelCase__ : str = None lowerCAmelCase__ : Optional[int] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowerCAmelCase__ : Optional[Any] = defaultdict(a ) def _lowerCamelCase ( self : Any , a : Dict , a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = np.log(a ) # get distribution lowerCAmelCase__ : Tuple = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range lowerCAmelCase__ : Optional[int] = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) lowerCAmelCase__ : List[str] = low_idx + 1 lowerCAmelCase__ : List[str] = log_sigmas[low_idx] lowerCAmelCase__ : Any = log_sigmas[high_idx] # interpolate sigmas lowerCAmelCase__ : Union[str, Any] = (low - log_sigma) / (low - high) lowerCAmelCase__ : List[Any] = np.clip(a , 0 , 1 ) # transform interpolation to time range lowerCAmelCase__ : List[Any] = (1 - w) * low_idx + w * high_idx lowerCAmelCase__ : Any = t.reshape(sigma.shape ) return t def _lowerCamelCase ( self : Tuple , a : torch.FloatTensor , a : Any ): '''simple docstring''' lowerCAmelCase__ : float = in_sigmas[-1].item() lowerCAmelCase__ : float = in_sigmas[0].item() lowerCAmelCase__ : Tuple = 7.0 # 7.0 is the value used in the paper lowerCAmelCase__ : Tuple = np.linspace(0 , 1 , a ) lowerCAmelCase__ : Any = sigma_min ** (1 / rho) lowerCAmelCase__ : Optional[Any] = sigma_max ** (1 / rho) lowerCAmelCase__ : Tuple = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _lowerCamelCase ( self : Any ): '''simple docstring''' return self.dt is None def _lowerCamelCase ( self : List[str] , a : Union[torch.FloatTensor, np.ndarray] , a : Union[float, torch.FloatTensor] , a : Union[torch.FloatTensor, np.ndarray] , a : bool = True , ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.index_for_timestep(a ) # advance index counter by 1 lowerCAmelCase__ : Tuple = timestep.cpu().item() if torch.is_tensor(a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowerCAmelCase__ : Union[str, Any] = self.sigmas[step_index] lowerCAmelCase__ : Union[str, Any] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method lowerCAmelCase__ : int = self.sigmas[step_index - 1] lowerCAmelCase__ : Any = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowerCAmelCase__ : Optional[int] = 0 lowerCAmelCase__ : Union[str, Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowerCAmelCase__ : int = sigma_hat if self.state_in_first_order else sigma_next lowerCAmelCase__ : Any = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowerCAmelCase__ : Dict = sigma_hat if self.state_in_first_order else sigma_next lowerCAmelCase__ : List[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": lowerCAmelCase__ : int = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.config.clip_sample: lowerCAmelCase__ : str = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowerCAmelCase__ : Dict = (sample - pred_original_sample) / sigma_hat # 3. delta timestep lowerCAmelCase__ : Optional[int] = sigma_next - sigma_hat # store for 2nd order step lowerCAmelCase__ : List[Any] = derivative lowerCAmelCase__ : str = dt lowerCAmelCase__ : Dict = sample else: # 2. 2nd order / Heun's method lowerCAmelCase__ : Union[str, Any] = (sample - pred_original_sample) / sigma_next lowerCAmelCase__ : Union[str, Any] = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample lowerCAmelCase__ : Dict = self.dt lowerCAmelCase__ : Optional[int] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" lowerCAmelCase__ : List[str] = None lowerCAmelCase__ : Tuple = None lowerCAmelCase__ : str = None lowerCAmelCase__ : Tuple = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=a ) def _lowerCamelCase ( self : int , a : torch.FloatTensor , a : torch.FloatTensor , a : torch.FloatTensor , ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(a ): # mps does not support float64 lowerCAmelCase__ : Optional[int] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) lowerCAmelCase__ : int = timesteps.to(original_samples.device , dtype=torch.floataa ) else: lowerCAmelCase__ : Union[str, Any] = self.timesteps.to(original_samples.device ) lowerCAmelCase__ : Optional[Any] = timesteps.to(original_samples.device ) lowerCAmelCase__ : List[Any] = [self.index_for_timestep(a , a ) for t in timesteps] lowerCAmelCase__ : List[str] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): lowerCAmelCase__ : Any = sigma.unsqueeze(-1 ) lowerCAmelCase__ : List[str] = original_samples + noise * sigma return noisy_samples def __len__( self : int ): '''simple docstring''' return self.config.num_train_timesteps
307
0
import math def lowerCAmelCase__ ( ) -> None: lowerCAmelCase__ : Optional[Any] = input('Enter message: ' ) lowerCAmelCase__ : Dict = int(input(F'''Enter key [2-{len(SCREAMING_SNAKE_CASE_ ) - 1}]: ''' ) ) lowerCAmelCase__ : Optional[Any] = input('Encryption/Decryption [e/d]: ' ) if mode.lower().startswith('e' ): lowerCAmelCase__ : Union[str, Any] = encrypt_message(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif mode.lower().startswith('d' ): lowerCAmelCase__ : List[Any] = decrypt_message(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(F'''Output:\n{text + "|"}''' ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: lowerCAmelCase__ : Optional[int] = [''] * key for col in range(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Optional[int] = col while pointer < len(SCREAMING_SNAKE_CASE_ ): cipher_text[col] += message[pointer] pointer += key return "".join(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: lowerCAmelCase__ : str = math.ceil(len(SCREAMING_SNAKE_CASE_ ) / key ) lowerCAmelCase__ : Optional[int] = key lowerCAmelCase__ : List[str] = (num_cols * num_rows) - len(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Dict = [''] * num_cols lowerCAmelCase__ : int = 0 lowerCAmelCase__ : Optional[Any] = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): lowerCAmelCase__ : List[Any] = 0 row += 1 return "".join(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
355
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: if isinstance(SCREAMING_SNAKE_CASE_ , collections.abc.Iterable ): return x return (x, x) @require_tf class A__ : def _lowerCamelCase ( self : List[Any] , a : List[str] , a : Optional[Any] ): '''simple docstring''' pass def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' pass def _lowerCamelCase ( self : Dict ): '''simple docstring''' pass def _lowerCamelCase ( self : Dict , a : int , a : str , a : List[Any] , a : Dict , a : List[str]=None , **a : Dict ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(a , a ) lowerCAmelCase__ : Tuple = TFVisionTextDualEncoderModel(a ) lowerCAmelCase__ : Tuple = model(input_ids=a , pixel_values=a , attention_mask=a ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) ) def _lowerCamelCase ( self : Union[str, Any] , a : Dict , a : Tuple , a : Dict , a : Union[str, Any] , a : List[Any]=None , **a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.get_vision_text_model(a , a ) lowerCAmelCase__ : List[Any] = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : Optional[int] = model(input_ids=a , pixel_values=a , attention_mask=a ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _lowerCamelCase ( self : List[str] , a : Optional[int] , a : Optional[int] , a : Union[str, Any] , a : List[Any] , a : Any=None , **a : Dict ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Optional[Any] = {'vision_model': vision_model, 'text_model': text_model} lowerCAmelCase__ : Tuple = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**a ) lowerCAmelCase__ : Union[str, Any] = model(input_ids=a , pixel_values=a , attention_mask=a ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _lowerCamelCase ( self : Any , a : Optional[int] , a : Optional[int] , a : Dict , a : Optional[int] , a : Optional[int]=None , **a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : int = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Dict = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : List[str] = model(input_ids=a , pixel_values=a , attention_mask=a ) lowerCAmelCase__ : Union[str, Any] = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(a ) lowerCAmelCase__ : Any = TFVisionTextDualEncoderModel.from_pretrained(a ) lowerCAmelCase__ : int = model(input_ids=a , pixel_values=a , attention_mask=a ) lowerCAmelCase__ : Union[str, Any] = after_output[0].numpy() lowerCAmelCase__ : Optional[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a , 1E-5 ) def _lowerCamelCase ( self : List[str] , a : Dict , a : Optional[int] , a : List[Any] , a : str , a : int=None , **a : Tuple ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Any = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : str = model( input_ids=a , pixel_values=a , attention_mask=a , output_attentions=a ) lowerCAmelCase__ : Union[str, Any] = output.vision_model_output.attentions self.assertEqual(len(a ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase__ : Optional[int] = to_atuple(vision_model.config.image_size ) lowerCAmelCase__ : Optional[Any] = to_atuple(vision_model.config.patch_size ) lowerCAmelCase__ : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCAmelCase__ : int = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCAmelCase__ : str = output.text_model_output.attentions self.assertEqual(len(a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCamelCase ( self : List[Any] , a : np.ndarray , a : np.ndarray , a : float ): '''simple docstring''' lowerCAmelCase__ : int = np.abs((a - b) ).max() self.assertLessEqual(a , a , f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**a ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Any = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**a ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : str = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() self.check_save_load(**a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**a ) @slow def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = self.get_pretrained_model_and_inputs() lowerCAmelCase__ : List[Any] = model_a(**a ) lowerCAmelCase__ : Optional[int] = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(a ) lowerCAmelCase__ : str = TFVisionTextDualEncoderModel.from_pretrained(a ) lowerCAmelCase__ : List[str] = model_a(**a ) lowerCAmelCase__ : int = after_outputs[0].numpy() lowerCAmelCase__ : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a , 1E-5 ) @require_tf class A__ ( __magic_name__ , unittest.TestCase ): def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-random-bert' ) lowerCAmelCase__ : int = 13 lowerCAmelCase__ : List[Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ : int = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ : Optional[Any] = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ : List[Any] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _lowerCamelCase ( self : List[Any] , a : Dict , a : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = TFViTModel(a , name='vision_model' ) lowerCAmelCase__ : str = TFBertModel(a , name='text_model' ) return vision_model, text_model def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = TFViTModelTester(self ) lowerCAmelCase__ : Tuple = TFBertModelTester(self ) lowerCAmelCase__ : Optional[int] = vit_model_tester.prepare_config_and_inputs() lowerCAmelCase__ : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : int = vision_config_and_inputs ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : str = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class A__ ( __magic_name__ , unittest.TestCase ): def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-deit-tf' , 'hf-internal-testing/tiny-random-roberta' ) lowerCAmelCase__ : Tuple = 13 lowerCAmelCase__ : Any = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ : Dict = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ : Any = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ : Tuple = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _lowerCamelCase ( self : str , a : Optional[Any] , a : Dict , a : Dict , a : Any , a : Any=None , **a : int ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Optional[int] = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : Any = model( input_ids=a , pixel_values=a , attention_mask=a , output_attentions=a ) lowerCAmelCase__ : Union[str, Any] = output.vision_model_output.attentions self.assertEqual(len(a ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowerCAmelCase__ : str = to_atuple(vision_model.config.image_size ) lowerCAmelCase__ : Union[str, Any] = to_atuple(vision_model.config.patch_size ) lowerCAmelCase__ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCAmelCase__ : int = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCAmelCase__ : List[str] = output.text_model_output.attentions self.assertEqual(len(a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCamelCase ( self : int , a : Optional[int] , a : int ): '''simple docstring''' lowerCAmelCase__ : Dict = TFDeiTModel(a , name='vision_model' ) lowerCAmelCase__ : List[Any] = TFRobertaModel(a , name='text_model' ) return vision_model, text_model def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Dict = TFDeiTModelTester(self ) lowerCAmelCase__ : List[str] = TFRobertaModelTester(self ) lowerCAmelCase__ : str = vit_model_tester.prepare_config_and_inputs() lowerCAmelCase__ : List[Any] = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[str] = vision_config_and_inputs ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : Any = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class A__ ( __magic_name__ , unittest.TestCase ): def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : int = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-clip-tf' , 'hf-internal-testing/tiny-random-bert' ) lowerCAmelCase__ : Dict = 13 lowerCAmelCase__ : str = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ : List[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ : Union[str, Any] = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ : Optional[int] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _lowerCamelCase ( self : str , a : int , a : List[str] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = TFCLIPVisionModel(a , name='vision_model' ) lowerCAmelCase__ : List[str] = TFBertModel(a , name='text_model' ) return vision_model, text_model def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Any = TFCLIPVisionModelTester(self ) lowerCAmelCase__ : Union[str, Any] = TFBertModelTester(self ) lowerCAmelCase__ : Any = clip_model_tester.prepare_config_and_inputs() lowerCAmelCase__ : Any = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = vision_config_and_inputs ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : str = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class A__ ( unittest.TestCase ): @slow def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Tuple = TFVisionTextDualEncoderModel.from_pretrained( 'clip-italian/clip-italian' , logit_scale_init_value=1.0 , from_pt=a ) lowerCAmelCase__ : List[Any] = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) lowerCAmelCase__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCAmelCase__ : Any = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=a , padding=a , return_tensors='np' ) lowerCAmelCase__ : Union[str, Any] = model(**a ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) lowerCAmelCase__ : List[str] = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , a , atol=1E-3 ) )
307
0
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch lowerCamelCase__ = random.Random() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=1.0 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ) -> Union[str, Any]: if rng is None: lowerCAmelCase__ : int = global_rng lowerCAmelCase__ : Any = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class A__ ( unittest.TestCase ): def __init__( self : Dict , a : Optional[Any] , a : Union[str, Any]=7 , a : Union[str, Any]=400 , a : Dict=2_000 , a : int=10 , a : Optional[Any]=160 , a : Any=8 , a : Optional[Any]=0.0 , a : Tuple=4_000 , a : str=False , a : Optional[Any]=True , ): '''simple docstring''' lowerCAmelCase__ : Any = parent lowerCAmelCase__ : Any = batch_size lowerCAmelCase__ : Optional[Any] = min_seq_length lowerCAmelCase__ : List[Any] = max_seq_length lowerCAmelCase__ : List[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase__ : Dict = padding_value lowerCAmelCase__ : Optional[int] = sampling_rate lowerCAmelCase__ : Tuple = return_attention_mask lowerCAmelCase__ : Union[str, Any] = do_normalize lowerCAmelCase__ : Optional[Any] = feature_size lowerCAmelCase__ : List[Any] = chunk_length lowerCAmelCase__ : Optional[Any] = hop_length def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _lowerCamelCase ( self : List[str] , a : str=False , a : List[Any]=False ): '''simple docstring''' def _flatten(a : Tuple ): return list(itertools.chain(*a ) ) if equal_length: lowerCAmelCase__ : Optional[Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowerCAmelCase__ : List[str] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase__ : List[str] = [np.asarray(a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class A__ ( __magic_name__ , unittest.TestCase ): lowercase = WhisperFeatureExtractor if is_speech_available() else None def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : List[str] = WhisperFeatureExtractionTester(self ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ : Tuple = feat_extract_first.save_pretrained(a )[0] check_json_file_has_correct_format(a ) lowerCAmelCase__ : Optional[int] = self.feature_extraction_class.from_pretrained(a ) lowerCAmelCase__ : str = feat_extract_first.to_dict() lowerCAmelCase__ : List[Any] = feat_extract_second.to_dict() lowerCAmelCase__ : int = feat_extract_first.mel_filters lowerCAmelCase__ : str = feat_extract_second.mel_filters self.assertTrue(np.allclose(a , a ) ) self.assertEqual(a , a ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ : Tuple = os.path.join(a , 'feat_extract.json' ) feat_extract_first.to_json_file(a ) lowerCAmelCase__ : Union[str, Any] = self.feature_extraction_class.from_json_file(a ) lowerCAmelCase__ : Any = feat_extract_first.to_dict() lowerCAmelCase__ : Tuple = feat_extract_second.to_dict() lowerCAmelCase__ : Optional[Any] = feat_extract_first.mel_filters lowerCAmelCase__ : Optional[Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(a , a ) ) self.assertEqual(a , a ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase__ : Optional[int] = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] lowerCAmelCase__ : int = [np.asarray(a ) for speech_input in speech_inputs] # Test feature size lowerCAmelCase__ : int = feature_extractor(a , padding='max_length' , return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input lowerCAmelCase__ : List[Any] = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features lowerCAmelCase__ : int = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features self.assertTrue(np.allclose(a , a , atol=1E-3 ) ) # Test batched lowerCAmelCase__ : Any = feature_extractor(a , return_tensors='np' ).input_features lowerCAmelCase__ : Dict = feature_extractor(a , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(a , a ): self.assertTrue(np.allclose(a , a , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase__ : Any = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowerCAmelCase__ : List[Any] = np.asarray(a ) lowerCAmelCase__ : Dict = feature_extractor(a , return_tensors='np' ).input_features lowerCAmelCase__ : Any = feature_extractor(a , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(a , a ): self.assertTrue(np.allclose(a , a , atol=1E-3 ) ) # Test truncation required lowerCAmelCase__ : List[str] = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] lowerCAmelCase__ : int = [np.asarray(a ) for speech_input in speech_inputs] lowerCAmelCase__ : Any = [x[: feature_extractor.n_samples] for x in speech_inputs] lowerCAmelCase__ : str = [np.asarray(a ) for speech_input in speech_inputs_truncated] lowerCAmelCase__ : str = feature_extractor(a , return_tensors='np' ).input_features lowerCAmelCase__ : Tuple = feature_extractor(a , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(a , a ): self.assertTrue(np.allclose(a , a , atol=1E-3 ) ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' import torch lowerCAmelCase__ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase__ : List[Any] = np.random.rand(100 , 32 ).astype(np.floataa ) lowerCAmelCase__ : Union[str, Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase__ : List[str] = feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) lowerCAmelCase__ : Optional[Any] = feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _lowerCamelCase ( self : List[Any] , a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : str = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech lowerCAmelCase__ : Union[str, Any] = ds.sort('id' ).select(range(a ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = torch.tensor( [ 0.1_1_9_3, -0.0_9_4_6, -0.1_0_9_8, -0.0_1_9_6, 0.0_2_2_5, -0.0_6_9_0, -0.1_7_3_6, 0.0_9_5_1, 0.0_9_7_1, -0.0_8_1_7, -0.0_7_0_2, 0.0_1_6_2, 0.0_2_6_0, 0.0_0_1_7, -0.0_1_9_2, -0.1_6_7_8, 0.0_7_0_9, -0.1_8_6_7, -0.0_6_5_5, -0.0_2_7_4, -0.0_2_3_4, -0.1_8_8_4, -0.0_5_1_6, -0.0_5_5_4, -0.0_2_7_4, -0.1_4_2_5, -0.1_4_2_3, 0.0_8_3_7, 0.0_3_7_7, -0.0_8_5_4 ] ) # fmt: on lowerCAmelCase__ : int = self._load_datasamples(1 ) lowerCAmelCase__ : str = WhisperFeatureExtractor() lowerCAmelCase__ : Optional[Any] = feature_extractor(a , return_tensors='pt' ).input_features self.assertEqual(input_features.shape , (1, 80, 3_000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , a , atol=1E-4 ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase__ : Union[str, Any] = self._load_datasamples(1 )[0] lowerCAmelCase__ : Any = ((audio - audio.min()) / (audio.max() - audio.min())) * 65_535 # Rescale to [0, 65535] to show issue lowerCAmelCase__ : Optional[int] = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=a )[0] self.assertTrue(np.all(np.mean(a ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(a ) - 1 ) < 1E-3 ) )
356
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) lowerCamelCase__ = logging.getLogger(__name__) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: lowerCAmelCase__ : Dict = np.argmax(SCREAMING_SNAKE_CASE_ , axis=1 ) return np.sum(outputs == labels ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: with open(SCREAMING_SNAKE_CASE_ , encoding='utf_8' ) as f: lowerCAmelCase__ : Dict = csv.reader(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Dict = [] next(SCREAMING_SNAKE_CASE_ ) # skip the first line for line in tqdm(SCREAMING_SNAKE_CASE_ ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: lowerCAmelCase__ : Dict = [] for dataset in encoded_datasets: lowerCAmelCase__ : List[str] = len(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) lowerCAmelCase__ : Tuple = np.zeros((n_batch, 2) , dtype=np.intaa ) lowerCAmelCase__ : List[Any] = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) lowerCAmelCase__ : Tuple = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Tuple = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase__ : Any = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase__ : Optional[Any] = with_conta lowerCAmelCase__ : List[str] = with_conta lowerCAmelCase__ : List[Any] = len(SCREAMING_SNAKE_CASE_ ) - 1 lowerCAmelCase__ : Tuple = len(SCREAMING_SNAKE_CASE_ ) - 1 lowerCAmelCase__ : Tuple = with_conta lowerCAmelCase__ : Optional[int] = with_conta lowerCAmelCase__ : Optional[int] = mc_label lowerCAmelCase__ : Dict = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(SCREAMING_SNAKE_CASE_ ) for t in all_inputs ) ) return tensor_datasets def lowerCAmelCase__ ( ) -> int: lowerCAmelCase__ : int = argparse.ArgumentParser() parser.add_argument('--model_name' , type=SCREAMING_SNAKE_CASE_ , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=SCREAMING_SNAKE_CASE_ , default='' ) parser.add_argument('--eval_dataset' , type=SCREAMING_SNAKE_CASE_ , default='' ) parser.add_argument('--seed' , type=SCREAMING_SNAKE_CASE_ , default=42 ) parser.add_argument('--num_train_epochs' , type=SCREAMING_SNAKE_CASE_ , default=3 ) parser.add_argument('--train_batch_size' , type=SCREAMING_SNAKE_CASE_ , default=8 ) parser.add_argument('--eval_batch_size' , type=SCREAMING_SNAKE_CASE_ , default=16 ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=SCREAMING_SNAKE_CASE_ , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=SCREAMING_SNAKE_CASE_ , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=SCREAMING_SNAKE_CASE_ , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=SCREAMING_SNAKE_CASE_ , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=SCREAMING_SNAKE_CASE_ , default=6.25e-5 ) parser.add_argument('--warmup_steps' , default=0 , type=SCREAMING_SNAKE_CASE_ , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=SCREAMING_SNAKE_CASE_ , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=SCREAMING_SNAKE_CASE_ , default=0.01 ) parser.add_argument('--lm_coef' , type=SCREAMING_SNAKE_CASE_ , default=0.9 ) parser.add_argument('--n_valid' , type=SCREAMING_SNAKE_CASE_ , default=374 ) parser.add_argument('--server_ip' , type=SCREAMING_SNAKE_CASE_ , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=SCREAMING_SNAKE_CASE_ , default='' , help='Can be used for distant debugging.' ) lowerCAmelCase__ : List[str] = parser.parse_args() print(SCREAMING_SNAKE_CASE_ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE_ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) lowerCAmelCase__ : str = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) lowerCAmelCase__ : Dict = torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset lowerCAmelCase__ : Union[str, Any] = ['_start_', '_delimiter_', '_classify_'] lowerCAmelCase__ : Dict = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE_ ) ) model.to(SCREAMING_SNAKE_CASE_ ) # Load and encode the datasets def tokenize_and_encode(SCREAMING_SNAKE_CASE_ ): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return obj return [tokenize_and_encode(SCREAMING_SNAKE_CASE_ ) for o in obj] logger.info('Encoding dataset...' ) lowerCAmelCase__ : List[Any] = load_rocstories_dataset(args.train_dataset ) lowerCAmelCase__ : str = load_rocstories_dataset(args.eval_dataset ) lowerCAmelCase__ : Union[str, Any] = (train_dataset, eval_dataset) lowerCAmelCase__ : List[str] = tokenize_and_encode(SCREAMING_SNAKE_CASE_ ) # Compute the max input length for the Transformer lowerCAmelCase__ : Union[str, Any] = model.config.n_positions // 2 - 2 lowerCAmelCase__ : Tuple = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) lowerCAmelCase__ : Dict = min(SCREAMING_SNAKE_CASE_ , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders lowerCAmelCase__ : int = pre_process_datasets(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = tensor_datasets[0], tensor_datasets[1] lowerCAmelCase__ : str = TensorDataset(*SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Tuple = RandomSampler(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Tuple = DataLoader(SCREAMING_SNAKE_CASE_ , sampler=SCREAMING_SNAKE_CASE_ , batch_size=args.train_batch_size ) lowerCAmelCase__ : Optional[Any] = TensorDataset(*SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Dict = SequentialSampler(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = DataLoader(SCREAMING_SNAKE_CASE_ , sampler=SCREAMING_SNAKE_CASE_ , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: lowerCAmelCase__ : Union[str, Any] = args.max_steps lowerCAmelCase__ : int = args.max_steps // (len(SCREAMING_SNAKE_CASE_ ) // args.gradient_accumulation_steps) + 1 else: lowerCAmelCase__ : Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) // args.gradient_accumulation_steps * args.num_train_epochs lowerCAmelCase__ : Optional[int] = list(model.named_parameters() ) lowerCAmelCase__ : Tuple = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] lowerCAmelCase__ : str = [ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] lowerCAmelCase__ : Union[str, Any] = AdamW(SCREAMING_SNAKE_CASE_ , lr=args.learning_rate , eps=args.adam_epsilon ) lowerCAmelCase__ : int = get_linear_schedule_with_warmup( SCREAMING_SNAKE_CASE_ , num_warmup_steps=args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE_ ) if args.do_train: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): lowerCAmelCase__ : str = 0 lowerCAmelCase__ : int = 0 lowerCAmelCase__ : str = tqdm(SCREAMING_SNAKE_CASE_ , desc='Training' ) for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Union[str, Any] = tuple(t.to(SCREAMING_SNAKE_CASE_ ) for t in batch ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = batch lowerCAmelCase__ : Tuple = model(SCREAMING_SNAKE_CASE_ , mc_token_ids=SCREAMING_SNAKE_CASE_ , lm_labels=SCREAMING_SNAKE_CASE_ , mc_labels=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : str = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() lowerCAmelCase__ : Optional[int] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 lowerCAmelCase__ : List[str] = 'Training loss: {:.2e} lr: {:.2e}'.format(SCREAMING_SNAKE_CASE_ , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer lowerCAmelCase__ : Optional[int] = model.module if hasattr(SCREAMING_SNAKE_CASE_ , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` lowerCAmelCase__ : List[str] = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[str] = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE_ ) torch.save(model_to_save.state_dict() , SCREAMING_SNAKE_CASE_ ) model_to_save.config.to_json_file(SCREAMING_SNAKE_CASE_ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned lowerCAmelCase__ : Dict = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) lowerCAmelCase__ : List[Any] = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(SCREAMING_SNAKE_CASE_ ) if args.do_eval: model.eval() lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = 0, 0 lowerCAmelCase__ , lowerCAmelCase__ : Any = 0, 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , desc='Evaluating' ): lowerCAmelCase__ : str = tuple(t.to(SCREAMING_SNAKE_CASE_ ) for t in batch ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Tuple = batch with torch.no_grad(): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[str] = model( SCREAMING_SNAKE_CASE_ , mc_token_ids=SCREAMING_SNAKE_CASE_ , lm_labels=SCREAMING_SNAKE_CASE_ , mc_labels=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = mc_logits.detach().cpu().numpy() lowerCAmelCase__ : List[Any] = mc_labels.to('cpu' ).numpy() lowerCAmelCase__ : str = accuracy(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 lowerCAmelCase__ : Optional[int] = eval_loss / nb_eval_steps lowerCAmelCase__ : Any = eval_accuracy / nb_eval_examples lowerCAmelCase__ : Union[str, Any] = tr_loss / nb_tr_steps if args.do_train else None lowerCAmelCase__ : Tuple = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} lowerCAmelCase__ : Dict = os.path.join(args.output_dir , 'eval_results.txt' ) with open(SCREAMING_SNAKE_CASE_ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , SCREAMING_SNAKE_CASE_ , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
307
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """andreasmadsen/efficient_mlm_m0.40""": ( """https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json""" ), } class A__ ( __magic_name__ ): lowercase = 'roberta-prelayernorm' def __init__( self : List[str] , a : List[str]=50_265 , a : Any=768 , a : Dict=12 , a : Dict=12 , a : List[str]=3_072 , a : Optional[int]="gelu" , a : Dict=0.1 , a : Dict=0.1 , a : str=512 , a : Optional[int]=2 , a : List[Any]=0.0_2 , a : List[str]=1E-12 , a : Optional[int]=1 , a : int=0 , a : Optional[int]=2 , a : int="absolute" , a : Any=True , a : int=None , **a : Optional[int] , ): '''simple docstring''' super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a ) lowerCAmelCase__ : Optional[int] = vocab_size lowerCAmelCase__ : Any = hidden_size lowerCAmelCase__ : Optional[Any] = num_hidden_layers lowerCAmelCase__ : Optional[Any] = num_attention_heads lowerCAmelCase__ : Optional[Any] = hidden_act lowerCAmelCase__ : str = intermediate_size lowerCAmelCase__ : List[str] = hidden_dropout_prob lowerCAmelCase__ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase__ : Optional[Any] = max_position_embeddings lowerCAmelCase__ : Optional[Any] = type_vocab_size lowerCAmelCase__ : Dict = initializer_range lowerCAmelCase__ : Optional[int] = layer_norm_eps lowerCAmelCase__ : List[str] = position_embedding_type lowerCAmelCase__ : Optional[Any] = use_cache lowerCAmelCase__ : Optional[Any] = classifier_dropout class A__ ( __magic_name__ ): @property def _lowerCamelCase ( self : Tuple ): '''simple docstring''' if self.task == "multiple-choice": lowerCAmelCase__ : List[str] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase__ : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
357
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCamelCase__ = """python tqdm regex requests packaging filelock numpy tokenizers""".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("""dataclasses""") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("""importlib_metadata""") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> int: require_version(deps[pkg] , SCREAMING_SNAKE_CASE_ )
307
0
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser lowerCamelCase__ = logging.getLogger(__name__) torch.set_grad_enabled(False) lowerCamelCase__ = """cuda""" if torch.cuda.is_available() else """cpu""" def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=100 , SCREAMING_SNAKE_CASE_=" " ) -> List[str]: lowerCAmelCase__ : Optional[Any] = text.split(SCREAMING_SNAKE_CASE_ ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> dict: lowerCAmelCase__ : Tuple = [], [] for title, text in zip(documents['title'] , documents['text'] ): if text is not None: for passage in split_text(SCREAMING_SNAKE_CASE_ ): titles.append(title if title is not None else '' ) texts.append(SCREAMING_SNAKE_CASE_ ) return {"title": titles, "text": texts} def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> dict: lowerCAmelCase__ : Union[str, Any] = ctx_tokenizer( documents['title'] , documents['text'] , truncation=SCREAMING_SNAKE_CASE_ , padding='longest' , return_tensors='pt' )['input_ids'] lowerCAmelCase__ : Union[str, Any] = ctx_encoder(input_ids.to(device=SCREAMING_SNAKE_CASE_ ) , return_dict=SCREAMING_SNAKE_CASE_ ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> Optional[int]: ###################################### logger.info('Step 1 - Create the dataset' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way lowerCAmelCase__ : Optional[int] = load_dataset( 'csv' , data_files=[rag_example_args.csv_path] , split='train' , delimiter='\t' , column_names=['title', 'text'] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words lowerCAmelCase__ : List[Any] = dataset.map(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , num_proc=processing_args.num_proc ) # And compute the embeddings lowerCAmelCase__ : Any = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) lowerCAmelCase__ : Union[str, Any] = Features( {'text': Value('string' ), 'title': Value('string' ), 'embeddings': Sequence(Value('float32' ) )} ) # optional, save as float32 instead of float64 to save space lowerCAmelCase__ : Any = dataset.map( partial(SCREAMING_SNAKE_CASE_ , ctx_encoder=SCREAMING_SNAKE_CASE_ , ctx_tokenizer=SCREAMING_SNAKE_CASE_ ) , batched=SCREAMING_SNAKE_CASE_ , batch_size=processing_args.batch_size , features=SCREAMING_SNAKE_CASE_ , ) # And finally save your dataset lowerCAmelCase__ : Optional[int] = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset' ) dataset.save_to_disk(SCREAMING_SNAKE_CASE_ ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('Step 2 - Index the dataset' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search lowerCAmelCase__ : Tuple = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('embeddings' , custom_index=SCREAMING_SNAKE_CASE_ ) # And save the index lowerCAmelCase__ : str = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset_hnsw_index.faiss' ) dataset.get_index('embeddings' ).save(SCREAMING_SNAKE_CASE_ ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class A__ : lowercase = field( default=str(Path(__magic_name__ ).parent / 'test_run' / 'dummy-kb' / 'my_knowledge_dataset.csv' ) , metadata={'help': 'Path to a tab-separated csv file with columns \'title\' and \'text\''} , ) lowercase = field( default=__magic_name__ , metadata={'help': 'Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'} , ) lowercase = field( default='facebook/rag-sequence-nq' , metadata={'help': 'The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''} , ) lowercase = field( default='facebook/dpr-ctx_encoder-multiset-base' , metadata={ 'help': ( 'The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or' ' \'facebook/dpr-ctx_encoder-multiset-base\'' ) } , ) lowercase = field( default=str(Path(__magic_name__ ).parent / 'test_run' / 'dummy-kb' ) , metadata={'help': 'Path to a directory where the dataset passages and the index will be saved'} , ) @dataclass class A__ : lowercase = field( default=__magic_name__ , metadata={ 'help': 'The number of processes to use to split the documents into passages. Default is single process.' } , ) lowercase = field( default=16 , metadata={ 'help': 'The batch size to use when computing the passages embeddings using the DPR context encoder.' } , ) @dataclass class A__ : lowercase = field( default=768 , metadata={'help': 'The dimension of the embeddings to pass to the HNSW Faiss index.'} , ) lowercase = field( default=128 , metadata={ 'help': ( 'The number of bi-directional links created for every new element during the HNSW index construction.' ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) lowerCamelCase__ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: lowerCamelCase__ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
358
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class A__ ( __magic_name__ ): lowercase = (DPMSolverSDEScheduler,) lowercase = 10 def _lowerCamelCase ( self : Optional[int] , **a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = { 'num_train_timesteps': 1_100, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'noise_sampler_seed': 0, } config.update(**a ) return config def _lowerCamelCase ( self : Tuple ): '''simple docstring''' for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=a ) def _lowerCamelCase ( self : int ): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=a , beta_end=a ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=a ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : int = self.scheduler_classes[0] lowerCAmelCase__ : Tuple = self.get_scheduler_config() lowerCAmelCase__ : List[Any] = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ : Dict = self.dummy_model() lowerCAmelCase__ : int = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ : int = sample.to(a ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : List[Any] = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : str = model(a , a ) lowerCAmelCase__ : int = scheduler.step(a , a , a ) lowerCAmelCase__ : Any = output.prev_sample lowerCAmelCase__ : List[Any] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Optional[int] = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_7_8_2_1_0_4_4_9_2_1_8_7_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_7_8_7_0_5_9_6_4_5_6_5_2_7_7 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_2_1_1_1_8_1_6_4_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_6_8_9_2_2_9_9_6_5_2 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3 def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.scheduler_classes[0] lowerCAmelCase__ : List[str] = self.get_scheduler_config(prediction_type='v_prediction' ) lowerCAmelCase__ : Any = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ : Optional[int] = self.dummy_model() lowerCAmelCase__ : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ : Any = sample.to(a ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : str = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : str = model(a , a ) lowerCAmelCase__ : Dict = scheduler.step(a , a , a ) lowerCAmelCase__ : Tuple = output.prev_sample lowerCAmelCase__ : int = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Union[str, Any] = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_2_4.7_7_1_4_9_2_0_0_4_3_9_4_5_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_2_2_6_2_8_9_0_1_4_8_1_6_2_8_4 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_2_8.1_6_6_3_3_6_0_5_9_5_7_0_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_6_8_8_3_2_6_0_0_1_1_6_7_2_9_7 ) < 1E-3 else: assert abs(result_sum.item() - 1_1_9.8_4_8_7_5_4_8_8_2_8_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.1_5_6_0_5_3_0_6_6_2_5_3_6_6_2_1 ) < 1E-3 def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.scheduler_classes[0] lowerCAmelCase__ : Optional[int] = self.get_scheduler_config() lowerCAmelCase__ : int = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps , device=a ) lowerCAmelCase__ : Tuple = self.dummy_model() lowerCAmelCase__ : Any = self.dummy_sample_deter.to(a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowerCAmelCase__ : Dict = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : Optional[int] = model(a , a ) lowerCAmelCase__ : Tuple = scheduler.step(a , a , a ) lowerCAmelCase__ : Dict = output.prev_sample lowerCAmelCase__ : Union[str, Any] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Dict = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_6_9_5_7_3_9_7_4_6_0_9_3_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_8_0_5_9_3_4_6_0_7_9_8_2_6_3_5 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_3_6_3_7_6_9_5_3_1_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_8_3_8_2_4_1_5_7_7_1 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3 def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.scheduler_classes[0] lowerCAmelCase__ : Any = self.get_scheduler_config() lowerCAmelCase__ : Any = scheduler_class(**a , use_karras_sigmas=a ) scheduler.set_timesteps(self.num_inference_steps , device=a ) lowerCAmelCase__ : str = self.dummy_model() lowerCAmelCase__ : Any = self.dummy_sample_deter.to(a ) * scheduler.init_noise_sigma lowerCAmelCase__ : str = sample.to(a ) for t in scheduler.timesteps: lowerCAmelCase__ : Any = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : int = model(a , a ) lowerCAmelCase__ : Union[str, Any] = scheduler.step(a , a , a ) lowerCAmelCase__ : Union[str, Any] = output.prev_sample lowerCAmelCase__ : Optional[int] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Any = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_7_6.6_6_9_7_4_1_3_5_7_4_2_1_8_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_7.6_3_6_5_3_5_6_4_4_5_3_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2 else: assert abs(result_sum.item() - 1_7_0.3_1_3_5_2_2_3_3_8_8_6_7_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2
307
0
import os import string import sys lowerCamelCase__ = 1 << 8 lowerCamelCase__ = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } lowerCamelCase__ = KEYMAP["""up"""] lowerCamelCase__ = KEYMAP["""left"""] if sys.platform == "win32": lowerCamelCase__ = [] lowerCamelCase__ = { b"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, b"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): lowerCamelCase__ = ord(str(i)) def lowerCAmelCase__ ( ) -> Dict: if os.name == "nt": import msvcrt lowerCAmelCase__ : Dict = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(SCREAMING_SNAKE_CASE_ ) == 0: # Read the keystroke lowerCAmelCase__ : Optional[Any] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCAmelCase__ : Dict = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCAmelCase__ : Dict = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(SCREAMING_SNAKE_CASE_ ) if ord(SCREAMING_SNAKE_CASE_ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) lowerCAmelCase__ : Dict = chr(KEYMAP['esc'] ) except KeyError: lowerCAmelCase__ : Dict = cha[1] else: lowerCAmelCase__ : List[Any] = ch.decode(SCREAMING_SNAKE_CASE_ ) else: lowerCAmelCase__ : Tuple = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCAmelCase__ : Tuple = sys.stdin.fileno() lowerCAmelCase__ : Any = termios.tcgetattr(SCREAMING_SNAKE_CASE_ ) try: tty.setraw(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = sys.stdin.read(1 ) finally: termios.tcsetattr(SCREAMING_SNAKE_CASE_ , termios.TCSADRAIN , SCREAMING_SNAKE_CASE_ ) return ch def lowerCAmelCase__ ( ) -> Union[str, Any]: lowerCAmelCase__ : Any = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(SCREAMING_SNAKE_CASE_ ) == KEYMAP["esc"]: lowerCAmelCase__ : Union[str, Any] = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) == KEYMAP["mod_int"]: lowerCAmelCase__ : str = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(SCREAMING_SNAKE_CASE_ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(SCREAMING_SNAKE_CASE_ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
359
import os import string import sys lowerCamelCase__ = 1 << 8 lowerCamelCase__ = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } lowerCamelCase__ = KEYMAP["""up"""] lowerCamelCase__ = KEYMAP["""left"""] if sys.platform == "win32": lowerCamelCase__ = [] lowerCamelCase__ = { b"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, b"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): lowerCamelCase__ = ord(str(i)) def lowerCAmelCase__ ( ) -> Dict: if os.name == "nt": import msvcrt lowerCAmelCase__ : Dict = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(SCREAMING_SNAKE_CASE_ ) == 0: # Read the keystroke lowerCAmelCase__ : Optional[Any] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCAmelCase__ : Dict = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCAmelCase__ : Dict = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(SCREAMING_SNAKE_CASE_ ) if ord(SCREAMING_SNAKE_CASE_ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) lowerCAmelCase__ : Dict = chr(KEYMAP['esc'] ) except KeyError: lowerCAmelCase__ : Dict = cha[1] else: lowerCAmelCase__ : List[Any] = ch.decode(SCREAMING_SNAKE_CASE_ ) else: lowerCAmelCase__ : Tuple = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCAmelCase__ : Tuple = sys.stdin.fileno() lowerCAmelCase__ : Any = termios.tcgetattr(SCREAMING_SNAKE_CASE_ ) try: tty.setraw(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = sys.stdin.read(1 ) finally: termios.tcsetattr(SCREAMING_SNAKE_CASE_ , termios.TCSADRAIN , SCREAMING_SNAKE_CASE_ ) return ch def lowerCAmelCase__ ( ) -> Union[str, Any]: lowerCAmelCase__ : Any = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(SCREAMING_SNAKE_CASE_ ) == KEYMAP["esc"]: lowerCAmelCase__ : Union[str, Any] = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) == KEYMAP["mod_int"]: lowerCAmelCase__ : str = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(SCREAMING_SNAKE_CASE_ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(SCREAMING_SNAKE_CASE_ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
307
0
"""simple docstring""" import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {"""vocab_file""": """vocab.txt""", """emoji_file""": """emoji.json"""} lowerCamelCase__ = { """vocab_file""": { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt""", }, """emoji_file""": { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json""", }, } lowerCamelCase__ = { """abeja/gpt-neox-japanese-2.7b""": 2048, } def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: with open(SCREAMING_SNAKE_CASE_ , 'r' , encoding='utf-8' ) as f: lowerCAmelCase__ : List[str] = json.loads(f.read() ) lowerCAmelCase__ : str = collections.OrderedDict() lowerCAmelCase__ : Tuple = collections.OrderedDict() lowerCAmelCase__ : str = collections.OrderedDict() with open(SCREAMING_SNAKE_CASE_ , 'r' , encoding='utf-8' ) as f: lowerCAmelCase__ : Union[str, Any] = f.readlines() lowerCAmelCase__ : str = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token] for idx, b in enumerate(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Optional[int] = b lowerCAmelCase__ : int = idx for wd in b: lowerCAmelCase__ : Any = idx return vocab, raw_vocab, ids_to_tokens, emoji class A__ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] def __init__( self : Optional[int] , a : Tuple , a : Union[str, Any] , a : str="<|endoftext|>" , a : Optional[Any]="<|endoftext|>" , a : Dict="<|startoftext|>" , a : int="<|endoftext|>" , a : List[str]=False , **a : List[str] , ): '''simple docstring''' super().__init__( unk_token=a , pad_token=a , bos_token=a , eos_token=a , do_clean_text=a , **a , ) if not os.path.isfile(a ): raise ValueError( f'''Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained''' ' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) if not os.path.isfile(a ): raise ValueError( f'''Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google''' ' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) lowerCAmelCase__ : Any = do_clean_text lowerCAmelCase__ : Union[str, Any] = load_vocab_and_emoji(a , a ) lowerCAmelCase__ : int = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' return len(self.raw_vocab ) def _lowerCamelCase ( self : int ): '''simple docstring''' return dict(self.raw_vocab , **self.added_tokens_encoder ) def _lowerCamelCase ( self : Optional[Any] , a : Any ): '''simple docstring''' return self.subword_tokenizer.tokenize(a , clean=self.do_clean_text ) def _lowerCamelCase ( self : Tuple , a : Any ): '''simple docstring''' return self.vocab.get(a , self.vocab.get(self.unk_token ) ) def _lowerCamelCase ( self : Union[str, Any] , a : Optional[Any] ): '''simple docstring''' return self.subword_tokenizer.convert_id_to_token(a ) def _lowerCamelCase ( self : Optional[int] , a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : str = ''.join(a ).strip() return out_string def _lowerCamelCase ( self : List[str] , a : "Conversation" ): '''simple docstring''' lowerCAmelCase__ : Any = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(a , add_special_tokens=a ) + [self.eos_token_id] ) if len(a ) > self.model_max_length: lowerCAmelCase__ : str = input_ids[-self.model_max_length :] return input_ids def _lowerCamelCase ( self : Optional[Any] , a : str , a : Optional[str] = None ): '''simple docstring''' lowerCAmelCase__ : Any = 0 if os.path.isdir(a ): lowerCAmelCase__ : List[str] = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase__ : List[Any] = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] ) else: lowerCAmelCase__ : Any = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase__ : List[str] = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(a , 'w' , encoding='utf-8' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' ' Please check that the vocabulary is not corrupted!' ) lowerCAmelCase__ : List[str] = token_index writer.write(','.join(a ) + '\n' ) index += 1 with open(a , 'w' , encoding='utf-8' ) as writer: json.dump(self.emoji , a ) return vocab_file, emoji_file class A__ ( __magic_name__ ): def __init__( self : Tuple , a : str , a : str , a : Tuple ): '''simple docstring''' lowerCAmelCase__ : List[str] = vocab # same as swe lowerCAmelCase__ : Optional[int] = ids_to_tokens # same as bpe lowerCAmelCase__ : str = emoji lowerCAmelCase__ : Any = np.max([len(a ) for w in self.vocab.keys()] ) lowerCAmelCase__ : Union[str, Any] = re.compile(R'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' ) lowerCAmelCase__ : int = re.compile(R'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' ) lowerCAmelCase__ : Any = re.compile(R'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' ) lowerCAmelCase__ : Dict = re.compile( R'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) lowerCAmelCase__ : Union[str, Any] = re.compile( R'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) lowerCAmelCase__ : Any = re.compile( R'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' ) lowerCAmelCase__ : Optional[int] = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' lowerCAmelCase__ : Tuple = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' lowerCAmelCase__ : Tuple = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} ) def __len__( self : Optional[Any] ): '''simple docstring''' return len(self.ids_to_tokens ) def _lowerCamelCase ( self : Any , a : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.content_repattera.sub('<URL>' , a ) lowerCAmelCase__ : Optional[int] = self.content_repattera.sub('<EMAIL>' , a ) lowerCAmelCase__ : Tuple = self.content_repattera.sub('<TEL>' , a ) lowerCAmelCase__ : Union[str, Any] = self.content_repattera.sub('<DATE>' , a ) lowerCAmelCase__ : Union[str, Any] = self.content_repattera.sub('<DATE>' , a ) lowerCAmelCase__ : str = self.content_repattera.sub('<PRICE>' , a ) lowerCAmelCase__ : Dict = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: lowerCAmelCase__ : str = content.replace('<BLOCK><BLOCK>' , '<BLOCK>' ) return content def _lowerCamelCase ( self : Union[str, Any] , a : Dict , a : Tuple=False ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = text.replace(' ' , '<SP>' ) lowerCAmelCase__ : Union[str, Any] = text.replace(' ' , '<SP>' ) lowerCAmelCase__ : Union[str, Any] = text.replace('\r\n' , '<BR>' ) lowerCAmelCase__ : Union[str, Any] = text.replace('\n' , '<BR>' ) lowerCAmelCase__ : Optional[int] = text.replace('\r' , '<BR>' ) lowerCAmelCase__ : Dict = text.replace('\t' , '<TAB>' ) lowerCAmelCase__ : str = text.replace('—' , 'ー' ) lowerCAmelCase__ : Optional[int] = text.replace('−' , 'ー' ) for k, v in self.emoji["emoji"].items(): if k in text: lowerCAmelCase__ : List[Any] = text.replace(a , a ) if clean: lowerCAmelCase__ : List[str] = self.clean_text(a ) def check_simbol(a : Dict ): lowerCAmelCase__ : List[Any] = x.encode() if len(a ) == 1 and len(a ) == 2: lowerCAmelCase__ : Optional[int] = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0Xc_2a1 and c <= 0Xc_2bf) or (c >= 0Xc_780 and c <= 0Xc_783) or (c >= 0Xc_ab9 and c <= 0Xc_bbf) or (c >= 0Xc_c80 and c <= 0Xc_da2) ): return True return False def checkuae(a : Optional[int] ): lowerCAmelCase__ : Optional[int] = x.encode() if len(a ) == 1 and len(a ) == 3: lowerCAmelCase__ : Optional[int] = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0Xe28_080 and c <= 0Xe2b_07f: return True return False lowerCAmelCase__ : Optional[Any] = 0 lowerCAmelCase__ : Optional[int] = [] while pos < len(a ): lowerCAmelCase__ : Optional[Any] = min(len(a ) , pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3 lowerCAmelCase__ : str = [] # (token_id, token, pos) for e in range(a , a , -1 ): lowerCAmelCase__ : Union[str, Any] = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(a ) > 2: lowerCAmelCase__ : List[Any] = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(a ) > 0: # the smallest token_id is adopted lowerCAmelCase__ : Any = sorted(a , key=lambda a : x[0] )[0] result.append(a ) lowerCAmelCase__ : Union[str, Any] = e else: lowerCAmelCase__ : Dict = pos + 1 lowerCAmelCase__ : List[Any] = text[pos:end] if check_simbol(a ): result.append('<KIGOU>' ) elif checkuae(a ): result.append('<U2000U2BFF>' ) else: for i in wd.encode('utf-8' ): result.append('<|byte%d|>' % i ) lowerCAmelCase__ : Union[str, Any] = end return result def _lowerCamelCase ( self : int , a : List[Any] , a : Tuple="\n" ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = [] lowerCAmelCase__ : Tuple = [] lowerCAmelCase__ : List[str] = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(a ) > 0: words.append(bytearray(a ).decode('utf-8' , errors='replace' ) ) lowerCAmelCase__ : Any = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['emoji_inv'][word] ) elif word == "<SP>": words.append(' ' ) elif word == "<BR>": words.append(a ) elif word == "<TAB>": words.append('\t' ) elif word == "<BLOCK>": words.append('▀' ) elif word == "<KIGOU>": words.append('ǀ' ) elif word == "<U2000U2BFF>": words.append('‖' ) else: words.append(a ) if len(a ) > 0: words.append(bytearray(a ).decode('utf-8' , errors='replace' ) ) lowerCAmelCase__ : Optional[Any] = ''.join(a ) return text
360
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: return "".join([hex(SCREAMING_SNAKE_CASE_ )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE_ )] ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(SCREAMING_SNAKE_CASE_ ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE_ ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
307
0
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask lowerCamelCase__ = logging.getLogger(__name__) class A__ ( __magic_name__ ): lowercase = 'token-classification' def __init__( self : Optional[int] , a : List[str] ): '''simple docstring''' if type(a ) == dict: lowerCAmelCase__ : List[str] = Namespace(**a ) lowerCAmelCase__ : int = import_module('tasks' ) try: lowerCAmelCase__ : Any = getattr(a , hparams.task_type ) lowerCAmelCase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) lowerCAmelCase__ : List[str] = self.token_classification_task.get_labels(hparams.labels ) lowerCAmelCase__ : Optional[int] = CrossEntropyLoss().ignore_index super().__init__(a , len(self.labels ) , self.mode ) def _lowerCamelCase ( self : Union[str, Any] , **a : Optional[int] ): '''simple docstring''' return self.model(**a ) def _lowerCamelCase ( self : Any , a : Any , a : int ): '''simple docstring''' lowerCAmelCase__ : int = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type != "distilbert": lowerCAmelCase__ : int = ( batch[2] if self.config.model_type in ['bert', 'xlnet'] else None ) # XLM and RoBERTa don"t use token_type_ids lowerCAmelCase__ : List[Any] = self(**a ) lowerCAmelCase__ : Union[str, Any] = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.hparams for mode in ["train", "dev", "test"]: lowerCAmelCase__ : int = self._feature_file(a ) if os.path.exists(a ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , a ) lowerCAmelCase__ : Any = torch.load(a ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) lowerCAmelCase__ : str = self.token_classification_task.read_examples_from_file(args.data_dir , a ) lowerCAmelCase__ : str = self.token_classification_task.convert_examples_to_features( a , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['xlnet'] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['xlnet'] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=a , pad_on_left=bool(self.config.model_type in ['xlnet'] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('Saving features into cached file %s' , a ) torch.save(a , a ) def _lowerCamelCase ( self : str , a : int , a : int , a : bool = False ): '''simple docstring''' lowerCAmelCase__ : Dict = self._feature_file(a ) logger.info('Loading features from cached file %s' , a ) lowerCAmelCase__ : str = torch.load(a ) lowerCAmelCase__ : Optional[Any] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowerCAmelCase__ : Dict = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: lowerCAmelCase__ : List[str] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: lowerCAmelCase__ : Union[str, Any] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) lowerCAmelCase__ : Dict = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(a , a , a , a ) , batch_size=a ) def _lowerCamelCase ( self : int , a : Union[str, Any] , a : Optional[int] ): '''simple docstring''' """Compute validation""" "" lowerCAmelCase__ : Optional[int] = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type != "distilbert": lowerCAmelCase__ : str = ( batch[2] if self.config.model_type in ['bert', 'xlnet'] else None ) # XLM and RoBERTa don"t use token_type_ids lowerCAmelCase__ : Tuple = self(**a ) lowerCAmelCase__ : Tuple = outputs[:2] lowerCAmelCase__ : Dict = logits.detach().cpu().numpy() lowerCAmelCase__ : List[str] = inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _lowerCamelCase ( self : List[Any] , a : str ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch.stack([x['val_loss'] for x in outputs] ).mean() lowerCAmelCase__ : Optional[Any] = np.concatenate([x['pred'] for x in outputs] , axis=0 ) lowerCAmelCase__ : Dict = np.argmax(a , axis=2 ) lowerCAmelCase__ : str = np.concatenate([x['target'] for x in outputs] , axis=0 ) lowerCAmelCase__ : Optional[Any] = dict(enumerate(self.labels ) ) lowerCAmelCase__ : Tuple = [[] for _ in range(out_label_ids.shape[0] )] lowerCAmelCase__ : List[Any] = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) lowerCAmelCase__ : int = { 'val_loss': val_loss_mean, 'accuracy_score': accuracy_score(a , a ), 'precision': precision_score(a , a ), 'recall': recall_score(a , a ), 'f1': fa_score(a , a ), } lowerCAmelCase__ : Optional[Any] = dict(results.items() ) lowerCAmelCase__ : Optional[Any] = results return ret, preds_list, out_label_list def _lowerCamelCase ( self : Any , a : Tuple ): '''simple docstring''' lowerCAmelCase__ : str = self._eval_end(a ) lowerCAmelCase__ : Any = ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _lowerCamelCase ( self : List[str] , a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Any = self._eval_end(a ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 lowerCAmelCase__ : int = ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _lowerCamelCase ( a : List[Any] , a : Optional[Any] ): '''simple docstring''' BaseTransformer.add_model_specific_args(a , a ) parser.add_argument( '--task_type' , default='NER' , type=a , help='Task type to fine tune in training (e.g. NER, POS, etc)' ) parser.add_argument( '--max_seq_length' , default=128 , type=a , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--labels' , default='' , type=a , help='Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.' , ) parser.add_argument( '--gpus' , default=0 , type=a , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) lowerCamelCase__ = NERTransformer.add_model_specific_args(parser, os.getcwd()) lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = NERTransformer(args) lowerCamelCase__ = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 lowerCamelCase__ = sorted(glob.glob(os.path.join(args.output_dir, """checkpoint-epoch=*.ckpt"""), recursive=True)) lowerCamelCase__ = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
361
from __future__ import annotations def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> list[list[int]]: lowerCAmelCase__ : list[list[int]] = [] create_all_state(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , [] , SCREAMING_SNAKE_CASE_ ) return result def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> None: if level == 0: total_list.append(current_list[:] ) return for i in range(SCREAMING_SNAKE_CASE_ , total_number - level + 2 ): current_list.append(SCREAMING_SNAKE_CASE_ ) create_all_state(i + 1 , SCREAMING_SNAKE_CASE_ , level - 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) current_list.pop() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> None: for i in total_list: print(*SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowerCamelCase__ = 4 lowerCamelCase__ = 2 lowerCamelCase__ = generate_all_combinations(n, k) print_all_state(total_list)
307
0
import re def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> bool: lowerCAmelCase__ : Any = re.compile( r'^(?:0|94|\+94|0{2}94)' r'7(0|1|2|4|5|6|7|8)' r'(-| |)' r'\d{7}$' ) return bool(re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": lowerCamelCase__ = """0094702343221""" print(is_sri_lankan_phone_number(phone))
362
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class A__ ( unittest.TestCase ): @parameterized.expand([(None,), ('foo.json',)] ) def _lowerCamelCase ( self : Dict , a : str ): '''simple docstring''' lowerCAmelCase__ : List[str] = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(a , config_name=a ) lowerCAmelCase__ : Tuple = GenerationConfig.from_pretrained(a , config_name=a ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , a ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , a ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Dict = AutoConfig.from_pretrained('gpt2' ) lowerCAmelCase__ : Any = GenerationConfig.from_model_config(a ) lowerCAmelCase__ : Any = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(a , a ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = GenerationConfig() lowerCAmelCase__ : Dict = { 'max_new_tokens': 1_024, 'foo': 'bar', } lowerCAmelCase__ : List[Any] = copy.deepcopy(a ) lowerCAmelCase__ : Dict = generation_config.update(**a ) # update_kwargs was not modified (no side effects) self.assertEqual(a , a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(a , {'foo': 'bar'} ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Dict = GenerationConfig() lowerCAmelCase__ : List[Any] = 'bar' with tempfile.TemporaryDirectory('test-generation-config' ) as tmp_dir: generation_config.save_pretrained(a ) lowerCAmelCase__ : List[Any] = GenerationConfig.from_pretrained(a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , 'bar' ) lowerCAmelCase__ : int = GenerationConfig.from_model_config(a ) assert not hasattr(a , 'foo' ) # no new kwargs should be initialized if from config def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , a ) self.assertEqual(default_config.num_beams , 1 ) lowerCAmelCase__ : List[Any] = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , a ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(a ) lowerCAmelCase__ : Any = GenerationConfig.from_pretrained(a , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , a ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class A__ ( unittest.TestCase ): @classmethod def _lowerCamelCase ( cls : int ): '''simple docstring''' lowerCAmelCase__ : List[str] = TOKEN HfFolder.save_token(a ) @classmethod def _lowerCamelCase ( cls : Optional[int] ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-generation-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-generation-config-org' ) except HTTPError: pass def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('test-generation-config' , use_auth_token=self._token ) lowerCAmelCase__ : Any = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) # Reset repo delete_repo(token=self._token , repo_id='test-generation-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( a , repo_id='test-generation-config' , push_to_hub=a , use_auth_token=self._token ) lowerCAmelCase__ : Tuple = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : int = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('valid_org/test-generation-config-org' , use_auth_token=self._token ) lowerCAmelCase__ : Dict = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-generation-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( a , repo_id='valid_org/test-generation-config-org' , push_to_hub=a , use_auth_token=self._token ) lowerCAmelCase__ : List[str] = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) )
307
0
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """deepmind/language-perceiver""": """https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json""", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class A__ ( __magic_name__ ): lowercase = 'perceiver' def __init__( self : List[Any] , a : Dict=256 , a : List[Any]=1_280 , a : Dict=768 , a : Union[str, Any]=1 , a : Union[str, Any]=26 , a : Tuple=8 , a : str=8 , a : List[str]=None , a : str=None , a : List[Any]="kv" , a : int=1 , a : Any=1 , a : List[Any]="gelu" , a : Optional[Any]=0.1 , a : List[str]=0.0_2 , a : List[str]=1E-12 , a : List[str]=True , a : Optional[int]=262 , a : Dict=2_048 , a : Optional[Any]=56 , a : Dict=[368, 496] , a : List[str]=16 , a : int=1_920 , a : Any=16 , a : List[Any]=[1, 16, 224, 224] , **a : List[str] , ): '''simple docstring''' super().__init__(**a ) lowerCAmelCase__ : Dict = num_latents lowerCAmelCase__ : List[str] = d_latents lowerCAmelCase__ : Optional[int] = d_model lowerCAmelCase__ : List[str] = num_blocks lowerCAmelCase__ : Dict = num_self_attends_per_block lowerCAmelCase__ : Any = num_self_attention_heads lowerCAmelCase__ : Optional[Any] = num_cross_attention_heads lowerCAmelCase__ : Optional[Any] = qk_channels lowerCAmelCase__ : Optional[Any] = v_channels lowerCAmelCase__ : int = cross_attention_shape_for_attention lowerCAmelCase__ : int = self_attention_widening_factor lowerCAmelCase__ : int = cross_attention_widening_factor lowerCAmelCase__ : Tuple = hidden_act lowerCAmelCase__ : int = attention_probs_dropout_prob lowerCAmelCase__ : Union[str, Any] = initializer_range lowerCAmelCase__ : Dict = layer_norm_eps lowerCAmelCase__ : Optional[Any] = use_query_residual # masked language modeling attributes lowerCAmelCase__ : Tuple = vocab_size lowerCAmelCase__ : Optional[int] = max_position_embeddings # image classification attributes lowerCAmelCase__ : Tuple = image_size # flow attributes lowerCAmelCase__ : Dict = train_size # multimodal autoencoding attributes lowerCAmelCase__ : Union[str, Any] = num_frames lowerCAmelCase__ : Optional[Any] = audio_samples_per_frame lowerCAmelCase__ : int = samples_per_patch lowerCAmelCase__ : str = output_shape class A__ ( __magic_name__ ): @property def _lowerCamelCase ( self : int ): '''simple docstring''' if self.task == "multiple-choice": lowerCAmelCase__ : Any = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase__ : List[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('inputs', dynamic_axis), ('attention_mask', dynamic_axis), ] ) @property def _lowerCamelCase ( self : str ): '''simple docstring''' return 1E-4 def _lowerCamelCase ( self : Optional[Any] , a : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , a : int = -1 , a : int = -1 , a : int = -1 , a : bool = False , a : Optional[TensorType] = None , a : int = 3 , a : int = 40 , a : int = 40 , ): '''simple docstring''' if isinstance(a , a ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowerCAmelCase__ : Optional[Any] = compute_effective_axis_dimension( a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCAmelCase__ : List[str] = preprocessor.num_special_tokens_to_add(a ) lowerCAmelCase__ : List[str] = compute_effective_axis_dimension( a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=a ) # Generate dummy inputs according to compute batch and sequence lowerCAmelCase__ : Dict = [' '.join(['a'] ) * seq_length] * batch_size lowerCAmelCase__ : int = dict(preprocessor(a , return_tensors=a ) ) lowerCAmelCase__ : Any = inputs.pop('input_ids' ) return inputs elif isinstance(a , a ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowerCAmelCase__ : Any = compute_effective_axis_dimension(a , fixed_dimension=OnnxConfig.default_fixed_batch ) lowerCAmelCase__ : str = self._generate_dummy_images(a , a , a , a ) lowerCAmelCase__ : List[Any] = dict(preprocessor(images=a , return_tensors=a ) ) lowerCAmelCase__ : Any = inputs.pop('pixel_values' ) return inputs else: raise ValueError( 'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
363
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( __magic_name__ , unittest.TestCase ): lowercase = UnCLIPImageVariationPipeline lowercase = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} lowercase = IMAGE_VARIATION_BATCH_PARAMS lowercase = [ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] lowercase = False @property def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' return 32 @property def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' return 32 @property def _lowerCamelCase ( self : int ): '''simple docstring''' return self.time_input_dim @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.time_input_dim * 4 @property def _lowerCamelCase ( self : Any ): '''simple docstring''' return 100 @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def _lowerCamelCase ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(a ) @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : List[Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(a ) @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Union[str, Any] = { 'clip_embeddings_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'cross_attention_dim': self.cross_attention_dim, } lowerCAmelCase__ : Optional[Any] = UnCLIPTextProjModel(**a ) return model @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : str = { 'sample_size': 32, # RGB in channels 'in_channels': 3, # Out channels is double in channels because predicts mean and variance 'out_channels': 6, 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': 'identity', } lowerCAmelCase__ : str = UNetaDConditionModel(**a ) return model @property def _lowerCamelCase ( self : str ): '''simple docstring''' return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def _lowerCamelCase ( self : str ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Any = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def _lowerCamelCase ( self : int ): '''simple docstring''' torch.manual_seed(1 ) lowerCAmelCase__ : List[str] = UNetaDModel(**self.dummy_super_res_kwargs ) return model def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.dummy_decoder lowerCAmelCase__ : Optional[int] = self.dummy_text_proj lowerCAmelCase__ : Any = self.dummy_text_encoder lowerCAmelCase__ : Any = self.dummy_tokenizer lowerCAmelCase__ : Any = self.dummy_super_res_first lowerCAmelCase__ : Optional[int] = self.dummy_super_res_last lowerCAmelCase__ : Dict = UnCLIPScheduler( variance_type='learned_range' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) lowerCAmelCase__ : Any = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) lowerCAmelCase__ : Any = CLIPImageProcessor(crop_size=32 , size=32 ) lowerCAmelCase__ : Optional[int] = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def _lowerCamelCase ( self : Any , a : Dict , a : List[str]=0 , a : List[str]=True ): '''simple docstring''' lowerCAmelCase__ : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(a ) ).to(a ) if str(a ).startswith('mps' ): lowerCAmelCase__ : Optional[int] = torch.manual_seed(a ) else: lowerCAmelCase__ : str = torch.Generator(device=a ).manual_seed(a ) if pil_image: lowerCAmelCase__ : Optional[int] = input_image * 0.5 + 0.5 lowerCAmelCase__ : Dict = input_image.clamp(0 , 1 ) lowerCAmelCase__ : List[Any] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCAmelCase__ : Union[str, Any] = DiffusionPipeline.numpy_to_pil(a )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = 'cpu' lowerCAmelCase__ : Any = self.get_dummy_components() lowerCAmelCase__ : List[str] = self.pipeline_class(**a ) lowerCAmelCase__ : Dict = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Dict = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : str = pipe(**a ) lowerCAmelCase__ : Optional[Any] = output.images lowerCAmelCase__ : str = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Optional[int] = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : List[str] = np.array( [ 0.9_9_9_7, 0.0_0_0_2, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_6_9, 0.0_0_2_3, 0.9_9_9_7, 0.9_9_6_9, 0.9_9_7_0, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = 'cpu' lowerCAmelCase__ : Dict = self.get_dummy_components() lowerCAmelCase__ : Optional[int] = self.pipeline_class(**a ) lowerCAmelCase__ : int = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : List[Any] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : List[str] = pipe(**a ) lowerCAmelCase__ : Union[str, Any] = output.images lowerCAmelCase__ : int = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : int = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Tuple = image[0, -3:, -3:, -1] lowerCAmelCase__ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : str = np.array([0.9_9_9_7, 0.0_0_0_3, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_7_0, 0.0_0_2_4, 0.9_9_9_7, 0.9_9_7_1, 0.9_9_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Tuple = 'cpu' lowerCAmelCase__ : int = self.get_dummy_components() lowerCAmelCase__ : Tuple = self.pipeline_class(**a ) lowerCAmelCase__ : Union[str, Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Tuple = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : List[str] = [ pipeline_inputs['image'], pipeline_inputs['image'], ] lowerCAmelCase__ : Optional[int] = pipe(**a ) lowerCAmelCase__ : Tuple = output.images lowerCAmelCase__ : List[str] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Union[str, Any] = [ tuple_pipeline_inputs['image'], tuple_pipeline_inputs['image'], ] lowerCAmelCase__ : str = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) lowerCAmelCase__ : Union[str, Any] = np.array( [ 0.9_9_9_7, 0.9_9_8_9, 0.0_0_0_8, 0.0_0_2_1, 0.9_9_6_0, 0.0_0_1_8, 0.0_0_1_4, 0.0_0_0_2, 0.9_9_3_3, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch.device('cpu' ) class A__ : lowercase = 1 lowerCAmelCase__ : Optional[Any] = self.get_dummy_components() lowerCAmelCase__ : Dict = self.pipeline_class(**a ) lowerCAmelCase__ : Optional[Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Optional[int] = torch.Generator(device=a ).manual_seed(0 ) lowerCAmelCase__ : Optional[int] = pipe.decoder.dtype lowerCAmelCase__ : Union[str, Any] = 1 lowerCAmelCase__ : str = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) lowerCAmelCase__ : List[Any] = pipe.prepare_latents( a , dtype=a , device=a , generator=a , latents=a , scheduler=DummyScheduler() ) lowerCAmelCase__ : List[str] = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) lowerCAmelCase__ : Any = pipe.prepare_latents( a , dtype=a , device=a , generator=a , latents=a , scheduler=DummyScheduler() ) lowerCAmelCase__ : List[Any] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Optional[int] = pipe( **a , decoder_latents=a , super_res_latents=a ).images lowerCAmelCase__ : Optional[Any] = self.get_dummy_inputs(a , pil_image=a ) # Don't pass image, instead pass embedding lowerCAmelCase__ : Union[str, Any] = pipeline_inputs.pop('image' ) lowerCAmelCase__ : Union[str, Any] = pipe.image_encoder(a ).image_embeds lowerCAmelCase__ : List[Any] = pipe( **a , decoder_latents=a , super_res_latents=a , image_embeddings=a , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch_device == 'cpu' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor lowerCAmelCase__ : int = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=a , expected_max_diff=a ) @skip_mps def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = torch_device == 'cpu' lowerCAmelCase__ : Any = True lowerCAmelCase__ : Optional[Any] = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] self._test_inference_batch_single_identical( test_max_difference=a , relax_max_difference=a , additional_params_copy_to_batched_inputs=a , ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Tuple = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes lowerCAmelCase__ : List[str] = [2, 3] self._test_inference_batch_consistent( batch_sizes=a , additional_params_copy_to_batched_inputs=a , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=a ) @skip_mps def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return super().test_save_load_local() @skip_mps def _lowerCamelCase ( self : str ): '''simple docstring''' return super().test_save_load_optional_components() @slow @require_torch_gpu class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png' ) lowerCAmelCase__ : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/unclip/karlo_v1_alpha_cat_variation_fp16.npy' ) lowerCAmelCase__ : Tuple = UnCLIPImageVariationPipeline.from_pretrained( 'kakaobrain/karlo-v1-alpha-image-variations' , torch_dtype=torch.floataa ) lowerCAmelCase__ : Union[str, Any] = pipeline.to(a ) pipeline.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Dict = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase__ : List[str] = pipeline( a , generator=a , output_type='np' , ) lowerCAmelCase__ : Union[str, Any] = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(a , a , 15 )
307
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase__ = { """configuration_conditional_detr""": [ """CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConditionalDetrConfig""", """ConditionalDetrOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""ConditionalDetrFeatureExtractor"""] lowerCamelCase__ = ["""ConditionalDetrImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConditionalDetrForObjectDetection""", """ConditionalDetrForSegmentation""", """ConditionalDetrModel""", """ConditionalDetrPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
364
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: stooge(SCREAMING_SNAKE_CASE_ , 0 , len(SCREAMING_SNAKE_CASE_ ) - 1 ) return arr def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: lowerCAmelCase__ , lowerCAmelCase__ : Tuple = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: lowerCAmelCase__ : Union[str, Any] = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (h - t) ) # Recursively sort last 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , i + t , (SCREAMING_SNAKE_CASE_) ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (h - t) ) if __name__ == "__main__": lowerCamelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCamelCase__ = [int(item) for item in user_input.split(""",""")] print(stooge_sort(unsorted))
307
0
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig lowerCamelCase__ = logging.get_logger(__name__) # General docstring lowerCamelCase__ = """MobileNetV1Config""" # Base docstring lowerCamelCase__ = """google/mobilenet_v1_1.0_224""" lowerCamelCase__ = [1, 1024, 7, 7] # Image classification docstring lowerCamelCase__ = """google/mobilenet_v1_1.0_224""" lowerCamelCase__ = """tabby, tabby cat""" lowerCamelCase__ = [ """google/mobilenet_v1_1.0_224""", """google/mobilenet_v1_0.75_192""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Optional[int]: lowerCAmelCase__ : Optional[Any] = {} if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : str = model.mobilenet_va else: lowerCAmelCase__ : str = model lowerCAmelCase__ : List[Any] = 'MobilenetV1/Conv2d_0/' lowerCAmelCase__ : Tuple = backbone.conv_stem.convolution.weight lowerCAmelCase__ : int = backbone.conv_stem.normalization.bias lowerCAmelCase__ : Tuple = backbone.conv_stem.normalization.weight lowerCAmelCase__ : Union[str, Any] = backbone.conv_stem.normalization.running_mean lowerCAmelCase__ : Any = backbone.conv_stem.normalization.running_var for i in range(13 ): lowerCAmelCase__ : List[Any] = i + 1 lowerCAmelCase__ : Dict = i * 2 lowerCAmelCase__ : str = backbone.layer[pt_index] lowerCAmelCase__ : Dict = F'''MobilenetV1/Conv2d_{tf_index}_depthwise/''' lowerCAmelCase__ : List[str] = pointer.convolution.weight lowerCAmelCase__ : List[Any] = pointer.normalization.bias lowerCAmelCase__ : List[str] = pointer.normalization.weight lowerCAmelCase__ : int = pointer.normalization.running_mean lowerCAmelCase__ : List[Any] = pointer.normalization.running_var lowerCAmelCase__ : Any = backbone.layer[pt_index + 1] lowerCAmelCase__ : Optional[Any] = F'''MobilenetV1/Conv2d_{tf_index}_pointwise/''' lowerCAmelCase__ : Tuple = pointer.convolution.weight lowerCAmelCase__ : Optional[int] = pointer.normalization.bias lowerCAmelCase__ : str = pointer.normalization.weight lowerCAmelCase__ : Union[str, Any] = pointer.normalization.running_mean lowerCAmelCase__ : str = pointer.normalization.running_var if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : List[Any] = 'MobilenetV1/Logits/Conv2d_1c_1x1/' lowerCAmelCase__ : Optional[int] = model.classifier.weight lowerCAmelCase__ : int = model.classifier.bias return tf_to_pt_map def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: try: import numpy as np import tensorflow as tf except ImportError: logger.error( 'Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ' 'https://www.tensorflow.org/install/ for installation instructions.' ) raise # Load weights from TF model lowerCAmelCase__ : List[str] = tf.train.list_variables(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = {} for name, shape in init_vars: logger.info(F'''Loading TF weight {name} with shape {shape}''' ) lowerCAmelCase__ : List[Any] = tf.train.load_variable(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = array # Build TF to PyTorch weights loading map lowerCAmelCase__ : Dict = _build_tf_to_pytorch_map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for name, pointer in tf_to_pt_map.items(): logger.info(F'''Importing {name}''' ) if name not in tf_weights: logger.info(F'''{name} not in tf pre-trained weights, skipping''' ) continue lowerCAmelCase__ : Optional[Any] = tf_weights[name] if "depthwise_weights" in name: logger.info('Transposing depthwise' ) lowerCAmelCase__ : Optional[int] = np.transpose(SCREAMING_SNAKE_CASE_ , (2, 3, 0, 1) ) elif "weights" in name: logger.info('Transposing' ) if len(pointer.shape ) == 2: # copying into linear layer lowerCAmelCase__ : Optional[int] = array.squeeze().transpose() else: lowerCAmelCase__ : Optional[int] = np.transpose(SCREAMING_SNAKE_CASE_ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F'''Pointer shape {pointer.shape} and array shape {array.shape} mismatched''' ) logger.info(F'''Initialize PyTorch weight {name} {array.shape}''' ) lowerCAmelCase__ : Optional[int] = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) tf_weights.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) tf_weights.pop(name + '/RMSProp' , SCREAMING_SNAKE_CASE_ ) tf_weights.pop(name + '/RMSProp_1' , SCREAMING_SNAKE_CASE_ ) tf_weights.pop(name + '/ExponentialMovingAverage' , SCREAMING_SNAKE_CASE_ ) logger.info(F'''Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}''' ) return model def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> torch.Tensor: lowerCAmelCase__ : Union[str, Any] = features.shape[-2:] lowerCAmelCase__ : int = conv_layer.stride lowerCAmelCase__ : int = conv_layer.kernel_size if in_height % stride_height == 0: lowerCAmelCase__ : str = max(kernel_height - stride_height , 0 ) else: lowerCAmelCase__ : Any = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: lowerCAmelCase__ : Any = max(kernel_width - stride_width , 0 ) else: lowerCAmelCase__ : int = max(kernel_width - (in_width % stride_width) , 0 ) lowerCAmelCase__ : Tuple = pad_along_width // 2 lowerCAmelCase__ : List[Any] = pad_along_width - pad_left lowerCAmelCase__ : Any = pad_along_height // 2 lowerCAmelCase__ : Dict = pad_along_height - pad_top lowerCAmelCase__ : Optional[Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 'constant' , 0.0 ) class A__ ( nn.Module ): def __init__( self : int , a : MobileNetVaConfig , a : int , a : int , a : int , a : Optional[int] = 1 , a : Optional[int] = 1 , a : bool = False , a : Optional[bool] = True , a : Optional[bool or str] = True , ): super().__init__() lowerCAmelCase__ : int = config if in_channels % groups != 0: raise ValueError(f'''Input channels ({in_channels}) are not divisible by {groups} groups.''' ) if out_channels % groups != 0: raise ValueError(f'''Output channels ({out_channels}) are not divisible by {groups} groups.''' ) lowerCAmelCase__ : int = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) lowerCAmelCase__ : Tuple = nn.Convad( in_channels=a , out_channels=a , kernel_size=a , stride=a , padding=a , groups=a , bias=a , padding_mode='zeros' , ) if use_normalization: lowerCAmelCase__ : Tuple = nn.BatchNormad( num_features=a , eps=config.layer_norm_eps , momentum=0.9_9_9_7 , affine=a , track_running_stats=a , ) else: lowerCAmelCase__ : Dict = None if use_activation: if isinstance(a , a ): lowerCAmelCase__ : str = ACTaFN[use_activation] elif isinstance(config.hidden_act , a ): lowerCAmelCase__ : Any = ACTaFN[config.hidden_act] else: lowerCAmelCase__ : List[str] = config.hidden_act else: lowerCAmelCase__ : List[Any] = None def _lowerCamelCase ( self : str , a : torch.Tensor ): if self.config.tf_padding: lowerCAmelCase__ : int = apply_tf_padding(a , self.convolution ) lowerCAmelCase__ : int = self.convolution(a ) if self.normalization is not None: lowerCAmelCase__ : Union[str, Any] = self.normalization(a ) if self.activation is not None: lowerCAmelCase__ : int = self.activation(a ) return features class A__ ( __magic_name__ ): lowercase = MobileNetVaConfig lowercase = load_tf_weights_in_mobilenet_va lowercase = 'mobilenet_v1' lowercase = 'pixel_values' lowercase = False def _lowerCamelCase ( self : Any , a : Union[nn.Linear, nn.Convad] ): if isinstance(a , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(a , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) lowerCamelCase__ = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ lowerCamelCase__ = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( 'The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.' , __magic_name__ , ) class A__ ( __magic_name__ ): def __init__( self : Any , a : MobileNetVaConfig , a : bool = True ): super().__init__(a ) lowerCAmelCase__ : int = config lowerCAmelCase__ : str = 32 lowerCAmelCase__ : Dict = max(int(depth * config.depth_multiplier ) , config.min_depth ) lowerCAmelCase__ : List[Any] = MobileNetVaConvLayer( a , in_channels=config.num_channels , out_channels=a , kernel_size=3 , stride=2 , ) lowerCAmelCase__ : Any = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] lowerCAmelCase__ : Optional[int] = nn.ModuleList() for i in range(13 ): lowerCAmelCase__ : int = out_channels if strides[i] == 2 or i == 0: depth *= 2 lowerCAmelCase__ : List[str] = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( a , in_channels=a , out_channels=a , kernel_size=3 , stride=strides[i] , groups=a , ) ) self.layer.append( MobileNetVaConvLayer( a , in_channels=a , out_channels=a , kernel_size=1 , ) ) lowerCAmelCase__ : str = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def _lowerCamelCase ( self : Tuple , a : Optional[int] ): raise NotImplementedError @add_start_docstrings_to_model_forward(a ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=a , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _lowerCamelCase ( self : str , a : Optional[torch.Tensor] = None , a : Optional[bool] = None , a : Optional[bool] = None , ): lowerCAmelCase__ : Optional[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ : int = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) lowerCAmelCase__ : Dict = self.conv_stem(a ) lowerCAmelCase__ : Dict = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): lowerCAmelCase__ : List[str] = layer_module(a ) if output_hidden_states: lowerCAmelCase__ : List[str] = all_hidden_states + (hidden_states,) lowerCAmelCase__ : List[str] = hidden_states if self.pooler is not None: lowerCAmelCase__ : Union[str, Any] = torch.flatten(self.pooler(a ) , start_dim=1 ) else: lowerCAmelCase__ : Union[str, Any] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=a , pooler_output=a , hidden_states=a , ) @add_start_docstrings( '\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , __magic_name__ , ) class A__ ( __magic_name__ ): def __init__( self : Dict , a : MobileNetVaConfig ): super().__init__(a ) lowerCAmelCase__ : Any = config.num_labels lowerCAmelCase__ : Dict = MobileNetVaModel(a ) lowerCAmelCase__ : Tuple = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head lowerCAmelCase__ : str = nn.Dropout(config.classifier_dropout_prob , inplace=a ) lowerCAmelCase__ : Optional[Any] = nn.Linear(a , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(a ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=a , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _lowerCamelCase ( self : int , a : Optional[torch.Tensor] = None , a : Optional[bool] = None , a : Optional[torch.Tensor] = None , a : Optional[bool] = None , ): lowerCAmelCase__ : Tuple = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ : Optional[Any] = self.mobilenet_va(a , output_hidden_states=a , return_dict=a ) lowerCAmelCase__ : Union[str, Any] = outputs.pooler_output if return_dict else outputs[1] lowerCAmelCase__ : Tuple = self.classifier(self.dropout(a ) ) lowerCAmelCase__ : str = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCAmelCase__ : Tuple = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCAmelCase__ : str = 'single_label_classification' else: lowerCAmelCase__ : Union[str, Any] = 'multi_label_classification' if self.config.problem_type == "regression": lowerCAmelCase__ : Optional[int] = MSELoss() if self.num_labels == 1: lowerCAmelCase__ : List[str] = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowerCAmelCase__ : List[Any] = loss_fct(a , a ) elif self.config.problem_type == "single_label_classification": lowerCAmelCase__ : Any = CrossEntropyLoss() lowerCAmelCase__ : Dict = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowerCAmelCase__ : Optional[Any] = BCEWithLogitsLoss() lowerCAmelCase__ : Any = loss_fct(a , a ) if not return_dict: lowerCAmelCase__ : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=a , logits=a , hidden_states=outputs.hidden_states , )
365
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) lowerCamelCase__ = { """configuration_speech_to_text""": ["""SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Speech2TextConfig"""], """processing_speech_to_text""": ["""Speech2TextProcessor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""Speech2TextTokenizer"""] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""Speech2TextFeatureExtractor"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSpeech2TextForConditionalGeneration""", """TFSpeech2TextModel""", """TFSpeech2TextPreTrainedModel""", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Speech2TextForConditionalGeneration""", """Speech2TextModel""", """Speech2TextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
0
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCamelCase__ = logging.get_logger(__name__) @add_end_docstrings(__magic_name__ ) class A__ ( __magic_name__ ): def __init__( self : List[Any] , **a : Any ): '''simple docstring''' super().__init__(**a ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[Any] , a : Union[str, List[str], "Image", List["Image"]] , **a : Optional[int] ): '''simple docstring''' return super().__call__(a , **a ) def _lowerCamelCase ( self : Union[str, Any] , **a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = {} if "candidate_labels" in kwargs: lowerCAmelCase__ : Dict = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: lowerCAmelCase__ : Optional[Any] = kwargs['hypothesis_template'] return preprocess_params, {}, {} def _lowerCamelCase ( self : Dict , a : Union[str, Any] , a : Any=None , a : Union[str, Any]="This is a photo of {}." ): '''simple docstring''' lowerCAmelCase__ : Any = load_image(a ) lowerCAmelCase__ : Dict = self.image_processor(images=[image] , return_tensors=self.framework ) lowerCAmelCase__ : Optional[Any] = candidate_labels lowerCAmelCase__ : int = [hypothesis_template.format(a ) for x in candidate_labels] lowerCAmelCase__ : List[str] = self.tokenizer(a , return_tensors=self.framework , padding=a ) lowerCAmelCase__ : Tuple = [text_inputs] return inputs def _lowerCamelCase ( self : Tuple , a : int ): '''simple docstring''' lowerCAmelCase__ : Tuple = model_inputs.pop('candidate_labels' ) lowerCAmelCase__ : List[Any] = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , a ): lowerCAmelCase__ : Tuple = text_inputs[0] else: # Batching case. lowerCAmelCase__ : int = text_inputs[0][0] lowerCAmelCase__ : Any = self.model(**a , **a ) lowerCAmelCase__ : int = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def _lowerCamelCase ( self : int , a : Dict ): '''simple docstring''' lowerCAmelCase__ : Any = model_outputs.pop('candidate_labels' ) lowerCAmelCase__ : List[Any] = model_outputs['logits'][0] if self.framework == "pt": lowerCAmelCase__ : Union[str, Any] = logits.softmax(dim=-1 ).squeeze(-1 ) lowerCAmelCase__ : Tuple = probs.tolist() if not isinstance(a , a ): lowerCAmelCase__ : int = [scores] elif self.framework == "tf": lowerCAmelCase__ : Tuple = stable_softmax(a , axis=-1 ) lowerCAmelCase__ : List[Any] = probs.numpy().tolist() else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) lowerCAmelCase__ : Any = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(a , a ) , key=lambda a : -x[0] ) ] return result
366
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } lowerCAmelCase__ : int = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 128, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 142, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(a ) , a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(a ) , x.transpose() ) ) lowerCAmelCase__ : List[str] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = np.random.randn(3 , 4 ) lowerCAmelCase__ : List[Any] = torch.tensor(a ) self.assertTrue(np.allclose(transpose(a ) , transpose(a ).numpy() ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : int = torch.tensor(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , transpose(a , axes=(1, 2, 0) ).numpy() ) ) @require_tf def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = np.random.randn(3 , 4 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(transpose(a ) , transpose(a ).numpy() ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : Dict = tf.constant(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , transpose(a , axes=(1, 2, 0) ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = np.random.randn(3 , 4 ) lowerCAmelCase__ : int = jnp.array(a ) self.assertTrue(np.allclose(transpose(a ) , np.asarray(transpose(a ) ) ) ) lowerCAmelCase__ : Any = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : str = jnp.array(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , np.asarray(transpose(a , axes=(1, 2, 0) ) ) ) ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Any = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , np.reshape(a , (4, 3) ) ) ) lowerCAmelCase__ : Tuple = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , np.reshape(a , (12, 5) ) ) ) @require_torch def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = np.random.randn(3 , 4 ) lowerCAmelCase__ : Dict = torch.tensor(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , reshape(a , (4, 3) ).numpy() ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : str = torch.tensor(a ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , reshape(a , (12, 5) ).numpy() ) ) @require_tf def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = np.random.randn(3 , 4 ) lowerCAmelCase__ : List[Any] = tf.constant(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , reshape(a , (4, 3) ).numpy() ) ) lowerCAmelCase__ : Dict = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , reshape(a , (12, 5) ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Dict = np.random.randn(3 , 4 ) lowerCAmelCase__ : List[str] = jnp.array(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , np.asarray(reshape(a , (4, 3) ) ) ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : Union[str, Any] = jnp.array(a ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , np.asarray(reshape(a , (12, 5) ) ) ) ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(a ) , np.squeeze(a ) ) ) lowerCAmelCase__ : int = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , np.squeeze(a , axis=2 ) ) ) @require_torch def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = np.random.randn(1 , 3 , 4 ) lowerCAmelCase__ : str = torch.tensor(a ) self.assertTrue(np.allclose(squeeze(a ) , squeeze(a ).numpy() ) ) lowerCAmelCase__ : Optional[Any] = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase__ : Dict = torch.tensor(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , squeeze(a , axis=2 ).numpy() ) ) @require_tf def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : List[str] = np.random.randn(1 , 3 , 4 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(squeeze(a ) , squeeze(a ).numpy() ) ) lowerCAmelCase__ : int = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase__ : str = tf.constant(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , squeeze(a , axis=2 ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : List[str] = np.random.randn(1 , 3 , 4 ) lowerCAmelCase__ : Union[str, Any] = jnp.array(a ) self.assertTrue(np.allclose(squeeze(a ) , np.asarray(squeeze(a ) ) ) ) lowerCAmelCase__ : str = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase__ : Optional[Any] = jnp.array(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , np.asarray(squeeze(a , axis=2 ) ) ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , np.expand_dims(a , axis=1 ) ) ) @require_torch def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : str = np.random.randn(3 , 4 ) lowerCAmelCase__ : str = torch.tensor(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , expand_dims(a , axis=1 ).numpy() ) ) @require_tf def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = np.random.randn(3 , 4 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , expand_dims(a , axis=1 ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : int = np.random.randn(3 , 4 ) lowerCAmelCase__ : Tuple = jnp.array(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , np.asarray(expand_dims(a , axis=1 ) ) ) )
307
0
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency lowerCamelCase__ = { """E""": 12.70, """T""": 9.06, """A""": 8.17, """O""": 7.51, """I""": 6.97, """N""": 6.75, """S""": 6.33, """H""": 6.09, """R""": 5.99, """D""": 4.25, """L""": 4.03, """C""": 2.78, """U""": 2.76, """M""": 2.41, """W""": 2.36, """F""": 2.23, """G""": 2.02, """Y""": 1.97, """P""": 1.93, """B""": 1.29, """V""": 0.98, """K""": 0.77, """J""": 0.15, """X""": 0.15, """Q""": 0.10, """Z""": 0.07, } lowerCamelCase__ = """ETAOINSHRDLCUMWFGYPBVKJXQZ""" lowerCamelCase__ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> dict[str, int]: lowerCAmelCase__ : Optional[Any] = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: return x[0] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: lowerCAmelCase__ : int = get_letter_count(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[str] = ''.join(freq_to_letter[freq] ) lowerCAmelCase__ : List[str] = list(freq_to_letter_str.items() ) freq_pairs.sort(key=SCREAMING_SNAKE_CASE_ , reverse=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> int: lowerCAmelCase__ : Optional[int] = get_frequency_order(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
367
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position lowerCamelCase__ = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip lowerCamelCase__ = concatenate_datasets lowerCamelCase__ = DownloadConfig lowerCamelCase__ = DownloadManager lowerCamelCase__ = DownloadMode lowerCamelCase__ = DownloadConfig lowerCamelCase__ = DownloadMode lowerCamelCase__ = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
307
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase__ = {"""configuration_yolos""": ["""YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """YolosConfig""", """YolosOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""YolosFeatureExtractor"""] lowerCamelCase__ = ["""YolosImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST""", """YolosForObjectDetection""", """YolosModel""", """YolosPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
368
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( __magic_name__ , unittest.TestCase ): lowercase = DanceDiffusionPipeline lowercase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS lowercase = PipelineTesterMixin.required_optional_params - { 'callback', 'latents', 'callback_steps', 'output_type', 'num_images_per_prompt', } lowercase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS lowercase = False lowercase = False def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16_000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=a , use_timestep_embedding=a , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , ) lowerCAmelCase__ : Tuple = IPNDMScheduler() lowerCAmelCase__ : str = { 'unet': unet, 'scheduler': scheduler, } return components def _lowerCamelCase ( self : int , a : Dict , a : List[str]=0 ): '''simple docstring''' if str(a ).startswith('mps' ): lowerCAmelCase__ : Union[str, Any] = torch.manual_seed(a ) else: lowerCAmelCase__ : Optional[Any] = torch.Generator(device=a ).manual_seed(a ) lowerCAmelCase__ : Optional[Any] = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : int = self.get_dummy_components() lowerCAmelCase__ : List[str] = DanceDiffusionPipeline(**a ) lowerCAmelCase__ : Any = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : List[str] = self.get_dummy_inputs(a ) lowerCAmelCase__ : List[Any] = pipe(**a ) lowerCAmelCase__ : List[str] = output.audios lowerCAmelCase__ : Optional[Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) lowerCAmelCase__ : List[Any] = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def _lowerCamelCase ( self : str ): '''simple docstring''' return super().test_save_load_local() @skip_mps def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def _lowerCamelCase ( self : List[str] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch_device lowerCAmelCase__ : List[str] = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) lowerCAmelCase__ : List[str] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Optional[int] = torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = pipe(generator=a , num_inference_steps=100 , audio_length_in_s=4.0_9_6 ) lowerCAmelCase__ : int = output.audios lowerCAmelCase__ : List[Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase__ : Dict = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : str = torch_device lowerCAmelCase__ : List[Any] = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa ) lowerCAmelCase__ : Optional[int] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : str = torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = pipe(generator=a , num_inference_steps=100 , audio_length_in_s=4.0_9_6 ) lowerCAmelCase__ : str = output.audios lowerCAmelCase__ : Tuple = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase__ : int = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
307
0
from math import pi def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> float: return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
369
from ..utils import DummyObject, requires_backends class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : Any , *a : Any , **a : Any ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Union[str, Any] , *a : Optional[int] , **a : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : int , *a : List[Any] , **a : int ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : str , *a : Any , **a : Optional[Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : List[str] , **a : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , *a : Optional[Any] , **a : Any ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : Optional[int] , *a : List[Any] , **a : str ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : List[Any] , *a : List[str] , **a : List[str] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , *a : Union[str, Any] , **a : Optional[int] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *a : Dict , **a : List[str] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : Dict , **a : List[Any] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : List[str] , **a : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : Dict , *a : str , **a : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Any , *a : Any , **a : Any ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Any , *a : List[Any] , **a : str ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : str , *a : Union[str, Any] , **a : Optional[Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : int , *a : Union[str, Any] , **a : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : Tuple , **a : List[str] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] )
307
0
from __future__ import annotations def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> set[str]: lowerCAmelCase__ : Optional[Any] = set(SCREAMING_SNAKE_CASE_ ), [start] while stack: lowerCAmelCase__ : List[Any] = stack.pop() explored.add(SCREAMING_SNAKE_CASE_ ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(SCREAMING_SNAKE_CASE_ ) return explored lowerCamelCase__ = { """A""": ["""B""", """C""", """D"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F"""], """D""": ["""B""", """D"""], """E""": ["""B""", """F"""], """F""": ["""C""", """E""", """G"""], """G""": ["""F"""], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, """A"""))
370
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class A__ : def __init__( self : List[str] , a : Any , a : Dict=13 , a : Optional[Any]=7 , a : Tuple=True , a : Tuple=True , a : Dict=False , a : Optional[Any]=True , a : Dict=99 , a : Tuple=32 , a : Optional[Any]=5 , a : str=4 , a : Union[str, Any]=37 , a : Any="gelu" , a : Dict=0.1 , a : Any=0.1 , a : Optional[int]=512 , a : Union[str, Any]=16 , a : Optional[int]=2 , a : Optional[Any]=0.0_2 , a : List[Any]=3 , a : Any=4 , a : Optional[int]=None , ): '''simple docstring''' lowerCAmelCase__ : List[str] = parent lowerCAmelCase__ : str = batch_size lowerCAmelCase__ : Optional[int] = seq_length lowerCAmelCase__ : Optional[Any] = is_training lowerCAmelCase__ : Tuple = use_input_mask lowerCAmelCase__ : List[Any] = use_token_type_ids lowerCAmelCase__ : str = use_labels lowerCAmelCase__ : Dict = vocab_size lowerCAmelCase__ : Union[str, Any] = hidden_size lowerCAmelCase__ : Optional[int] = num_hidden_layers lowerCAmelCase__ : List[Any] = num_attention_heads lowerCAmelCase__ : int = intermediate_size lowerCAmelCase__ : Union[str, Any] = hidden_act lowerCAmelCase__ : Union[str, Any] = hidden_dropout_prob lowerCAmelCase__ : Any = attention_probs_dropout_prob lowerCAmelCase__ : Dict = max_position_embeddings lowerCAmelCase__ : int = type_vocab_size lowerCAmelCase__ : int = type_sequence_label_size lowerCAmelCase__ : Dict = initializer_range lowerCAmelCase__ : List[str] = num_labels lowerCAmelCase__ : Any = num_choices lowerCAmelCase__ : List[Any] = scope def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ : Tuple = None if self.use_input_mask: lowerCAmelCase__ : str = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ : List[str] = None if self.use_token_type_ids: lowerCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : Dict = None lowerCAmelCase__ : str = None if self.use_labels: lowerCAmelCase__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self : Tuple , a : Dict , a : List[str] , a : str , a : Union[str, Any] , a : Optional[Any] , a : Dict , a : str ): '''simple docstring''' lowerCAmelCase__ : str = LlamaModel(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Dict = model(a , attention_mask=a ) lowerCAmelCase__ : Union[str, Any] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : int , a : Any , a : Union[str, Any] , a : Dict , a : Dict , a : List[Any] , a : Optional[Any] , a : int , a : Dict , a : Tuple , ): '''simple docstring''' lowerCAmelCase__ : int = True lowerCAmelCase__ : Dict = LlamaModel(a ) model.to(a ) model.eval() lowerCAmelCase__ : List[Any] = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , ) lowerCAmelCase__ : Optional[int] = model( a , attention_mask=a , encoder_hidden_states=a , ) lowerCAmelCase__ : Union[str, Any] = model(a , attention_mask=a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : Union[str, Any] , a : int , a : List[Any] , a : int , a : Tuple , a : List[Any] , a : Union[str, Any] , a : Any , a : List[str] , a : List[str] , ): '''simple docstring''' lowerCAmelCase__ : List[Any] = LlamaForCausalLM(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Tuple = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : str , a : Any , a : Tuple , a : str , a : Union[str, Any] , a : Optional[Any] , a : List[Any] , a : Optional[Any] , a : Optional[Any] , a : List[str] , ): '''simple docstring''' lowerCAmelCase__ : str = True lowerCAmelCase__ : Optional[int] = True lowerCAmelCase__ : List[Any] = LlamaForCausalLM(config=a ) model.to(a ) model.eval() # first forward pass lowerCAmelCase__ : List[str] = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , use_cache=a , ) lowerCAmelCase__ : List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase__ : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase__ : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase__ : int = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase__ : Any = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase__ : Union[str, Any] = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , output_hidden_states=a , )['hidden_states'][0] lowerCAmelCase__ : Union[str, Any] = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , past_key_values=a , output_hidden_states=a , )['hidden_states'][0] # select random slice lowerCAmelCase__ : Any = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase__ : Optional[int] = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a , a , atol=1E-3 ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : Any = config_and_inputs lowerCAmelCase__ : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () lowercase = (LlamaForCausalLM,) if is_torch_available() else () lowercase = ( { 'feature-extraction': LlamaModel, 'text-classification': LlamaForSequenceClassification, 'text-generation': LlamaForCausalLM, 'zero-shot': LlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Tuple = LlamaModelTester(self ) lowerCAmelCase__ : str = ConfigTester(self , config_class=a , hidden_size=37 ) def _lowerCamelCase ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase__ : int = type self.model_tester.create_and_check_model(*a ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : int = 3 lowerCAmelCase__ : Dict = input_dict['input_ids'] lowerCAmelCase__ : Optional[Any] = input_ids.ne(1 ).to(a ) lowerCAmelCase__ : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase__ : Tuple = LlamaForSequenceClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : str = model(a , attention_mask=a , labels=a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : List[Any] = 3 lowerCAmelCase__ : List[str] = 'single_label_classification' lowerCAmelCase__ : List[Any] = input_dict['input_ids'] lowerCAmelCase__ : List[Any] = input_ids.ne(1 ).to(a ) lowerCAmelCase__ : Optional[int] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase__ : int = LlamaForSequenceClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : Optional[int] = model(a , attention_mask=a , labels=a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Optional[Any] = 3 lowerCAmelCase__ : Optional[Any] = 'multi_label_classification' lowerCAmelCase__ : List[str] = input_dict['input_ids'] lowerCAmelCase__ : Tuple = input_ids.ne(1 ).to(a ) lowerCAmelCase__ : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase__ : Dict = LlamaForSequenceClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : Dict = model(a , attention_mask=a , labels=a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def _lowerCamelCase ( self : Optional[int] , a : Dict ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Tuple = ids_tensor([1, 10] , config.vocab_size ) lowerCAmelCase__ : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase__ : List[Any] = LlamaModel(a ) original_model.to(a ) original_model.eval() lowerCAmelCase__ : List[Any] = original_model(a ).last_hidden_state lowerCAmelCase__ : str = original_model(a ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase__ : Any = {'type': scaling_type, 'factor': 1_0.0} lowerCAmelCase__ : Union[str, Any] = LlamaModel(a ) scaled_model.to(a ) scaled_model.eval() lowerCAmelCase__ : Union[str, Any] = scaled_model(a ).last_hidden_state lowerCAmelCase__ : Optional[int] = scaled_model(a ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(a , a , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(a , a , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(a , a , atol=1E-5 ) ) @require_torch class A__ ( unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : int = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowerCAmelCase__ : List[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) lowerCAmelCase__ : Any = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 lowerCAmelCase__ : Dict = torch.tensor([[-6.6_5_5_0, -4.1_2_2_7, -4.9_8_5_9, -3.2_4_0_6, 0.8_2_6_2, -3.0_0_3_3, 1.2_9_6_4, -3.3_6_9_9]] ) torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase__ : List[Any] = torch.tensor([-1_2.8_2_8_1, -7.4_4_5_3, -0.4_6_3_9, -8.0_6_2_5, -7.2_5_0_0, -8.0_0_0_0, -6.4_8_8_3, -7.7_6_9_5, -7.8_4_3_8, -7.0_3_1_2, -6.2_1_8_8, -7.1_3_2_8, -1.8_4_9_6, 1.9_9_6_1, -8.6_2_5_0, -6.7_2_2_7, -1_2.8_2_8_1, -6.9_4_9_2, -7.0_7_4_2, -7.7_8_5_2, -7.5_8_2_0, -7.9_0_6_2, -6.9_3_7_5, -7.9_8_0_5, -8.3_4_3_8, -8.1_5_6_2, -8.0_4_6_9, -7.6_2_5_0, -7.7_4_2_2, -7.3_3_9_8,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : str = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowerCAmelCase__ : Optional[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) lowerCAmelCase__ : List[str] = model(torch.tensor(a ) ) # Expected mean on dim = -1 lowerCAmelCase__ : Union[str, Any] = torch.tensor([[-2.0_6_2_2, -1.2_7_9_4, -1.1_6_3_8, -0.9_7_8_8, -1.4_6_0_3, -1.0_2_3_8, -1.7_8_9_3, -1.4_4_1_1]] ) torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase__ : Any = torch.tensor([-8.1_4_0_6, -8.0_5_4_7, 2.7_4_6_1, -1.2_3_4_4, -0.1_4_4_8, -1.8_2_6_2, -1.0_0_2_0, -1.8_1_5_4, -1.6_8_9_5, -1.8_5_1_6, -2.3_5_7_4, -0.9_2_7_7, 3.7_5_9_8, 6.5_7_4_2, -1.2_9_9_8, -0.1_1_7_7, -8.1_4_0_6, -2.9_6_8_8, -2.9_1_9_9, -3.1_6_9_9, -3.5_2_5_4, -2.3_5_5_5, -2.7_9_8_8, -3.4_1_4_1, -2.8_2_6_2, -4.5_1_9_5, -3.3_3_7_9, -3.3_1_6_4, -2.7_8_3_2, -3.0_2_7_3] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : int = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowerCAmelCase__ : Optional[int] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) lowerCAmelCase__ : str = model(torch.tensor(a ) ) # Expected mean on dim = -1 lowerCAmelCase__ : str = torch.tensor([[-0.8_5_6_2, -1.8_5_2_0, -0.7_5_5_1, -0.4_1_6_2, -1.5_1_6_1, -1.2_0_3_8, -2.4_8_2_3, -2.3_2_5_4]] ) torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase__ : List[str] = torch.tensor([-2.2_2_2_7, 4.8_8_2_8, 0.9_0_2_3, -0.4_5_7_8, -0.7_8_7_1, -0.1_0_3_3, -0.6_2_2_1, -0.5_7_8_6, -0.7_8_0_3, -1.0_6_7_4, -1.2_9_2_0, -0.1_5_7_0, 0.8_0_0_8, 2.0_7_2_3, -0.9_4_9_7, 0.2_7_7_1, -2.2_2_2_7, -0.7_6_1_2, -1.4_3_4_6, -1.2_0_6_1, -1.6_4_2_6, -0.3_0_0_0, -0.7_1_3_9, -1.1_9_3_4, -1.8_6_9_1, -1.6_9_7_3, -1.5_9_4_7, -1.2_7_0_5, -0.3_5_2_3, -0.5_5_1_3] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowerCAmelCase__ : List[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) lowerCAmelCase__ : List[str] = model(torch.tensor(a ) ) lowerCAmelCase__ : int = torch.tensor( [[-4.2_3_2_7, -3.3_3_6_0, -4.6_6_6_5, -4.7_6_3_1, -1.8_1_8_0, -3.4_1_7_0, -1.4_2_1_1, -3.1_8_1_0]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) # fmt: off lowerCAmelCase__ : Optional[int] = torch.tensor([-9.4_9_2_2, -3.9_5_5_1, 1.7_9_9_8, -5.6_7_5_8, -5.1_0_5_5, -5.8_9_8_4, -4.8_3_2_0, -6.8_0_8_6, -6.5_3_9_1, -5.6_1_7_2, -5.5_8_2_0, -5.5_3_5_2, 1.7_8_8_1, 3.6_2_8_9, -6.5_1_1_7, -3.4_7_8_5, -9.5_0_0_0, -6.0_3_5_2, -6.8_1_2_5, -6.0_1_9_5, -6.6_8_3_6, -5.4_7_2_7, -6.2_8_1_2, -6.0_3_9_1, -7.3_3_9_8, -7.4_2_9_7, -7.4_8_4_4, -6.5_8_2_0, -5.8_7_8_9, -5.5_3_1_2] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Model is curently gated' ) @slow def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' lowerCAmelCase__ : Tuple = 'Simply put, the theory of relativity states that ' lowerCAmelCase__ : Dict = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) lowerCAmelCase__ : Dict = tokenizer.encode(a , return_tensors='pt' ) lowerCAmelCase__ : str = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=a ) # greedy generation outputs lowerCAmelCase__ : Optional[Any] = model.generate(a , max_new_tokens=64 , top_p=a , temperature=1 , do_sample=a ) lowerCAmelCase__ : Tuple = tokenizer.decode(generated_ids[0] , skip_special_tokens=a ) self.assertEqual(a , a )
307
0
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError('String lengths must match!' ) lowerCAmelCase__ : Optional[int] = 0 for chara, chara in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
371
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """microsoft/unispeech-large-1500h-cv""": ( """https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json""" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class A__ ( __magic_name__ ): lowercase = 'unispeech' def __init__( self : Any , a : List[Any]=32 , a : List[Any]=768 , a : Any=12 , a : List[str]=12 , a : List[Any]=3_072 , a : Any="gelu" , a : Dict=0.1 , a : List[str]=0.1 , a : List[str]=0.1 , a : Union[str, Any]=0.0 , a : str=0.0 , a : int=0.1 , a : List[str]=0.1 , a : List[Any]=0.0_2 , a : Optional[int]=1E-5 , a : Optional[int]="group" , a : Optional[Any]="gelu" , a : List[Any]=(512, 512, 512, 512, 512, 512, 512) , a : Optional[Any]=(5, 2, 2, 2, 2, 2, 2) , a : List[str]=(10, 3, 3, 3, 3, 2, 2) , a : Union[str, Any]=False , a : Union[str, Any]=128 , a : Tuple=16 , a : Dict=False , a : str=True , a : str=0.0_5 , a : Union[str, Any]=10 , a : Tuple=2 , a : int=0.0 , a : Optional[Any]=10 , a : List[str]=0 , a : str=320 , a : List[str]=2 , a : Optional[Any]=0.1 , a : Any=100 , a : Dict=256 , a : Any=256 , a : Dict=0.1 , a : List[Any]="mean" , a : Dict=False , a : str=False , a : Optional[int]=256 , a : Any=80 , a : List[Any]=0 , a : Optional[int]=1 , a : int=2 , a : List[Any]=0.5 , **a : int , ): '''simple docstring''' super().__init__(**a , pad_token_id=a , bos_token_id=a , eos_token_id=a ) lowerCAmelCase__ : List[str] = hidden_size lowerCAmelCase__ : List[str] = feat_extract_norm lowerCAmelCase__ : Optional[Any] = feat_extract_activation lowerCAmelCase__ : str = list(a ) lowerCAmelCase__ : List[str] = list(a ) lowerCAmelCase__ : Tuple = list(a ) lowerCAmelCase__ : Dict = conv_bias lowerCAmelCase__ : Optional[int] = num_conv_pos_embeddings lowerCAmelCase__ : Any = num_conv_pos_embedding_groups lowerCAmelCase__ : str = len(self.conv_dim ) lowerCAmelCase__ : Any = num_hidden_layers lowerCAmelCase__ : Dict = intermediate_size lowerCAmelCase__ : Dict = hidden_act lowerCAmelCase__ : Union[str, Any] = num_attention_heads lowerCAmelCase__ : Union[str, Any] = hidden_dropout lowerCAmelCase__ : Tuple = attention_dropout lowerCAmelCase__ : str = activation_dropout lowerCAmelCase__ : Any = feat_proj_dropout lowerCAmelCase__ : List[Any] = final_dropout lowerCAmelCase__ : Tuple = layerdrop lowerCAmelCase__ : Any = layer_norm_eps lowerCAmelCase__ : Dict = initializer_range lowerCAmelCase__ : Optional[Any] = num_ctc_classes lowerCAmelCase__ : Tuple = vocab_size lowerCAmelCase__ : Dict = do_stable_layer_norm lowerCAmelCase__ : List[Any] = use_weighted_layer_sum lowerCAmelCase__ : Any = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase__ : Union[str, Any] = apply_spec_augment lowerCAmelCase__ : Any = mask_time_prob lowerCAmelCase__ : Dict = mask_time_length lowerCAmelCase__ : Tuple = mask_time_min_masks lowerCAmelCase__ : Optional[int] = mask_feature_prob lowerCAmelCase__ : Optional[Any] = mask_feature_length lowerCAmelCase__ : int = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCAmelCase__ : int = num_codevectors_per_group lowerCAmelCase__ : Any = num_codevector_groups lowerCAmelCase__ : Any = contrastive_logits_temperature lowerCAmelCase__ : int = feat_quantizer_dropout lowerCAmelCase__ : List[Any] = num_negatives lowerCAmelCase__ : List[str] = codevector_dim lowerCAmelCase__ : Optional[int] = proj_codevector_dim lowerCAmelCase__ : Dict = diversity_loss_weight # ctc loss lowerCAmelCase__ : Any = ctc_loss_reduction lowerCAmelCase__ : Any = ctc_zero_infinity # pretraining loss lowerCAmelCase__ : Union[str, Any] = replace_prob @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
307
0
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> bool: if num < 0: return False lowerCAmelCase__ : int = num lowerCAmelCase__ : int = 0 while num > 0: lowerCAmelCase__ : Any = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
350
import torch from torch import nn class A__ ( nn.Module ): def __init__( self : Optional[int] , a : Union[str, Any] , a : str , a : str , a : List[Any] , a : List[Any]=1 , a : Tuple=False ): '''simple docstring''' super().__init__() lowerCAmelCase__ : Dict = n_token lowerCAmelCase__ : Any = d_embed lowerCAmelCase__ : str = d_proj lowerCAmelCase__ : int = cutoffs + [n_token] lowerCAmelCase__ : Union[str, Any] = [0] + self.cutoffs lowerCAmelCase__ : str = div_val lowerCAmelCase__ : Tuple = self.cutoffs[0] lowerCAmelCase__ : Dict = len(self.cutoffs ) - 1 lowerCAmelCase__ : Any = self.shortlist_size + self.n_clusters if self.n_clusters > 0: lowerCAmelCase__ : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) lowerCAmelCase__ : Optional[Any] = nn.Parameter(torch.zeros(self.n_clusters ) ) lowerCAmelCase__ : Optional[int] = nn.ModuleList() lowerCAmelCase__ : Tuple = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(a , a ) ) ) else: self.out_projs.append(a ) self.out_layers.append(nn.Linear(a , a ) ) else: for i in range(len(self.cutoffs ) ): lowerCAmelCase__ , lowerCAmelCase__ : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase__ : Optional[Any] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(a , a ) ) ) self.out_layers.append(nn.Linear(a , r_idx - l_idx ) ) lowerCAmelCase__ : Tuple = keep_order def _lowerCamelCase ( self : Optional[int] , a : List[str] , a : int , a : List[str] , a : str ): '''simple docstring''' if proj is None: lowerCAmelCase__ : Tuple = nn.functional.linear(a , a , bias=a ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: lowerCAmelCase__ : int = nn.functional.linear(a , proj.t().contiguous() ) lowerCAmelCase__ : Tuple = nn.functional.linear(a , a , bias=a ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def _lowerCamelCase ( self : List[str] , a : List[Any] , a : Optional[int]=None , a : Tuple=False ): '''simple docstring''' if labels is not None: # Shift so that tokens < n predict n lowerCAmelCase__ : str = hidden[..., :-1, :].contiguous() lowerCAmelCase__ : Optional[Any] = labels[..., 1:].contiguous() lowerCAmelCase__ : List[Any] = hidden.view(-1 , hidden.size(-1 ) ) lowerCAmelCase__ : Tuple = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('Input and labels should have the same size in the batch dimension.' ) else: lowerCAmelCase__ : Optional[Any] = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: lowerCAmelCase__ : Optional[Any] = self._compute_logit(a , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: lowerCAmelCase__ : str = labels != -100 lowerCAmelCase__ : int = torch.zeros_like(a , dtype=hidden.dtype , device=hidden.device ) lowerCAmelCase__ : List[str] = ( -nn.functional.log_softmax(a , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: lowerCAmelCase__ : Optional[Any] = nn.functional.log_softmax(a , dim=-1 ) else: # construct weights and biases lowerCAmelCase__ , lowerCAmelCase__ : int = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase__ : Any = self.out_layers[0].weight[l_idx:r_idx] lowerCAmelCase__ : Any = self.out_layers[0].bias[l_idx:r_idx] else: lowerCAmelCase__ : Optional[Any] = self.out_layers[i].weight lowerCAmelCase__ : Optional[int] = self.out_layers[i].bias if i == 0: lowerCAmelCase__ : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowerCAmelCase__ : Union[str, Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(a ) biases.append(a ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = weights[0], biases[0], self.out_projs[0] lowerCAmelCase__ : List[Any] = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : Union[str, Any] = nn.functional.log_softmax(a , dim=1 ) if labels is None: lowerCAmelCase__ : Tuple = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: lowerCAmelCase__ : Dict = torch.zeros_like(a , dtype=hidden.dtype , device=hidden.device ) lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : Union[str, Any] = [0] + self.cutoffs for i in range(len(a ) - 1 ): lowerCAmelCase__ , lowerCAmelCase__ : Tuple = cutoff_values[i], cutoff_values[i + 1] if labels is not None: lowerCAmelCase__ : Tuple = (labels >= l_idx) & (labels < r_idx) lowerCAmelCase__ : int = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue lowerCAmelCase__ : Tuple = labels.index_select(0 , a ) - l_idx lowerCAmelCase__ : Any = head_logprob.index_select(0 , a ) lowerCAmelCase__ : Optional[int] = hidden.index_select(0 , a ) else: lowerCAmelCase__ : Any = hidden if i == 0: if labels is not None: lowerCAmelCase__ : Union[str, Any] = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: lowerCAmelCase__ : List[str] = head_logprob[:, : self.cutoffs[0]] else: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = weights[i], biases[i], self.out_projs[i] lowerCAmelCase__ : Union[str, Any] = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : Optional[int] = nn.functional.log_softmax(a , dim=1 ) lowerCAmelCase__ : List[Any] = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: lowerCAmelCase__ : List[str] = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: lowerCAmelCase__ : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i lowerCAmelCase__ : Union[str, Any] = logprob_i if labels is not None: if (hasattr(self , 'keep_order' ) and self.keep_order) or keep_order: out.index_copy_(0 , a , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def _lowerCamelCase ( self : List[Any] , a : Any ): '''simple docstring''' if self.n_clusters == 0: lowerCAmelCase__ : Union[str, Any] = self._compute_logit(a , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(a , dim=-1 ) else: # construct weights and biases lowerCAmelCase__ , lowerCAmelCase__ : str = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase__ : str = self.out_layers[0].weight[l_idx:r_idx] lowerCAmelCase__ : Dict = self.out_layers[0].bias[l_idx:r_idx] else: lowerCAmelCase__ : int = self.out_layers[i].weight lowerCAmelCase__ : int = self.out_layers[i].bias if i == 0: lowerCAmelCase__ : Optional[int] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowerCAmelCase__ : Union[str, Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(a ) biases.append(a ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : str = weights[0], biases[0], self.out_projs[0] lowerCAmelCase__ : Dict = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : List[Any] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) lowerCAmelCase__ : Optional[Any] = nn.functional.log_softmax(a , dim=1 ) lowerCAmelCase__ : List[Any] = [0] + self.cutoffs for i in range(len(a ) - 1 ): lowerCAmelCase__ , lowerCAmelCase__ : str = cutoff_values[i], cutoff_values[i + 1] if i == 0: lowerCAmelCase__ : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = weights[i], biases[i], self.out_projs[i] lowerCAmelCase__ : Dict = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : List[str] = nn.functional.log_softmax(a , dim=1 ) lowerCAmelCase__ : Dict = head_logprob[:, -i] + tail_logprob_i lowerCAmelCase__ : List[str] = logprob_i return out
307
0
import numpy as np from PIL import Image def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> np.ndarray: lowerCAmelCase__ : Optional[Any] = np.array(SCREAMING_SNAKE_CASE_ ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) lowerCAmelCase__ : Any = 0 lowerCAmelCase__ : Optional[int] = 0 lowerCAmelCase__ : Union[str, Any] = 0 lowerCAmelCase__ : Union[str, Any] = 0 # compute the shape of the output matrix lowerCAmelCase__ : Optional[Any] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape lowerCAmelCase__ : Tuple = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix lowerCAmelCase__ : int = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase__ : Union[str, Any] = 0 lowerCAmelCase__ : Union[str, Any] = 0 return updated_arr def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> np.ndarray: lowerCAmelCase__ : List[str] = np.array(SCREAMING_SNAKE_CASE_ ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) lowerCAmelCase__ : str = 0 lowerCAmelCase__ : int = 0 lowerCAmelCase__ : Optional[int] = 0 lowerCAmelCase__ : Optional[int] = 0 # compute the shape of the output matrix lowerCAmelCase__ : Tuple = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape lowerCAmelCase__ : Optional[Any] = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix lowerCAmelCase__ : int = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : int = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="""avgpooling""", verbose=True) # Loading the image lowerCamelCase__ = Image.open("""path_to_image""") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
351
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowerCamelCase__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} lowerCamelCase__ = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", """emoji""": True, }, } ] lowerCamelCase__ = 0 for log in Path().glob("""*.log"""): lowerCamelCase__ = 0 with open(log, """r""") as f: for line in f: lowerCamelCase__ = json.loads(line) if line.get("""nodeid""", """""") != "": lowerCamelCase__ = line["""nodeid"""] if line.get("""duration""", None) is not None: lowerCamelCase__ = F"""{line["duration"]:.4f}""" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowerCamelCase__ = [] log.unlink() lowerCamelCase__ = """""" lowerCamelCase__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowerCamelCase__ = [] lowerCamelCase__ = {} for test in failed_tests: lowerCamelCase__ = test[0].split("""::""") lowerCamelCase__ = data[0].split("""/""")[-1] if data[0] not in filesafailed: lowerCamelCase__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowerCamelCase__ = [test[0] for test in failed_table] lowerCamelCase__ = list(set(files)) # Count number of instances in failed_tests lowerCamelCase__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowerCamelCase__ = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: lowerCamelCase__ = """Too many failed tests, please see the full report in the Action results.""" lowerCamelCase__ = len(err) + 10 lowerCamelCase__ = message[: 3000 - offset] + F"""\n...\n```\n{err}""" print(F"""### {message}""") else: lowerCamelCase__ = """No failed tests! 🤗""" print(F"""## {message}""") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient lowerCamelCase__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": lowerCamelCase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) lowerCamelCase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) lowerCamelCase__ = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) lowerCamelCase__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) lowerCamelCase__ = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowerCamelCase__ = """""" for i, row in enumerate(test_failures): if row[0] != test_class: lowerCamelCase__ = row[0] else: lowerCamelCase__ = """""" lowerCamelCase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
307
0
import os import sys import unittest lowerCamelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowerCamelCase__ = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""") lowerCamelCase__ = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""") class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Any = get_test_to_tester_mapping(a ) lowerCAmelCase__ : Any = get_test_to_tester_mapping(a ) lowerCAmelCase__ : Optional[Any] = {'BertModelTest': 'BertModelTester'} lowerCAmelCase__ : List[str] = { 'BlipModelTest': 'BlipModelTester', 'BlipTextImageModelTest': 'BlipTextImageModelsModelTester', 'BlipTextModelTest': 'BlipTextModelTester', 'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester', 'BlipVQAModelTest': 'BlipVQAModelTester', 'BlipVisionModelTest': 'BlipVisionModelTester', } self.assertEqual(get_test_info.to_json(a ) , a ) self.assertEqual(get_test_info.to_json(a ) , a ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : str = get_model_to_test_mapping(a ) lowerCAmelCase__ : Dict = get_model_to_test_mapping(a ) lowerCAmelCase__ : str = { 'BertForMaskedLM': ['BertModelTest'], 'BertForMultipleChoice': ['BertModelTest'], 'BertForNextSentencePrediction': ['BertModelTest'], 'BertForPreTraining': ['BertModelTest'], 'BertForQuestionAnswering': ['BertModelTest'], 'BertForSequenceClassification': ['BertModelTest'], 'BertForTokenClassification': ['BertModelTest'], 'BertLMHeadModel': ['BertModelTest'], 'BertModel': ['BertModelTest'], } lowerCAmelCase__ : List[str] = { 'BlipForConditionalGeneration': ['BlipTextImageModelTest'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'], 'BlipForQuestionAnswering': ['BlipVQAModelTest'], 'BlipModel': ['BlipModelTest'], 'BlipTextModel': ['BlipTextModelTest'], 'BlipVisionModel': ['BlipVisionModelTest'], } self.assertEqual(get_test_info.to_json(a ) , a ) self.assertEqual(get_test_info.to_json(a ) , a ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = get_model_to_tester_mapping(a ) lowerCAmelCase__ : Union[str, Any] = get_model_to_tester_mapping(a ) lowerCAmelCase__ : Union[str, Any] = { 'BertForMaskedLM': ['BertModelTester'], 'BertForMultipleChoice': ['BertModelTester'], 'BertForNextSentencePrediction': ['BertModelTester'], 'BertForPreTraining': ['BertModelTester'], 'BertForQuestionAnswering': ['BertModelTester'], 'BertForSequenceClassification': ['BertModelTester'], 'BertForTokenClassification': ['BertModelTester'], 'BertLMHeadModel': ['BertModelTester'], 'BertModel': ['BertModelTester'], } lowerCAmelCase__ : List[str] = { 'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'], 'BlipForQuestionAnswering': ['BlipVQAModelTester'], 'BlipModel': ['BlipModelTester'], 'BlipTextModel': ['BlipTextModelTester'], 'BlipVisionModel': ['BlipVisionModelTester'], } self.assertEqual(get_test_info.to_json(a ) , a ) self.assertEqual(get_test_info.to_json(a ) , a )
352
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCamelCase__ = imread(r"""digital_image_processing/image_data/lena_small.jpg""") lowerCamelCase__ = cvtColor(img, COLOR_BGR2GRAY) def lowerCAmelCase__ ( ) -> Dict: lowerCAmelCase__ : List[Any] = cn.convert_to_negative(SCREAMING_SNAKE_CASE_ ) # assert negative_img array for at least one True assert negative_img.any() def lowerCAmelCase__ ( ) -> Optional[Any]: with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(SCREAMING_SNAKE_CASE_ , 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def lowerCAmelCase__ ( ) -> Tuple: lowerCAmelCase__ : str = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def lowerCAmelCase__ ( ) -> Tuple: lowerCAmelCase__ : Tuple = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() lowerCAmelCase__ : Optional[Any] = canny.canny(SCREAMING_SNAKE_CASE_ ) # assert canny array for at least one True assert canny_array.any() def lowerCAmelCase__ ( ) -> Optional[int]: assert gg.gaussian_filter(SCREAMING_SNAKE_CASE_ , 5 , sigma=0.9 ).all() def lowerCAmelCase__ ( ) -> Dict: # laplace diagonals lowerCAmelCase__ : Union[str, Any] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowerCAmelCase__ : int = conv.img_convolve(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).astype(SCREAMING_SNAKE_CASE_ ) assert res.any() def lowerCAmelCase__ ( ) -> List[str]: assert med.median_filter(SCREAMING_SNAKE_CASE_ , 3 ).any() def lowerCAmelCase__ ( ) -> Any: lowerCAmelCase__ , lowerCAmelCase__ : str = sob.sobel_filter(SCREAMING_SNAKE_CASE_ ) assert grad.any() and theta.any() def lowerCAmelCase__ ( ) -> Any: lowerCAmelCase__ : int = sp.make_sepia(SCREAMING_SNAKE_CASE_ , 20 ) assert sepia.all() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = "digital_image_processing/image_data/lena_small.jpg" ) -> Optional[Any]: lowerCAmelCase__ : List[Any] = bs.Burkes(imread(SCREAMING_SNAKE_CASE_ , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = "digital_image_processing/image_data/lena_small.jpg" , ) -> Any: lowerCAmelCase__ : Dict = rs.NearestNeighbour(imread(SCREAMING_SNAKE_CASE_ , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def lowerCAmelCase__ ( ) -> int: lowerCAmelCase__ : int = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. lowerCAmelCase__ : List[str] = imread(SCREAMING_SNAKE_CASE_ , 0 ) # Test for get_neighbors_pixel function() return not None lowerCAmelCase__ : str = 0 lowerCAmelCase__ : str = 0 lowerCAmelCase__ : List[str] = image[x_coordinate][y_coordinate] lowerCAmelCase__ : Dict = lbp.get_neighbors_pixel( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCAmelCase__ : List[str] = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): lowerCAmelCase__ : Dict = lbp.local_binary_value(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert lbp_image.any()
307
0
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class A__ ( __magic_name__ , unittest.TestCase ): lowercase = BertTokenizer lowercase = BertTokenizerFast lowercase = True lowercase = True lowercase = filter_non_english def _lowerCamelCase ( self : Tuple ): '''simple docstring''' super().setUp() lowerCAmelCase__ : Union[str, Any] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] lowerCAmelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def _lowerCamelCase ( self : Union[str, Any] , a : int ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = 'UNwant\u00E9d,running' lowerCAmelCase__ : int = 'unwanted, running' return input_text, output_text def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : str = self.tokenizer_class(self.vocab_file ) lowerCAmelCase__ : Optional[int] = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(a , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , [9, 6, 7, 12, 10, 11] ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' if not self.test_rust_tokenizer: return lowerCAmelCase__ : Optional[Any] = self.get_tokenizer() lowerCAmelCase__ : List[str] = self.get_rust_tokenizer() lowerCAmelCase__ : Union[str, Any] = 'UNwant\u00E9d,running' lowerCAmelCase__ : List[Any] = tokenizer.tokenize(a ) lowerCAmelCase__ : int = rust_tokenizer.tokenize(a ) self.assertListEqual(a , a ) lowerCAmelCase__ : Optional[int] = tokenizer.encode(a , add_special_tokens=a ) lowerCAmelCase__ : Dict = rust_tokenizer.encode(a , add_special_tokens=a ) self.assertListEqual(a , a ) lowerCAmelCase__ : str = self.get_rust_tokenizer() lowerCAmelCase__ : Optional[Any] = tokenizer.encode(a ) lowerCAmelCase__ : str = rust_tokenizer.encode(a ) self.assertListEqual(a , a ) # With lower casing lowerCAmelCase__ : int = self.get_tokenizer(do_lower_case=a ) lowerCAmelCase__ : List[str] = self.get_rust_tokenizer(do_lower_case=a ) lowerCAmelCase__ : Dict = 'UNwant\u00E9d,running' lowerCAmelCase__ : Dict = tokenizer.tokenize(a ) lowerCAmelCase__ : Optional[int] = rust_tokenizer.tokenize(a ) self.assertListEqual(a , a ) lowerCAmelCase__ : List[Any] = tokenizer.encode(a , add_special_tokens=a ) lowerCAmelCase__ : Optional[int] = rust_tokenizer.encode(a , add_special_tokens=a ) self.assertListEqual(a , a ) lowerCAmelCase__ : str = self.get_rust_tokenizer() lowerCAmelCase__ : Any = tokenizer.encode(a ) lowerCAmelCase__ : Optional[Any] = rust_tokenizer.encode(a ) self.assertListEqual(a , a ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : List[Any] = BasicTokenizer(do_lower_case=a ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : List[Any] = BasicTokenizer(do_lower_case=a , strip_accents=a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = BasicTokenizer(do_lower_case=a , strip_accents=a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : str = BasicTokenizer(do_lower_case=a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : str = BasicTokenizer(do_lower_case=a ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = BasicTokenizer(do_lower_case=a , strip_accents=a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = BasicTokenizer(do_lower_case=a , strip_accents=a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Any = BasicTokenizer(do_lower_case=a , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = BasicTokenizer() lowerCAmelCase__ : Tuple = 'a\n\'ll !!to?\'d of, can\'t.' lowerCAmelCase__ : Optional[Any] = ['a', '\'', 'll', '!', '!', 'to', '?', '\'', 'd', 'of', ',', 'can', '\'', 't', '.'] self.assertListEqual(tokenizer.tokenize(a ) , a ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] lowerCAmelCase__ : Dict = {} for i, token in enumerate(a ): lowerCAmelCase__ : Union[str, Any] = i lowerCAmelCase__ : Optional[Any] = WordpieceTokenizer(vocab=a , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Dict = self.get_tokenizer() lowerCAmelCase__ : Union[str, Any] = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(a ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(a ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) @slow def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.tokenizer_class.from_pretrained('bert-base-uncased' ) lowerCAmelCase__ : List[Any] = tokenizer.encode('sequence builders' , add_special_tokens=a ) lowerCAmelCase__ : Optional[Any] = tokenizer.encode('multi-sequence build' , add_special_tokens=a ) lowerCAmelCase__ : List[str] = tokenizer.build_inputs_with_special_tokens(a ) lowerCAmelCase__ : Dict = tokenizer.build_inputs_with_special_tokens(a , a ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def _lowerCamelCase ( self : List[str] ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase__ : Tuple = self.rust_tokenizer_class.from_pretrained(a , **a ) lowerCAmelCase__ : Optional[int] = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' lowerCAmelCase__ : List[Any] = tokenizer_r.encode_plus( a , return_attention_mask=a , return_token_type_ids=a , return_offsets_mapping=a , add_special_tokens=a , ) lowerCAmelCase__ : Tuple = tokenizer_r.do_lower_case if hasattr(a , 'do_lower_case' ) else False lowerCAmelCase__ : Optional[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = ['的', '人', '有'] lowerCAmelCase__ : Optional[Any] = ''.join(a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase__ : str = True lowerCAmelCase__ : Union[str, Any] = self.tokenizer_class.from_pretrained(a , **a ) lowerCAmelCase__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(a , **a ) lowerCAmelCase__ : List[str] = tokenizer_p.encode(a , add_special_tokens=a ) lowerCAmelCase__ : Dict = tokenizer_r.encode(a , add_special_tokens=a ) lowerCAmelCase__ : str = tokenizer_r.convert_ids_to_tokens(a ) lowerCAmelCase__ : Tuple = tokenizer_p.convert_ids_to_tokens(a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(a , a ) self.assertListEqual(a , a ) lowerCAmelCase__ : Any = False lowerCAmelCase__ : Any = self.rust_tokenizer_class.from_pretrained(a , **a ) lowerCAmelCase__ : Any = self.tokenizer_class.from_pretrained(a , **a ) lowerCAmelCase__ : int = tokenizer_r.encode(a , add_special_tokens=a ) lowerCAmelCase__ : Optional[Any] = tokenizer_p.encode(a , add_special_tokens=a ) lowerCAmelCase__ : Tuple = tokenizer_r.convert_ids_to_tokens(a ) lowerCAmelCase__ : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(a ) # it is expected that only the first Chinese character is not preceded by "##". lowerCAmelCase__ : Optional[int] = [ f'''##{token}''' if idx != 0 else token for idx, token in enumerate(a ) ] self.assertListEqual(a , a ) self.assertListEqual(a , a )
353
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
0
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(SCREAMING_SNAKE_CASE_ , n - 1 , SCREAMING_SNAKE_CASE_ ) * a) % mod else: lowerCAmelCase__ : str = binary_exponentiation(SCREAMING_SNAKE_CASE_ , n / 2 , SCREAMING_SNAKE_CASE_ ) return (b * b) % mod # a prime number lowerCamelCase__ = 701 lowerCamelCase__ = 10_0000_0000 lowerCamelCase__ = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
354
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.999 , SCREAMING_SNAKE_CASE_="cosine" , ) -> Union[str, Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(SCREAMING_SNAKE_CASE_ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(SCREAMING_SNAKE_CASE_ ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) lowerCAmelCase__ : Tuple = [] for i in range(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : List[Any] = i / num_diffusion_timesteps lowerCAmelCase__ : str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) / alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ) return torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ) class A__ ( __magic_name__ , __magic_name__ ): lowercase = [e.name for e in KarrasDiffusionSchedulers] lowercase = 2 @register_to_config def __init__( self : Union[str, Any] , a : int = 1_000 , a : float = 0.0_0_0_8_5 , a : float = 0.0_1_2 , a : str = "linear" , a : Optional[Union[np.ndarray, List[float]]] = None , a : str = "epsilon" , a : Optional[bool] = False , a : Optional[bool] = False , a : float = 1.0 , a : str = "linspace" , a : int = 0 , ): '''simple docstring''' if trained_betas is not None: lowerCAmelCase__ : List[str] = torch.tensor(a , dtype=torch.floataa ) elif beta_schedule == "linear": lowerCAmelCase__ : List[str] = torch.linspace(a , a , a , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowerCAmelCase__ : Union[str, Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , a , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowerCAmelCase__ : int = betas_for_alpha_bar(a , alpha_transform_type='cosine' ) elif beta_schedule == "exp": lowerCAmelCase__ : List[str] = betas_for_alpha_bar(a , alpha_transform_type='exp' ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) lowerCAmelCase__ : int = 1.0 - self.betas lowerCAmelCase__ : Tuple = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(a , a , a ) lowerCAmelCase__ : Optional[Any] = use_karras_sigmas def _lowerCamelCase ( self : str , a : List[Any] , a : str=None ): '''simple docstring''' if schedule_timesteps is None: lowerCAmelCase__ : List[str] = self.timesteps lowerCAmelCase__ : int = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: lowerCAmelCase__ : List[str] = 1 if len(a ) > 1 else 0 else: lowerCAmelCase__ : Tuple = timestep.cpu().item() if torch.is_tensor(a ) else timestep lowerCAmelCase__ : Tuple = self._index_counter[timestep_int] return indices[pos].item() @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _lowerCamelCase ( self : Tuple , a : torch.FloatTensor , a : Union[float, torch.FloatTensor] , ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.index_for_timestep(a ) lowerCAmelCase__ : Any = self.sigmas[step_index] lowerCAmelCase__ : Optional[Any] = sample / ((sigma**2 + 1) ** 0.5) return sample def _lowerCamelCase ( self : List[str] , a : int , a : Union[str, torch.device] = None , a : Optional[int] = None , ): '''simple docstring''' lowerCAmelCase__ : Any = num_inference_steps lowerCAmelCase__ : Union[str, Any] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowerCAmelCase__ : Union[str, Any] = np.linspace(0 , num_train_timesteps - 1 , a , dtype=a )[::-1].copy() elif self.config.timestep_spacing == "leading": lowerCAmelCase__ : List[Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCAmelCase__ : Dict = (np.arange(0 , a ) * step_ratio).round()[::-1].copy().astype(a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowerCAmelCase__ : Tuple = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCAmelCase__ : int = (np.arange(a , 0 , -step_ratio )).round().copy().astype(a ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) lowerCAmelCase__ : str = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) lowerCAmelCase__ : List[Any] = np.log(a ) lowerCAmelCase__ : Optional[int] = np.interp(a , np.arange(0 , len(a ) ) , a ) if self.config.use_karras_sigmas: lowerCAmelCase__ : str = self._convert_to_karras(in_sigmas=a , num_inference_steps=self.num_inference_steps ) lowerCAmelCase__ : Union[str, Any] = np.array([self._sigma_to_t(a , a ) for sigma in sigmas] ) lowerCAmelCase__ : Tuple = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) lowerCAmelCase__ : Dict = torch.from_numpy(a ).to(device=a ) lowerCAmelCase__ : Union[str, Any] = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) lowerCAmelCase__ : Tuple = torch.from_numpy(a ) lowerCAmelCase__ : List[str] = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(a ).startswith('mps' ): # mps does not support float64 lowerCAmelCase__ : Optional[Any] = timesteps.to(a , dtype=torch.floataa ) else: lowerCAmelCase__ : Any = timesteps.to(device=a ) # empty dt and derivative lowerCAmelCase__ : str = None lowerCAmelCase__ : Optional[int] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowerCAmelCase__ : Optional[Any] = defaultdict(a ) def _lowerCamelCase ( self : Any , a : Dict , a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = np.log(a ) # get distribution lowerCAmelCase__ : Tuple = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range lowerCAmelCase__ : Optional[int] = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) lowerCAmelCase__ : List[str] = low_idx + 1 lowerCAmelCase__ : List[str] = log_sigmas[low_idx] lowerCAmelCase__ : Any = log_sigmas[high_idx] # interpolate sigmas lowerCAmelCase__ : Union[str, Any] = (low - log_sigma) / (low - high) lowerCAmelCase__ : List[Any] = np.clip(a , 0 , 1 ) # transform interpolation to time range lowerCAmelCase__ : List[Any] = (1 - w) * low_idx + w * high_idx lowerCAmelCase__ : Any = t.reshape(sigma.shape ) return t def _lowerCamelCase ( self : Tuple , a : torch.FloatTensor , a : Any ): '''simple docstring''' lowerCAmelCase__ : float = in_sigmas[-1].item() lowerCAmelCase__ : float = in_sigmas[0].item() lowerCAmelCase__ : Tuple = 7.0 # 7.0 is the value used in the paper lowerCAmelCase__ : Tuple = np.linspace(0 , 1 , a ) lowerCAmelCase__ : Any = sigma_min ** (1 / rho) lowerCAmelCase__ : Optional[Any] = sigma_max ** (1 / rho) lowerCAmelCase__ : Tuple = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _lowerCamelCase ( self : Any ): '''simple docstring''' return self.dt is None def _lowerCamelCase ( self : List[str] , a : Union[torch.FloatTensor, np.ndarray] , a : Union[float, torch.FloatTensor] , a : Union[torch.FloatTensor, np.ndarray] , a : bool = True , ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.index_for_timestep(a ) # advance index counter by 1 lowerCAmelCase__ : Tuple = timestep.cpu().item() if torch.is_tensor(a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowerCAmelCase__ : Union[str, Any] = self.sigmas[step_index] lowerCAmelCase__ : Union[str, Any] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method lowerCAmelCase__ : int = self.sigmas[step_index - 1] lowerCAmelCase__ : Any = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowerCAmelCase__ : Optional[int] = 0 lowerCAmelCase__ : Union[str, Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowerCAmelCase__ : int = sigma_hat if self.state_in_first_order else sigma_next lowerCAmelCase__ : Any = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowerCAmelCase__ : Dict = sigma_hat if self.state_in_first_order else sigma_next lowerCAmelCase__ : List[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": lowerCAmelCase__ : int = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.config.clip_sample: lowerCAmelCase__ : str = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowerCAmelCase__ : Dict = (sample - pred_original_sample) / sigma_hat # 3. delta timestep lowerCAmelCase__ : Optional[int] = sigma_next - sigma_hat # store for 2nd order step lowerCAmelCase__ : List[Any] = derivative lowerCAmelCase__ : str = dt lowerCAmelCase__ : Dict = sample else: # 2. 2nd order / Heun's method lowerCAmelCase__ : Union[str, Any] = (sample - pred_original_sample) / sigma_next lowerCAmelCase__ : Union[str, Any] = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample lowerCAmelCase__ : Dict = self.dt lowerCAmelCase__ : Optional[int] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" lowerCAmelCase__ : List[str] = None lowerCAmelCase__ : Tuple = None lowerCAmelCase__ : str = None lowerCAmelCase__ : Tuple = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=a ) def _lowerCamelCase ( self : int , a : torch.FloatTensor , a : torch.FloatTensor , a : torch.FloatTensor , ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(a ): # mps does not support float64 lowerCAmelCase__ : Optional[int] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) lowerCAmelCase__ : int = timesteps.to(original_samples.device , dtype=torch.floataa ) else: lowerCAmelCase__ : Union[str, Any] = self.timesteps.to(original_samples.device ) lowerCAmelCase__ : Optional[Any] = timesteps.to(original_samples.device ) lowerCAmelCase__ : List[Any] = [self.index_for_timestep(a , a ) for t in timesteps] lowerCAmelCase__ : List[str] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): lowerCAmelCase__ : Any = sigma.unsqueeze(-1 ) lowerCAmelCase__ : List[str] = original_samples + noise * sigma return noisy_samples def __len__( self : int ): '''simple docstring''' return self.config.num_train_timesteps
307
0
from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False ) -> list[float]: if radian_mode: return [magnitude * cos(SCREAMING_SNAKE_CASE_ ), magnitude * sin(SCREAMING_SNAKE_CASE_ )] return [magnitude * cos(radians(SCREAMING_SNAKE_CASE_ ) ), magnitude * sin(radians(SCREAMING_SNAKE_CASE_ ) )] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 10**-1 ) -> bool: lowerCAmelCase__ : NDArray[floataa] = cross(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : float = sum(SCREAMING_SNAKE_CASE_ ) return abs(SCREAMING_SNAKE_CASE_ ) < eps if __name__ == "__main__": # Test to check if it works lowerCamelCase__ = array( [ polar_force(718.4, 180 - 30), polar_force(879.54, 45), polar_force(100, -90), ] ) lowerCamelCase__ = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg lowerCamelCase__ = array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) lowerCamelCase__ = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg lowerCamelCase__ = array([[0, -2000], [0, -1200], [0, 1_5600], [0, -1_2400]]) lowerCamelCase__ = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
355
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: if isinstance(SCREAMING_SNAKE_CASE_ , collections.abc.Iterable ): return x return (x, x) @require_tf class A__ : def _lowerCamelCase ( self : List[Any] , a : List[str] , a : Optional[Any] ): '''simple docstring''' pass def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' pass def _lowerCamelCase ( self : Dict ): '''simple docstring''' pass def _lowerCamelCase ( self : Dict , a : int , a : str , a : List[Any] , a : Dict , a : List[str]=None , **a : Dict ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(a , a ) lowerCAmelCase__ : Tuple = TFVisionTextDualEncoderModel(a ) lowerCAmelCase__ : Tuple = model(input_ids=a , pixel_values=a , attention_mask=a ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) ) def _lowerCamelCase ( self : Union[str, Any] , a : Dict , a : Tuple , a : Dict , a : Union[str, Any] , a : List[Any]=None , **a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.get_vision_text_model(a , a ) lowerCAmelCase__ : List[Any] = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : Optional[int] = model(input_ids=a , pixel_values=a , attention_mask=a ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _lowerCamelCase ( self : List[str] , a : Optional[int] , a : Optional[int] , a : Union[str, Any] , a : List[Any] , a : Any=None , **a : Dict ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Optional[Any] = {'vision_model': vision_model, 'text_model': text_model} lowerCAmelCase__ : Tuple = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**a ) lowerCAmelCase__ : Union[str, Any] = model(input_ids=a , pixel_values=a , attention_mask=a ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _lowerCamelCase ( self : Any , a : Optional[int] , a : Optional[int] , a : Dict , a : Optional[int] , a : Optional[int]=None , **a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : int = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Dict = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : List[str] = model(input_ids=a , pixel_values=a , attention_mask=a ) lowerCAmelCase__ : Union[str, Any] = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(a ) lowerCAmelCase__ : Any = TFVisionTextDualEncoderModel.from_pretrained(a ) lowerCAmelCase__ : int = model(input_ids=a , pixel_values=a , attention_mask=a ) lowerCAmelCase__ : Union[str, Any] = after_output[0].numpy() lowerCAmelCase__ : Optional[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a , 1E-5 ) def _lowerCamelCase ( self : List[str] , a : Dict , a : Optional[int] , a : List[Any] , a : str , a : int=None , **a : Tuple ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Any = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : str = model( input_ids=a , pixel_values=a , attention_mask=a , output_attentions=a ) lowerCAmelCase__ : Union[str, Any] = output.vision_model_output.attentions self.assertEqual(len(a ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase__ : Optional[int] = to_atuple(vision_model.config.image_size ) lowerCAmelCase__ : Optional[Any] = to_atuple(vision_model.config.patch_size ) lowerCAmelCase__ : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCAmelCase__ : int = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCAmelCase__ : str = output.text_model_output.attentions self.assertEqual(len(a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCamelCase ( self : List[Any] , a : np.ndarray , a : np.ndarray , a : float ): '''simple docstring''' lowerCAmelCase__ : int = np.abs((a - b) ).max() self.assertLessEqual(a , a , f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**a ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Any = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**a ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : str = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() self.check_save_load(**a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**a ) @slow def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = self.get_pretrained_model_and_inputs() lowerCAmelCase__ : List[Any] = model_a(**a ) lowerCAmelCase__ : Optional[int] = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(a ) lowerCAmelCase__ : str = TFVisionTextDualEncoderModel.from_pretrained(a ) lowerCAmelCase__ : List[str] = model_a(**a ) lowerCAmelCase__ : int = after_outputs[0].numpy() lowerCAmelCase__ : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a , 1E-5 ) @require_tf class A__ ( __magic_name__ , unittest.TestCase ): def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-random-bert' ) lowerCAmelCase__ : int = 13 lowerCAmelCase__ : List[Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ : int = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ : Optional[Any] = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ : List[Any] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _lowerCamelCase ( self : List[Any] , a : Dict , a : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = TFViTModel(a , name='vision_model' ) lowerCAmelCase__ : str = TFBertModel(a , name='text_model' ) return vision_model, text_model def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = TFViTModelTester(self ) lowerCAmelCase__ : Tuple = TFBertModelTester(self ) lowerCAmelCase__ : Optional[int] = vit_model_tester.prepare_config_and_inputs() lowerCAmelCase__ : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : int = vision_config_and_inputs ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : str = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class A__ ( __magic_name__ , unittest.TestCase ): def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-deit-tf' , 'hf-internal-testing/tiny-random-roberta' ) lowerCAmelCase__ : Tuple = 13 lowerCAmelCase__ : Any = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ : Dict = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ : Any = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ : Tuple = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _lowerCamelCase ( self : str , a : Optional[Any] , a : Dict , a : Dict , a : Any , a : Any=None , **a : int ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Optional[int] = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : Any = model( input_ids=a , pixel_values=a , attention_mask=a , output_attentions=a ) lowerCAmelCase__ : Union[str, Any] = output.vision_model_output.attentions self.assertEqual(len(a ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowerCAmelCase__ : str = to_atuple(vision_model.config.image_size ) lowerCAmelCase__ : Union[str, Any] = to_atuple(vision_model.config.patch_size ) lowerCAmelCase__ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCAmelCase__ : int = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCAmelCase__ : List[str] = output.text_model_output.attentions self.assertEqual(len(a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCamelCase ( self : int , a : Optional[int] , a : int ): '''simple docstring''' lowerCAmelCase__ : Dict = TFDeiTModel(a , name='vision_model' ) lowerCAmelCase__ : List[Any] = TFRobertaModel(a , name='text_model' ) return vision_model, text_model def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Dict = TFDeiTModelTester(self ) lowerCAmelCase__ : List[str] = TFRobertaModelTester(self ) lowerCAmelCase__ : str = vit_model_tester.prepare_config_and_inputs() lowerCAmelCase__ : List[Any] = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[str] = vision_config_and_inputs ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : Any = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class A__ ( __magic_name__ , unittest.TestCase ): def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : int = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-clip-tf' , 'hf-internal-testing/tiny-random-bert' ) lowerCAmelCase__ : Dict = 13 lowerCAmelCase__ : str = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ : List[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ : Union[str, Any] = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ : Optional[int] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _lowerCamelCase ( self : str , a : int , a : List[str] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = TFCLIPVisionModel(a , name='vision_model' ) lowerCAmelCase__ : List[str] = TFBertModel(a , name='text_model' ) return vision_model, text_model def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Any = TFCLIPVisionModelTester(self ) lowerCAmelCase__ : Union[str, Any] = TFBertModelTester(self ) lowerCAmelCase__ : Any = clip_model_tester.prepare_config_and_inputs() lowerCAmelCase__ : Any = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = vision_config_and_inputs ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : str = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class A__ ( unittest.TestCase ): @slow def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Tuple = TFVisionTextDualEncoderModel.from_pretrained( 'clip-italian/clip-italian' , logit_scale_init_value=1.0 , from_pt=a ) lowerCAmelCase__ : List[Any] = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) lowerCAmelCase__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCAmelCase__ : Any = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=a , padding=a , return_tensors='np' ) lowerCAmelCase__ : Union[str, Any] = model(**a ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) lowerCAmelCase__ : List[str] = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , a , atol=1E-3 ) )
307
0
import os def lowerCAmelCase__ ( ) -> Optional[Any]: lowerCAmelCase__ : Optional[Any] = os.path.join(os.path.dirname(SCREAMING_SNAKE_CASE_ ) , 'num.txt' ) with open(SCREAMING_SNAKE_CASE_ ) as file_hand: return str(sum(int(SCREAMING_SNAKE_CASE_ ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
356
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) lowerCamelCase__ = logging.getLogger(__name__) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: lowerCAmelCase__ : Dict = np.argmax(SCREAMING_SNAKE_CASE_ , axis=1 ) return np.sum(outputs == labels ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: with open(SCREAMING_SNAKE_CASE_ , encoding='utf_8' ) as f: lowerCAmelCase__ : Dict = csv.reader(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Dict = [] next(SCREAMING_SNAKE_CASE_ ) # skip the first line for line in tqdm(SCREAMING_SNAKE_CASE_ ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: lowerCAmelCase__ : Dict = [] for dataset in encoded_datasets: lowerCAmelCase__ : List[str] = len(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) lowerCAmelCase__ : Tuple = np.zeros((n_batch, 2) , dtype=np.intaa ) lowerCAmelCase__ : List[Any] = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) lowerCAmelCase__ : Tuple = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Tuple = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase__ : Any = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase__ : Optional[Any] = with_conta lowerCAmelCase__ : List[str] = with_conta lowerCAmelCase__ : List[Any] = len(SCREAMING_SNAKE_CASE_ ) - 1 lowerCAmelCase__ : Tuple = len(SCREAMING_SNAKE_CASE_ ) - 1 lowerCAmelCase__ : Tuple = with_conta lowerCAmelCase__ : Optional[int] = with_conta lowerCAmelCase__ : Optional[int] = mc_label lowerCAmelCase__ : Dict = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(SCREAMING_SNAKE_CASE_ ) for t in all_inputs ) ) return tensor_datasets def lowerCAmelCase__ ( ) -> int: lowerCAmelCase__ : int = argparse.ArgumentParser() parser.add_argument('--model_name' , type=SCREAMING_SNAKE_CASE_ , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=SCREAMING_SNAKE_CASE_ , default='' ) parser.add_argument('--eval_dataset' , type=SCREAMING_SNAKE_CASE_ , default='' ) parser.add_argument('--seed' , type=SCREAMING_SNAKE_CASE_ , default=42 ) parser.add_argument('--num_train_epochs' , type=SCREAMING_SNAKE_CASE_ , default=3 ) parser.add_argument('--train_batch_size' , type=SCREAMING_SNAKE_CASE_ , default=8 ) parser.add_argument('--eval_batch_size' , type=SCREAMING_SNAKE_CASE_ , default=16 ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=SCREAMING_SNAKE_CASE_ , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=SCREAMING_SNAKE_CASE_ , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=SCREAMING_SNAKE_CASE_ , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=SCREAMING_SNAKE_CASE_ , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=SCREAMING_SNAKE_CASE_ , default=6.25e-5 ) parser.add_argument('--warmup_steps' , default=0 , type=SCREAMING_SNAKE_CASE_ , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=SCREAMING_SNAKE_CASE_ , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=SCREAMING_SNAKE_CASE_ , default=0.01 ) parser.add_argument('--lm_coef' , type=SCREAMING_SNAKE_CASE_ , default=0.9 ) parser.add_argument('--n_valid' , type=SCREAMING_SNAKE_CASE_ , default=374 ) parser.add_argument('--server_ip' , type=SCREAMING_SNAKE_CASE_ , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=SCREAMING_SNAKE_CASE_ , default='' , help='Can be used for distant debugging.' ) lowerCAmelCase__ : List[str] = parser.parse_args() print(SCREAMING_SNAKE_CASE_ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE_ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) lowerCAmelCase__ : str = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) lowerCAmelCase__ : Dict = torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset lowerCAmelCase__ : Union[str, Any] = ['_start_', '_delimiter_', '_classify_'] lowerCAmelCase__ : Dict = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE_ ) ) model.to(SCREAMING_SNAKE_CASE_ ) # Load and encode the datasets def tokenize_and_encode(SCREAMING_SNAKE_CASE_ ): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return obj return [tokenize_and_encode(SCREAMING_SNAKE_CASE_ ) for o in obj] logger.info('Encoding dataset...' ) lowerCAmelCase__ : List[Any] = load_rocstories_dataset(args.train_dataset ) lowerCAmelCase__ : str = load_rocstories_dataset(args.eval_dataset ) lowerCAmelCase__ : Union[str, Any] = (train_dataset, eval_dataset) lowerCAmelCase__ : List[str] = tokenize_and_encode(SCREAMING_SNAKE_CASE_ ) # Compute the max input length for the Transformer lowerCAmelCase__ : Union[str, Any] = model.config.n_positions // 2 - 2 lowerCAmelCase__ : Tuple = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) lowerCAmelCase__ : Dict = min(SCREAMING_SNAKE_CASE_ , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders lowerCAmelCase__ : int = pre_process_datasets(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = tensor_datasets[0], tensor_datasets[1] lowerCAmelCase__ : str = TensorDataset(*SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Tuple = RandomSampler(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Tuple = DataLoader(SCREAMING_SNAKE_CASE_ , sampler=SCREAMING_SNAKE_CASE_ , batch_size=args.train_batch_size ) lowerCAmelCase__ : Optional[Any] = TensorDataset(*SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Dict = SequentialSampler(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = DataLoader(SCREAMING_SNAKE_CASE_ , sampler=SCREAMING_SNAKE_CASE_ , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: lowerCAmelCase__ : Union[str, Any] = args.max_steps lowerCAmelCase__ : int = args.max_steps // (len(SCREAMING_SNAKE_CASE_ ) // args.gradient_accumulation_steps) + 1 else: lowerCAmelCase__ : Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) // args.gradient_accumulation_steps * args.num_train_epochs lowerCAmelCase__ : Optional[int] = list(model.named_parameters() ) lowerCAmelCase__ : Tuple = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] lowerCAmelCase__ : str = [ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] lowerCAmelCase__ : Union[str, Any] = AdamW(SCREAMING_SNAKE_CASE_ , lr=args.learning_rate , eps=args.adam_epsilon ) lowerCAmelCase__ : int = get_linear_schedule_with_warmup( SCREAMING_SNAKE_CASE_ , num_warmup_steps=args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE_ ) if args.do_train: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): lowerCAmelCase__ : str = 0 lowerCAmelCase__ : int = 0 lowerCAmelCase__ : str = tqdm(SCREAMING_SNAKE_CASE_ , desc='Training' ) for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Union[str, Any] = tuple(t.to(SCREAMING_SNAKE_CASE_ ) for t in batch ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = batch lowerCAmelCase__ : Tuple = model(SCREAMING_SNAKE_CASE_ , mc_token_ids=SCREAMING_SNAKE_CASE_ , lm_labels=SCREAMING_SNAKE_CASE_ , mc_labels=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : str = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() lowerCAmelCase__ : Optional[int] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 lowerCAmelCase__ : List[str] = 'Training loss: {:.2e} lr: {:.2e}'.format(SCREAMING_SNAKE_CASE_ , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer lowerCAmelCase__ : Optional[int] = model.module if hasattr(SCREAMING_SNAKE_CASE_ , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` lowerCAmelCase__ : List[str] = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[str] = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE_ ) torch.save(model_to_save.state_dict() , SCREAMING_SNAKE_CASE_ ) model_to_save.config.to_json_file(SCREAMING_SNAKE_CASE_ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned lowerCAmelCase__ : Dict = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) lowerCAmelCase__ : List[Any] = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(SCREAMING_SNAKE_CASE_ ) if args.do_eval: model.eval() lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = 0, 0 lowerCAmelCase__ , lowerCAmelCase__ : Any = 0, 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , desc='Evaluating' ): lowerCAmelCase__ : str = tuple(t.to(SCREAMING_SNAKE_CASE_ ) for t in batch ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Tuple = batch with torch.no_grad(): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[str] = model( SCREAMING_SNAKE_CASE_ , mc_token_ids=SCREAMING_SNAKE_CASE_ , lm_labels=SCREAMING_SNAKE_CASE_ , mc_labels=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = mc_logits.detach().cpu().numpy() lowerCAmelCase__ : List[Any] = mc_labels.to('cpu' ).numpy() lowerCAmelCase__ : str = accuracy(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 lowerCAmelCase__ : Optional[int] = eval_loss / nb_eval_steps lowerCAmelCase__ : Any = eval_accuracy / nb_eval_examples lowerCAmelCase__ : Union[str, Any] = tr_loss / nb_tr_steps if args.do_train else None lowerCAmelCase__ : Tuple = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} lowerCAmelCase__ : Dict = os.path.join(args.output_dir , 'eval_results.txt' ) with open(SCREAMING_SNAKE_CASE_ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , SCREAMING_SNAKE_CASE_ , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
307
0
from __future__ import annotations def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> bool: lowerCAmelCase__ : Optional[int] = get_failure_array(SCREAMING_SNAKE_CASE_ ) # 2) Step through text searching for pattern lowerCAmelCase__ : Dict = 0, 0 # index into text, pattern while i < len(SCREAMING_SNAKE_CASE_ ): if pattern[j] == text[i]: if j == (len(SCREAMING_SNAKE_CASE_ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: lowerCAmelCase__ : Union[str, Any] = failure[j - 1] continue i += 1 return False def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> list[int]: lowerCAmelCase__ : Any = [0] lowerCAmelCase__ : Optional[Any] = 0 lowerCAmelCase__ : Optional[int] = 1 while j < len(SCREAMING_SNAKE_CASE_ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: lowerCAmelCase__ : Optional[Any] = failure[i - 1] continue j += 1 failure.append(SCREAMING_SNAKE_CASE_ ) return failure if __name__ == "__main__": # Test 1) lowerCamelCase__ = """abc1abc12""" lowerCamelCase__ = """alskfjaldsabc1abc1abc12k23adsfabcabc""" lowerCamelCase__ = """alskfjaldsk23adsfabcabc""" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) lowerCamelCase__ = """ABABX""" lowerCamelCase__ = """ABABZABABYABABX""" assert kmp(pattern, text) # Test 3) lowerCamelCase__ = """AAAB""" lowerCamelCase__ = """ABAAAAAB""" assert kmp(pattern, text) # Test 4) lowerCamelCase__ = """abcdabcy""" lowerCamelCase__ = """abcxabcdabxabcdabcdabcy""" assert kmp(pattern, text) # Test 5) lowerCamelCase__ = """aabaabaaa""" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
357
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCamelCase__ = """python tqdm regex requests packaging filelock numpy tokenizers""".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("""dataclasses""") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("""importlib_metadata""") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> int: require_version(deps[pkg] , SCREAMING_SNAKE_CASE_ )
307
0
import argparse import json import subprocess def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: lowerCAmelCase__ : Tuple = [] lowerCAmelCase__ : Optional[Any] = ( F'''curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"''' ' https://api.github.com/repos/huggingface/transformers/actions/runners' ) lowerCAmelCase__ : List[str] = subprocess.run(SCREAMING_SNAKE_CASE_ , shell=SCREAMING_SNAKE_CASE_ , stdout=subprocess.PIPE ) lowerCAmelCase__ : Any = output.stdout.decode('utf-8' ) lowerCAmelCase__ : Tuple = json.loads(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Dict = status['runners'] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(SCREAMING_SNAKE_CASE_ ) # save the result so we can report them on Slack with open('offline_runners.txt' , 'w' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) ) if len(SCREAMING_SNAKE_CASE_ ) > 0: lowerCAmelCase__ : Optional[int] = '\n'.join([x['name'] for x in offline_runners] ) raise ValueError(F'''The following runners are offline:\n{failed}''' ) if __name__ == "__main__": def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: return values.split(',' ) lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--target_runners""", default=None, type=list_str, required=True, help="""Comma-separated list of runners to check status.""", ) parser.add_argument( """--token""", default=None, type=str, required=True, help="""A token that has actions:read permission.""" ) lowerCamelCase__ = parser.parse_args() get_runner_status(args.target_runners, args.token)
358
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class A__ ( __magic_name__ ): lowercase = (DPMSolverSDEScheduler,) lowercase = 10 def _lowerCamelCase ( self : Optional[int] , **a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = { 'num_train_timesteps': 1_100, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'noise_sampler_seed': 0, } config.update(**a ) return config def _lowerCamelCase ( self : Tuple ): '''simple docstring''' for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=a ) def _lowerCamelCase ( self : int ): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=a , beta_end=a ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=a ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : int = self.scheduler_classes[0] lowerCAmelCase__ : Tuple = self.get_scheduler_config() lowerCAmelCase__ : List[Any] = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ : Dict = self.dummy_model() lowerCAmelCase__ : int = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ : int = sample.to(a ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : List[Any] = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : str = model(a , a ) lowerCAmelCase__ : int = scheduler.step(a , a , a ) lowerCAmelCase__ : Any = output.prev_sample lowerCAmelCase__ : List[Any] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Optional[int] = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_7_8_2_1_0_4_4_9_2_1_8_7_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_7_8_7_0_5_9_6_4_5_6_5_2_7_7 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_2_1_1_1_8_1_6_4_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_6_8_9_2_2_9_9_6_5_2 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3 def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.scheduler_classes[0] lowerCAmelCase__ : List[str] = self.get_scheduler_config(prediction_type='v_prediction' ) lowerCAmelCase__ : Any = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ : Optional[int] = self.dummy_model() lowerCAmelCase__ : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ : Any = sample.to(a ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : str = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : str = model(a , a ) lowerCAmelCase__ : Dict = scheduler.step(a , a , a ) lowerCAmelCase__ : Tuple = output.prev_sample lowerCAmelCase__ : int = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Union[str, Any] = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_2_4.7_7_1_4_9_2_0_0_4_3_9_4_5_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_2_2_6_2_8_9_0_1_4_8_1_6_2_8_4 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_2_8.1_6_6_3_3_6_0_5_9_5_7_0_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_6_8_8_3_2_6_0_0_1_1_6_7_2_9_7 ) < 1E-3 else: assert abs(result_sum.item() - 1_1_9.8_4_8_7_5_4_8_8_2_8_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.1_5_6_0_5_3_0_6_6_2_5_3_6_6_2_1 ) < 1E-3 def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.scheduler_classes[0] lowerCAmelCase__ : Optional[int] = self.get_scheduler_config() lowerCAmelCase__ : int = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps , device=a ) lowerCAmelCase__ : Tuple = self.dummy_model() lowerCAmelCase__ : Any = self.dummy_sample_deter.to(a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowerCAmelCase__ : Dict = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : Optional[int] = model(a , a ) lowerCAmelCase__ : Tuple = scheduler.step(a , a , a ) lowerCAmelCase__ : Dict = output.prev_sample lowerCAmelCase__ : Union[str, Any] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Dict = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_6_9_5_7_3_9_7_4_6_0_9_3_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_8_0_5_9_3_4_6_0_7_9_8_2_6_3_5 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_3_6_3_7_6_9_5_3_1_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_8_3_8_2_4_1_5_7_7_1 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3 def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.scheduler_classes[0] lowerCAmelCase__ : Any = self.get_scheduler_config() lowerCAmelCase__ : Any = scheduler_class(**a , use_karras_sigmas=a ) scheduler.set_timesteps(self.num_inference_steps , device=a ) lowerCAmelCase__ : str = self.dummy_model() lowerCAmelCase__ : Any = self.dummy_sample_deter.to(a ) * scheduler.init_noise_sigma lowerCAmelCase__ : str = sample.to(a ) for t in scheduler.timesteps: lowerCAmelCase__ : Any = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : int = model(a , a ) lowerCAmelCase__ : Union[str, Any] = scheduler.step(a , a , a ) lowerCAmelCase__ : Union[str, Any] = output.prev_sample lowerCAmelCase__ : Optional[int] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Any = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_7_6.6_6_9_7_4_1_3_5_7_4_2_1_8_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_7.6_3_6_5_3_5_6_4_4_5_3_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2 else: assert abs(result_sum.item() - 1_7_0.3_1_3_5_2_2_3_3_8_8_6_7_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2
307
0
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """huggingface/informer-tourism-monthly""": ( """https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json""" ), # See all Informer models at https://huggingface.co/models?filter=informer } class A__ ( __magic_name__ ): lowercase = 'informer' lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self : Optional[Any] , a : Optional[int] = None , a : Optional[int] = None , a : str = "student_t" , a : str = "nll" , a : int = 1 , a : List[int] = None , a : Optional[Union[str, bool]] = "mean" , a : int = 0 , a : int = 0 , a : int = 0 , a : int = 0 , a : Optional[List[int]] = None , a : Optional[List[int]] = None , a : int = 64 , a : int = 32 , a : int = 32 , a : int = 2 , a : int = 2 , a : int = 2 , a : int = 2 , a : bool = True , a : str = "gelu" , a : float = 0.0_5 , a : float = 0.1 , a : float = 0.1 , a : float = 0.1 , a : float = 0.1 , a : int = 100 , a : float = 0.0_2 , a : Optional[int]=True , a : str = "prob" , a : int = 5 , a : bool = True , **a : int , ): '''simple docstring''' lowerCAmelCase__ : Any = prediction_length lowerCAmelCase__ : str = context_length or prediction_length lowerCAmelCase__ : Dict = distribution_output lowerCAmelCase__ : int = loss lowerCAmelCase__ : Any = input_size lowerCAmelCase__ : List[str] = num_time_features lowerCAmelCase__ : List[str] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] lowerCAmelCase__ : Optional[int] = scaling lowerCAmelCase__ : Any = num_dynamic_real_features lowerCAmelCase__ : List[Any] = num_static_real_features lowerCAmelCase__ : int = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(a ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) lowerCAmelCase__ : Union[str, Any] = cardinality else: lowerCAmelCase__ : int = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(a ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) lowerCAmelCase__ : str = embedding_dimension else: lowerCAmelCase__ : List[str] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowerCAmelCase__ : Any = num_parallel_samples # Transformer architecture configuration lowerCAmelCase__ : List[str] = input_size * len(self.lags_sequence ) + self._number_of_features lowerCAmelCase__ : List[Any] = d_model lowerCAmelCase__ : str = encoder_attention_heads lowerCAmelCase__ : Optional[int] = decoder_attention_heads lowerCAmelCase__ : List[Any] = encoder_ffn_dim lowerCAmelCase__ : List[str] = decoder_ffn_dim lowerCAmelCase__ : List[Any] = encoder_layers lowerCAmelCase__ : Dict = decoder_layers lowerCAmelCase__ : str = dropout lowerCAmelCase__ : Any = attention_dropout lowerCAmelCase__ : Any = activation_dropout lowerCAmelCase__ : Union[str, Any] = encoder_layerdrop lowerCAmelCase__ : Optional[Any] = decoder_layerdrop lowerCAmelCase__ : Optional[int] = activation_function lowerCAmelCase__ : int = init_std lowerCAmelCase__ : Optional[int] = use_cache # Informer lowerCAmelCase__ : Dict = attention_type lowerCAmelCase__ : Optional[int] = sampling_factor lowerCAmelCase__ : int = distil super().__init__(is_encoder_decoder=a , **a ) @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
359
import os import string import sys lowerCamelCase__ = 1 << 8 lowerCamelCase__ = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } lowerCamelCase__ = KEYMAP["""up"""] lowerCamelCase__ = KEYMAP["""left"""] if sys.platform == "win32": lowerCamelCase__ = [] lowerCamelCase__ = { b"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, b"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): lowerCamelCase__ = ord(str(i)) def lowerCAmelCase__ ( ) -> Dict: if os.name == "nt": import msvcrt lowerCAmelCase__ : Dict = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(SCREAMING_SNAKE_CASE_ ) == 0: # Read the keystroke lowerCAmelCase__ : Optional[Any] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCAmelCase__ : Dict = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCAmelCase__ : Dict = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(SCREAMING_SNAKE_CASE_ ) if ord(SCREAMING_SNAKE_CASE_ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) lowerCAmelCase__ : Dict = chr(KEYMAP['esc'] ) except KeyError: lowerCAmelCase__ : Dict = cha[1] else: lowerCAmelCase__ : List[Any] = ch.decode(SCREAMING_SNAKE_CASE_ ) else: lowerCAmelCase__ : Tuple = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCAmelCase__ : Tuple = sys.stdin.fileno() lowerCAmelCase__ : Any = termios.tcgetattr(SCREAMING_SNAKE_CASE_ ) try: tty.setraw(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = sys.stdin.read(1 ) finally: termios.tcsetattr(SCREAMING_SNAKE_CASE_ , termios.TCSADRAIN , SCREAMING_SNAKE_CASE_ ) return ch def lowerCAmelCase__ ( ) -> Union[str, Any]: lowerCAmelCase__ : Any = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(SCREAMING_SNAKE_CASE_ ) == KEYMAP["esc"]: lowerCAmelCase__ : Union[str, Any] = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) == KEYMAP["mod_int"]: lowerCAmelCase__ : str = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(SCREAMING_SNAKE_CASE_ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(SCREAMING_SNAKE_CASE_ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
307
0
"""simple docstring""" import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class A__ ( __magic_name__ ): lowercase = 'M-CLIP' def __init__( self : Optional[int] , a : Union[str, Any]=1_024 , a : Tuple=768 , **a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = transformerDimSize lowerCAmelCase__ : int = imageDimSize super().__init__(**a ) class A__ ( __magic_name__ ): lowercase = MCLIPConfig def __init__( self : List[Any] , a : str , *a : int , **a : Optional[Any] ): '''simple docstring''' super().__init__(a , *a , **a ) lowerCAmelCase__ : str = XLMRobertaModel(a ) lowerCAmelCase__ : str = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def _lowerCamelCase ( self : Optional[int] , a : Optional[Any] , a : Tuple ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.transformer(input_ids=a , attention_mask=a )[0] lowerCAmelCase__ : Any = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(a ), embs
360
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: return "".join([hex(SCREAMING_SNAKE_CASE_ )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE_ )] ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(SCREAMING_SNAKE_CASE_ ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE_ ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
307
0
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration lowerCamelCase__ = HfArgumentParser(InitializationArguments) lowerCamelCase__ = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization lowerCamelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks lowerCamelCase__ = { """vocab_size""": len(tokenizer), """scale_attn_by_inverse_layer_idx""": True, """reorder_and_upcast_attn""": True, } # Load model config (GPT-2 large in this case) lowerCamelCase__ = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config lowerCamelCase__ = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
361
from __future__ import annotations def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> list[list[int]]: lowerCAmelCase__ : list[list[int]] = [] create_all_state(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , [] , SCREAMING_SNAKE_CASE_ ) return result def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> None: if level == 0: total_list.append(current_list[:] ) return for i in range(SCREAMING_SNAKE_CASE_ , total_number - level + 2 ): current_list.append(SCREAMING_SNAKE_CASE_ ) create_all_state(i + 1 , SCREAMING_SNAKE_CASE_ , level - 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) current_list.pop() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> None: for i in total_list: print(*SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowerCamelCase__ = 4 lowerCamelCase__ = 2 lowerCamelCase__ = generate_all_combinations(n, k) print_all_state(total_list)
307
0
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class A__ ( unittest.TestCase ): def __init__( self : List[str] , a : Optional[int] , a : int=2 , a : Union[str, Any]=56 , a : List[Any]=True , a : Dict=True , a : List[Any]=True , a : Optional[int]=True , a : Tuple=99 , a : Any=32 , a : Any=2 , a : Optional[int]=2 , a : List[Any]=7 , a : Optional[int]="gelu_new" , a : Any=0.1 , a : Tuple=0.1 , a : str=512 , a : str=16 , a : Optional[Any]=2 , a : List[str]=0.0_2 , a : Tuple=4 , a : Optional[int]="block_sparse" , a : List[str]=True , a : str=False , a : Any=2 , a : Optional[int]=3 , ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = parent lowerCAmelCase__ : Optional[Any] = batch_size lowerCAmelCase__ : Optional[int] = seq_length lowerCAmelCase__ : List[Any] = is_training lowerCAmelCase__ : Tuple = use_attention_mask lowerCAmelCase__ : str = use_token_type_ids lowerCAmelCase__ : str = use_labels lowerCAmelCase__ : Tuple = vocab_size lowerCAmelCase__ : Any = hidden_size lowerCAmelCase__ : str = num_hidden_layers lowerCAmelCase__ : Optional[Any] = num_attention_heads lowerCAmelCase__ : List[str] = intermediate_size lowerCAmelCase__ : int = hidden_act lowerCAmelCase__ : Any = hidden_dropout_prob lowerCAmelCase__ : List[Any] = attention_probs_dropout_prob lowerCAmelCase__ : Dict = max_position_embeddings lowerCAmelCase__ : List[Any] = type_vocab_size lowerCAmelCase__ : Tuple = type_sequence_label_size lowerCAmelCase__ : Tuple = initializer_range lowerCAmelCase__ : List[Any] = num_choices lowerCAmelCase__ : Dict = rescale_embeddings lowerCAmelCase__ : Tuple = attention_type lowerCAmelCase__ : Any = use_bias lowerCAmelCase__ : Tuple = block_size lowerCAmelCase__ : Dict = num_random_blocks def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ : Union[str, Any] = None if self.use_attention_mask: lowerCAmelCase__ : int = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ : List[Any] = None if self.use_token_type_ids: lowerCAmelCase__ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ : Any = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase__ : Tuple = config_and_inputs lowerCAmelCase__ : Dict = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask, } return config, inputs_dict @require_flax class A__ ( __magic_name__ , unittest.TestCase ): lowercase = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) lowercase = False lowercase = False def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _lowerCamelCase ( self : int ): '''simple docstring''' super().test_hidden_states_output() @slow def _lowerCamelCase ( self : List[str] ): '''simple docstring''' for model_class_name in self.all_model_classes: lowerCAmelCase__ : List[str] = model_class_name.from_pretrained('google/bigbird-roberta-base' ) self.assertIsNotNone(a ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase__ : Dict = self._prepare_for_class(a , a ) lowerCAmelCase__ : Optional[int] = model_class(a ) @jax.jit def model_jitted(a : List[str] , a : Optional[Any]=None , **a : int ): return model(input_ids=a , attention_mask=a , **a ) with self.subTest('JIT Enabled' ): lowerCAmelCase__ : Optional[int] = model_jitted(**a ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowerCAmelCase__ : str = model_jitted(**a ).to_tuple() self.assertEqual(len(a ) , len(a ) ) for jitted_output, output in zip(a , a ): self.assertEqual(jitted_output.shape , output.shape ) def _lowerCamelCase ( self : List[Any] , a : Optional[int] , a : Optional[Any] , a : Union[str, Any] , a : Optional[int]=1E-5 , a : List[Any]="outputs" , a : str=None ): '''simple docstring''' if name.startswith('outputs.attentions' ): return else: super().check_pt_flax_outputs(a , a , a , a , a , a )
362
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class A__ ( unittest.TestCase ): @parameterized.expand([(None,), ('foo.json',)] ) def _lowerCamelCase ( self : Dict , a : str ): '''simple docstring''' lowerCAmelCase__ : List[str] = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(a , config_name=a ) lowerCAmelCase__ : Tuple = GenerationConfig.from_pretrained(a , config_name=a ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , a ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , a ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Dict = AutoConfig.from_pretrained('gpt2' ) lowerCAmelCase__ : Any = GenerationConfig.from_model_config(a ) lowerCAmelCase__ : Any = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(a , a ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = GenerationConfig() lowerCAmelCase__ : Dict = { 'max_new_tokens': 1_024, 'foo': 'bar', } lowerCAmelCase__ : List[Any] = copy.deepcopy(a ) lowerCAmelCase__ : Dict = generation_config.update(**a ) # update_kwargs was not modified (no side effects) self.assertEqual(a , a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(a , {'foo': 'bar'} ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Dict = GenerationConfig() lowerCAmelCase__ : List[Any] = 'bar' with tempfile.TemporaryDirectory('test-generation-config' ) as tmp_dir: generation_config.save_pretrained(a ) lowerCAmelCase__ : List[Any] = GenerationConfig.from_pretrained(a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , 'bar' ) lowerCAmelCase__ : int = GenerationConfig.from_model_config(a ) assert not hasattr(a , 'foo' ) # no new kwargs should be initialized if from config def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , a ) self.assertEqual(default_config.num_beams , 1 ) lowerCAmelCase__ : List[Any] = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , a ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(a ) lowerCAmelCase__ : Any = GenerationConfig.from_pretrained(a , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , a ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class A__ ( unittest.TestCase ): @classmethod def _lowerCamelCase ( cls : int ): '''simple docstring''' lowerCAmelCase__ : List[str] = TOKEN HfFolder.save_token(a ) @classmethod def _lowerCamelCase ( cls : Optional[int] ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-generation-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-generation-config-org' ) except HTTPError: pass def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('test-generation-config' , use_auth_token=self._token ) lowerCAmelCase__ : Any = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) # Reset repo delete_repo(token=self._token , repo_id='test-generation-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( a , repo_id='test-generation-config' , push_to_hub=a , use_auth_token=self._token ) lowerCAmelCase__ : Tuple = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : int = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('valid_org/test-generation-config-org' , use_auth_token=self._token ) lowerCAmelCase__ : Dict = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-generation-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( a , repo_id='valid_org/test-generation-config-org' , push_to_hub=a , use_auth_token=self._token ) lowerCAmelCase__ : List[str] = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) )
307
0
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor lowerCamelCase__ = logging.get_logger(__name__) class A__ ( __magic_name__ ): def __init__( self : Any , *a : Any , **a : List[str] ): '''simple docstring''' warnings.warn( 'The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use GLPNImageProcessor instead.' , a , ) super().__init__(*a , **a )
363
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( __magic_name__ , unittest.TestCase ): lowercase = UnCLIPImageVariationPipeline lowercase = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} lowercase = IMAGE_VARIATION_BATCH_PARAMS lowercase = [ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] lowercase = False @property def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' return 32 @property def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' return 32 @property def _lowerCamelCase ( self : int ): '''simple docstring''' return self.time_input_dim @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.time_input_dim * 4 @property def _lowerCamelCase ( self : Any ): '''simple docstring''' return 100 @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def _lowerCamelCase ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(a ) @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : List[Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(a ) @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Union[str, Any] = { 'clip_embeddings_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'cross_attention_dim': self.cross_attention_dim, } lowerCAmelCase__ : Optional[Any] = UnCLIPTextProjModel(**a ) return model @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : str = { 'sample_size': 32, # RGB in channels 'in_channels': 3, # Out channels is double in channels because predicts mean and variance 'out_channels': 6, 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': 'identity', } lowerCAmelCase__ : str = UNetaDConditionModel(**a ) return model @property def _lowerCamelCase ( self : str ): '''simple docstring''' return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def _lowerCamelCase ( self : str ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Any = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def _lowerCamelCase ( self : int ): '''simple docstring''' torch.manual_seed(1 ) lowerCAmelCase__ : List[str] = UNetaDModel(**self.dummy_super_res_kwargs ) return model def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.dummy_decoder lowerCAmelCase__ : Optional[int] = self.dummy_text_proj lowerCAmelCase__ : Any = self.dummy_text_encoder lowerCAmelCase__ : Any = self.dummy_tokenizer lowerCAmelCase__ : Any = self.dummy_super_res_first lowerCAmelCase__ : Optional[int] = self.dummy_super_res_last lowerCAmelCase__ : Dict = UnCLIPScheduler( variance_type='learned_range' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) lowerCAmelCase__ : Any = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) lowerCAmelCase__ : Any = CLIPImageProcessor(crop_size=32 , size=32 ) lowerCAmelCase__ : Optional[int] = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def _lowerCamelCase ( self : Any , a : Dict , a : List[str]=0 , a : List[str]=True ): '''simple docstring''' lowerCAmelCase__ : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(a ) ).to(a ) if str(a ).startswith('mps' ): lowerCAmelCase__ : Optional[int] = torch.manual_seed(a ) else: lowerCAmelCase__ : str = torch.Generator(device=a ).manual_seed(a ) if pil_image: lowerCAmelCase__ : Optional[int] = input_image * 0.5 + 0.5 lowerCAmelCase__ : Dict = input_image.clamp(0 , 1 ) lowerCAmelCase__ : List[Any] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCAmelCase__ : Union[str, Any] = DiffusionPipeline.numpy_to_pil(a )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = 'cpu' lowerCAmelCase__ : Any = self.get_dummy_components() lowerCAmelCase__ : List[str] = self.pipeline_class(**a ) lowerCAmelCase__ : Dict = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Dict = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : str = pipe(**a ) lowerCAmelCase__ : Optional[Any] = output.images lowerCAmelCase__ : str = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Optional[int] = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : List[str] = np.array( [ 0.9_9_9_7, 0.0_0_0_2, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_6_9, 0.0_0_2_3, 0.9_9_9_7, 0.9_9_6_9, 0.9_9_7_0, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = 'cpu' lowerCAmelCase__ : Dict = self.get_dummy_components() lowerCAmelCase__ : Optional[int] = self.pipeline_class(**a ) lowerCAmelCase__ : int = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : List[Any] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : List[str] = pipe(**a ) lowerCAmelCase__ : Union[str, Any] = output.images lowerCAmelCase__ : int = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : int = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Tuple = image[0, -3:, -3:, -1] lowerCAmelCase__ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : str = np.array([0.9_9_9_7, 0.0_0_0_3, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_7_0, 0.0_0_2_4, 0.9_9_9_7, 0.9_9_7_1, 0.9_9_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Tuple = 'cpu' lowerCAmelCase__ : int = self.get_dummy_components() lowerCAmelCase__ : Tuple = self.pipeline_class(**a ) lowerCAmelCase__ : Union[str, Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Tuple = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : List[str] = [ pipeline_inputs['image'], pipeline_inputs['image'], ] lowerCAmelCase__ : Optional[int] = pipe(**a ) lowerCAmelCase__ : Tuple = output.images lowerCAmelCase__ : List[str] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Union[str, Any] = [ tuple_pipeline_inputs['image'], tuple_pipeline_inputs['image'], ] lowerCAmelCase__ : str = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) lowerCAmelCase__ : Union[str, Any] = np.array( [ 0.9_9_9_7, 0.9_9_8_9, 0.0_0_0_8, 0.0_0_2_1, 0.9_9_6_0, 0.0_0_1_8, 0.0_0_1_4, 0.0_0_0_2, 0.9_9_3_3, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch.device('cpu' ) class A__ : lowercase = 1 lowerCAmelCase__ : Optional[Any] = self.get_dummy_components() lowerCAmelCase__ : Dict = self.pipeline_class(**a ) lowerCAmelCase__ : Optional[Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Optional[int] = torch.Generator(device=a ).manual_seed(0 ) lowerCAmelCase__ : Optional[int] = pipe.decoder.dtype lowerCAmelCase__ : Union[str, Any] = 1 lowerCAmelCase__ : str = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) lowerCAmelCase__ : List[Any] = pipe.prepare_latents( a , dtype=a , device=a , generator=a , latents=a , scheduler=DummyScheduler() ) lowerCAmelCase__ : List[str] = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) lowerCAmelCase__ : Any = pipe.prepare_latents( a , dtype=a , device=a , generator=a , latents=a , scheduler=DummyScheduler() ) lowerCAmelCase__ : List[Any] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Optional[int] = pipe( **a , decoder_latents=a , super_res_latents=a ).images lowerCAmelCase__ : Optional[Any] = self.get_dummy_inputs(a , pil_image=a ) # Don't pass image, instead pass embedding lowerCAmelCase__ : Union[str, Any] = pipeline_inputs.pop('image' ) lowerCAmelCase__ : Union[str, Any] = pipe.image_encoder(a ).image_embeds lowerCAmelCase__ : List[Any] = pipe( **a , decoder_latents=a , super_res_latents=a , image_embeddings=a , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch_device == 'cpu' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor lowerCAmelCase__ : int = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=a , expected_max_diff=a ) @skip_mps def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = torch_device == 'cpu' lowerCAmelCase__ : Any = True lowerCAmelCase__ : Optional[Any] = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] self._test_inference_batch_single_identical( test_max_difference=a , relax_max_difference=a , additional_params_copy_to_batched_inputs=a , ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Tuple = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes lowerCAmelCase__ : List[str] = [2, 3] self._test_inference_batch_consistent( batch_sizes=a , additional_params_copy_to_batched_inputs=a , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=a ) @skip_mps def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return super().test_save_load_local() @skip_mps def _lowerCamelCase ( self : str ): '''simple docstring''' return super().test_save_load_optional_components() @slow @require_torch_gpu class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png' ) lowerCAmelCase__ : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/unclip/karlo_v1_alpha_cat_variation_fp16.npy' ) lowerCAmelCase__ : Tuple = UnCLIPImageVariationPipeline.from_pretrained( 'kakaobrain/karlo-v1-alpha-image-variations' , torch_dtype=torch.floataa ) lowerCAmelCase__ : Union[str, Any] = pipeline.to(a ) pipeline.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Dict = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase__ : List[str] = pipeline( a , generator=a , output_type='np' , ) lowerCAmelCase__ : Union[str, Any] = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(a , a , 15 )
307
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCamelCase__ = { """configuration_longt5""": ["""LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LongT5Config""", """LongT5OnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST""", """LongT5EncoderModel""", """LongT5ForConditionalGeneration""", """LongT5Model""", """LongT5PreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """FlaxLongT5ForConditionalGeneration""", """FlaxLongT5Model""", """FlaxLongT5PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
364
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: stooge(SCREAMING_SNAKE_CASE_ , 0 , len(SCREAMING_SNAKE_CASE_ ) - 1 ) return arr def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: lowerCAmelCase__ , lowerCAmelCase__ : Tuple = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: lowerCAmelCase__ : Union[str, Any] = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (h - t) ) # Recursively sort last 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , i + t , (SCREAMING_SNAKE_CASE_) ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (h - t) ) if __name__ == "__main__": lowerCamelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCamelCase__ = [int(item) for item in user_input.split(""",""")] print(stooge_sort(unsorted))
307
0
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 lowerCamelCase__ = get_tests_dir("""fixtures/dummy-config.json""") class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Tuple ): lowerCAmelCase__ : int = 0 def _lowerCamelCase ( self : Any ): self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec('transformers.models.auto' ) ) def _lowerCamelCase ( self : Optional[Any] ): lowerCAmelCase__ : Optional[int] = AutoConfig.from_pretrained('bert-base-uncased' ) self.assertIsInstance(a , a ) def _lowerCamelCase ( self : List[str] ): lowerCAmelCase__ : Optional[int] = AutoConfig.from_pretrained(a ) self.assertIsInstance(a , a ) def _lowerCamelCase ( self : Dict ): lowerCAmelCase__ : List[Any] = AutoConfig.from_pretrained(a ) self.assertIsInstance(a , a ) def _lowerCamelCase ( self : Any ): lowerCAmelCase__ : str = AutoConfig.for_model('roberta' ) self.assertIsInstance(a , a ) def _lowerCamelCase ( self : Dict ): with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. lowerCAmelCase__ : Any = os.path.join(a , 'fake-roberta' ) os.makedirs(a , exist_ok=a ) with open(os.path.join(a , 'config.json' ) , 'w' ) as f: f.write(json.dumps({} ) ) lowerCAmelCase__ : Union[str, Any] = AutoConfig.from_pretrained(a ) self.assertEqual(type(a ) , a ) def _lowerCamelCase ( self : Optional[int] ): try: AutoConfig.register('custom' , a ) # Wrong model type will raise an error with self.assertRaises(a ): AutoConfig.register('model' , a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(a ): AutoConfig.register('bert' , a ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCAmelCase__ : Union[str, Any] = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(a ) lowerCAmelCase__ : Dict = AutoConfig.from_pretrained(a ) self.assertIsInstance(a , a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def _lowerCamelCase ( self : Optional[int] ): with self.assertRaisesRegex( a , 'bert-base is not a local folder and is not a valid model identifier' ): lowerCAmelCase__ : Any = AutoConfig.from_pretrained('bert-base' ) def _lowerCamelCase ( self : Optional[int] ): with self.assertRaisesRegex( a , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): lowerCAmelCase__ : Optional[Any] = AutoConfig.from_pretrained(a , revision='aaaaaa' ) def _lowerCamelCase ( self : List[Any] ): with self.assertRaisesRegex( a , 'hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.' , ): lowerCAmelCase__ : List[str] = AutoConfig.from_pretrained('hf-internal-testing/no-config-test-repo' ) def _lowerCamelCase ( self : Any ): with self.assertRaises(a ): lowerCAmelCase__ : int = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ) # If remote code is disabled, we can't load this config. with self.assertRaises(a ): lowerCAmelCase__ : List[str] = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=a ) lowerCAmelCase__ : Optional[Any] = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=a ) self.assertEqual(config.__class__.__name__ , 'NewModelConfig' ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(a ) lowerCAmelCase__ : str = AutoConfig.from_pretrained(a , trust_remote_code=a ) self.assertEqual(reloaded_config.__class__.__name__ , 'NewModelConfig' ) def _lowerCamelCase ( self : Optional[Any] ): class A__ ( __magic_name__ ): lowercase = 'new-model' try: AutoConfig.register('new-model' , a ) # If remote code is not set, the default is to use local lowerCAmelCase__ : Dict = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ) self.assertEqual(config.__class__.__name__ , 'NewModelConfigLocal' ) # If remote code is disabled, we load the local one. lowerCAmelCase__ : Optional[Any] = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=a ) self.assertEqual(config.__class__.__name__ , 'NewModelConfigLocal' ) # If remote is enabled, we load from the Hub lowerCAmelCase__ : Dict = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=a ) self.assertEqual(config.__class__.__name__ , 'NewModelConfig' ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
365
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) lowerCamelCase__ = { """configuration_speech_to_text""": ["""SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Speech2TextConfig"""], """processing_speech_to_text""": ["""Speech2TextProcessor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""Speech2TextTokenizer"""] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""Speech2TextFeatureExtractor"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSpeech2TextForConditionalGeneration""", """TFSpeech2TextModel""", """TFSpeech2TextPreTrainedModel""", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Speech2TextForConditionalGeneration""", """Speech2TextModel""", """Speech2TextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
0
from __future__ import annotations def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> list[int]: lowerCAmelCase__ : Any = 0 lowerCAmelCase__ : Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: lowerCAmelCase__ : str = i + 1 else: lowerCAmelCase__ : int = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F"""{two_pointer([2, 7, 11, 15], 9) = }""")
366
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } lowerCAmelCase__ : int = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 128, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 142, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(a ) , a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(a ) , x.transpose() ) ) lowerCAmelCase__ : List[str] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = np.random.randn(3 , 4 ) lowerCAmelCase__ : List[Any] = torch.tensor(a ) self.assertTrue(np.allclose(transpose(a ) , transpose(a ).numpy() ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : int = torch.tensor(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , transpose(a , axes=(1, 2, 0) ).numpy() ) ) @require_tf def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = np.random.randn(3 , 4 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(transpose(a ) , transpose(a ).numpy() ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : Dict = tf.constant(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , transpose(a , axes=(1, 2, 0) ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = np.random.randn(3 , 4 ) lowerCAmelCase__ : int = jnp.array(a ) self.assertTrue(np.allclose(transpose(a ) , np.asarray(transpose(a ) ) ) ) lowerCAmelCase__ : Any = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : str = jnp.array(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , np.asarray(transpose(a , axes=(1, 2, 0) ) ) ) ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Any = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , np.reshape(a , (4, 3) ) ) ) lowerCAmelCase__ : Tuple = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , np.reshape(a , (12, 5) ) ) ) @require_torch def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = np.random.randn(3 , 4 ) lowerCAmelCase__ : Dict = torch.tensor(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , reshape(a , (4, 3) ).numpy() ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : str = torch.tensor(a ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , reshape(a , (12, 5) ).numpy() ) ) @require_tf def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = np.random.randn(3 , 4 ) lowerCAmelCase__ : List[Any] = tf.constant(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , reshape(a , (4, 3) ).numpy() ) ) lowerCAmelCase__ : Dict = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , reshape(a , (12, 5) ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Dict = np.random.randn(3 , 4 ) lowerCAmelCase__ : List[str] = jnp.array(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , np.asarray(reshape(a , (4, 3) ) ) ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : Union[str, Any] = jnp.array(a ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , np.asarray(reshape(a , (12, 5) ) ) ) ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(a ) , np.squeeze(a ) ) ) lowerCAmelCase__ : int = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , np.squeeze(a , axis=2 ) ) ) @require_torch def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = np.random.randn(1 , 3 , 4 ) lowerCAmelCase__ : str = torch.tensor(a ) self.assertTrue(np.allclose(squeeze(a ) , squeeze(a ).numpy() ) ) lowerCAmelCase__ : Optional[Any] = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase__ : Dict = torch.tensor(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , squeeze(a , axis=2 ).numpy() ) ) @require_tf def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : List[str] = np.random.randn(1 , 3 , 4 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(squeeze(a ) , squeeze(a ).numpy() ) ) lowerCAmelCase__ : int = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase__ : str = tf.constant(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , squeeze(a , axis=2 ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : List[str] = np.random.randn(1 , 3 , 4 ) lowerCAmelCase__ : Union[str, Any] = jnp.array(a ) self.assertTrue(np.allclose(squeeze(a ) , np.asarray(squeeze(a ) ) ) ) lowerCAmelCase__ : str = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase__ : Optional[Any] = jnp.array(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , np.asarray(squeeze(a , axis=2 ) ) ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , np.expand_dims(a , axis=1 ) ) ) @require_torch def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : str = np.random.randn(3 , 4 ) lowerCAmelCase__ : str = torch.tensor(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , expand_dims(a , axis=1 ).numpy() ) ) @require_tf def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = np.random.randn(3 , 4 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , expand_dims(a , axis=1 ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : int = np.random.randn(3 , 4 ) lowerCAmelCase__ : Tuple = jnp.array(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , np.asarray(expand_dims(a , axis=1 ) ) ) )
307
0
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A__ : @staticmethod def _lowerCamelCase ( *a : Any , **a : Any ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class A__ ( unittest.TestCase ): lowercase = MODEL_FOR_OBJECT_DETECTION_MAPPING def _lowerCamelCase ( self : Tuple , a : Union[str, Any] , a : Optional[Any] , a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = ObjectDetectionPipeline(model=a , image_processor=a ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def _lowerCamelCase ( self : Union[str, Any] , a : Optional[int] , a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png' , threshold=0.0 ) self.assertGreater(len(a ) , 0 ) for detected_object in outputs: self.assertEqual( a , { 'score': ANY(a ), 'label': ANY(a ), 'box': {'xmin': ANY(a ), 'ymin': ANY(a ), 'xmax': ANY(a ), 'ymax': ANY(a )}, } , ) import datasets lowerCAmelCase__ : Tuple = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) lowerCAmelCase__ : List[str] = [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] lowerCAmelCase__ : Optional[Any] = object_detector(a , threshold=0.0 ) self.assertEqual(len(a ) , len(a ) ) for outputs in batch_outputs: self.assertGreater(len(a ) , 0 ) for detected_object in outputs: self.assertEqual( a , { 'score': ANY(a ), 'label': ANY(a ), 'box': {'xmin': ANY(a ), 'ymin': ANY(a ), 'xmax': ANY(a ), 'ymax': ANY(a )}, } , ) @require_tf @unittest.skip('Object detection not implemented in TF' ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' pass @require_torch def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : str = 'hf-internal-testing/tiny-detr-mobilenetsv3' lowerCAmelCase__ : List[str] = AutoModelForObjectDetection.from_pretrained(a ) lowerCAmelCase__ : Dict = AutoFeatureExtractor.from_pretrained(a ) lowerCAmelCase__ : Union[str, Any] = ObjectDetectionPipeline(model=a , feature_extractor=a ) lowerCAmelCase__ : Any = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' , threshold=0.0 ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ] , ) lowerCAmelCase__ : List[str] = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] , threshold=0.0 , ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], ] , ) @require_torch @slow def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Any = 'facebook/detr-resnet-50' lowerCAmelCase__ : Optional[int] = AutoModelForObjectDetection.from_pretrained(a ) lowerCAmelCase__ : Tuple = AutoFeatureExtractor.from_pretrained(a ) lowerCAmelCase__ : int = ObjectDetectionPipeline(model=a , feature_extractor=a ) lowerCAmelCase__ : Union[str, Any] = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ] , ) lowerCAmelCase__ : str = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ] , ) @require_torch @slow def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : str = 'facebook/detr-resnet-50' lowerCAmelCase__ : Union[str, Any] = pipeline('object-detection' , model=a ) lowerCAmelCase__ : Union[str, Any] = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ] , ) lowerCAmelCase__ : int = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ] , ) @require_torch @slow def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Any = 0.9_9_8_5 lowerCAmelCase__ : List[str] = 'facebook/detr-resnet-50' lowerCAmelCase__ : Dict = pipeline('object-detection' , model=a ) lowerCAmelCase__ : Union[str, Any] = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' , threshold=a ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ] , ) @require_torch @require_pytesseract @slow def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = 'Narsil/layoutlmv3-finetuned-funsd' lowerCAmelCase__ : Tuple = 0.9_9_9_3 lowerCAmelCase__ : Optional[int] = pipeline('object-detection' , model=a , threshold=a ) lowerCAmelCase__ : Optional[Any] = object_detector( 'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, ] , )
367
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position lowerCamelCase__ = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip lowerCamelCase__ = concatenate_datasets lowerCamelCase__ = DownloadConfig lowerCamelCase__ = DownloadManager lowerCamelCase__ = DownloadMode lowerCamelCase__ = DownloadConfig lowerCamelCase__ = DownloadMode lowerCamelCase__ = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
307
0
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( __magic_name__ , unittest.TestCase ): lowercase = UnCLIPImageVariationPipeline lowercase = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} lowercase = IMAGE_VARIATION_BATCH_PARAMS lowercase = [ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] lowercase = False @property def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' return 32 @property def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' return 32 @property def _lowerCamelCase ( self : int ): '''simple docstring''' return self.time_input_dim @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.time_input_dim * 4 @property def _lowerCamelCase ( self : Any ): '''simple docstring''' return 100 @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def _lowerCamelCase ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(a ) @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : List[Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(a ) @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Union[str, Any] = { 'clip_embeddings_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'cross_attention_dim': self.cross_attention_dim, } lowerCAmelCase__ : Optional[Any] = UnCLIPTextProjModel(**a ) return model @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : str = { 'sample_size': 32, # RGB in channels 'in_channels': 3, # Out channels is double in channels because predicts mean and variance 'out_channels': 6, 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': 'identity', } lowerCAmelCase__ : str = UNetaDConditionModel(**a ) return model @property def _lowerCamelCase ( self : str ): '''simple docstring''' return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def _lowerCamelCase ( self : str ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Any = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def _lowerCamelCase ( self : int ): '''simple docstring''' torch.manual_seed(1 ) lowerCAmelCase__ : List[str] = UNetaDModel(**self.dummy_super_res_kwargs ) return model def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.dummy_decoder lowerCAmelCase__ : Optional[int] = self.dummy_text_proj lowerCAmelCase__ : Any = self.dummy_text_encoder lowerCAmelCase__ : Any = self.dummy_tokenizer lowerCAmelCase__ : Any = self.dummy_super_res_first lowerCAmelCase__ : Optional[int] = self.dummy_super_res_last lowerCAmelCase__ : Dict = UnCLIPScheduler( variance_type='learned_range' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) lowerCAmelCase__ : Any = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) lowerCAmelCase__ : Any = CLIPImageProcessor(crop_size=32 , size=32 ) lowerCAmelCase__ : Optional[int] = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def _lowerCamelCase ( self : Any , a : Dict , a : List[str]=0 , a : List[str]=True ): '''simple docstring''' lowerCAmelCase__ : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(a ) ).to(a ) if str(a ).startswith('mps' ): lowerCAmelCase__ : Optional[int] = torch.manual_seed(a ) else: lowerCAmelCase__ : str = torch.Generator(device=a ).manual_seed(a ) if pil_image: lowerCAmelCase__ : Optional[int] = input_image * 0.5 + 0.5 lowerCAmelCase__ : Dict = input_image.clamp(0 , 1 ) lowerCAmelCase__ : List[Any] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCAmelCase__ : Union[str, Any] = DiffusionPipeline.numpy_to_pil(a )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = 'cpu' lowerCAmelCase__ : Any = self.get_dummy_components() lowerCAmelCase__ : List[str] = self.pipeline_class(**a ) lowerCAmelCase__ : Dict = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Dict = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : str = pipe(**a ) lowerCAmelCase__ : Optional[Any] = output.images lowerCAmelCase__ : str = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Optional[int] = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : List[str] = np.array( [ 0.9_9_9_7, 0.0_0_0_2, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_6_9, 0.0_0_2_3, 0.9_9_9_7, 0.9_9_6_9, 0.9_9_7_0, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = 'cpu' lowerCAmelCase__ : Dict = self.get_dummy_components() lowerCAmelCase__ : Optional[int] = self.pipeline_class(**a ) lowerCAmelCase__ : int = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : List[Any] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : List[str] = pipe(**a ) lowerCAmelCase__ : Union[str, Any] = output.images lowerCAmelCase__ : int = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : int = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Tuple = image[0, -3:, -3:, -1] lowerCAmelCase__ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : str = np.array([0.9_9_9_7, 0.0_0_0_3, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_7_0, 0.0_0_2_4, 0.9_9_9_7, 0.9_9_7_1, 0.9_9_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Tuple = 'cpu' lowerCAmelCase__ : int = self.get_dummy_components() lowerCAmelCase__ : Tuple = self.pipeline_class(**a ) lowerCAmelCase__ : Union[str, Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Tuple = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : List[str] = [ pipeline_inputs['image'], pipeline_inputs['image'], ] lowerCAmelCase__ : Optional[int] = pipe(**a ) lowerCAmelCase__ : Tuple = output.images lowerCAmelCase__ : List[str] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Union[str, Any] = [ tuple_pipeline_inputs['image'], tuple_pipeline_inputs['image'], ] lowerCAmelCase__ : str = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) lowerCAmelCase__ : Union[str, Any] = np.array( [ 0.9_9_9_7, 0.9_9_8_9, 0.0_0_0_8, 0.0_0_2_1, 0.9_9_6_0, 0.0_0_1_8, 0.0_0_1_4, 0.0_0_0_2, 0.9_9_3_3, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch.device('cpu' ) class A__ : lowercase = 1 lowerCAmelCase__ : Optional[Any] = self.get_dummy_components() lowerCAmelCase__ : Dict = self.pipeline_class(**a ) lowerCAmelCase__ : Optional[Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Optional[int] = torch.Generator(device=a ).manual_seed(0 ) lowerCAmelCase__ : Optional[int] = pipe.decoder.dtype lowerCAmelCase__ : Union[str, Any] = 1 lowerCAmelCase__ : str = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) lowerCAmelCase__ : List[Any] = pipe.prepare_latents( a , dtype=a , device=a , generator=a , latents=a , scheduler=DummyScheduler() ) lowerCAmelCase__ : List[str] = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) lowerCAmelCase__ : Any = pipe.prepare_latents( a , dtype=a , device=a , generator=a , latents=a , scheduler=DummyScheduler() ) lowerCAmelCase__ : List[Any] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Optional[int] = pipe( **a , decoder_latents=a , super_res_latents=a ).images lowerCAmelCase__ : Optional[Any] = self.get_dummy_inputs(a , pil_image=a ) # Don't pass image, instead pass embedding lowerCAmelCase__ : Union[str, Any] = pipeline_inputs.pop('image' ) lowerCAmelCase__ : Union[str, Any] = pipe.image_encoder(a ).image_embeds lowerCAmelCase__ : List[Any] = pipe( **a , decoder_latents=a , super_res_latents=a , image_embeddings=a , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch_device == 'cpu' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor lowerCAmelCase__ : int = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=a , expected_max_diff=a ) @skip_mps def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = torch_device == 'cpu' lowerCAmelCase__ : Any = True lowerCAmelCase__ : Optional[Any] = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] self._test_inference_batch_single_identical( test_max_difference=a , relax_max_difference=a , additional_params_copy_to_batched_inputs=a , ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Tuple = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes lowerCAmelCase__ : List[str] = [2, 3] self._test_inference_batch_consistent( batch_sizes=a , additional_params_copy_to_batched_inputs=a , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=a ) @skip_mps def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return super().test_save_load_local() @skip_mps def _lowerCamelCase ( self : str ): '''simple docstring''' return super().test_save_load_optional_components() @slow @require_torch_gpu class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png' ) lowerCAmelCase__ : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/unclip/karlo_v1_alpha_cat_variation_fp16.npy' ) lowerCAmelCase__ : Tuple = UnCLIPImageVariationPipeline.from_pretrained( 'kakaobrain/karlo-v1-alpha-image-variations' , torch_dtype=torch.floataa ) lowerCAmelCase__ : Union[str, Any] = pipeline.to(a ) pipeline.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Dict = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase__ : List[str] = pipeline( a , generator=a , output_type='np' , ) lowerCAmelCase__ : Union[str, Any] = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(a , a , 15 )
368
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( __magic_name__ , unittest.TestCase ): lowercase = DanceDiffusionPipeline lowercase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS lowercase = PipelineTesterMixin.required_optional_params - { 'callback', 'latents', 'callback_steps', 'output_type', 'num_images_per_prompt', } lowercase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS lowercase = False lowercase = False def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16_000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=a , use_timestep_embedding=a , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , ) lowerCAmelCase__ : Tuple = IPNDMScheduler() lowerCAmelCase__ : str = { 'unet': unet, 'scheduler': scheduler, } return components def _lowerCamelCase ( self : int , a : Dict , a : List[str]=0 ): '''simple docstring''' if str(a ).startswith('mps' ): lowerCAmelCase__ : Union[str, Any] = torch.manual_seed(a ) else: lowerCAmelCase__ : Optional[Any] = torch.Generator(device=a ).manual_seed(a ) lowerCAmelCase__ : Optional[Any] = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : int = self.get_dummy_components() lowerCAmelCase__ : List[str] = DanceDiffusionPipeline(**a ) lowerCAmelCase__ : Any = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : List[str] = self.get_dummy_inputs(a ) lowerCAmelCase__ : List[Any] = pipe(**a ) lowerCAmelCase__ : List[str] = output.audios lowerCAmelCase__ : Optional[Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) lowerCAmelCase__ : List[Any] = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def _lowerCamelCase ( self : str ): '''simple docstring''' return super().test_save_load_local() @skip_mps def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def _lowerCamelCase ( self : List[str] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch_device lowerCAmelCase__ : List[str] = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) lowerCAmelCase__ : List[str] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Optional[int] = torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = pipe(generator=a , num_inference_steps=100 , audio_length_in_s=4.0_9_6 ) lowerCAmelCase__ : int = output.audios lowerCAmelCase__ : List[Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase__ : Dict = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : str = torch_device lowerCAmelCase__ : List[Any] = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa ) lowerCAmelCase__ : Optional[int] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : str = torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = pipe(generator=a , num_inference_steps=100 , audio_length_in_s=4.0_9_6 ) lowerCAmelCase__ : str = output.audios lowerCAmelCase__ : Tuple = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase__ : int = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
307
0
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A__ : def __init__( self : Any , a : Optional[Any] , a : int=13 , a : List[Any]=32 , a : Optional[int]=3 , a : List[str]=4 , a : List[Any]=[10, 20, 30, 40] , a : Optional[int]=[2, 2, 3, 2] , a : Any=True , a : Tuple=True , a : int=37 , a : List[str]="gelu" , a : Dict=10 , a : Optional[int]=0.0_2 , a : List[Any]=["stage2", "stage3", "stage4"] , a : Union[str, Any]=3 , a : Tuple=None , ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = parent lowerCAmelCase__ : Any = batch_size lowerCAmelCase__ : Tuple = image_size lowerCAmelCase__ : Optional[int] = num_channels lowerCAmelCase__ : Any = num_stages lowerCAmelCase__ : str = hidden_sizes lowerCAmelCase__ : Dict = depths lowerCAmelCase__ : int = is_training lowerCAmelCase__ : str = use_labels lowerCAmelCase__ : Dict = intermediate_size lowerCAmelCase__ : List[str] = hidden_act lowerCAmelCase__ : Optional[Any] = type_sequence_label_size lowerCAmelCase__ : str = initializer_range lowerCAmelCase__ : str = out_features lowerCAmelCase__ : List[Any] = num_labels lowerCAmelCase__ : Optional[int] = scope lowerCAmelCase__ : Any = num_stages def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ : List[str] = None if self.use_labels: lowerCAmelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ : int = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=a , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=a , loss_ignore_index=255 , num_labels=self.num_labels , ) def _lowerCamelCase ( self : Tuple , a : Tuple , a : Any , a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = UperNetForSemanticSegmentation(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Dict = model(a ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.prepare_config_and_inputs() ( lowerCAmelCase__ ) : Union[str, Any] = config_and_inputs lowerCAmelCase__ : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowercase = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = UperNetModelTester(self ) lowerCAmelCase__ : Optional[Any] = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=37 ) def _lowerCamelCase ( self : Any ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : Tuple = model_class(a ) lowerCAmelCase__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : Optional[int] = [*signature.parameters.keys()] lowerCAmelCase__ : Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a ) @unittest.skip(reason='UperNet does not use inputs_embeds' ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' pass @unittest.skip(reason='UperNet does not support input and output embeddings' ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' pass @unittest.skip(reason='UperNet does not have a base model' ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' pass @unittest.skip(reason='UperNet does not have a base model' ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _lowerCamelCase ( self : Any ): '''simple docstring''' pass def _lowerCamelCase ( self : Tuple ): '''simple docstring''' def check_hidden_states_output(a : str , a : Optional[Any] , a : Optional[Any] ): lowerCAmelCase__ : Optional[int] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowerCAmelCase__ : int = model(**self._prepare_for_class(a , a ) ) lowerCAmelCase__ : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase__ : Tuple = self.model_tester.num_stages self.assertEqual(len(a ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : Optional[int] = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ : List[str] = True check_hidden_states_output(a , a , a ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Union[str, Any] = _config_zero_init(a ) lowerCAmelCase__ : Union[str, Any] = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: lowerCAmelCase__ : int = model_class(config=a ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip(reason='UperNet does not have tied weights' ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' pass @slow def _lowerCamelCase ( self : int ): '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : int = UperNetForSemanticSegmentation.from_pretrained(a ) self.assertIsNotNone(a ) def lowerCAmelCase__ ( ) -> Optional[Any]: lowerCAmelCase__ : Optional[int] = hf_hub_download( repo_id='hf-internal-testing/fixtures_ade20k' , repo_type='dataset' , filename='ADE_val_00000001.jpg' ) lowerCAmelCase__ : int = Image.open(SCREAMING_SNAKE_CASE_ ).convert('RGB' ) return image @require_torch @require_vision @slow class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = AutoImageProcessor.from_pretrained('openmmlab/upernet-swin-tiny' ) lowerCAmelCase__ : Union[str, Any] = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-swin-tiny' ).to(a ) lowerCAmelCase__ : int = prepare_img() lowerCAmelCase__ : Optional[int] = processor(images=a , return_tensors='pt' ).to(a ) with torch.no_grad(): lowerCAmelCase__ : str = model(**a ) lowerCAmelCase__ : Optional[Any] = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , a ) lowerCAmelCase__ : Tuple = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , a , atol=1E-4 ) ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : int = AutoImageProcessor.from_pretrained('openmmlab/upernet-convnext-tiny' ) lowerCAmelCase__ : int = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-convnext-tiny' ).to(a ) lowerCAmelCase__ : str = prepare_img() lowerCAmelCase__ : Dict = processor(images=a , return_tensors='pt' ).to(a ) with torch.no_grad(): lowerCAmelCase__ : str = model(**a ) lowerCAmelCase__ : Union[str, Any] = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , a ) lowerCAmelCase__ : Any = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , a , atol=1E-4 ) )
369
from ..utils import DummyObject, requires_backends class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : Any , *a : Any , **a : Any ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Union[str, Any] , *a : Optional[int] , **a : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : int , *a : List[Any] , **a : int ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : str , *a : Any , **a : Optional[Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : List[str] , **a : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , *a : Optional[Any] , **a : Any ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : Optional[int] , *a : List[Any] , **a : str ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : List[Any] , *a : List[str] , **a : List[str] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , *a : Union[str, Any] , **a : Optional[int] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *a : Dict , **a : List[str] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : Dict , **a : List[Any] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : List[str] , **a : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : Dict , *a : str , **a : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Any , *a : Any , **a : Any ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Any , *a : List[Any] , **a : str ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : str , *a : Union[str, Any] , **a : Optional[Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : int , *a : Union[str, Any] , **a : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : Tuple , **a : List[str] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] )
307
0
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> float: lowerCAmelCase__ : Union[str, Any] = 0 while len(SCREAMING_SNAKE_CASE_ ) > 1: lowerCAmelCase__ : Any = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): lowerCAmelCase__ : int = files.index(min(SCREAMING_SNAKE_CASE_ ) ) temp += files[min_index] files.pop(SCREAMING_SNAKE_CASE_ ) files.append(SCREAMING_SNAKE_CASE_ ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
370
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class A__ : def __init__( self : List[str] , a : Any , a : Dict=13 , a : Optional[Any]=7 , a : Tuple=True , a : Tuple=True , a : Dict=False , a : Optional[Any]=True , a : Dict=99 , a : Tuple=32 , a : Optional[Any]=5 , a : str=4 , a : Union[str, Any]=37 , a : Any="gelu" , a : Dict=0.1 , a : Any=0.1 , a : Optional[int]=512 , a : Union[str, Any]=16 , a : Optional[int]=2 , a : Optional[Any]=0.0_2 , a : List[Any]=3 , a : Any=4 , a : Optional[int]=None , ): '''simple docstring''' lowerCAmelCase__ : List[str] = parent lowerCAmelCase__ : str = batch_size lowerCAmelCase__ : Optional[int] = seq_length lowerCAmelCase__ : Optional[Any] = is_training lowerCAmelCase__ : Tuple = use_input_mask lowerCAmelCase__ : List[Any] = use_token_type_ids lowerCAmelCase__ : str = use_labels lowerCAmelCase__ : Dict = vocab_size lowerCAmelCase__ : Union[str, Any] = hidden_size lowerCAmelCase__ : Optional[int] = num_hidden_layers lowerCAmelCase__ : List[Any] = num_attention_heads lowerCAmelCase__ : int = intermediate_size lowerCAmelCase__ : Union[str, Any] = hidden_act lowerCAmelCase__ : Union[str, Any] = hidden_dropout_prob lowerCAmelCase__ : Any = attention_probs_dropout_prob lowerCAmelCase__ : Dict = max_position_embeddings lowerCAmelCase__ : int = type_vocab_size lowerCAmelCase__ : int = type_sequence_label_size lowerCAmelCase__ : Dict = initializer_range lowerCAmelCase__ : List[str] = num_labels lowerCAmelCase__ : Any = num_choices lowerCAmelCase__ : List[Any] = scope def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ : Tuple = None if self.use_input_mask: lowerCAmelCase__ : str = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ : List[str] = None if self.use_token_type_ids: lowerCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : Dict = None lowerCAmelCase__ : str = None if self.use_labels: lowerCAmelCase__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self : Tuple , a : Dict , a : List[str] , a : str , a : Union[str, Any] , a : Optional[Any] , a : Dict , a : str ): '''simple docstring''' lowerCAmelCase__ : str = LlamaModel(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Dict = model(a , attention_mask=a ) lowerCAmelCase__ : Union[str, Any] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : int , a : Any , a : Union[str, Any] , a : Dict , a : Dict , a : List[Any] , a : Optional[Any] , a : int , a : Dict , a : Tuple , ): '''simple docstring''' lowerCAmelCase__ : int = True lowerCAmelCase__ : Dict = LlamaModel(a ) model.to(a ) model.eval() lowerCAmelCase__ : List[Any] = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , ) lowerCAmelCase__ : Optional[int] = model( a , attention_mask=a , encoder_hidden_states=a , ) lowerCAmelCase__ : Union[str, Any] = model(a , attention_mask=a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : Union[str, Any] , a : int , a : List[Any] , a : int , a : Tuple , a : List[Any] , a : Union[str, Any] , a : Any , a : List[str] , a : List[str] , ): '''simple docstring''' lowerCAmelCase__ : List[Any] = LlamaForCausalLM(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Tuple = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : str , a : Any , a : Tuple , a : str , a : Union[str, Any] , a : Optional[Any] , a : List[Any] , a : Optional[Any] , a : Optional[Any] , a : List[str] , ): '''simple docstring''' lowerCAmelCase__ : str = True lowerCAmelCase__ : Optional[int] = True lowerCAmelCase__ : List[Any] = LlamaForCausalLM(config=a ) model.to(a ) model.eval() # first forward pass lowerCAmelCase__ : List[str] = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , use_cache=a , ) lowerCAmelCase__ : List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase__ : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase__ : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase__ : int = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase__ : Any = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase__ : Union[str, Any] = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , output_hidden_states=a , )['hidden_states'][0] lowerCAmelCase__ : Union[str, Any] = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , past_key_values=a , output_hidden_states=a , )['hidden_states'][0] # select random slice lowerCAmelCase__ : Any = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase__ : Optional[int] = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a , a , atol=1E-3 ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : Any = config_and_inputs lowerCAmelCase__ : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () lowercase = (LlamaForCausalLM,) if is_torch_available() else () lowercase = ( { 'feature-extraction': LlamaModel, 'text-classification': LlamaForSequenceClassification, 'text-generation': LlamaForCausalLM, 'zero-shot': LlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Tuple = LlamaModelTester(self ) lowerCAmelCase__ : str = ConfigTester(self , config_class=a , hidden_size=37 ) def _lowerCamelCase ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase__ : int = type self.model_tester.create_and_check_model(*a ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : int = 3 lowerCAmelCase__ : Dict = input_dict['input_ids'] lowerCAmelCase__ : Optional[Any] = input_ids.ne(1 ).to(a ) lowerCAmelCase__ : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase__ : Tuple = LlamaForSequenceClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : str = model(a , attention_mask=a , labels=a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : List[Any] = 3 lowerCAmelCase__ : List[str] = 'single_label_classification' lowerCAmelCase__ : List[Any] = input_dict['input_ids'] lowerCAmelCase__ : List[Any] = input_ids.ne(1 ).to(a ) lowerCAmelCase__ : Optional[int] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase__ : int = LlamaForSequenceClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : Optional[int] = model(a , attention_mask=a , labels=a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Optional[Any] = 3 lowerCAmelCase__ : Optional[Any] = 'multi_label_classification' lowerCAmelCase__ : List[str] = input_dict['input_ids'] lowerCAmelCase__ : Tuple = input_ids.ne(1 ).to(a ) lowerCAmelCase__ : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase__ : Dict = LlamaForSequenceClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : Dict = model(a , attention_mask=a , labels=a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def _lowerCamelCase ( self : Optional[int] , a : Dict ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Tuple = ids_tensor([1, 10] , config.vocab_size ) lowerCAmelCase__ : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase__ : List[Any] = LlamaModel(a ) original_model.to(a ) original_model.eval() lowerCAmelCase__ : List[Any] = original_model(a ).last_hidden_state lowerCAmelCase__ : str = original_model(a ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase__ : Any = {'type': scaling_type, 'factor': 1_0.0} lowerCAmelCase__ : Union[str, Any] = LlamaModel(a ) scaled_model.to(a ) scaled_model.eval() lowerCAmelCase__ : Union[str, Any] = scaled_model(a ).last_hidden_state lowerCAmelCase__ : Optional[int] = scaled_model(a ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(a , a , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(a , a , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(a , a , atol=1E-5 ) ) @require_torch class A__ ( unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : int = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowerCAmelCase__ : List[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) lowerCAmelCase__ : Any = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 lowerCAmelCase__ : Dict = torch.tensor([[-6.6_5_5_0, -4.1_2_2_7, -4.9_8_5_9, -3.2_4_0_6, 0.8_2_6_2, -3.0_0_3_3, 1.2_9_6_4, -3.3_6_9_9]] ) torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase__ : List[Any] = torch.tensor([-1_2.8_2_8_1, -7.4_4_5_3, -0.4_6_3_9, -8.0_6_2_5, -7.2_5_0_0, -8.0_0_0_0, -6.4_8_8_3, -7.7_6_9_5, -7.8_4_3_8, -7.0_3_1_2, -6.2_1_8_8, -7.1_3_2_8, -1.8_4_9_6, 1.9_9_6_1, -8.6_2_5_0, -6.7_2_2_7, -1_2.8_2_8_1, -6.9_4_9_2, -7.0_7_4_2, -7.7_8_5_2, -7.5_8_2_0, -7.9_0_6_2, -6.9_3_7_5, -7.9_8_0_5, -8.3_4_3_8, -8.1_5_6_2, -8.0_4_6_9, -7.6_2_5_0, -7.7_4_2_2, -7.3_3_9_8,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : str = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowerCAmelCase__ : Optional[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) lowerCAmelCase__ : List[str] = model(torch.tensor(a ) ) # Expected mean on dim = -1 lowerCAmelCase__ : Union[str, Any] = torch.tensor([[-2.0_6_2_2, -1.2_7_9_4, -1.1_6_3_8, -0.9_7_8_8, -1.4_6_0_3, -1.0_2_3_8, -1.7_8_9_3, -1.4_4_1_1]] ) torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase__ : Any = torch.tensor([-8.1_4_0_6, -8.0_5_4_7, 2.7_4_6_1, -1.2_3_4_4, -0.1_4_4_8, -1.8_2_6_2, -1.0_0_2_0, -1.8_1_5_4, -1.6_8_9_5, -1.8_5_1_6, -2.3_5_7_4, -0.9_2_7_7, 3.7_5_9_8, 6.5_7_4_2, -1.2_9_9_8, -0.1_1_7_7, -8.1_4_0_6, -2.9_6_8_8, -2.9_1_9_9, -3.1_6_9_9, -3.5_2_5_4, -2.3_5_5_5, -2.7_9_8_8, -3.4_1_4_1, -2.8_2_6_2, -4.5_1_9_5, -3.3_3_7_9, -3.3_1_6_4, -2.7_8_3_2, -3.0_2_7_3] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : int = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowerCAmelCase__ : Optional[int] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) lowerCAmelCase__ : str = model(torch.tensor(a ) ) # Expected mean on dim = -1 lowerCAmelCase__ : str = torch.tensor([[-0.8_5_6_2, -1.8_5_2_0, -0.7_5_5_1, -0.4_1_6_2, -1.5_1_6_1, -1.2_0_3_8, -2.4_8_2_3, -2.3_2_5_4]] ) torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase__ : List[str] = torch.tensor([-2.2_2_2_7, 4.8_8_2_8, 0.9_0_2_3, -0.4_5_7_8, -0.7_8_7_1, -0.1_0_3_3, -0.6_2_2_1, -0.5_7_8_6, -0.7_8_0_3, -1.0_6_7_4, -1.2_9_2_0, -0.1_5_7_0, 0.8_0_0_8, 2.0_7_2_3, -0.9_4_9_7, 0.2_7_7_1, -2.2_2_2_7, -0.7_6_1_2, -1.4_3_4_6, -1.2_0_6_1, -1.6_4_2_6, -0.3_0_0_0, -0.7_1_3_9, -1.1_9_3_4, -1.8_6_9_1, -1.6_9_7_3, -1.5_9_4_7, -1.2_7_0_5, -0.3_5_2_3, -0.5_5_1_3] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowerCAmelCase__ : List[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) lowerCAmelCase__ : List[str] = model(torch.tensor(a ) ) lowerCAmelCase__ : int = torch.tensor( [[-4.2_3_2_7, -3.3_3_6_0, -4.6_6_6_5, -4.7_6_3_1, -1.8_1_8_0, -3.4_1_7_0, -1.4_2_1_1, -3.1_8_1_0]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) # fmt: off lowerCAmelCase__ : Optional[int] = torch.tensor([-9.4_9_2_2, -3.9_5_5_1, 1.7_9_9_8, -5.6_7_5_8, -5.1_0_5_5, -5.8_9_8_4, -4.8_3_2_0, -6.8_0_8_6, -6.5_3_9_1, -5.6_1_7_2, -5.5_8_2_0, -5.5_3_5_2, 1.7_8_8_1, 3.6_2_8_9, -6.5_1_1_7, -3.4_7_8_5, -9.5_0_0_0, -6.0_3_5_2, -6.8_1_2_5, -6.0_1_9_5, -6.6_8_3_6, -5.4_7_2_7, -6.2_8_1_2, -6.0_3_9_1, -7.3_3_9_8, -7.4_2_9_7, -7.4_8_4_4, -6.5_8_2_0, -5.8_7_8_9, -5.5_3_1_2] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Model is curently gated' ) @slow def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' lowerCAmelCase__ : Tuple = 'Simply put, the theory of relativity states that ' lowerCAmelCase__ : Dict = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) lowerCAmelCase__ : Dict = tokenizer.encode(a , return_tensors='pt' ) lowerCAmelCase__ : str = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=a ) # greedy generation outputs lowerCAmelCase__ : Optional[Any] = model.generate(a , max_new_tokens=64 , top_p=a , temperature=1 , do_sample=a ) lowerCAmelCase__ : Tuple = tokenizer.decode(generated_ids[0] , skip_special_tokens=a ) self.assertEqual(a , a )
307
0
import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class A__ ( __magic_name__ , unittest.TestCase ): lowercase = RoFormerTokenizer lowercase = RoFormerTokenizerFast lowercase = True lowercase = True def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' super().setUp() def _lowerCamelCase ( self : Dict , **a : int ): '''simple docstring''' return self.tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **a ) def _lowerCamelCase ( self : Dict , **a : Union[str, Any] ): '''simple docstring''' return self.rust_tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **a ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = '永和服装饰品有限公司,今天天气非常好' lowerCAmelCase__ : Union[str, Any] = '永和 服装 饰品 有限公司 , 今 天 天 气 非常 好' return input_text, output_text def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.get_tokenizer() lowerCAmelCase__ : Tuple = self.get_chinese_input_output_texts() lowerCAmelCase__ : Union[str, Any] = tokenizer.tokenize(a ) self.assertListEqual(a , output_text.split() ) lowerCAmelCase__ : Union[str, Any] = tokens + [tokenizer.unk_token] lowerCAmelCase__ : Optional[int] = [22_943, 21_332, 34_431, 45_904, 117, 306, 1_231, 1_231, 2_653, 33_994, 1_266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.get_rust_tokenizer() lowerCAmelCase__ : List[str] = self.get_chinese_input_output_texts() lowerCAmelCase__ : Tuple = tokenizer.tokenize(a ) self.assertListEqual(a , output_text.split() ) lowerCAmelCase__ : List[Any] = tokens + [tokenizer.unk_token] lowerCAmelCase__ : Dict = [22_943, 21_332, 34_431, 45_904, 117, 306, 1_231, 1_231, 2_653, 33_994, 1_266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , a ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' pass def _lowerCamelCase ( self : List[str] ): '''simple docstring''' pass def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' pass
371
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """microsoft/unispeech-large-1500h-cv""": ( """https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json""" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class A__ ( __magic_name__ ): lowercase = 'unispeech' def __init__( self : Any , a : List[Any]=32 , a : List[Any]=768 , a : Any=12 , a : List[str]=12 , a : List[Any]=3_072 , a : Any="gelu" , a : Dict=0.1 , a : List[str]=0.1 , a : List[str]=0.1 , a : Union[str, Any]=0.0 , a : str=0.0 , a : int=0.1 , a : List[str]=0.1 , a : List[Any]=0.0_2 , a : Optional[int]=1E-5 , a : Optional[int]="group" , a : Optional[Any]="gelu" , a : List[Any]=(512, 512, 512, 512, 512, 512, 512) , a : Optional[Any]=(5, 2, 2, 2, 2, 2, 2) , a : List[str]=(10, 3, 3, 3, 3, 2, 2) , a : Union[str, Any]=False , a : Union[str, Any]=128 , a : Tuple=16 , a : Dict=False , a : str=True , a : str=0.0_5 , a : Union[str, Any]=10 , a : Tuple=2 , a : int=0.0 , a : Optional[Any]=10 , a : List[str]=0 , a : str=320 , a : List[str]=2 , a : Optional[Any]=0.1 , a : Any=100 , a : Dict=256 , a : Any=256 , a : Dict=0.1 , a : List[Any]="mean" , a : Dict=False , a : str=False , a : Optional[int]=256 , a : Any=80 , a : List[Any]=0 , a : Optional[int]=1 , a : int=2 , a : List[Any]=0.5 , **a : int , ): '''simple docstring''' super().__init__(**a , pad_token_id=a , bos_token_id=a , eos_token_id=a ) lowerCAmelCase__ : List[str] = hidden_size lowerCAmelCase__ : List[str] = feat_extract_norm lowerCAmelCase__ : Optional[Any] = feat_extract_activation lowerCAmelCase__ : str = list(a ) lowerCAmelCase__ : List[str] = list(a ) lowerCAmelCase__ : Tuple = list(a ) lowerCAmelCase__ : Dict = conv_bias lowerCAmelCase__ : Optional[int] = num_conv_pos_embeddings lowerCAmelCase__ : Any = num_conv_pos_embedding_groups lowerCAmelCase__ : str = len(self.conv_dim ) lowerCAmelCase__ : Any = num_hidden_layers lowerCAmelCase__ : Dict = intermediate_size lowerCAmelCase__ : Dict = hidden_act lowerCAmelCase__ : Union[str, Any] = num_attention_heads lowerCAmelCase__ : Union[str, Any] = hidden_dropout lowerCAmelCase__ : Tuple = attention_dropout lowerCAmelCase__ : str = activation_dropout lowerCAmelCase__ : Any = feat_proj_dropout lowerCAmelCase__ : List[Any] = final_dropout lowerCAmelCase__ : Tuple = layerdrop lowerCAmelCase__ : Any = layer_norm_eps lowerCAmelCase__ : Dict = initializer_range lowerCAmelCase__ : Optional[Any] = num_ctc_classes lowerCAmelCase__ : Tuple = vocab_size lowerCAmelCase__ : Dict = do_stable_layer_norm lowerCAmelCase__ : List[Any] = use_weighted_layer_sum lowerCAmelCase__ : Any = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase__ : Union[str, Any] = apply_spec_augment lowerCAmelCase__ : Any = mask_time_prob lowerCAmelCase__ : Dict = mask_time_length lowerCAmelCase__ : Tuple = mask_time_min_masks lowerCAmelCase__ : Optional[int] = mask_feature_prob lowerCAmelCase__ : Optional[Any] = mask_feature_length lowerCAmelCase__ : int = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCAmelCase__ : int = num_codevectors_per_group lowerCAmelCase__ : Any = num_codevector_groups lowerCAmelCase__ : Any = contrastive_logits_temperature lowerCAmelCase__ : int = feat_quantizer_dropout lowerCAmelCase__ : List[Any] = num_negatives lowerCAmelCase__ : List[str] = codevector_dim lowerCAmelCase__ : Optional[int] = proj_codevector_dim lowerCAmelCase__ : Dict = diversity_loss_weight # ctc loss lowerCAmelCase__ : Any = ctc_loss_reduction lowerCAmelCase__ : Any = ctc_zero_infinity # pretraining loss lowerCAmelCase__ : Union[str, Any] = replace_prob @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
307
0
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = inspect.getfile(accelerate.test_utils ) lowerCAmelCase__ : Dict = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) lowerCAmelCase__ : str = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Dict = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() lowerCAmelCase__ : Tuple = [sys.executable] + distributed_args execute_subprocess_async(a , env=os.environ.copy() )
350
import torch from torch import nn class A__ ( nn.Module ): def __init__( self : Optional[int] , a : Union[str, Any] , a : str , a : str , a : List[Any] , a : List[Any]=1 , a : Tuple=False ): '''simple docstring''' super().__init__() lowerCAmelCase__ : Dict = n_token lowerCAmelCase__ : Any = d_embed lowerCAmelCase__ : str = d_proj lowerCAmelCase__ : int = cutoffs + [n_token] lowerCAmelCase__ : Union[str, Any] = [0] + self.cutoffs lowerCAmelCase__ : str = div_val lowerCAmelCase__ : Tuple = self.cutoffs[0] lowerCAmelCase__ : Dict = len(self.cutoffs ) - 1 lowerCAmelCase__ : Any = self.shortlist_size + self.n_clusters if self.n_clusters > 0: lowerCAmelCase__ : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) lowerCAmelCase__ : Optional[Any] = nn.Parameter(torch.zeros(self.n_clusters ) ) lowerCAmelCase__ : Optional[int] = nn.ModuleList() lowerCAmelCase__ : Tuple = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(a , a ) ) ) else: self.out_projs.append(a ) self.out_layers.append(nn.Linear(a , a ) ) else: for i in range(len(self.cutoffs ) ): lowerCAmelCase__ , lowerCAmelCase__ : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase__ : Optional[Any] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(a , a ) ) ) self.out_layers.append(nn.Linear(a , r_idx - l_idx ) ) lowerCAmelCase__ : Tuple = keep_order def _lowerCamelCase ( self : Optional[int] , a : List[str] , a : int , a : List[str] , a : str ): '''simple docstring''' if proj is None: lowerCAmelCase__ : Tuple = nn.functional.linear(a , a , bias=a ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: lowerCAmelCase__ : int = nn.functional.linear(a , proj.t().contiguous() ) lowerCAmelCase__ : Tuple = nn.functional.linear(a , a , bias=a ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def _lowerCamelCase ( self : List[str] , a : List[Any] , a : Optional[int]=None , a : Tuple=False ): '''simple docstring''' if labels is not None: # Shift so that tokens < n predict n lowerCAmelCase__ : str = hidden[..., :-1, :].contiguous() lowerCAmelCase__ : Optional[Any] = labels[..., 1:].contiguous() lowerCAmelCase__ : List[Any] = hidden.view(-1 , hidden.size(-1 ) ) lowerCAmelCase__ : Tuple = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('Input and labels should have the same size in the batch dimension.' ) else: lowerCAmelCase__ : Optional[Any] = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: lowerCAmelCase__ : Optional[Any] = self._compute_logit(a , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: lowerCAmelCase__ : str = labels != -100 lowerCAmelCase__ : int = torch.zeros_like(a , dtype=hidden.dtype , device=hidden.device ) lowerCAmelCase__ : List[str] = ( -nn.functional.log_softmax(a , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: lowerCAmelCase__ : Optional[Any] = nn.functional.log_softmax(a , dim=-1 ) else: # construct weights and biases lowerCAmelCase__ , lowerCAmelCase__ : int = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase__ : Any = self.out_layers[0].weight[l_idx:r_idx] lowerCAmelCase__ : Any = self.out_layers[0].bias[l_idx:r_idx] else: lowerCAmelCase__ : Optional[Any] = self.out_layers[i].weight lowerCAmelCase__ : Optional[int] = self.out_layers[i].bias if i == 0: lowerCAmelCase__ : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowerCAmelCase__ : Union[str, Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(a ) biases.append(a ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = weights[0], biases[0], self.out_projs[0] lowerCAmelCase__ : List[Any] = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : Union[str, Any] = nn.functional.log_softmax(a , dim=1 ) if labels is None: lowerCAmelCase__ : Tuple = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: lowerCAmelCase__ : Dict = torch.zeros_like(a , dtype=hidden.dtype , device=hidden.device ) lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : Union[str, Any] = [0] + self.cutoffs for i in range(len(a ) - 1 ): lowerCAmelCase__ , lowerCAmelCase__ : Tuple = cutoff_values[i], cutoff_values[i + 1] if labels is not None: lowerCAmelCase__ : Tuple = (labels >= l_idx) & (labels < r_idx) lowerCAmelCase__ : int = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue lowerCAmelCase__ : Tuple = labels.index_select(0 , a ) - l_idx lowerCAmelCase__ : Any = head_logprob.index_select(0 , a ) lowerCAmelCase__ : Optional[int] = hidden.index_select(0 , a ) else: lowerCAmelCase__ : Any = hidden if i == 0: if labels is not None: lowerCAmelCase__ : Union[str, Any] = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: lowerCAmelCase__ : List[str] = head_logprob[:, : self.cutoffs[0]] else: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = weights[i], biases[i], self.out_projs[i] lowerCAmelCase__ : Union[str, Any] = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : Optional[int] = nn.functional.log_softmax(a , dim=1 ) lowerCAmelCase__ : List[Any] = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: lowerCAmelCase__ : List[str] = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: lowerCAmelCase__ : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i lowerCAmelCase__ : Union[str, Any] = logprob_i if labels is not None: if (hasattr(self , 'keep_order' ) and self.keep_order) or keep_order: out.index_copy_(0 , a , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def _lowerCamelCase ( self : List[Any] , a : Any ): '''simple docstring''' if self.n_clusters == 0: lowerCAmelCase__ : Union[str, Any] = self._compute_logit(a , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(a , dim=-1 ) else: # construct weights and biases lowerCAmelCase__ , lowerCAmelCase__ : str = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase__ : str = self.out_layers[0].weight[l_idx:r_idx] lowerCAmelCase__ : Dict = self.out_layers[0].bias[l_idx:r_idx] else: lowerCAmelCase__ : int = self.out_layers[i].weight lowerCAmelCase__ : int = self.out_layers[i].bias if i == 0: lowerCAmelCase__ : Optional[int] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowerCAmelCase__ : Union[str, Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(a ) biases.append(a ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : str = weights[0], biases[0], self.out_projs[0] lowerCAmelCase__ : Dict = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : List[Any] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) lowerCAmelCase__ : Optional[Any] = nn.functional.log_softmax(a , dim=1 ) lowerCAmelCase__ : List[Any] = [0] + self.cutoffs for i in range(len(a ) - 1 ): lowerCAmelCase__ , lowerCAmelCase__ : str = cutoff_values[i], cutoff_values[i + 1] if i == 0: lowerCAmelCase__ : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = weights[i], biases[i], self.out_projs[i] lowerCAmelCase__ : Dict = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : List[str] = nn.functional.log_softmax(a , dim=1 ) lowerCAmelCase__ : Dict = head_logprob[:, -i] + tail_logprob_i lowerCAmelCase__ : List[str] = logprob_i return out
307
0
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A__ ( __magic_name__ ): lowercase = ['image_processor', 'tokenizer'] lowercase = 'LayoutLMv2ImageProcessor' lowercase = ('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self : Dict , a : Optional[int]=None , a : List[str]=None , **a : Tuple ): '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , a , ) lowerCAmelCase__ : str = kwargs.pop('feature_extractor' ) lowerCAmelCase__ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(a , a ) def __call__( self : str , a : Dict , a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , a : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , a : Union[List[List[int]], List[List[List[int]]]] = None , a : Optional[Union[List[int], List[List[int]]]] = None , a : bool = True , a : Union[bool, str, PaddingStrategy] = False , a : Union[bool, str, TruncationStrategy] = None , a : Optional[int] = None , a : int = 0 , a : Optional[int] = None , a : Optional[bool] = None , a : Optional[bool] = None , a : bool = False , a : bool = False , a : bool = False , a : bool = False , a : bool = True , a : Optional[Union[str, TensorType]] = None , **a : List[str] , ): '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes ' 'if you initialized the image processor with apply_ocr set to True.' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' ) # first, apply the image processor lowerCAmelCase__ : Optional[Any] = self.image_processor(images=a , return_tensors=a ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(a , a ): lowerCAmelCase__ : Optional[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) lowerCAmelCase__ : List[str] = features['words'] lowerCAmelCase__ : Any = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=a , add_special_tokens=a , padding=a , truncation=a , max_length=a , stride=a , pad_to_multiple_of=a , return_token_type_ids=a , return_attention_mask=a , return_overflowing_tokens=a , return_special_tokens_mask=a , return_offsets_mapping=a , return_length=a , verbose=a , return_tensors=a , **a , ) # add pixel values lowerCAmelCase__ : Optional[Any] = features.pop('pixel_values' ) if return_overflowing_tokens is True: lowerCAmelCase__ : Union[str, Any] = self.get_overflowing_images(a , encoded_inputs['overflow_to_sample_mapping'] ) lowerCAmelCase__ : Union[str, Any] = images return encoded_inputs def _lowerCamelCase ( self : str , a : str , a : List[Any] ): '''simple docstring''' lowerCAmelCase__ : List[Any] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(a ) != len(a ): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' f''' {len(a )} and {len(a )}''' ) return images_with_overflow def _lowerCamelCase ( self : Union[str, Any] , *a : Tuple , **a : Optional[int] ): '''simple docstring''' return self.tokenizer.batch_decode(*a , **a ) def _lowerCamelCase ( self : List[str] , *a : Optional[Any] , **a : Any ): '''simple docstring''' return self.tokenizer.decode(*a , **a ) @property def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def _lowerCamelCase ( self : str ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , a , ) return self.image_processor_class @property def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , a , ) return self.image_processor
351
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowerCamelCase__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} lowerCamelCase__ = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", """emoji""": True, }, } ] lowerCamelCase__ = 0 for log in Path().glob("""*.log"""): lowerCamelCase__ = 0 with open(log, """r""") as f: for line in f: lowerCamelCase__ = json.loads(line) if line.get("""nodeid""", """""") != "": lowerCamelCase__ = line["""nodeid"""] if line.get("""duration""", None) is not None: lowerCamelCase__ = F"""{line["duration"]:.4f}""" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowerCamelCase__ = [] log.unlink() lowerCamelCase__ = """""" lowerCamelCase__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowerCamelCase__ = [] lowerCamelCase__ = {} for test in failed_tests: lowerCamelCase__ = test[0].split("""::""") lowerCamelCase__ = data[0].split("""/""")[-1] if data[0] not in filesafailed: lowerCamelCase__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowerCamelCase__ = [test[0] for test in failed_table] lowerCamelCase__ = list(set(files)) # Count number of instances in failed_tests lowerCamelCase__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowerCamelCase__ = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: lowerCamelCase__ = """Too many failed tests, please see the full report in the Action results.""" lowerCamelCase__ = len(err) + 10 lowerCamelCase__ = message[: 3000 - offset] + F"""\n...\n```\n{err}""" print(F"""### {message}""") else: lowerCamelCase__ = """No failed tests! 🤗""" print(F"""## {message}""") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient lowerCamelCase__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": lowerCamelCase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) lowerCamelCase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) lowerCamelCase__ = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) lowerCamelCase__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) lowerCamelCase__ = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowerCamelCase__ = """""" for i, row in enumerate(test_failures): if row[0] != test_class: lowerCamelCase__ = row[0] else: lowerCamelCase__ = """""" lowerCamelCase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
307
0
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A__ ( __magic_name__ , unittest.TestCase ): lowercase = OpenAIGPTTokenizer lowercase = OpenAIGPTTokenizerFast lowercase = True lowercase = False def _lowerCamelCase ( self : Dict ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase__ : Dict = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] lowerCAmelCase__ : List[Any] = dict(zip(a , range(len(a ) ) ) ) lowerCAmelCase__ : int = ['#version: 0.2', 'l o', 'lo w', 'e r</w>', ''] lowerCAmelCase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(a ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(a ) ) def _lowerCamelCase ( self : Optional[Any] , a : Union[str, Any] ): '''simple docstring''' return "lower newer", "lower newer" def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) lowerCAmelCase__ : Optional[int] = 'lower' lowerCAmelCase__ : Optional[Any] = ['low', 'er</w>'] lowerCAmelCase__ : Optional[Any] = tokenizer.tokenize(a ) self.assertListEqual(a , a ) lowerCAmelCase__ : Optional[int] = tokens + ['<unk>'] lowerCAmelCase__ : List[str] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , a ) def _lowerCamelCase ( self : Dict , a : List[Any]=15 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase__ : List[str] = self.rust_tokenizer_class.from_pretrained(a , **a ) # Simple input lowerCAmelCase__ : Optional[int] = 'This is a simple input' lowerCAmelCase__ : int = ['This is a simple input 1', 'This is a simple input 2'] lowerCAmelCase__ : int = ('This is a simple input', 'This is a pair') lowerCAmelCase__ : List[str] = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(a , tokenizer_r.encode , a , max_length=a , padding='max_length' ) # Simple input self.assertRaises(a , tokenizer_r.encode_plus , a , max_length=a , padding='max_length' ) # Simple input self.assertRaises( a , tokenizer_r.batch_encode_plus , a , max_length=a , padding='max_length' , ) # Pair input self.assertRaises(a , tokenizer_r.encode , a , max_length=a , padding='max_length' ) # Pair input self.assertRaises(a , tokenizer_r.encode_plus , a , max_length=a , padding='max_length' ) # Pair input self.assertRaises( a , tokenizer_r.batch_encode_plus , a , max_length=a , padding='max_length' , ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' pass @require_ftfy @require_spacy @require_tokenizers class A__ ( __magic_name__ ): pass
352
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCamelCase__ = imread(r"""digital_image_processing/image_data/lena_small.jpg""") lowerCamelCase__ = cvtColor(img, COLOR_BGR2GRAY) def lowerCAmelCase__ ( ) -> Dict: lowerCAmelCase__ : List[Any] = cn.convert_to_negative(SCREAMING_SNAKE_CASE_ ) # assert negative_img array for at least one True assert negative_img.any() def lowerCAmelCase__ ( ) -> Optional[Any]: with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(SCREAMING_SNAKE_CASE_ , 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def lowerCAmelCase__ ( ) -> Tuple: lowerCAmelCase__ : str = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def lowerCAmelCase__ ( ) -> Tuple: lowerCAmelCase__ : Tuple = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() lowerCAmelCase__ : Optional[Any] = canny.canny(SCREAMING_SNAKE_CASE_ ) # assert canny array for at least one True assert canny_array.any() def lowerCAmelCase__ ( ) -> Optional[int]: assert gg.gaussian_filter(SCREAMING_SNAKE_CASE_ , 5 , sigma=0.9 ).all() def lowerCAmelCase__ ( ) -> Dict: # laplace diagonals lowerCAmelCase__ : Union[str, Any] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowerCAmelCase__ : int = conv.img_convolve(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).astype(SCREAMING_SNAKE_CASE_ ) assert res.any() def lowerCAmelCase__ ( ) -> List[str]: assert med.median_filter(SCREAMING_SNAKE_CASE_ , 3 ).any() def lowerCAmelCase__ ( ) -> Any: lowerCAmelCase__ , lowerCAmelCase__ : str = sob.sobel_filter(SCREAMING_SNAKE_CASE_ ) assert grad.any() and theta.any() def lowerCAmelCase__ ( ) -> Any: lowerCAmelCase__ : int = sp.make_sepia(SCREAMING_SNAKE_CASE_ , 20 ) assert sepia.all() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = "digital_image_processing/image_data/lena_small.jpg" ) -> Optional[Any]: lowerCAmelCase__ : List[Any] = bs.Burkes(imread(SCREAMING_SNAKE_CASE_ , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = "digital_image_processing/image_data/lena_small.jpg" , ) -> Any: lowerCAmelCase__ : Dict = rs.NearestNeighbour(imread(SCREAMING_SNAKE_CASE_ , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def lowerCAmelCase__ ( ) -> int: lowerCAmelCase__ : int = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. lowerCAmelCase__ : List[str] = imread(SCREAMING_SNAKE_CASE_ , 0 ) # Test for get_neighbors_pixel function() return not None lowerCAmelCase__ : str = 0 lowerCAmelCase__ : str = 0 lowerCAmelCase__ : List[str] = image[x_coordinate][y_coordinate] lowerCAmelCase__ : Dict = lbp.get_neighbors_pixel( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCAmelCase__ : List[str] = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): lowerCAmelCase__ : Dict = lbp.local_binary_value(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert lbp_image.any()
307
0
import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( __magic_name__ , unittest.TestCase ): lowercase = KandinskyVaaPipeline lowercase = [ 'image_embeds', 'negative_image_embeds', ] lowercase = ['image_embeds', 'negative_image_embeds'] lowercase = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowercase = False @property def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' return 32 @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return 32 @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return self.time_input_dim @property def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def _lowerCamelCase ( self : str ): '''simple docstring''' return 100 @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCAmelCase__ : Tuple = UNetaDConditionModel(**a ) return model @property def _lowerCamelCase ( self : str ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _lowerCamelCase ( self : str ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : List[str] = VQModel(**self.dummy_movq_kwargs ) return model def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.dummy_unet lowerCAmelCase__ : Optional[Any] = self.dummy_movq lowerCAmelCase__ : Tuple = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule='linear' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=a , set_alpha_to_one=a , steps_offset=1 , prediction_type='epsilon' , thresholding=a , ) lowerCAmelCase__ : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def _lowerCamelCase ( self : List[Any] , a : List[Any] , a : List[Any]=0 ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(a ) ).to(a ) lowerCAmelCase__ : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( a ) if str(a ).startswith('mps' ): lowerCAmelCase__ : Union[str, Any] = torch.manual_seed(a ) else: lowerCAmelCase__ : List[str] = torch.Generator(device=a ).manual_seed(a ) lowerCAmelCase__ : Dict = { 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : List[Any] = 'cpu' lowerCAmelCase__ : Union[str, Any] = self.get_dummy_components() lowerCAmelCase__ : List[str] = self.pipeline_class(**a ) lowerCAmelCase__ : str = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : List[Any] = pipe(**self.get_dummy_inputs(a ) ) lowerCAmelCase__ : List[str] = output.images lowerCAmelCase__ : Optional[int] = pipe( **self.get_dummy_inputs(a ) , return_dict=a , )[0] lowerCAmelCase__ : Dict = image[0, -3:, -3:, -1] lowerCAmelCase__ : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : Any = np.array( [0.6_2_3_7_9_7_6, 1.0, 0.3_6_4_4_1_3_3_2, 1.0, 0.7_0_6_3_9_6_3_4, 0.2_9_8_7_7_1_8_6, 0.8_5_6_5_2_1_2_5, 0.5_2_1_6_8_4_3, 0.5_4_4_5_4_0_4_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy' ) lowerCAmelCase__ : Optional[int] = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(a ) lowerCAmelCase__ : str = KandinskyVaaPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder' , torch_dtype=torch.floataa ) lowerCAmelCase__ : int = pipeline.to(a ) pipeline.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Any = 'red cat, 4k photo' lowerCAmelCase__ : Tuple = torch.Generator(device='cuda' ).manual_seed(0 ) lowerCAmelCase__ : Dict = pipe_prior( a , generator=a , num_inference_steps=5 , negative_prompt='' , ).to_tuple() lowerCAmelCase__ : List[Any] = torch.Generator(device='cuda' ).manual_seed(0 ) lowerCAmelCase__ : List[Any] = pipeline( image_embeds=a , negative_image_embeds=a , generator=a , num_inference_steps=100 , output_type='np' , ) lowerCAmelCase__ : List[str] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(a , a )
353
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
0
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: lowerCAmelCase__ : Optional[int] = [] for part_id in partition_order: lowerCAmelCase__ : Tuple = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(SCREAMING_SNAKE_CASE_ ): expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def lowerCAmelCase__ ( ) -> Any: lowerCAmelCase__ : Optional[Any] = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() lowerCAmelCase__ : Optional[int] = spark.range(100 ).repartition(1 ) lowerCAmelCase__ : Optional[Any] = Spark(SCREAMING_SNAKE_CASE_ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def lowerCAmelCase__ ( ) -> Tuple: lowerCAmelCase__ : Optional[Any] = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() lowerCAmelCase__ : Tuple = spark.range(10 ).repartition(2 ) lowerCAmelCase__ : Optional[Any] = [1, 0] lowerCAmelCase__ : Optional[int] = _generate_iterable_examples(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Reverse the partitions. lowerCAmelCase__ : int = _get_expected_row_ids_and_row_dicts_for_partition_order(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): lowerCAmelCase__ : Tuple = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCAmelCase__ ( ) -> List[Any]: lowerCAmelCase__ : List[str] = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() lowerCAmelCase__ : List[Any] = spark.range(10 ).repartition(1 ) lowerCAmelCase__ : List[Any] = SparkExamplesIterable(SCREAMING_SNAKE_CASE_ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(SCREAMING_SNAKE_CASE_ ): assert row_id == F'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def lowerCAmelCase__ ( ) -> List[Any]: lowerCAmelCase__ : Optional[Any] = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() lowerCAmelCase__ : List[Any] = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('numpy.random.Generator' ) as generator_mock: lowerCAmelCase__ : str = lambda SCREAMING_SNAKE_CASE_ : x.reverse() lowerCAmelCase__ : Tuple = _get_expected_row_ids_and_row_dicts_for_partition_order(SCREAMING_SNAKE_CASE_ , [2, 1, 0] ) lowerCAmelCase__ : Tuple = SparkExamplesIterable(SCREAMING_SNAKE_CASE_ ).shuffle_data_sources(SCREAMING_SNAKE_CASE_ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : List[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCAmelCase__ ( ) -> List[Any]: lowerCAmelCase__ : str = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() lowerCAmelCase__ : Dict = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 lowerCAmelCase__ : Any = SparkExamplesIterable(SCREAMING_SNAKE_CASE_ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 lowerCAmelCase__ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(SCREAMING_SNAKE_CASE_ , [0, 2] ) for i, (row_id, row_dict) in enumerate(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Optional[Any] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 lowerCAmelCase__ : Any = SparkExamplesIterable(SCREAMING_SNAKE_CASE_ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 lowerCAmelCase__ : int = _get_expected_row_ids_and_row_dicts_for_partition_order(SCREAMING_SNAKE_CASE_ , [1, 3] ) for i, (row_id, row_dict) in enumerate(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : int = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCAmelCase__ ( ) -> str: lowerCAmelCase__ : List[Any] = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() lowerCAmelCase__ : Any = spark.range(100 ).repartition(1 ) lowerCAmelCase__ : Optional[Any] = Spark(SCREAMING_SNAKE_CASE_ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
354
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.999 , SCREAMING_SNAKE_CASE_="cosine" , ) -> Union[str, Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(SCREAMING_SNAKE_CASE_ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(SCREAMING_SNAKE_CASE_ ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) lowerCAmelCase__ : Tuple = [] for i in range(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : List[Any] = i / num_diffusion_timesteps lowerCAmelCase__ : str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) / alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ) return torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ) class A__ ( __magic_name__ , __magic_name__ ): lowercase = [e.name for e in KarrasDiffusionSchedulers] lowercase = 2 @register_to_config def __init__( self : Union[str, Any] , a : int = 1_000 , a : float = 0.0_0_0_8_5 , a : float = 0.0_1_2 , a : str = "linear" , a : Optional[Union[np.ndarray, List[float]]] = None , a : str = "epsilon" , a : Optional[bool] = False , a : Optional[bool] = False , a : float = 1.0 , a : str = "linspace" , a : int = 0 , ): '''simple docstring''' if trained_betas is not None: lowerCAmelCase__ : List[str] = torch.tensor(a , dtype=torch.floataa ) elif beta_schedule == "linear": lowerCAmelCase__ : List[str] = torch.linspace(a , a , a , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowerCAmelCase__ : Union[str, Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , a , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowerCAmelCase__ : int = betas_for_alpha_bar(a , alpha_transform_type='cosine' ) elif beta_schedule == "exp": lowerCAmelCase__ : List[str] = betas_for_alpha_bar(a , alpha_transform_type='exp' ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) lowerCAmelCase__ : int = 1.0 - self.betas lowerCAmelCase__ : Tuple = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(a , a , a ) lowerCAmelCase__ : Optional[Any] = use_karras_sigmas def _lowerCamelCase ( self : str , a : List[Any] , a : str=None ): '''simple docstring''' if schedule_timesteps is None: lowerCAmelCase__ : List[str] = self.timesteps lowerCAmelCase__ : int = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: lowerCAmelCase__ : List[str] = 1 if len(a ) > 1 else 0 else: lowerCAmelCase__ : Tuple = timestep.cpu().item() if torch.is_tensor(a ) else timestep lowerCAmelCase__ : Tuple = self._index_counter[timestep_int] return indices[pos].item() @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _lowerCamelCase ( self : Tuple , a : torch.FloatTensor , a : Union[float, torch.FloatTensor] , ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.index_for_timestep(a ) lowerCAmelCase__ : Any = self.sigmas[step_index] lowerCAmelCase__ : Optional[Any] = sample / ((sigma**2 + 1) ** 0.5) return sample def _lowerCamelCase ( self : List[str] , a : int , a : Union[str, torch.device] = None , a : Optional[int] = None , ): '''simple docstring''' lowerCAmelCase__ : Any = num_inference_steps lowerCAmelCase__ : Union[str, Any] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowerCAmelCase__ : Union[str, Any] = np.linspace(0 , num_train_timesteps - 1 , a , dtype=a )[::-1].copy() elif self.config.timestep_spacing == "leading": lowerCAmelCase__ : List[Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCAmelCase__ : Dict = (np.arange(0 , a ) * step_ratio).round()[::-1].copy().astype(a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowerCAmelCase__ : Tuple = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCAmelCase__ : int = (np.arange(a , 0 , -step_ratio )).round().copy().astype(a ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) lowerCAmelCase__ : str = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) lowerCAmelCase__ : List[Any] = np.log(a ) lowerCAmelCase__ : Optional[int] = np.interp(a , np.arange(0 , len(a ) ) , a ) if self.config.use_karras_sigmas: lowerCAmelCase__ : str = self._convert_to_karras(in_sigmas=a , num_inference_steps=self.num_inference_steps ) lowerCAmelCase__ : Union[str, Any] = np.array([self._sigma_to_t(a , a ) for sigma in sigmas] ) lowerCAmelCase__ : Tuple = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) lowerCAmelCase__ : Dict = torch.from_numpy(a ).to(device=a ) lowerCAmelCase__ : Union[str, Any] = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) lowerCAmelCase__ : Tuple = torch.from_numpy(a ) lowerCAmelCase__ : List[str] = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(a ).startswith('mps' ): # mps does not support float64 lowerCAmelCase__ : Optional[Any] = timesteps.to(a , dtype=torch.floataa ) else: lowerCAmelCase__ : Any = timesteps.to(device=a ) # empty dt and derivative lowerCAmelCase__ : str = None lowerCAmelCase__ : Optional[int] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowerCAmelCase__ : Optional[Any] = defaultdict(a ) def _lowerCamelCase ( self : Any , a : Dict , a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = np.log(a ) # get distribution lowerCAmelCase__ : Tuple = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range lowerCAmelCase__ : Optional[int] = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) lowerCAmelCase__ : List[str] = low_idx + 1 lowerCAmelCase__ : List[str] = log_sigmas[low_idx] lowerCAmelCase__ : Any = log_sigmas[high_idx] # interpolate sigmas lowerCAmelCase__ : Union[str, Any] = (low - log_sigma) / (low - high) lowerCAmelCase__ : List[Any] = np.clip(a , 0 , 1 ) # transform interpolation to time range lowerCAmelCase__ : List[Any] = (1 - w) * low_idx + w * high_idx lowerCAmelCase__ : Any = t.reshape(sigma.shape ) return t def _lowerCamelCase ( self : Tuple , a : torch.FloatTensor , a : Any ): '''simple docstring''' lowerCAmelCase__ : float = in_sigmas[-1].item() lowerCAmelCase__ : float = in_sigmas[0].item() lowerCAmelCase__ : Tuple = 7.0 # 7.0 is the value used in the paper lowerCAmelCase__ : Tuple = np.linspace(0 , 1 , a ) lowerCAmelCase__ : Any = sigma_min ** (1 / rho) lowerCAmelCase__ : Optional[Any] = sigma_max ** (1 / rho) lowerCAmelCase__ : Tuple = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _lowerCamelCase ( self : Any ): '''simple docstring''' return self.dt is None def _lowerCamelCase ( self : List[str] , a : Union[torch.FloatTensor, np.ndarray] , a : Union[float, torch.FloatTensor] , a : Union[torch.FloatTensor, np.ndarray] , a : bool = True , ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.index_for_timestep(a ) # advance index counter by 1 lowerCAmelCase__ : Tuple = timestep.cpu().item() if torch.is_tensor(a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowerCAmelCase__ : Union[str, Any] = self.sigmas[step_index] lowerCAmelCase__ : Union[str, Any] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method lowerCAmelCase__ : int = self.sigmas[step_index - 1] lowerCAmelCase__ : Any = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowerCAmelCase__ : Optional[int] = 0 lowerCAmelCase__ : Union[str, Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowerCAmelCase__ : int = sigma_hat if self.state_in_first_order else sigma_next lowerCAmelCase__ : Any = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowerCAmelCase__ : Dict = sigma_hat if self.state_in_first_order else sigma_next lowerCAmelCase__ : List[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": lowerCAmelCase__ : int = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.config.clip_sample: lowerCAmelCase__ : str = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowerCAmelCase__ : Dict = (sample - pred_original_sample) / sigma_hat # 3. delta timestep lowerCAmelCase__ : Optional[int] = sigma_next - sigma_hat # store for 2nd order step lowerCAmelCase__ : List[Any] = derivative lowerCAmelCase__ : str = dt lowerCAmelCase__ : Dict = sample else: # 2. 2nd order / Heun's method lowerCAmelCase__ : Union[str, Any] = (sample - pred_original_sample) / sigma_next lowerCAmelCase__ : Union[str, Any] = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample lowerCAmelCase__ : Dict = self.dt lowerCAmelCase__ : Optional[int] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" lowerCAmelCase__ : List[str] = None lowerCAmelCase__ : Tuple = None lowerCAmelCase__ : str = None lowerCAmelCase__ : Tuple = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=a ) def _lowerCamelCase ( self : int , a : torch.FloatTensor , a : torch.FloatTensor , a : torch.FloatTensor , ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(a ): # mps does not support float64 lowerCAmelCase__ : Optional[int] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) lowerCAmelCase__ : int = timesteps.to(original_samples.device , dtype=torch.floataa ) else: lowerCAmelCase__ : Union[str, Any] = self.timesteps.to(original_samples.device ) lowerCAmelCase__ : Optional[Any] = timesteps.to(original_samples.device ) lowerCAmelCase__ : List[Any] = [self.index_for_timestep(a , a ) for t in timesteps] lowerCAmelCase__ : List[str] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): lowerCAmelCase__ : Any = sigma.unsqueeze(-1 ) lowerCAmelCase__ : List[str] = original_samples + noise * sigma return noisy_samples def __len__( self : int ): '''simple docstring''' return self.config.num_train_timesteps
307
0
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: _enforce_args(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if n == 0: return 0 lowerCAmelCase__ : Tuple = float('-inf' ) for i in range(1 , n + 1 ): lowerCAmelCase__ : int = max( SCREAMING_SNAKE_CASE_ , prices[i - 1] + naive_cut_rod_recursive(n - i , SCREAMING_SNAKE_CASE_ ) ) return max_revue def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: _enforce_args(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Dict = [float('-inf' ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: lowerCAmelCase__ : Optional[int] = float('-inf' ) for i in range(1 , n + 1 ): lowerCAmelCase__ : Optional[int] = max( SCREAMING_SNAKE_CASE_ , prices[i - 1] + _top_down_cut_rod_recursive(n - i , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , ) lowerCAmelCase__ : List[str] = max_revenue return max_rev[n] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: _enforce_args(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. lowerCAmelCase__ : int = [float('-inf' ) for _ in range(n + 1 )] lowerCAmelCase__ : List[Any] = 0 for i in range(1 , n + 1 ): lowerCAmelCase__ : List[str] = max_rev[i] for j in range(1 , i + 1 ): lowerCAmelCase__ : Tuple = max(SCREAMING_SNAKE_CASE_ , prices[j - 1] + max_rev[i - j] ) lowerCAmelCase__ : Union[str, Any] = max_revenue_i return max_rev[n] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: if n < 0: lowerCAmelCase__ : Optional[int] = F'''n must be greater than or equal to 0. Got n = {n}''' raise ValueError(SCREAMING_SNAKE_CASE_ ) if n > len(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : int = ( 'Each integral piece of rod must have a corresponding price. ' F'''Got n = {n} but length of prices = {len(SCREAMING_SNAKE_CASE_ )}''' ) raise ValueError(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( ) -> List[Any]: lowerCAmelCase__ : Any = [6, 10, 12, 15, 20, 23] lowerCAmelCase__ : Union[str, Any] = len(SCREAMING_SNAKE_CASE_ ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. lowerCAmelCase__ : List[Any] = 36 lowerCAmelCase__ : Dict = top_down_cut_rod(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[Any] = bottom_up_cut_rod(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = naive_cut_rod_recursive(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
355
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: if isinstance(SCREAMING_SNAKE_CASE_ , collections.abc.Iterable ): return x return (x, x) @require_tf class A__ : def _lowerCamelCase ( self : List[Any] , a : List[str] , a : Optional[Any] ): '''simple docstring''' pass def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' pass def _lowerCamelCase ( self : Dict ): '''simple docstring''' pass def _lowerCamelCase ( self : Dict , a : int , a : str , a : List[Any] , a : Dict , a : List[str]=None , **a : Dict ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(a , a ) lowerCAmelCase__ : Tuple = TFVisionTextDualEncoderModel(a ) lowerCAmelCase__ : Tuple = model(input_ids=a , pixel_values=a , attention_mask=a ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) ) def _lowerCamelCase ( self : Union[str, Any] , a : Dict , a : Tuple , a : Dict , a : Union[str, Any] , a : List[Any]=None , **a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.get_vision_text_model(a , a ) lowerCAmelCase__ : List[Any] = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : Optional[int] = model(input_ids=a , pixel_values=a , attention_mask=a ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _lowerCamelCase ( self : List[str] , a : Optional[int] , a : Optional[int] , a : Union[str, Any] , a : List[Any] , a : Any=None , **a : Dict ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Optional[Any] = {'vision_model': vision_model, 'text_model': text_model} lowerCAmelCase__ : Tuple = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**a ) lowerCAmelCase__ : Union[str, Any] = model(input_ids=a , pixel_values=a , attention_mask=a ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _lowerCamelCase ( self : Any , a : Optional[int] , a : Optional[int] , a : Dict , a : Optional[int] , a : Optional[int]=None , **a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : int = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Dict = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : List[str] = model(input_ids=a , pixel_values=a , attention_mask=a ) lowerCAmelCase__ : Union[str, Any] = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(a ) lowerCAmelCase__ : Any = TFVisionTextDualEncoderModel.from_pretrained(a ) lowerCAmelCase__ : int = model(input_ids=a , pixel_values=a , attention_mask=a ) lowerCAmelCase__ : Union[str, Any] = after_output[0].numpy() lowerCAmelCase__ : Optional[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a , 1E-5 ) def _lowerCamelCase ( self : List[str] , a : Dict , a : Optional[int] , a : List[Any] , a : str , a : int=None , **a : Tuple ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Any = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : str = model( input_ids=a , pixel_values=a , attention_mask=a , output_attentions=a ) lowerCAmelCase__ : Union[str, Any] = output.vision_model_output.attentions self.assertEqual(len(a ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase__ : Optional[int] = to_atuple(vision_model.config.image_size ) lowerCAmelCase__ : Optional[Any] = to_atuple(vision_model.config.patch_size ) lowerCAmelCase__ : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCAmelCase__ : int = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCAmelCase__ : str = output.text_model_output.attentions self.assertEqual(len(a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCamelCase ( self : List[Any] , a : np.ndarray , a : np.ndarray , a : float ): '''simple docstring''' lowerCAmelCase__ : int = np.abs((a - b) ).max() self.assertLessEqual(a , a , f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**a ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Any = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**a ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : str = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() self.check_save_load(**a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**a ) @slow def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = self.get_pretrained_model_and_inputs() lowerCAmelCase__ : List[Any] = model_a(**a ) lowerCAmelCase__ : Optional[int] = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(a ) lowerCAmelCase__ : str = TFVisionTextDualEncoderModel.from_pretrained(a ) lowerCAmelCase__ : List[str] = model_a(**a ) lowerCAmelCase__ : int = after_outputs[0].numpy() lowerCAmelCase__ : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a , 1E-5 ) @require_tf class A__ ( __magic_name__ , unittest.TestCase ): def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-random-bert' ) lowerCAmelCase__ : int = 13 lowerCAmelCase__ : List[Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ : int = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ : Optional[Any] = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ : List[Any] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _lowerCamelCase ( self : List[Any] , a : Dict , a : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = TFViTModel(a , name='vision_model' ) lowerCAmelCase__ : str = TFBertModel(a , name='text_model' ) return vision_model, text_model def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = TFViTModelTester(self ) lowerCAmelCase__ : Tuple = TFBertModelTester(self ) lowerCAmelCase__ : Optional[int] = vit_model_tester.prepare_config_and_inputs() lowerCAmelCase__ : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : int = vision_config_and_inputs ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : str = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class A__ ( __magic_name__ , unittest.TestCase ): def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-deit-tf' , 'hf-internal-testing/tiny-random-roberta' ) lowerCAmelCase__ : Tuple = 13 lowerCAmelCase__ : Any = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ : Dict = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ : Any = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ : Tuple = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _lowerCamelCase ( self : str , a : Optional[Any] , a : Dict , a : Dict , a : Any , a : Any=None , **a : int ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Optional[int] = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : Any = model( input_ids=a , pixel_values=a , attention_mask=a , output_attentions=a ) lowerCAmelCase__ : Union[str, Any] = output.vision_model_output.attentions self.assertEqual(len(a ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowerCAmelCase__ : str = to_atuple(vision_model.config.image_size ) lowerCAmelCase__ : Union[str, Any] = to_atuple(vision_model.config.patch_size ) lowerCAmelCase__ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCAmelCase__ : int = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCAmelCase__ : List[str] = output.text_model_output.attentions self.assertEqual(len(a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCamelCase ( self : int , a : Optional[int] , a : int ): '''simple docstring''' lowerCAmelCase__ : Dict = TFDeiTModel(a , name='vision_model' ) lowerCAmelCase__ : List[Any] = TFRobertaModel(a , name='text_model' ) return vision_model, text_model def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Dict = TFDeiTModelTester(self ) lowerCAmelCase__ : List[str] = TFRobertaModelTester(self ) lowerCAmelCase__ : str = vit_model_tester.prepare_config_and_inputs() lowerCAmelCase__ : List[Any] = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[str] = vision_config_and_inputs ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : Any = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class A__ ( __magic_name__ , unittest.TestCase ): def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : int = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-clip-tf' , 'hf-internal-testing/tiny-random-bert' ) lowerCAmelCase__ : Dict = 13 lowerCAmelCase__ : str = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ : List[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ : Union[str, Any] = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ : Optional[int] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _lowerCamelCase ( self : str , a : int , a : List[str] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = TFCLIPVisionModel(a , name='vision_model' ) lowerCAmelCase__ : List[str] = TFBertModel(a , name='text_model' ) return vision_model, text_model def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Any = TFCLIPVisionModelTester(self ) lowerCAmelCase__ : Union[str, Any] = TFBertModelTester(self ) lowerCAmelCase__ : Any = clip_model_tester.prepare_config_and_inputs() lowerCAmelCase__ : Any = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = vision_config_and_inputs ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : str = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class A__ ( unittest.TestCase ): @slow def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Tuple = TFVisionTextDualEncoderModel.from_pretrained( 'clip-italian/clip-italian' , logit_scale_init_value=1.0 , from_pt=a ) lowerCAmelCase__ : List[Any] = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) lowerCAmelCase__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCAmelCase__ : Any = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=a , padding=a , return_tensors='np' ) lowerCAmelCase__ : Union[str, Any] = model(**a ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) lowerCAmelCase__ : List[str] = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , a , atol=1E-3 ) )
307
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer lowerCamelCase__ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCamelCase__ = { """vocab_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt""" ), """google/electra-base-generator""": """https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt""", """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json""" ), """google/electra-base-generator""": ( """https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json""" ), """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json""" ), }, } lowerCamelCase__ = { """google/electra-small-generator""": 512, """google/electra-base-generator""": 512, """google/electra-large-generator""": 512, """google/electra-small-discriminator""": 512, """google/electra-base-discriminator""": 512, """google/electra-large-discriminator""": 512, } lowerCamelCase__ = { """google/electra-small-generator""": {"""do_lower_case""": True}, """google/electra-base-generator""": {"""do_lower_case""": True}, """google/electra-large-generator""": {"""do_lower_case""": True}, """google/electra-small-discriminator""": {"""do_lower_case""": True}, """google/electra-base-discriminator""": {"""do_lower_case""": True}, """google/electra-large-discriminator""": {"""do_lower_case""": True}, } class A__ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_INIT_CONFIGURATION lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ElectraTokenizer def __init__( self : int , a : str=None , a : int=None , a : List[Any]=True , a : Union[str, Any]="[UNK]" , a : Dict="[SEP]" , a : Union[str, Any]="[PAD]" , a : str="[CLS]" , a : Optional[int]="[MASK]" , a : Union[str, Any]=True , a : Any=None , **a : List[str] , ): '''simple docstring''' super().__init__( a , tokenizer_file=a , do_lower_case=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , tokenize_chinese_chars=a , strip_accents=a , **a , ) lowerCAmelCase__ : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , a ) != do_lower_case or normalizer_state.get('strip_accents' , a ) != strip_accents or normalizer_state.get('handle_chinese_chars' , a ) != tokenize_chinese_chars ): lowerCAmelCase__ : str = getattr(a , normalizer_state.pop('type' ) ) lowerCAmelCase__ : Optional[int] = do_lower_case lowerCAmelCase__ : List[str] = strip_accents lowerCAmelCase__ : Dict = tokenize_chinese_chars lowerCAmelCase__ : List[Any] = normalizer_class(**a ) lowerCAmelCase__ : List[Any] = do_lower_case def _lowerCamelCase ( self : Any , a : Tuple , a : Tuple=None ): '''simple docstring''' lowerCAmelCase__ : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowerCamelCase ( self : int , a : List[int] , a : Optional[List[int]] = None ): '''simple docstring''' lowerCAmelCase__ : Any = [self.sep_token_id] lowerCAmelCase__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCamelCase ( self : Optional[Any] , a : str , a : Optional[str] = None ): '''simple docstring''' lowerCAmelCase__ : List[str] = self._tokenizer.model.save(a , name=a ) return tuple(a )
356
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) lowerCamelCase__ = logging.getLogger(__name__) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: lowerCAmelCase__ : Dict = np.argmax(SCREAMING_SNAKE_CASE_ , axis=1 ) return np.sum(outputs == labels ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: with open(SCREAMING_SNAKE_CASE_ , encoding='utf_8' ) as f: lowerCAmelCase__ : Dict = csv.reader(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Dict = [] next(SCREAMING_SNAKE_CASE_ ) # skip the first line for line in tqdm(SCREAMING_SNAKE_CASE_ ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: lowerCAmelCase__ : Dict = [] for dataset in encoded_datasets: lowerCAmelCase__ : List[str] = len(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) lowerCAmelCase__ : Tuple = np.zeros((n_batch, 2) , dtype=np.intaa ) lowerCAmelCase__ : List[Any] = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) lowerCAmelCase__ : Tuple = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Tuple = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase__ : Any = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase__ : Optional[Any] = with_conta lowerCAmelCase__ : List[str] = with_conta lowerCAmelCase__ : List[Any] = len(SCREAMING_SNAKE_CASE_ ) - 1 lowerCAmelCase__ : Tuple = len(SCREAMING_SNAKE_CASE_ ) - 1 lowerCAmelCase__ : Tuple = with_conta lowerCAmelCase__ : Optional[int] = with_conta lowerCAmelCase__ : Optional[int] = mc_label lowerCAmelCase__ : Dict = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(SCREAMING_SNAKE_CASE_ ) for t in all_inputs ) ) return tensor_datasets def lowerCAmelCase__ ( ) -> int: lowerCAmelCase__ : int = argparse.ArgumentParser() parser.add_argument('--model_name' , type=SCREAMING_SNAKE_CASE_ , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=SCREAMING_SNAKE_CASE_ , default='' ) parser.add_argument('--eval_dataset' , type=SCREAMING_SNAKE_CASE_ , default='' ) parser.add_argument('--seed' , type=SCREAMING_SNAKE_CASE_ , default=42 ) parser.add_argument('--num_train_epochs' , type=SCREAMING_SNAKE_CASE_ , default=3 ) parser.add_argument('--train_batch_size' , type=SCREAMING_SNAKE_CASE_ , default=8 ) parser.add_argument('--eval_batch_size' , type=SCREAMING_SNAKE_CASE_ , default=16 ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=SCREAMING_SNAKE_CASE_ , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=SCREAMING_SNAKE_CASE_ , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=SCREAMING_SNAKE_CASE_ , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=SCREAMING_SNAKE_CASE_ , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=SCREAMING_SNAKE_CASE_ , default=6.25e-5 ) parser.add_argument('--warmup_steps' , default=0 , type=SCREAMING_SNAKE_CASE_ , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=SCREAMING_SNAKE_CASE_ , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=SCREAMING_SNAKE_CASE_ , default=0.01 ) parser.add_argument('--lm_coef' , type=SCREAMING_SNAKE_CASE_ , default=0.9 ) parser.add_argument('--n_valid' , type=SCREAMING_SNAKE_CASE_ , default=374 ) parser.add_argument('--server_ip' , type=SCREAMING_SNAKE_CASE_ , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=SCREAMING_SNAKE_CASE_ , default='' , help='Can be used for distant debugging.' ) lowerCAmelCase__ : List[str] = parser.parse_args() print(SCREAMING_SNAKE_CASE_ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE_ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) lowerCAmelCase__ : str = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) lowerCAmelCase__ : Dict = torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset lowerCAmelCase__ : Union[str, Any] = ['_start_', '_delimiter_', '_classify_'] lowerCAmelCase__ : Dict = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE_ ) ) model.to(SCREAMING_SNAKE_CASE_ ) # Load and encode the datasets def tokenize_and_encode(SCREAMING_SNAKE_CASE_ ): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return obj return [tokenize_and_encode(SCREAMING_SNAKE_CASE_ ) for o in obj] logger.info('Encoding dataset...' ) lowerCAmelCase__ : List[Any] = load_rocstories_dataset(args.train_dataset ) lowerCAmelCase__ : str = load_rocstories_dataset(args.eval_dataset ) lowerCAmelCase__ : Union[str, Any] = (train_dataset, eval_dataset) lowerCAmelCase__ : List[str] = tokenize_and_encode(SCREAMING_SNAKE_CASE_ ) # Compute the max input length for the Transformer lowerCAmelCase__ : Union[str, Any] = model.config.n_positions // 2 - 2 lowerCAmelCase__ : Tuple = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) lowerCAmelCase__ : Dict = min(SCREAMING_SNAKE_CASE_ , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders lowerCAmelCase__ : int = pre_process_datasets(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = tensor_datasets[0], tensor_datasets[1] lowerCAmelCase__ : str = TensorDataset(*SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Tuple = RandomSampler(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Tuple = DataLoader(SCREAMING_SNAKE_CASE_ , sampler=SCREAMING_SNAKE_CASE_ , batch_size=args.train_batch_size ) lowerCAmelCase__ : Optional[Any] = TensorDataset(*SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Dict = SequentialSampler(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = DataLoader(SCREAMING_SNAKE_CASE_ , sampler=SCREAMING_SNAKE_CASE_ , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: lowerCAmelCase__ : Union[str, Any] = args.max_steps lowerCAmelCase__ : int = args.max_steps // (len(SCREAMING_SNAKE_CASE_ ) // args.gradient_accumulation_steps) + 1 else: lowerCAmelCase__ : Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) // args.gradient_accumulation_steps * args.num_train_epochs lowerCAmelCase__ : Optional[int] = list(model.named_parameters() ) lowerCAmelCase__ : Tuple = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] lowerCAmelCase__ : str = [ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] lowerCAmelCase__ : Union[str, Any] = AdamW(SCREAMING_SNAKE_CASE_ , lr=args.learning_rate , eps=args.adam_epsilon ) lowerCAmelCase__ : int = get_linear_schedule_with_warmup( SCREAMING_SNAKE_CASE_ , num_warmup_steps=args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE_ ) if args.do_train: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): lowerCAmelCase__ : str = 0 lowerCAmelCase__ : int = 0 lowerCAmelCase__ : str = tqdm(SCREAMING_SNAKE_CASE_ , desc='Training' ) for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Union[str, Any] = tuple(t.to(SCREAMING_SNAKE_CASE_ ) for t in batch ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = batch lowerCAmelCase__ : Tuple = model(SCREAMING_SNAKE_CASE_ , mc_token_ids=SCREAMING_SNAKE_CASE_ , lm_labels=SCREAMING_SNAKE_CASE_ , mc_labels=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : str = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() lowerCAmelCase__ : Optional[int] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 lowerCAmelCase__ : List[str] = 'Training loss: {:.2e} lr: {:.2e}'.format(SCREAMING_SNAKE_CASE_ , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer lowerCAmelCase__ : Optional[int] = model.module if hasattr(SCREAMING_SNAKE_CASE_ , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` lowerCAmelCase__ : List[str] = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[str] = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE_ ) torch.save(model_to_save.state_dict() , SCREAMING_SNAKE_CASE_ ) model_to_save.config.to_json_file(SCREAMING_SNAKE_CASE_ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned lowerCAmelCase__ : Dict = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) lowerCAmelCase__ : List[Any] = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(SCREAMING_SNAKE_CASE_ ) if args.do_eval: model.eval() lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = 0, 0 lowerCAmelCase__ , lowerCAmelCase__ : Any = 0, 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , desc='Evaluating' ): lowerCAmelCase__ : str = tuple(t.to(SCREAMING_SNAKE_CASE_ ) for t in batch ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Tuple = batch with torch.no_grad(): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[str] = model( SCREAMING_SNAKE_CASE_ , mc_token_ids=SCREAMING_SNAKE_CASE_ , lm_labels=SCREAMING_SNAKE_CASE_ , mc_labels=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = mc_logits.detach().cpu().numpy() lowerCAmelCase__ : List[Any] = mc_labels.to('cpu' ).numpy() lowerCAmelCase__ : str = accuracy(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 lowerCAmelCase__ : Optional[int] = eval_loss / nb_eval_steps lowerCAmelCase__ : Any = eval_accuracy / nb_eval_examples lowerCAmelCase__ : Union[str, Any] = tr_loss / nb_tr_steps if args.do_train else None lowerCAmelCase__ : Tuple = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} lowerCAmelCase__ : Dict = os.path.join(args.output_dir , 'eval_results.txt' ) with open(SCREAMING_SNAKE_CASE_ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , SCREAMING_SNAKE_CASE_ , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
307
0
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) lowerCAmelCase__ : Any = (boundary[1] - boundary[0]) / steps lowerCAmelCase__ : int = boundary[0] lowerCAmelCase__ : Union[str, Any] = boundary[1] lowerCAmelCase__ : Dict = make_points(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[Any] = 0.0 y += (h / 2.0) * f(SCREAMING_SNAKE_CASE_ ) for i in x_i: # print(i) y += h * f(SCREAMING_SNAKE_CASE_ ) y += (h / 2.0) * f(SCREAMING_SNAKE_CASE_ ) return y def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: lowerCAmelCase__ : Any = a + h while x < (b - h): yield x lowerCAmelCase__ : int = x + h def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Any: # enter your function here lowerCAmelCase__ : Any = (x - 0) * (x - 0) return y def lowerCAmelCase__ ( ) -> Any: lowerCAmelCase__ : Tuple = 0.0 # Lower bound of integration lowerCAmelCase__ : Dict = 1.0 # Upper bound of integration lowerCAmelCase__ : List[Any] = 10.0 # define number of steps or resolution lowerCAmelCase__ : str = [a, b] # define boundary of integration lowerCAmelCase__ : Union[str, Any] = method_a(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) print(F'''y = {y}''' ) if __name__ == "__main__": main()
357
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCamelCase__ = """python tqdm regex requests packaging filelock numpy tokenizers""".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("""dataclasses""") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("""importlib_metadata""") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> int: require_version(deps[pkg] , SCREAMING_SNAKE_CASE_ )
307
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = { """configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""], """feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""], """processing_mctct""": ["""MCTCTProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MCTCTForCTC""", """MCTCTModel""", """MCTCTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
358
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class A__ ( __magic_name__ ): lowercase = (DPMSolverSDEScheduler,) lowercase = 10 def _lowerCamelCase ( self : Optional[int] , **a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = { 'num_train_timesteps': 1_100, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'noise_sampler_seed': 0, } config.update(**a ) return config def _lowerCamelCase ( self : Tuple ): '''simple docstring''' for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=a ) def _lowerCamelCase ( self : int ): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=a , beta_end=a ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=a ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : int = self.scheduler_classes[0] lowerCAmelCase__ : Tuple = self.get_scheduler_config() lowerCAmelCase__ : List[Any] = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ : Dict = self.dummy_model() lowerCAmelCase__ : int = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ : int = sample.to(a ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : List[Any] = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : str = model(a , a ) lowerCAmelCase__ : int = scheduler.step(a , a , a ) lowerCAmelCase__ : Any = output.prev_sample lowerCAmelCase__ : List[Any] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Optional[int] = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_7_8_2_1_0_4_4_9_2_1_8_7_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_7_8_7_0_5_9_6_4_5_6_5_2_7_7 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_2_1_1_1_8_1_6_4_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_6_8_9_2_2_9_9_6_5_2 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3 def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.scheduler_classes[0] lowerCAmelCase__ : List[str] = self.get_scheduler_config(prediction_type='v_prediction' ) lowerCAmelCase__ : Any = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ : Optional[int] = self.dummy_model() lowerCAmelCase__ : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ : Any = sample.to(a ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : str = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : str = model(a , a ) lowerCAmelCase__ : Dict = scheduler.step(a , a , a ) lowerCAmelCase__ : Tuple = output.prev_sample lowerCAmelCase__ : int = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Union[str, Any] = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_2_4.7_7_1_4_9_2_0_0_4_3_9_4_5_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_2_2_6_2_8_9_0_1_4_8_1_6_2_8_4 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_2_8.1_6_6_3_3_6_0_5_9_5_7_0_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_6_8_8_3_2_6_0_0_1_1_6_7_2_9_7 ) < 1E-3 else: assert abs(result_sum.item() - 1_1_9.8_4_8_7_5_4_8_8_2_8_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.1_5_6_0_5_3_0_6_6_2_5_3_6_6_2_1 ) < 1E-3 def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.scheduler_classes[0] lowerCAmelCase__ : Optional[int] = self.get_scheduler_config() lowerCAmelCase__ : int = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps , device=a ) lowerCAmelCase__ : Tuple = self.dummy_model() lowerCAmelCase__ : Any = self.dummy_sample_deter.to(a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowerCAmelCase__ : Dict = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : Optional[int] = model(a , a ) lowerCAmelCase__ : Tuple = scheduler.step(a , a , a ) lowerCAmelCase__ : Dict = output.prev_sample lowerCAmelCase__ : Union[str, Any] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Dict = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_6_9_5_7_3_9_7_4_6_0_9_3_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_8_0_5_9_3_4_6_0_7_9_8_2_6_3_5 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_3_6_3_7_6_9_5_3_1_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_8_3_8_2_4_1_5_7_7_1 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3 def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.scheduler_classes[0] lowerCAmelCase__ : Any = self.get_scheduler_config() lowerCAmelCase__ : Any = scheduler_class(**a , use_karras_sigmas=a ) scheduler.set_timesteps(self.num_inference_steps , device=a ) lowerCAmelCase__ : str = self.dummy_model() lowerCAmelCase__ : Any = self.dummy_sample_deter.to(a ) * scheduler.init_noise_sigma lowerCAmelCase__ : str = sample.to(a ) for t in scheduler.timesteps: lowerCAmelCase__ : Any = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : int = model(a , a ) lowerCAmelCase__ : Union[str, Any] = scheduler.step(a , a , a ) lowerCAmelCase__ : Union[str, Any] = output.prev_sample lowerCAmelCase__ : Optional[int] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Any = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_7_6.6_6_9_7_4_1_3_5_7_4_2_1_8_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_7.6_3_6_5_3_5_6_4_4_5_3_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2 else: assert abs(result_sum.item() - 1_7_0.3_1_3_5_2_2_3_3_8_8_6_7_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2
307
0
from __future__ import annotations def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> dict[str, float]: if (voltage, current, resistance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance < 0: raise ValueError('Resistance cannot be negative' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
359
import os import string import sys lowerCamelCase__ = 1 << 8 lowerCamelCase__ = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } lowerCamelCase__ = KEYMAP["""up"""] lowerCamelCase__ = KEYMAP["""left"""] if sys.platform == "win32": lowerCamelCase__ = [] lowerCamelCase__ = { b"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, b"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): lowerCamelCase__ = ord(str(i)) def lowerCAmelCase__ ( ) -> Dict: if os.name == "nt": import msvcrt lowerCAmelCase__ : Dict = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(SCREAMING_SNAKE_CASE_ ) == 0: # Read the keystroke lowerCAmelCase__ : Optional[Any] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCAmelCase__ : Dict = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCAmelCase__ : Dict = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(SCREAMING_SNAKE_CASE_ ) if ord(SCREAMING_SNAKE_CASE_ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) lowerCAmelCase__ : Dict = chr(KEYMAP['esc'] ) except KeyError: lowerCAmelCase__ : Dict = cha[1] else: lowerCAmelCase__ : List[Any] = ch.decode(SCREAMING_SNAKE_CASE_ ) else: lowerCAmelCase__ : Tuple = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCAmelCase__ : Tuple = sys.stdin.fileno() lowerCAmelCase__ : Any = termios.tcgetattr(SCREAMING_SNAKE_CASE_ ) try: tty.setraw(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = sys.stdin.read(1 ) finally: termios.tcsetattr(SCREAMING_SNAKE_CASE_ , termios.TCSADRAIN , SCREAMING_SNAKE_CASE_ ) return ch def lowerCAmelCase__ ( ) -> Union[str, Any]: lowerCAmelCase__ : Any = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(SCREAMING_SNAKE_CASE_ ) == KEYMAP["esc"]: lowerCAmelCase__ : Union[str, Any] = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) == KEYMAP["mod_int"]: lowerCAmelCase__ : str = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(SCREAMING_SNAKE_CASE_ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(SCREAMING_SNAKE_CASE_ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
307
0
"""simple docstring""" # We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("""ignore""", category=UserWarning, module="""torch.optim.lr_scheduler""") class A__ : def __init__( self : Optional[int] , a : List[str] , a : Optional[int] , a : bool = True , a : bool = False ): '''simple docstring''' lowerCAmelCase__ : Any = scheduler lowerCAmelCase__ : List[Any] = optimizers if isinstance(a , (list, tuple) ) else [optimizers] lowerCAmelCase__ : str = split_batches lowerCAmelCase__ : Optional[Any] = step_with_optimizer lowerCAmelCase__ : List[str] = GradientState() def _lowerCamelCase ( self : Optional[Any] , *a : str , **a : Union[str, Any] ): '''simple docstring''' if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*a , **a ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*a , **a ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step lowerCAmelCase__ : List[str] = AcceleratorState().num_processes for _ in range(a ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , 'total_steps' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*a , **a ) else: self.scheduler.step(*a , **a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' return self.scheduler.get_last_lr() def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' return self.scheduler.state_dict() def _lowerCamelCase ( self : Union[str, Any] , a : int ): '''simple docstring''' self.scheduler.load_state_dict(a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' return self.scheduler.get_lr() def _lowerCamelCase ( self : Dict , *a : Union[str, Any] , **a : Tuple ): '''simple docstring''' return self.scheduler.print_lr(*a , **a )
360
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: return "".join([hex(SCREAMING_SNAKE_CASE_ )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE_ )] ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(SCREAMING_SNAKE_CASE_ ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE_ ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
307
0
import random def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> tuple: lowerCAmelCase__ : Union[str, Any] = [], [], [] for element in data: if element < pivot: less.append(SCREAMING_SNAKE_CASE_ ) elif element > pivot: greater.append(SCREAMING_SNAKE_CASE_ ) else: equal.append(SCREAMING_SNAKE_CASE_ ) return less, equal, greater def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(SCREAMING_SNAKE_CASE_ ) or index < 0: return None lowerCAmelCase__ : Optional[int] = items[random.randint(0 , len(SCREAMING_SNAKE_CASE_ ) - 1 )] lowerCAmelCase__ : Optional[Any] = 0 lowerCAmelCase__ : Tuple = _partition(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = len(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = len(SCREAMING_SNAKE_CASE_ ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # must be in larger else: return quick_select(SCREAMING_SNAKE_CASE_ , index - (m + count) )
361
from __future__ import annotations def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> list[list[int]]: lowerCAmelCase__ : list[list[int]] = [] create_all_state(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , [] , SCREAMING_SNAKE_CASE_ ) return result def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> None: if level == 0: total_list.append(current_list[:] ) return for i in range(SCREAMING_SNAKE_CASE_ , total_number - level + 2 ): current_list.append(SCREAMING_SNAKE_CASE_ ) create_all_state(i + 1 , SCREAMING_SNAKE_CASE_ , level - 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) current_list.pop() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> None: for i in total_list: print(*SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowerCamelCase__ = 4 lowerCamelCase__ = 2 lowerCamelCase__ = generate_all_combinations(n, k) print_all_state(total_list)
307
0
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : int = 'hf-internal-testing/tiny-random-t5' lowerCAmelCase__ : Tuple = AutoTokenizer.from_pretrained(a ) lowerCAmelCase__ : List[str] = AutoModelForSeqaSeqLM.from_pretrained(a ) lowerCAmelCase__ : Optional[Any] = tokenizer('This is me' , return_tensors='pt' ) lowerCAmelCase__ : Any = model.to_bettertransformer() self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) lowerCAmelCase__ : str = model.generate(**a ) lowerCAmelCase__ : Tuple = model.reverse_bettertransformer() self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(a ) lowerCAmelCase__ : int = AutoModelForSeqaSeqLM.from_pretrained(a ) self.assertFalse( any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) lowerCAmelCase__ : List[str] = model_reloaded.generate(**a ) self.assertTrue(torch.allclose(a , a ) ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : str = 'hf-internal-testing/tiny-random-t5' lowerCAmelCase__ : int = AutoModelForSeqaSeqLM.from_pretrained(a ) lowerCAmelCase__ : int = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(a ): model.save_pretrained(a ) lowerCAmelCase__ : str = model.reverse_bettertransformer() model.save_pretrained(a )
362
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class A__ ( unittest.TestCase ): @parameterized.expand([(None,), ('foo.json',)] ) def _lowerCamelCase ( self : Dict , a : str ): '''simple docstring''' lowerCAmelCase__ : List[str] = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(a , config_name=a ) lowerCAmelCase__ : Tuple = GenerationConfig.from_pretrained(a , config_name=a ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , a ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , a ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Dict = AutoConfig.from_pretrained('gpt2' ) lowerCAmelCase__ : Any = GenerationConfig.from_model_config(a ) lowerCAmelCase__ : Any = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(a , a ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = GenerationConfig() lowerCAmelCase__ : Dict = { 'max_new_tokens': 1_024, 'foo': 'bar', } lowerCAmelCase__ : List[Any] = copy.deepcopy(a ) lowerCAmelCase__ : Dict = generation_config.update(**a ) # update_kwargs was not modified (no side effects) self.assertEqual(a , a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(a , {'foo': 'bar'} ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Dict = GenerationConfig() lowerCAmelCase__ : List[Any] = 'bar' with tempfile.TemporaryDirectory('test-generation-config' ) as tmp_dir: generation_config.save_pretrained(a ) lowerCAmelCase__ : List[Any] = GenerationConfig.from_pretrained(a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , 'bar' ) lowerCAmelCase__ : int = GenerationConfig.from_model_config(a ) assert not hasattr(a , 'foo' ) # no new kwargs should be initialized if from config def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , a ) self.assertEqual(default_config.num_beams , 1 ) lowerCAmelCase__ : List[Any] = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , a ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(a ) lowerCAmelCase__ : Any = GenerationConfig.from_pretrained(a , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , a ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class A__ ( unittest.TestCase ): @classmethod def _lowerCamelCase ( cls : int ): '''simple docstring''' lowerCAmelCase__ : List[str] = TOKEN HfFolder.save_token(a ) @classmethod def _lowerCamelCase ( cls : Optional[int] ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-generation-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-generation-config-org' ) except HTTPError: pass def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('test-generation-config' , use_auth_token=self._token ) lowerCAmelCase__ : Any = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) # Reset repo delete_repo(token=self._token , repo_id='test-generation-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( a , repo_id='test-generation-config' , push_to_hub=a , use_auth_token=self._token ) lowerCAmelCase__ : Tuple = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : int = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('valid_org/test-generation-config-org' , use_auth_token=self._token ) lowerCAmelCase__ : Dict = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-generation-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( a , repo_id='valid_org/test-generation-config-org' , push_to_hub=a , use_auth_token=self._token ) lowerCAmelCase__ : List[str] = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) )
307
0
from math import isclose, sqrt def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> tuple[float, float, float]: lowerCAmelCase__ : Any = point_y / 4 / point_x lowerCAmelCase__ : str = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) lowerCAmelCase__ : List[Any] = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) lowerCAmelCase__ : str = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 lowerCAmelCase__ : List[Any] = outgoing_gradient**2 + 4 lowerCAmelCase__ : Dict = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) lowerCAmelCase__ : Dict = (point_y - outgoing_gradient * point_x) ** 2 - 100 lowerCAmelCase__ : Optional[Any] = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) lowerCAmelCase__ : Optional[int] = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point lowerCAmelCase__ : List[Any] = x_minus if isclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else x_plus lowerCAmelCase__ : Union[str, Any] = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = 1.4 , SCREAMING_SNAKE_CASE_ = -9.6 ) -> int: lowerCAmelCase__ : int = 0 lowerCAmelCase__ : float = first_x_coord lowerCAmelCase__ : float = first_y_coord lowerCAmelCase__ : float = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): lowerCAmelCase__ : List[Any] = next_point(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"""{solution() = }""")
363
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( __magic_name__ , unittest.TestCase ): lowercase = UnCLIPImageVariationPipeline lowercase = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} lowercase = IMAGE_VARIATION_BATCH_PARAMS lowercase = [ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] lowercase = False @property def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' return 32 @property def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' return 32 @property def _lowerCamelCase ( self : int ): '''simple docstring''' return self.time_input_dim @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.time_input_dim * 4 @property def _lowerCamelCase ( self : Any ): '''simple docstring''' return 100 @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def _lowerCamelCase ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(a ) @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : List[Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(a ) @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Union[str, Any] = { 'clip_embeddings_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'cross_attention_dim': self.cross_attention_dim, } lowerCAmelCase__ : Optional[Any] = UnCLIPTextProjModel(**a ) return model @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : str = { 'sample_size': 32, # RGB in channels 'in_channels': 3, # Out channels is double in channels because predicts mean and variance 'out_channels': 6, 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': 'identity', } lowerCAmelCase__ : str = UNetaDConditionModel(**a ) return model @property def _lowerCamelCase ( self : str ): '''simple docstring''' return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def _lowerCamelCase ( self : str ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Any = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def _lowerCamelCase ( self : int ): '''simple docstring''' torch.manual_seed(1 ) lowerCAmelCase__ : List[str] = UNetaDModel(**self.dummy_super_res_kwargs ) return model def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.dummy_decoder lowerCAmelCase__ : Optional[int] = self.dummy_text_proj lowerCAmelCase__ : Any = self.dummy_text_encoder lowerCAmelCase__ : Any = self.dummy_tokenizer lowerCAmelCase__ : Any = self.dummy_super_res_first lowerCAmelCase__ : Optional[int] = self.dummy_super_res_last lowerCAmelCase__ : Dict = UnCLIPScheduler( variance_type='learned_range' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) lowerCAmelCase__ : Any = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) lowerCAmelCase__ : Any = CLIPImageProcessor(crop_size=32 , size=32 ) lowerCAmelCase__ : Optional[int] = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def _lowerCamelCase ( self : Any , a : Dict , a : List[str]=0 , a : List[str]=True ): '''simple docstring''' lowerCAmelCase__ : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(a ) ).to(a ) if str(a ).startswith('mps' ): lowerCAmelCase__ : Optional[int] = torch.manual_seed(a ) else: lowerCAmelCase__ : str = torch.Generator(device=a ).manual_seed(a ) if pil_image: lowerCAmelCase__ : Optional[int] = input_image * 0.5 + 0.5 lowerCAmelCase__ : Dict = input_image.clamp(0 , 1 ) lowerCAmelCase__ : List[Any] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCAmelCase__ : Union[str, Any] = DiffusionPipeline.numpy_to_pil(a )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = 'cpu' lowerCAmelCase__ : Any = self.get_dummy_components() lowerCAmelCase__ : List[str] = self.pipeline_class(**a ) lowerCAmelCase__ : Dict = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Dict = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : str = pipe(**a ) lowerCAmelCase__ : Optional[Any] = output.images lowerCAmelCase__ : str = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Optional[int] = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : List[str] = np.array( [ 0.9_9_9_7, 0.0_0_0_2, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_6_9, 0.0_0_2_3, 0.9_9_9_7, 0.9_9_6_9, 0.9_9_7_0, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = 'cpu' lowerCAmelCase__ : Dict = self.get_dummy_components() lowerCAmelCase__ : Optional[int] = self.pipeline_class(**a ) lowerCAmelCase__ : int = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : List[Any] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : List[str] = pipe(**a ) lowerCAmelCase__ : Union[str, Any] = output.images lowerCAmelCase__ : int = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : int = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Tuple = image[0, -3:, -3:, -1] lowerCAmelCase__ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : str = np.array([0.9_9_9_7, 0.0_0_0_3, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_7_0, 0.0_0_2_4, 0.9_9_9_7, 0.9_9_7_1, 0.9_9_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Tuple = 'cpu' lowerCAmelCase__ : int = self.get_dummy_components() lowerCAmelCase__ : Tuple = self.pipeline_class(**a ) lowerCAmelCase__ : Union[str, Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Tuple = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : List[str] = [ pipeline_inputs['image'], pipeline_inputs['image'], ] lowerCAmelCase__ : Optional[int] = pipe(**a ) lowerCAmelCase__ : Tuple = output.images lowerCAmelCase__ : List[str] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Union[str, Any] = [ tuple_pipeline_inputs['image'], tuple_pipeline_inputs['image'], ] lowerCAmelCase__ : str = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) lowerCAmelCase__ : Union[str, Any] = np.array( [ 0.9_9_9_7, 0.9_9_8_9, 0.0_0_0_8, 0.0_0_2_1, 0.9_9_6_0, 0.0_0_1_8, 0.0_0_1_4, 0.0_0_0_2, 0.9_9_3_3, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch.device('cpu' ) class A__ : lowercase = 1 lowerCAmelCase__ : Optional[Any] = self.get_dummy_components() lowerCAmelCase__ : Dict = self.pipeline_class(**a ) lowerCAmelCase__ : Optional[Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Optional[int] = torch.Generator(device=a ).manual_seed(0 ) lowerCAmelCase__ : Optional[int] = pipe.decoder.dtype lowerCAmelCase__ : Union[str, Any] = 1 lowerCAmelCase__ : str = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) lowerCAmelCase__ : List[Any] = pipe.prepare_latents( a , dtype=a , device=a , generator=a , latents=a , scheduler=DummyScheduler() ) lowerCAmelCase__ : List[str] = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) lowerCAmelCase__ : Any = pipe.prepare_latents( a , dtype=a , device=a , generator=a , latents=a , scheduler=DummyScheduler() ) lowerCAmelCase__ : List[Any] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Optional[int] = pipe( **a , decoder_latents=a , super_res_latents=a ).images lowerCAmelCase__ : Optional[Any] = self.get_dummy_inputs(a , pil_image=a ) # Don't pass image, instead pass embedding lowerCAmelCase__ : Union[str, Any] = pipeline_inputs.pop('image' ) lowerCAmelCase__ : Union[str, Any] = pipe.image_encoder(a ).image_embeds lowerCAmelCase__ : List[Any] = pipe( **a , decoder_latents=a , super_res_latents=a , image_embeddings=a , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch_device == 'cpu' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor lowerCAmelCase__ : int = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=a , expected_max_diff=a ) @skip_mps def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = torch_device == 'cpu' lowerCAmelCase__ : Any = True lowerCAmelCase__ : Optional[Any] = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] self._test_inference_batch_single_identical( test_max_difference=a , relax_max_difference=a , additional_params_copy_to_batched_inputs=a , ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Tuple = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes lowerCAmelCase__ : List[str] = [2, 3] self._test_inference_batch_consistent( batch_sizes=a , additional_params_copy_to_batched_inputs=a , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=a ) @skip_mps def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return super().test_save_load_local() @skip_mps def _lowerCamelCase ( self : str ): '''simple docstring''' return super().test_save_load_optional_components() @slow @require_torch_gpu class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png' ) lowerCAmelCase__ : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/unclip/karlo_v1_alpha_cat_variation_fp16.npy' ) lowerCAmelCase__ : Tuple = UnCLIPImageVariationPipeline.from_pretrained( 'kakaobrain/karlo-v1-alpha-image-variations' , torch_dtype=torch.floataa ) lowerCAmelCase__ : Union[str, Any] = pipeline.to(a ) pipeline.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Dict = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase__ : List[str] = pipeline( a , generator=a , output_type='np' , ) lowerCAmelCase__ : Union[str, Any] = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(a , a , 15 )
307
0
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class A__ ( __magic_name__ , __magic_name__ ): lowercase = 1 @register_to_config def __init__( self : List[str] , a : int=2_000 , a : int=0.1 , a : Tuple=20 , a : Optional[int]=1E-3 ): '''simple docstring''' lowerCAmelCase__ : Any = None lowerCAmelCase__ : Tuple = None lowerCAmelCase__ : int = None def _lowerCamelCase ( self : List[Any] , a : str , a : Union[str, torch.device] = None ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch.linspace(1 , self.config.sampling_eps , a , device=a ) def _lowerCamelCase ( self : Dict , a : Optional[Any] , a : Any , a : int , a : List[str]=None ): '''simple docstring''' if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score lowerCAmelCase__ : str = ( -0.2_5 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) lowerCAmelCase__ : List[Any] = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) lowerCAmelCase__ : List[Any] = std.flatten() while len(std.shape ) < len(score.shape ): lowerCAmelCase__ : Optional[int] = std.unsqueeze(-1 ) lowerCAmelCase__ : Optional[Any] = -score / std # compute lowerCAmelCase__ : Optional[int] = -1.0 / len(self.timesteps ) lowerCAmelCase__ : Any = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) lowerCAmelCase__ : Optional[int] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): lowerCAmelCase__ : Tuple = beta_t.unsqueeze(-1 ) lowerCAmelCase__ : List[str] = -0.5 * beta_t * x lowerCAmelCase__ : Dict = torch.sqrt(a ) lowerCAmelCase__ : str = drift - diffusion**2 * score lowerCAmelCase__ : Tuple = x + drift * dt # add noise lowerCAmelCase__ : Optional[Any] = randn_tensor(x.shape , layout=x.layout , generator=a , device=x.device , dtype=x.dtype ) lowerCAmelCase__ : Union[str, Any] = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Union[str, Any] ): '''simple docstring''' return self.config.num_train_timesteps
364
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: stooge(SCREAMING_SNAKE_CASE_ , 0 , len(SCREAMING_SNAKE_CASE_ ) - 1 ) return arr def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: lowerCAmelCase__ , lowerCAmelCase__ : Tuple = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: lowerCAmelCase__ : Union[str, Any] = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (h - t) ) # Recursively sort last 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , i + t , (SCREAMING_SNAKE_CASE_) ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (h - t) ) if __name__ == "__main__": lowerCamelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCamelCase__ = [int(item) for item in user_input.split(""",""")] print(stooge_sort(unsorted))
307
0
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = 10 , SCREAMING_SNAKE_CASE_ = 22 ) -> int: lowerCAmelCase__ : int = range(1 , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : str = range(1 , SCREAMING_SNAKE_CASE_ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"""{solution(10, 22) = }""")
365
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) lowerCamelCase__ = { """configuration_speech_to_text""": ["""SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Speech2TextConfig"""], """processing_speech_to_text""": ["""Speech2TextProcessor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""Speech2TextTokenizer"""] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""Speech2TextFeatureExtractor"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSpeech2TextForConditionalGeneration""", """TFSpeech2TextModel""", """TFSpeech2TextPreTrainedModel""", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Speech2TextForConditionalGeneration""", """Speech2TextModel""", """Speech2TextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
0
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: # Load configuration defined in the metadata file with open(SCREAMING_SNAKE_CASE_ ) as metadata_file: lowerCAmelCase__ : List[Any] = json.load(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[Any] = LukeConfig(use_entity_aware_attention=SCREAMING_SNAKE_CASE_ , **metadata['model_config'] ) # Load in the weights from the checkpoint_path lowerCAmelCase__ : Optional[int] = torch.load(SCREAMING_SNAKE_CASE_ , map_location='cpu' )['module'] # Load the entity vocab file lowerCAmelCase__ : Optional[Any] = load_original_entity_vocab(SCREAMING_SNAKE_CASE_ ) # add an entry for [MASK2] lowerCAmelCase__ : Any = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 lowerCAmelCase__ : Optional[Any] = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks lowerCAmelCase__ : Optional[int] = AddedToken('<ent>' , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[str] = AddedToken('<ent2>' , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , 'tokenizer_config.json' ) , 'r' ) as f: lowerCAmelCase__ : Dict = json.load(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Dict = 'MLukeTokenizer' with open(os.path.join(SCREAMING_SNAKE_CASE_ , 'tokenizer_config.json' ) , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : str = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Initialize the embeddings of the special tokens lowerCAmelCase__ : Optional[int] = tokenizer.convert_tokens_to_ids(['@'] )[0] lowerCAmelCase__ : Dict = tokenizer.convert_tokens_to_ids(['#'] )[0] lowerCAmelCase__ : Optional[int] = state_dict['embeddings.word_embeddings.weight'] lowerCAmelCase__ : Optional[int] = word_emb[ent_init_index].unsqueeze(0 ) lowerCAmelCase__ : List[Any] = word_emb[enta_init_index].unsqueeze(0 ) lowerCAmelCase__ : Optional[int] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: lowerCAmelCase__ : Union[str, Any] = state_dict[bias_name] lowerCAmelCase__ : Union[str, Any] = decoder_bias[ent_init_index].unsqueeze(0 ) lowerCAmelCase__ : Dict = decoder_bias[enta_init_index].unsqueeze(0 ) lowerCAmelCase__ : Tuple = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: lowerCAmelCase__ : List[Any] = F'''encoder.layer.{layer_index}.attention.self.''' lowerCAmelCase__ : Any = state_dict[prefix + matrix_name] lowerCAmelCase__ : Optional[Any] = state_dict[prefix + matrix_name] lowerCAmelCase__ : str = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks lowerCAmelCase__ : int = state_dict['entity_embeddings.entity_embeddings.weight'] lowerCAmelCase__ : Tuple = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 ) lowerCAmelCase__ : Tuple = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' lowerCAmelCase__ : List[str] = state_dict['entity_predictions.bias'] lowerCAmelCase__ : Optional[Any] = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 ) lowerCAmelCase__ : Optional[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) lowerCAmelCase__ : Optional[int] = LukeForMaskedLM(config=SCREAMING_SNAKE_CASE_ ).eval() state_dict.pop('entity_predictions.decoder.weight' ) state_dict.pop('lm_head.decoder.weight' ) state_dict.pop('lm_head.decoder.bias' ) lowerCAmelCase__ : str = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )): lowerCAmelCase__ : str = state_dict[key] else: lowerCAmelCase__ : Tuple = state_dict[key] lowerCAmelCase__ : Optional[Any] = model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) if set(SCREAMING_SNAKE_CASE_ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(SCREAMING_SNAKE_CASE_ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs lowerCAmelCase__ : Any = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ , task='entity_classification' ) lowerCAmelCase__ : Tuple = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).' lowerCAmelCase__ : Tuple = (0, 9) lowerCAmelCase__ : Optional[Any] = tokenizer(SCREAMING_SNAKE_CASE_ , entity_spans=[span] , return_tensors='pt' ) lowerCAmelCase__ : List[Any] = model(**SCREAMING_SNAKE_CASE_ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base lowerCAmelCase__ : Union[str, Any] = torch.Size((1, 33, 768) ) lowerCAmelCase__ : Tuple = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base lowerCAmelCase__ : List[Any] = torch.Size((1, 1, 768) ) lowerCAmelCase__ : Dict = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction lowerCAmelCase__ : int = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : str = 'Tokyo is the capital of <mask>.' lowerCAmelCase__ : str = (24, 30) lowerCAmelCase__ : Optional[int] = tokenizer(SCREAMING_SNAKE_CASE_ , entity_spans=[span] , return_tensors='pt' ) lowerCAmelCase__ : str = model(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[Any] = encoding['input_ids'][0].tolist() lowerCAmelCase__ : Tuple = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) ) lowerCAmelCase__ : List[str] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[Any] = outputs.entity_logits[0][0].argmax().item() lowerCAmelCase__ : str = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(SCREAMING_SNAKE_CASE_ ) ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: lowerCAmelCase__ : Optional[int] = ['[MASK]', '[PAD]', '[UNK]'] lowerCAmelCase__ : str = [json.loads(SCREAMING_SNAKE_CASE_ ) for line in open(SCREAMING_SNAKE_CASE_ )] lowerCAmelCase__ : Any = {} for entry in data: lowerCAmelCase__ : str = entry['id'] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: lowerCAmelCase__ : int = entity_id break lowerCAmelCase__ : Any = F'''{language}:{entity_name}''' lowerCAmelCase__ : List[Any] = entity_id return new_mapping if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) lowerCamelCase__ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
366
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } lowerCAmelCase__ : int = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 128, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 142, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(a ) , a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(a ) , x.transpose() ) ) lowerCAmelCase__ : List[str] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = np.random.randn(3 , 4 ) lowerCAmelCase__ : List[Any] = torch.tensor(a ) self.assertTrue(np.allclose(transpose(a ) , transpose(a ).numpy() ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : int = torch.tensor(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , transpose(a , axes=(1, 2, 0) ).numpy() ) ) @require_tf def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = np.random.randn(3 , 4 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(transpose(a ) , transpose(a ).numpy() ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : Dict = tf.constant(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , transpose(a , axes=(1, 2, 0) ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = np.random.randn(3 , 4 ) lowerCAmelCase__ : int = jnp.array(a ) self.assertTrue(np.allclose(transpose(a ) , np.asarray(transpose(a ) ) ) ) lowerCAmelCase__ : Any = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : str = jnp.array(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , np.asarray(transpose(a , axes=(1, 2, 0) ) ) ) ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Any = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , np.reshape(a , (4, 3) ) ) ) lowerCAmelCase__ : Tuple = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , np.reshape(a , (12, 5) ) ) ) @require_torch def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = np.random.randn(3 , 4 ) lowerCAmelCase__ : Dict = torch.tensor(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , reshape(a , (4, 3) ).numpy() ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : str = torch.tensor(a ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , reshape(a , (12, 5) ).numpy() ) ) @require_tf def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = np.random.randn(3 , 4 ) lowerCAmelCase__ : List[Any] = tf.constant(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , reshape(a , (4, 3) ).numpy() ) ) lowerCAmelCase__ : Dict = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , reshape(a , (12, 5) ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Dict = np.random.randn(3 , 4 ) lowerCAmelCase__ : List[str] = jnp.array(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , np.asarray(reshape(a , (4, 3) ) ) ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : Union[str, Any] = jnp.array(a ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , np.asarray(reshape(a , (12, 5) ) ) ) ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(a ) , np.squeeze(a ) ) ) lowerCAmelCase__ : int = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , np.squeeze(a , axis=2 ) ) ) @require_torch def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = np.random.randn(1 , 3 , 4 ) lowerCAmelCase__ : str = torch.tensor(a ) self.assertTrue(np.allclose(squeeze(a ) , squeeze(a ).numpy() ) ) lowerCAmelCase__ : Optional[Any] = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase__ : Dict = torch.tensor(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , squeeze(a , axis=2 ).numpy() ) ) @require_tf def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : List[str] = np.random.randn(1 , 3 , 4 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(squeeze(a ) , squeeze(a ).numpy() ) ) lowerCAmelCase__ : int = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase__ : str = tf.constant(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , squeeze(a , axis=2 ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : List[str] = np.random.randn(1 , 3 , 4 ) lowerCAmelCase__ : Union[str, Any] = jnp.array(a ) self.assertTrue(np.allclose(squeeze(a ) , np.asarray(squeeze(a ) ) ) ) lowerCAmelCase__ : str = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase__ : Optional[Any] = jnp.array(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , np.asarray(squeeze(a , axis=2 ) ) ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , np.expand_dims(a , axis=1 ) ) ) @require_torch def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : str = np.random.randn(3 , 4 ) lowerCAmelCase__ : str = torch.tensor(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , expand_dims(a , axis=1 ).numpy() ) ) @require_tf def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = np.random.randn(3 , 4 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , expand_dims(a , axis=1 ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : int = np.random.randn(3 , 4 ) lowerCAmelCase__ : Tuple = jnp.array(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , np.asarray(expand_dims(a , axis=1 ) ) ) )
307
0
import os import pytest from attr import dataclass lowerCamelCase__ = """us-east-1""" # defaults region @dataclass class A__ : lowercase = 42 lowercase = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' lowercase = { 'task_name': 'mnli', 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 500, 'save_steps': 5500, } lowercase = {**hyperparameters, 'max_steps': 1000} @property def _lowerCamelCase ( self : str ): '''simple docstring''' if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' return f'''{self.framework}-transfromers-test''' @property def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' return f'''./tests/sagemaker/scripts/{self.framework}''' @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class' ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: lowerCAmelCase__ : Any = SageMakerTestEnvironment(framework=request.cls.framework )
367
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position lowerCamelCase__ = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip lowerCamelCase__ = concatenate_datasets lowerCamelCase__ = DownloadConfig lowerCamelCase__ = DownloadManager lowerCamelCase__ = DownloadMode lowerCamelCase__ = DownloadConfig lowerCamelCase__ = DownloadMode lowerCamelCase__ = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
307
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCamelCase__ = 16 lowerCamelCase__ = 32 def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 16 ) -> int: lowerCAmelCase__ : str = AutoTokenizer.from_pretrained('bert-base-cased' ) lowerCAmelCase__ : List[str] = load_dataset('glue' , 'mrpc' ) def tokenize_function(SCREAMING_SNAKE_CASE_ ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ : List[Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase__ : Dict = datasets.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase__ : Union[str, Any] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(SCREAMING_SNAKE_CASE_ ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase__ : List[Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase__ : Optional[int] = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase__ : List[Any] = 8 else: lowerCAmelCase__ : Any = None return tokenizer.pad( SCREAMING_SNAKE_CASE_ , padding='longest' , max_length=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_tensors='pt' , ) # Instantiate dataloaders. lowerCAmelCase__ : Optional[int] = DataLoader( tokenized_datasets['train'] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Union[str, Any] = DataLoader( tokenized_datasets['validation'] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCamelCase__ = mocked_dataloaders # noqa: F811 def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , SCREAMING_SNAKE_CASE_ ) == "1": lowerCAmelCase__ : Any = 2 # Initialize accelerator lowerCAmelCase__ : List[str] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase__ : int = config['lr'] lowerCAmelCase__ : List[str] = int(config['num_epochs'] ) lowerCAmelCase__ : Optional[Any] = int(config['seed'] ) lowerCAmelCase__ : Optional[int] = int(config['batch_size'] ) lowerCAmelCase__ : List[Any] = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation lowerCAmelCase__ : Dict = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCAmelCase__ : List[Any] = batch_size // MAX_GPU_BATCH_SIZE lowerCAmelCase__ : Optional[int] = MAX_GPU_BATCH_SIZE set_seed(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Dict = get_dataloaders(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase__ : List[Any] = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=SCREAMING_SNAKE_CASE_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase__ : List[str] = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase__ : Tuple = AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE_ ) # Instantiate scheduler lowerCAmelCase__ : Tuple = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE_ , num_warmup_steps=100 , num_training_steps=(len(SCREAMING_SNAKE_CASE_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase__ : str = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE_ ): model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCAmelCase__ : Dict = model(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[Any] = outputs.loss lowerCAmelCase__ : Optional[int] = loss / gradient_accumulation_steps accelerator.backward(SCREAMING_SNAKE_CASE_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() lowerCAmelCase__ : int = 0 for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase__ : int = model(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[Any] = outputs.logits.argmax(dim=-1 ) lowerCAmelCase__ : Optional[int] = accelerator.gather((predictions, batch['labels']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(SCREAMING_SNAKE_CASE_ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples lowerCAmelCase__ : Any = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowerCAmelCase__ : str = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=SCREAMING_SNAKE_CASE_ , references=SCREAMING_SNAKE_CASE_ , ) lowerCAmelCase__ : Dict = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( ) -> Optional[Any]: lowerCAmelCase__ : int = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) lowerCAmelCase__ : Any = parser.parse_args() lowerCAmelCase__ : List[Any] = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
368
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( __magic_name__ , unittest.TestCase ): lowercase = DanceDiffusionPipeline lowercase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS lowercase = PipelineTesterMixin.required_optional_params - { 'callback', 'latents', 'callback_steps', 'output_type', 'num_images_per_prompt', } lowercase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS lowercase = False lowercase = False def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16_000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=a , use_timestep_embedding=a , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , ) lowerCAmelCase__ : Tuple = IPNDMScheduler() lowerCAmelCase__ : str = { 'unet': unet, 'scheduler': scheduler, } return components def _lowerCamelCase ( self : int , a : Dict , a : List[str]=0 ): '''simple docstring''' if str(a ).startswith('mps' ): lowerCAmelCase__ : Union[str, Any] = torch.manual_seed(a ) else: lowerCAmelCase__ : Optional[Any] = torch.Generator(device=a ).manual_seed(a ) lowerCAmelCase__ : Optional[Any] = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : int = self.get_dummy_components() lowerCAmelCase__ : List[str] = DanceDiffusionPipeline(**a ) lowerCAmelCase__ : Any = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : List[str] = self.get_dummy_inputs(a ) lowerCAmelCase__ : List[Any] = pipe(**a ) lowerCAmelCase__ : List[str] = output.audios lowerCAmelCase__ : Optional[Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) lowerCAmelCase__ : List[Any] = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def _lowerCamelCase ( self : str ): '''simple docstring''' return super().test_save_load_local() @skip_mps def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def _lowerCamelCase ( self : List[str] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch_device lowerCAmelCase__ : List[str] = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) lowerCAmelCase__ : List[str] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Optional[int] = torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = pipe(generator=a , num_inference_steps=100 , audio_length_in_s=4.0_9_6 ) lowerCAmelCase__ : int = output.audios lowerCAmelCase__ : List[Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase__ : Dict = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : str = torch_device lowerCAmelCase__ : List[Any] = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa ) lowerCAmelCase__ : Optional[int] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : str = torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = pipe(generator=a , num_inference_steps=100 , audio_length_in_s=4.0_9_6 ) lowerCAmelCase__ : str = output.audios lowerCAmelCase__ : Tuple = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase__ : int = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
307
0
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class A__ : def __init__( self : List[Any] , a : Optional[int] , a : Tuple=13 , a : Union[str, Any]=7 , a : str=True , a : Optional[Any]=True , a : int=True , a : int=True , a : Tuple=99 , a : List[str]=64 , a : str=32 , a : Optional[Any]=5 , a : List[Any]=4 , a : Tuple=37 , a : str="gelu" , a : Union[str, Any]=0.1 , a : Dict=0.1 , a : List[Any]=512 , a : Optional[int]=16 , a : Optional[Any]=2 , a : Dict=0.0_2 , a : int=3 , a : Optional[Any]=4 , a : Union[str, Any]=None , ): '''simple docstring''' lowerCAmelCase__ : Tuple = parent lowerCAmelCase__ : int = batch_size lowerCAmelCase__ : int = seq_length lowerCAmelCase__ : Union[str, Any] = is_training lowerCAmelCase__ : Optional[Any] = use_input_mask lowerCAmelCase__ : List[str] = use_token_type_ids lowerCAmelCase__ : str = use_labels lowerCAmelCase__ : int = vocab_size lowerCAmelCase__ : int = hidden_size lowerCAmelCase__ : str = embedding_size lowerCAmelCase__ : int = num_hidden_layers lowerCAmelCase__ : Any = num_attention_heads lowerCAmelCase__ : List[str] = intermediate_size lowerCAmelCase__ : str = hidden_act lowerCAmelCase__ : Union[str, Any] = hidden_dropout_prob lowerCAmelCase__ : List[str] = attention_probs_dropout_prob lowerCAmelCase__ : Optional[int] = max_position_embeddings lowerCAmelCase__ : Union[str, Any] = type_vocab_size lowerCAmelCase__ : Any = type_sequence_label_size lowerCAmelCase__ : Optional[int] = initializer_range lowerCAmelCase__ : List[str] = num_labels lowerCAmelCase__ : List[str] = num_choices lowerCAmelCase__ : Any = scope def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ : Optional[int] = None if self.use_input_mask: lowerCAmelCase__ : int = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ : int = None if self.use_token_type_ids: lowerCAmelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ : int = None lowerCAmelCase__ : Tuple = None lowerCAmelCase__ : Dict = None if self.use_labels: lowerCAmelCase__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self : Any , a : str , a : Any , a : Union[str, Any] , a : Any , a : List[str] , a : Tuple , a : Any ): '''simple docstring''' lowerCAmelCase__ : Dict = MobileBertModel(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Any = model(a , attention_mask=a , token_type_ids=a ) lowerCAmelCase__ : Any = model(a , token_type_ids=a ) lowerCAmelCase__ : int = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowerCamelCase ( self : Optional[Any] , a : Any , a : List[str] , a : Optional[Any] , a : List[str] , a : List[str] , a : List[Any] , a : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : str = MobileBertForMaskedLM(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : str = model(a , attention_mask=a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : Tuple , a : Optional[Any] , a : Tuple , a : Optional[int] , a : Dict , a : List[Any] , a : List[Any] , a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = MobileBertForNextSentencePrediction(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Optional[Any] = model( a , attention_mask=a , token_type_ids=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _lowerCamelCase ( self : str , a : str , a : Union[str, Any] , a : List[Any] , a : List[str] , a : Any , a : Any , a : List[str] ): '''simple docstring''' lowerCAmelCase__ : str = MobileBertForPreTraining(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Dict = model( a , attention_mask=a , token_type_ids=a , labels=a , next_sentence_label=a , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _lowerCamelCase ( self : Tuple , a : Dict , a : List[str] , a : Any , a : int , a : List[str] , a : str , a : Any ): '''simple docstring''' lowerCAmelCase__ : Tuple = MobileBertForQuestionAnswering(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Union[str, Any] = model( a , attention_mask=a , token_type_ids=a , start_positions=a , end_positions=a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : List[str] , a : List[str] , a : List[str] , a : List[Any] , a : Dict , a : List[Any] , a : Tuple , a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.num_labels lowerCAmelCase__ : int = MobileBertForSequenceClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : Union[str, Any] = model(a , attention_mask=a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self : str , a : Any , a : List[Any] , a : Optional[int] , a : List[Any] , a : Optional[int] , a : List[Any] , a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : List[Any] = self.num_labels lowerCAmelCase__ : Any = MobileBertForTokenClassification(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Optional[Any] = model(a , attention_mask=a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self : Optional[int] , a : List[str] , a : Any , a : Union[str, Any] , a : Optional[int] , a : Any , a : Optional[int] , a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : int = self.num_choices lowerCAmelCase__ : List[Any] = MobileBertForMultipleChoice(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase__ : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase__ : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase__ : Any = model( a , attention_mask=a , token_type_ids=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.prepare_config_and_inputs() ( lowerCAmelCase__ ) : List[str] = config_and_inputs lowerCAmelCase__ : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) lowercase = ( { 'feature-extraction': MobileBertModel, 'fill-mask': MobileBertForMaskedLM, 'question-answering': MobileBertForQuestionAnswering, 'text-classification': MobileBertForSequenceClassification, 'token-classification': MobileBertForTokenClassification, 'zero-shot': MobileBertForSequenceClassification, } if is_torch_available() else {} ) lowercase = True def _lowerCamelCase ( self : Optional[Any] , a : Dict , a : Optional[Any] , a : str=False ): '''simple docstring''' lowerCAmelCase__ : List[Any] = super()._prepare_for_class(a , a , return_labels=a ) if return_labels: if model_class in get_values(a ): lowerCAmelCase__ : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=a ) lowerCAmelCase__ : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a ) return inputs_dict def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : List[str] = MobileBertModelTester(self ) lowerCAmelCase__ : Optional[Any] = ConfigTester(self , config_class=a , hidden_size=37 ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*a ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*a ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*a ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*a ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*a ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> List[Any]: return torch.tensor( SCREAMING_SNAKE_CASE_ , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ , ) lowerCamelCase__ = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase ): @slow def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Tuple = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(a ) lowerCAmelCase__ : Any = _long_tensor([[101, 7_110, 1_005, 1_056, 2_023, 11_333, 17_413, 1_029, 102]] ) with torch.no_grad(): lowerCAmelCase__ : List[Any] = model(a )[0] lowerCAmelCase__ : Dict = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , a ) lowerCAmelCase__ : Any = torch.tensor( [ [ [-2.4736526E07, 8.2691656E04, 1.6521838E05], [-5.7541704E-01, 3.9056022E00, 4.4011507E00], [2.6047359E00, 1.5677652E00, -1.7324188E-01], ] ] , device=a , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowerCAmelCase__ : List[Any] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowerCAmelCase__ : Optional[Any] = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
369
from ..utils import DummyObject, requires_backends class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : Any , *a : Any , **a : Any ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Union[str, Any] , *a : Optional[int] , **a : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : int , *a : List[Any] , **a : int ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : str , *a : Any , **a : Optional[Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : List[str] , **a : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , *a : Optional[Any] , **a : Any ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : Optional[int] , *a : List[Any] , **a : str ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : List[Any] , *a : List[str] , **a : List[str] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , *a : Union[str, Any] , **a : Optional[int] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *a : Dict , **a : List[str] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : Dict , **a : List[Any] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : List[str] , **a : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : Dict , *a : str , **a : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Any , *a : Any , **a : Any ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Any , *a : List[Any] , **a : str ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : str , *a : Union[str, Any] , **a : Optional[Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : int , *a : Union[str, Any] , **a : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : Tuple , **a : List[str] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] )
307
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: lowerCAmelCase__ : str = DPTConfig() if "large" in checkpoint_url: lowerCAmelCase__ : str = 1_024 lowerCAmelCase__ : str = 4_096 lowerCAmelCase__ : Optional[Any] = 24 lowerCAmelCase__ : Optional[Any] = 16 lowerCAmelCase__ : Dict = [5, 11, 17, 23] lowerCAmelCase__ : Optional[int] = [256, 512, 1_024, 1_024] lowerCAmelCase__ : Optional[int] = (1, 384, 384) if "ade" in checkpoint_url: lowerCAmelCase__ : List[str] = True lowerCAmelCase__ : str = 150 lowerCAmelCase__ : str = 'huggingface/label-files' lowerCAmelCase__ : List[str] = 'ade20k-id2label.json' lowerCAmelCase__ : Any = json.load(open(cached_download(hf_hub_url(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='dataset' ) ) , 'r' ) ) lowerCAmelCase__ : Optional[int] = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} lowerCAmelCase__ : Union[str, Any] = idalabel lowerCAmelCase__ : Dict = {v: k for k, v in idalabel.items()} lowerCAmelCase__ : Any = [1, 150, 480, 480] return config, expected_shape def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: lowerCAmelCase__ : Any = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> List[Any]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowerCAmelCase__ : str = name.replace('pretrained.model' , 'dpt.encoder' ) if "pretrained.model" in name: lowerCAmelCase__ : Optional[int] = name.replace('pretrained.model' , 'dpt.embeddings' ) if "patch_embed" in name: lowerCAmelCase__ : Any = name.replace('patch_embed' , 'patch_embeddings' ) if "pos_embed" in name: lowerCAmelCase__ : Optional[int] = name.replace('pos_embed' , 'position_embeddings' ) if "attn.proj" in name: lowerCAmelCase__ : str = name.replace('attn.proj' , 'attention.output.dense' ) if "proj" in name and "project" not in name: lowerCAmelCase__ : Optional[int] = name.replace('proj' , 'projection' ) if "blocks" in name: lowerCAmelCase__ : Union[str, Any] = name.replace('blocks' , 'layer' ) if "mlp.fc1" in name: lowerCAmelCase__ : Dict = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowerCAmelCase__ : Union[str, Any] = name.replace('mlp.fc2' , 'output.dense' ) if "norm1" in name: lowerCAmelCase__ : Tuple = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowerCAmelCase__ : Any = name.replace('norm2' , 'layernorm_after' ) if "scratch.output_conv" in name: lowerCAmelCase__ : Union[str, Any] = name.replace('scratch.output_conv' , 'head' ) if "scratch" in name: lowerCAmelCase__ : Tuple = name.replace('scratch' , 'neck' ) if "layer1_rn" in name: lowerCAmelCase__ : Dict = name.replace('layer1_rn' , 'convs.0' ) if "layer2_rn" in name: lowerCAmelCase__ : List[str] = name.replace('layer2_rn' , 'convs.1' ) if "layer3_rn" in name: lowerCAmelCase__ : Optional[Any] = name.replace('layer3_rn' , 'convs.2' ) if "layer4_rn" in name: lowerCAmelCase__ : Optional[int] = name.replace('layer4_rn' , 'convs.3' ) if "refinenet" in name: lowerCAmelCase__ : str = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowerCAmelCase__ : List[str] = name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: lowerCAmelCase__ : Optional[int] = name.replace('out_conv' , 'projection' ) if "resConfUnit1" in name: lowerCAmelCase__ : Optional[Any] = name.replace('resConfUnit1' , 'residual_layer1' ) if "resConfUnit2" in name: lowerCAmelCase__ : str = name.replace('resConfUnit2' , 'residual_layer2' ) if "conv1" in name: lowerCAmelCase__ : int = name.replace('conv1' , 'convolution1' ) if "conv2" in name: lowerCAmelCase__ : Optional[Any] = name.replace('conv2' , 'convolution2' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowerCAmelCase__ : Tuple = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0' ) if "pretrained.act_postprocess2.0.project.0" in name: lowerCAmelCase__ : str = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0' ) if "pretrained.act_postprocess3.0.project.0" in name: lowerCAmelCase__ : List[Any] = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0' ) if "pretrained.act_postprocess4.0.project.0" in name: lowerCAmelCase__ : Dict = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0' ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowerCAmelCase__ : List[str] = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection' ) if "pretrained.act_postprocess1.4" in name: lowerCAmelCase__ : List[Any] = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize' ) if "pretrained.act_postprocess2.3" in name: lowerCAmelCase__ : List[Any] = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection' ) if "pretrained.act_postprocess2.4" in name: lowerCAmelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize' ) if "pretrained.act_postprocess3.3" in name: lowerCAmelCase__ : Tuple = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection' ) if "pretrained.act_postprocess4.3" in name: lowerCAmelCase__ : Union[str, Any] = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection' ) if "pretrained.act_postprocess4.4" in name: lowerCAmelCase__ : List[str] = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize' ) if "pretrained" in name: lowerCAmelCase__ : int = name.replace('pretrained' , 'dpt' ) if "bn" in name: lowerCAmelCase__ : Optional[Any] = name.replace('bn' , 'batch_norm' ) if "head" in name: lowerCAmelCase__ : Optional[Any] = name.replace('head' , 'head.head' ) if "encoder.norm" in name: lowerCAmelCase__ : Union[str, Any] = name.replace('encoder.norm' , 'layernorm' ) if "auxlayer" in name: lowerCAmelCase__ : Any = name.replace('auxlayer' , 'auxiliary_head.head' ) return name def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase__ : int = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) lowerCAmelCase__ : Tuple = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ : Any = in_proj_weight[: config.hidden_size, :] lowerCAmelCase__ : str = in_proj_bias[: config.hidden_size] lowerCAmelCase__ : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase__ : Union[str, Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase__ : Tuple = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase__ : Union[str, Any] = in_proj_bias[-config.hidden_size :] def lowerCAmelCase__ ( ) -> Optional[Any]: lowerCAmelCase__ : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase__ : List[str] = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: lowerCAmelCase__ : Union[str, Any] = get_dpt_config(SCREAMING_SNAKE_CASE_ ) # load original state_dict from URL lowerCAmelCase__ : Union[str, Any] = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location='cpu' ) # remove certain keys remove_ignore_keys_(SCREAMING_SNAKE_CASE_ ) # rename keys for key in state_dict.copy().keys(): lowerCAmelCase__ : str = state_dict.pop(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = val # read in qkv matrices read_in_q_k_v(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load HuggingFace model lowerCAmelCase__ : Any = DPTForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ) if 'ade' in checkpoint_url else DPTForDepthEstimation(SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) model.eval() # Check outputs on an image lowerCAmelCase__ : str = 480 if 'ade' in checkpoint_url else 384 lowerCAmelCase__ : int = DPTImageProcessor(size=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = prepare_img() lowerCAmelCase__ : Optional[int] = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ) # forward pass lowerCAmelCase__ : Union[str, Any] = model(**SCREAMING_SNAKE_CASE_ ).logits if 'ade' in checkpoint_url else model(**SCREAMING_SNAKE_CASE_ ).predicted_depth # Assert logits lowerCAmelCase__ : Optional[Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] ) if "ade" in checkpoint_url: lowerCAmelCase__ : str = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] ) assert outputs.shape == torch.Size(SCREAMING_SNAKE_CASE_ ) assert ( torch.allclose(outputs[0, 0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , SCREAMING_SNAKE_CASE_ ) ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: print('Pushing model to hub...' ) model.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=SCREAMING_SNAKE_CASE_ , ) image_processor.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=SCREAMING_SNAKE_CASE_ , ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""", type=str, help="""URL of the original DPT checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) parser.add_argument( """--model_name""", default="""dpt-large""", type=str, help="""Name of the model, in case you're pushing to the hub.""", ) lowerCamelCase__ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
370
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class A__ : def __init__( self : List[str] , a : Any , a : Dict=13 , a : Optional[Any]=7 , a : Tuple=True , a : Tuple=True , a : Dict=False , a : Optional[Any]=True , a : Dict=99 , a : Tuple=32 , a : Optional[Any]=5 , a : str=4 , a : Union[str, Any]=37 , a : Any="gelu" , a : Dict=0.1 , a : Any=0.1 , a : Optional[int]=512 , a : Union[str, Any]=16 , a : Optional[int]=2 , a : Optional[Any]=0.0_2 , a : List[Any]=3 , a : Any=4 , a : Optional[int]=None , ): '''simple docstring''' lowerCAmelCase__ : List[str] = parent lowerCAmelCase__ : str = batch_size lowerCAmelCase__ : Optional[int] = seq_length lowerCAmelCase__ : Optional[Any] = is_training lowerCAmelCase__ : Tuple = use_input_mask lowerCAmelCase__ : List[Any] = use_token_type_ids lowerCAmelCase__ : str = use_labels lowerCAmelCase__ : Dict = vocab_size lowerCAmelCase__ : Union[str, Any] = hidden_size lowerCAmelCase__ : Optional[int] = num_hidden_layers lowerCAmelCase__ : List[Any] = num_attention_heads lowerCAmelCase__ : int = intermediate_size lowerCAmelCase__ : Union[str, Any] = hidden_act lowerCAmelCase__ : Union[str, Any] = hidden_dropout_prob lowerCAmelCase__ : Any = attention_probs_dropout_prob lowerCAmelCase__ : Dict = max_position_embeddings lowerCAmelCase__ : int = type_vocab_size lowerCAmelCase__ : int = type_sequence_label_size lowerCAmelCase__ : Dict = initializer_range lowerCAmelCase__ : List[str] = num_labels lowerCAmelCase__ : Any = num_choices lowerCAmelCase__ : List[Any] = scope def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ : Tuple = None if self.use_input_mask: lowerCAmelCase__ : str = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ : List[str] = None if self.use_token_type_ids: lowerCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : Dict = None lowerCAmelCase__ : str = None if self.use_labels: lowerCAmelCase__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self : Tuple , a : Dict , a : List[str] , a : str , a : Union[str, Any] , a : Optional[Any] , a : Dict , a : str ): '''simple docstring''' lowerCAmelCase__ : str = LlamaModel(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Dict = model(a , attention_mask=a ) lowerCAmelCase__ : Union[str, Any] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : int , a : Any , a : Union[str, Any] , a : Dict , a : Dict , a : List[Any] , a : Optional[Any] , a : int , a : Dict , a : Tuple , ): '''simple docstring''' lowerCAmelCase__ : int = True lowerCAmelCase__ : Dict = LlamaModel(a ) model.to(a ) model.eval() lowerCAmelCase__ : List[Any] = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , ) lowerCAmelCase__ : Optional[int] = model( a , attention_mask=a , encoder_hidden_states=a , ) lowerCAmelCase__ : Union[str, Any] = model(a , attention_mask=a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : Union[str, Any] , a : int , a : List[Any] , a : int , a : Tuple , a : List[Any] , a : Union[str, Any] , a : Any , a : List[str] , a : List[str] , ): '''simple docstring''' lowerCAmelCase__ : List[Any] = LlamaForCausalLM(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Tuple = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : str , a : Any , a : Tuple , a : str , a : Union[str, Any] , a : Optional[Any] , a : List[Any] , a : Optional[Any] , a : Optional[Any] , a : List[str] , ): '''simple docstring''' lowerCAmelCase__ : str = True lowerCAmelCase__ : Optional[int] = True lowerCAmelCase__ : List[Any] = LlamaForCausalLM(config=a ) model.to(a ) model.eval() # first forward pass lowerCAmelCase__ : List[str] = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , use_cache=a , ) lowerCAmelCase__ : List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase__ : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase__ : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase__ : int = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase__ : Any = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase__ : Union[str, Any] = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , output_hidden_states=a , )['hidden_states'][0] lowerCAmelCase__ : Union[str, Any] = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , past_key_values=a , output_hidden_states=a , )['hidden_states'][0] # select random slice lowerCAmelCase__ : Any = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase__ : Optional[int] = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a , a , atol=1E-3 ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : Any = config_and_inputs lowerCAmelCase__ : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () lowercase = (LlamaForCausalLM,) if is_torch_available() else () lowercase = ( { 'feature-extraction': LlamaModel, 'text-classification': LlamaForSequenceClassification, 'text-generation': LlamaForCausalLM, 'zero-shot': LlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Tuple = LlamaModelTester(self ) lowerCAmelCase__ : str = ConfigTester(self , config_class=a , hidden_size=37 ) def _lowerCamelCase ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase__ : int = type self.model_tester.create_and_check_model(*a ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : int = 3 lowerCAmelCase__ : Dict = input_dict['input_ids'] lowerCAmelCase__ : Optional[Any] = input_ids.ne(1 ).to(a ) lowerCAmelCase__ : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase__ : Tuple = LlamaForSequenceClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : str = model(a , attention_mask=a , labels=a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : List[Any] = 3 lowerCAmelCase__ : List[str] = 'single_label_classification' lowerCAmelCase__ : List[Any] = input_dict['input_ids'] lowerCAmelCase__ : List[Any] = input_ids.ne(1 ).to(a ) lowerCAmelCase__ : Optional[int] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase__ : int = LlamaForSequenceClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : Optional[int] = model(a , attention_mask=a , labels=a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Optional[Any] = 3 lowerCAmelCase__ : Optional[Any] = 'multi_label_classification' lowerCAmelCase__ : List[str] = input_dict['input_ids'] lowerCAmelCase__ : Tuple = input_ids.ne(1 ).to(a ) lowerCAmelCase__ : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase__ : Dict = LlamaForSequenceClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : Dict = model(a , attention_mask=a , labels=a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def _lowerCamelCase ( self : Optional[int] , a : Dict ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Tuple = ids_tensor([1, 10] , config.vocab_size ) lowerCAmelCase__ : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase__ : List[Any] = LlamaModel(a ) original_model.to(a ) original_model.eval() lowerCAmelCase__ : List[Any] = original_model(a ).last_hidden_state lowerCAmelCase__ : str = original_model(a ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase__ : Any = {'type': scaling_type, 'factor': 1_0.0} lowerCAmelCase__ : Union[str, Any] = LlamaModel(a ) scaled_model.to(a ) scaled_model.eval() lowerCAmelCase__ : Union[str, Any] = scaled_model(a ).last_hidden_state lowerCAmelCase__ : Optional[int] = scaled_model(a ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(a , a , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(a , a , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(a , a , atol=1E-5 ) ) @require_torch class A__ ( unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : int = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowerCAmelCase__ : List[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) lowerCAmelCase__ : Any = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 lowerCAmelCase__ : Dict = torch.tensor([[-6.6_5_5_0, -4.1_2_2_7, -4.9_8_5_9, -3.2_4_0_6, 0.8_2_6_2, -3.0_0_3_3, 1.2_9_6_4, -3.3_6_9_9]] ) torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase__ : List[Any] = torch.tensor([-1_2.8_2_8_1, -7.4_4_5_3, -0.4_6_3_9, -8.0_6_2_5, -7.2_5_0_0, -8.0_0_0_0, -6.4_8_8_3, -7.7_6_9_5, -7.8_4_3_8, -7.0_3_1_2, -6.2_1_8_8, -7.1_3_2_8, -1.8_4_9_6, 1.9_9_6_1, -8.6_2_5_0, -6.7_2_2_7, -1_2.8_2_8_1, -6.9_4_9_2, -7.0_7_4_2, -7.7_8_5_2, -7.5_8_2_0, -7.9_0_6_2, -6.9_3_7_5, -7.9_8_0_5, -8.3_4_3_8, -8.1_5_6_2, -8.0_4_6_9, -7.6_2_5_0, -7.7_4_2_2, -7.3_3_9_8,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : str = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowerCAmelCase__ : Optional[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) lowerCAmelCase__ : List[str] = model(torch.tensor(a ) ) # Expected mean on dim = -1 lowerCAmelCase__ : Union[str, Any] = torch.tensor([[-2.0_6_2_2, -1.2_7_9_4, -1.1_6_3_8, -0.9_7_8_8, -1.4_6_0_3, -1.0_2_3_8, -1.7_8_9_3, -1.4_4_1_1]] ) torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase__ : Any = torch.tensor([-8.1_4_0_6, -8.0_5_4_7, 2.7_4_6_1, -1.2_3_4_4, -0.1_4_4_8, -1.8_2_6_2, -1.0_0_2_0, -1.8_1_5_4, -1.6_8_9_5, -1.8_5_1_6, -2.3_5_7_4, -0.9_2_7_7, 3.7_5_9_8, 6.5_7_4_2, -1.2_9_9_8, -0.1_1_7_7, -8.1_4_0_6, -2.9_6_8_8, -2.9_1_9_9, -3.1_6_9_9, -3.5_2_5_4, -2.3_5_5_5, -2.7_9_8_8, -3.4_1_4_1, -2.8_2_6_2, -4.5_1_9_5, -3.3_3_7_9, -3.3_1_6_4, -2.7_8_3_2, -3.0_2_7_3] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : int = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowerCAmelCase__ : Optional[int] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) lowerCAmelCase__ : str = model(torch.tensor(a ) ) # Expected mean on dim = -1 lowerCAmelCase__ : str = torch.tensor([[-0.8_5_6_2, -1.8_5_2_0, -0.7_5_5_1, -0.4_1_6_2, -1.5_1_6_1, -1.2_0_3_8, -2.4_8_2_3, -2.3_2_5_4]] ) torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase__ : List[str] = torch.tensor([-2.2_2_2_7, 4.8_8_2_8, 0.9_0_2_3, -0.4_5_7_8, -0.7_8_7_1, -0.1_0_3_3, -0.6_2_2_1, -0.5_7_8_6, -0.7_8_0_3, -1.0_6_7_4, -1.2_9_2_0, -0.1_5_7_0, 0.8_0_0_8, 2.0_7_2_3, -0.9_4_9_7, 0.2_7_7_1, -2.2_2_2_7, -0.7_6_1_2, -1.4_3_4_6, -1.2_0_6_1, -1.6_4_2_6, -0.3_0_0_0, -0.7_1_3_9, -1.1_9_3_4, -1.8_6_9_1, -1.6_9_7_3, -1.5_9_4_7, -1.2_7_0_5, -0.3_5_2_3, -0.5_5_1_3] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowerCAmelCase__ : List[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) lowerCAmelCase__ : List[str] = model(torch.tensor(a ) ) lowerCAmelCase__ : int = torch.tensor( [[-4.2_3_2_7, -3.3_3_6_0, -4.6_6_6_5, -4.7_6_3_1, -1.8_1_8_0, -3.4_1_7_0, -1.4_2_1_1, -3.1_8_1_0]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) # fmt: off lowerCAmelCase__ : Optional[int] = torch.tensor([-9.4_9_2_2, -3.9_5_5_1, 1.7_9_9_8, -5.6_7_5_8, -5.1_0_5_5, -5.8_9_8_4, -4.8_3_2_0, -6.8_0_8_6, -6.5_3_9_1, -5.6_1_7_2, -5.5_8_2_0, -5.5_3_5_2, 1.7_8_8_1, 3.6_2_8_9, -6.5_1_1_7, -3.4_7_8_5, -9.5_0_0_0, -6.0_3_5_2, -6.8_1_2_5, -6.0_1_9_5, -6.6_8_3_6, -5.4_7_2_7, -6.2_8_1_2, -6.0_3_9_1, -7.3_3_9_8, -7.4_2_9_7, -7.4_8_4_4, -6.5_8_2_0, -5.8_7_8_9, -5.5_3_1_2] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Model is curently gated' ) @slow def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' lowerCAmelCase__ : Tuple = 'Simply put, the theory of relativity states that ' lowerCAmelCase__ : Dict = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) lowerCAmelCase__ : Dict = tokenizer.encode(a , return_tensors='pt' ) lowerCAmelCase__ : str = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=a ) # greedy generation outputs lowerCAmelCase__ : Optional[Any] = model.generate(a , max_new_tokens=64 , top_p=a , temperature=1 , do_sample=a ) lowerCAmelCase__ : Tuple = tokenizer.decode(generated_ids[0] , skip_special_tokens=a ) self.assertEqual(a , a )
307
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( __magic_name__ , unittest.TestCase ): lowercase = KandinskyImgaImgPipeline lowercase = ['prompt', 'image_embeds', 'negative_image_embeds', 'image'] lowercase = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', ] lowercase = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowercase = False @property def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return 32 @property def _lowerCamelCase ( self : int ): '''simple docstring''' return 32 @property def _lowerCamelCase ( self : int ): '''simple docstring''' return self.time_input_dim @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return self.time_input_dim * 4 @property def _lowerCamelCase ( self : int ): '''simple docstring''' return 100 @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : str = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_005 , ) lowerCAmelCase__ : str = MultilingualCLIP(a ) lowerCAmelCase__ : Optional[Any] = text_encoder.eval() return text_encoder @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Dict = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCAmelCase__ : List[str] = UNetaDConditionModel(**a ) return model @property def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : str = VQModel(**self.dummy_movq_kwargs ) return model def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : str = self.dummy_text_encoder lowerCAmelCase__ : List[str] = self.dummy_tokenizer lowerCAmelCase__ : Any = self.dummy_unet lowerCAmelCase__ : str = self.dummy_movq lowerCAmelCase__ : List[str] = { 'num_train_timesteps': 1_000, 'beta_schedule': 'linear', 'beta_start': 0.0_0_0_8_5, 'beta_end': 0.0_1_2, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } lowerCAmelCase__ : Dict = DDIMScheduler(**a ) lowerCAmelCase__ : Any = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def _lowerCamelCase ( self : str , a : Tuple , a : Optional[Any]=0 ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(a ) ).to(a ) lowerCAmelCase__ : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(a ) # create init_image lowerCAmelCase__ : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(a ) ).to(a ) lowerCAmelCase__ : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase__ : int = Image.fromarray(np.uinta(a ) ).convert('RGB' ).resize((256, 256) ) if str(a ).startswith('mps' ): lowerCAmelCase__ : Optional[Any] = torch.manual_seed(a ) else: lowerCAmelCase__ : int = torch.Generator(device=a ).manual_seed(a ) lowerCAmelCase__ : Union[str, Any] = { 'prompt': 'horse', 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = 'cpu' lowerCAmelCase__ : Dict = self.get_dummy_components() lowerCAmelCase__ : Tuple = self.pipeline_class(**a ) lowerCAmelCase__ : Dict = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Tuple = pipe(**self.get_dummy_inputs(a ) ) lowerCAmelCase__ : Tuple = output.images lowerCAmelCase__ : Optional[int] = pipe( **self.get_dummy_inputs(a ) , return_dict=a , )[0] lowerCAmelCase__ : Dict = image[0, -3:, -3:, -1] lowerCAmelCase__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : Tuple = np.array( [0.6_1_4_7_4_9_4_3, 0.6_0_7_3_5_3_9, 0.4_3_3_0_8_5_4_4, 0.5_9_2_8_2_6_9, 0.4_7_4_9_3_5_9_5, 0.4_6_7_5_5_9_7_3, 0.4_6_1_3_8_3_8, 0.4_5_3_6_8_7_9_7, 0.5_0_1_1_9_2_3_3] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : int ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_img2img_frog.npy' ) lowerCAmelCase__ : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowerCAmelCase__ : List[Any] = 'A red cartoon frog, 4k' lowerCAmelCase__ : Optional[Any] = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior' , torch_dtype=torch.floataa ) pipe_prior.to(a ) lowerCAmelCase__ : Union[str, Any] = KandinskyImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1' , torch_dtype=torch.floataa ) lowerCAmelCase__ : str = pipeline.to(a ) pipeline.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Tuple = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase__ : Tuple = pipe_prior( a , generator=a , num_inference_steps=5 , negative_prompt='' , ).to_tuple() lowerCAmelCase__ : List[Any] = pipeline( a , image=a , image_embeds=a , negative_image_embeds=a , generator=a , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='np' , ) lowerCAmelCase__ : List[Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(a , a )
371
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """microsoft/unispeech-large-1500h-cv""": ( """https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json""" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class A__ ( __magic_name__ ): lowercase = 'unispeech' def __init__( self : Any , a : List[Any]=32 , a : List[Any]=768 , a : Any=12 , a : List[str]=12 , a : List[Any]=3_072 , a : Any="gelu" , a : Dict=0.1 , a : List[str]=0.1 , a : List[str]=0.1 , a : Union[str, Any]=0.0 , a : str=0.0 , a : int=0.1 , a : List[str]=0.1 , a : List[Any]=0.0_2 , a : Optional[int]=1E-5 , a : Optional[int]="group" , a : Optional[Any]="gelu" , a : List[Any]=(512, 512, 512, 512, 512, 512, 512) , a : Optional[Any]=(5, 2, 2, 2, 2, 2, 2) , a : List[str]=(10, 3, 3, 3, 3, 2, 2) , a : Union[str, Any]=False , a : Union[str, Any]=128 , a : Tuple=16 , a : Dict=False , a : str=True , a : str=0.0_5 , a : Union[str, Any]=10 , a : Tuple=2 , a : int=0.0 , a : Optional[Any]=10 , a : List[str]=0 , a : str=320 , a : List[str]=2 , a : Optional[Any]=0.1 , a : Any=100 , a : Dict=256 , a : Any=256 , a : Dict=0.1 , a : List[Any]="mean" , a : Dict=False , a : str=False , a : Optional[int]=256 , a : Any=80 , a : List[Any]=0 , a : Optional[int]=1 , a : int=2 , a : List[Any]=0.5 , **a : int , ): '''simple docstring''' super().__init__(**a , pad_token_id=a , bos_token_id=a , eos_token_id=a ) lowerCAmelCase__ : List[str] = hidden_size lowerCAmelCase__ : List[str] = feat_extract_norm lowerCAmelCase__ : Optional[Any] = feat_extract_activation lowerCAmelCase__ : str = list(a ) lowerCAmelCase__ : List[str] = list(a ) lowerCAmelCase__ : Tuple = list(a ) lowerCAmelCase__ : Dict = conv_bias lowerCAmelCase__ : Optional[int] = num_conv_pos_embeddings lowerCAmelCase__ : Any = num_conv_pos_embedding_groups lowerCAmelCase__ : str = len(self.conv_dim ) lowerCAmelCase__ : Any = num_hidden_layers lowerCAmelCase__ : Dict = intermediate_size lowerCAmelCase__ : Dict = hidden_act lowerCAmelCase__ : Union[str, Any] = num_attention_heads lowerCAmelCase__ : Union[str, Any] = hidden_dropout lowerCAmelCase__ : Tuple = attention_dropout lowerCAmelCase__ : str = activation_dropout lowerCAmelCase__ : Any = feat_proj_dropout lowerCAmelCase__ : List[Any] = final_dropout lowerCAmelCase__ : Tuple = layerdrop lowerCAmelCase__ : Any = layer_norm_eps lowerCAmelCase__ : Dict = initializer_range lowerCAmelCase__ : Optional[Any] = num_ctc_classes lowerCAmelCase__ : Tuple = vocab_size lowerCAmelCase__ : Dict = do_stable_layer_norm lowerCAmelCase__ : List[Any] = use_weighted_layer_sum lowerCAmelCase__ : Any = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase__ : Union[str, Any] = apply_spec_augment lowerCAmelCase__ : Any = mask_time_prob lowerCAmelCase__ : Dict = mask_time_length lowerCAmelCase__ : Tuple = mask_time_min_masks lowerCAmelCase__ : Optional[int] = mask_feature_prob lowerCAmelCase__ : Optional[Any] = mask_feature_length lowerCAmelCase__ : int = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCAmelCase__ : int = num_codevectors_per_group lowerCAmelCase__ : Any = num_codevector_groups lowerCAmelCase__ : Any = contrastive_logits_temperature lowerCAmelCase__ : int = feat_quantizer_dropout lowerCAmelCase__ : List[Any] = num_negatives lowerCAmelCase__ : List[str] = codevector_dim lowerCAmelCase__ : Optional[int] = proj_codevector_dim lowerCAmelCase__ : Dict = diversity_loss_weight # ctc loss lowerCAmelCase__ : Any = ctc_loss_reduction lowerCAmelCase__ : Any = ctc_zero_infinity # pretraining loss lowerCAmelCase__ : Union[str, Any] = replace_prob @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
307
0
from __future__ import annotations def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> bool: lowerCAmelCase__ : Dict = len(SCREAMING_SNAKE_CASE_ ) # We need to create solution object to save path. lowerCAmelCase__ : Union[str, Any] = [[0 for _ in range(SCREAMING_SNAKE_CASE_ )] for _ in range(SCREAMING_SNAKE_CASE_ )] lowerCAmelCase__ : List[str] = run_maze(SCREAMING_SNAKE_CASE_ , 0 , 0 , SCREAMING_SNAKE_CASE_ ) if solved: print('\n'.join(str(SCREAMING_SNAKE_CASE_ ) for row in solutions ) ) else: print('No solution exists!' ) return solved def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> bool: lowerCAmelCase__ : Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) # Final check point. if i == j == (size - 1): lowerCAmelCase__ : Union[str, Any] = 1 return True lowerCAmelCase__ : int = (not i < 0) and (not j < 0) # Check lower bounds lowerCAmelCase__ : str = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. lowerCAmelCase__ : int = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited lowerCAmelCase__ : Union[str, Any] = 1 # check for directions if ( run_maze(SCREAMING_SNAKE_CASE_ , i + 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or run_maze(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , j + 1 , SCREAMING_SNAKE_CASE_ ) or run_maze(SCREAMING_SNAKE_CASE_ , i - 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or run_maze(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , j - 1 , SCREAMING_SNAKE_CASE_ ) ): return True lowerCAmelCase__ : Dict = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
350
import torch from torch import nn class A__ ( nn.Module ): def __init__( self : Optional[int] , a : Union[str, Any] , a : str , a : str , a : List[Any] , a : List[Any]=1 , a : Tuple=False ): '''simple docstring''' super().__init__() lowerCAmelCase__ : Dict = n_token lowerCAmelCase__ : Any = d_embed lowerCAmelCase__ : str = d_proj lowerCAmelCase__ : int = cutoffs + [n_token] lowerCAmelCase__ : Union[str, Any] = [0] + self.cutoffs lowerCAmelCase__ : str = div_val lowerCAmelCase__ : Tuple = self.cutoffs[0] lowerCAmelCase__ : Dict = len(self.cutoffs ) - 1 lowerCAmelCase__ : Any = self.shortlist_size + self.n_clusters if self.n_clusters > 0: lowerCAmelCase__ : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) lowerCAmelCase__ : Optional[Any] = nn.Parameter(torch.zeros(self.n_clusters ) ) lowerCAmelCase__ : Optional[int] = nn.ModuleList() lowerCAmelCase__ : Tuple = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(a , a ) ) ) else: self.out_projs.append(a ) self.out_layers.append(nn.Linear(a , a ) ) else: for i in range(len(self.cutoffs ) ): lowerCAmelCase__ , lowerCAmelCase__ : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase__ : Optional[Any] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(a , a ) ) ) self.out_layers.append(nn.Linear(a , r_idx - l_idx ) ) lowerCAmelCase__ : Tuple = keep_order def _lowerCamelCase ( self : Optional[int] , a : List[str] , a : int , a : List[str] , a : str ): '''simple docstring''' if proj is None: lowerCAmelCase__ : Tuple = nn.functional.linear(a , a , bias=a ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: lowerCAmelCase__ : int = nn.functional.linear(a , proj.t().contiguous() ) lowerCAmelCase__ : Tuple = nn.functional.linear(a , a , bias=a ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def _lowerCamelCase ( self : List[str] , a : List[Any] , a : Optional[int]=None , a : Tuple=False ): '''simple docstring''' if labels is not None: # Shift so that tokens < n predict n lowerCAmelCase__ : str = hidden[..., :-1, :].contiguous() lowerCAmelCase__ : Optional[Any] = labels[..., 1:].contiguous() lowerCAmelCase__ : List[Any] = hidden.view(-1 , hidden.size(-1 ) ) lowerCAmelCase__ : Tuple = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('Input and labels should have the same size in the batch dimension.' ) else: lowerCAmelCase__ : Optional[Any] = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: lowerCAmelCase__ : Optional[Any] = self._compute_logit(a , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: lowerCAmelCase__ : str = labels != -100 lowerCAmelCase__ : int = torch.zeros_like(a , dtype=hidden.dtype , device=hidden.device ) lowerCAmelCase__ : List[str] = ( -nn.functional.log_softmax(a , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: lowerCAmelCase__ : Optional[Any] = nn.functional.log_softmax(a , dim=-1 ) else: # construct weights and biases lowerCAmelCase__ , lowerCAmelCase__ : int = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase__ : Any = self.out_layers[0].weight[l_idx:r_idx] lowerCAmelCase__ : Any = self.out_layers[0].bias[l_idx:r_idx] else: lowerCAmelCase__ : Optional[Any] = self.out_layers[i].weight lowerCAmelCase__ : Optional[int] = self.out_layers[i].bias if i == 0: lowerCAmelCase__ : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowerCAmelCase__ : Union[str, Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(a ) biases.append(a ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = weights[0], biases[0], self.out_projs[0] lowerCAmelCase__ : List[Any] = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : Union[str, Any] = nn.functional.log_softmax(a , dim=1 ) if labels is None: lowerCAmelCase__ : Tuple = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: lowerCAmelCase__ : Dict = torch.zeros_like(a , dtype=hidden.dtype , device=hidden.device ) lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : Union[str, Any] = [0] + self.cutoffs for i in range(len(a ) - 1 ): lowerCAmelCase__ , lowerCAmelCase__ : Tuple = cutoff_values[i], cutoff_values[i + 1] if labels is not None: lowerCAmelCase__ : Tuple = (labels >= l_idx) & (labels < r_idx) lowerCAmelCase__ : int = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue lowerCAmelCase__ : Tuple = labels.index_select(0 , a ) - l_idx lowerCAmelCase__ : Any = head_logprob.index_select(0 , a ) lowerCAmelCase__ : Optional[int] = hidden.index_select(0 , a ) else: lowerCAmelCase__ : Any = hidden if i == 0: if labels is not None: lowerCAmelCase__ : Union[str, Any] = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: lowerCAmelCase__ : List[str] = head_logprob[:, : self.cutoffs[0]] else: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = weights[i], biases[i], self.out_projs[i] lowerCAmelCase__ : Union[str, Any] = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : Optional[int] = nn.functional.log_softmax(a , dim=1 ) lowerCAmelCase__ : List[Any] = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: lowerCAmelCase__ : List[str] = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: lowerCAmelCase__ : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i lowerCAmelCase__ : Union[str, Any] = logprob_i if labels is not None: if (hasattr(self , 'keep_order' ) and self.keep_order) or keep_order: out.index_copy_(0 , a , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def _lowerCamelCase ( self : List[Any] , a : Any ): '''simple docstring''' if self.n_clusters == 0: lowerCAmelCase__ : Union[str, Any] = self._compute_logit(a , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(a , dim=-1 ) else: # construct weights and biases lowerCAmelCase__ , lowerCAmelCase__ : str = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase__ : str = self.out_layers[0].weight[l_idx:r_idx] lowerCAmelCase__ : Dict = self.out_layers[0].bias[l_idx:r_idx] else: lowerCAmelCase__ : int = self.out_layers[i].weight lowerCAmelCase__ : int = self.out_layers[i].bias if i == 0: lowerCAmelCase__ : Optional[int] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowerCAmelCase__ : Union[str, Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(a ) biases.append(a ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : str = weights[0], biases[0], self.out_projs[0] lowerCAmelCase__ : Dict = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : List[Any] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) lowerCAmelCase__ : Optional[Any] = nn.functional.log_softmax(a , dim=1 ) lowerCAmelCase__ : List[Any] = [0] + self.cutoffs for i in range(len(a ) - 1 ): lowerCAmelCase__ , lowerCAmelCase__ : str = cutoff_values[i], cutoff_values[i + 1] if i == 0: lowerCAmelCase__ : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = weights[i], biases[i], self.out_projs[i] lowerCAmelCase__ : Dict = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : List[str] = nn.functional.log_softmax(a , dim=1 ) lowerCAmelCase__ : Dict = head_logprob[:, -i] + tail_logprob_i lowerCAmelCase__ : List[str] = logprob_i return out
307
0
from __future__ import annotations import os from typing import Any import requests lowerCamelCase__ = """https://api.github.com""" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user lowerCamelCase__ = BASE_URL + """/user""" # https://github.com/settings/tokens lowerCamelCase__ = os.environ.get("""USER_TOKEN""", """""") def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> dict[Any, Any]: lowerCAmelCase__ : Any = { 'Authorization': F'''token {auth_token}''', 'Accept': 'application/vnd.github.v3+json', } return requests.get(SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F"""{key}: {value}""") else: raise ValueError("""'USER_TOKEN' field cannot be empty.""")
351
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowerCamelCase__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} lowerCamelCase__ = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", """emoji""": True, }, } ] lowerCamelCase__ = 0 for log in Path().glob("""*.log"""): lowerCamelCase__ = 0 with open(log, """r""") as f: for line in f: lowerCamelCase__ = json.loads(line) if line.get("""nodeid""", """""") != "": lowerCamelCase__ = line["""nodeid"""] if line.get("""duration""", None) is not None: lowerCamelCase__ = F"""{line["duration"]:.4f}""" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowerCamelCase__ = [] log.unlink() lowerCamelCase__ = """""" lowerCamelCase__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowerCamelCase__ = [] lowerCamelCase__ = {} for test in failed_tests: lowerCamelCase__ = test[0].split("""::""") lowerCamelCase__ = data[0].split("""/""")[-1] if data[0] not in filesafailed: lowerCamelCase__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowerCamelCase__ = [test[0] for test in failed_table] lowerCamelCase__ = list(set(files)) # Count number of instances in failed_tests lowerCamelCase__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowerCamelCase__ = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: lowerCamelCase__ = """Too many failed tests, please see the full report in the Action results.""" lowerCamelCase__ = len(err) + 10 lowerCamelCase__ = message[: 3000 - offset] + F"""\n...\n```\n{err}""" print(F"""### {message}""") else: lowerCamelCase__ = """No failed tests! 🤗""" print(F"""## {message}""") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient lowerCamelCase__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": lowerCamelCase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) lowerCamelCase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) lowerCamelCase__ = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) lowerCamelCase__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) lowerCamelCase__ = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowerCamelCase__ = """""" for i, row in enumerate(test_failures): if row[0] != test_class: lowerCamelCase__ = row[0] else: lowerCamelCase__ = """""" lowerCamelCase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
307
0
from __future__ import annotations def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> list[int]: lowerCAmelCase__ : Optional[int] = [True] * limit lowerCAmelCase__ : Optional[Any] = False lowerCAmelCase__ : Tuple = False lowerCAmelCase__ : Dict = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): lowerCAmelCase__ : int = i * 2 while index < limit: lowerCAmelCase__ : List[str] = False lowerCAmelCase__ : List[Any] = index + i lowerCAmelCase__ : List[Any] = [2] for i in range(3 , SCREAMING_SNAKE_CASE_ , 2 ): if is_prime[i]: primes.append(SCREAMING_SNAKE_CASE_ ) return primes def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = 1_000_000 ) -> int: lowerCAmelCase__ : List[Any] = prime_sieve(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = 0 lowerCAmelCase__ : Optional[int] = 0 for i in range(len(SCREAMING_SNAKE_CASE_ ) ): for j in range(i + length , len(SCREAMING_SNAKE_CASE_ ) ): lowerCAmelCase__ : Union[str, Any] = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: lowerCAmelCase__ : int = j - i lowerCAmelCase__ : Optional[Any] = sol return largest if __name__ == "__main__": print(F"""{solution() = }""")
352
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCamelCase__ = imread(r"""digital_image_processing/image_data/lena_small.jpg""") lowerCamelCase__ = cvtColor(img, COLOR_BGR2GRAY) def lowerCAmelCase__ ( ) -> Dict: lowerCAmelCase__ : List[Any] = cn.convert_to_negative(SCREAMING_SNAKE_CASE_ ) # assert negative_img array for at least one True assert negative_img.any() def lowerCAmelCase__ ( ) -> Optional[Any]: with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(SCREAMING_SNAKE_CASE_ , 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def lowerCAmelCase__ ( ) -> Tuple: lowerCAmelCase__ : str = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def lowerCAmelCase__ ( ) -> Tuple: lowerCAmelCase__ : Tuple = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() lowerCAmelCase__ : Optional[Any] = canny.canny(SCREAMING_SNAKE_CASE_ ) # assert canny array for at least one True assert canny_array.any() def lowerCAmelCase__ ( ) -> Optional[int]: assert gg.gaussian_filter(SCREAMING_SNAKE_CASE_ , 5 , sigma=0.9 ).all() def lowerCAmelCase__ ( ) -> Dict: # laplace diagonals lowerCAmelCase__ : Union[str, Any] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowerCAmelCase__ : int = conv.img_convolve(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).astype(SCREAMING_SNAKE_CASE_ ) assert res.any() def lowerCAmelCase__ ( ) -> List[str]: assert med.median_filter(SCREAMING_SNAKE_CASE_ , 3 ).any() def lowerCAmelCase__ ( ) -> Any: lowerCAmelCase__ , lowerCAmelCase__ : str = sob.sobel_filter(SCREAMING_SNAKE_CASE_ ) assert grad.any() and theta.any() def lowerCAmelCase__ ( ) -> Any: lowerCAmelCase__ : int = sp.make_sepia(SCREAMING_SNAKE_CASE_ , 20 ) assert sepia.all() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = "digital_image_processing/image_data/lena_small.jpg" ) -> Optional[Any]: lowerCAmelCase__ : List[Any] = bs.Burkes(imread(SCREAMING_SNAKE_CASE_ , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = "digital_image_processing/image_data/lena_small.jpg" , ) -> Any: lowerCAmelCase__ : Dict = rs.NearestNeighbour(imread(SCREAMING_SNAKE_CASE_ , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def lowerCAmelCase__ ( ) -> int: lowerCAmelCase__ : int = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. lowerCAmelCase__ : List[str] = imread(SCREAMING_SNAKE_CASE_ , 0 ) # Test for get_neighbors_pixel function() return not None lowerCAmelCase__ : str = 0 lowerCAmelCase__ : str = 0 lowerCAmelCase__ : List[str] = image[x_coordinate][y_coordinate] lowerCAmelCase__ : Dict = lbp.get_neighbors_pixel( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCAmelCase__ : List[str] = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): lowerCAmelCase__ : Dict = lbp.local_binary_value(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert lbp_image.any()
307
0
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A__ : def __init__( self : Optional[int] , a : Dict , a : Tuple=13 , a : Union[str, Any]=30 , a : int=2 , a : Dict=3 , a : Optional[int]=True , a : Dict=True , a : Union[str, Any]=32 , a : List[Any]=5 , a : str=4 , a : Optional[int]=37 , a : Tuple="gelu" , a : Optional[int]=0.1 , a : int=0.1 , a : List[str]=10 , a : str=0.0_2 , a : Union[str, Any]=None , a : Optional[int]=2 , ): '''simple docstring''' lowerCAmelCase__ : List[Any] = parent lowerCAmelCase__ : Tuple = batch_size lowerCAmelCase__ : Tuple = image_size lowerCAmelCase__ : List[Any] = patch_size lowerCAmelCase__ : List[str] = num_channels lowerCAmelCase__ : Optional[Any] = is_training lowerCAmelCase__ : int = use_labels lowerCAmelCase__ : Optional[int] = hidden_size lowerCAmelCase__ : Tuple = num_hidden_layers lowerCAmelCase__ : Optional[int] = num_attention_heads lowerCAmelCase__ : str = intermediate_size lowerCAmelCase__ : Optional[int] = hidden_act lowerCAmelCase__ : List[Any] = hidden_dropout_prob lowerCAmelCase__ : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase__ : List[str] = type_sequence_label_size lowerCAmelCase__ : Dict = initializer_range lowerCAmelCase__ : Any = scope lowerCAmelCase__ : str = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase__ : Any = (image_size // patch_size) ** 2 lowerCAmelCase__ : Optional[int] = num_patches + 1 def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ : Dict = None if self.use_labels: lowerCAmelCase__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ : List[Any] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self : Dict ): '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _lowerCamelCase ( self : List[Any] , a : int , a : List[Any] , a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = ViTModel(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : List[str] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : Optional[int] , a : Any , a : Dict , a : Tuple ): '''simple docstring''' lowerCAmelCase__ : List[str] = ViTForMaskedImageModeling(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Any = model(a ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase__ : Dict = 1 lowerCAmelCase__ : List[str] = ViTForMaskedImageModeling(a ) model.to(a ) model.eval() lowerCAmelCase__ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ : Dict = model(a ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _lowerCamelCase ( self : Union[str, Any] , a : List[str] , a : Tuple , a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.type_sequence_label_size lowerCAmelCase__ : Union[str, Any] = ViTForImageClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : List[str] = model(a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase__ : int = 1 lowerCAmelCase__ : List[str] = ViTForImageClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ : int = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Any = self.prepare_config_and_inputs() ( lowerCAmelCase__ ) : Dict = config_and_inputs lowerCAmelCase__ : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) lowercase = ( {'feature-extraction': ViTModel, 'image-classification': ViTForImageClassification} if is_torch_available() else {} ) lowercase = True lowercase = False lowercase = False lowercase = False def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : int = ViTModelTester(self ) lowerCAmelCase__ : str = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=37 ) def _lowerCamelCase ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' pass def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : Optional[Any] = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase__ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : Tuple = model_class(a ) lowerCAmelCase__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : Optional[Any] = [*signature.parameters.keys()] lowerCAmelCase__ : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a ) @slow def _lowerCamelCase ( self : Tuple ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : List[Any] = ViTModel.from_pretrained(a ) self.assertIsNotNone(a ) def lowerCAmelCase__ ( ) -> Tuple: lowerCAmelCase__ : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A__ ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self : Any ): '''simple docstring''' return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Any = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ).to(a ) lowerCAmelCase__ : Optional[Any] = self.default_image_processor lowerCAmelCase__ : List[str] = prepare_img() lowerCAmelCase__ : Dict = image_processor(images=a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowerCAmelCase__ : Dict = model(**a ) # verify the logits lowerCAmelCase__ : Tuple = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , a ) lowerCAmelCase__ : Union[str, Any] = torch.tensor([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1E-4 ) ) @slow def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = ViTModel.from_pretrained('facebook/dino-vits8' ).to(a ) lowerCAmelCase__ : List[Any] = ViTImageProcessor.from_pretrained('facebook/dino-vits8' , size=480 ) lowerCAmelCase__ : Dict = prepare_img() lowerCAmelCase__ : List[Any] = image_processor(images=a , return_tensors='pt' ) lowerCAmelCase__ : Optional[int] = inputs.pixel_values.to(a ) # forward pass with torch.no_grad(): lowerCAmelCase__ : List[str] = model(a , interpolate_pos_encoding=a ) # verify the logits lowerCAmelCase__ : str = torch.Size((1, 3_601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , a ) lowerCAmelCase__ : int = torch.tensor( [[4.2_3_4_0, 4.3_9_0_6, -6.6_6_9_2], [4.5_4_6_3, 1.8_9_2_8, -6.7_2_5_7], [4.4_4_2_9, 0.8_4_9_6, -5.8_5_8_5]] ).to(a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , a , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : int = ViTModel.from_pretrained('facebook/dino-vits8' , torch_dtype=torch.floataa , device_map='auto' ) lowerCAmelCase__ : str = self.default_image_processor lowerCAmelCase__ : Union[str, Any] = prepare_img() lowerCAmelCase__ : Optional[Any] = image_processor(images=a , return_tensors='pt' ) lowerCAmelCase__ : str = inputs.pixel_values.to(a ) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowerCAmelCase__ : Optional[Any] = model(a )
353
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
0
from collections.abc import Callable def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> float: lowerCAmelCase__ : float = a lowerCAmelCase__ : float = b if function(SCREAMING_SNAKE_CASE_ ) == 0: # one of the a or b is a root for the function return a elif function(SCREAMING_SNAKE_CASE_ ) == 0: return b elif ( function(SCREAMING_SNAKE_CASE_ ) * function(SCREAMING_SNAKE_CASE_ ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: lowerCAmelCase__ : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(SCREAMING_SNAKE_CASE_ ) == 0: return mid elif function(SCREAMING_SNAKE_CASE_ ) * function(SCREAMING_SNAKE_CASE_ ) < 0: lowerCAmelCase__ : List[Any] = mid else: lowerCAmelCase__ : List[Any] = mid lowerCAmelCase__ : List[str] = start + (end - start) / 2.0 return mid def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> float: return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
354
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.999 , SCREAMING_SNAKE_CASE_="cosine" , ) -> Union[str, Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(SCREAMING_SNAKE_CASE_ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(SCREAMING_SNAKE_CASE_ ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) lowerCAmelCase__ : Tuple = [] for i in range(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : List[Any] = i / num_diffusion_timesteps lowerCAmelCase__ : str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) / alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ) return torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ) class A__ ( __magic_name__ , __magic_name__ ): lowercase = [e.name for e in KarrasDiffusionSchedulers] lowercase = 2 @register_to_config def __init__( self : Union[str, Any] , a : int = 1_000 , a : float = 0.0_0_0_8_5 , a : float = 0.0_1_2 , a : str = "linear" , a : Optional[Union[np.ndarray, List[float]]] = None , a : str = "epsilon" , a : Optional[bool] = False , a : Optional[bool] = False , a : float = 1.0 , a : str = "linspace" , a : int = 0 , ): '''simple docstring''' if trained_betas is not None: lowerCAmelCase__ : List[str] = torch.tensor(a , dtype=torch.floataa ) elif beta_schedule == "linear": lowerCAmelCase__ : List[str] = torch.linspace(a , a , a , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowerCAmelCase__ : Union[str, Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , a , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowerCAmelCase__ : int = betas_for_alpha_bar(a , alpha_transform_type='cosine' ) elif beta_schedule == "exp": lowerCAmelCase__ : List[str] = betas_for_alpha_bar(a , alpha_transform_type='exp' ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) lowerCAmelCase__ : int = 1.0 - self.betas lowerCAmelCase__ : Tuple = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(a , a , a ) lowerCAmelCase__ : Optional[Any] = use_karras_sigmas def _lowerCamelCase ( self : str , a : List[Any] , a : str=None ): '''simple docstring''' if schedule_timesteps is None: lowerCAmelCase__ : List[str] = self.timesteps lowerCAmelCase__ : int = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: lowerCAmelCase__ : List[str] = 1 if len(a ) > 1 else 0 else: lowerCAmelCase__ : Tuple = timestep.cpu().item() if torch.is_tensor(a ) else timestep lowerCAmelCase__ : Tuple = self._index_counter[timestep_int] return indices[pos].item() @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _lowerCamelCase ( self : Tuple , a : torch.FloatTensor , a : Union[float, torch.FloatTensor] , ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.index_for_timestep(a ) lowerCAmelCase__ : Any = self.sigmas[step_index] lowerCAmelCase__ : Optional[Any] = sample / ((sigma**2 + 1) ** 0.5) return sample def _lowerCamelCase ( self : List[str] , a : int , a : Union[str, torch.device] = None , a : Optional[int] = None , ): '''simple docstring''' lowerCAmelCase__ : Any = num_inference_steps lowerCAmelCase__ : Union[str, Any] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowerCAmelCase__ : Union[str, Any] = np.linspace(0 , num_train_timesteps - 1 , a , dtype=a )[::-1].copy() elif self.config.timestep_spacing == "leading": lowerCAmelCase__ : List[Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCAmelCase__ : Dict = (np.arange(0 , a ) * step_ratio).round()[::-1].copy().astype(a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowerCAmelCase__ : Tuple = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCAmelCase__ : int = (np.arange(a , 0 , -step_ratio )).round().copy().astype(a ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) lowerCAmelCase__ : str = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) lowerCAmelCase__ : List[Any] = np.log(a ) lowerCAmelCase__ : Optional[int] = np.interp(a , np.arange(0 , len(a ) ) , a ) if self.config.use_karras_sigmas: lowerCAmelCase__ : str = self._convert_to_karras(in_sigmas=a , num_inference_steps=self.num_inference_steps ) lowerCAmelCase__ : Union[str, Any] = np.array([self._sigma_to_t(a , a ) for sigma in sigmas] ) lowerCAmelCase__ : Tuple = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) lowerCAmelCase__ : Dict = torch.from_numpy(a ).to(device=a ) lowerCAmelCase__ : Union[str, Any] = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) lowerCAmelCase__ : Tuple = torch.from_numpy(a ) lowerCAmelCase__ : List[str] = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(a ).startswith('mps' ): # mps does not support float64 lowerCAmelCase__ : Optional[Any] = timesteps.to(a , dtype=torch.floataa ) else: lowerCAmelCase__ : Any = timesteps.to(device=a ) # empty dt and derivative lowerCAmelCase__ : str = None lowerCAmelCase__ : Optional[int] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowerCAmelCase__ : Optional[Any] = defaultdict(a ) def _lowerCamelCase ( self : Any , a : Dict , a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = np.log(a ) # get distribution lowerCAmelCase__ : Tuple = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range lowerCAmelCase__ : Optional[int] = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) lowerCAmelCase__ : List[str] = low_idx + 1 lowerCAmelCase__ : List[str] = log_sigmas[low_idx] lowerCAmelCase__ : Any = log_sigmas[high_idx] # interpolate sigmas lowerCAmelCase__ : Union[str, Any] = (low - log_sigma) / (low - high) lowerCAmelCase__ : List[Any] = np.clip(a , 0 , 1 ) # transform interpolation to time range lowerCAmelCase__ : List[Any] = (1 - w) * low_idx + w * high_idx lowerCAmelCase__ : Any = t.reshape(sigma.shape ) return t def _lowerCamelCase ( self : Tuple , a : torch.FloatTensor , a : Any ): '''simple docstring''' lowerCAmelCase__ : float = in_sigmas[-1].item() lowerCAmelCase__ : float = in_sigmas[0].item() lowerCAmelCase__ : Tuple = 7.0 # 7.0 is the value used in the paper lowerCAmelCase__ : Tuple = np.linspace(0 , 1 , a ) lowerCAmelCase__ : Any = sigma_min ** (1 / rho) lowerCAmelCase__ : Optional[Any] = sigma_max ** (1 / rho) lowerCAmelCase__ : Tuple = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _lowerCamelCase ( self : Any ): '''simple docstring''' return self.dt is None def _lowerCamelCase ( self : List[str] , a : Union[torch.FloatTensor, np.ndarray] , a : Union[float, torch.FloatTensor] , a : Union[torch.FloatTensor, np.ndarray] , a : bool = True , ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.index_for_timestep(a ) # advance index counter by 1 lowerCAmelCase__ : Tuple = timestep.cpu().item() if torch.is_tensor(a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowerCAmelCase__ : Union[str, Any] = self.sigmas[step_index] lowerCAmelCase__ : Union[str, Any] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method lowerCAmelCase__ : int = self.sigmas[step_index - 1] lowerCAmelCase__ : Any = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowerCAmelCase__ : Optional[int] = 0 lowerCAmelCase__ : Union[str, Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowerCAmelCase__ : int = sigma_hat if self.state_in_first_order else sigma_next lowerCAmelCase__ : Any = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowerCAmelCase__ : Dict = sigma_hat if self.state_in_first_order else sigma_next lowerCAmelCase__ : List[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": lowerCAmelCase__ : int = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.config.clip_sample: lowerCAmelCase__ : str = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowerCAmelCase__ : Dict = (sample - pred_original_sample) / sigma_hat # 3. delta timestep lowerCAmelCase__ : Optional[int] = sigma_next - sigma_hat # store for 2nd order step lowerCAmelCase__ : List[Any] = derivative lowerCAmelCase__ : str = dt lowerCAmelCase__ : Dict = sample else: # 2. 2nd order / Heun's method lowerCAmelCase__ : Union[str, Any] = (sample - pred_original_sample) / sigma_next lowerCAmelCase__ : Union[str, Any] = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample lowerCAmelCase__ : Dict = self.dt lowerCAmelCase__ : Optional[int] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" lowerCAmelCase__ : List[str] = None lowerCAmelCase__ : Tuple = None lowerCAmelCase__ : str = None lowerCAmelCase__ : Tuple = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=a ) def _lowerCamelCase ( self : int , a : torch.FloatTensor , a : torch.FloatTensor , a : torch.FloatTensor , ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(a ): # mps does not support float64 lowerCAmelCase__ : Optional[int] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) lowerCAmelCase__ : int = timesteps.to(original_samples.device , dtype=torch.floataa ) else: lowerCAmelCase__ : Union[str, Any] = self.timesteps.to(original_samples.device ) lowerCAmelCase__ : Optional[Any] = timesteps.to(original_samples.device ) lowerCAmelCase__ : List[Any] = [self.index_for_timestep(a , a ) for t in timesteps] lowerCAmelCase__ : List[str] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): lowerCAmelCase__ : Any = sigma.unsqueeze(-1 ) lowerCAmelCase__ : List[str] = original_samples + noise * sigma return noisy_samples def __len__( self : int ): '''simple docstring''' return self.config.num_train_timesteps
307
0
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class A__ ( __magic_name__ ): def __init__( self : Dict , a : Optional[Any] , a : Union[str, Any]=13 , a : Optional[Any]=7 , a : Tuple=True , a : Any=True , a : List[Any]=False , a : Dict=True , a : int=99 , a : Optional[Any]=32 , a : Union[str, Any]=5 , a : List[str]=4 , a : Dict=37 , a : Optional[int]="gelu" , a : Dict=0.1 , a : Dict=0.1 , a : Optional[int]=512 , a : Any=16 , a : int=2 , a : List[str]=0.0_2 , a : List[Any]=3 , a : Any=4 , a : Any=None , ): '''simple docstring''' lowerCAmelCase__ : List[str] = parent lowerCAmelCase__ : Any = batch_size lowerCAmelCase__ : List[str] = seq_length lowerCAmelCase__ : str = is_training lowerCAmelCase__ : Any = use_input_mask lowerCAmelCase__ : List[Any] = use_token_type_ids lowerCAmelCase__ : List[Any] = use_labels lowerCAmelCase__ : str = vocab_size lowerCAmelCase__ : Tuple = hidden_size lowerCAmelCase__ : Optional[Any] = num_hidden_layers lowerCAmelCase__ : int = num_attention_heads lowerCAmelCase__ : Optional[Any] = intermediate_size lowerCAmelCase__ : List[str] = hidden_act lowerCAmelCase__ : List[Any] = hidden_dropout_prob lowerCAmelCase__ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase__ : str = max_position_embeddings lowerCAmelCase__ : Optional[Any] = type_vocab_size lowerCAmelCase__ : Dict = type_sequence_label_size lowerCAmelCase__ : int = initializer_range lowerCAmelCase__ : Any = num_labels lowerCAmelCase__ : Optional[Any] = num_choices lowerCAmelCase__ : Optional[int] = scope def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ : Union[str, Any] = None if self.use_input_mask: lowerCAmelCase__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ : int = None lowerCAmelCase__ : List[Any] = None lowerCAmelCase__ : str = None if self.use_labels: lowerCAmelCase__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ : List[str] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ : Any = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : int ): '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self : Union[str, Any] , a : Any , a : Dict , a : int , a : Union[str, Any] , a : Any , a : List[Any] ): '''simple docstring''' lowerCAmelCase__ : List[Any] = DistilBertModel(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : int = model(a , a ) lowerCAmelCase__ : Optional[Any] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : List[Any] , a : Tuple , a : Union[str, Any] , a : Optional[int] , a : Any , a : List[str] , a : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = DistilBertForMaskedLM(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : List[Any] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : Optional[int] , a : Union[str, Any] , a : List[Any] , a : int , a : Optional[Any] , a : Optional[Any] , a : Tuple ): '''simple docstring''' lowerCAmelCase__ : List[Any] = DistilBertForQuestionAnswering(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Tuple = model( a , attention_mask=a , start_positions=a , end_positions=a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : str , a : List[Any] , a : Any , a : int , a : Optional[Any] , a : int , a : List[str] ): '''simple docstring''' lowerCAmelCase__ : str = self.num_labels lowerCAmelCase__ : int = DistilBertForSequenceClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : Optional[Any] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self : Optional[int] , a : Dict , a : Any , a : List[Any] , a : str , a : str , a : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : List[Any] = self.num_labels lowerCAmelCase__ : Optional[Any] = DistilBertForTokenClassification(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Optional[int] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self : Any , a : str , a : str , a : Any , a : Optional[Any] , a : int , a : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.num_choices lowerCAmelCase__ : Tuple = DistilBertForMultipleChoice(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase__ : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase__ : Dict = model( a , attention_mask=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() (lowerCAmelCase__) : Optional[Any] = config_and_inputs lowerCAmelCase__ : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowercase = ( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowercase = True lowercase = True lowercase = True lowercase = True def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : int = DistilBertModelTester(self ) lowerCAmelCase__ : Union[str, Any] = ConfigTester(self , config_class=a , dim=37 ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a ) @slow def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : Union[str, Any] = DistilBertModel.from_pretrained(a ) self.assertIsNotNone(a ) @slow @require_torch_gpu def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return lowerCAmelCase__ : str = True lowerCAmelCase__ : List[str] = model_class(config=a ) lowerCAmelCase__ : Optional[Any] = self._prepare_for_class(a , a ) lowerCAmelCase__ : Optional[int] = torch.jit.trace( a , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , 'traced_model.pt' ) ) lowerCAmelCase__ : Tuple = torch.jit.load(os.path.join(a , 'traced_model.pt' ) , map_location=a ) loaded(inputs_dict['input_ids'].to(a ) , inputs_dict['attention_mask'].to(a ) ) @require_torch class A__ ( unittest.TestCase ): @slow def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : str = DistilBertModel.from_pretrained('distilbert-base-uncased' ) lowerCAmelCase__ : int = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) lowerCAmelCase__ : str = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCAmelCase__ : Any = model(a , attention_mask=a )[0] lowerCAmelCase__ : Tuple = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , a ) lowerCAmelCase__ : Optional[int] = torch.tensor( [[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1E-4 ) )
355
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: if isinstance(SCREAMING_SNAKE_CASE_ , collections.abc.Iterable ): return x return (x, x) @require_tf class A__ : def _lowerCamelCase ( self : List[Any] , a : List[str] , a : Optional[Any] ): '''simple docstring''' pass def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' pass def _lowerCamelCase ( self : Dict ): '''simple docstring''' pass def _lowerCamelCase ( self : Dict , a : int , a : str , a : List[Any] , a : Dict , a : List[str]=None , **a : Dict ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(a , a ) lowerCAmelCase__ : Tuple = TFVisionTextDualEncoderModel(a ) lowerCAmelCase__ : Tuple = model(input_ids=a , pixel_values=a , attention_mask=a ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) ) def _lowerCamelCase ( self : Union[str, Any] , a : Dict , a : Tuple , a : Dict , a : Union[str, Any] , a : List[Any]=None , **a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.get_vision_text_model(a , a ) lowerCAmelCase__ : List[Any] = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : Optional[int] = model(input_ids=a , pixel_values=a , attention_mask=a ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _lowerCamelCase ( self : List[str] , a : Optional[int] , a : Optional[int] , a : Union[str, Any] , a : List[Any] , a : Any=None , **a : Dict ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Optional[Any] = {'vision_model': vision_model, 'text_model': text_model} lowerCAmelCase__ : Tuple = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**a ) lowerCAmelCase__ : Union[str, Any] = model(input_ids=a , pixel_values=a , attention_mask=a ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _lowerCamelCase ( self : Any , a : Optional[int] , a : Optional[int] , a : Dict , a : Optional[int] , a : Optional[int]=None , **a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : int = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Dict = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : List[str] = model(input_ids=a , pixel_values=a , attention_mask=a ) lowerCAmelCase__ : Union[str, Any] = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(a ) lowerCAmelCase__ : Any = TFVisionTextDualEncoderModel.from_pretrained(a ) lowerCAmelCase__ : int = model(input_ids=a , pixel_values=a , attention_mask=a ) lowerCAmelCase__ : Union[str, Any] = after_output[0].numpy() lowerCAmelCase__ : Optional[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a , 1E-5 ) def _lowerCamelCase ( self : List[str] , a : Dict , a : Optional[int] , a : List[Any] , a : str , a : int=None , **a : Tuple ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Any = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : str = model( input_ids=a , pixel_values=a , attention_mask=a , output_attentions=a ) lowerCAmelCase__ : Union[str, Any] = output.vision_model_output.attentions self.assertEqual(len(a ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase__ : Optional[int] = to_atuple(vision_model.config.image_size ) lowerCAmelCase__ : Optional[Any] = to_atuple(vision_model.config.patch_size ) lowerCAmelCase__ : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCAmelCase__ : int = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCAmelCase__ : str = output.text_model_output.attentions self.assertEqual(len(a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCamelCase ( self : List[Any] , a : np.ndarray , a : np.ndarray , a : float ): '''simple docstring''' lowerCAmelCase__ : int = np.abs((a - b) ).max() self.assertLessEqual(a , a , f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**a ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Any = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**a ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : str = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() self.check_save_load(**a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**a ) @slow def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = self.get_pretrained_model_and_inputs() lowerCAmelCase__ : List[Any] = model_a(**a ) lowerCAmelCase__ : Optional[int] = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(a ) lowerCAmelCase__ : str = TFVisionTextDualEncoderModel.from_pretrained(a ) lowerCAmelCase__ : List[str] = model_a(**a ) lowerCAmelCase__ : int = after_outputs[0].numpy() lowerCAmelCase__ : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a , 1E-5 ) @require_tf class A__ ( __magic_name__ , unittest.TestCase ): def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-random-bert' ) lowerCAmelCase__ : int = 13 lowerCAmelCase__ : List[Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ : int = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ : Optional[Any] = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ : List[Any] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _lowerCamelCase ( self : List[Any] , a : Dict , a : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = TFViTModel(a , name='vision_model' ) lowerCAmelCase__ : str = TFBertModel(a , name='text_model' ) return vision_model, text_model def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = TFViTModelTester(self ) lowerCAmelCase__ : Tuple = TFBertModelTester(self ) lowerCAmelCase__ : Optional[int] = vit_model_tester.prepare_config_and_inputs() lowerCAmelCase__ : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : int = vision_config_and_inputs ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : str = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class A__ ( __magic_name__ , unittest.TestCase ): def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-deit-tf' , 'hf-internal-testing/tiny-random-roberta' ) lowerCAmelCase__ : Tuple = 13 lowerCAmelCase__ : Any = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ : Dict = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ : Any = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ : Tuple = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _lowerCamelCase ( self : str , a : Optional[Any] , a : Dict , a : Dict , a : Any , a : Any=None , **a : int ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Optional[int] = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : Any = model( input_ids=a , pixel_values=a , attention_mask=a , output_attentions=a ) lowerCAmelCase__ : Union[str, Any] = output.vision_model_output.attentions self.assertEqual(len(a ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowerCAmelCase__ : str = to_atuple(vision_model.config.image_size ) lowerCAmelCase__ : Union[str, Any] = to_atuple(vision_model.config.patch_size ) lowerCAmelCase__ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCAmelCase__ : int = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCAmelCase__ : List[str] = output.text_model_output.attentions self.assertEqual(len(a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCamelCase ( self : int , a : Optional[int] , a : int ): '''simple docstring''' lowerCAmelCase__ : Dict = TFDeiTModel(a , name='vision_model' ) lowerCAmelCase__ : List[Any] = TFRobertaModel(a , name='text_model' ) return vision_model, text_model def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Dict = TFDeiTModelTester(self ) lowerCAmelCase__ : List[str] = TFRobertaModelTester(self ) lowerCAmelCase__ : str = vit_model_tester.prepare_config_and_inputs() lowerCAmelCase__ : List[Any] = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[str] = vision_config_and_inputs ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : Any = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class A__ ( __magic_name__ , unittest.TestCase ): def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : int = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-clip-tf' , 'hf-internal-testing/tiny-random-bert' ) lowerCAmelCase__ : Dict = 13 lowerCAmelCase__ : str = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ : List[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ : Union[str, Any] = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ : Optional[int] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _lowerCamelCase ( self : str , a : int , a : List[str] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = TFCLIPVisionModel(a , name='vision_model' ) lowerCAmelCase__ : List[str] = TFBertModel(a , name='text_model' ) return vision_model, text_model def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Any = TFCLIPVisionModelTester(self ) lowerCAmelCase__ : Union[str, Any] = TFBertModelTester(self ) lowerCAmelCase__ : Any = clip_model_tester.prepare_config_and_inputs() lowerCAmelCase__ : Any = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = vision_config_and_inputs ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : str = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class A__ ( unittest.TestCase ): @slow def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Tuple = TFVisionTextDualEncoderModel.from_pretrained( 'clip-italian/clip-italian' , logit_scale_init_value=1.0 , from_pt=a ) lowerCAmelCase__ : List[Any] = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) lowerCAmelCase__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCAmelCase__ : Any = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=a , padding=a , return_tensors='np' ) lowerCAmelCase__ : Union[str, Any] = model(**a ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) lowerCAmelCase__ : List[str] = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , a , atol=1E-3 ) )
307
0
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class A__ ( __magic_name__ ): lowercase = 'char' lowercase = 'bpe' lowercase = 'wp' lowerCamelCase__ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class A__ ( __magic_name__ ): lowercase = ['image_processor', 'char_tokenizer'] lowercase = 'ViTImageProcessor' lowercase = 'MgpstrTokenizer' def __init__( self : Any , a : Any=None , a : Optional[int]=None , **a : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , a , ) lowerCAmelCase__ : Union[str, Any] = kwargs.pop('feature_extractor' ) lowerCAmelCase__ : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) lowerCAmelCase__ : List[str] = tokenizer lowerCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained('gpt2' ) lowerCAmelCase__ : List[str] = AutoTokenizer.from_pretrained('bert-base-uncased' ) super().__init__(a , a ) def __call__( self : List[str] , a : str=None , a : Dict=None , a : Any=None , **a : List[str] ): '''simple docstring''' if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: lowerCAmelCase__ : Union[str, Any] = self.image_processor(a , return_tensors=a , **a ) if text is not None: lowerCAmelCase__ : Union[str, Any] = self.char_tokenizer(a , return_tensors=a , **a ) if text is None: return inputs elif images is None: return encodings else: lowerCAmelCase__ : Union[str, Any] = encodings['input_ids'] return inputs def _lowerCamelCase ( self : List[Any] , a : List[Any] ): '''simple docstring''' lowerCAmelCase__ : int = sequences lowerCAmelCase__ : Dict = char_preds.size(0 ) lowerCAmelCase__ : Any = self._decode_helper(a , 'char' ) lowerCAmelCase__ : Dict = self._decode_helper(a , 'bpe' ) lowerCAmelCase__ : Dict = self._decode_helper(a , 'wp' ) lowerCAmelCase__ : List[str] = [] lowerCAmelCase__ : Optional[int] = [] for i in range(a ): lowerCAmelCase__ : Tuple = [char_scores[i], bpe_scores[i], wp_scores[i]] lowerCAmelCase__ : Union[str, Any] = [char_strs[i], bpe_strs[i], wp_strs[i]] lowerCAmelCase__ : List[Any] = scores.index(max(a ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) lowerCAmelCase__ : str = {} lowerCAmelCase__ : Dict = final_strs lowerCAmelCase__ : int = final_scores lowerCAmelCase__ : Tuple = char_strs lowerCAmelCase__ : List[str] = bpe_strs lowerCAmelCase__ : Optional[Any] = wp_strs return out def _lowerCamelCase ( self : Union[str, Any] , a : int , a : List[str] ): '''simple docstring''' if format == DecodeType.CHARACTER: lowerCAmelCase__ : int = self.char_decode lowerCAmelCase__ : int = 1 lowerCAmelCase__ : List[Any] = '[s]' elif format == DecodeType.BPE: lowerCAmelCase__ : Optional[Any] = self.bpe_decode lowerCAmelCase__ : int = 2 lowerCAmelCase__ : Union[str, Any] = '#' elif format == DecodeType.WORDPIECE: lowerCAmelCase__ : str = self.wp_decode lowerCAmelCase__ : Optional[Any] = 102 lowerCAmelCase__ : str = '[SEP]' else: raise ValueError(f'''Format {format} is not supported.''' ) lowerCAmelCase__ : Optional[int] = [], [] lowerCAmelCase__ : str = pred_logits.size(0 ) lowerCAmelCase__ : str = pred_logits.size(1 ) lowerCAmelCase__ : Optional[Any] = pred_logits.topk(1 , dim=-1 , largest=a , sorted=a ) lowerCAmelCase__ : Tuple = preds_index.view(-1 , a )[:, 1:] lowerCAmelCase__ : List[str] = decoder(a ) lowerCAmelCase__ : List[Any] = torch.nn.functional.softmax(a , dim=2 ).max(dim=2 ) lowerCAmelCase__ : Any = preds_max_prob[:, 1:] for index in range(a ): lowerCAmelCase__ : Optional[Any] = preds_str[index].find(a ) lowerCAmelCase__ : str = preds_str[index][:pred_eos] lowerCAmelCase__ : Optional[Any] = preds_index[index].cpu().tolist() lowerCAmelCase__ : List[str] = pred_index.index(a ) if eos_token in pred_index else -1 lowerCAmelCase__ : int = preds_max_prob[index][: pred_eos_index + 1] lowerCAmelCase__ : str = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(a ) conf_scores.append(a ) return dec_strs, conf_scores def _lowerCamelCase ( self : Optional[Any] , a : Any ): '''simple docstring''' lowerCAmelCase__ : str = [seq.replace(' ' , '' ) for seq in self.char_tokenizer.batch_decode(a )] return decode_strs def _lowerCamelCase ( self : str , a : Tuple ): '''simple docstring''' return self.bpe_tokenizer.batch_decode(a ) def _lowerCamelCase ( self : Union[str, Any] , a : str ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = [seq.replace(' ' , '' ) for seq in self.wp_tokenizer.batch_decode(a )] return decode_strs
356
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) lowerCamelCase__ = logging.getLogger(__name__) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: lowerCAmelCase__ : Dict = np.argmax(SCREAMING_SNAKE_CASE_ , axis=1 ) return np.sum(outputs == labels ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: with open(SCREAMING_SNAKE_CASE_ , encoding='utf_8' ) as f: lowerCAmelCase__ : Dict = csv.reader(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Dict = [] next(SCREAMING_SNAKE_CASE_ ) # skip the first line for line in tqdm(SCREAMING_SNAKE_CASE_ ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: lowerCAmelCase__ : Dict = [] for dataset in encoded_datasets: lowerCAmelCase__ : List[str] = len(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) lowerCAmelCase__ : Tuple = np.zeros((n_batch, 2) , dtype=np.intaa ) lowerCAmelCase__ : List[Any] = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) lowerCAmelCase__ : Tuple = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Tuple = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase__ : Any = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase__ : Optional[Any] = with_conta lowerCAmelCase__ : List[str] = with_conta lowerCAmelCase__ : List[Any] = len(SCREAMING_SNAKE_CASE_ ) - 1 lowerCAmelCase__ : Tuple = len(SCREAMING_SNAKE_CASE_ ) - 1 lowerCAmelCase__ : Tuple = with_conta lowerCAmelCase__ : Optional[int] = with_conta lowerCAmelCase__ : Optional[int] = mc_label lowerCAmelCase__ : Dict = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(SCREAMING_SNAKE_CASE_ ) for t in all_inputs ) ) return tensor_datasets def lowerCAmelCase__ ( ) -> int: lowerCAmelCase__ : int = argparse.ArgumentParser() parser.add_argument('--model_name' , type=SCREAMING_SNAKE_CASE_ , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=SCREAMING_SNAKE_CASE_ , default='' ) parser.add_argument('--eval_dataset' , type=SCREAMING_SNAKE_CASE_ , default='' ) parser.add_argument('--seed' , type=SCREAMING_SNAKE_CASE_ , default=42 ) parser.add_argument('--num_train_epochs' , type=SCREAMING_SNAKE_CASE_ , default=3 ) parser.add_argument('--train_batch_size' , type=SCREAMING_SNAKE_CASE_ , default=8 ) parser.add_argument('--eval_batch_size' , type=SCREAMING_SNAKE_CASE_ , default=16 ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=SCREAMING_SNAKE_CASE_ , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=SCREAMING_SNAKE_CASE_ , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=SCREAMING_SNAKE_CASE_ , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=SCREAMING_SNAKE_CASE_ , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=SCREAMING_SNAKE_CASE_ , default=6.25e-5 ) parser.add_argument('--warmup_steps' , default=0 , type=SCREAMING_SNAKE_CASE_ , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=SCREAMING_SNAKE_CASE_ , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=SCREAMING_SNAKE_CASE_ , default=0.01 ) parser.add_argument('--lm_coef' , type=SCREAMING_SNAKE_CASE_ , default=0.9 ) parser.add_argument('--n_valid' , type=SCREAMING_SNAKE_CASE_ , default=374 ) parser.add_argument('--server_ip' , type=SCREAMING_SNAKE_CASE_ , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=SCREAMING_SNAKE_CASE_ , default='' , help='Can be used for distant debugging.' ) lowerCAmelCase__ : List[str] = parser.parse_args() print(SCREAMING_SNAKE_CASE_ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE_ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) lowerCAmelCase__ : str = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) lowerCAmelCase__ : Dict = torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset lowerCAmelCase__ : Union[str, Any] = ['_start_', '_delimiter_', '_classify_'] lowerCAmelCase__ : Dict = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE_ ) ) model.to(SCREAMING_SNAKE_CASE_ ) # Load and encode the datasets def tokenize_and_encode(SCREAMING_SNAKE_CASE_ ): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return obj return [tokenize_and_encode(SCREAMING_SNAKE_CASE_ ) for o in obj] logger.info('Encoding dataset...' ) lowerCAmelCase__ : List[Any] = load_rocstories_dataset(args.train_dataset ) lowerCAmelCase__ : str = load_rocstories_dataset(args.eval_dataset ) lowerCAmelCase__ : Union[str, Any] = (train_dataset, eval_dataset) lowerCAmelCase__ : List[str] = tokenize_and_encode(SCREAMING_SNAKE_CASE_ ) # Compute the max input length for the Transformer lowerCAmelCase__ : Union[str, Any] = model.config.n_positions // 2 - 2 lowerCAmelCase__ : Tuple = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) lowerCAmelCase__ : Dict = min(SCREAMING_SNAKE_CASE_ , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders lowerCAmelCase__ : int = pre_process_datasets(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = tensor_datasets[0], tensor_datasets[1] lowerCAmelCase__ : str = TensorDataset(*SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Tuple = RandomSampler(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Tuple = DataLoader(SCREAMING_SNAKE_CASE_ , sampler=SCREAMING_SNAKE_CASE_ , batch_size=args.train_batch_size ) lowerCAmelCase__ : Optional[Any] = TensorDataset(*SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Dict = SequentialSampler(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = DataLoader(SCREAMING_SNAKE_CASE_ , sampler=SCREAMING_SNAKE_CASE_ , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: lowerCAmelCase__ : Union[str, Any] = args.max_steps lowerCAmelCase__ : int = args.max_steps // (len(SCREAMING_SNAKE_CASE_ ) // args.gradient_accumulation_steps) + 1 else: lowerCAmelCase__ : Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) // args.gradient_accumulation_steps * args.num_train_epochs lowerCAmelCase__ : Optional[int] = list(model.named_parameters() ) lowerCAmelCase__ : Tuple = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] lowerCAmelCase__ : str = [ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] lowerCAmelCase__ : Union[str, Any] = AdamW(SCREAMING_SNAKE_CASE_ , lr=args.learning_rate , eps=args.adam_epsilon ) lowerCAmelCase__ : int = get_linear_schedule_with_warmup( SCREAMING_SNAKE_CASE_ , num_warmup_steps=args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE_ ) if args.do_train: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): lowerCAmelCase__ : str = 0 lowerCAmelCase__ : int = 0 lowerCAmelCase__ : str = tqdm(SCREAMING_SNAKE_CASE_ , desc='Training' ) for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Union[str, Any] = tuple(t.to(SCREAMING_SNAKE_CASE_ ) for t in batch ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = batch lowerCAmelCase__ : Tuple = model(SCREAMING_SNAKE_CASE_ , mc_token_ids=SCREAMING_SNAKE_CASE_ , lm_labels=SCREAMING_SNAKE_CASE_ , mc_labels=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : str = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() lowerCAmelCase__ : Optional[int] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 lowerCAmelCase__ : List[str] = 'Training loss: {:.2e} lr: {:.2e}'.format(SCREAMING_SNAKE_CASE_ , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer lowerCAmelCase__ : Optional[int] = model.module if hasattr(SCREAMING_SNAKE_CASE_ , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` lowerCAmelCase__ : List[str] = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[str] = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE_ ) torch.save(model_to_save.state_dict() , SCREAMING_SNAKE_CASE_ ) model_to_save.config.to_json_file(SCREAMING_SNAKE_CASE_ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned lowerCAmelCase__ : Dict = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) lowerCAmelCase__ : List[Any] = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(SCREAMING_SNAKE_CASE_ ) if args.do_eval: model.eval() lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = 0, 0 lowerCAmelCase__ , lowerCAmelCase__ : Any = 0, 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , desc='Evaluating' ): lowerCAmelCase__ : str = tuple(t.to(SCREAMING_SNAKE_CASE_ ) for t in batch ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Tuple = batch with torch.no_grad(): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[str] = model( SCREAMING_SNAKE_CASE_ , mc_token_ids=SCREAMING_SNAKE_CASE_ , lm_labels=SCREAMING_SNAKE_CASE_ , mc_labels=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = mc_logits.detach().cpu().numpy() lowerCAmelCase__ : List[Any] = mc_labels.to('cpu' ).numpy() lowerCAmelCase__ : str = accuracy(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 lowerCAmelCase__ : Optional[int] = eval_loss / nb_eval_steps lowerCAmelCase__ : Any = eval_accuracy / nb_eval_examples lowerCAmelCase__ : Union[str, Any] = tr_loss / nb_tr_steps if args.do_train else None lowerCAmelCase__ : Tuple = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} lowerCAmelCase__ : Dict = os.path.join(args.output_dir , 'eval_results.txt' ) with open(SCREAMING_SNAKE_CASE_ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , SCREAMING_SNAKE_CASE_ , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
307
0
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: print('\nThe shortest path matrix using Floyd Warshall algorithm\n' ) for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ ): if dist[i][j] != float('inf' ): print(int(dist[i][j] ) , end='\t' ) else: print('INF' , end='\t' ) print() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: lowerCAmelCase__ : Tuple = [[float('inf' ) for _ in range(SCREAMING_SNAKE_CASE_ )] for _ in range(SCREAMING_SNAKE_CASE_ )] for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : List[Any] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(SCREAMING_SNAKE_CASE_ ): # looping through rows of graph array for i in range(SCREAMING_SNAKE_CASE_ ): # looping through columns of graph array for j in range(SCREAMING_SNAKE_CASE_ ): if ( dist[i][k] != float('inf' ) and dist[k][j] != float('inf' ) and dist[i][k] + dist[k][j] < dist[i][j] ): lowerCAmelCase__ : int = dist[i][k] + dist[k][j] _print_dist(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return dist, v if __name__ == "__main__": lowerCamelCase__ = int(input("""Enter number of vertices: """)) lowerCamelCase__ = int(input("""Enter number of edges: """)) lowerCamelCase__ = [[float("""inf""") for i in range(v)] for j in range(v)] for i in range(v): lowerCamelCase__ = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("""\nEdge """, i + 1) lowerCamelCase__ = int(input("""Enter source:""")) lowerCamelCase__ = int(input("""Enter destination:""")) lowerCamelCase__ = float(input("""Enter weight:""")) lowerCamelCase__ = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
357
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCamelCase__ = """python tqdm regex requests packaging filelock numpy tokenizers""".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("""dataclasses""") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("""importlib_metadata""") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> int: require_version(deps[pkg] , SCREAMING_SNAKE_CASE_ )
307
0
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: return 1 / (1 + np.exp(-z )) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: return (-y * np.log(SCREAMING_SNAKE_CASE_ ) - (1 - y) * np.log(1 - h )).mean() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: lowerCAmelCase__ : int = np.dot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return np.sum(y * scores - np.log(1 + np.exp(SCREAMING_SNAKE_CASE_ ) ) ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=70_000 ) -> Optional[Any]: lowerCAmelCase__ : List[Any] = np.zeros(x.shape[1] ) for iterations in range(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Optional[Any] = np.dot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[Any] = sigmoid_function(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Tuple = np.dot(x.T , h - y ) / y.size lowerCAmelCase__ : List[Any] = theta - alpha * gradient # updating the weights lowerCAmelCase__ : Dict = np.dot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = sigmoid_function(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Tuple = cost_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if iterations % 100 == 0: print(F'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": lowerCamelCase__ = datasets.load_iris() lowerCamelCase__ = iris.data[:, :2] lowerCamelCase__ = (iris.target != 0) * 1 lowerCamelCase__ = 0.1 lowerCamelCase__ = logistic_reg(alpha, x, y, max_iterations=7_0000) print("""theta: """, theta) # printing the theta i.e our weights vector def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> List[str]: return sigmoid_function( np.dot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="""b""", label="""0""") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="""r""", label="""1""") ((lowerCamelCase__) , (lowerCamelCase__)) = (x[:, 0].min(), x[:, 0].max()) ((lowerCamelCase__) , (lowerCamelCase__)) = (x[:, 1].min(), x[:, 1].max()) ((lowerCamelCase__) , (lowerCamelCase__)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) lowerCamelCase__ = np.c_[xxa.ravel(), xxa.ravel()] lowerCamelCase__ = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="""black""") plt.legend() plt.show()
358
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class A__ ( __magic_name__ ): lowercase = (DPMSolverSDEScheduler,) lowercase = 10 def _lowerCamelCase ( self : Optional[int] , **a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = { 'num_train_timesteps': 1_100, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'noise_sampler_seed': 0, } config.update(**a ) return config def _lowerCamelCase ( self : Tuple ): '''simple docstring''' for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=a ) def _lowerCamelCase ( self : int ): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=a , beta_end=a ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=a ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : int = self.scheduler_classes[0] lowerCAmelCase__ : Tuple = self.get_scheduler_config() lowerCAmelCase__ : List[Any] = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ : Dict = self.dummy_model() lowerCAmelCase__ : int = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ : int = sample.to(a ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : List[Any] = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : str = model(a , a ) lowerCAmelCase__ : int = scheduler.step(a , a , a ) lowerCAmelCase__ : Any = output.prev_sample lowerCAmelCase__ : List[Any] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Optional[int] = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_7_8_2_1_0_4_4_9_2_1_8_7_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_7_8_7_0_5_9_6_4_5_6_5_2_7_7 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_2_1_1_1_8_1_6_4_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_6_8_9_2_2_9_9_6_5_2 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3 def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.scheduler_classes[0] lowerCAmelCase__ : List[str] = self.get_scheduler_config(prediction_type='v_prediction' ) lowerCAmelCase__ : Any = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ : Optional[int] = self.dummy_model() lowerCAmelCase__ : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ : Any = sample.to(a ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : str = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : str = model(a , a ) lowerCAmelCase__ : Dict = scheduler.step(a , a , a ) lowerCAmelCase__ : Tuple = output.prev_sample lowerCAmelCase__ : int = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Union[str, Any] = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_2_4.7_7_1_4_9_2_0_0_4_3_9_4_5_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_2_2_6_2_8_9_0_1_4_8_1_6_2_8_4 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_2_8.1_6_6_3_3_6_0_5_9_5_7_0_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_6_8_8_3_2_6_0_0_1_1_6_7_2_9_7 ) < 1E-3 else: assert abs(result_sum.item() - 1_1_9.8_4_8_7_5_4_8_8_2_8_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.1_5_6_0_5_3_0_6_6_2_5_3_6_6_2_1 ) < 1E-3 def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.scheduler_classes[0] lowerCAmelCase__ : Optional[int] = self.get_scheduler_config() lowerCAmelCase__ : int = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps , device=a ) lowerCAmelCase__ : Tuple = self.dummy_model() lowerCAmelCase__ : Any = self.dummy_sample_deter.to(a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowerCAmelCase__ : Dict = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : Optional[int] = model(a , a ) lowerCAmelCase__ : Tuple = scheduler.step(a , a , a ) lowerCAmelCase__ : Dict = output.prev_sample lowerCAmelCase__ : Union[str, Any] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Dict = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_6_9_5_7_3_9_7_4_6_0_9_3_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_8_0_5_9_3_4_6_0_7_9_8_2_6_3_5 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_3_6_3_7_6_9_5_3_1_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_8_3_8_2_4_1_5_7_7_1 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3 def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.scheduler_classes[0] lowerCAmelCase__ : Any = self.get_scheduler_config() lowerCAmelCase__ : Any = scheduler_class(**a , use_karras_sigmas=a ) scheduler.set_timesteps(self.num_inference_steps , device=a ) lowerCAmelCase__ : str = self.dummy_model() lowerCAmelCase__ : Any = self.dummy_sample_deter.to(a ) * scheduler.init_noise_sigma lowerCAmelCase__ : str = sample.to(a ) for t in scheduler.timesteps: lowerCAmelCase__ : Any = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : int = model(a , a ) lowerCAmelCase__ : Union[str, Any] = scheduler.step(a , a , a ) lowerCAmelCase__ : Union[str, Any] = output.prev_sample lowerCAmelCase__ : Optional[int] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Any = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_7_6.6_6_9_7_4_1_3_5_7_4_2_1_8_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_7.6_3_6_5_3_5_6_4_4_5_3_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2 else: assert abs(result_sum.item() - 1_7_0.3_1_3_5_2_2_3_3_8_8_6_7_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2
307
0
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate lowerCamelCase__ = trt.Logger(trt.Logger.WARNING) lowerCamelCase__ = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) lowerCamelCase__ = logging.getLogger(__name__) lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--onnx_model_path""", default=None, type=str, required=True, help="""Path to ONNX model: """, ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""The output directory where the model checkpoints and predictions will be written.""", ) # Other parameters parser.add_argument( """--tokenizer_name""", default="""""", type=str, required=True, help="""Pretrained tokenizer name or path if not the same as model_name""", ) parser.add_argument( """--version_2_with_negative""", action="""store_true""", help="""If true, the SQuAD examples contain some that do not have an answer.""", ) parser.add_argument( """--null_score_diff_threshold""", type=float, default=0.0, help="""If null_score - best_non_null is greater than the threshold predict null.""", ) parser.add_argument( """--max_seq_length""", default=384, type=int, help=( """The maximum total input sequence length after WordPiece tokenization. Sequences """ """longer than this will be truncated, and sequences shorter than this will be padded.""" ), ) parser.add_argument( """--doc_stride""", default=128, type=int, help="""When splitting up a long document into chunks, how much stride to take between chunks.""", ) parser.add_argument("""--per_device_eval_batch_size""", default=8, type=int, help="""Batch size per GPU/CPU for evaluation.""") parser.add_argument( """--n_best_size""", default=20, type=int, help="""The total number of n-best predictions to generate in the nbest_predictions.json output file.""", ) parser.add_argument( """--max_answer_length""", default=30, type=int, help=( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ), ) parser.add_argument("""--seed""", type=int, default=42, help="""random seed for initialization""") parser.add_argument( """--dataset_name""", type=str, default=None, required=True, help="""The name of the dataset to use (via the datasets library).""", ) parser.add_argument( """--dataset_config_name""", type=str, default=None, help="""The configuration name of the dataset to use (via the datasets library).""", ) parser.add_argument( """--preprocessing_num_workers""", type=int, default=4, help="""A csv or a json file containing the training data.""" ) parser.add_argument("""--overwrite_cache""", action="""store_true""", help="""Overwrite the cached training and evaluation sets""") parser.add_argument( """--fp16""", action="""store_true""", help="""Whether to use 16-bit (mixed) precision instead of 32-bit""", ) parser.add_argument( """--int8""", action="""store_true""", help="""Whether to use INT8""", ) lowerCamelCase__ = parser.parse_args() if args.tokenizer_name: lowerCamelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported by this script.""" """You can do it from another script, save it, and load it from here, using --tokenizer_name.""" ) logger.info("""Training/evaluation parameters %s""", args) lowerCamelCase__ = args.per_device_eval_batch_size lowerCamelCase__ = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties lowerCamelCase__ = True lowerCamelCase__ = """temp_engine/bert-fp32.engine""" if args.fpaa: lowerCamelCase__ = """temp_engine/bert-fp16.engine""" if args.inta: lowerCamelCase__ = """temp_engine/bert-int8.engine""" # import ONNX file if not os.path.exists("""temp_engine"""): os.makedirs("""temp_engine""") lowerCamelCase__ = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, """rb""") as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network lowerCamelCase__ = [network.get_input(i) for i in range(network.num_inputs)] lowerCamelCase__ = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: lowerCamelCase__ = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) lowerCamelCase__ = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) lowerCamelCase__ = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, """wb""") as f: f.write(engine.serialize()) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: lowerCAmelCase__ : List[Any] = np.asarray(inputs['input_ids'] , dtype=np.intaa ) lowerCAmelCase__ : Tuple = np.asarray(inputs['attention_mask'] , dtype=np.intaa ) lowerCAmelCase__ : Any = np.asarray(inputs['token_type_ids'] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , SCREAMING_SNAKE_CASE_ ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , SCREAMING_SNAKE_CASE_ ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , SCREAMING_SNAKE_CASE_ ) # start time lowerCAmelCase__ : Optional[Any] = time.time() # Run inference context.execute_async( bindings=[int(SCREAMING_SNAKE_CASE_ ) for d_inp in d_inputs] + [int(SCREAMING_SNAKE_CASE_ ), int(SCREAMING_SNAKE_CASE_ )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) cuda.memcpy_dtoh_async(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Synchronize the stream and take time stream.synchronize() # end time lowerCAmelCase__ : List[Any] = time.time() lowerCAmelCase__ : str = end_time - start_time lowerCAmelCase__ : Dict = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. lowerCamelCase__ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase__ = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError("""Evaluation requires a dataset name""") # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. lowerCamelCase__ = raw_datasets["""validation"""].column_names lowerCamelCase__ = """question""" if """question""" in column_names else column_names[0] lowerCamelCase__ = """context""" if """context""" in column_names else column_names[1] lowerCamelCase__ = """answers""" if """answers""" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). lowerCamelCase__ = tokenizer.padding_side == """right""" if args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) lowerCamelCase__ = min(args.max_seq_length, tokenizer.model_max_length) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Any: # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace lowerCAmelCase__ : Tuple = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. lowerCAmelCase__ : str = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation='only_second' if pad_on_right else 'only_first' , max_length=SCREAMING_SNAKE_CASE_ , stride=args.doc_stride , return_overflowing_tokens=SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , padding='max_length' , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. lowerCAmelCase__ : str = tokenized_examples.pop('overflow_to_sample_mapping' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. lowerCAmelCase__ : Union[str, Any] = [] for i in range(len(tokenized_examples['input_ids'] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). lowerCAmelCase__ : int = tokenized_examples.sequence_ids(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[Any] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. lowerCAmelCase__ : Union[str, Any] = sample_mapping[i] tokenized_examples["example_id"].append(examples['id'][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. lowerCAmelCase__ : List[str] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['offset_mapping'][i] ) ] return tokenized_examples lowerCamelCase__ = raw_datasets["""validation"""] # Validation Feature Creation lowerCamelCase__ = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="""Running tokenizer on validation dataset""", ) lowerCamelCase__ = default_data_collator lowerCamelCase__ = eval_dataset.remove_columns(["""example_id""", """offset_mapping"""]) lowerCamelCase__ = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="eval" ) -> List[str]: # Post-processing: we match the start logits and end logits to answers in the original context. lowerCAmelCase__ : Tuple = postprocess_qa_predictions( examples=SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ , predictions=SCREAMING_SNAKE_CASE_ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=SCREAMING_SNAKE_CASE_ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: lowerCAmelCase__ : Tuple = [ {'id': k, 'prediction_text': v, 'no_answer_probability': 0.0} for k, v in predictions.items() ] else: lowerCAmelCase__ : Optional[Any] = [{'id': k, 'prediction_text': v} for k, v in predictions.items()] lowerCAmelCase__ : List[str] = [{'id': ex['id'], 'answers': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=SCREAMING_SNAKE_CASE_ , label_ids=SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = load_metric("""squad_v2""" if args.version_2_with_negative else """squad""") # Evaluation! logger.info("""Loading ONNX model %s for evaluation""", args.onnx_model_path) with open(engine_name, """rb""") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Any: return trt.volume(engine.get_binding_shape(SCREAMING_SNAKE_CASE_ ) ) * engine.get_binding_dtype(SCREAMING_SNAKE_CASE_ ).itemsize # Allocate device memory for inputs and outputs. lowerCamelCase__ = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer lowerCamelCase__ = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) lowerCamelCase__ = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) lowerCamelCase__ = cuda.mem_alloc(h_outputa.nbytes) lowerCamelCase__ = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. lowerCamelCase__ = cuda.Stream() # Evaluation logger.info("""***** Running Evaluation *****""") logger.info(F""" Num examples = {len(eval_dataset)}""") logger.info(F""" Batch size = {args.per_device_eval_batch_size}""") lowerCamelCase__ = 0.0 lowerCamelCase__ = 0 lowerCamelCase__ = timeit.default_timer() lowerCamelCase__ = None for step, batch in enumerate(eval_dataloader): lowerCamelCase__ , lowerCamelCase__ = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 lowerCamelCase__ , lowerCamelCase__ = outputs lowerCamelCase__ = torch.tensor(start_logits) lowerCamelCase__ = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered lowerCamelCase__ = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) lowerCamelCase__ = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) lowerCamelCase__ = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) lowerCamelCase__ = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: lowerCamelCase__ = nested_truncate(all_preds, len(eval_dataset)) lowerCamelCase__ = timeit.default_timer() - start_time logger.info(""" Evaluation done in total %f secs (%f sec per example)""", evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info("""Average Inference Time = {:.3f} ms""".format(total_time * 1000 / niter)) logger.info("""Total Inference Time = {:.3f} ms""".format(total_time * 1000)) logger.info("""Total Number of Inference = %d""", niter) lowerCamelCase__ = post_processing_function(eval_examples, eval_dataset, all_preds) lowerCamelCase__ = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F"""Evaluation metrics: {eval_metric}""")
359
import os import string import sys lowerCamelCase__ = 1 << 8 lowerCamelCase__ = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } lowerCamelCase__ = KEYMAP["""up"""] lowerCamelCase__ = KEYMAP["""left"""] if sys.platform == "win32": lowerCamelCase__ = [] lowerCamelCase__ = { b"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, b"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): lowerCamelCase__ = ord(str(i)) def lowerCAmelCase__ ( ) -> Dict: if os.name == "nt": import msvcrt lowerCAmelCase__ : Dict = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(SCREAMING_SNAKE_CASE_ ) == 0: # Read the keystroke lowerCAmelCase__ : Optional[Any] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCAmelCase__ : Dict = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCAmelCase__ : Dict = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(SCREAMING_SNAKE_CASE_ ) if ord(SCREAMING_SNAKE_CASE_ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) lowerCAmelCase__ : Dict = chr(KEYMAP['esc'] ) except KeyError: lowerCAmelCase__ : Dict = cha[1] else: lowerCAmelCase__ : List[Any] = ch.decode(SCREAMING_SNAKE_CASE_ ) else: lowerCAmelCase__ : Tuple = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCAmelCase__ : Tuple = sys.stdin.fileno() lowerCAmelCase__ : Any = termios.tcgetattr(SCREAMING_SNAKE_CASE_ ) try: tty.setraw(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = sys.stdin.read(1 ) finally: termios.tcsetattr(SCREAMING_SNAKE_CASE_ , termios.TCSADRAIN , SCREAMING_SNAKE_CASE_ ) return ch def lowerCAmelCase__ ( ) -> Union[str, Any]: lowerCAmelCase__ : Any = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(SCREAMING_SNAKE_CASE_ ) == KEYMAP["esc"]: lowerCAmelCase__ : Union[str, Any] = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) == KEYMAP["mod_int"]: lowerCAmelCase__ : str = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(SCREAMING_SNAKE_CASE_ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(SCREAMING_SNAKE_CASE_ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
307
0
"""simple docstring""" import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--txt2img_unclip""", default="""kakaobrain/karlo-v1-alpha""", type=str, required=False, help="""The pretrained txt2img unclip.""", ) lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowerCamelCase__ = CLIPImageProcessor() lowerCamelCase__ = CLIPVisionModelWithProjection.from_pretrained("""openai/clip-vit-large-patch14""") lowerCamelCase__ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
360
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: return "".join([hex(SCREAMING_SNAKE_CASE_ )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE_ )] ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(SCREAMING_SNAKE_CASE_ ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE_ ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
307
0
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> list: lowerCAmelCase__ : int = word.split() def justify(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: lowerCAmelCase__ : Any = max_width - width lowerCAmelCase__ : Optional[int] = len(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: lowerCAmelCase__ : Tuple = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] lowerCAmelCase__ : int = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] lowerCAmelCase__ : Any = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(SCREAMING_SNAKE_CASE_ ): num_spaces_between_words_list[i] += 1 lowerCAmelCase__ : List[Any] = [] for i in range(SCREAMING_SNAKE_CASE_ ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ' ' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[Any] = [] lowerCAmelCase__ : list[str] = [] lowerCAmelCase__ : str = 0 for word in words: if width + len(SCREAMING_SNAKE_CASE_ ) + len(SCREAMING_SNAKE_CASE_ ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(SCREAMING_SNAKE_CASE_ ) width += len(SCREAMING_SNAKE_CASE_ ) else: # justify the line and add it to result answer.append(justify(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # reset new line and new width lowerCAmelCase__ : Any = [word], len(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : str = max_width - width - len(SCREAMING_SNAKE_CASE_ ) answer.append(' '.join(SCREAMING_SNAKE_CASE_ ) + (remaining_spaces + 1) * ' ' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
361
from __future__ import annotations def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> list[list[int]]: lowerCAmelCase__ : list[list[int]] = [] create_all_state(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , [] , SCREAMING_SNAKE_CASE_ ) return result def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> None: if level == 0: total_list.append(current_list[:] ) return for i in range(SCREAMING_SNAKE_CASE_ , total_number - level + 2 ): current_list.append(SCREAMING_SNAKE_CASE_ ) create_all_state(i + 1 , SCREAMING_SNAKE_CASE_ , level - 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) current_list.pop() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> None: for i in total_list: print(*SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowerCamelCase__ = 4 lowerCamelCase__ = 2 lowerCamelCase__ = generate_all_combinations(n, k) print_all_state(total_list)
307
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCamelCase__ = 16 lowerCamelCase__ = 32 def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 16 ) -> Dict: lowerCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained('bert-base-cased' ) lowerCAmelCase__ : Tuple = load_dataset('glue' , 'mrpc' ) def tokenize_function(SCREAMING_SNAKE_CASE_ ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ : Tuple = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase__ : str = datasets.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase__ : int = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(SCREAMING_SNAKE_CASE_ ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase__ : Union[str, Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase__ : Optional[Any] = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase__ : List[str] = 8 else: lowerCAmelCase__ : Any = None return tokenizer.pad( SCREAMING_SNAKE_CASE_ , padding='longest' , max_length=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_tensors='pt' , ) # Instantiate dataloaders. lowerCAmelCase__ : int = DataLoader( tokenized_datasets['train'] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Dict = DataLoader( tokenized_datasets['validation'] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCamelCase__ = mocked_dataloaders # noqa: F811 def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , SCREAMING_SNAKE_CASE_ ) == "1": lowerCAmelCase__ : List[Any] = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: lowerCAmelCase__ : Union[str, Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: lowerCAmelCase__ : str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase__ : Optional[int] = config['lr'] lowerCAmelCase__ : List[Any] = int(config['num_epochs'] ) lowerCAmelCase__ : List[str] = int(config['seed'] ) lowerCAmelCase__ : List[Any] = int(config['batch_size'] ) set_seed(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[Any] = get_dataloaders(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation lowerCAmelCase__ : int = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCAmelCase__ : Tuple = batch_size // MAX_GPU_BATCH_SIZE lowerCAmelCase__ : List[Any] = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase__ : List[Any] = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=SCREAMING_SNAKE_CASE_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase__ : int = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase__ : Optional[int] = AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE_ ) # Instantiate scheduler lowerCAmelCase__ : Dict = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE_ , num_warmup_steps=100 , num_training_steps=(len(SCREAMING_SNAKE_CASE_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase__ : List[Any] = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: lowerCAmelCase__ : int = os.path.split(SCREAMING_SNAKE_CASE_ )[-1].split('.' )[0] accelerator.init_trackers(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE_ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: lowerCAmelCase__ : int = 0 for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCAmelCase__ : Dict = model(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : str = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() lowerCAmelCase__ : int = loss / gradient_accumulation_steps accelerator.backward(SCREAMING_SNAKE_CASE_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase__ : List[Any] = model(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : int = outputs.logits.argmax(dim=-1 ) lowerCAmelCase__ : Optional[int] = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=SCREAMING_SNAKE_CASE_ , references=SCREAMING_SNAKE_CASE_ , ) lowerCAmelCase__ : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , SCREAMING_SNAKE_CASE_ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { 'accuracy': eval_metric['accuracy'], 'f1': eval_metric['f1'], 'train_loss': total_loss.item() / len(SCREAMING_SNAKE_CASE_ ), 'epoch': epoch, } , step=SCREAMING_SNAKE_CASE_ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowerCAmelCase__ ( ) -> List[str]: lowerCAmelCase__ : List[Any] = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=SCREAMING_SNAKE_CASE_ , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) lowerCAmelCase__ : Dict = parser.parse_args() lowerCAmelCase__ : Optional[Any] = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
362
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class A__ ( unittest.TestCase ): @parameterized.expand([(None,), ('foo.json',)] ) def _lowerCamelCase ( self : Dict , a : str ): '''simple docstring''' lowerCAmelCase__ : List[str] = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(a , config_name=a ) lowerCAmelCase__ : Tuple = GenerationConfig.from_pretrained(a , config_name=a ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , a ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , a ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Dict = AutoConfig.from_pretrained('gpt2' ) lowerCAmelCase__ : Any = GenerationConfig.from_model_config(a ) lowerCAmelCase__ : Any = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(a , a ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = GenerationConfig() lowerCAmelCase__ : Dict = { 'max_new_tokens': 1_024, 'foo': 'bar', } lowerCAmelCase__ : List[Any] = copy.deepcopy(a ) lowerCAmelCase__ : Dict = generation_config.update(**a ) # update_kwargs was not modified (no side effects) self.assertEqual(a , a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(a , {'foo': 'bar'} ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Dict = GenerationConfig() lowerCAmelCase__ : List[Any] = 'bar' with tempfile.TemporaryDirectory('test-generation-config' ) as tmp_dir: generation_config.save_pretrained(a ) lowerCAmelCase__ : List[Any] = GenerationConfig.from_pretrained(a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , 'bar' ) lowerCAmelCase__ : int = GenerationConfig.from_model_config(a ) assert not hasattr(a , 'foo' ) # no new kwargs should be initialized if from config def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , a ) self.assertEqual(default_config.num_beams , 1 ) lowerCAmelCase__ : List[Any] = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , a ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(a ) lowerCAmelCase__ : Any = GenerationConfig.from_pretrained(a , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , a ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class A__ ( unittest.TestCase ): @classmethod def _lowerCamelCase ( cls : int ): '''simple docstring''' lowerCAmelCase__ : List[str] = TOKEN HfFolder.save_token(a ) @classmethod def _lowerCamelCase ( cls : Optional[int] ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-generation-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-generation-config-org' ) except HTTPError: pass def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('test-generation-config' , use_auth_token=self._token ) lowerCAmelCase__ : Any = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) # Reset repo delete_repo(token=self._token , repo_id='test-generation-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( a , repo_id='test-generation-config' , push_to_hub=a , use_auth_token=self._token ) lowerCAmelCase__ : Tuple = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : int = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('valid_org/test-generation-config-org' , use_auth_token=self._token ) lowerCAmelCase__ : Dict = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-generation-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( a , repo_id='valid_org/test-generation-config-org' , push_to_hub=a , use_auth_token=self._token ) lowerCAmelCase__ : List[str] = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) )
307
0
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {"""vocab_file""": """spiece.model"""} lowerCamelCase__ = { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", } } # TODO(PVP) - this should be removed in Transformers v5 lowerCamelCase__ = { """t5-small""": 512, """t5-base""": 512, """t5-large""": 512, """t5-3b""": 512, """t5-11b""": 512, } lowerCamelCase__ = """▁""" class A__ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] def __init__( self : Any , a : List[Any] , a : Dict="</s>" , a : Tuple="<unk>" , a : Optional[int]="<pad>" , a : Any=100 , a : List[Any]=None , a : Optional[Dict[str, Any]] = None , a : Optional[int]=True , **a : Union[str, Any] , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: lowerCAmelCase__ : str = [f'''<extra_id_{i}>''' for i in range(a )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens lowerCAmelCase__ : Optional[int] = len(set(filter(lambda a : bool('extra_id' in str(a ) ) , a ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) if legacy: logger.warning_once( f'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' ' read the related pull request available at https://github.com/huggingface/transformers/pull/24565' ) lowerCAmelCase__ : Optional[Any] = legacy lowerCAmelCase__ : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=a , unk_token=a , pad_token=a , extra_ids=a , additional_special_tokens=a , sp_model_kwargs=self.sp_model_kwargs , legacy=a , **a , ) lowerCAmelCase__ : Tuple = vocab_file lowerCAmelCase__ : Dict = extra_ids lowerCAmelCase__ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a ) @staticmethod def _lowerCamelCase ( a : Optional[Any] , a : str , a : List[Any] ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: lowerCAmelCase__ : Optional[int] = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , a , ) return max_model_length @property def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' return self.sp_model.get_piece_size() + self._extra_ids def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = {self.convert_ids_to_tokens(a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowerCamelCase ( self : Dict , a : List[int] , a : Optional[List[int]] = None , a : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(a )) + [1] return ([0] * len(a )) + [1] + ([0] * len(a )) + [1] def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' return list( set(filter(lambda a : bool(re.search(R'<extra_id_\d+>' , a ) ) is not None , self.additional_special_tokens ) ) ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return [self._convert_token_to_id(a ) for token in self.get_sentinel_tokens()] def _lowerCamelCase ( self : Optional[Any] , a : List[int] ): '''simple docstring''' if len(a ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def _lowerCamelCase ( self : str , a : List[int] , a : Optional[List[int]] = None ): '''simple docstring''' lowerCAmelCase__ : List[str] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _lowerCamelCase ( self : Any , a : List[int] , a : Optional[List[int]] = None ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self._add_eos_if_not_present(a ) if token_ids_a is None: return token_ids_a else: lowerCAmelCase__ : int = self._add_eos_if_not_present(a ) return token_ids_a + token_ids_a def __getstate__( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.__dict__.copy() lowerCAmelCase__ : Union[str, Any] = None return state def __setstate__( self : str , a : Tuple ): '''simple docstring''' lowerCAmelCase__ : int = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCAmelCase__ : Union[str, Any] = {} lowerCAmelCase__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCamelCase ( self : List[str] , a : "TextInput" , **a : int ): '''simple docstring''' if not self.legacy: lowerCAmelCase__ : Any = SPIECE_UNDERLINE + text.replace(a , ' ' ) return super().tokenize(a , **a ) def _lowerCamelCase ( self : Union[str, Any] , a : Optional[Any] , **a : Tuple ): '''simple docstring''' if not self.legacy: lowerCAmelCase__ : Dict = text.startswith(a ) if is_first: lowerCAmelCase__ : Union[str, Any] = text[1:] lowerCAmelCase__ : Tuple = self.sp_model.encode(a , out_type=a ) if not self.legacy and not is_first and not text.startswith(' ' ) and tokens[0].startswith(a ): lowerCAmelCase__ : Union[str, Any] = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def _lowerCamelCase ( self : List[Any] , a : List[str] ): '''simple docstring''' if token.startswith('<extra_id_' ): lowerCAmelCase__ : Any = re.match(R'<extra_id_(\d+)>' , a ) lowerCAmelCase__ : Optional[Any] = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(a ) def _lowerCamelCase ( self : List[str] , a : int ): '''simple docstring''' if index < self.sp_model.get_piece_size(): lowerCAmelCase__ : int = self.sp_model.IdToPiece(a ) else: lowerCAmelCase__ : Optional[int] = f'''<extra_id_{self.vocab_size - 1 - index}>''' return token def _lowerCamelCase ( self : str , a : str ): '''simple docstring''' lowerCAmelCase__ : Any = [] lowerCAmelCase__ : str = '' lowerCAmelCase__ : Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a ) + token lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : List[str] = [] else: current_sub_tokens.append(a ) lowerCAmelCase__ : Tuple = False out_string += self.sp_model.decode(a ) return out_string.strip() def _lowerCamelCase ( self : Union[str, Any] , a : str , a : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase__ : Optional[Any] = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a ) elif not os.path.isfile(self.vocab_file ): with open(a , 'wb' ) as fi: lowerCAmelCase__ : str = self.sp_model.serialized_model_proto() fi.write(a ) return (out_vocab_file,)
363
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( __magic_name__ , unittest.TestCase ): lowercase = UnCLIPImageVariationPipeline lowercase = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} lowercase = IMAGE_VARIATION_BATCH_PARAMS lowercase = [ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] lowercase = False @property def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' return 32 @property def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' return 32 @property def _lowerCamelCase ( self : int ): '''simple docstring''' return self.time_input_dim @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.time_input_dim * 4 @property def _lowerCamelCase ( self : Any ): '''simple docstring''' return 100 @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def _lowerCamelCase ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(a ) @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : List[Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(a ) @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Union[str, Any] = { 'clip_embeddings_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'cross_attention_dim': self.cross_attention_dim, } lowerCAmelCase__ : Optional[Any] = UnCLIPTextProjModel(**a ) return model @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : str = { 'sample_size': 32, # RGB in channels 'in_channels': 3, # Out channels is double in channels because predicts mean and variance 'out_channels': 6, 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': 'identity', } lowerCAmelCase__ : str = UNetaDConditionModel(**a ) return model @property def _lowerCamelCase ( self : str ): '''simple docstring''' return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def _lowerCamelCase ( self : str ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Any = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def _lowerCamelCase ( self : int ): '''simple docstring''' torch.manual_seed(1 ) lowerCAmelCase__ : List[str] = UNetaDModel(**self.dummy_super_res_kwargs ) return model def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.dummy_decoder lowerCAmelCase__ : Optional[int] = self.dummy_text_proj lowerCAmelCase__ : Any = self.dummy_text_encoder lowerCAmelCase__ : Any = self.dummy_tokenizer lowerCAmelCase__ : Any = self.dummy_super_res_first lowerCAmelCase__ : Optional[int] = self.dummy_super_res_last lowerCAmelCase__ : Dict = UnCLIPScheduler( variance_type='learned_range' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) lowerCAmelCase__ : Any = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) lowerCAmelCase__ : Any = CLIPImageProcessor(crop_size=32 , size=32 ) lowerCAmelCase__ : Optional[int] = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def _lowerCamelCase ( self : Any , a : Dict , a : List[str]=0 , a : List[str]=True ): '''simple docstring''' lowerCAmelCase__ : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(a ) ).to(a ) if str(a ).startswith('mps' ): lowerCAmelCase__ : Optional[int] = torch.manual_seed(a ) else: lowerCAmelCase__ : str = torch.Generator(device=a ).manual_seed(a ) if pil_image: lowerCAmelCase__ : Optional[int] = input_image * 0.5 + 0.5 lowerCAmelCase__ : Dict = input_image.clamp(0 , 1 ) lowerCAmelCase__ : List[Any] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCAmelCase__ : Union[str, Any] = DiffusionPipeline.numpy_to_pil(a )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = 'cpu' lowerCAmelCase__ : Any = self.get_dummy_components() lowerCAmelCase__ : List[str] = self.pipeline_class(**a ) lowerCAmelCase__ : Dict = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Dict = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : str = pipe(**a ) lowerCAmelCase__ : Optional[Any] = output.images lowerCAmelCase__ : str = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Optional[int] = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : List[str] = np.array( [ 0.9_9_9_7, 0.0_0_0_2, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_6_9, 0.0_0_2_3, 0.9_9_9_7, 0.9_9_6_9, 0.9_9_7_0, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = 'cpu' lowerCAmelCase__ : Dict = self.get_dummy_components() lowerCAmelCase__ : Optional[int] = self.pipeline_class(**a ) lowerCAmelCase__ : int = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : List[Any] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : List[str] = pipe(**a ) lowerCAmelCase__ : Union[str, Any] = output.images lowerCAmelCase__ : int = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : int = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Tuple = image[0, -3:, -3:, -1] lowerCAmelCase__ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : str = np.array([0.9_9_9_7, 0.0_0_0_3, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_7_0, 0.0_0_2_4, 0.9_9_9_7, 0.9_9_7_1, 0.9_9_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Tuple = 'cpu' lowerCAmelCase__ : int = self.get_dummy_components() lowerCAmelCase__ : Tuple = self.pipeline_class(**a ) lowerCAmelCase__ : Union[str, Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Tuple = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : List[str] = [ pipeline_inputs['image'], pipeline_inputs['image'], ] lowerCAmelCase__ : Optional[int] = pipe(**a ) lowerCAmelCase__ : Tuple = output.images lowerCAmelCase__ : List[str] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Union[str, Any] = [ tuple_pipeline_inputs['image'], tuple_pipeline_inputs['image'], ] lowerCAmelCase__ : str = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) lowerCAmelCase__ : Union[str, Any] = np.array( [ 0.9_9_9_7, 0.9_9_8_9, 0.0_0_0_8, 0.0_0_2_1, 0.9_9_6_0, 0.0_0_1_8, 0.0_0_1_4, 0.0_0_0_2, 0.9_9_3_3, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch.device('cpu' ) class A__ : lowercase = 1 lowerCAmelCase__ : Optional[Any] = self.get_dummy_components() lowerCAmelCase__ : Dict = self.pipeline_class(**a ) lowerCAmelCase__ : Optional[Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Optional[int] = torch.Generator(device=a ).manual_seed(0 ) lowerCAmelCase__ : Optional[int] = pipe.decoder.dtype lowerCAmelCase__ : Union[str, Any] = 1 lowerCAmelCase__ : str = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) lowerCAmelCase__ : List[Any] = pipe.prepare_latents( a , dtype=a , device=a , generator=a , latents=a , scheduler=DummyScheduler() ) lowerCAmelCase__ : List[str] = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) lowerCAmelCase__ : Any = pipe.prepare_latents( a , dtype=a , device=a , generator=a , latents=a , scheduler=DummyScheduler() ) lowerCAmelCase__ : List[Any] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Optional[int] = pipe( **a , decoder_latents=a , super_res_latents=a ).images lowerCAmelCase__ : Optional[Any] = self.get_dummy_inputs(a , pil_image=a ) # Don't pass image, instead pass embedding lowerCAmelCase__ : Union[str, Any] = pipeline_inputs.pop('image' ) lowerCAmelCase__ : Union[str, Any] = pipe.image_encoder(a ).image_embeds lowerCAmelCase__ : List[Any] = pipe( **a , decoder_latents=a , super_res_latents=a , image_embeddings=a , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch_device == 'cpu' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor lowerCAmelCase__ : int = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=a , expected_max_diff=a ) @skip_mps def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = torch_device == 'cpu' lowerCAmelCase__ : Any = True lowerCAmelCase__ : Optional[Any] = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] self._test_inference_batch_single_identical( test_max_difference=a , relax_max_difference=a , additional_params_copy_to_batched_inputs=a , ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Tuple = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes lowerCAmelCase__ : List[str] = [2, 3] self._test_inference_batch_consistent( batch_sizes=a , additional_params_copy_to_batched_inputs=a , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=a ) @skip_mps def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return super().test_save_load_local() @skip_mps def _lowerCamelCase ( self : str ): '''simple docstring''' return super().test_save_load_optional_components() @slow @require_torch_gpu class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png' ) lowerCAmelCase__ : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/unclip/karlo_v1_alpha_cat_variation_fp16.npy' ) lowerCAmelCase__ : Tuple = UnCLIPImageVariationPipeline.from_pretrained( 'kakaobrain/karlo-v1-alpha-image-variations' , torch_dtype=torch.floataa ) lowerCAmelCase__ : Union[str, Any] = pipeline.to(a ) pipeline.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Dict = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase__ : List[str] = pipeline( a , generator=a , output_type='np' , ) lowerCAmelCase__ : Union[str, Any] = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(a , a , 15 )
307
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ = {"""configuration_opt""": ["""OPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """OPTConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """OPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """OPTForCausalLM""", """OPTModel""", """OPTPreTrainedModel""", """OPTForSequenceClassification""", """OPTForQuestionAnswering""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""TFOPTForCausalLM""", """TFOPTModel""", """TFOPTPreTrainedModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """FlaxOPTForCausalLM""", """FlaxOPTModel""", """FlaxOPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
364
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: stooge(SCREAMING_SNAKE_CASE_ , 0 , len(SCREAMING_SNAKE_CASE_ ) - 1 ) return arr def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: lowerCAmelCase__ , lowerCAmelCase__ : Tuple = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: lowerCAmelCase__ : Union[str, Any] = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (h - t) ) # Recursively sort last 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , i + t , (SCREAMING_SNAKE_CASE_) ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (h - t) ) if __name__ == "__main__": lowerCamelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCamelCase__ = [int(item) for item in user_input.split(""",""")] print(stooge_sort(unsorted))
307
0
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class A__ ( enum.Enum ): lowercase = 0 lowercase = 1 lowercase = 2 @add_end_docstrings(__magic_name__ ) class A__ ( __magic_name__ ): lowercase = '\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n ' def __init__( self : Optional[int] , *a : Union[str, Any] , **a : Optional[int] ): super().__init__(*a , **a ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. lowerCAmelCase__ : str = None if self.model.config.prefix is not None: lowerCAmelCase__ : List[Any] = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. lowerCAmelCase__ : List[str] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. lowerCAmelCase__ : str = self._sanitize_parameters(prefix=a , **self._forward_params ) lowerCAmelCase__ : Any = {**self._preprocess_params, **preprocess_params} lowerCAmelCase__ : Optional[int] = {**self._forward_params, **forward_params} def _lowerCamelCase ( self : Optional[Any] , a : Any=None , a : Optional[int]=None , a : str=None , a : Union[str, Any]=None , a : Optional[Any]=None , a : Union[str, Any]=None , a : Optional[Any]=None , a : List[Any]=None , **a : str , ): lowerCAmelCase__ : Optional[Any] = {} if prefix is not None: lowerCAmelCase__ : int = prefix if prefix: lowerCAmelCase__ : Optional[Any] = self.tokenizer( a , padding=a , add_special_tokens=a , return_tensors=self.framework ) lowerCAmelCase__ : Dict = prefix_inputs['input_ids'].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' ' [None, \'hole\']' ) lowerCAmelCase__ : List[str] = handle_long_generation preprocess_params.update(a ) lowerCAmelCase__ : Any = generate_kwargs lowerCAmelCase__ : Tuple = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_full_text`' ) if return_tensors is not None: raise ValueError('`return_full_text` is mutually exclusive with `return_tensors`' ) lowerCAmelCase__ : List[str] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_tensors`' ) lowerCAmelCase__ : Any = ReturnType.TENSORS if return_type is not None: lowerCAmelCase__ : Optional[int] = return_type if clean_up_tokenization_spaces is not None: lowerCAmelCase__ : Union[str, Any] = clean_up_tokenization_spaces if stop_sequence is not None: lowerCAmelCase__ : Optional[int] = self.tokenizer.encode(a , add_special_tokens=a ) if len(a ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) lowerCAmelCase__ : Any = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _lowerCamelCase ( self : Dict , *a : str , **a : List[Any] ): if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'add_space_before_punct_symbol': True} ) return super()._parse_and_tokenize(*a , **a ) def __call__( self : str , a : Any , **a : Optional[Any] ): return super().__call__(a , **a ) def _lowerCamelCase ( self : str , a : int , a : Tuple="" , a : Optional[int]=None , **a : Optional[int] ): lowerCAmelCase__ : Dict = self.tokenizer( prefix + prompt_text , padding=a , add_special_tokens=a , return_tensors=self.framework ) lowerCAmelCase__ : Optional[int] = prompt_text if handle_long_generation == "hole": lowerCAmelCase__ : Optional[int] = inputs['input_ids'].shape[-1] if "max_new_tokens" in generate_kwargs: lowerCAmelCase__ : Dict = generate_kwargs['max_new_tokens'] else: lowerCAmelCase__ : Tuple = generate_kwargs.get('max_length' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('We cannot infer how many new tokens are expected' ) if cur_len + new_tokens > self.tokenizer.model_max_length: lowerCAmelCase__ : str = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( 'We cannot use `hole` to handle this generation the number of desired tokens exceeds the' ' models max length' ) lowerCAmelCase__ : Union[str, Any] = inputs['input_ids'][:, -keep_length:] if "attention_mask" in inputs: lowerCAmelCase__ : str = inputs['attention_mask'][:, -keep_length:] return inputs def _lowerCamelCase ( self : Dict , a : Optional[Any] , **a : int ): lowerCAmelCase__ : List[str] = model_inputs['input_ids'] lowerCAmelCase__ : Optional[Any] = model_inputs.get('attention_mask' , a ) # Allow empty prompts if input_ids.shape[1] == 0: lowerCAmelCase__ : Dict = None lowerCAmelCase__ : List[str] = None lowerCAmelCase__ : Any = 1 else: lowerCAmelCase__ : Tuple = input_ids.shape[0] lowerCAmelCase__ : Dict = model_inputs.pop('prompt_text' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. lowerCAmelCase__ : Optional[Any] = generate_kwargs.pop('prefix_length' , 0 ) if prefix_length > 0: lowerCAmelCase__ : int = 'max_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].max_new_tokens is not None ) if not has_max_new_tokens: lowerCAmelCase__ : Optional[int] = generate_kwargs.get('max_length' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length lowerCAmelCase__ : List[Any] = 'min_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL lowerCAmelCase__ : Any = self.model.generate(input_ids=a , attention_mask=a , **a ) lowerCAmelCase__ : List[str] = generated_sequence.shape[0] if self.framework == "pt": lowerCAmelCase__ : List[Any] = generated_sequence.reshape(a , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": lowerCAmelCase__ : Union[str, Any] = tf.reshape(a , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def _lowerCamelCase ( self : Union[str, Any] , a : int , a : Optional[int]=ReturnType.FULL_TEXT , a : List[Any]=True ): lowerCAmelCase__ : List[Any] = model_outputs['generated_sequence'][0] lowerCAmelCase__ : Dict = model_outputs['input_ids'] lowerCAmelCase__ : Dict = model_outputs['prompt_text'] lowerCAmelCase__ : Dict = generated_sequence.numpy().tolist() lowerCAmelCase__ : str = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: lowerCAmelCase__ : Tuple = {'generated_token_ids': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text lowerCAmelCase__ : int = self.tokenizer.decode( a , skip_special_tokens=a , clean_up_tokenization_spaces=a , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: lowerCAmelCase__ : Optional[Any] = 0 else: lowerCAmelCase__ : Any = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=a , clean_up_tokenization_spaces=a , ) ) if return_type == ReturnType.FULL_TEXT: lowerCAmelCase__ : List[str] = prompt_text + text[prompt_length:] else: lowerCAmelCase__ : Any = text[prompt_length:] lowerCAmelCase__ : int = {'generated_text': all_text} records.append(a ) return records
365
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) lowerCamelCase__ = { """configuration_speech_to_text""": ["""SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Speech2TextConfig"""], """processing_speech_to_text""": ["""Speech2TextProcessor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""Speech2TextTokenizer"""] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""Speech2TextFeatureExtractor"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSpeech2TextForConditionalGeneration""", """TFSpeech2TextModel""", """TFSpeech2TextPreTrainedModel""", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Speech2TextForConditionalGeneration""", """Speech2TextModel""", """Speech2TextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
0
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures lowerCamelCase__ = logging.get_logger(__name__) @dataclass class A__ : lowercase = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} ) lowercase = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) lowercase = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowercase = field( default=__magic_name__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.task_name.lower() class A__ ( __magic_name__ ): lowercase = 'train' lowercase = 'dev' lowercase = 'test' class A__ ( __magic_name__ ): lowercase = 42 lowercase = 42 lowercase = 42 def __init__( self : Optional[Any] , a : GlueDataTrainingArguments , a : PreTrainedTokenizerBase , a : Optional[int] = None , a : Union[str, Split] = Split.train , a : Optional[str] = None , ): '''simple docstring''' warnings.warn( 'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , a , ) lowerCAmelCase__ : int = args lowerCAmelCase__ : int = glue_processors[args.task_name]() lowerCAmelCase__ : List[Any] = glue_output_modes[args.task_name] if isinstance(a , a ): try: lowerCAmelCase__ : Optional[Any] = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) # Load data features from cache or dataset file lowerCAmelCase__ : str = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}''' , ) lowerCAmelCase__ : List[Any] = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCAmelCase__ : List[str] = label_list[2], label_list[1] lowerCAmelCase__ : Dict = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCAmelCase__ : Any = cached_features_file + '.lock' with FileLock(a ): if os.path.exists(a ) and not args.overwrite_cache: lowerCAmelCase__ : Dict = time.time() lowerCAmelCase__ : str = torch.load(a ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) else: logger.info(f'''Creating features from dataset file at {args.data_dir}''' ) if mode == Split.dev: lowerCAmelCase__ : Union[str, Any] = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: lowerCAmelCase__ : Tuple = self.processor.get_test_examples(args.data_dir ) else: lowerCAmelCase__ : str = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: lowerCAmelCase__ : Union[str, Any] = examples[:limit_length] lowerCAmelCase__ : List[Any] = glue_convert_examples_to_features( a , a , max_length=args.max_seq_length , label_list=a , output_mode=self.output_mode , ) lowerCAmelCase__ : int = time.time() torch.save(self.features , a ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self : List[str] ): '''simple docstring''' return len(self.features ) def __getitem__( self : Union[str, Any] , a : int ): '''simple docstring''' return self.features[i] def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.label_list
366
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } lowerCAmelCase__ : int = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 128, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 142, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(a ) , a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(a ) , x.transpose() ) ) lowerCAmelCase__ : List[str] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = np.random.randn(3 , 4 ) lowerCAmelCase__ : List[Any] = torch.tensor(a ) self.assertTrue(np.allclose(transpose(a ) , transpose(a ).numpy() ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : int = torch.tensor(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , transpose(a , axes=(1, 2, 0) ).numpy() ) ) @require_tf def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = np.random.randn(3 , 4 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(transpose(a ) , transpose(a ).numpy() ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : Dict = tf.constant(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , transpose(a , axes=(1, 2, 0) ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = np.random.randn(3 , 4 ) lowerCAmelCase__ : int = jnp.array(a ) self.assertTrue(np.allclose(transpose(a ) , np.asarray(transpose(a ) ) ) ) lowerCAmelCase__ : Any = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : str = jnp.array(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , np.asarray(transpose(a , axes=(1, 2, 0) ) ) ) ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Any = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , np.reshape(a , (4, 3) ) ) ) lowerCAmelCase__ : Tuple = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , np.reshape(a , (12, 5) ) ) ) @require_torch def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = np.random.randn(3 , 4 ) lowerCAmelCase__ : Dict = torch.tensor(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , reshape(a , (4, 3) ).numpy() ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : str = torch.tensor(a ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , reshape(a , (12, 5) ).numpy() ) ) @require_tf def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = np.random.randn(3 , 4 ) lowerCAmelCase__ : List[Any] = tf.constant(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , reshape(a , (4, 3) ).numpy() ) ) lowerCAmelCase__ : Dict = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , reshape(a , (12, 5) ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Dict = np.random.randn(3 , 4 ) lowerCAmelCase__ : List[str] = jnp.array(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , np.asarray(reshape(a , (4, 3) ) ) ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : Union[str, Any] = jnp.array(a ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , np.asarray(reshape(a , (12, 5) ) ) ) ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(a ) , np.squeeze(a ) ) ) lowerCAmelCase__ : int = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , np.squeeze(a , axis=2 ) ) ) @require_torch def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = np.random.randn(1 , 3 , 4 ) lowerCAmelCase__ : str = torch.tensor(a ) self.assertTrue(np.allclose(squeeze(a ) , squeeze(a ).numpy() ) ) lowerCAmelCase__ : Optional[Any] = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase__ : Dict = torch.tensor(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , squeeze(a , axis=2 ).numpy() ) ) @require_tf def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : List[str] = np.random.randn(1 , 3 , 4 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(squeeze(a ) , squeeze(a ).numpy() ) ) lowerCAmelCase__ : int = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase__ : str = tf.constant(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , squeeze(a , axis=2 ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : List[str] = np.random.randn(1 , 3 , 4 ) lowerCAmelCase__ : Union[str, Any] = jnp.array(a ) self.assertTrue(np.allclose(squeeze(a ) , np.asarray(squeeze(a ) ) ) ) lowerCAmelCase__ : str = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase__ : Optional[Any] = jnp.array(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , np.asarray(squeeze(a , axis=2 ) ) ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , np.expand_dims(a , axis=1 ) ) ) @require_torch def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : str = np.random.randn(3 , 4 ) lowerCAmelCase__ : str = torch.tensor(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , expand_dims(a , axis=1 ).numpy() ) ) @require_tf def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = np.random.randn(3 , 4 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , expand_dims(a , axis=1 ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : int = np.random.randn(3 , 4 ) lowerCAmelCase__ : Tuple = jnp.array(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , np.asarray(expand_dims(a , axis=1 ) ) ) )
307
0
import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class A__ ( __magic_name__ , unittest.TestCase ): lowercase = WavaVecaPhonemeCTCTokenizer lowercase = False def _lowerCamelCase ( self : str ): '''simple docstring''' super().setUp() lowerCAmelCase__ : str = ( '<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː ' 'ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː ' 'ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 ' 'oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ ' 'pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ ' 'yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ ' 'əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ ' 'ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ ' 'ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ ' 'uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ ' 'ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ ' 'ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ ' 'ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4' ).split(' ' ) lowerCAmelCase__ : Dict = dict(zip(a , range(len(a ) ) ) ) lowerCAmelCase__ : Optional[int] = {'pad_token': '<pad>', 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>'} lowerCAmelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(a ) + '\n' ) def _lowerCamelCase ( self : Tuple , a : str , a : Any=False , a : int=20 , a : str=5 ): '''simple docstring''' lowerCAmelCase__ : List[str] = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=a )) for i in range(len(a ) )] lowerCAmelCase__ : Dict = list(filter(lambda a : [t[0]] == tokenizer.encode(t[1] , do_phonemize=a ) , a ) ) if max_length is not None and len(a ) > max_length: lowerCAmelCase__ : List[Any] = toks[:max_length] if min_length is not None and len(a ) < min_length and len(a ) > 0: while len(a ) < min_length: lowerCAmelCase__ : Any = toks + toks # toks_str = [t[1] for t in toks] lowerCAmelCase__ : str = [t[0] for t in toks] # Ensure consistency lowerCAmelCase__ : List[str] = tokenizer.decode(a , clean_up_tokenization_spaces=a ) if " " not in output_txt and len(a ) > 1: lowerCAmelCase__ : str = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=a ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=a ) ) if with_prefix_space: lowerCAmelCase__ : int = ' ' + output_txt lowerCAmelCase__ : List[Any] = tokenizer.encode(a , add_special_tokens=a ) return output_txt, output_ids def _lowerCamelCase ( self : Optional[Any] , **a : Dict ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **a ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) # check adding a single token tokenizer.add_tokens('xxx' ) lowerCAmelCase__ : Tuple = tokenizer('m xxx ɪ' , do_phonemize=a ).input_ids self.assertEqual(a , [13, 392, 17] ) # xxx should be last token tokenizer.add_tokens(['aaa', 'bbb', 'ccc'] ) lowerCAmelCase__ : Optional[int] = tokenizer('m aaa ɪ ccc' , do_phonemize=a ).input_ids self.assertEqual(a , [13, 393, 17, 395] ) # aaa and ccc should be after xxx and 2 after aaa lowerCAmelCase__ : Dict = tokenizer('maɪ c' , do_phonemize=a ).input_ids self.assertEqual(a , [3, 200] ) # mai should be <unk> (=3) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : int = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) lowerCAmelCase__ : int = 'Hello how are you' lowerCAmelCase__ : Any = tokenizer.phonemize(a , phonemizer_lang='en-us' ) self.assertEqual(a , 'h ə l oʊ h aʊ ɑːɹ j uː' ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) lowerCAmelCase__ : Optional[Any] = 'Hello how are you' lowerCAmelCase__ : str = tokenizer.phonemize(a , phonemizer_lang='en-us' ) self.assertEqual(tokenizer(a ).input_ids , tokenizer(a , do_phonemize=a ).input_ids ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) lowerCAmelCase__ : str = 'Hello how are you' lowerCAmelCase__ : Optional[Any] = tokenizer.phonemize(a , phonemizer_lang='en-us' ) lowerCAmelCase__ : int = tokenizer.decode(tokenizer(a ).input_ids ) self.assertEqual(a , a ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : List[Any] = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) lowerCAmelCase__ : Tuple = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] lowerCAmelCase__ : Tuple = tokenizer.decode(sample_ids[0] ) lowerCAmelCase__ : List[str] = tokenizer.batch_decode(a ) self.assertEqual(a , batch_tokens[0] ) self.assertEqual(a , ['k s ɾ ɾ l ɭʲ', 'j ð s j ð s oːɹ'] ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Any = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) lowerCAmelCase__ : Optional[int] = 'Hello how are you' lowerCAmelCase__ : List[Any] = tokenizer.phonemize(a , phonemizer_lang='en-us' ) self.assertEqual(a , 'h ə l oʊ | h aʊ | ɑːɹ | j uː |' ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) lowerCAmelCase__ : List[str] = 'Hello how are you' lowerCAmelCase__ : List[str] = tokenizer.phonemize(a , phonemizer_lang='en-us' ) self.assertEqual(tokenizer(a ).input_ids , tokenizer(a , do_phonemize=a ).input_ids ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) # fmt: off lowerCAmelCase__ : int = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter lowerCAmelCase__ : List[str] = tokenizer.decode(sample_ids[0] ) lowerCAmelCase__ : Optional[Any] = tokenizer.batch_decode(a ) self.assertEqual(a , batch_tokens[0] ) self.assertEqual(a , ['k s ɾ ɾ l ɭʲ', 'j ð s j ð s oːɹ'] ) # decode with no word_del_token filter lowerCAmelCase__ : str = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=a ) lowerCAmelCase__ : Any = tokenizer.batch_decode(a , filter_word_delimiter_token=a ) self.assertEqual(a , batch_tokens[0] ) self.assertEqual(a , ['k s ɾ | ɾ l | ɭʲ', '| j ð | s j ð s oːɹ'] ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : str = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) lowerCAmelCase__ : Optional[Any] = 'Hello how are you' lowerCAmelCase__ : List[Any] = tokenizer.phonemize(a , phonemizer_lang='en-us' ) lowerCAmelCase__ : int = tokenizer.decode(tokenizer(a ).input_ids , filter_word_delimiter_token=a ) self.assertEqual(a , a ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Dict = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) lowerCAmelCase__ : Tuple = 'Hello how are you' lowerCAmelCase__ : Any = tokenizer.phonemize(a , phonemizer_lang='en-us' ) lowerCAmelCase__ : Optional[Any] = tokenizer.decode(tokenizer(a ).input_ids , filter_word_delimiter_token=a ) self.assertEqual(' '.join([p.strip() for p in phonemes.split(' |' )] ).strip() , a ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token=a ) lowerCAmelCase__ : int = 'Hello how are you' lowerCAmelCase__ : Union[str, Any] = tokenizer(a , phonemizer_lang='en-us' ).input_ids lowerCAmelCase__ : List[str] = tokenizer(a , phonemizer_lang='fr-fr' ).input_ids self.assertNotEqual(a , a ) lowerCAmelCase__ : Any = tokenizer.decode(a ) lowerCAmelCase__ : int = tokenizer.decode(a ) self.assertEqual(a , 'h ə l oʊ h aʊ ɑːɹ j uː' ) self.assertEqual(a , 'ɛ l o h aʊ a ʁ j u' ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) lowerCAmelCase__ : Optional[int] = 'Hello how Are you' lowerCAmelCase__ : str = 'hello how are you' lowerCAmelCase__ : Optional[int] = tokenizer(a ).input_ids lowerCAmelCase__ : int = tokenizer(a ).input_ids self.assertEqual(a , a ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Any = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) tokenizer.add_tokens(['!', '?'] ) tokenizer.add_special_tokens({'cls_token': '$$$'} ) # fmt: off lowerCAmelCase__ : Optional[int] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 392, 392, 393, 392, 392, 393, 394, 394], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 394, 394], ] # fmt: on lowerCAmelCase__ : Union[str, Any] = tokenizer.batch_decode(a ) self.assertEqual(a , ['k s ɾ ɾ l ɭʲ!?!? $$$', 'j ð s j ð s oːɹ $$$'] ) @staticmethod def _lowerCamelCase ( a : Optional[Any] , a : Any ): '''simple docstring''' lowerCAmelCase__ : str = [d[key] for d in offsets] return retrieved_list def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : List[Any] = self.get_tokenizer(word_delimiter_token='|' ) tokenizer.add_tokens('|' ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" lowerCAmelCase__ : List[str] = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on lowerCAmelCase__ : Dict = tokenizer.decode(a , output_char_offsets=a , filter_word_delimiter_token=a ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue('text' in outputs ) self.assertTrue('char_offsets' in outputs ) self.assertTrue(isinstance(a , a ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(' '.join(self.get_from_offsets(outputs['char_offsets'] , 'char' ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'char' ) , ['k', 's', 'ɾ', 'ɾ', '|', 'ɾ', 'l', '|', 'ɭʲ'] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'start_offset' ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'end_offset' ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.get_tokenizer(word_delimiter_token='|' ) def check_list_tuples_equal(a : Optional[Any] , a : str ): self.assertTrue(isinstance(a , a ) ) self.assertTrue(isinstance(outputs_list[0] , a ) ) # transform list to ModelOutput lowerCAmelCase__ : Union[str, Any] = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch['text'] , outputs_batch_a['text'] ) def recursive_check(a : List[Any] , a : Dict ): if isinstance(a , a ): [recursive_check(a , a ) for la, la in zip(a , a )] self.assertEqual(a , a ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch['char_offsets'] , outputs_batch_a['char_offsets'] ) # fmt: off lowerCAmelCase__ : Optional[int] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char lowerCAmelCase__ : int = tokenizer.batch_decode(a , output_char_offsets=a ) lowerCAmelCase__ : Optional[Any] = [tokenizer.decode(a , output_char_offsets=a ) for ids in sample_ids] check_list_tuples_equal(a , a ) @unittest.skip('Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes' ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip('Wav2Vec2PhonemeTokenizer always puts spaces between phonemes' ) def _lowerCamelCase ( self : Any ): '''simple docstring''' pass @unittest.skip('encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency' ) def _lowerCamelCase ( self : int ): '''simple docstring''' pass @unittest.skip('Wav2Vec2PhonemeModel has no max model length => no testing' ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' pass def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.get_tokenizers(do_lower_case=a ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCAmelCase__ : Union[str, Any] = tokenizer.vocab_size lowerCAmelCase__ : str = len(a ) self.assertNotEqual(a , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) lowerCAmelCase__ : Dict = ['aaaaa bbbbbb', 'cccccccccdddddddd'] lowerCAmelCase__ : Dict = tokenizer.add_tokens(a ) lowerCAmelCase__ : Tuple = tokenizer.vocab_size lowerCAmelCase__ : int = len(a ) self.assertNotEqual(a , 0 ) self.assertEqual(a , a ) self.assertEqual(a , len(a ) ) self.assertEqual(a , all_size + len(a ) ) lowerCAmelCase__ : str = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=a ) self.assertGreaterEqual(len(a ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) lowerCAmelCase__ : Optional[Any] = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} lowerCAmelCase__ : str = tokenizer.add_special_tokens(a ) lowerCAmelCase__ : Optional[Any] = tokenizer.vocab_size lowerCAmelCase__ : Dict = len(a ) self.assertNotEqual(a , 0 ) self.assertEqual(a , a ) self.assertEqual(a , len(a ) ) self.assertEqual(a , all_size_a + len(a ) ) lowerCAmelCase__ : Tuple = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=a ) self.assertGreaterEqual(len(a ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip('The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.' ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' pass @unittest.skip('The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.' ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' pass def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.get_tokenizers(fast=a , do_lower_case=a ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCAmelCase__ : Optional[int] = ['ð', 'ɪ', 's', 'ɪ', 'z', 'ɐ', 't', 'ɛ', 'k', 's', 't'] lowerCAmelCase__ : List[Any] = tokenizer.convert_tokens_to_string(a ) self.assertIsInstance(output['text'] , a )
367
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position lowerCamelCase__ = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip lowerCamelCase__ = concatenate_datasets lowerCamelCase__ = DownloadConfig lowerCamelCase__ = DownloadManager lowerCamelCase__ = DownloadMode lowerCamelCase__ = DownloadConfig lowerCamelCase__ = DownloadMode lowerCamelCase__ = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
307
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ) -> Any: lowerCAmelCase__ : str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase__ : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ) -> Dict: for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase__ : List[Any] = '' else: lowerCAmelCase__ : Optional[int] = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase__ : Tuple = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) lowerCAmelCase__ : Tuple = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase__ : int = in_proj_bias[: config.hidden_size] lowerCAmelCase__ : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase__ : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase__ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase__ : Optional[Any] = in_proj_bias[-config.hidden_size :] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: lowerCAmelCase__ : Tuple = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: lowerCAmelCase__ : List[str] = dct.pop(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Dict = val def lowerCAmelCase__ ( ) -> List[Any]: lowerCAmelCase__ : List[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase__ : Tuple = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: lowerCAmelCase__ : int = ViTConfig() lowerCAmelCase__ : List[str] = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": lowerCAmelCase__ : Tuple = True lowerCAmelCase__ : Optional[int] = int(vit_name[-12:-10] ) lowerCAmelCase__ : List[Any] = int(vit_name[-9:-6] ) else: lowerCAmelCase__ : int = 1_000 lowerCAmelCase__ : Union[str, Any] = 'huggingface/label-files' lowerCAmelCase__ : List[Any] = 'imagenet-1k-id2label.json' lowerCAmelCase__ : Any = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='dataset' ) , 'r' ) ) lowerCAmelCase__ : Tuple = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} lowerCAmelCase__ : Optional[Any] = idalabel lowerCAmelCase__ : Optional[int] = {v: k for k, v in idalabel.items()} lowerCAmelCase__ : Union[str, Any] = int(vit_name[-6:-4] ) lowerCAmelCase__ : int = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('tiny' ): lowerCAmelCase__ : Dict = 192 lowerCAmelCase__ : List[Any] = 768 lowerCAmelCase__ : Union[str, Any] = 12 lowerCAmelCase__ : Union[str, Any] = 3 elif vit_name[9:].startswith('small' ): lowerCAmelCase__ : int = 384 lowerCAmelCase__ : List[str] = 1_536 lowerCAmelCase__ : Any = 12 lowerCAmelCase__ : int = 6 else: pass else: if vit_name[4:].startswith('small' ): lowerCAmelCase__ : Dict = 768 lowerCAmelCase__ : List[str] = 2_304 lowerCAmelCase__ : Optional[int] = 8 lowerCAmelCase__ : Union[str, Any] = 8 elif vit_name[4:].startswith('base' ): pass elif vit_name[4:].startswith('large' ): lowerCAmelCase__ : Optional[Any] = 1_024 lowerCAmelCase__ : Dict = 4_096 lowerCAmelCase__ : Any = 24 lowerCAmelCase__ : Union[str, Any] = 16 elif vit_name[4:].startswith('huge' ): lowerCAmelCase__ : int = 1_280 lowerCAmelCase__ : List[str] = 5_120 lowerCAmelCase__ : Tuple = 32 lowerCAmelCase__ : List[str] = 16 # load original model from timm lowerCAmelCase__ : Any = timm.create_model(SCREAMING_SNAKE_CASE_ , pretrained=SCREAMING_SNAKE_CASE_ ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase__ : str = timm_model.state_dict() if base_model: remove_classification_head_(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[Any] = create_rename_keys(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) read_in_q_k_v(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load HuggingFace model if vit_name[-5:] == "in21k": lowerCAmelCase__ : Tuple = ViTModel(SCREAMING_SNAKE_CASE_ ).eval() else: lowerCAmelCase__ : Union[str, Any] = ViTForImageClassification(SCREAMING_SNAKE_CASE_ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: lowerCAmelCase__ : str = DeiTImageProcessor(size=config.image_size ) else: lowerCAmelCase__ : List[Any] = ViTImageProcessor(size=config.image_size ) lowerCAmelCase__ : str = image_processor(images=prepare_img() , return_tensors='pt' ) lowerCAmelCase__ : List[Any] = encoding['pixel_values'] lowerCAmelCase__ : Tuple = model(SCREAMING_SNAKE_CASE_ ) if base_model: lowerCAmelCase__ : Optional[int] = timm_model.forward_features(SCREAMING_SNAKE_CASE_ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(SCREAMING_SNAKE_CASE_ , outputs.pooler_output , atol=1e-3 ) else: lowerCAmelCase__ : Optional[int] = timm_model(SCREAMING_SNAKE_CASE_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(SCREAMING_SNAKE_CASE_ , outputs.logits , atol=1e-3 ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(F'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_patch16_224""", type=str, help="""Name of the ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowerCamelCase__ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
368
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( __magic_name__ , unittest.TestCase ): lowercase = DanceDiffusionPipeline lowercase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS lowercase = PipelineTesterMixin.required_optional_params - { 'callback', 'latents', 'callback_steps', 'output_type', 'num_images_per_prompt', } lowercase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS lowercase = False lowercase = False def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16_000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=a , use_timestep_embedding=a , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , ) lowerCAmelCase__ : Tuple = IPNDMScheduler() lowerCAmelCase__ : str = { 'unet': unet, 'scheduler': scheduler, } return components def _lowerCamelCase ( self : int , a : Dict , a : List[str]=0 ): '''simple docstring''' if str(a ).startswith('mps' ): lowerCAmelCase__ : Union[str, Any] = torch.manual_seed(a ) else: lowerCAmelCase__ : Optional[Any] = torch.Generator(device=a ).manual_seed(a ) lowerCAmelCase__ : Optional[Any] = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : int = self.get_dummy_components() lowerCAmelCase__ : List[str] = DanceDiffusionPipeline(**a ) lowerCAmelCase__ : Any = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : List[str] = self.get_dummy_inputs(a ) lowerCAmelCase__ : List[Any] = pipe(**a ) lowerCAmelCase__ : List[str] = output.audios lowerCAmelCase__ : Optional[Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) lowerCAmelCase__ : List[Any] = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def _lowerCamelCase ( self : str ): '''simple docstring''' return super().test_save_load_local() @skip_mps def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def _lowerCamelCase ( self : List[str] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch_device lowerCAmelCase__ : List[str] = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) lowerCAmelCase__ : List[str] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Optional[int] = torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = pipe(generator=a , num_inference_steps=100 , audio_length_in_s=4.0_9_6 ) lowerCAmelCase__ : int = output.audios lowerCAmelCase__ : List[Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase__ : Dict = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : str = torch_device lowerCAmelCase__ : List[Any] = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa ) lowerCAmelCase__ : Optional[int] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : str = torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = pipe(generator=a , num_inference_steps=100 , audio_length_in_s=4.0_9_6 ) lowerCAmelCase__ : str = output.audios lowerCAmelCase__ : Tuple = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase__ : int = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
307
0
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class A__ ( __magic_name__ ): lowercase = 'gptj' lowercase = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : str , a : Tuple=50_400 , a : List[Any]=2_048 , a : Tuple=4_096 , a : List[Any]=28 , a : Union[str, Any]=16 , a : Optional[Any]=64 , a : Any=None , a : str="gelu_new" , a : List[str]=0.0 , a : Optional[int]=0.0 , a : Tuple=0.0 , a : Dict=1E-5 , a : str=0.0_2 , a : Optional[Any]=True , a : List[Any]=50_256 , a : Optional[int]=50_256 , a : List[Any]=False , **a : Optional[int] , ): '''simple docstring''' lowerCAmelCase__ : int = vocab_size lowerCAmelCase__ : Tuple = n_positions lowerCAmelCase__ : Union[str, Any] = n_embd lowerCAmelCase__ : str = n_layer lowerCAmelCase__ : List[str] = n_head lowerCAmelCase__ : Tuple = n_inner lowerCAmelCase__ : Tuple = rotary_dim lowerCAmelCase__ : Any = activation_function lowerCAmelCase__ : str = resid_pdrop lowerCAmelCase__ : int = embd_pdrop lowerCAmelCase__ : Any = attn_pdrop lowerCAmelCase__ : Optional[int] = layer_norm_epsilon lowerCAmelCase__ : List[str] = initializer_range lowerCAmelCase__ : Union[str, Any] = use_cache lowerCAmelCase__ : Any = bos_token_id lowerCAmelCase__ : int = eos_token_id super().__init__( bos_token_id=a , eos_token_id=a , tie_word_embeddings=a , **a ) class A__ ( __magic_name__ ): def __init__( self : List[Any] , a : PretrainedConfig , a : str = "default" , a : List[PatchingSpec] = None , a : bool = False , ): '''simple docstring''' super().__init__(a , task=a , patching_specs=a , use_past=a ) if not getattr(self._config , 'pad_token_id' , a ): # TODO: how to do that better? lowerCAmelCase__ : List[Any] = 0 @property def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(a , direction='inputs' ) lowerCAmelCase__ : Tuple = {0: 'batch', 1: 'past_sequence + sequence'} else: lowerCAmelCase__ : Optional[Any] = {0: 'batch', 1: 'sequence'} return common_inputs @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return self._config.n_layer @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return self._config.n_head def _lowerCamelCase ( self : Tuple , a : PreTrainedTokenizer , a : int = -1 , a : int = -1 , a : bool = False , a : Optional[TensorType] = None , ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = super(a , self ).generate_dummy_inputs( a , batch_size=a , seq_length=a , is_pair=a , framework=a ) # We need to order the input in the way they appears in the forward() lowerCAmelCase__ : Optional[int] = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch lowerCAmelCase__ : Dict = common_inputs['input_ids'].shape # Not using the same length for past_key_values lowerCAmelCase__ : Optional[int] = seqlen + 2 lowerCAmelCase__ : Dict = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCAmelCase__ : Optional[Any] = [ (torch.zeros(a ), torch.zeros(a )) for _ in range(self.num_layers ) ] lowerCAmelCase__ : List[Any] = common_inputs['attention_mask'] if self.use_past: lowerCAmelCase__ : Union[str, Any] = ordered_inputs['attention_mask'].dtype lowerCAmelCase__ : List[Any] = torch.cat( [ordered_inputs['attention_mask'], torch.ones(a , a , dtype=a )] , dim=1 ) return ordered_inputs @property def _lowerCamelCase ( self : Any ): '''simple docstring''' return 13
369
from ..utils import DummyObject, requires_backends class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : Any , *a : Any , **a : Any ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Union[str, Any] , *a : Optional[int] , **a : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : int , *a : List[Any] , **a : int ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : str , *a : Any , **a : Optional[Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : List[str] , **a : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , *a : Optional[Any] , **a : Any ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : Optional[int] , *a : List[Any] , **a : str ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : List[Any] , *a : List[str] , **a : List[str] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , *a : Union[str, Any] , **a : Optional[int] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *a : Dict , **a : List[str] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : Dict , **a : List[Any] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : List[str] , **a : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : Dict , *a : str , **a : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Any , *a : Any , **a : Any ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Any , *a : List[Any] , **a : str ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : str , *a : Union[str, Any] , **a : Optional[Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : int , *a : Union[str, Any] , **a : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : Tuple , **a : List[str] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] )
307
0
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """t5-small""": """https://huggingface.co/t5-small/resolve/main/config.json""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/config.json""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/config.json""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/config.json""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/config.json""", } class A__ ( __magic_name__ ): lowercase = 't5' lowercase = ['past_key_values'] lowercase = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self : Dict , a : Dict=32_128 , a : Tuple=512 , a : str=64 , a : List[str]=2_048 , a : Optional[Any]=6 , a : Tuple=None , a : str=8 , a : int=32 , a : Dict=128 , a : List[Any]=0.1 , a : List[Any]=1E-6 , a : Dict=1.0 , a : List[str]="relu" , a : int=True , a : List[Any]=True , a : str=0 , a : Optional[int]=1 , **a : Optional[Any] , ): '''simple docstring''' lowerCAmelCase__ : Any = vocab_size lowerCAmelCase__ : int = d_model lowerCAmelCase__ : Optional[Any] = d_kv lowerCAmelCase__ : Dict = d_ff lowerCAmelCase__ : int = num_layers lowerCAmelCase__ : List[Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowerCAmelCase__ : List[str] = num_heads lowerCAmelCase__ : Union[str, Any] = relative_attention_num_buckets lowerCAmelCase__ : int = relative_attention_max_distance lowerCAmelCase__ : List[str] = dropout_rate lowerCAmelCase__ : Dict = layer_norm_epsilon lowerCAmelCase__ : Optional[int] = initializer_factor lowerCAmelCase__ : Dict = feed_forward_proj lowerCAmelCase__ : Tuple = use_cache lowerCAmelCase__ : str = self.feed_forward_proj.split('-' ) lowerCAmelCase__ : Union[str, Any] = act_info[-1] lowerCAmelCase__ : Any = act_info[0] == 'gated' if len(a ) > 1 and act_info[0] != "gated" or len(a ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": lowerCAmelCase__ : Union[str, Any] = 'gelu_new' super().__init__( pad_token_id=a , eos_token_id=a , is_encoder_decoder=a , **a , ) class A__ ( __magic_name__ ): @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Any = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: lowerCAmelCase__ : Dict = 'past_encoder_sequence + sequence' lowerCAmelCase__ : int = {0: 'batch'} lowerCAmelCase__ : Union[str, Any] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: lowerCAmelCase__ : List[str] = {0: 'batch', 1: 'decoder_sequence'} lowerCAmelCase__ : Union[str, Any] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(a , direction='inputs' ) return common_inputs @property def _lowerCamelCase ( self : str ): '''simple docstring''' return 13
370
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class A__ : def __init__( self : List[str] , a : Any , a : Dict=13 , a : Optional[Any]=7 , a : Tuple=True , a : Tuple=True , a : Dict=False , a : Optional[Any]=True , a : Dict=99 , a : Tuple=32 , a : Optional[Any]=5 , a : str=4 , a : Union[str, Any]=37 , a : Any="gelu" , a : Dict=0.1 , a : Any=0.1 , a : Optional[int]=512 , a : Union[str, Any]=16 , a : Optional[int]=2 , a : Optional[Any]=0.0_2 , a : List[Any]=3 , a : Any=4 , a : Optional[int]=None , ): '''simple docstring''' lowerCAmelCase__ : List[str] = parent lowerCAmelCase__ : str = batch_size lowerCAmelCase__ : Optional[int] = seq_length lowerCAmelCase__ : Optional[Any] = is_training lowerCAmelCase__ : Tuple = use_input_mask lowerCAmelCase__ : List[Any] = use_token_type_ids lowerCAmelCase__ : str = use_labels lowerCAmelCase__ : Dict = vocab_size lowerCAmelCase__ : Union[str, Any] = hidden_size lowerCAmelCase__ : Optional[int] = num_hidden_layers lowerCAmelCase__ : List[Any] = num_attention_heads lowerCAmelCase__ : int = intermediate_size lowerCAmelCase__ : Union[str, Any] = hidden_act lowerCAmelCase__ : Union[str, Any] = hidden_dropout_prob lowerCAmelCase__ : Any = attention_probs_dropout_prob lowerCAmelCase__ : Dict = max_position_embeddings lowerCAmelCase__ : int = type_vocab_size lowerCAmelCase__ : int = type_sequence_label_size lowerCAmelCase__ : Dict = initializer_range lowerCAmelCase__ : List[str] = num_labels lowerCAmelCase__ : Any = num_choices lowerCAmelCase__ : List[Any] = scope def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ : Tuple = None if self.use_input_mask: lowerCAmelCase__ : str = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ : List[str] = None if self.use_token_type_ids: lowerCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : Dict = None lowerCAmelCase__ : str = None if self.use_labels: lowerCAmelCase__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self : Tuple , a : Dict , a : List[str] , a : str , a : Union[str, Any] , a : Optional[Any] , a : Dict , a : str ): '''simple docstring''' lowerCAmelCase__ : str = LlamaModel(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Dict = model(a , attention_mask=a ) lowerCAmelCase__ : Union[str, Any] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : int , a : Any , a : Union[str, Any] , a : Dict , a : Dict , a : List[Any] , a : Optional[Any] , a : int , a : Dict , a : Tuple , ): '''simple docstring''' lowerCAmelCase__ : int = True lowerCAmelCase__ : Dict = LlamaModel(a ) model.to(a ) model.eval() lowerCAmelCase__ : List[Any] = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , ) lowerCAmelCase__ : Optional[int] = model( a , attention_mask=a , encoder_hidden_states=a , ) lowerCAmelCase__ : Union[str, Any] = model(a , attention_mask=a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : Union[str, Any] , a : int , a : List[Any] , a : int , a : Tuple , a : List[Any] , a : Union[str, Any] , a : Any , a : List[str] , a : List[str] , ): '''simple docstring''' lowerCAmelCase__ : List[Any] = LlamaForCausalLM(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Tuple = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : str , a : Any , a : Tuple , a : str , a : Union[str, Any] , a : Optional[Any] , a : List[Any] , a : Optional[Any] , a : Optional[Any] , a : List[str] , ): '''simple docstring''' lowerCAmelCase__ : str = True lowerCAmelCase__ : Optional[int] = True lowerCAmelCase__ : List[Any] = LlamaForCausalLM(config=a ) model.to(a ) model.eval() # first forward pass lowerCAmelCase__ : List[str] = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , use_cache=a , ) lowerCAmelCase__ : List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase__ : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase__ : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase__ : int = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase__ : Any = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase__ : Union[str, Any] = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , output_hidden_states=a , )['hidden_states'][0] lowerCAmelCase__ : Union[str, Any] = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , past_key_values=a , output_hidden_states=a , )['hidden_states'][0] # select random slice lowerCAmelCase__ : Any = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase__ : Optional[int] = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a , a , atol=1E-3 ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : Any = config_and_inputs lowerCAmelCase__ : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () lowercase = (LlamaForCausalLM,) if is_torch_available() else () lowercase = ( { 'feature-extraction': LlamaModel, 'text-classification': LlamaForSequenceClassification, 'text-generation': LlamaForCausalLM, 'zero-shot': LlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Tuple = LlamaModelTester(self ) lowerCAmelCase__ : str = ConfigTester(self , config_class=a , hidden_size=37 ) def _lowerCamelCase ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase__ : int = type self.model_tester.create_and_check_model(*a ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : int = 3 lowerCAmelCase__ : Dict = input_dict['input_ids'] lowerCAmelCase__ : Optional[Any] = input_ids.ne(1 ).to(a ) lowerCAmelCase__ : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase__ : Tuple = LlamaForSequenceClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : str = model(a , attention_mask=a , labels=a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : List[Any] = 3 lowerCAmelCase__ : List[str] = 'single_label_classification' lowerCAmelCase__ : List[Any] = input_dict['input_ids'] lowerCAmelCase__ : List[Any] = input_ids.ne(1 ).to(a ) lowerCAmelCase__ : Optional[int] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase__ : int = LlamaForSequenceClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : Optional[int] = model(a , attention_mask=a , labels=a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Optional[Any] = 3 lowerCAmelCase__ : Optional[Any] = 'multi_label_classification' lowerCAmelCase__ : List[str] = input_dict['input_ids'] lowerCAmelCase__ : Tuple = input_ids.ne(1 ).to(a ) lowerCAmelCase__ : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase__ : Dict = LlamaForSequenceClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : Dict = model(a , attention_mask=a , labels=a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def _lowerCamelCase ( self : Optional[int] , a : Dict ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Tuple = ids_tensor([1, 10] , config.vocab_size ) lowerCAmelCase__ : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase__ : List[Any] = LlamaModel(a ) original_model.to(a ) original_model.eval() lowerCAmelCase__ : List[Any] = original_model(a ).last_hidden_state lowerCAmelCase__ : str = original_model(a ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase__ : Any = {'type': scaling_type, 'factor': 1_0.0} lowerCAmelCase__ : Union[str, Any] = LlamaModel(a ) scaled_model.to(a ) scaled_model.eval() lowerCAmelCase__ : Union[str, Any] = scaled_model(a ).last_hidden_state lowerCAmelCase__ : Optional[int] = scaled_model(a ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(a , a , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(a , a , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(a , a , atol=1E-5 ) ) @require_torch class A__ ( unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : int = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowerCAmelCase__ : List[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) lowerCAmelCase__ : Any = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 lowerCAmelCase__ : Dict = torch.tensor([[-6.6_5_5_0, -4.1_2_2_7, -4.9_8_5_9, -3.2_4_0_6, 0.8_2_6_2, -3.0_0_3_3, 1.2_9_6_4, -3.3_6_9_9]] ) torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase__ : List[Any] = torch.tensor([-1_2.8_2_8_1, -7.4_4_5_3, -0.4_6_3_9, -8.0_6_2_5, -7.2_5_0_0, -8.0_0_0_0, -6.4_8_8_3, -7.7_6_9_5, -7.8_4_3_8, -7.0_3_1_2, -6.2_1_8_8, -7.1_3_2_8, -1.8_4_9_6, 1.9_9_6_1, -8.6_2_5_0, -6.7_2_2_7, -1_2.8_2_8_1, -6.9_4_9_2, -7.0_7_4_2, -7.7_8_5_2, -7.5_8_2_0, -7.9_0_6_2, -6.9_3_7_5, -7.9_8_0_5, -8.3_4_3_8, -8.1_5_6_2, -8.0_4_6_9, -7.6_2_5_0, -7.7_4_2_2, -7.3_3_9_8,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : str = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowerCAmelCase__ : Optional[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) lowerCAmelCase__ : List[str] = model(torch.tensor(a ) ) # Expected mean on dim = -1 lowerCAmelCase__ : Union[str, Any] = torch.tensor([[-2.0_6_2_2, -1.2_7_9_4, -1.1_6_3_8, -0.9_7_8_8, -1.4_6_0_3, -1.0_2_3_8, -1.7_8_9_3, -1.4_4_1_1]] ) torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase__ : Any = torch.tensor([-8.1_4_0_6, -8.0_5_4_7, 2.7_4_6_1, -1.2_3_4_4, -0.1_4_4_8, -1.8_2_6_2, -1.0_0_2_0, -1.8_1_5_4, -1.6_8_9_5, -1.8_5_1_6, -2.3_5_7_4, -0.9_2_7_7, 3.7_5_9_8, 6.5_7_4_2, -1.2_9_9_8, -0.1_1_7_7, -8.1_4_0_6, -2.9_6_8_8, -2.9_1_9_9, -3.1_6_9_9, -3.5_2_5_4, -2.3_5_5_5, -2.7_9_8_8, -3.4_1_4_1, -2.8_2_6_2, -4.5_1_9_5, -3.3_3_7_9, -3.3_1_6_4, -2.7_8_3_2, -3.0_2_7_3] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : int = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowerCAmelCase__ : Optional[int] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) lowerCAmelCase__ : str = model(torch.tensor(a ) ) # Expected mean on dim = -1 lowerCAmelCase__ : str = torch.tensor([[-0.8_5_6_2, -1.8_5_2_0, -0.7_5_5_1, -0.4_1_6_2, -1.5_1_6_1, -1.2_0_3_8, -2.4_8_2_3, -2.3_2_5_4]] ) torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase__ : List[str] = torch.tensor([-2.2_2_2_7, 4.8_8_2_8, 0.9_0_2_3, -0.4_5_7_8, -0.7_8_7_1, -0.1_0_3_3, -0.6_2_2_1, -0.5_7_8_6, -0.7_8_0_3, -1.0_6_7_4, -1.2_9_2_0, -0.1_5_7_0, 0.8_0_0_8, 2.0_7_2_3, -0.9_4_9_7, 0.2_7_7_1, -2.2_2_2_7, -0.7_6_1_2, -1.4_3_4_6, -1.2_0_6_1, -1.6_4_2_6, -0.3_0_0_0, -0.7_1_3_9, -1.1_9_3_4, -1.8_6_9_1, -1.6_9_7_3, -1.5_9_4_7, -1.2_7_0_5, -0.3_5_2_3, -0.5_5_1_3] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowerCAmelCase__ : List[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) lowerCAmelCase__ : List[str] = model(torch.tensor(a ) ) lowerCAmelCase__ : int = torch.tensor( [[-4.2_3_2_7, -3.3_3_6_0, -4.6_6_6_5, -4.7_6_3_1, -1.8_1_8_0, -3.4_1_7_0, -1.4_2_1_1, -3.1_8_1_0]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) # fmt: off lowerCAmelCase__ : Optional[int] = torch.tensor([-9.4_9_2_2, -3.9_5_5_1, 1.7_9_9_8, -5.6_7_5_8, -5.1_0_5_5, -5.8_9_8_4, -4.8_3_2_0, -6.8_0_8_6, -6.5_3_9_1, -5.6_1_7_2, -5.5_8_2_0, -5.5_3_5_2, 1.7_8_8_1, 3.6_2_8_9, -6.5_1_1_7, -3.4_7_8_5, -9.5_0_0_0, -6.0_3_5_2, -6.8_1_2_5, -6.0_1_9_5, -6.6_8_3_6, -5.4_7_2_7, -6.2_8_1_2, -6.0_3_9_1, -7.3_3_9_8, -7.4_2_9_7, -7.4_8_4_4, -6.5_8_2_0, -5.8_7_8_9, -5.5_3_1_2] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Model is curently gated' ) @slow def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' lowerCAmelCase__ : Tuple = 'Simply put, the theory of relativity states that ' lowerCAmelCase__ : Dict = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) lowerCAmelCase__ : Dict = tokenizer.encode(a , return_tensors='pt' ) lowerCAmelCase__ : str = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=a ) # greedy generation outputs lowerCAmelCase__ : Optional[Any] = model.generate(a , max_new_tokens=64 , top_p=a , temperature=1 , do_sample=a ) lowerCAmelCase__ : Tuple = tokenizer.decode(generated_ids[0] , skip_special_tokens=a ) self.assertEqual(a , a )
307
0
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class A__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = IFPipeline lowercase = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} lowercase = TEXT_TO_IMAGE_BATCH_PARAMS lowercase = PipelineTesterMixin.required_optional_params - {'latents'} def _lowerCamelCase ( self : Any ): '''simple docstring''' return self._get_dummy_components() def _lowerCamelCase ( self : Tuple , a : Any , a : List[Any]=0 ): '''simple docstring''' if str(a ).startswith('mps' ): lowerCAmelCase__ : Optional[int] = torch.manual_seed(a ) else: lowerCAmelCase__ : Union[str, Any] = torch.Generator(device=a ).manual_seed(a ) lowerCAmelCase__ : Dict = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def _lowerCamelCase ( self : int ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' self._test_save_load_local() def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : int = IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0' , variant='fp16' , torch_dtype=torch.floataa ) lowerCAmelCase__ : List[Any] = IFSuperResolutionPipeline.from_pretrained( 'DeepFloyd/IF-II-L-v1.0' , variant='fp16' , torch_dtype=torch.floataa , text_encoder=a , tokenizer=a ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('cuda' ) lowerCAmelCase__ : Dict = pipe_a.encode_prompt('anime turtle' , device='cuda' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() lowerCAmelCase__ : str = None lowerCAmelCase__ : Dict = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(a , a , a , a ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img lowerCAmelCase__ : Dict = IFImgaImgPipeline(**pipe_a.components ) lowerCAmelCase__ : Dict = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(a , a , a , a ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting lowerCAmelCase__ : Optional[int] = IFInpaintingPipeline(**pipe_a.components ) lowerCAmelCase__ : Tuple = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(a , a , a , a ) def _lowerCamelCase ( self : str , a : Any , a : Optional[Any] , a : Any , a : List[str] ): '''simple docstring''' _start_torch_memory_measurement() lowerCAmelCase__ : int = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase__ : str = pipe_a( prompt_embeds=a , negative_prompt_embeds=a , num_inference_steps=2 , generator=a , output_type='np' , ) lowerCAmelCase__ : List[Any] = output.images[0] assert image.shape == (64, 64, 3) lowerCAmelCase__ : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 lowerCAmelCase__ : Union[str, Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' ) assert_mean_pixel_difference(a , a ) # pipeline 2 _start_torch_memory_measurement() lowerCAmelCase__ : List[str] = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase__ : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(a ) lowerCAmelCase__ : List[str] = pipe_a( prompt_embeds=a , negative_prompt_embeds=a , image=a , generator=a , num_inference_steps=2 , output_type='np' , ) lowerCAmelCase__ : Tuple = output.images[0] assert image.shape == (256, 256, 3) lowerCAmelCase__ : Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 lowerCAmelCase__ : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' ) assert_mean_pixel_difference(a , a ) def _lowerCamelCase ( self : Tuple , a : List[Any] , a : int , a : Optional[Any] , a : str ): '''simple docstring''' _start_torch_memory_measurement() lowerCAmelCase__ : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(a ) lowerCAmelCase__ : Tuple = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase__ : str = pipe_a( prompt_embeds=a , negative_prompt_embeds=a , image=a , num_inference_steps=2 , generator=a , output_type='np' , ) lowerCAmelCase__ : str = output.images[0] assert image.shape == (64, 64, 3) lowerCAmelCase__ : List[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 lowerCAmelCase__ : Union[str, Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' ) assert_mean_pixel_difference(a , a ) # pipeline 2 _start_torch_memory_measurement() lowerCAmelCase__ : Any = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase__ : Dict = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(a ) lowerCAmelCase__ : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(a ) lowerCAmelCase__ : Optional[Any] = pipe_a( prompt_embeds=a , negative_prompt_embeds=a , image=a , original_image=a , generator=a , num_inference_steps=2 , output_type='np' , ) lowerCAmelCase__ : List[str] = output.images[0] assert image.shape == (256, 256, 3) lowerCAmelCase__ : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 lowerCAmelCase__ : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' ) assert_mean_pixel_difference(a , a ) def _lowerCamelCase ( self : List[Any] , a : List[str] , a : Any , a : List[Any] , a : int ): '''simple docstring''' _start_torch_memory_measurement() lowerCAmelCase__ : str = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(a ) lowerCAmelCase__ : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(a ) lowerCAmelCase__ : Union[str, Any] = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase__ : Optional[int] = pipe_a( prompt_embeds=a , negative_prompt_embeds=a , image=a , mask_image=a , num_inference_steps=2 , generator=a , output_type='np' , ) lowerCAmelCase__ : Optional[Any] = output.images[0] assert image.shape == (64, 64, 3) lowerCAmelCase__ : List[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 lowerCAmelCase__ : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' ) assert_mean_pixel_difference(a , a ) # pipeline 2 _start_torch_memory_measurement() lowerCAmelCase__ : Any = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase__ : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(a ) lowerCAmelCase__ : List[str] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(a ) lowerCAmelCase__ : List[Any] = floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(a ) lowerCAmelCase__ : List[str] = pipe_a( prompt_embeds=a , negative_prompt_embeds=a , image=a , mask_image=a , original_image=a , generator=a , num_inference_steps=2 , output_type='np' , ) lowerCAmelCase__ : Union[str, Any] = output.images[0] assert image.shape == (256, 256, 3) lowerCAmelCase__ : str = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 lowerCAmelCase__ : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' ) assert_mean_pixel_difference(a , a ) def lowerCAmelCase__ ( ) -> Dict: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
371
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """microsoft/unispeech-large-1500h-cv""": ( """https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json""" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class A__ ( __magic_name__ ): lowercase = 'unispeech' def __init__( self : Any , a : List[Any]=32 , a : List[Any]=768 , a : Any=12 , a : List[str]=12 , a : List[Any]=3_072 , a : Any="gelu" , a : Dict=0.1 , a : List[str]=0.1 , a : List[str]=0.1 , a : Union[str, Any]=0.0 , a : str=0.0 , a : int=0.1 , a : List[str]=0.1 , a : List[Any]=0.0_2 , a : Optional[int]=1E-5 , a : Optional[int]="group" , a : Optional[Any]="gelu" , a : List[Any]=(512, 512, 512, 512, 512, 512, 512) , a : Optional[Any]=(5, 2, 2, 2, 2, 2, 2) , a : List[str]=(10, 3, 3, 3, 3, 2, 2) , a : Union[str, Any]=False , a : Union[str, Any]=128 , a : Tuple=16 , a : Dict=False , a : str=True , a : str=0.0_5 , a : Union[str, Any]=10 , a : Tuple=2 , a : int=0.0 , a : Optional[Any]=10 , a : List[str]=0 , a : str=320 , a : List[str]=2 , a : Optional[Any]=0.1 , a : Any=100 , a : Dict=256 , a : Any=256 , a : Dict=0.1 , a : List[Any]="mean" , a : Dict=False , a : str=False , a : Optional[int]=256 , a : Any=80 , a : List[Any]=0 , a : Optional[int]=1 , a : int=2 , a : List[Any]=0.5 , **a : int , ): '''simple docstring''' super().__init__(**a , pad_token_id=a , bos_token_id=a , eos_token_id=a ) lowerCAmelCase__ : List[str] = hidden_size lowerCAmelCase__ : List[str] = feat_extract_norm lowerCAmelCase__ : Optional[Any] = feat_extract_activation lowerCAmelCase__ : str = list(a ) lowerCAmelCase__ : List[str] = list(a ) lowerCAmelCase__ : Tuple = list(a ) lowerCAmelCase__ : Dict = conv_bias lowerCAmelCase__ : Optional[int] = num_conv_pos_embeddings lowerCAmelCase__ : Any = num_conv_pos_embedding_groups lowerCAmelCase__ : str = len(self.conv_dim ) lowerCAmelCase__ : Any = num_hidden_layers lowerCAmelCase__ : Dict = intermediate_size lowerCAmelCase__ : Dict = hidden_act lowerCAmelCase__ : Union[str, Any] = num_attention_heads lowerCAmelCase__ : Union[str, Any] = hidden_dropout lowerCAmelCase__ : Tuple = attention_dropout lowerCAmelCase__ : str = activation_dropout lowerCAmelCase__ : Any = feat_proj_dropout lowerCAmelCase__ : List[Any] = final_dropout lowerCAmelCase__ : Tuple = layerdrop lowerCAmelCase__ : Any = layer_norm_eps lowerCAmelCase__ : Dict = initializer_range lowerCAmelCase__ : Optional[Any] = num_ctc_classes lowerCAmelCase__ : Tuple = vocab_size lowerCAmelCase__ : Dict = do_stable_layer_norm lowerCAmelCase__ : List[Any] = use_weighted_layer_sum lowerCAmelCase__ : Any = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase__ : Union[str, Any] = apply_spec_augment lowerCAmelCase__ : Any = mask_time_prob lowerCAmelCase__ : Dict = mask_time_length lowerCAmelCase__ : Tuple = mask_time_min_masks lowerCAmelCase__ : Optional[int] = mask_feature_prob lowerCAmelCase__ : Optional[Any] = mask_feature_length lowerCAmelCase__ : int = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCAmelCase__ : int = num_codevectors_per_group lowerCAmelCase__ : Any = num_codevector_groups lowerCAmelCase__ : Any = contrastive_logits_temperature lowerCAmelCase__ : int = feat_quantizer_dropout lowerCAmelCase__ : List[Any] = num_negatives lowerCAmelCase__ : List[str] = codevector_dim lowerCAmelCase__ : Optional[int] = proj_codevector_dim lowerCAmelCase__ : Dict = diversity_loss_weight # ctc loss lowerCAmelCase__ : Any = ctc_loss_reduction lowerCAmelCase__ : Any = ctc_zero_infinity # pretraining loss lowerCAmelCase__ : Union[str, Any] = replace_prob @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
307
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """tanreinama/GPTSAN-2.8B-spout_is_uniform""": ( """https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json""" ), } class A__ ( __magic_name__ ): lowercase = 'gptsan-japanese' lowercase = [ 'past_key_values', ] lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Union[str, Any] , a : str=36_000 , a : Optional[Any]=1_280 , a : Union[str, Any]=1_024 , a : Any=8_192 , a : Dict=4_096 , a : List[str]=128 , a : int=10 , a : Dict=0 , a : int=16 , a : Dict=16 , a : str=128 , a : int=0.0 , a : Optional[int]=1E-5 , a : Union[str, Any]=False , a : Any=0.0 , a : Any="float32" , a : List[str]=False , a : Optional[int]=False , a : Dict=False , a : Dict=0.0_0_2 , a : str=False , a : List[str]=True , a : Dict=35_998 , a : Union[str, Any]=35_995 , a : Dict=35_999 , **a : Union[str, Any] , ): '''simple docstring''' lowerCAmelCase__ : List[Any] = vocab_size lowerCAmelCase__ : Union[str, Any] = max_position_embeddings lowerCAmelCase__ : Tuple = d_model lowerCAmelCase__ : Optional[Any] = d_ff lowerCAmelCase__ : str = d_ext lowerCAmelCase__ : str = d_spout lowerCAmelCase__ : Any = num_switch_layers lowerCAmelCase__ : List[Any] = num_ext_layers lowerCAmelCase__ : List[str] = num_switch_layers + num_ext_layers lowerCAmelCase__ : Union[str, Any] = num_heads lowerCAmelCase__ : Dict = num_experts lowerCAmelCase__ : int = expert_capacity lowerCAmelCase__ : List[str] = dropout_rate lowerCAmelCase__ : List[Any] = layer_norm_epsilon lowerCAmelCase__ : Dict = router_bias lowerCAmelCase__ : Union[str, Any] = router_jitter_noise lowerCAmelCase__ : Tuple = router_dtype lowerCAmelCase__ : Tuple = router_ignore_padding_tokens lowerCAmelCase__ : Optional[int] = output_hidden_states lowerCAmelCase__ : Union[str, Any] = output_attentions lowerCAmelCase__ : str = initializer_factor lowerCAmelCase__ : Optional[Any] = output_router_logits lowerCAmelCase__ : Optional[Any] = use_cache super().__init__( separator_token_id=a , pad_token_id=a , eos_token_id=a , **a , )
350
import torch from torch import nn class A__ ( nn.Module ): def __init__( self : Optional[int] , a : Union[str, Any] , a : str , a : str , a : List[Any] , a : List[Any]=1 , a : Tuple=False ): '''simple docstring''' super().__init__() lowerCAmelCase__ : Dict = n_token lowerCAmelCase__ : Any = d_embed lowerCAmelCase__ : str = d_proj lowerCAmelCase__ : int = cutoffs + [n_token] lowerCAmelCase__ : Union[str, Any] = [0] + self.cutoffs lowerCAmelCase__ : str = div_val lowerCAmelCase__ : Tuple = self.cutoffs[0] lowerCAmelCase__ : Dict = len(self.cutoffs ) - 1 lowerCAmelCase__ : Any = self.shortlist_size + self.n_clusters if self.n_clusters > 0: lowerCAmelCase__ : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) lowerCAmelCase__ : Optional[Any] = nn.Parameter(torch.zeros(self.n_clusters ) ) lowerCAmelCase__ : Optional[int] = nn.ModuleList() lowerCAmelCase__ : Tuple = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(a , a ) ) ) else: self.out_projs.append(a ) self.out_layers.append(nn.Linear(a , a ) ) else: for i in range(len(self.cutoffs ) ): lowerCAmelCase__ , lowerCAmelCase__ : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase__ : Optional[Any] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(a , a ) ) ) self.out_layers.append(nn.Linear(a , r_idx - l_idx ) ) lowerCAmelCase__ : Tuple = keep_order def _lowerCamelCase ( self : Optional[int] , a : List[str] , a : int , a : List[str] , a : str ): '''simple docstring''' if proj is None: lowerCAmelCase__ : Tuple = nn.functional.linear(a , a , bias=a ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: lowerCAmelCase__ : int = nn.functional.linear(a , proj.t().contiguous() ) lowerCAmelCase__ : Tuple = nn.functional.linear(a , a , bias=a ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def _lowerCamelCase ( self : List[str] , a : List[Any] , a : Optional[int]=None , a : Tuple=False ): '''simple docstring''' if labels is not None: # Shift so that tokens < n predict n lowerCAmelCase__ : str = hidden[..., :-1, :].contiguous() lowerCAmelCase__ : Optional[Any] = labels[..., 1:].contiguous() lowerCAmelCase__ : List[Any] = hidden.view(-1 , hidden.size(-1 ) ) lowerCAmelCase__ : Tuple = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('Input and labels should have the same size in the batch dimension.' ) else: lowerCAmelCase__ : Optional[Any] = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: lowerCAmelCase__ : Optional[Any] = self._compute_logit(a , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: lowerCAmelCase__ : str = labels != -100 lowerCAmelCase__ : int = torch.zeros_like(a , dtype=hidden.dtype , device=hidden.device ) lowerCAmelCase__ : List[str] = ( -nn.functional.log_softmax(a , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: lowerCAmelCase__ : Optional[Any] = nn.functional.log_softmax(a , dim=-1 ) else: # construct weights and biases lowerCAmelCase__ , lowerCAmelCase__ : int = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase__ : Any = self.out_layers[0].weight[l_idx:r_idx] lowerCAmelCase__ : Any = self.out_layers[0].bias[l_idx:r_idx] else: lowerCAmelCase__ : Optional[Any] = self.out_layers[i].weight lowerCAmelCase__ : Optional[int] = self.out_layers[i].bias if i == 0: lowerCAmelCase__ : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowerCAmelCase__ : Union[str, Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(a ) biases.append(a ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = weights[0], biases[0], self.out_projs[0] lowerCAmelCase__ : List[Any] = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : Union[str, Any] = nn.functional.log_softmax(a , dim=1 ) if labels is None: lowerCAmelCase__ : Tuple = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: lowerCAmelCase__ : Dict = torch.zeros_like(a , dtype=hidden.dtype , device=hidden.device ) lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : Union[str, Any] = [0] + self.cutoffs for i in range(len(a ) - 1 ): lowerCAmelCase__ , lowerCAmelCase__ : Tuple = cutoff_values[i], cutoff_values[i + 1] if labels is not None: lowerCAmelCase__ : Tuple = (labels >= l_idx) & (labels < r_idx) lowerCAmelCase__ : int = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue lowerCAmelCase__ : Tuple = labels.index_select(0 , a ) - l_idx lowerCAmelCase__ : Any = head_logprob.index_select(0 , a ) lowerCAmelCase__ : Optional[int] = hidden.index_select(0 , a ) else: lowerCAmelCase__ : Any = hidden if i == 0: if labels is not None: lowerCAmelCase__ : Union[str, Any] = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: lowerCAmelCase__ : List[str] = head_logprob[:, : self.cutoffs[0]] else: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = weights[i], biases[i], self.out_projs[i] lowerCAmelCase__ : Union[str, Any] = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : Optional[int] = nn.functional.log_softmax(a , dim=1 ) lowerCAmelCase__ : List[Any] = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: lowerCAmelCase__ : List[str] = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: lowerCAmelCase__ : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i lowerCAmelCase__ : Union[str, Any] = logprob_i if labels is not None: if (hasattr(self , 'keep_order' ) and self.keep_order) or keep_order: out.index_copy_(0 , a , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def _lowerCamelCase ( self : List[Any] , a : Any ): '''simple docstring''' if self.n_clusters == 0: lowerCAmelCase__ : Union[str, Any] = self._compute_logit(a , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(a , dim=-1 ) else: # construct weights and biases lowerCAmelCase__ , lowerCAmelCase__ : str = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase__ : str = self.out_layers[0].weight[l_idx:r_idx] lowerCAmelCase__ : Dict = self.out_layers[0].bias[l_idx:r_idx] else: lowerCAmelCase__ : int = self.out_layers[i].weight lowerCAmelCase__ : int = self.out_layers[i].bias if i == 0: lowerCAmelCase__ : Optional[int] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowerCAmelCase__ : Union[str, Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(a ) biases.append(a ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : str = weights[0], biases[0], self.out_projs[0] lowerCAmelCase__ : Dict = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : List[Any] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) lowerCAmelCase__ : Optional[Any] = nn.functional.log_softmax(a , dim=1 ) lowerCAmelCase__ : List[Any] = [0] + self.cutoffs for i in range(len(a ) - 1 ): lowerCAmelCase__ , lowerCAmelCase__ : str = cutoff_values[i], cutoff_values[i + 1] if i == 0: lowerCAmelCase__ : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = weights[i], biases[i], self.out_projs[i] lowerCAmelCase__ : Dict = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : List[str] = nn.functional.log_softmax(a , dim=1 ) lowerCAmelCase__ : Dict = head_logprob[:, -i] + tail_logprob_i lowerCAmelCase__ : List[str] = logprob_i return out
307
0
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """kakaobrain/align-base""": """https://huggingface.co/kakaobrain/align-base/resolve/main/config.json""", } class A__ ( __magic_name__ ): lowercase = 'align_text_model' def __init__( self : int , a : Dict=30_522 , a : int=768 , a : Tuple=12 , a : List[Any]=12 , a : List[Any]=3_072 , a : Optional[int]="gelu" , a : List[str]=0.1 , a : Any=0.1 , a : Optional[int]=512 , a : Any=2 , a : Union[str, Any]=0.0_2 , a : Any=1E-12 , a : Optional[int]=0 , a : Dict="absolute" , a : Dict=True , **a : Union[str, Any] , ): '''simple docstring''' super().__init__(**a ) lowerCAmelCase__ : str = vocab_size lowerCAmelCase__ : Optional[int] = hidden_size lowerCAmelCase__ : int = num_hidden_layers lowerCAmelCase__ : int = num_attention_heads lowerCAmelCase__ : Any = hidden_act lowerCAmelCase__ : Optional[Any] = intermediate_size lowerCAmelCase__ : Optional[int] = hidden_dropout_prob lowerCAmelCase__ : Any = attention_probs_dropout_prob lowerCAmelCase__ : Dict = max_position_embeddings lowerCAmelCase__ : Tuple = type_vocab_size lowerCAmelCase__ : Optional[int] = initializer_range lowerCAmelCase__ : Optional[Any] = layer_norm_eps lowerCAmelCase__ : str = position_embedding_type lowerCAmelCase__ : List[str] = use_cache lowerCAmelCase__ : Optional[Any] = pad_token_id @classmethod def _lowerCamelCase ( cls : List[str] , a : Union[str, os.PathLike] , **a : Tuple ): '''simple docstring''' cls._set_token_in_kwargs(a ) lowerCAmelCase__ : Optional[Any] = cls.get_config_dict(a , **a ) # get the text config dict if we are loading from AlignConfig if config_dict.get('model_type' ) == "align": lowerCAmelCase__ : str = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(a , **a ) class A__ ( __magic_name__ ): lowercase = 'align_vision_model' def __init__( self : Optional[Any] , a : int = 3 , a : int = 600 , a : float = 2.0 , a : float = 3.1 , a : int = 8 , a : List[int] = [3, 3, 5, 3, 5, 5, 3] , a : List[int] = [32, 16, 24, 40, 80, 112, 192] , a : List[int] = [16, 24, 40, 80, 112, 192, 320] , a : List[int] = [] , a : List[int] = [1, 2, 2, 2, 1, 2, 1] , a : List[int] = [1, 2, 2, 3, 3, 4, 1] , a : List[int] = [1, 6, 6, 6, 6, 6, 6] , a : float = 0.2_5 , a : str = "swish" , a : int = 2_560 , a : str = "mean" , a : float = 0.0_2 , a : float = 0.0_0_1 , a : float = 0.9_9 , a : float = 0.2 , **a : Tuple , ): '''simple docstring''' super().__init__(**a ) lowerCAmelCase__ : int = num_channels lowerCAmelCase__ : Tuple = image_size lowerCAmelCase__ : Optional[int] = width_coefficient lowerCAmelCase__ : str = depth_coefficient lowerCAmelCase__ : List[Any] = depth_divisor lowerCAmelCase__ : str = kernel_sizes lowerCAmelCase__ : List[Any] = in_channels lowerCAmelCase__ : Union[str, Any] = out_channels lowerCAmelCase__ : Optional[int] = depthwise_padding lowerCAmelCase__ : Dict = strides lowerCAmelCase__ : Any = num_block_repeats lowerCAmelCase__ : int = expand_ratios lowerCAmelCase__ : Dict = squeeze_expansion_ratio lowerCAmelCase__ : int = hidden_act lowerCAmelCase__ : Dict = hidden_dim lowerCAmelCase__ : Tuple = pooling_type lowerCAmelCase__ : List[Any] = initializer_range lowerCAmelCase__ : List[Any] = batch_norm_eps lowerCAmelCase__ : Tuple = batch_norm_momentum lowerCAmelCase__ : Any = drop_connect_rate lowerCAmelCase__ : int = sum(a ) * 4 @classmethod def _lowerCamelCase ( cls : List[str] , a : Union[str, os.PathLike] , **a : Dict ): '''simple docstring''' cls._set_token_in_kwargs(a ) lowerCAmelCase__ : int = cls.get_config_dict(a , **a ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('model_type' ) == "align": lowerCAmelCase__ : Optional[Any] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(a , **a ) class A__ ( __magic_name__ ): lowercase = 'align' lowercase = True def __init__( self : Tuple , a : str=None , a : List[Any]=None , a : Any=640 , a : Tuple=1.0 , a : Optional[Any]=0.0_2 , **a : Any , ): '''simple docstring''' super().__init__(**a ) if text_config is None: lowerCAmelCase__ : List[Any] = {} logger.info('text_config is None. Initializing the AlignTextConfig with default values.' ) if vision_config is None: lowerCAmelCase__ : Optional[Any] = {} logger.info('vision_config is None. Initializing the AlignVisionConfig with default values.' ) lowerCAmelCase__ : str = AlignTextConfig(**a ) lowerCAmelCase__ : Tuple = AlignVisionConfig(**a ) lowerCAmelCase__ : Dict = projection_dim lowerCAmelCase__ : Tuple = temperature_init_value lowerCAmelCase__ : List[Any] = initializer_range @classmethod def _lowerCamelCase ( cls : Optional[Any] , a : AlignTextConfig , a : AlignVisionConfig , **a : List[Any] ): '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **a ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : List[Any] = copy.deepcopy(self.__dict__ ) lowerCAmelCase__ : List[Any] = self.text_config.to_dict() lowerCAmelCase__ : Optional[int] = self.vision_config.to_dict() lowerCAmelCase__ : Dict = self.__class__.model_type return output
351
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowerCamelCase__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} lowerCamelCase__ = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", """emoji""": True, }, } ] lowerCamelCase__ = 0 for log in Path().glob("""*.log"""): lowerCamelCase__ = 0 with open(log, """r""") as f: for line in f: lowerCamelCase__ = json.loads(line) if line.get("""nodeid""", """""") != "": lowerCamelCase__ = line["""nodeid"""] if line.get("""duration""", None) is not None: lowerCamelCase__ = F"""{line["duration"]:.4f}""" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowerCamelCase__ = [] log.unlink() lowerCamelCase__ = """""" lowerCamelCase__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowerCamelCase__ = [] lowerCamelCase__ = {} for test in failed_tests: lowerCamelCase__ = test[0].split("""::""") lowerCamelCase__ = data[0].split("""/""")[-1] if data[0] not in filesafailed: lowerCamelCase__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowerCamelCase__ = [test[0] for test in failed_table] lowerCamelCase__ = list(set(files)) # Count number of instances in failed_tests lowerCamelCase__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowerCamelCase__ = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: lowerCamelCase__ = """Too many failed tests, please see the full report in the Action results.""" lowerCamelCase__ = len(err) + 10 lowerCamelCase__ = message[: 3000 - offset] + F"""\n...\n```\n{err}""" print(F"""### {message}""") else: lowerCamelCase__ = """No failed tests! 🤗""" print(F"""## {message}""") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient lowerCamelCase__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": lowerCamelCase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) lowerCamelCase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) lowerCamelCase__ = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) lowerCamelCase__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) lowerCamelCase__ = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowerCamelCase__ = """""" for i, row in enumerate(test_failures): if row[0] != test_class: lowerCamelCase__ = row[0] else: lowerCamelCase__ = """""" lowerCamelCase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
307
0
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: stooge(SCREAMING_SNAKE_CASE_ , 0 , len(SCREAMING_SNAKE_CASE_ ) - 1 ) return arr def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: lowerCAmelCase__ : Tuple = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: lowerCAmelCase__ : Union[str, Any] = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (h - t) ) # Recursively sort last 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , i + t , (SCREAMING_SNAKE_CASE_) ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (h - t) ) if __name__ == "__main__": lowerCamelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCamelCase__ = [int(item) for item in user_input.split(""",""")] print(stooge_sort(unsorted))
352
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCamelCase__ = imread(r"""digital_image_processing/image_data/lena_small.jpg""") lowerCamelCase__ = cvtColor(img, COLOR_BGR2GRAY) def lowerCAmelCase__ ( ) -> Dict: lowerCAmelCase__ : List[Any] = cn.convert_to_negative(SCREAMING_SNAKE_CASE_ ) # assert negative_img array for at least one True assert negative_img.any() def lowerCAmelCase__ ( ) -> Optional[Any]: with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(SCREAMING_SNAKE_CASE_ , 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def lowerCAmelCase__ ( ) -> Tuple: lowerCAmelCase__ : str = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def lowerCAmelCase__ ( ) -> Tuple: lowerCAmelCase__ : Tuple = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() lowerCAmelCase__ : Optional[Any] = canny.canny(SCREAMING_SNAKE_CASE_ ) # assert canny array for at least one True assert canny_array.any() def lowerCAmelCase__ ( ) -> Optional[int]: assert gg.gaussian_filter(SCREAMING_SNAKE_CASE_ , 5 , sigma=0.9 ).all() def lowerCAmelCase__ ( ) -> Dict: # laplace diagonals lowerCAmelCase__ : Union[str, Any] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowerCAmelCase__ : int = conv.img_convolve(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).astype(SCREAMING_SNAKE_CASE_ ) assert res.any() def lowerCAmelCase__ ( ) -> List[str]: assert med.median_filter(SCREAMING_SNAKE_CASE_ , 3 ).any() def lowerCAmelCase__ ( ) -> Any: lowerCAmelCase__ , lowerCAmelCase__ : str = sob.sobel_filter(SCREAMING_SNAKE_CASE_ ) assert grad.any() and theta.any() def lowerCAmelCase__ ( ) -> Any: lowerCAmelCase__ : int = sp.make_sepia(SCREAMING_SNAKE_CASE_ , 20 ) assert sepia.all() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = "digital_image_processing/image_data/lena_small.jpg" ) -> Optional[Any]: lowerCAmelCase__ : List[Any] = bs.Burkes(imread(SCREAMING_SNAKE_CASE_ , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = "digital_image_processing/image_data/lena_small.jpg" , ) -> Any: lowerCAmelCase__ : Dict = rs.NearestNeighbour(imread(SCREAMING_SNAKE_CASE_ , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def lowerCAmelCase__ ( ) -> int: lowerCAmelCase__ : int = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. lowerCAmelCase__ : List[str] = imread(SCREAMING_SNAKE_CASE_ , 0 ) # Test for get_neighbors_pixel function() return not None lowerCAmelCase__ : str = 0 lowerCAmelCase__ : str = 0 lowerCAmelCase__ : List[str] = image[x_coordinate][y_coordinate] lowerCAmelCase__ : Dict = lbp.get_neighbors_pixel( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCAmelCase__ : List[str] = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): lowerCAmelCase__ : Dict = lbp.local_binary_value(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert lbp_image.any()
307
0
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) lowerCamelCase__ = logging.getLogger(__name__) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: lowerCAmelCase__ : Dict = np.argmax(SCREAMING_SNAKE_CASE_ , axis=1 ) return np.sum(outputs == labels ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: with open(SCREAMING_SNAKE_CASE_ , encoding='utf_8' ) as f: lowerCAmelCase__ : Dict = csv.reader(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Dict = [] next(SCREAMING_SNAKE_CASE_ ) # skip the first line for line in tqdm(SCREAMING_SNAKE_CASE_ ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: lowerCAmelCase__ : Dict = [] for dataset in encoded_datasets: lowerCAmelCase__ : List[str] = len(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) lowerCAmelCase__ : Tuple = np.zeros((n_batch, 2) , dtype=np.intaa ) lowerCAmelCase__ : List[Any] = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) lowerCAmelCase__ : Tuple = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Tuple = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase__ : Any = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase__ : Optional[Any] = with_conta lowerCAmelCase__ : List[str] = with_conta lowerCAmelCase__ : List[Any] = len(SCREAMING_SNAKE_CASE_ ) - 1 lowerCAmelCase__ : Tuple = len(SCREAMING_SNAKE_CASE_ ) - 1 lowerCAmelCase__ : Tuple = with_conta lowerCAmelCase__ : Optional[int] = with_conta lowerCAmelCase__ : Optional[int] = mc_label lowerCAmelCase__ : Dict = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(SCREAMING_SNAKE_CASE_ ) for t in all_inputs ) ) return tensor_datasets def lowerCAmelCase__ ( ) -> int: lowerCAmelCase__ : int = argparse.ArgumentParser() parser.add_argument('--model_name' , type=SCREAMING_SNAKE_CASE_ , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=SCREAMING_SNAKE_CASE_ , default='' ) parser.add_argument('--eval_dataset' , type=SCREAMING_SNAKE_CASE_ , default='' ) parser.add_argument('--seed' , type=SCREAMING_SNAKE_CASE_ , default=42 ) parser.add_argument('--num_train_epochs' , type=SCREAMING_SNAKE_CASE_ , default=3 ) parser.add_argument('--train_batch_size' , type=SCREAMING_SNAKE_CASE_ , default=8 ) parser.add_argument('--eval_batch_size' , type=SCREAMING_SNAKE_CASE_ , default=16 ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=SCREAMING_SNAKE_CASE_ , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=SCREAMING_SNAKE_CASE_ , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=SCREAMING_SNAKE_CASE_ , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=SCREAMING_SNAKE_CASE_ , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=SCREAMING_SNAKE_CASE_ , default=6.25e-5 ) parser.add_argument('--warmup_steps' , default=0 , type=SCREAMING_SNAKE_CASE_ , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=SCREAMING_SNAKE_CASE_ , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=SCREAMING_SNAKE_CASE_ , default=0.01 ) parser.add_argument('--lm_coef' , type=SCREAMING_SNAKE_CASE_ , default=0.9 ) parser.add_argument('--n_valid' , type=SCREAMING_SNAKE_CASE_ , default=374 ) parser.add_argument('--server_ip' , type=SCREAMING_SNAKE_CASE_ , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=SCREAMING_SNAKE_CASE_ , default='' , help='Can be used for distant debugging.' ) lowerCAmelCase__ : List[str] = parser.parse_args() print(SCREAMING_SNAKE_CASE_ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE_ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) lowerCAmelCase__ : str = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) lowerCAmelCase__ : Dict = torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset lowerCAmelCase__ : Union[str, Any] = ['_start_', '_delimiter_', '_classify_'] lowerCAmelCase__ : Dict = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE_ ) ) model.to(SCREAMING_SNAKE_CASE_ ) # Load and encode the datasets def tokenize_and_encode(SCREAMING_SNAKE_CASE_ ): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return obj return [tokenize_and_encode(SCREAMING_SNAKE_CASE_ ) for o in obj] logger.info('Encoding dataset...' ) lowerCAmelCase__ : List[Any] = load_rocstories_dataset(args.train_dataset ) lowerCAmelCase__ : str = load_rocstories_dataset(args.eval_dataset ) lowerCAmelCase__ : Union[str, Any] = (train_dataset, eval_dataset) lowerCAmelCase__ : List[str] = tokenize_and_encode(SCREAMING_SNAKE_CASE_ ) # Compute the max input length for the Transformer lowerCAmelCase__ : Union[str, Any] = model.config.n_positions // 2 - 2 lowerCAmelCase__ : Tuple = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) lowerCAmelCase__ : Dict = min(SCREAMING_SNAKE_CASE_ , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders lowerCAmelCase__ : int = pre_process_datasets(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Union[str, Any] = tensor_datasets[0], tensor_datasets[1] lowerCAmelCase__ : str = TensorDataset(*SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Tuple = RandomSampler(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Tuple = DataLoader(SCREAMING_SNAKE_CASE_ , sampler=SCREAMING_SNAKE_CASE_ , batch_size=args.train_batch_size ) lowerCAmelCase__ : Optional[Any] = TensorDataset(*SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Dict = SequentialSampler(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = DataLoader(SCREAMING_SNAKE_CASE_ , sampler=SCREAMING_SNAKE_CASE_ , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: lowerCAmelCase__ : Union[str, Any] = args.max_steps lowerCAmelCase__ : int = args.max_steps // (len(SCREAMING_SNAKE_CASE_ ) // args.gradient_accumulation_steps) + 1 else: lowerCAmelCase__ : Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) // args.gradient_accumulation_steps * args.num_train_epochs lowerCAmelCase__ : Optional[int] = list(model.named_parameters() ) lowerCAmelCase__ : Tuple = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] lowerCAmelCase__ : str = [ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] lowerCAmelCase__ : Union[str, Any] = AdamW(SCREAMING_SNAKE_CASE_ , lr=args.learning_rate , eps=args.adam_epsilon ) lowerCAmelCase__ : int = get_linear_schedule_with_warmup( SCREAMING_SNAKE_CASE_ , num_warmup_steps=args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE_ ) if args.do_train: lowerCAmelCase__ : Union[str, Any] = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): lowerCAmelCase__ : str = 0 lowerCAmelCase__ : int = 0 lowerCAmelCase__ : str = tqdm(SCREAMING_SNAKE_CASE_ , desc='Training' ) for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Union[str, Any] = tuple(t.to(SCREAMING_SNAKE_CASE_ ) for t in batch ) lowerCAmelCase__ : Any = batch lowerCAmelCase__ : Tuple = model(SCREAMING_SNAKE_CASE_ , mc_token_ids=SCREAMING_SNAKE_CASE_ , lm_labels=SCREAMING_SNAKE_CASE_ , mc_labels=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : str = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() lowerCAmelCase__ : Optional[int] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 lowerCAmelCase__ : List[str] = 'Training loss: {:.2e} lr: {:.2e}'.format(SCREAMING_SNAKE_CASE_ , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer lowerCAmelCase__ : Optional[int] = model.module if hasattr(SCREAMING_SNAKE_CASE_ , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` lowerCAmelCase__ : List[str] = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[str] = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE_ ) torch.save(model_to_save.state_dict() , SCREAMING_SNAKE_CASE_ ) model_to_save.config.to_json_file(SCREAMING_SNAKE_CASE_ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned lowerCAmelCase__ : Dict = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) lowerCAmelCase__ : List[Any] = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(SCREAMING_SNAKE_CASE_ ) if args.do_eval: model.eval() lowerCAmelCase__ : Union[str, Any] = 0, 0 lowerCAmelCase__ : Any = 0, 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , desc='Evaluating' ): lowerCAmelCase__ : str = tuple(t.to(SCREAMING_SNAKE_CASE_ ) for t in batch ) lowerCAmelCase__ : Tuple = batch with torch.no_grad(): lowerCAmelCase__ : List[str] = model( SCREAMING_SNAKE_CASE_ , mc_token_ids=SCREAMING_SNAKE_CASE_ , lm_labels=SCREAMING_SNAKE_CASE_ , mc_labels=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = mc_logits.detach().cpu().numpy() lowerCAmelCase__ : List[Any] = mc_labels.to('cpu' ).numpy() lowerCAmelCase__ : str = accuracy(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 lowerCAmelCase__ : Optional[int] = eval_loss / nb_eval_steps lowerCAmelCase__ : Any = eval_accuracy / nb_eval_examples lowerCAmelCase__ : Union[str, Any] = tr_loss / nb_tr_steps if args.do_train else None lowerCAmelCase__ : Tuple = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} lowerCAmelCase__ : Dict = os.path.join(args.output_dir , 'eval_results.txt' ) with open(SCREAMING_SNAKE_CASE_ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , SCREAMING_SNAKE_CASE_ , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
353
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
0
from collections.abc import Sequence from queue import Queue class A__ : def __init__( self : List[str] , a : Dict , a : str , a : List[Any] , a : Union[str, Any]=None , a : Optional[Any]=None ): '''simple docstring''' lowerCAmelCase__ : Tuple = start lowerCAmelCase__ : Tuple = end lowerCAmelCase__ : Optional[int] = val lowerCAmelCase__ : List[Any] = (start + end) // 2 lowerCAmelCase__ : Dict = left lowerCAmelCase__ : int = right def __repr__( self : Optional[int] ): '''simple docstring''' return f'''SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})''' class A__ : def __init__( self : List[str] , a : Sequence , a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : int = collection lowerCAmelCase__ : str = function if self.collection: lowerCAmelCase__ : Optional[Any] = self._build_tree(0 , len(a ) - 1 ) def _lowerCamelCase ( self : int , a : Union[str, Any] , a : str ): '''simple docstring''' self._update_tree(self.root , a , a ) def _lowerCamelCase ( self : int , a : Union[str, Any] , a : List[str] ): '''simple docstring''' return self._query_range(self.root , a , a ) def _lowerCamelCase ( self : List[Any] , a : List[str] , a : List[str] ): '''simple docstring''' if start == end: return SegmentTreeNode(a , a , self.collection[start] ) lowerCAmelCase__ : int = (start + end) // 2 lowerCAmelCase__ : str = self._build_tree(a , a ) lowerCAmelCase__ : Optional[Any] = self._build_tree(mid + 1 , a ) return SegmentTreeNode(a , a , self.fn(left.val , right.val ) , a , a ) def _lowerCamelCase ( self : List[Any] , a : List[str] , a : Optional[Any] , a : Optional[Any] ): '''simple docstring''' if node.start == i and node.end == i: lowerCAmelCase__ : int = val return if i <= node.mid: self._update_tree(node.left , a , a ) else: self._update_tree(node.right , a , a ) lowerCAmelCase__ : List[Any] = self.fn(node.left.val , node.right.val ) def _lowerCamelCase ( self : Union[str, Any] , a : int , a : Optional[Any] , a : Optional[Any] ): '''simple docstring''' if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , a , a ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , a , node.mid ) , self._query_range(node.right , node.mid + 1 , a ) , ) else: # range in right child tree return self._query_range(node.right , a , a ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' if self.root is not None: lowerCAmelCase__ : int = Queue() queue.put(self.root ) while not queue.empty(): lowerCAmelCase__ : Tuple = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print("""*""" * 50) lowerCamelCase__ = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
354
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.999 , SCREAMING_SNAKE_CASE_="cosine" , ) -> Union[str, Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(SCREAMING_SNAKE_CASE_ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(SCREAMING_SNAKE_CASE_ ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) lowerCAmelCase__ : Tuple = [] for i in range(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : List[Any] = i / num_diffusion_timesteps lowerCAmelCase__ : str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) / alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ) return torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ) class A__ ( __magic_name__ , __magic_name__ ): lowercase = [e.name for e in KarrasDiffusionSchedulers] lowercase = 2 @register_to_config def __init__( self : Union[str, Any] , a : int = 1_000 , a : float = 0.0_0_0_8_5 , a : float = 0.0_1_2 , a : str = "linear" , a : Optional[Union[np.ndarray, List[float]]] = None , a : str = "epsilon" , a : Optional[bool] = False , a : Optional[bool] = False , a : float = 1.0 , a : str = "linspace" , a : int = 0 , ): '''simple docstring''' if trained_betas is not None: lowerCAmelCase__ : List[str] = torch.tensor(a , dtype=torch.floataa ) elif beta_schedule == "linear": lowerCAmelCase__ : List[str] = torch.linspace(a , a , a , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowerCAmelCase__ : Union[str, Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , a , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowerCAmelCase__ : int = betas_for_alpha_bar(a , alpha_transform_type='cosine' ) elif beta_schedule == "exp": lowerCAmelCase__ : List[str] = betas_for_alpha_bar(a , alpha_transform_type='exp' ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) lowerCAmelCase__ : int = 1.0 - self.betas lowerCAmelCase__ : Tuple = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(a , a , a ) lowerCAmelCase__ : Optional[Any] = use_karras_sigmas def _lowerCamelCase ( self : str , a : List[Any] , a : str=None ): '''simple docstring''' if schedule_timesteps is None: lowerCAmelCase__ : List[str] = self.timesteps lowerCAmelCase__ : int = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: lowerCAmelCase__ : List[str] = 1 if len(a ) > 1 else 0 else: lowerCAmelCase__ : Tuple = timestep.cpu().item() if torch.is_tensor(a ) else timestep lowerCAmelCase__ : Tuple = self._index_counter[timestep_int] return indices[pos].item() @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _lowerCamelCase ( self : Tuple , a : torch.FloatTensor , a : Union[float, torch.FloatTensor] , ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.index_for_timestep(a ) lowerCAmelCase__ : Any = self.sigmas[step_index] lowerCAmelCase__ : Optional[Any] = sample / ((sigma**2 + 1) ** 0.5) return sample def _lowerCamelCase ( self : List[str] , a : int , a : Union[str, torch.device] = None , a : Optional[int] = None , ): '''simple docstring''' lowerCAmelCase__ : Any = num_inference_steps lowerCAmelCase__ : Union[str, Any] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowerCAmelCase__ : Union[str, Any] = np.linspace(0 , num_train_timesteps - 1 , a , dtype=a )[::-1].copy() elif self.config.timestep_spacing == "leading": lowerCAmelCase__ : List[Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCAmelCase__ : Dict = (np.arange(0 , a ) * step_ratio).round()[::-1].copy().astype(a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowerCAmelCase__ : Tuple = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCAmelCase__ : int = (np.arange(a , 0 , -step_ratio )).round().copy().astype(a ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) lowerCAmelCase__ : str = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) lowerCAmelCase__ : List[Any] = np.log(a ) lowerCAmelCase__ : Optional[int] = np.interp(a , np.arange(0 , len(a ) ) , a ) if self.config.use_karras_sigmas: lowerCAmelCase__ : str = self._convert_to_karras(in_sigmas=a , num_inference_steps=self.num_inference_steps ) lowerCAmelCase__ : Union[str, Any] = np.array([self._sigma_to_t(a , a ) for sigma in sigmas] ) lowerCAmelCase__ : Tuple = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) lowerCAmelCase__ : Dict = torch.from_numpy(a ).to(device=a ) lowerCAmelCase__ : Union[str, Any] = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) lowerCAmelCase__ : Tuple = torch.from_numpy(a ) lowerCAmelCase__ : List[str] = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(a ).startswith('mps' ): # mps does not support float64 lowerCAmelCase__ : Optional[Any] = timesteps.to(a , dtype=torch.floataa ) else: lowerCAmelCase__ : Any = timesteps.to(device=a ) # empty dt and derivative lowerCAmelCase__ : str = None lowerCAmelCase__ : Optional[int] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowerCAmelCase__ : Optional[Any] = defaultdict(a ) def _lowerCamelCase ( self : Any , a : Dict , a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = np.log(a ) # get distribution lowerCAmelCase__ : Tuple = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range lowerCAmelCase__ : Optional[int] = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) lowerCAmelCase__ : List[str] = low_idx + 1 lowerCAmelCase__ : List[str] = log_sigmas[low_idx] lowerCAmelCase__ : Any = log_sigmas[high_idx] # interpolate sigmas lowerCAmelCase__ : Union[str, Any] = (low - log_sigma) / (low - high) lowerCAmelCase__ : List[Any] = np.clip(a , 0 , 1 ) # transform interpolation to time range lowerCAmelCase__ : List[Any] = (1 - w) * low_idx + w * high_idx lowerCAmelCase__ : Any = t.reshape(sigma.shape ) return t def _lowerCamelCase ( self : Tuple , a : torch.FloatTensor , a : Any ): '''simple docstring''' lowerCAmelCase__ : float = in_sigmas[-1].item() lowerCAmelCase__ : float = in_sigmas[0].item() lowerCAmelCase__ : Tuple = 7.0 # 7.0 is the value used in the paper lowerCAmelCase__ : Tuple = np.linspace(0 , 1 , a ) lowerCAmelCase__ : Any = sigma_min ** (1 / rho) lowerCAmelCase__ : Optional[Any] = sigma_max ** (1 / rho) lowerCAmelCase__ : Tuple = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _lowerCamelCase ( self : Any ): '''simple docstring''' return self.dt is None def _lowerCamelCase ( self : List[str] , a : Union[torch.FloatTensor, np.ndarray] , a : Union[float, torch.FloatTensor] , a : Union[torch.FloatTensor, np.ndarray] , a : bool = True , ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.index_for_timestep(a ) # advance index counter by 1 lowerCAmelCase__ : Tuple = timestep.cpu().item() if torch.is_tensor(a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowerCAmelCase__ : Union[str, Any] = self.sigmas[step_index] lowerCAmelCase__ : Union[str, Any] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method lowerCAmelCase__ : int = self.sigmas[step_index - 1] lowerCAmelCase__ : Any = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowerCAmelCase__ : Optional[int] = 0 lowerCAmelCase__ : Union[str, Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowerCAmelCase__ : int = sigma_hat if self.state_in_first_order else sigma_next lowerCAmelCase__ : Any = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowerCAmelCase__ : Dict = sigma_hat if self.state_in_first_order else sigma_next lowerCAmelCase__ : List[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": lowerCAmelCase__ : int = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.config.clip_sample: lowerCAmelCase__ : str = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowerCAmelCase__ : Dict = (sample - pred_original_sample) / sigma_hat # 3. delta timestep lowerCAmelCase__ : Optional[int] = sigma_next - sigma_hat # store for 2nd order step lowerCAmelCase__ : List[Any] = derivative lowerCAmelCase__ : str = dt lowerCAmelCase__ : Dict = sample else: # 2. 2nd order / Heun's method lowerCAmelCase__ : Union[str, Any] = (sample - pred_original_sample) / sigma_next lowerCAmelCase__ : Union[str, Any] = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample lowerCAmelCase__ : Dict = self.dt lowerCAmelCase__ : Optional[int] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" lowerCAmelCase__ : List[str] = None lowerCAmelCase__ : Tuple = None lowerCAmelCase__ : str = None lowerCAmelCase__ : Tuple = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=a ) def _lowerCamelCase ( self : int , a : torch.FloatTensor , a : torch.FloatTensor , a : torch.FloatTensor , ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(a ): # mps does not support float64 lowerCAmelCase__ : Optional[int] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) lowerCAmelCase__ : int = timesteps.to(original_samples.device , dtype=torch.floataa ) else: lowerCAmelCase__ : Union[str, Any] = self.timesteps.to(original_samples.device ) lowerCAmelCase__ : Optional[Any] = timesteps.to(original_samples.device ) lowerCAmelCase__ : List[Any] = [self.index_for_timestep(a , a ) for t in timesteps] lowerCAmelCase__ : List[str] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): lowerCAmelCase__ : Any = sigma.unsqueeze(-1 ) lowerCAmelCase__ : List[str] = original_samples + noise * sigma return noisy_samples def __len__( self : int ): '''simple docstring''' return self.config.num_train_timesteps
307
0
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class A__ ( TensorFormatter[Mapping, 'torch.Tensor', Mapping] ): def __init__( self : List[str] , a : Union[str, Any]=None , **a : Union[str, Any] ): '''simple docstring''' super().__init__(features=a ) lowerCAmelCase__ : Any = torch_tensor_kwargs import torch # noqa import torch at initialization def _lowerCamelCase ( self : Dict , a : Tuple ): '''simple docstring''' import torch if isinstance(a , a ) and column: if all( isinstance(a , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(a ) return column def _lowerCamelCase ( self : Tuple , a : Tuple ): '''simple docstring''' import torch if isinstance(a , (str, bytes, type(a )) ): return value elif isinstance(a , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() lowerCAmelCase__ : List[str] = {} if isinstance(a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): lowerCAmelCase__ : List[str] = {'dtype': torch.intaa} elif isinstance(a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): lowerCAmelCase__ : Optional[int] = {'dtype': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(a , PIL.Image.Image ): lowerCAmelCase__ : Dict = np.asarray(a ) return torch.tensor(a , **{**default_dtype, **self.torch_tensor_kwargs} ) def _lowerCamelCase ( self : List[str] , a : Optional[int] ): '''simple docstring''' import torch # support for torch, tf, jax etc. if hasattr(a , '__array__' ) and not isinstance(a , torch.Tensor ): lowerCAmelCase__ : int = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(a , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(a ) for substruct in data_struct] ) elif isinstance(a , (list, tuple) ): return self._consolidate([self.recursive_tensorize(a ) for substruct in data_struct] ) return self._tensorize(a ) def _lowerCamelCase ( self : str , a : dict ): '''simple docstring''' return map_nested(self._recursive_tensorize , a , map_list=a ) def _lowerCamelCase ( self : str , a : pa.Table ): '''simple docstring''' lowerCAmelCase__ : int = self.numpy_arrow_extractor().extract_row(a ) lowerCAmelCase__ : Tuple = self.python_features_decoder.decode_row(a ) return self.recursive_tensorize(a ) def _lowerCamelCase ( self : Optional[Any] , a : pa.Table ): '''simple docstring''' lowerCAmelCase__ : List[Any] = self.numpy_arrow_extractor().extract_column(a ) lowerCAmelCase__ : Tuple = self.python_features_decoder.decode_column(a , pa_table.column_names[0] ) lowerCAmelCase__ : Optional[Any] = self.recursive_tensorize(a ) lowerCAmelCase__ : int = self._consolidate(a ) return column def _lowerCamelCase ( self : Dict , a : pa.Table ): '''simple docstring''' lowerCAmelCase__ : int = self.numpy_arrow_extractor().extract_batch(a ) lowerCAmelCase__ : List[Any] = self.python_features_decoder.decode_batch(a ) lowerCAmelCase__ : Optional[int] = self.recursive_tensorize(a ) for column_name in batch: lowerCAmelCase__ : Union[str, Any] = self._consolidate(batch[column_name] ) return batch
355
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: if isinstance(SCREAMING_SNAKE_CASE_ , collections.abc.Iterable ): return x return (x, x) @require_tf class A__ : def _lowerCamelCase ( self : List[Any] , a : List[str] , a : Optional[Any] ): '''simple docstring''' pass def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' pass def _lowerCamelCase ( self : Dict ): '''simple docstring''' pass def _lowerCamelCase ( self : Dict , a : int , a : str , a : List[Any] , a : Dict , a : List[str]=None , **a : Dict ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(a , a ) lowerCAmelCase__ : Tuple = TFVisionTextDualEncoderModel(a ) lowerCAmelCase__ : Tuple = model(input_ids=a , pixel_values=a , attention_mask=a ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) ) def _lowerCamelCase ( self : Union[str, Any] , a : Dict , a : Tuple , a : Dict , a : Union[str, Any] , a : List[Any]=None , **a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.get_vision_text_model(a , a ) lowerCAmelCase__ : List[Any] = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : Optional[int] = model(input_ids=a , pixel_values=a , attention_mask=a ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _lowerCamelCase ( self : List[str] , a : Optional[int] , a : Optional[int] , a : Union[str, Any] , a : List[Any] , a : Any=None , **a : Dict ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Optional[Any] = {'vision_model': vision_model, 'text_model': text_model} lowerCAmelCase__ : Tuple = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**a ) lowerCAmelCase__ : Union[str, Any] = model(input_ids=a , pixel_values=a , attention_mask=a ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _lowerCamelCase ( self : Any , a : Optional[int] , a : Optional[int] , a : Dict , a : Optional[int] , a : Optional[int]=None , **a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : int = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Dict = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : List[str] = model(input_ids=a , pixel_values=a , attention_mask=a ) lowerCAmelCase__ : Union[str, Any] = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(a ) lowerCAmelCase__ : Any = TFVisionTextDualEncoderModel.from_pretrained(a ) lowerCAmelCase__ : int = model(input_ids=a , pixel_values=a , attention_mask=a ) lowerCAmelCase__ : Union[str, Any] = after_output[0].numpy() lowerCAmelCase__ : Optional[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a , 1E-5 ) def _lowerCamelCase ( self : List[str] , a : Dict , a : Optional[int] , a : List[Any] , a : str , a : int=None , **a : Tuple ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Any = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : str = model( input_ids=a , pixel_values=a , attention_mask=a , output_attentions=a ) lowerCAmelCase__ : Union[str, Any] = output.vision_model_output.attentions self.assertEqual(len(a ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase__ : Optional[int] = to_atuple(vision_model.config.image_size ) lowerCAmelCase__ : Optional[Any] = to_atuple(vision_model.config.patch_size ) lowerCAmelCase__ : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCAmelCase__ : int = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCAmelCase__ : str = output.text_model_output.attentions self.assertEqual(len(a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCamelCase ( self : List[Any] , a : np.ndarray , a : np.ndarray , a : float ): '''simple docstring''' lowerCAmelCase__ : int = np.abs((a - b) ).max() self.assertLessEqual(a , a , f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**a ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Any = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**a ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : str = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() self.check_save_load(**a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**a ) @slow def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = self.get_pretrained_model_and_inputs() lowerCAmelCase__ : List[Any] = model_a(**a ) lowerCAmelCase__ : Optional[int] = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(a ) lowerCAmelCase__ : str = TFVisionTextDualEncoderModel.from_pretrained(a ) lowerCAmelCase__ : List[str] = model_a(**a ) lowerCAmelCase__ : int = after_outputs[0].numpy() lowerCAmelCase__ : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a , 1E-5 ) @require_tf class A__ ( __magic_name__ , unittest.TestCase ): def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-random-bert' ) lowerCAmelCase__ : int = 13 lowerCAmelCase__ : List[Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ : int = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ : Optional[Any] = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ : List[Any] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _lowerCamelCase ( self : List[Any] , a : Dict , a : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = TFViTModel(a , name='vision_model' ) lowerCAmelCase__ : str = TFBertModel(a , name='text_model' ) return vision_model, text_model def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = TFViTModelTester(self ) lowerCAmelCase__ : Tuple = TFBertModelTester(self ) lowerCAmelCase__ : Optional[int] = vit_model_tester.prepare_config_and_inputs() lowerCAmelCase__ : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : int = vision_config_and_inputs ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : str = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class A__ ( __magic_name__ , unittest.TestCase ): def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-deit-tf' , 'hf-internal-testing/tiny-random-roberta' ) lowerCAmelCase__ : Tuple = 13 lowerCAmelCase__ : Any = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ : Dict = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ : Any = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ : Tuple = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _lowerCamelCase ( self : str , a : Optional[Any] , a : Dict , a : Dict , a : Any , a : Any=None , **a : int ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Optional[int] = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : Any = model( input_ids=a , pixel_values=a , attention_mask=a , output_attentions=a ) lowerCAmelCase__ : Union[str, Any] = output.vision_model_output.attentions self.assertEqual(len(a ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowerCAmelCase__ : str = to_atuple(vision_model.config.image_size ) lowerCAmelCase__ : Union[str, Any] = to_atuple(vision_model.config.patch_size ) lowerCAmelCase__ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCAmelCase__ : int = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCAmelCase__ : List[str] = output.text_model_output.attentions self.assertEqual(len(a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCamelCase ( self : int , a : Optional[int] , a : int ): '''simple docstring''' lowerCAmelCase__ : Dict = TFDeiTModel(a , name='vision_model' ) lowerCAmelCase__ : List[Any] = TFRobertaModel(a , name='text_model' ) return vision_model, text_model def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Dict = TFDeiTModelTester(self ) lowerCAmelCase__ : List[str] = TFRobertaModelTester(self ) lowerCAmelCase__ : str = vit_model_tester.prepare_config_and_inputs() lowerCAmelCase__ : List[Any] = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[str] = vision_config_and_inputs ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : Any = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class A__ ( __magic_name__ , unittest.TestCase ): def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : int = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-clip-tf' , 'hf-internal-testing/tiny-random-bert' ) lowerCAmelCase__ : Dict = 13 lowerCAmelCase__ : str = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ : List[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ : Union[str, Any] = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ : Optional[int] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _lowerCamelCase ( self : str , a : int , a : List[str] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = TFCLIPVisionModel(a , name='vision_model' ) lowerCAmelCase__ : List[str] = TFBertModel(a , name='text_model' ) return vision_model, text_model def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Any = TFCLIPVisionModelTester(self ) lowerCAmelCase__ : Union[str, Any] = TFBertModelTester(self ) lowerCAmelCase__ : Any = clip_model_tester.prepare_config_and_inputs() lowerCAmelCase__ : Any = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = vision_config_and_inputs ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : str = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class A__ ( unittest.TestCase ): @slow def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Tuple = TFVisionTextDualEncoderModel.from_pretrained( 'clip-italian/clip-italian' , logit_scale_init_value=1.0 , from_pt=a ) lowerCAmelCase__ : List[Any] = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) lowerCAmelCase__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCAmelCase__ : Any = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=a , padding=a , return_tensors='np' ) lowerCAmelCase__ : Union[str, Any] = model(**a ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) lowerCAmelCase__ : List[str] = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , a , atol=1E-3 ) )
307
0
import math def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> bool: lowerCAmelCase__ : List[str] = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = 1 / 12_345 ) -> int: lowerCAmelCase__ : int = 0 lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : int = 3 while True: lowerCAmelCase__ : Union[str, Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : List[Any] = int(SCREAMING_SNAKE_CASE_ ) total_partitions += 1 if check_partition_perfect(SCREAMING_SNAKE_CASE_ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(SCREAMING_SNAKE_CASE_ ) integer += 1 if __name__ == "__main__": print(F"""{solution() = }""")
356
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) lowerCamelCase__ = logging.getLogger(__name__) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: lowerCAmelCase__ : Dict = np.argmax(SCREAMING_SNAKE_CASE_ , axis=1 ) return np.sum(outputs == labels ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: with open(SCREAMING_SNAKE_CASE_ , encoding='utf_8' ) as f: lowerCAmelCase__ : Dict = csv.reader(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Dict = [] next(SCREAMING_SNAKE_CASE_ ) # skip the first line for line in tqdm(SCREAMING_SNAKE_CASE_ ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: lowerCAmelCase__ : Dict = [] for dataset in encoded_datasets: lowerCAmelCase__ : List[str] = len(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) lowerCAmelCase__ : Tuple = np.zeros((n_batch, 2) , dtype=np.intaa ) lowerCAmelCase__ : List[Any] = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) lowerCAmelCase__ : Tuple = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Tuple = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase__ : Any = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase__ : Optional[Any] = with_conta lowerCAmelCase__ : List[str] = with_conta lowerCAmelCase__ : List[Any] = len(SCREAMING_SNAKE_CASE_ ) - 1 lowerCAmelCase__ : Tuple = len(SCREAMING_SNAKE_CASE_ ) - 1 lowerCAmelCase__ : Tuple = with_conta lowerCAmelCase__ : Optional[int] = with_conta lowerCAmelCase__ : Optional[int] = mc_label lowerCAmelCase__ : Dict = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(SCREAMING_SNAKE_CASE_ ) for t in all_inputs ) ) return tensor_datasets def lowerCAmelCase__ ( ) -> int: lowerCAmelCase__ : int = argparse.ArgumentParser() parser.add_argument('--model_name' , type=SCREAMING_SNAKE_CASE_ , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=SCREAMING_SNAKE_CASE_ , default='' ) parser.add_argument('--eval_dataset' , type=SCREAMING_SNAKE_CASE_ , default='' ) parser.add_argument('--seed' , type=SCREAMING_SNAKE_CASE_ , default=42 ) parser.add_argument('--num_train_epochs' , type=SCREAMING_SNAKE_CASE_ , default=3 ) parser.add_argument('--train_batch_size' , type=SCREAMING_SNAKE_CASE_ , default=8 ) parser.add_argument('--eval_batch_size' , type=SCREAMING_SNAKE_CASE_ , default=16 ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=SCREAMING_SNAKE_CASE_ , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=SCREAMING_SNAKE_CASE_ , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=SCREAMING_SNAKE_CASE_ , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=SCREAMING_SNAKE_CASE_ , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=SCREAMING_SNAKE_CASE_ , default=6.25e-5 ) parser.add_argument('--warmup_steps' , default=0 , type=SCREAMING_SNAKE_CASE_ , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=SCREAMING_SNAKE_CASE_ , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=SCREAMING_SNAKE_CASE_ , default=0.01 ) parser.add_argument('--lm_coef' , type=SCREAMING_SNAKE_CASE_ , default=0.9 ) parser.add_argument('--n_valid' , type=SCREAMING_SNAKE_CASE_ , default=374 ) parser.add_argument('--server_ip' , type=SCREAMING_SNAKE_CASE_ , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=SCREAMING_SNAKE_CASE_ , default='' , help='Can be used for distant debugging.' ) lowerCAmelCase__ : List[str] = parser.parse_args() print(SCREAMING_SNAKE_CASE_ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE_ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) lowerCAmelCase__ : str = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) lowerCAmelCase__ : Dict = torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset lowerCAmelCase__ : Union[str, Any] = ['_start_', '_delimiter_', '_classify_'] lowerCAmelCase__ : Dict = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE_ ) ) model.to(SCREAMING_SNAKE_CASE_ ) # Load and encode the datasets def tokenize_and_encode(SCREAMING_SNAKE_CASE_ ): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return obj return [tokenize_and_encode(SCREAMING_SNAKE_CASE_ ) for o in obj] logger.info('Encoding dataset...' ) lowerCAmelCase__ : List[Any] = load_rocstories_dataset(args.train_dataset ) lowerCAmelCase__ : str = load_rocstories_dataset(args.eval_dataset ) lowerCAmelCase__ : Union[str, Any] = (train_dataset, eval_dataset) lowerCAmelCase__ : List[str] = tokenize_and_encode(SCREAMING_SNAKE_CASE_ ) # Compute the max input length for the Transformer lowerCAmelCase__ : Union[str, Any] = model.config.n_positions // 2 - 2 lowerCAmelCase__ : Tuple = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) lowerCAmelCase__ : Dict = min(SCREAMING_SNAKE_CASE_ , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders lowerCAmelCase__ : int = pre_process_datasets(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = tensor_datasets[0], tensor_datasets[1] lowerCAmelCase__ : str = TensorDataset(*SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Tuple = RandomSampler(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Tuple = DataLoader(SCREAMING_SNAKE_CASE_ , sampler=SCREAMING_SNAKE_CASE_ , batch_size=args.train_batch_size ) lowerCAmelCase__ : Optional[Any] = TensorDataset(*SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Dict = SequentialSampler(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = DataLoader(SCREAMING_SNAKE_CASE_ , sampler=SCREAMING_SNAKE_CASE_ , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: lowerCAmelCase__ : Union[str, Any] = args.max_steps lowerCAmelCase__ : int = args.max_steps // (len(SCREAMING_SNAKE_CASE_ ) // args.gradient_accumulation_steps) + 1 else: lowerCAmelCase__ : Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) // args.gradient_accumulation_steps * args.num_train_epochs lowerCAmelCase__ : Optional[int] = list(model.named_parameters() ) lowerCAmelCase__ : Tuple = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] lowerCAmelCase__ : str = [ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] lowerCAmelCase__ : Union[str, Any] = AdamW(SCREAMING_SNAKE_CASE_ , lr=args.learning_rate , eps=args.adam_epsilon ) lowerCAmelCase__ : int = get_linear_schedule_with_warmup( SCREAMING_SNAKE_CASE_ , num_warmup_steps=args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE_ ) if args.do_train: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): lowerCAmelCase__ : str = 0 lowerCAmelCase__ : int = 0 lowerCAmelCase__ : str = tqdm(SCREAMING_SNAKE_CASE_ , desc='Training' ) for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Union[str, Any] = tuple(t.to(SCREAMING_SNAKE_CASE_ ) for t in batch ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = batch lowerCAmelCase__ : Tuple = model(SCREAMING_SNAKE_CASE_ , mc_token_ids=SCREAMING_SNAKE_CASE_ , lm_labels=SCREAMING_SNAKE_CASE_ , mc_labels=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : str = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() lowerCAmelCase__ : Optional[int] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 lowerCAmelCase__ : List[str] = 'Training loss: {:.2e} lr: {:.2e}'.format(SCREAMING_SNAKE_CASE_ , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer lowerCAmelCase__ : Optional[int] = model.module if hasattr(SCREAMING_SNAKE_CASE_ , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` lowerCAmelCase__ : List[str] = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[str] = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE_ ) torch.save(model_to_save.state_dict() , SCREAMING_SNAKE_CASE_ ) model_to_save.config.to_json_file(SCREAMING_SNAKE_CASE_ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned lowerCAmelCase__ : Dict = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) lowerCAmelCase__ : List[Any] = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(SCREAMING_SNAKE_CASE_ ) if args.do_eval: model.eval() lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = 0, 0 lowerCAmelCase__ , lowerCAmelCase__ : Any = 0, 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , desc='Evaluating' ): lowerCAmelCase__ : str = tuple(t.to(SCREAMING_SNAKE_CASE_ ) for t in batch ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Tuple = batch with torch.no_grad(): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[str] = model( SCREAMING_SNAKE_CASE_ , mc_token_ids=SCREAMING_SNAKE_CASE_ , lm_labels=SCREAMING_SNAKE_CASE_ , mc_labels=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = mc_logits.detach().cpu().numpy() lowerCAmelCase__ : List[Any] = mc_labels.to('cpu' ).numpy() lowerCAmelCase__ : str = accuracy(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 lowerCAmelCase__ : Optional[int] = eval_loss / nb_eval_steps lowerCAmelCase__ : Any = eval_accuracy / nb_eval_examples lowerCAmelCase__ : Union[str, Any] = tr_loss / nb_tr_steps if args.do_train else None lowerCAmelCase__ : Tuple = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} lowerCAmelCase__ : Dict = os.path.join(args.output_dir , 'eval_results.txt' ) with open(SCREAMING_SNAKE_CASE_ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , SCREAMING_SNAKE_CASE_ , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
307
0
from __future__ import annotations from collections.abc import Iterator from typing import Any class A__ : def __init__( self : Any , a : Any ): '''simple docstring''' lowerCAmelCase__ : Any = data lowerCAmelCase__ : Node | None = None class A__ : def __init__( self : str ): '''simple docstring''' lowerCAmelCase__ : Dict = None lowerCAmelCase__ : Optional[Any] = None def __iter__( self : str ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.head while self.head: yield node.data lowerCAmelCase__ : Any = node.next if node == self.head: break def __len__( self : Union[str, Any] ): '''simple docstring''' return sum(1 for _ in self ) def __repr__( self : str ): '''simple docstring''' return "->".join(str(a ) for item in iter(self ) ) def _lowerCamelCase ( self : List[str] , a : Any ): '''simple docstring''' self.insert_nth(len(self ) , a ) def _lowerCamelCase ( self : List[Any] , a : Any ): '''simple docstring''' self.insert_nth(0 , a ) def _lowerCamelCase ( self : str , a : int , a : Any ): '''simple docstring''' if index < 0 or index > len(self ): raise IndexError('list index out of range.' ) lowerCAmelCase__ : int = Node(a ) if self.head is None: lowerCAmelCase__ : Optional[int] = new_node # first node points itself lowerCAmelCase__ : Union[str, Any] = new_node elif index == 0: # insert at head lowerCAmelCase__ : Dict = self.head lowerCAmelCase__ : str = new_node else: lowerCAmelCase__ : List[str] = self.head for _ in range(index - 1 ): lowerCAmelCase__ : List[str] = temp.next lowerCAmelCase__ : Tuple = temp.next lowerCAmelCase__ : Optional[Any] = new_node if index == len(self ) - 1: # insert at tail lowerCAmelCase__ : Optional[Any] = new_node def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.delete_nth(0 ) def _lowerCamelCase ( self : int ): '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def _lowerCamelCase ( self : Optional[Any] , a : int = 0 ): '''simple docstring''' if not 0 <= index < len(self ): raise IndexError('list index out of range.' ) lowerCAmelCase__ : str = self.head if self.head == self.tail: # just one node lowerCAmelCase__ : str = None elif index == 0: # delete head node lowerCAmelCase__ : int = self.tail.next.next lowerCAmelCase__ : Tuple = self.head.next else: lowerCAmelCase__ : str = self.head for _ in range(index - 1 ): lowerCAmelCase__ : List[Any] = temp.next lowerCAmelCase__ : List[str] = temp.next lowerCAmelCase__ : Tuple = temp.next.next if index == len(self ) - 1: # delete at tail lowerCAmelCase__ : str = temp return delete_node.data def _lowerCamelCase ( self : Dict ): '''simple docstring''' return len(self ) == 0 def lowerCAmelCase__ ( ) -> None: lowerCAmelCase__ : Any = CircularLinkedList() assert len(SCREAMING_SNAKE_CASE_ ) == 0 assert circular_linked_list.is_empty() is True assert str(SCREAMING_SNAKE_CASE_ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(SCREAMING_SNAKE_CASE_ ) == i circular_linked_list.insert_nth(SCREAMING_SNAKE_CASE_ , i + 1 ) assert str(SCREAMING_SNAKE_CASE_ ) == "->".join(str(SCREAMING_SNAKE_CASE_ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(SCREAMING_SNAKE_CASE_ ) == "->".join(str(SCREAMING_SNAKE_CASE_ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(SCREAMING_SNAKE_CASE_ ) == "->".join(str(SCREAMING_SNAKE_CASE_ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(SCREAMING_SNAKE_CASE_ ) == "->".join(str(SCREAMING_SNAKE_CASE_ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(SCREAMING_SNAKE_CASE_ ) == "->".join(str(SCREAMING_SNAKE_CASE_ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
357
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCamelCase__ = """python tqdm regex requests packaging filelock numpy tokenizers""".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("""dataclasses""") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("""importlib_metadata""") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> int: require_version(deps[pkg] , SCREAMING_SNAKE_CASE_ )
307
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {"""tokenizer_file""": """tokenizer.json"""} lowerCamelCase__ = { """tokenizer_file""": { """bigscience/tokenizer""": """https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json""", """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json""", }, } class A__ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = ['input_ids', 'attention_mask'] lowercase = None def __init__( self : Optional[Any] , a : Tuple=None , a : int=None , a : int=None , a : Any="<unk>" , a : Tuple="<s>" , a : Optional[Any]="</s>" , a : Optional[int]="<pad>" , a : Dict=False , a : Union[str, Any]=False , **a : List[Any] , ): '''simple docstring''' super().__init__( a , a , tokenizer_file=a , unk_token=a , bos_token=a , eos_token=a , pad_token=a , add_prefix_space=a , clean_up_tokenization_spaces=a , **a , ) lowerCAmelCase__ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , a ) != add_prefix_space: lowerCAmelCase__ : Any = getattr(a , pre_tok_state.pop('type' ) ) lowerCAmelCase__ : Union[str, Any] = add_prefix_space lowerCAmelCase__ : Dict = pre_tok_class(**a ) lowerCAmelCase__ : List[str] = add_prefix_space def _lowerCamelCase ( self : List[str] , *a : List[Any] , **a : str ): '''simple docstring''' lowerCAmelCase__ : List[str] = kwargs.get('is_split_into_words' , a ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ' pretokenized inputs.' ) return super()._batch_encode_plus(*a , **a ) def _lowerCamelCase ( self : List[str] , *a : Optional[Any] , **a : Tuple ): '''simple docstring''' lowerCAmelCase__ : int = kwargs.get('is_split_into_words' , a ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ' pretokenized inputs.' ) return super()._encode_plus(*a , **a ) def _lowerCamelCase ( self : Any , a : str , a : Optional[str] = None ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self._tokenizer.model.save(a , name=a ) return tuple(a ) def _lowerCamelCase ( self : List[Any] , a : "Conversation" ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(a , add_special_tokens=a ) + [self.eos_token_id] ) if len(a ) > self.model_max_length: lowerCAmelCase__ : Any = input_ids[-self.model_max_length :] return input_ids
358
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class A__ ( __magic_name__ ): lowercase = (DPMSolverSDEScheduler,) lowercase = 10 def _lowerCamelCase ( self : Optional[int] , **a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = { 'num_train_timesteps': 1_100, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'noise_sampler_seed': 0, } config.update(**a ) return config def _lowerCamelCase ( self : Tuple ): '''simple docstring''' for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=a ) def _lowerCamelCase ( self : int ): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=a , beta_end=a ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=a ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : int = self.scheduler_classes[0] lowerCAmelCase__ : Tuple = self.get_scheduler_config() lowerCAmelCase__ : List[Any] = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ : Dict = self.dummy_model() lowerCAmelCase__ : int = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ : int = sample.to(a ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : List[Any] = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : str = model(a , a ) lowerCAmelCase__ : int = scheduler.step(a , a , a ) lowerCAmelCase__ : Any = output.prev_sample lowerCAmelCase__ : List[Any] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Optional[int] = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_7_8_2_1_0_4_4_9_2_1_8_7_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_7_8_7_0_5_9_6_4_5_6_5_2_7_7 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_2_1_1_1_8_1_6_4_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_6_8_9_2_2_9_9_6_5_2 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3 def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.scheduler_classes[0] lowerCAmelCase__ : List[str] = self.get_scheduler_config(prediction_type='v_prediction' ) lowerCAmelCase__ : Any = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ : Optional[int] = self.dummy_model() lowerCAmelCase__ : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ : Any = sample.to(a ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : str = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : str = model(a , a ) lowerCAmelCase__ : Dict = scheduler.step(a , a , a ) lowerCAmelCase__ : Tuple = output.prev_sample lowerCAmelCase__ : int = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Union[str, Any] = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_2_4.7_7_1_4_9_2_0_0_4_3_9_4_5_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_2_2_6_2_8_9_0_1_4_8_1_6_2_8_4 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_2_8.1_6_6_3_3_6_0_5_9_5_7_0_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_6_8_8_3_2_6_0_0_1_1_6_7_2_9_7 ) < 1E-3 else: assert abs(result_sum.item() - 1_1_9.8_4_8_7_5_4_8_8_2_8_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.1_5_6_0_5_3_0_6_6_2_5_3_6_6_2_1 ) < 1E-3 def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.scheduler_classes[0] lowerCAmelCase__ : Optional[int] = self.get_scheduler_config() lowerCAmelCase__ : int = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps , device=a ) lowerCAmelCase__ : Tuple = self.dummy_model() lowerCAmelCase__ : Any = self.dummy_sample_deter.to(a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowerCAmelCase__ : Dict = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : Optional[int] = model(a , a ) lowerCAmelCase__ : Tuple = scheduler.step(a , a , a ) lowerCAmelCase__ : Dict = output.prev_sample lowerCAmelCase__ : Union[str, Any] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Dict = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_6_9_5_7_3_9_7_4_6_0_9_3_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_8_0_5_9_3_4_6_0_7_9_8_2_6_3_5 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_3_6_3_7_6_9_5_3_1_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_8_3_8_2_4_1_5_7_7_1 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3 def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.scheduler_classes[0] lowerCAmelCase__ : Any = self.get_scheduler_config() lowerCAmelCase__ : Any = scheduler_class(**a , use_karras_sigmas=a ) scheduler.set_timesteps(self.num_inference_steps , device=a ) lowerCAmelCase__ : str = self.dummy_model() lowerCAmelCase__ : Any = self.dummy_sample_deter.to(a ) * scheduler.init_noise_sigma lowerCAmelCase__ : str = sample.to(a ) for t in scheduler.timesteps: lowerCAmelCase__ : Any = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : int = model(a , a ) lowerCAmelCase__ : Union[str, Any] = scheduler.step(a , a , a ) lowerCAmelCase__ : Union[str, Any] = output.prev_sample lowerCAmelCase__ : Optional[int] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Any = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_7_6.6_6_9_7_4_1_3_5_7_4_2_1_8_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_7.6_3_6_5_3_5_6_4_4_5_3_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2 else: assert abs(result_sum.item() - 1_7_0.3_1_3_5_2_2_3_3_8_8_6_7_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2
307
0
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCamelCase__ = imread(r"""digital_image_processing/image_data/lena_small.jpg""") lowerCamelCase__ = cvtColor(img, COLOR_BGR2GRAY) def lowerCAmelCase__ ( ) -> Dict: lowerCAmelCase__ : List[Any] = cn.convert_to_negative(SCREAMING_SNAKE_CASE_ ) # assert negative_img array for at least one True assert negative_img.any() def lowerCAmelCase__ ( ) -> Optional[Any]: with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(SCREAMING_SNAKE_CASE_ , 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def lowerCAmelCase__ ( ) -> Tuple: lowerCAmelCase__ : str = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def lowerCAmelCase__ ( ) -> Tuple: lowerCAmelCase__ : Tuple = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() lowerCAmelCase__ : Optional[Any] = canny.canny(SCREAMING_SNAKE_CASE_ ) # assert canny array for at least one True assert canny_array.any() def lowerCAmelCase__ ( ) -> Optional[int]: assert gg.gaussian_filter(SCREAMING_SNAKE_CASE_ , 5 , sigma=0.9 ).all() def lowerCAmelCase__ ( ) -> Dict: # laplace diagonals lowerCAmelCase__ : Union[str, Any] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowerCAmelCase__ : int = conv.img_convolve(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).astype(SCREAMING_SNAKE_CASE_ ) assert res.any() def lowerCAmelCase__ ( ) -> List[str]: assert med.median_filter(SCREAMING_SNAKE_CASE_ , 3 ).any() def lowerCAmelCase__ ( ) -> Any: lowerCAmelCase__ : str = sob.sobel_filter(SCREAMING_SNAKE_CASE_ ) assert grad.any() and theta.any() def lowerCAmelCase__ ( ) -> Any: lowerCAmelCase__ : int = sp.make_sepia(SCREAMING_SNAKE_CASE_ , 20 ) assert sepia.all() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = "digital_image_processing/image_data/lena_small.jpg" ) -> Optional[Any]: lowerCAmelCase__ : List[Any] = bs.Burkes(imread(SCREAMING_SNAKE_CASE_ , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = "digital_image_processing/image_data/lena_small.jpg" , ) -> Any: lowerCAmelCase__ : Dict = rs.NearestNeighbour(imread(SCREAMING_SNAKE_CASE_ , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def lowerCAmelCase__ ( ) -> int: lowerCAmelCase__ : int = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. lowerCAmelCase__ : List[str] = imread(SCREAMING_SNAKE_CASE_ , 0 ) # Test for get_neighbors_pixel function() return not None lowerCAmelCase__ : str = 0 lowerCAmelCase__ : str = 0 lowerCAmelCase__ : List[str] = image[x_coordinate][y_coordinate] lowerCAmelCase__ : Dict = lbp.get_neighbors_pixel( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCAmelCase__ : List[str] = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): lowerCAmelCase__ : Dict = lbp.local_binary_value(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert lbp_image.any()
359
import os import string import sys lowerCamelCase__ = 1 << 8 lowerCamelCase__ = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } lowerCamelCase__ = KEYMAP["""up"""] lowerCamelCase__ = KEYMAP["""left"""] if sys.platform == "win32": lowerCamelCase__ = [] lowerCamelCase__ = { b"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, b"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): lowerCamelCase__ = ord(str(i)) def lowerCAmelCase__ ( ) -> Dict: if os.name == "nt": import msvcrt lowerCAmelCase__ : Dict = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(SCREAMING_SNAKE_CASE_ ) == 0: # Read the keystroke lowerCAmelCase__ : Optional[Any] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCAmelCase__ : Dict = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCAmelCase__ : Dict = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(SCREAMING_SNAKE_CASE_ ) if ord(SCREAMING_SNAKE_CASE_ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) lowerCAmelCase__ : Dict = chr(KEYMAP['esc'] ) except KeyError: lowerCAmelCase__ : Dict = cha[1] else: lowerCAmelCase__ : List[Any] = ch.decode(SCREAMING_SNAKE_CASE_ ) else: lowerCAmelCase__ : Tuple = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCAmelCase__ : Tuple = sys.stdin.fileno() lowerCAmelCase__ : Any = termios.tcgetattr(SCREAMING_SNAKE_CASE_ ) try: tty.setraw(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = sys.stdin.read(1 ) finally: termios.tcsetattr(SCREAMING_SNAKE_CASE_ , termios.TCSADRAIN , SCREAMING_SNAKE_CASE_ ) return ch def lowerCAmelCase__ ( ) -> Union[str, Any]: lowerCAmelCase__ : Any = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(SCREAMING_SNAKE_CASE_ ) == KEYMAP["esc"]: lowerCAmelCase__ : Union[str, Any] = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) == KEYMAP["mod_int"]: lowerCAmelCase__ : str = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(SCREAMING_SNAKE_CASE_ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(SCREAMING_SNAKE_CASE_ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
307
0
"""simple docstring""" lowerCamelCase__ = """Input must be a string of 8 numbers plus letter""" lowerCamelCase__ = """TRWAGMYFPDXBNJZSQVHLCKE""" def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> bool: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : List[str] = F'''Expected string as input, found {type(SCREAMING_SNAKE_CASE_ ).__name__}''' raise TypeError(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = spanish_id.replace('-' , '' ).upper() if len(SCREAMING_SNAKE_CASE_ ) != 9: raise ValueError(SCREAMING_SNAKE_CASE_ ) try: lowerCAmelCase__ : Dict = int(spanish_id_clean[0:8] ) lowerCAmelCase__ : int = spanish_id_clean[8] except ValueError as ex: raise ValueError(SCREAMING_SNAKE_CASE_ ) from ex if letter.isdigit(): raise ValueError(SCREAMING_SNAKE_CASE_ ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
360
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: return "".join([hex(SCREAMING_SNAKE_CASE_ )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE_ )] ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(SCREAMING_SNAKE_CASE_ ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE_ ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
307
0