code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from math import factorial lowerCamelCase__ = {str(digit): factorial(digit) for digit in range(10)} def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> int: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError('Parameter number must be int' ) if number < 0: raise ValueError('Parameter number must be greater than or equal to 0' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(SCREAMING_SNAKE_CASE_ ) ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = 60 , SCREAMING_SNAKE_CASE_ = 1_000_000 ) -> int: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError('Parameters chain_length and number_limit must be int' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( 'Parameters chain_length and number_limit must be greater than 0' ) # the counter for the chains with the exact desired length lowerCAmelCase__ : Tuple = 0 # the cached sizes of the previous chains lowerCAmelCase__ : dict[int, int] = {} for start_chain_element in range(1 , SCREAMING_SNAKE_CASE_ ): # The temporary set will contain the elements of the chain lowerCAmelCase__ : Dict = set() lowerCAmelCase__ : str = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. lowerCAmelCase__ : Dict = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(SCREAMING_SNAKE_CASE_ ) chain_set_length += 1 lowerCAmelCase__ : Union[str, Any] = digit_factorial_sum(SCREAMING_SNAKE_CASE_ ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] lowerCAmelCase__ : Tuple = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution()}""")
361
from __future__ import annotations def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> list[list[int]]: lowerCAmelCase__ : list[list[int]] = [] create_all_state(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , [] , SCREAMING_SNAKE_CASE_ ) return result def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> None: if level == 0: total_list.append(current_list[:] ) return for i in range(SCREAMING_SNAKE_CASE_ , total_number - level + 2 ): current_list.append(SCREAMING_SNAKE_CASE_ ) create_all_state(i + 1 , SCREAMING_SNAKE_CASE_ , level - 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) current_list.pop() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> None: for i in total_list: print(*SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowerCamelCase__ = 4 lowerCamelCase__ = 2 lowerCamelCase__ = generate_all_combinations(n, k) print_all_state(total_list)
307
0
import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=1 ) -> List[Any]: if n_shave_prefix_segments >= 0: return ".".join(path.split('.' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('.' )[:n_shave_prefix_segments] ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 ) -> Tuple: lowerCAmelCase__ : Optional[int] = [] for old_item in old_list: lowerCAmelCase__ : List[Any] = old_item.replace('in_layers.0' , 'norm1' ) lowerCAmelCase__ : str = new_item.replace('in_layers.2' , 'conv1' ) lowerCAmelCase__ : Tuple = new_item.replace('out_layers.0' , 'norm2' ) lowerCAmelCase__ : str = new_item.replace('out_layers.3' , 'conv2' ) lowerCAmelCase__ : str = new_item.replace('emb_layers.1' , 'time_emb_proj' ) lowerCAmelCase__ : Tuple = new_item.replace('skip_connection' , 'conv_shortcut' ) lowerCAmelCase__ : str = shave_segments(SCREAMING_SNAKE_CASE_ , n_shave_prefix_segments=SCREAMING_SNAKE_CASE_ ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 ) -> Dict: lowerCAmelCase__ : List[str] = [] for old_item in old_list: lowerCAmelCase__ : str = old_item lowerCAmelCase__ : Tuple = new_item.replace('norm.weight' , 'group_norm.weight' ) lowerCAmelCase__ : Union[str, Any] = new_item.replace('norm.bias' , 'group_norm.bias' ) lowerCAmelCase__ : List[str] = new_item.replace('proj_out.weight' , 'proj_attn.weight' ) lowerCAmelCase__ : Optional[int] = new_item.replace('proj_out.bias' , 'proj_attn.bias' ) lowerCAmelCase__ : Dict = shave_segments(SCREAMING_SNAKE_CASE_ , n_shave_prefix_segments=SCREAMING_SNAKE_CASE_ ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ) -> str: assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): lowerCAmelCase__ : List[Any] = old_checkpoint[path] lowerCAmelCase__ : Dict = old_tensor.shape[0] // 3 lowerCAmelCase__ : Any = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) lowerCAmelCase__ : str = old_tensor.shape[0] // config['num_head_channels'] // 3 lowerCAmelCase__ : Optional[Any] = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) lowerCAmelCase__ : List[str] = old_tensor.split(channels // num_heads , dim=1 ) lowerCAmelCase__ : str = query.reshape(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = key.reshape(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[Any] = value.reshape(SCREAMING_SNAKE_CASE_ ) for path in paths: lowerCAmelCase__ : Optional[Any] = path['new'] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here lowerCAmelCase__ : List[str] = new_path.replace('middle_block.0' , 'mid_block.resnets.0' ) lowerCAmelCase__ : int = new_path.replace('middle_block.1' , 'mid_block.attentions.0' ) lowerCAmelCase__ : Optional[int] = new_path.replace('middle_block.2' , 'mid_block.resnets.1' ) if additional_replacements is not None: for replacement in additional_replacements: lowerCAmelCase__ : str = new_path.replace(replacement['old'] , replacement['new'] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: lowerCAmelCase__ : List[str] = old_checkpoint[path['old']][:, :, 0] else: lowerCAmelCase__ : List[Any] = old_checkpoint[path['old']] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: lowerCAmelCase__ : Optional[Any] = {} lowerCAmelCase__ : Union[str, Any] = checkpoint['time_embed.0.weight'] lowerCAmelCase__ : Union[str, Any] = checkpoint['time_embed.0.bias'] lowerCAmelCase__ : Dict = checkpoint['time_embed.2.weight'] lowerCAmelCase__ : Tuple = checkpoint['time_embed.2.bias'] lowerCAmelCase__ : Optional[Any] = checkpoint['input_blocks.0.0.weight'] lowerCAmelCase__ : List[str] = checkpoint['input_blocks.0.0.bias'] lowerCAmelCase__ : Tuple = checkpoint['out.0.weight'] lowerCAmelCase__ : List[str] = checkpoint['out.0.bias'] lowerCAmelCase__ : Dict = checkpoint['out.2.weight'] lowerCAmelCase__ : List[str] = checkpoint['out.2.bias'] # Retrieves the keys for the input blocks only lowerCAmelCase__ : Dict = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'input_blocks' in layer} ) lowerCAmelCase__ : List[str] = { layer_id: [key for key in checkpoint if F'''input_blocks.{layer_id}''' in key] for layer_id in range(SCREAMING_SNAKE_CASE_ ) } # Retrieves the keys for the middle blocks only lowerCAmelCase__ : List[str] = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'middle_block' in layer} ) lowerCAmelCase__ : Union[str, Any] = { layer_id: [key for key in checkpoint if F'''middle_block.{layer_id}''' in key] for layer_id in range(SCREAMING_SNAKE_CASE_ ) } # Retrieves the keys for the output blocks only lowerCAmelCase__ : int = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'output_blocks' in layer} ) lowerCAmelCase__ : Any = { layer_id: [key for key in checkpoint if F'''output_blocks.{layer_id}''' in key] for layer_id in range(SCREAMING_SNAKE_CASE_ ) } for i in range(1 , SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Optional[int] = (i - 1) // (config['num_res_blocks'] + 1) lowerCAmelCase__ : Tuple = (i - 1) % (config['num_res_blocks'] + 1) lowerCAmelCase__ : List[Any] = [key for key in input_blocks[i] if F'''input_blocks.{i}.0''' in key] lowerCAmelCase__ : str = [key for key in input_blocks[i] if F'''input_blocks.{i}.1''' in key] if F'''input_blocks.{i}.0.op.weight''' in checkpoint: lowerCAmelCase__ : Tuple = checkpoint[ F'''input_blocks.{i}.0.op.weight''' ] lowerCAmelCase__ : Any = checkpoint[ F'''input_blocks.{i}.0.op.bias''' ] continue lowerCAmelCase__ : Dict = renew_resnet_paths(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : str = {'old': F'''input_blocks.{i}.0''', 'new': F'''down_blocks.{block_id}.resnets.{layer_in_block_id}'''} lowerCAmelCase__ : str = {'old': 'resnets.2.op', 'new': 'downsamplers.0.op'} assign_to_checkpoint( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , additional_replacements=[meta_path, resnet_op] , config=SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Dict = renew_attention_paths(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = { 'old': F'''input_blocks.{i}.1''', 'new': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}''', } lowerCAmelCase__ : List[str] = { F'''input_blocks.{i}.1.qkv.bias''': { 'key': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', 'query': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', 'value': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, F'''input_blocks.{i}.1.qkv.weight''': { 'key': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', 'query': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', 'value': F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , additional_replacements=[meta_path] , attention_paths_to_split=SCREAMING_SNAKE_CASE_ , config=SCREAMING_SNAKE_CASE_ , ) lowerCAmelCase__ : Optional[Any] = middle_blocks[0] lowerCAmelCase__ : Optional[Any] = middle_blocks[1] lowerCAmelCase__ : Union[str, Any] = middle_blocks[2] lowerCAmelCase__ : List[str] = renew_resnet_paths(SCREAMING_SNAKE_CASE_ ) assign_to_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , config=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Union[str, Any] = renew_resnet_paths(SCREAMING_SNAKE_CASE_ ) assign_to_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , config=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Dict = renew_attention_paths(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : int = { 'middle_block.1.qkv.bias': { 'key': 'mid_block.attentions.0.key.bias', 'query': 'mid_block.attentions.0.query.bias', 'value': 'mid_block.attentions.0.value.bias', }, 'middle_block.1.qkv.weight': { 'key': 'mid_block.attentions.0.key.weight', 'query': 'mid_block.attentions.0.query.weight', 'value': 'mid_block.attentions.0.value.weight', }, } assign_to_checkpoint( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , attention_paths_to_split=SCREAMING_SNAKE_CASE_ , config=SCREAMING_SNAKE_CASE_ ) for i in range(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Dict = i // (config['num_res_blocks'] + 1) lowerCAmelCase__ : Any = i % (config['num_res_blocks'] + 1) lowerCAmelCase__ : Optional[int] = [shave_segments(SCREAMING_SNAKE_CASE_ , 2 ) for name in output_blocks[i]] lowerCAmelCase__ : Union[str, Any] = {} for layer in output_block_layers: lowerCAmelCase__ : List[str] = layer.split('.' )[0], shave_segments(SCREAMING_SNAKE_CASE_ , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(SCREAMING_SNAKE_CASE_ ) else: lowerCAmelCase__ : Any = [layer_name] if len(SCREAMING_SNAKE_CASE_ ) > 1: lowerCAmelCase__ : str = [key for key in output_blocks[i] if F'''output_blocks.{i}.0''' in key] lowerCAmelCase__ : Any = [key for key in output_blocks[i] if F'''output_blocks.{i}.1''' in key] lowerCAmelCase__ : Any = renew_resnet_paths(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[str] = renew_resnet_paths(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[str] = {'old': F'''output_blocks.{i}.0''', 'new': F'''up_blocks.{block_id}.resnets.{layer_in_block_id}'''} assign_to_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , additional_replacements=[meta_path] , config=SCREAMING_SNAKE_CASE_ ) if ["conv.weight", "conv.bias"] in output_block_list.values(): lowerCAmelCase__ : Union[str, Any] = list(output_block_list.values() ).index(['conv.weight', 'conv.bias'] ) lowerCAmelCase__ : Optional[int] = checkpoint[ F'''output_blocks.{i}.{index}.conv.weight''' ] lowerCAmelCase__ : Dict = checkpoint[ F'''output_blocks.{i}.{index}.conv.bias''' ] # Clear attentions as they have been attributed above. if len(SCREAMING_SNAKE_CASE_ ) == 2: lowerCAmelCase__ : str = [] if len(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : str = renew_attention_paths(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[Any] = { 'old': F'''output_blocks.{i}.1''', 'new': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}''', } lowerCAmelCase__ : str = { F'''output_blocks.{i}.1.qkv.bias''': { 'key': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', 'query': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', 'value': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, F'''output_blocks.{i}.1.qkv.weight''': { 'key': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', 'query': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', 'value': F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('qkv' in key for key in attentions ) else None , config=SCREAMING_SNAKE_CASE_ , ) else: lowerCAmelCase__ : List[str] = renew_resnet_paths(SCREAMING_SNAKE_CASE_ , n_shave_prefix_segments=1 ) for path in resnet_0_paths: lowerCAmelCase__ : Any = '.'.join(['output_blocks', str(SCREAMING_SNAKE_CASE_ ), path['old']] ) lowerCAmelCase__ : Optional[int] = '.'.join(['up_blocks', str(SCREAMING_SNAKE_CASE_ ), 'resnets', str(SCREAMING_SNAKE_CASE_ ), path['new']] ) lowerCAmelCase__ : str = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = torch.load(args.checkpoint_path) with open(args.config_file) as f: lowerCamelCase__ = json.loads(f.read()) lowerCamelCase__ = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] lowerCamelCase__ = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: lowerCamelCase__ = DDPMScheduler.from_config("""/""".join(args.checkpoint_path.split("""/""")[:-1])) lowerCamelCase__ = VQModel.from_pretrained("""/""".join(args.checkpoint_path.split("""/""")[:-1])) lowerCamelCase__ = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
362
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class A__ ( unittest.TestCase ): @parameterized.expand([(None,), ('foo.json',)] ) def _lowerCamelCase ( self : Dict , a : str ): '''simple docstring''' lowerCAmelCase__ : List[str] = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(a , config_name=a ) lowerCAmelCase__ : Tuple = GenerationConfig.from_pretrained(a , config_name=a ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , a ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , a ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Dict = AutoConfig.from_pretrained('gpt2' ) lowerCAmelCase__ : Any = GenerationConfig.from_model_config(a ) lowerCAmelCase__ : Any = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(a , a ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = GenerationConfig() lowerCAmelCase__ : Dict = { 'max_new_tokens': 1_024, 'foo': 'bar', } lowerCAmelCase__ : List[Any] = copy.deepcopy(a ) lowerCAmelCase__ : Dict = generation_config.update(**a ) # update_kwargs was not modified (no side effects) self.assertEqual(a , a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(a , {'foo': 'bar'} ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Dict = GenerationConfig() lowerCAmelCase__ : List[Any] = 'bar' with tempfile.TemporaryDirectory('test-generation-config' ) as tmp_dir: generation_config.save_pretrained(a ) lowerCAmelCase__ : List[Any] = GenerationConfig.from_pretrained(a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , 'bar' ) lowerCAmelCase__ : int = GenerationConfig.from_model_config(a ) assert not hasattr(a , 'foo' ) # no new kwargs should be initialized if from config def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , a ) self.assertEqual(default_config.num_beams , 1 ) lowerCAmelCase__ : List[Any] = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , a ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(a ) lowerCAmelCase__ : Any = GenerationConfig.from_pretrained(a , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , a ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class A__ ( unittest.TestCase ): @classmethod def _lowerCamelCase ( cls : int ): '''simple docstring''' lowerCAmelCase__ : List[str] = TOKEN HfFolder.save_token(a ) @classmethod def _lowerCamelCase ( cls : Optional[int] ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-generation-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-generation-config-org' ) except HTTPError: pass def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('test-generation-config' , use_auth_token=self._token ) lowerCAmelCase__ : Any = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) # Reset repo delete_repo(token=self._token , repo_id='test-generation-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( a , repo_id='test-generation-config' , push_to_hub=a , use_auth_token=self._token ) lowerCAmelCase__ : Tuple = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : int = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('valid_org/test-generation-config-org' , use_auth_token=self._token ) lowerCAmelCase__ : Dict = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-generation-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( a , repo_id='valid_org/test-generation-config-org' , push_to_hub=a , use_auth_token=self._token ) lowerCAmelCase__ : List[str] = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) )
307
0
from __future__ import annotations from math import gcd def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 2 , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 3 , ) -> int | None: # A value less than 2 can cause an infinite loop in the algorithm. if num < 2: raise ValueError('The input value cannot be less than 2' ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: return (pow(SCREAMING_SNAKE_CASE_ , 2 ) + step) % modulus for _ in range(SCREAMING_SNAKE_CASE_ ): # These track the position within the cycle detection logic. lowerCAmelCase__ : int = seed lowerCAmelCase__ : Dict = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. lowerCAmelCase__ : Dict = rand_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = rand_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Union[str, Any] = rand_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. lowerCAmelCase__ : List[str] = gcd(hare - tortoise , SCREAMING_SNAKE_CASE_ ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. lowerCAmelCase__ : List[Any] = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( """num""", type=int, help="""The value to find a divisor of""", ) parser.add_argument( """--attempts""", type=int, default=3, help="""The number of attempts before giving up""", ) lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F"""{args.num} is probably prime""") else: lowerCamelCase__ = args.num // divisor print(F"""{args.num} = {divisor} * {quotient}""")
363
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( __magic_name__ , unittest.TestCase ): lowercase = UnCLIPImageVariationPipeline lowercase = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} lowercase = IMAGE_VARIATION_BATCH_PARAMS lowercase = [ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] lowercase = False @property def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' return 32 @property def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' return 32 @property def _lowerCamelCase ( self : int ): '''simple docstring''' return self.time_input_dim @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.time_input_dim * 4 @property def _lowerCamelCase ( self : Any ): '''simple docstring''' return 100 @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def _lowerCamelCase ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(a ) @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : List[Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(a ) @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Union[str, Any] = { 'clip_embeddings_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'cross_attention_dim': self.cross_attention_dim, } lowerCAmelCase__ : Optional[Any] = UnCLIPTextProjModel(**a ) return model @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : str = { 'sample_size': 32, # RGB in channels 'in_channels': 3, # Out channels is double in channels because predicts mean and variance 'out_channels': 6, 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': 'identity', } lowerCAmelCase__ : str = UNetaDConditionModel(**a ) return model @property def _lowerCamelCase ( self : str ): '''simple docstring''' return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def _lowerCamelCase ( self : str ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Any = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def _lowerCamelCase ( self : int ): '''simple docstring''' torch.manual_seed(1 ) lowerCAmelCase__ : List[str] = UNetaDModel(**self.dummy_super_res_kwargs ) return model def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.dummy_decoder lowerCAmelCase__ : Optional[int] = self.dummy_text_proj lowerCAmelCase__ : Any = self.dummy_text_encoder lowerCAmelCase__ : Any = self.dummy_tokenizer lowerCAmelCase__ : Any = self.dummy_super_res_first lowerCAmelCase__ : Optional[int] = self.dummy_super_res_last lowerCAmelCase__ : Dict = UnCLIPScheduler( variance_type='learned_range' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) lowerCAmelCase__ : Any = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) lowerCAmelCase__ : Any = CLIPImageProcessor(crop_size=32 , size=32 ) lowerCAmelCase__ : Optional[int] = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def _lowerCamelCase ( self : Any , a : Dict , a : List[str]=0 , a : List[str]=True ): '''simple docstring''' lowerCAmelCase__ : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(a ) ).to(a ) if str(a ).startswith('mps' ): lowerCAmelCase__ : Optional[int] = torch.manual_seed(a ) else: lowerCAmelCase__ : str = torch.Generator(device=a ).manual_seed(a ) if pil_image: lowerCAmelCase__ : Optional[int] = input_image * 0.5 + 0.5 lowerCAmelCase__ : Dict = input_image.clamp(0 , 1 ) lowerCAmelCase__ : List[Any] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCAmelCase__ : Union[str, Any] = DiffusionPipeline.numpy_to_pil(a )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = 'cpu' lowerCAmelCase__ : Any = self.get_dummy_components() lowerCAmelCase__ : List[str] = self.pipeline_class(**a ) lowerCAmelCase__ : Dict = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Dict = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : str = pipe(**a ) lowerCAmelCase__ : Optional[Any] = output.images lowerCAmelCase__ : str = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Optional[int] = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : List[str] = np.array( [ 0.9_9_9_7, 0.0_0_0_2, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_6_9, 0.0_0_2_3, 0.9_9_9_7, 0.9_9_6_9, 0.9_9_7_0, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = 'cpu' lowerCAmelCase__ : Dict = self.get_dummy_components() lowerCAmelCase__ : Optional[int] = self.pipeline_class(**a ) lowerCAmelCase__ : int = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : List[Any] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : List[str] = pipe(**a ) lowerCAmelCase__ : Union[str, Any] = output.images lowerCAmelCase__ : int = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : int = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Tuple = image[0, -3:, -3:, -1] lowerCAmelCase__ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : str = np.array([0.9_9_9_7, 0.0_0_0_3, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_7_0, 0.0_0_2_4, 0.9_9_9_7, 0.9_9_7_1, 0.9_9_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Tuple = 'cpu' lowerCAmelCase__ : int = self.get_dummy_components() lowerCAmelCase__ : Tuple = self.pipeline_class(**a ) lowerCAmelCase__ : Union[str, Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Tuple = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : List[str] = [ pipeline_inputs['image'], pipeline_inputs['image'], ] lowerCAmelCase__ : Optional[int] = pipe(**a ) lowerCAmelCase__ : Tuple = output.images lowerCAmelCase__ : List[str] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Union[str, Any] = [ tuple_pipeline_inputs['image'], tuple_pipeline_inputs['image'], ] lowerCAmelCase__ : str = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) lowerCAmelCase__ : Union[str, Any] = np.array( [ 0.9_9_9_7, 0.9_9_8_9, 0.0_0_0_8, 0.0_0_2_1, 0.9_9_6_0, 0.0_0_1_8, 0.0_0_1_4, 0.0_0_0_2, 0.9_9_3_3, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch.device('cpu' ) class A__ : lowercase = 1 lowerCAmelCase__ : Optional[Any] = self.get_dummy_components() lowerCAmelCase__ : Dict = self.pipeline_class(**a ) lowerCAmelCase__ : Optional[Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Optional[int] = torch.Generator(device=a ).manual_seed(0 ) lowerCAmelCase__ : Optional[int] = pipe.decoder.dtype lowerCAmelCase__ : Union[str, Any] = 1 lowerCAmelCase__ : str = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) lowerCAmelCase__ : List[Any] = pipe.prepare_latents( a , dtype=a , device=a , generator=a , latents=a , scheduler=DummyScheduler() ) lowerCAmelCase__ : List[str] = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) lowerCAmelCase__ : Any = pipe.prepare_latents( a , dtype=a , device=a , generator=a , latents=a , scheduler=DummyScheduler() ) lowerCAmelCase__ : List[Any] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Optional[int] = pipe( **a , decoder_latents=a , super_res_latents=a ).images lowerCAmelCase__ : Optional[Any] = self.get_dummy_inputs(a , pil_image=a ) # Don't pass image, instead pass embedding lowerCAmelCase__ : Union[str, Any] = pipeline_inputs.pop('image' ) lowerCAmelCase__ : Union[str, Any] = pipe.image_encoder(a ).image_embeds lowerCAmelCase__ : List[Any] = pipe( **a , decoder_latents=a , super_res_latents=a , image_embeddings=a , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch_device == 'cpu' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor lowerCAmelCase__ : int = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=a , expected_max_diff=a ) @skip_mps def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = torch_device == 'cpu' lowerCAmelCase__ : Any = True lowerCAmelCase__ : Optional[Any] = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] self._test_inference_batch_single_identical( test_max_difference=a , relax_max_difference=a , additional_params_copy_to_batched_inputs=a , ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Tuple = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes lowerCAmelCase__ : List[str] = [2, 3] self._test_inference_batch_consistent( batch_sizes=a , additional_params_copy_to_batched_inputs=a , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=a ) @skip_mps def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return super().test_save_load_local() @skip_mps def _lowerCamelCase ( self : str ): '''simple docstring''' return super().test_save_load_optional_components() @slow @require_torch_gpu class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png' ) lowerCAmelCase__ : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/unclip/karlo_v1_alpha_cat_variation_fp16.npy' ) lowerCAmelCase__ : Tuple = UnCLIPImageVariationPipeline.from_pretrained( 'kakaobrain/karlo-v1-alpha-image-variations' , torch_dtype=torch.floataa ) lowerCAmelCase__ : Union[str, Any] = pipeline.to(a ) pipeline.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Dict = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase__ : List[str] = pipeline( a , generator=a , output_type='np' , ) lowerCAmelCase__ : Union[str, Any] = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(a , a , 15 )
307
0
def lowerCAmelCase__ ( ) -> int: return [ a * b * (1_000 - a - b) for a in range(1 , 999 ) for b in range(SCREAMING_SNAKE_CASE_ , 999 ) if (a * a + b * b == (1_000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F"""{solution() = }""")
364
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: stooge(SCREAMING_SNAKE_CASE_ , 0 , len(SCREAMING_SNAKE_CASE_ ) - 1 ) return arr def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: lowerCAmelCase__ , lowerCAmelCase__ : Tuple = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: lowerCAmelCase__ : Union[str, Any] = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (h - t) ) # Recursively sort last 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , i + t , (SCREAMING_SNAKE_CASE_) ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (h - t) ) if __name__ == "__main__": lowerCamelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCamelCase__ = [int(item) for item in user_input.split(""",""")] print(stooge_sort(unsorted))
307
0
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class A__ ( __magic_name__ ): lowercase = ['image_processor', 'tokenizer'] lowercase = 'OwlViTImageProcessor' lowercase = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : List[str] , a : Tuple=None , a : int=None , **a : Optional[int] ): lowerCAmelCase__ : str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , a , ) lowerCAmelCase__ : Tuple = kwargs.pop('feature_extractor' ) lowerCAmelCase__ : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(a , a ) def __call__( self : Tuple , a : str=None , a : Dict=None , a : List[Any]=None , a : Optional[Any]="max_length" , a : str="np" , **a : Union[str, Any] ): if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(a , a ) or (isinstance(a , a ) and not isinstance(text[0] , a )): lowerCAmelCase__ : List[str] = [self.tokenizer(a , padding=a , return_tensors=a , **a )] elif isinstance(a , a ) and isinstance(text[0] , a ): lowerCAmelCase__ : Optional[int] = [] # Maximum number of queries across batch lowerCAmelCase__ : List[Any] = max([len(a ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(a ) != max_num_queries: lowerCAmelCase__ : Optional[int] = t + [' '] * (max_num_queries - len(a )) lowerCAmelCase__ : str = self.tokenizer(a , padding=a , return_tensors=a , **a ) encodings.append(a ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": lowerCAmelCase__ : List[str] = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) lowerCAmelCase__ : Union[str, Any] = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp lowerCAmelCase__ : Tuple = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) lowerCAmelCase__ : List[Any] = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch lowerCAmelCase__ : Union[str, Any] = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0 ) lowerCAmelCase__ : Optional[Any] = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf lowerCAmelCase__ : Union[str, Any] = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0 ) lowerCAmelCase__ : Optional[int] = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) lowerCAmelCase__ : Optional[int] = BatchEncoding() lowerCAmelCase__ : Dict = input_ids lowerCAmelCase__ : Dict = attention_mask if query_images is not None: lowerCAmelCase__ : List[str] = BatchEncoding() lowerCAmelCase__ : Union[str, Any] = self.image_processor( a , return_tensors=a , **a ).pixel_values lowerCAmelCase__ : Union[str, Any] = query_pixel_values if images is not None: lowerCAmelCase__ : Dict = self.image_processor(a , return_tensors=a , **a ) if text is not None and images is not None: lowerCAmelCase__ : List[Any] = image_features.pixel_values return encoding elif query_images is not None and images is not None: lowerCAmelCase__ : Optional[Any] = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**a ) , tensor_type=a ) def _lowerCamelCase ( self : List[Any] , *a : int , **a : Tuple ): return self.image_processor.post_process(*a , **a ) def _lowerCamelCase ( self : int , *a : Tuple , **a : List[Any] ): return self.image_processor.post_process_object_detection(*a , **a ) def _lowerCamelCase ( self : Tuple , *a : Tuple , **a : Optional[int] ): return self.image_processor.post_process_image_guided_detection(*a , **a ) def _lowerCamelCase ( self : str , *a : Any , **a : Optional[Any] ): return self.tokenizer.batch_decode(*a , **a ) def _lowerCamelCase ( self : Optional[Any] , *a : List[str] , **a : int ): return self.tokenizer.decode(*a , **a ) @property def _lowerCamelCase ( self : Optional[Any] ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , a , ) return self.image_processor_class @property def _lowerCamelCase ( self : Optional[int] ): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , a , ) return self.image_processor
365
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) lowerCamelCase__ = { """configuration_speech_to_text""": ["""SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Speech2TextConfig"""], """processing_speech_to_text""": ["""Speech2TextProcessor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""Speech2TextTokenizer"""] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""Speech2TextFeatureExtractor"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSpeech2TextForConditionalGeneration""", """TFSpeech2TextModel""", """TFSpeech2TextPreTrainedModel""", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Speech2TextForConditionalGeneration""", """Speech2TextModel""", """Speech2TextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
0
from __future__ import annotations import math import random from typing import Any class A__ : def __init__( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : list[Any] = [] lowerCAmelCase__ : int = 0 lowerCAmelCase__ : int = 0 def _lowerCamelCase ( self : int ): '''simple docstring''' return self.head == self.tail def _lowerCamelCase ( self : Tuple , a : Any ): '''simple docstring''' self.data.append(a ) lowerCAmelCase__ : int = self.tail + 1 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.data[self.head] lowerCAmelCase__ : Optional[int] = self.head + 1 return ret def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return self.tail - self.head def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' print(self.data ) print('**************' ) print(self.data[self.head : self.tail] ) class A__ : def __init__( self : List[Any] , a : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = data lowerCAmelCase__ : MyNode | None = None lowerCAmelCase__ : MyNode | None = None lowerCAmelCase__ : int = 1 def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' return self.data def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return self.left def _lowerCamelCase ( self : Any ): '''simple docstring''' return self.right def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.height def _lowerCamelCase ( self : List[Any] , a : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = data def _lowerCamelCase ( self : List[Any] , a : MyNode | None ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = node def _lowerCamelCase ( self : List[str] , a : MyNode | None ): '''simple docstring''' lowerCAmelCase__ : List[str] = node def _lowerCamelCase ( self : List[Any] , a : int ): '''simple docstring''' lowerCAmelCase__ : Dict = height def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> int: if node is None: return 0 return node.get_height() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: if a > b: return a return b def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> MyNode: print('left rotation node:' , node.get_data() ) lowerCAmelCase__ : Optional[Any] = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Union[str, Any] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Tuple = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(SCREAMING_SNAKE_CASE_ ) return ret def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> MyNode: print('right rotation node:' , node.get_data() ) lowerCAmelCase__ : str = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Dict = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(SCREAMING_SNAKE_CASE_ ) return ret def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> MyNode: lowerCAmelCase__ : Any = node.get_left() assert left_child is not None node.set_left(left_rotation(SCREAMING_SNAKE_CASE_ ) ) return right_rotation(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> MyNode: lowerCAmelCase__ : Dict = node.get_right() assert right_child is not None node.set_right(right_rotation(SCREAMING_SNAKE_CASE_ ) ) return left_rotation(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> MyNode | None: if node is None: return MyNode(SCREAMING_SNAKE_CASE_ ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , SCREAMING_SNAKE_CASE_ ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected lowerCAmelCase__ : Optional[int] = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child lowerCAmelCase__ : Tuple = right_rotation(SCREAMING_SNAKE_CASE_ ) else: lowerCAmelCase__ : str = lr_rotation(SCREAMING_SNAKE_CASE_ ) else: node.set_right(insert_node(node.get_right() , SCREAMING_SNAKE_CASE_ ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: lowerCAmelCase__ : Tuple = node.get_right() assert right_child is not None if data < right_child.get_data(): lowerCAmelCase__ : Tuple = rl_rotation(SCREAMING_SNAKE_CASE_ ) else: lowerCAmelCase__ : Union[str, Any] = left_rotation(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : int = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(SCREAMING_SNAKE_CASE_ ) return node def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Any: while True: lowerCAmelCase__ : Optional[int] = root.get_right() if right_child is None: break lowerCAmelCase__ : Optional[Any] = right_child return root.get_data() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Any: while True: lowerCAmelCase__ : Tuple = root.get_left() if left_child is None: break lowerCAmelCase__ : List[Any] = left_child return root.get_data() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> MyNode | None: lowerCAmelCase__ : str = root.get_left() lowerCAmelCase__ : Dict = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: lowerCAmelCase__ : Union[str, Any] = get_left_most(SCREAMING_SNAKE_CASE_ ) root.set_data(SCREAMING_SNAKE_CASE_ ) root.set_right(del_node(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) elif left_child is not None: lowerCAmelCase__ : Optional[Any] = left_child elif right_child is not None: lowerCAmelCase__ : Optional[int] = right_child else: return None elif root.get_data() > data: if left_child is None: print('No such data' ) return root else: root.set_left(del_node(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) if get_height(SCREAMING_SNAKE_CASE_ ) - get_height(SCREAMING_SNAKE_CASE_ ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): lowerCAmelCase__ : Dict = left_rotation(SCREAMING_SNAKE_CASE_ ) else: lowerCAmelCase__ : List[str] = rl_rotation(SCREAMING_SNAKE_CASE_ ) elif get_height(SCREAMING_SNAKE_CASE_ ) - get_height(SCREAMING_SNAKE_CASE_ ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): lowerCAmelCase__ : Optional[int] = right_rotation(SCREAMING_SNAKE_CASE_ ) else: lowerCAmelCase__ : Dict = lr_rotation(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : str = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(SCREAMING_SNAKE_CASE_ ) return root class A__ : def __init__( self : Any ): '''simple docstring''' lowerCAmelCase__ : MyNode | None = None def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' return get_height(self.root ) def _lowerCamelCase ( self : List[Any] , a : Any ): '''simple docstring''' print('insert:' + str(a ) ) lowerCAmelCase__ : Optional[Any] = insert_node(self.root , a ) def _lowerCamelCase ( self : Tuple , a : Any ): '''simple docstring''' print('delete:' + str(a ) ) if self.root is None: print('Tree is empty!' ) return lowerCAmelCase__ : List[str] = del_node(self.root , a ) def __str__( self : Dict , ): # a level traversale, gives a more intuitive look on the tree '''simple docstring''' lowerCAmelCase__ : int = '' lowerCAmelCase__ : int = MyQueue() q.push(self.root ) lowerCAmelCase__ : Any = self.get_height() if layer == 0: return output lowerCAmelCase__ : Optional[Any] = 0 while not q.is_empty(): lowerCAmelCase__ : Any = q.pop() lowerCAmelCase__ : str = ' ' * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(a ) q.push(a ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space lowerCAmelCase__ : str = cnt + 1 for i in range(100 ): if cnt == math.pow(2 , a ) - 1: lowerCAmelCase__ : Dict = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def lowerCAmelCase__ ( ) -> None: import doctest doctest.testmod() if __name__ == "__main__": _test() lowerCamelCase__ = AVLtree() lowerCamelCase__ = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
366
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } lowerCAmelCase__ : int = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 128, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 142, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(a ) , a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(a ) , x.transpose() ) ) lowerCAmelCase__ : List[str] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = np.random.randn(3 , 4 ) lowerCAmelCase__ : List[Any] = torch.tensor(a ) self.assertTrue(np.allclose(transpose(a ) , transpose(a ).numpy() ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : int = torch.tensor(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , transpose(a , axes=(1, 2, 0) ).numpy() ) ) @require_tf def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = np.random.randn(3 , 4 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(transpose(a ) , transpose(a ).numpy() ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : Dict = tf.constant(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , transpose(a , axes=(1, 2, 0) ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = np.random.randn(3 , 4 ) lowerCAmelCase__ : int = jnp.array(a ) self.assertTrue(np.allclose(transpose(a ) , np.asarray(transpose(a ) ) ) ) lowerCAmelCase__ : Any = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : str = jnp.array(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , np.asarray(transpose(a , axes=(1, 2, 0) ) ) ) ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Any = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , np.reshape(a , (4, 3) ) ) ) lowerCAmelCase__ : Tuple = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , np.reshape(a , (12, 5) ) ) ) @require_torch def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = np.random.randn(3 , 4 ) lowerCAmelCase__ : Dict = torch.tensor(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , reshape(a , (4, 3) ).numpy() ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : str = torch.tensor(a ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , reshape(a , (12, 5) ).numpy() ) ) @require_tf def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = np.random.randn(3 , 4 ) lowerCAmelCase__ : List[Any] = tf.constant(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , reshape(a , (4, 3) ).numpy() ) ) lowerCAmelCase__ : Dict = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , reshape(a , (12, 5) ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Dict = np.random.randn(3 , 4 ) lowerCAmelCase__ : List[str] = jnp.array(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , np.asarray(reshape(a , (4, 3) ) ) ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : Union[str, Any] = jnp.array(a ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , np.asarray(reshape(a , (12, 5) ) ) ) ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(a ) , np.squeeze(a ) ) ) lowerCAmelCase__ : int = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , np.squeeze(a , axis=2 ) ) ) @require_torch def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = np.random.randn(1 , 3 , 4 ) lowerCAmelCase__ : str = torch.tensor(a ) self.assertTrue(np.allclose(squeeze(a ) , squeeze(a ).numpy() ) ) lowerCAmelCase__ : Optional[Any] = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase__ : Dict = torch.tensor(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , squeeze(a , axis=2 ).numpy() ) ) @require_tf def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : List[str] = np.random.randn(1 , 3 , 4 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(squeeze(a ) , squeeze(a ).numpy() ) ) lowerCAmelCase__ : int = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase__ : str = tf.constant(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , squeeze(a , axis=2 ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : List[str] = np.random.randn(1 , 3 , 4 ) lowerCAmelCase__ : Union[str, Any] = jnp.array(a ) self.assertTrue(np.allclose(squeeze(a ) , np.asarray(squeeze(a ) ) ) ) lowerCAmelCase__ : str = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase__ : Optional[Any] = jnp.array(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , np.asarray(squeeze(a , axis=2 ) ) ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , np.expand_dims(a , axis=1 ) ) ) @require_torch def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : str = np.random.randn(3 , 4 ) lowerCAmelCase__ : str = torch.tensor(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , expand_dims(a , axis=1 ).numpy() ) ) @require_tf def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = np.random.randn(3 , 4 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , expand_dims(a , axis=1 ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : int = np.random.randn(3 , 4 ) lowerCAmelCase__ : Tuple = jnp.array(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , np.asarray(expand_dims(a , axis=1 ) ) ) )
307
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ = logging.get_logger(__name__) class A__ ( __magic_name__ , __magic_name__ ): lowercase = 'maskformer-swin' lowercase = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Optional[int] , a : List[str]=224 , a : Union[str, Any]=4 , a : Optional[int]=3 , a : List[str]=96 , a : int=[2, 2, 6, 2] , a : Optional[Any]=[3, 6, 12, 24] , a : Optional[int]=7 , a : Union[str, Any]=4.0 , a : Dict=True , a : List[Any]=0.0 , a : List[Any]=0.0 , a : Optional[int]=0.1 , a : int="gelu" , a : Tuple=False , a : Union[str, Any]=0.0_2 , a : Optional[int]=1E-5 , a : Optional[int]=None , a : Optional[Any]=None , **a : Optional[Any] , ): '''simple docstring''' super().__init__(**a ) lowerCAmelCase__ : Optional[int] = image_size lowerCAmelCase__ : Optional[Any] = patch_size lowerCAmelCase__ : Optional[int] = num_channels lowerCAmelCase__ : int = embed_dim lowerCAmelCase__ : Union[str, Any] = depths lowerCAmelCase__ : List[str] = len(a ) lowerCAmelCase__ : str = num_heads lowerCAmelCase__ : Any = window_size lowerCAmelCase__ : List[Any] = mlp_ratio lowerCAmelCase__ : Dict = qkv_bias lowerCAmelCase__ : List[Any] = hidden_dropout_prob lowerCAmelCase__ : List[Any] = attention_probs_dropout_prob lowerCAmelCase__ : int = drop_path_rate lowerCAmelCase__ : Optional[int] = hidden_act lowerCAmelCase__ : Union[str, Any] = use_absolute_embeddings lowerCAmelCase__ : Tuple = layer_norm_eps lowerCAmelCase__ : Optional[Any] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase__ : List[Any] = int(embed_dim * 2 ** (len(a ) - 1) ) lowerCAmelCase__ : List[Any] = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(a ) + 1 )] lowerCAmelCase__ : int = get_aligned_output_features_output_indices( out_features=a , out_indices=a , stage_names=self.stage_names )
367
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position lowerCamelCase__ = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip lowerCamelCase__ = concatenate_datasets lowerCamelCase__ = DownloadConfig lowerCamelCase__ = DownloadManager lowerCamelCase__ = DownloadMode lowerCamelCase__ = DownloadConfig lowerCamelCase__ = DownloadMode lowerCamelCase__ = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
307
0
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class A__ ( ctypes.Structure ): # _fields is a specific attr expected by ctypes lowercase = [('size', ctypes.c_int), ('visible', ctypes.c_byte)] def lowerCAmelCase__ ( ) -> Optional[int]: if os.name == "nt": lowerCAmelCase__ : List[str] = CursorInfo() lowerCAmelCase__ : int = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(SCREAMING_SNAKE_CASE_ , ctypes.byref(SCREAMING_SNAKE_CASE_ ) ) lowerCAmelCase__ : Union[str, Any] = False ctypes.windll.kernelaa.SetConsoleCursorInfo(SCREAMING_SNAKE_CASE_ , ctypes.byref(SCREAMING_SNAKE_CASE_ ) ) elif os.name == "posix": sys.stdout.write('\033[?25l' ) sys.stdout.flush() def lowerCAmelCase__ ( ) -> List[Any]: if os.name == "nt": lowerCAmelCase__ : Any = CursorInfo() lowerCAmelCase__ : str = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(SCREAMING_SNAKE_CASE_ , ctypes.byref(SCREAMING_SNAKE_CASE_ ) ) lowerCAmelCase__ : List[str] = True ctypes.windll.kernelaa.SetConsoleCursorInfo(SCREAMING_SNAKE_CASE_ , ctypes.byref(SCREAMING_SNAKE_CASE_ ) ) elif os.name == "posix": sys.stdout.write('\033[?25h' ) sys.stdout.flush() @contextmanager def lowerCAmelCase__ ( ) -> List[Any]: try: hide_cursor() yield finally: show_cursor()
368
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( __magic_name__ , unittest.TestCase ): lowercase = DanceDiffusionPipeline lowercase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS lowercase = PipelineTesterMixin.required_optional_params - { 'callback', 'latents', 'callback_steps', 'output_type', 'num_images_per_prompt', } lowercase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS lowercase = False lowercase = False def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16_000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=a , use_timestep_embedding=a , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , ) lowerCAmelCase__ : Tuple = IPNDMScheduler() lowerCAmelCase__ : str = { 'unet': unet, 'scheduler': scheduler, } return components def _lowerCamelCase ( self : int , a : Dict , a : List[str]=0 ): '''simple docstring''' if str(a ).startswith('mps' ): lowerCAmelCase__ : Union[str, Any] = torch.manual_seed(a ) else: lowerCAmelCase__ : Optional[Any] = torch.Generator(device=a ).manual_seed(a ) lowerCAmelCase__ : Optional[Any] = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : int = self.get_dummy_components() lowerCAmelCase__ : List[str] = DanceDiffusionPipeline(**a ) lowerCAmelCase__ : Any = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : List[str] = self.get_dummy_inputs(a ) lowerCAmelCase__ : List[Any] = pipe(**a ) lowerCAmelCase__ : List[str] = output.audios lowerCAmelCase__ : Optional[Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) lowerCAmelCase__ : List[Any] = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def _lowerCamelCase ( self : str ): '''simple docstring''' return super().test_save_load_local() @skip_mps def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def _lowerCamelCase ( self : List[str] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch_device lowerCAmelCase__ : List[str] = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) lowerCAmelCase__ : List[str] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Optional[int] = torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = pipe(generator=a , num_inference_steps=100 , audio_length_in_s=4.0_9_6 ) lowerCAmelCase__ : int = output.audios lowerCAmelCase__ : List[Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase__ : Dict = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : str = torch_device lowerCAmelCase__ : List[Any] = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa ) lowerCAmelCase__ : Optional[int] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : str = torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = pipe(generator=a , num_inference_steps=100 , audio_length_in_s=4.0_9_6 ) lowerCAmelCase__ : str = output.audios lowerCAmelCase__ : Tuple = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase__ : int = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
307
0
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging lowerCamelCase__ = logging.get_logger(__name__) logging.set_verbosity_info() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: if "xprophetnet" in prophetnet_checkpoint_path: lowerCAmelCase__ : Dict = XLMProphetNetForConditionalGenerationOld.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[Any] = XLMProphetNetForConditionalGeneration.from_pretrained( SCREAMING_SNAKE_CASE_ , output_loading_info=SCREAMING_SNAKE_CASE_ ) else: lowerCAmelCase__ : Optional[Any] = ProphetNetForConditionalGenerationOld.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[str] = ProphetNetForConditionalGeneration.from_pretrained( SCREAMING_SNAKE_CASE_ , output_loading_info=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Dict = ['key_proj', 'value_proj', 'query_proj'] lowerCAmelCase__ : Union[str, Any] = { 'self_attn': 'ngram_self_attn', 'cross_attn': 'encoder_attn', 'cross_attn_layer_norm': 'encoder_attn_layer_norm', 'feed_forward_layer_norm': 'final_layer_norm', 'feed_forward': '', 'intermediate': 'fc1', 'output': 'fc2', 'key_proj': 'k_proj', 'query_proj': 'q_proj', 'value_proj': 'v_proj', 'word_embeddings': 'embed_tokens', 'embeddings_layer_norm': 'emb_layer_norm', 'relative_pos_embeddings': 'relative_linear', 'ngram_embeddings': 'ngram_input_embed', 'position_embeddings': 'embed_positions', } for key in loading_info["missing_keys"]: lowerCAmelCase__ : Optional[Any] = key.split('.' ) if attributes[0] == "lm_head": lowerCAmelCase__ : Dict = prophet lowerCAmelCase__ : Tuple = prophet_old else: lowerCAmelCase__ : Optional[Any] = prophet.prophetnet lowerCAmelCase__ : Optional[int] = prophet_old.model lowerCAmelCase__ : Optional[int] = False for attribute in attributes: if attribute in mapping: lowerCAmelCase__ : List[Any] = mapping[attribute] if not hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and len(SCREAMING_SNAKE_CASE_ ) > 0: lowerCAmelCase__ : Union[str, Any] = attribute elif hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : List[str] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" lowerCAmelCase__ : Optional[Any] = old_model.weight logger.info(F'''{attribute} is initialized.''' ) lowerCAmelCase__ : Tuple = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" lowerCAmelCase__ : Optional[Any] = old_model.bias logger.info(F'''{attribute} is initialized''' ) lowerCAmelCase__ : str = True break elif attribute in special_keys and hasattr(SCREAMING_SNAKE_CASE_ , 'in_proj_weight' ): lowerCAmelCase__ : Dict = old_model.in_proj_weight.shape[0] // 3 lowerCAmelCase__ : Dict = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": lowerCAmelCase__ : str = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) lowerCAmelCase__ : List[str] = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": lowerCAmelCase__ : int = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) lowerCAmelCase__ : Union[str, Any] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": lowerCAmelCase__ : List[str] = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) lowerCAmelCase__ : str = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) lowerCAmelCase__ : Union[str, Any] = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." lowerCAmelCase__ : Optional[Any] = nn.Parameter(old_model.embed_positions.weight[:512, :] ) lowerCAmelCase__ : str = True break if attribute.isdigit(): lowerCAmelCase__ : Any = model[int(SCREAMING_SNAKE_CASE_ )] lowerCAmelCase__ : Optional[int] = old_model[int(SCREAMING_SNAKE_CASE_ )] else: lowerCAmelCase__ : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if old_attribute == "": lowerCAmelCase__ : str = old_model else: if not hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError(F'''{old_model} does not have {old_attribute}''' ) lowerCAmelCase__ : Tuple = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not is_key_init: raise ValueError(F'''{key} was not correctly initialized!''' ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCamelCase__ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
369
from ..utils import DummyObject, requires_backends class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : Any , *a : Any , **a : Any ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Union[str, Any] , *a : Optional[int] , **a : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : int , *a : List[Any] , **a : int ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : str , *a : Any , **a : Optional[Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : List[str] , **a : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , *a : Optional[Any] , **a : Any ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : Optional[int] , *a : List[Any] , **a : str ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : List[Any] , *a : List[str] , **a : List[str] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , *a : Union[str, Any] , **a : Optional[int] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *a : Dict , **a : List[str] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : Dict , **a : List[Any] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : List[str] , **a : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : Dict , *a : str , **a : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Any , *a : Any , **a : Any ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Any , *a : List[Any] , **a : str ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : str , *a : Union[str, Any] , **a : Optional[Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : int , *a : Union[str, Any] , **a : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : Tuple , **a : List[str] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] )
307
0
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : List[str] ): '''simple docstring''' super().tearDown() gc.collect() def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) lowerCAmelCase__ : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) lowerCAmelCase__ : Any = 'xvjiarui/stable-diffusion-2-inpainting' lowerCAmelCase__ : str = FlaxStableDiffusionInpaintPipeline.from_pretrained(a , safety_checker=a ) lowerCAmelCase__ : int = 'Face of a yellow cat, high resolution, sitting on a park bench' lowerCAmelCase__ : str = jax.random.PRNGKey(0 ) lowerCAmelCase__ : int = 50 lowerCAmelCase__ : int = jax.device_count() lowerCAmelCase__ : Optional[Any] = num_samples * [prompt] lowerCAmelCase__ : List[str] = num_samples * [init_image] lowerCAmelCase__ : int = num_samples * [mask_image] lowerCAmelCase__ : Optional[Any] = pipeline.prepare_inputs(a , a , a ) # shard inputs and rng lowerCAmelCase__ : int = replicate(a ) lowerCAmelCase__ : str = jax.random.split(a , jax.device_count() ) lowerCAmelCase__ : Any = shard(a ) lowerCAmelCase__ : List[Any] = shard(a ) lowerCAmelCase__ : int = shard(a ) lowerCAmelCase__ : List[Any] = pipeline( a , a , a , a , a , a , jit=a ) lowerCAmelCase__ : Any = output.images.reshape(a , 512 , 512 , 3 ) lowerCAmelCase__ : Union[str, Any] = images[0, 253:256, 253:256, -1] lowerCAmelCase__ : Optional[Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCAmelCase__ : str = jnp.array( [0.3_6_1_1_3_0_7, 0.3_7_6_4_9_7_3_6, 0.3_7_5_7_4_0_8, 0.3_8_2_1_3_9_5_3, 0.3_9_2_9_5_1_6_7, 0.3_8_4_1_6_3_1, 0.4_1_5_5_4_9_7_8, 0.4_1_3_7_4_7_5, 0.4_2_1_7_0_8_4] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
370
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class A__ : def __init__( self : List[str] , a : Any , a : Dict=13 , a : Optional[Any]=7 , a : Tuple=True , a : Tuple=True , a : Dict=False , a : Optional[Any]=True , a : Dict=99 , a : Tuple=32 , a : Optional[Any]=5 , a : str=4 , a : Union[str, Any]=37 , a : Any="gelu" , a : Dict=0.1 , a : Any=0.1 , a : Optional[int]=512 , a : Union[str, Any]=16 , a : Optional[int]=2 , a : Optional[Any]=0.0_2 , a : List[Any]=3 , a : Any=4 , a : Optional[int]=None , ): '''simple docstring''' lowerCAmelCase__ : List[str] = parent lowerCAmelCase__ : str = batch_size lowerCAmelCase__ : Optional[int] = seq_length lowerCAmelCase__ : Optional[Any] = is_training lowerCAmelCase__ : Tuple = use_input_mask lowerCAmelCase__ : List[Any] = use_token_type_ids lowerCAmelCase__ : str = use_labels lowerCAmelCase__ : Dict = vocab_size lowerCAmelCase__ : Union[str, Any] = hidden_size lowerCAmelCase__ : Optional[int] = num_hidden_layers lowerCAmelCase__ : List[Any] = num_attention_heads lowerCAmelCase__ : int = intermediate_size lowerCAmelCase__ : Union[str, Any] = hidden_act lowerCAmelCase__ : Union[str, Any] = hidden_dropout_prob lowerCAmelCase__ : Any = attention_probs_dropout_prob lowerCAmelCase__ : Dict = max_position_embeddings lowerCAmelCase__ : int = type_vocab_size lowerCAmelCase__ : int = type_sequence_label_size lowerCAmelCase__ : Dict = initializer_range lowerCAmelCase__ : List[str] = num_labels lowerCAmelCase__ : Any = num_choices lowerCAmelCase__ : List[Any] = scope def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ : Tuple = None if self.use_input_mask: lowerCAmelCase__ : str = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ : List[str] = None if self.use_token_type_ids: lowerCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : Dict = None lowerCAmelCase__ : str = None if self.use_labels: lowerCAmelCase__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self : Tuple , a : Dict , a : List[str] , a : str , a : Union[str, Any] , a : Optional[Any] , a : Dict , a : str ): '''simple docstring''' lowerCAmelCase__ : str = LlamaModel(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Dict = model(a , attention_mask=a ) lowerCAmelCase__ : Union[str, Any] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : int , a : Any , a : Union[str, Any] , a : Dict , a : Dict , a : List[Any] , a : Optional[Any] , a : int , a : Dict , a : Tuple , ): '''simple docstring''' lowerCAmelCase__ : int = True lowerCAmelCase__ : Dict = LlamaModel(a ) model.to(a ) model.eval() lowerCAmelCase__ : List[Any] = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , ) lowerCAmelCase__ : Optional[int] = model( a , attention_mask=a , encoder_hidden_states=a , ) lowerCAmelCase__ : Union[str, Any] = model(a , attention_mask=a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : Union[str, Any] , a : int , a : List[Any] , a : int , a : Tuple , a : List[Any] , a : Union[str, Any] , a : Any , a : List[str] , a : List[str] , ): '''simple docstring''' lowerCAmelCase__ : List[Any] = LlamaForCausalLM(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Tuple = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : str , a : Any , a : Tuple , a : str , a : Union[str, Any] , a : Optional[Any] , a : List[Any] , a : Optional[Any] , a : Optional[Any] , a : List[str] , ): '''simple docstring''' lowerCAmelCase__ : str = True lowerCAmelCase__ : Optional[int] = True lowerCAmelCase__ : List[Any] = LlamaForCausalLM(config=a ) model.to(a ) model.eval() # first forward pass lowerCAmelCase__ : List[str] = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , use_cache=a , ) lowerCAmelCase__ : List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase__ : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase__ : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase__ : int = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase__ : Any = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase__ : Union[str, Any] = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , output_hidden_states=a , )['hidden_states'][0] lowerCAmelCase__ : Union[str, Any] = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , past_key_values=a , output_hidden_states=a , )['hidden_states'][0] # select random slice lowerCAmelCase__ : Any = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase__ : Optional[int] = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a , a , atol=1E-3 ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : Any = config_and_inputs lowerCAmelCase__ : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () lowercase = (LlamaForCausalLM,) if is_torch_available() else () lowercase = ( { 'feature-extraction': LlamaModel, 'text-classification': LlamaForSequenceClassification, 'text-generation': LlamaForCausalLM, 'zero-shot': LlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Tuple = LlamaModelTester(self ) lowerCAmelCase__ : str = ConfigTester(self , config_class=a , hidden_size=37 ) def _lowerCamelCase ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase__ : int = type self.model_tester.create_and_check_model(*a ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : int = 3 lowerCAmelCase__ : Dict = input_dict['input_ids'] lowerCAmelCase__ : Optional[Any] = input_ids.ne(1 ).to(a ) lowerCAmelCase__ : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase__ : Tuple = LlamaForSequenceClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : str = model(a , attention_mask=a , labels=a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : List[Any] = 3 lowerCAmelCase__ : List[str] = 'single_label_classification' lowerCAmelCase__ : List[Any] = input_dict['input_ids'] lowerCAmelCase__ : List[Any] = input_ids.ne(1 ).to(a ) lowerCAmelCase__ : Optional[int] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase__ : int = LlamaForSequenceClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : Optional[int] = model(a , attention_mask=a , labels=a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Optional[Any] = 3 lowerCAmelCase__ : Optional[Any] = 'multi_label_classification' lowerCAmelCase__ : List[str] = input_dict['input_ids'] lowerCAmelCase__ : Tuple = input_ids.ne(1 ).to(a ) lowerCAmelCase__ : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase__ : Dict = LlamaForSequenceClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : Dict = model(a , attention_mask=a , labels=a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def _lowerCamelCase ( self : Optional[int] , a : Dict ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Tuple = ids_tensor([1, 10] , config.vocab_size ) lowerCAmelCase__ : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase__ : List[Any] = LlamaModel(a ) original_model.to(a ) original_model.eval() lowerCAmelCase__ : List[Any] = original_model(a ).last_hidden_state lowerCAmelCase__ : str = original_model(a ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase__ : Any = {'type': scaling_type, 'factor': 1_0.0} lowerCAmelCase__ : Union[str, Any] = LlamaModel(a ) scaled_model.to(a ) scaled_model.eval() lowerCAmelCase__ : Union[str, Any] = scaled_model(a ).last_hidden_state lowerCAmelCase__ : Optional[int] = scaled_model(a ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(a , a , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(a , a , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(a , a , atol=1E-5 ) ) @require_torch class A__ ( unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : int = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowerCAmelCase__ : List[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) lowerCAmelCase__ : Any = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 lowerCAmelCase__ : Dict = torch.tensor([[-6.6_5_5_0, -4.1_2_2_7, -4.9_8_5_9, -3.2_4_0_6, 0.8_2_6_2, -3.0_0_3_3, 1.2_9_6_4, -3.3_6_9_9]] ) torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase__ : List[Any] = torch.tensor([-1_2.8_2_8_1, -7.4_4_5_3, -0.4_6_3_9, -8.0_6_2_5, -7.2_5_0_0, -8.0_0_0_0, -6.4_8_8_3, -7.7_6_9_5, -7.8_4_3_8, -7.0_3_1_2, -6.2_1_8_8, -7.1_3_2_8, -1.8_4_9_6, 1.9_9_6_1, -8.6_2_5_0, -6.7_2_2_7, -1_2.8_2_8_1, -6.9_4_9_2, -7.0_7_4_2, -7.7_8_5_2, -7.5_8_2_0, -7.9_0_6_2, -6.9_3_7_5, -7.9_8_0_5, -8.3_4_3_8, -8.1_5_6_2, -8.0_4_6_9, -7.6_2_5_0, -7.7_4_2_2, -7.3_3_9_8,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : str = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowerCAmelCase__ : Optional[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) lowerCAmelCase__ : List[str] = model(torch.tensor(a ) ) # Expected mean on dim = -1 lowerCAmelCase__ : Union[str, Any] = torch.tensor([[-2.0_6_2_2, -1.2_7_9_4, -1.1_6_3_8, -0.9_7_8_8, -1.4_6_0_3, -1.0_2_3_8, -1.7_8_9_3, -1.4_4_1_1]] ) torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase__ : Any = torch.tensor([-8.1_4_0_6, -8.0_5_4_7, 2.7_4_6_1, -1.2_3_4_4, -0.1_4_4_8, -1.8_2_6_2, -1.0_0_2_0, -1.8_1_5_4, -1.6_8_9_5, -1.8_5_1_6, -2.3_5_7_4, -0.9_2_7_7, 3.7_5_9_8, 6.5_7_4_2, -1.2_9_9_8, -0.1_1_7_7, -8.1_4_0_6, -2.9_6_8_8, -2.9_1_9_9, -3.1_6_9_9, -3.5_2_5_4, -2.3_5_5_5, -2.7_9_8_8, -3.4_1_4_1, -2.8_2_6_2, -4.5_1_9_5, -3.3_3_7_9, -3.3_1_6_4, -2.7_8_3_2, -3.0_2_7_3] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : int = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowerCAmelCase__ : Optional[int] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) lowerCAmelCase__ : str = model(torch.tensor(a ) ) # Expected mean on dim = -1 lowerCAmelCase__ : str = torch.tensor([[-0.8_5_6_2, -1.8_5_2_0, -0.7_5_5_1, -0.4_1_6_2, -1.5_1_6_1, -1.2_0_3_8, -2.4_8_2_3, -2.3_2_5_4]] ) torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase__ : List[str] = torch.tensor([-2.2_2_2_7, 4.8_8_2_8, 0.9_0_2_3, -0.4_5_7_8, -0.7_8_7_1, -0.1_0_3_3, -0.6_2_2_1, -0.5_7_8_6, -0.7_8_0_3, -1.0_6_7_4, -1.2_9_2_0, -0.1_5_7_0, 0.8_0_0_8, 2.0_7_2_3, -0.9_4_9_7, 0.2_7_7_1, -2.2_2_2_7, -0.7_6_1_2, -1.4_3_4_6, -1.2_0_6_1, -1.6_4_2_6, -0.3_0_0_0, -0.7_1_3_9, -1.1_9_3_4, -1.8_6_9_1, -1.6_9_7_3, -1.5_9_4_7, -1.2_7_0_5, -0.3_5_2_3, -0.5_5_1_3] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowerCAmelCase__ : List[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) lowerCAmelCase__ : List[str] = model(torch.tensor(a ) ) lowerCAmelCase__ : int = torch.tensor( [[-4.2_3_2_7, -3.3_3_6_0, -4.6_6_6_5, -4.7_6_3_1, -1.8_1_8_0, -3.4_1_7_0, -1.4_2_1_1, -3.1_8_1_0]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) # fmt: off lowerCAmelCase__ : Optional[int] = torch.tensor([-9.4_9_2_2, -3.9_5_5_1, 1.7_9_9_8, -5.6_7_5_8, -5.1_0_5_5, -5.8_9_8_4, -4.8_3_2_0, -6.8_0_8_6, -6.5_3_9_1, -5.6_1_7_2, -5.5_8_2_0, -5.5_3_5_2, 1.7_8_8_1, 3.6_2_8_9, -6.5_1_1_7, -3.4_7_8_5, -9.5_0_0_0, -6.0_3_5_2, -6.8_1_2_5, -6.0_1_9_5, -6.6_8_3_6, -5.4_7_2_7, -6.2_8_1_2, -6.0_3_9_1, -7.3_3_9_8, -7.4_2_9_7, -7.4_8_4_4, -6.5_8_2_0, -5.8_7_8_9, -5.5_3_1_2] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Model is curently gated' ) @slow def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' lowerCAmelCase__ : Tuple = 'Simply put, the theory of relativity states that ' lowerCAmelCase__ : Dict = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) lowerCAmelCase__ : Dict = tokenizer.encode(a , return_tensors='pt' ) lowerCAmelCase__ : str = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=a ) # greedy generation outputs lowerCAmelCase__ : Optional[Any] = model.generate(a , max_new_tokens=64 , top_p=a , temperature=1 , do_sample=a ) lowerCAmelCase__ : Tuple = tokenizer.decode(generated_ids[0] , skip_special_tokens=a ) self.assertEqual(a , a )
307
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowerCamelCase__ = logging.get_logger(__name__) class A__ ( __magic_name__ ): lowercase = ['input_features'] def __init__( self : int , a : Dict=80 , a : Dict=16_000 , a : Any=160 , a : str=30 , a : List[str]=400 , a : Any=0.0 , a : List[str]=False , **a : Optional[int] , ): '''simple docstring''' super().__init__( feature_size=a , sampling_rate=a , padding_value=a , return_attention_mask=a , **a , ) lowerCAmelCase__ : List[str] = n_fft lowerCAmelCase__ : Union[str, Any] = hop_length lowerCAmelCase__ : Any = chunk_length lowerCAmelCase__ : Optional[Any] = chunk_length * sampling_rate lowerCAmelCase__ : List[Any] = self.n_samples // hop_length lowerCAmelCase__ : str = sampling_rate lowerCAmelCase__ : Dict = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=a , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=a , norm='slaney' , mel_scale='slaney' , ) def _lowerCamelCase ( self : Optional[Any] , a : np.array ): '''simple docstring''' lowerCAmelCase__ : List[Any] = spectrogram( a , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='log10' , ) lowerCAmelCase__ : List[str] = log_spec[:, :-1] lowerCAmelCase__ : str = np.maximum(a , log_spec.max() - 8.0 ) lowerCAmelCase__ : List[str] = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _lowerCamelCase ( a : List[np.ndarray] , a : List[np.ndarray] , a : float = 0.0 ): '''simple docstring''' if attention_mask is not None: lowerCAmelCase__ : Any = np.array(a , np.intaa ) lowerCAmelCase__ : Union[str, Any] = [] for vector, length in zip(a , attention_mask.sum(-1 ) ): lowerCAmelCase__ : Optional[Any] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: lowerCAmelCase__ : Dict = padding_value normed_input_values.append(a ) else: lowerCAmelCase__ : str = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self : Tuple , a : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , a : bool = True , a : Optional[int] = None , a : Optional[Union[str, TensorType]] = None , a : Optional[bool] = None , a : Optional[str] = "max_length" , a : Optional[int] = None , a : Optional[int] = None , a : Optional[bool] = None , **a : Optional[Any] , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) lowerCAmelCase__ : List[Any] = isinstance(a , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCAmelCase__ : Dict = is_batched_numpy or ( isinstance(a , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase__ : List[Any] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(a , np.ndarray ): lowerCAmelCase__ : Union[str, Any] = np.asarray(a , dtype=np.floataa ) elif isinstance(a , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase__ : Union[str, Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase__ : List[Any] = [np.asarray([raw_speech] ).T] lowerCAmelCase__ : int = BatchFeature({'input_features': raw_speech} ) # convert into correct format for padding lowerCAmelCase__ : List[str] = self.pad( a , padding=a , max_length=max_length if max_length else self.n_samples , truncation=a , pad_to_multiple_of=a , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowerCAmelCase__ : Optional[Any] = self.zero_mean_unit_var_norm( padded_inputs['input_features'] , attention_mask=padded_inputs['attention_mask'] , padding_value=self.padding_value , ) lowerCAmelCase__ : Union[str, Any] = np.stack(padded_inputs['input_features'] , axis=0 ) # make sure list is in array format lowerCAmelCase__ : Union[str, Any] = padded_inputs.get('input_features' ).transpose(2 , 0 , 1 ) lowerCAmelCase__ : str = [self._np_extract_fbank_features(a ) for waveform in input_features[0]] if isinstance(input_features[0] , a ): lowerCAmelCase__ : str = [np.asarray(a , dtype=np.floataa ) for feature in input_features] else: lowerCAmelCase__ : Optional[Any] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowerCAmelCase__ : int = padded_inputs['attention_mask'][:, :: self.hop_length] if return_tensors is not None: lowerCAmelCase__ : Optional[int] = padded_inputs.convert_to_tensors(a ) return padded_inputs def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : str = copy.deepcopy(self.__dict__ ) lowerCAmelCase__ : Optional[Any] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
371
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """microsoft/unispeech-large-1500h-cv""": ( """https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json""" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class A__ ( __magic_name__ ): lowercase = 'unispeech' def __init__( self : Any , a : List[Any]=32 , a : List[Any]=768 , a : Any=12 , a : List[str]=12 , a : List[Any]=3_072 , a : Any="gelu" , a : Dict=0.1 , a : List[str]=0.1 , a : List[str]=0.1 , a : Union[str, Any]=0.0 , a : str=0.0 , a : int=0.1 , a : List[str]=0.1 , a : List[Any]=0.0_2 , a : Optional[int]=1E-5 , a : Optional[int]="group" , a : Optional[Any]="gelu" , a : List[Any]=(512, 512, 512, 512, 512, 512, 512) , a : Optional[Any]=(5, 2, 2, 2, 2, 2, 2) , a : List[str]=(10, 3, 3, 3, 3, 2, 2) , a : Union[str, Any]=False , a : Union[str, Any]=128 , a : Tuple=16 , a : Dict=False , a : str=True , a : str=0.0_5 , a : Union[str, Any]=10 , a : Tuple=2 , a : int=0.0 , a : Optional[Any]=10 , a : List[str]=0 , a : str=320 , a : List[str]=2 , a : Optional[Any]=0.1 , a : Any=100 , a : Dict=256 , a : Any=256 , a : Dict=0.1 , a : List[Any]="mean" , a : Dict=False , a : str=False , a : Optional[int]=256 , a : Any=80 , a : List[Any]=0 , a : Optional[int]=1 , a : int=2 , a : List[Any]=0.5 , **a : int , ): '''simple docstring''' super().__init__(**a , pad_token_id=a , bos_token_id=a , eos_token_id=a ) lowerCAmelCase__ : List[str] = hidden_size lowerCAmelCase__ : List[str] = feat_extract_norm lowerCAmelCase__ : Optional[Any] = feat_extract_activation lowerCAmelCase__ : str = list(a ) lowerCAmelCase__ : List[str] = list(a ) lowerCAmelCase__ : Tuple = list(a ) lowerCAmelCase__ : Dict = conv_bias lowerCAmelCase__ : Optional[int] = num_conv_pos_embeddings lowerCAmelCase__ : Any = num_conv_pos_embedding_groups lowerCAmelCase__ : str = len(self.conv_dim ) lowerCAmelCase__ : Any = num_hidden_layers lowerCAmelCase__ : Dict = intermediate_size lowerCAmelCase__ : Dict = hidden_act lowerCAmelCase__ : Union[str, Any] = num_attention_heads lowerCAmelCase__ : Union[str, Any] = hidden_dropout lowerCAmelCase__ : Tuple = attention_dropout lowerCAmelCase__ : str = activation_dropout lowerCAmelCase__ : Any = feat_proj_dropout lowerCAmelCase__ : List[Any] = final_dropout lowerCAmelCase__ : Tuple = layerdrop lowerCAmelCase__ : Any = layer_norm_eps lowerCAmelCase__ : Dict = initializer_range lowerCAmelCase__ : Optional[Any] = num_ctc_classes lowerCAmelCase__ : Tuple = vocab_size lowerCAmelCase__ : Dict = do_stable_layer_norm lowerCAmelCase__ : List[Any] = use_weighted_layer_sum lowerCAmelCase__ : Any = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase__ : Union[str, Any] = apply_spec_augment lowerCAmelCase__ : Any = mask_time_prob lowerCAmelCase__ : Dict = mask_time_length lowerCAmelCase__ : Tuple = mask_time_min_masks lowerCAmelCase__ : Optional[int] = mask_feature_prob lowerCAmelCase__ : Optional[Any] = mask_feature_length lowerCAmelCase__ : int = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCAmelCase__ : int = num_codevectors_per_group lowerCAmelCase__ : Any = num_codevector_groups lowerCAmelCase__ : Any = contrastive_logits_temperature lowerCAmelCase__ : int = feat_quantizer_dropout lowerCAmelCase__ : List[Any] = num_negatives lowerCAmelCase__ : List[str] = codevector_dim lowerCAmelCase__ : Optional[int] = proj_codevector_dim lowerCAmelCase__ : Dict = diversity_loss_weight # ctc loss lowerCAmelCase__ : Any = ctc_loss_reduction lowerCAmelCase__ : Any = ctc_zero_infinity # pretraining loss lowerCAmelCase__ : Union[str, Any] = replace_prob @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
307
0
import os def UpperCamelCase_( _snake_case : str = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(_snake_case ) , _snake_case ) ) as input_file: __a =[ [int(_snake_case ) for element in line.split(',' )] for line in input_file.readlines() ] __a =len(_snake_case ) __a =len(matrix[0] ) __a =[[-1 for _ in range(_snake_case )] for _ in range(_snake_case )] for i in range(_snake_case ): __a =matrix[i][0] for j in range(1 , _snake_case ): for i in range(_snake_case ): __a =minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _snake_case ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
308
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Tuple = { "configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MegatronBertForCausalLM", "MegatronBertForMaskedLM", "MegatronBertForMultipleChoice", "MegatronBertForNextSentencePrediction", "MegatronBertForPreTraining", "MegatronBertForQuestionAnswering", "MegatronBertForSequenceClassification", "MegatronBertForTokenClassification", "MegatronBertModel", "MegatronBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys _lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def UpperCamelCase_( ): """simple docstring""" __a =ArgumentParser('Accelerate CLI tool' , usage='accelerate <command> [<args>]' , allow_abbrev=_snake_case ) __a =parser.add_subparsers(help='accelerate command helpers' ) # Register commands get_config_parser(subparsers=_snake_case ) env_command_parser(subparsers=_snake_case ) launch_command_parser(subparsers=_snake_case ) tpu_command_parser(subparsers=_snake_case ) test_command_parser(subparsers=_snake_case ) # Let's go __a =parser.parse_args() if not hasattr(_snake_case , 'func' ): parser.print_help() exit(1 ) # Run args.func(_snake_case ) if __name__ == "__main__": main()
308
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __magic_name__ : @staticmethod def __magic_name__ ( *__snake_case , **__snake_case ) -> List[str]: '''simple docstring''' pass def UpperCamelCase_( _snake_case : Image ): """simple docstring""" __a =hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __magic_name__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def __magic_name__ ( self , __snake_case , __snake_case , __snake_case ) -> Dict: '''simple docstring''' __a =DepthEstimationPipeline(model=__snake_case , image_processor=__snake_case ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __magic_name__ ( self , __snake_case , __snake_case ) -> Tuple: '''simple docstring''' __a =depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , __snake_case ) import datasets __a =datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) __a =depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , __snake_case , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' pass @slow @require_torch def __magic_name__ ( self ) -> int: '''simple docstring''' __a ='Intel/dpt-large' __a =pipeline('depth-estimation' , model=__snake_case ) __a =depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) __a =hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.662 ) @require_torch def __magic_name__ ( self ) -> Any: '''simple docstring''' # This is highly irregular to have no small tests. self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
308
1
def UpperCamelCase_( _snake_case : Union[str, Any] ): """simple docstring""" if collection == []: return [] # get some information about the collection __a =len(_snake_case ) __a =max(_snake_case ) __a =min(_snake_case ) # create the counting array __a =coll_max + 1 - coll_min __a =[0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , _snake_case ): __a =counting_arr[i] + counting_arr[i - 1] # create the output collection __a =[0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , _snake_case ) ): __a =collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def UpperCamelCase_( _snake_case : Optional[Any] ): """simple docstring""" return "".join([chr(_snake_case ) for i in counting_sort([ord(_snake_case ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt" _lowerCAmelCase : Union[str, Any] = input("Enter numbers separated by a comma:\n").strip() _lowerCAmelCase : List[Any] = [int(item) for item in user_input.split(",")] print(counting_sort(unsorted))
308
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _lowerCAmelCase : Optional[int] = logging.getLogger(__name__) _lowerCAmelCase : Any = "pytorch_model.bin" @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co.'} , ) @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field(metadata={'help': 'A csv or a json file containing the training data.'} ) SCREAMING_SNAKE_CASE = dataclasses.field(metadata={'help': 'A csv or a json file containing the data to predict on.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the validation data.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'The name of the task to train on.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'The list of labels for the task.'} ) @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field( metadata={'help': 'The output directory where the model predictions and checkpoints will be written.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default='accuracy' , metadata={'help': 'The evaluation metric used for the task.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default='no' , metadata={ 'help': 'The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]' } , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=1_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0 , metadata={ 'help': 'How much the specified evaluation metric must improve to satisfy early stopping conditions.' } , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the confidence score.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the validation performance.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to fine-tune on labeled data after pseudo training.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0 , metadata={'help': 'Confidence threshold for pseudo-labeled data filtering.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=1_0_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Random seed for initialization.'} , ) def UpperCamelCase_( _snake_case : int , _snake_case : str , _snake_case : Optional[int] , _snake_case : str , _snake_case : Union[str, Any] , _snake_case : List[Any] ): """simple docstring""" __a =datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: __a =dataset.filter(lambda _snake_case : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 __a =int(eval_result * len(_snake_case ) ) print(_snake_case ) __a =dataset.sort('probability' , reverse=_snake_case ) __a =dataset.select(range(_snake_case ) ) __a =dataset.remove_columns(['label', 'probability'] ) __a =dataset.rename_column('prediction' , 'label' ) __a =dataset.map(lambda _snake_case : {"label": idalabel[example["label"]]} ) __a =dataset.shuffle(seed=args.seed ) __a =os.path.join(_snake_case , F'train_pseudo.{args.data_file_extension}' ) if args.data_file_extension == "csv": dataset.to_csv(_snake_case , index=_snake_case ) else: dataset.to_json(_snake_case ) def UpperCamelCase_( _snake_case : List[Any] , _snake_case : str , _snake_case : int , _snake_case : Optional[int] , **_snake_case : List[str] ): """simple docstring""" __a =Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() __a =STModelArguments(model_name_or_path=_snake_case ) __a =STDataArguments(train_file=_snake_case , infer_file=_snake_case ) __a =STTrainingArguments(output_dir=_snake_case ) __a =argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(_snake_case ).items(): setattr(_snake_case , _snake_case , _snake_case ) for key, value in kwargs.items(): if hasattr(_snake_case , _snake_case ): setattr(_snake_case , _snake_case , _snake_case ) # Sanity checks __a ={} __a =None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None __a =args.train_file __a =args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None __a =args.eval_file for key in data_files: __a =data_files[key].split('.' )[-1] assert extension in ["csv", "json"], F'`{key}_file` should be a csv or a json file.' if args.data_file_extension is None: __a =extension else: assert extension == args.data_file_extension, F'`{key}_file` should be a {args.data_file_extension} file`.' assert ( args.eval_metric in datasets.list_metrics() ), F'{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('Creating the initial data directory for self-training...' ) __a =F'{args.output_dir}/self-train_iter-{{}}'.format __a =data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=_snake_case ) os.makedirs(_snake_case , exist_ok=_snake_case ) accelerator.wait_for_everyone() __a =None __a =None __a =0 __a =False # Show the progress bar __a =tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): __a =data_dir_format(_snake_case ) assert os.path.exists(_snake_case ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 __a =os.path.join(_snake_case , 'stage-1' ) __a ={ 'accelerator': accelerator, 'model_name_or_path': args.model_name_or_path, 'cache_dir': args.cache_dir, 'do_train': True, 'train_file': data_files['train'] if iteration == 0 else data_files['train_pseudo'], 'do_eval': True if args.eval_file is not None else False, 'eval_file': data_files['eval'], 'do_predict': True, 'infer_file': data_files['infer'], 'task_name': args.task_name, 'label_list': args.label_list, 'output_dir': current_output_dir, 'eval_metric': args.eval_metric, 'evaluation_strategy': args.evaluation_strategy, 'early_stopping_patience': args.early_stopping_patience, 'early_stopping_threshold': args.early_stopping_threshold, 'seed': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(_snake_case , _snake_case ): arguments_dict.update({key: value} ) __a =os.path.join(_snake_case , 'best-checkpoint' , _snake_case ) if os.path.exists(_snake_case ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.' , _snake_case , _snake_case , ) else: logger.info('***** Running self-training: iteration: %d, stage: 1 *****' , _snake_case ) finetune(**_snake_case ) accelerator.wait_for_everyone() assert os.path.exists(_snake_case ) logger.info('Self-training job completed: iteration: %d, stage: 1.' , _snake_case ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data __a =os.path.join(_snake_case , 'best-checkpoint' ) __a =os.path.join(_snake_case , 'stage-2' ) # Update arguments_dict __a =model_path __a =data_files['train'] __a =current_output_dir __a =os.path.join(_snake_case , 'best-checkpoint' , _snake_case ) if os.path.exists(_snake_case ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.' , _snake_case , _snake_case , ) else: logger.info('***** Running self-training: iteration: %d, stage: 2 *****' , _snake_case ) finetune(**_snake_case ) accelerator.wait_for_everyone() assert os.path.exists(_snake_case ) logger.info('Self-training job completed: iteration: %d, stage: 2.' , _snake_case ) __a =iteration __a =data_dir_format(iteration + 1 ) __a =AutoConfig.from_pretrained(os.path.join(_snake_case , 'best-checkpoint' ) ) __a =config.idalabel __a =os.path.join(_snake_case , 'eval_results_best-checkpoint.json' ) __a =os.path.join(_snake_case , 'test_results_best-checkpoint.json' ) assert os.path.exists(_snake_case ) with open(_snake_case , 'r' ) as f: __a =float(json.load(_snake_case )[args.eval_metric] ) __a =os.path.join(_snake_case , 'infer_output_best-checkpoint.csv' ) assert os.path.exists(_snake_case ) # Loading the dataset from local csv or json files. __a =load_dataset(args.data_file_extension , data_files={'data': data_files['infer']} )['data'] __a =load_dataset('csv' , data_files={'data': infer_output_file} )['data'] if accelerator.is_main_process: os.makedirs(_snake_case , exist_ok=_snake_case ) shutil.copy(_snake_case , os.path.join(_snake_case , F'eval_results_iter-{iteration}.json' ) ) if os.path.exists(_snake_case ): shutil.copy(_snake_case , os.path.join(_snake_case , F'test_results_iter-{iteration}.json' ) ) create_pseudo_labeled_data(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) accelerator.wait_for_everyone() __a =os.path.join(_snake_case , F'train_pseudo.{args.data_file_extension}' ) if args.evaluation_strategy != IntervalStrategy.NO.value: __a =eval_result if best_iteration is None: __a =new_iteration __a =new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: __a =new_iteration __a =new_eval_result __a =0 else: if new_eval_result == best_eval_result: __a =new_iteration __a =new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: __a =True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('Best iteration: %d' , _snake_case ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , _snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_snake_case , F'eval_results_iter-{iteration}.json' ) , os.path.join(_snake_case , 'eval_results_best-iteration.json' ) , ) else: # Assume that the last iteration is the best logger.info('Best iteration: %d' , args.max_selftrain_iterations - 1 ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , _snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_snake_case , F'eval_results_iter-{args.max_selftrain_iterations - 1}.json' ) , os.path.join(_snake_case , 'eval_results_best-iteration.json' ) , )
308
1
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin _lowerCAmelCase : Union[str, Any] = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class __magic_name__ : def __init__( self , __snake_case , __snake_case=16 , __snake_case=13 , __snake_case=7 , __snake_case=14 , __snake_case=10 , __snake_case=19 , __snake_case=5 , __snake_case=4 , __snake_case=True , __snake_case=16 , __snake_case=2 , __snake_case=4 , __snake_case=4 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=[1, 2, 3, 4, 5] , __snake_case=25 , __snake_case=5 , ) -> Any: '''simple docstring''' __a =d_model __a =parent __a =batch_size __a =prediction_length __a =context_length __a =cardinality __a =num_time_features __a =lags_sequence __a =embedding_dimension __a =is_training __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =intermediate_size __a =hidden_act __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =context_length __a =prediction_length + label_length __a =label_length __a =moving_average __a =autocorrelation_factor def __magic_name__ ( self ) -> Tuple: '''simple docstring''' return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def __magic_name__ ( self , __snake_case ) -> int: '''simple docstring''' __a =config.context_length + max(config.lags_sequence ) __a =ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __a =floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __a =floats_tensor([self.batch_size, _past_length] ) __a =floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __a =floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __a =floats_tensor([self.batch_size, config.prediction_length] ) __a ={ 'past_values': past_values, 'static_categorical_features': static_categorical_features, 'past_time_features': past_time_features, 'past_observed_mask': past_observed_mask, 'future_time_features': future_time_features, 'future_values': future_values, } return inputs_dict def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =self.get_config() __a =self.prepare_autoformer_inputs_dict(__snake_case ) return config, inputs_dict def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a , __a =self.prepare_config_and_inputs() return config, inputs_dict def __magic_name__ ( self , __snake_case , __snake_case ) -> int: '''simple docstring''' __a =AutoformerModel(config=__snake_case ).to(__snake_case ).eval() __a =model(**__snake_case ) __a =outputs.encoder_last_hidden_state __a =outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __a =model.get_encoder() encoder.save_pretrained(__snake_case ) __a =AutoformerEncoder.from_pretrained(__snake_case ).to(__snake_case ) __a , __a , __a , __a , __a =model.create_network_inputs(**__snake_case ) __a , __a =model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __a =torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __a =encoder(inputs_embeds=__snake_case )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) __a =( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __a =torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __a =torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __a =torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __a =model.get_decoder() decoder.save_pretrained(__snake_case ) __a =AutoformerDecoder.from_pretrained(__snake_case ).to(__snake_case ) __a =decoder( trend=__snake_case , inputs_embeds=__snake_case , encoder_hidden_states=__snake_case , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () SCREAMING_SNAKE_CASE = (AutoformerForPrediction,) if is_torch_available() else () SCREAMING_SNAKE_CASE = {'feature-extraction': AutoformerModel} if is_torch_available() else {} SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =AutoformerModelTester(self ) __a =ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a , __a =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __a =model_class(__snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__snake_case ) __a , __a =model_class.from_pretrained(__snake_case , output_loading_info=__snake_case ) self.assertEqual(info['missing_keys'] , [] ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__snake_case ) @unittest.skip(reason='Model has no tokens embeddings' ) def __magic_name__ ( self ) -> Tuple: '''simple docstring''' pass def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =inspect.signature(getattr(__snake_case , 'forward' ) ) # The main input is the name of the argument after `self` __a =list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , __snake_case ) def __magic_name__ ( self ) -> int: '''simple docstring''' __a , __a =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a =model_class(__snake_case ) __a =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a =[*signature.parameters.keys()] __a =[ 'past_values', 'past_time_features', 'past_observed_mask', 'static_categorical_features', 'static_real_features', 'future_values', 'future_time_features', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('future_observed_mask' ) expected_arg_names.extend( [ 'decoder_attention_mask', 'head_mask', 'decoder_head_mask', 'cross_attn_head_mask', 'encoder_outputs', 'past_key_values', 'output_hidden_states', 'output_attentions', 'use_cache', 'return_dict', ] ) self.assertListEqual(arg_names[: len(__snake_case )] , __snake_case ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a , __a =self.model_tester.prepare_config_and_inputs_for_common() __a =True __a =getattr(self.model_tester , 'seq_length' , __snake_case ) __a =getattr(self.model_tester , 'decoder_seq_length' , __snake_case ) __a =getattr(self.model_tester , 'encoder_seq_length' , __snake_case ) __a =getattr(self.model_tester , 'd_model' , __snake_case ) __a =getattr(self.model_tester , 'num_attention_heads' , __snake_case ) __a =d_model // num_attention_heads for model_class in self.all_model_classes: __a =True __a =False __a =True __a =model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): __a =model(**self._prepare_for_class(__snake_case , __snake_case ) ) __a =outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __a =True __a =model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): __a =model(**self._prepare_for_class(__snake_case , __snake_case ) ) __a =outputs.encoder_attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __a =len(__snake_case ) __a =7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__snake_case , __snake_case ) # decoder attentions __a =outputs.decoder_attentions self.assertIsInstance(__snake_case , (list, tuple) ) self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __a =outputs.cross_attentions self.assertIsInstance(__snake_case , (list, tuple) ) self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __a =True __a =True __a =model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): __a =model(**self._prepare_for_class(__snake_case , __snake_case ) ) self.assertEqual(out_len + 2 , len(__snake_case ) ) __a =outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' super().test_retain_grad_hidden_states_attentions() def UpperCamelCase_( _snake_case : List[Any]="train-batch.pt" ): """simple docstring""" __a =hf_hub_download(repo_id='hf-internal-testing/tourism-monthly-batch' , filename=_snake_case , repo_type='dataset' ) __a =torch.load(_snake_case , map_location=_snake_case ) return batch @require_torch @slow class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =AutoformerModel.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(__snake_case ) __a =prepare_batch() with torch.no_grad(): __a =model( past_values=batch['past_values'] , past_time_features=batch['past_time_features'] , past_observed_mask=batch['past_observed_mask'] , static_categorical_features=batch['static_categorical_features'] , future_values=batch['future_values'] , future_time_features=batch['future_time_features'] , )[0] __a =torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , __snake_case ) __a =torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=__snake_case ) self.assertTrue(torch.allclose(output[0, :3, :3] , __snake_case , atol=__snake_case ) ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =AutoformerForPrediction.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(__snake_case ) __a =prepare_batch('val-batch.pt' ) with torch.no_grad(): __a =model( past_values=batch['past_values'] , past_time_features=batch['past_time_features'] , past_observed_mask=batch['past_observed_mask'] , static_categorical_features=batch['static_categorical_features'] , ).encoder_last_hidden_state __a =torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , __snake_case ) __a =torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=__snake_case ) self.assertTrue(torch.allclose(output[0, :3, :3] , __snake_case , atol=__snake_case ) ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =AutoformerForPrediction.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(__snake_case ) __a =prepare_batch('val-batch.pt' ) with torch.no_grad(): __a =model.generate( static_categorical_features=batch['static_categorical_features'] , past_time_features=batch['past_time_features'] , past_values=batch['past_values'] , future_time_features=batch['future_time_features'] , past_observed_mask=batch['past_observed_mask'] , ) __a =torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , __snake_case ) __a =torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=__snake_case ) __a =outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __snake_case , rtol=1e-1 ) )
308
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Any = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right _lowerCAmelCase : List[Any] = 256_047 _lowerCAmelCase : Dict = 256_145 @require_sentencepiece @require_tokenizers class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = NllbTokenizer SCREAMING_SNAKE_CASE = NllbTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = {} def __magic_name__ ( self ) -> int: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __a =NllbTokenizer(__snake_case , keep_accents=__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self ) -> int: '''simple docstring''' __a =NllbTokenizer(__snake_case , keep_accents=__snake_case ) __a =tokenizer.tokenize('This is a test' ) self.assertListEqual(__snake_case , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __a =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __a =tokenizer.convert_tokens_to_ids(__snake_case ) self.assertListEqual( __snake_case , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __a =tokenizer.convert_ids_to_tokens(__snake_case ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-nllb', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __a =self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __a =self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) __a =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=True __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=False __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) @require_torch def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' if not self.test_seqaseq: return __a =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Longer text that will definitely require truncation. __a =[ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for' ' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons' ' will only worsen the violence and misery for millions of people.', ] __a =[ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al' ' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi' ' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] try: __a =tokenizer.prepare_seqaseq_batch( src_texts=__snake_case , tgt_texts=__snake_case , max_length=3 , max_target_length=10 , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='ron_Latn' , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified __a =tokenizer.prepare_seqaseq_batch( __snake_case , tgt_texts=__snake_case , max_length=3 , return_tensors='pt' ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) __a =tokenizer.prepare_seqaseq_batch( src_texts=__snake_case , max_length=3 , max_target_length=10 , return_tensors='pt' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn('decoder_input_ids' , __snake_case ) @unittest.skip('Unfortunately way too slow to build a BPE with SentencePiece.' ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' pass def __magic_name__ ( self ) -> Tuple: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __a =[AddedToken('<special>' , lstrip=__snake_case )] __a =self.rust_tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case ) __a =tokenizer_r.encode('Hey this is a <special> token' ) __a =tokenizer_r.encode('<special>' , add_special_tokens=__snake_case )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: __a =self.rust_tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case , ) __a =self.tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case ) __a =tokenizer_p.encode('Hey this is a <special> token' ) __a =tokenizer_cr.encode('Hey this is a <special> token' ) self.assertEqual(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class __magic_name__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = 'facebook/nllb-200-distilled-600M' SCREAMING_SNAKE_CASE = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] SCREAMING_SNAKE_CASE = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] SCREAMING_SNAKE_CASE = [ 2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 8_1_6_5, 2_4_8_0_6_6, 1_4_7_3_4, 9_5_0, 1_1_3_5, 1_0_5_7_2_1, 3_5_7_3, 8_3, 2_7_3_5_2, 1_0_8, 4_9_4_8_6, 2, ] @classmethod def __magic_name__ ( cls ) -> Tuple: '''simple docstring''' __a =NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang='eng_Latn' , tgt_lang='ron_Latn' ) __a =1 return cls def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Arab'] , 25_6001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Latn'] , 25_6002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['fra_Latn'] , 25_6057 ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' self.assertIn(__snake_case , self.tokenizer.all_special_ids ) # fmt: off __a =[RO_CODE, 4254, 9_8068, 11_2923, 3_9072, 3909, 713, 10_2767, 26, 1_7314, 3_5642, 1_4683, 3_3118, 2022, 6_6987, 2, 25_6047] # fmt: on __a =self.tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) __a =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertNotIn(self.tokenizer.eos_token , __snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , __snake_case ) __a =10 __a =self.tokenizer(__snake_case , max_length=__snake_case , truncation=__snake_case ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , __snake_case ) self.assertEqual(len(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_6203, 3] ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =tempfile.mkdtemp() __a =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__snake_case ) __a =NllbTokenizer.from_pretrained(__snake_case ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __snake_case ) @require_torch def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) __a =shift_tokens_right( batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['ron_Latn'] ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) __a =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) self.assertEqual(__snake_case , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =self.tokenizer(self.src_text , padding=__snake_case , truncation=__snake_case , max_length=3 , return_tensors='pt' ) __a =self.tokenizer( text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=10 , return_tensors='pt' ) __a =targets['input_ids'] __a =shift_tokens_right( __snake_case , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( nested_simplify(__snake_case ) , { # A, test, EOS, en_XX 'input_ids': [[25_6047, 70, 7356, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_6057, } , ) @require_torch def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =True __a =self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2, 25_6047] ) __a =False __a =self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [25_6047, 1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2] )
308
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCAmelCase : Dict = { "configuration_mask2former": [ "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "Mask2FormerConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = ["Mask2FormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Union[str, Any] = [ "MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "Mask2FormerForUniversalSegmentation", "Mask2FormerModel", "Mask2FormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys _lowerCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure)
308
def UpperCamelCase_( _snake_case : str , _snake_case : int ): """simple docstring""" return [sentence[i : i + ngram_size] for i in range(len(_snake_case ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
308
1
import torch from transformers import AutoModel class __magic_name__ ( torch.nn.Module ): def __init__( self , __snake_case="sayef/fsner-bert-base-uncased" ) -> Optional[int]: '''simple docstring''' super(__snake_case , self ).__init__() __a =AutoModel.from_pretrained(__snake_case , return_dict=__snake_case ) __a =torch.nn.CosineSimilarity(3 , 1e-08 ) __a =torch.nn.Softmax(dim=1 ) def __magic_name__ ( self , **__snake_case ) -> Any: '''simple docstring''' return self.bert(**__snake_case ).last_hidden_state def __magic_name__ ( self , __snake_case ) -> Any: '''simple docstring''' return token_embeddings.sum(2 , keepdim=__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case=1 ) -> Optional[Any]: '''simple docstring''' return self.softmax(T * self.cos(__snake_case , __snake_case ) ) def __magic_name__ ( self , __snake_case , __snake_case ) -> Dict: '''simple docstring''' __a =W_supports['sizes'].tolist() __a =W_supports['start_token_id'].item() __a =W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] __a =self.BERT(**__snake_case ) __a =self.BERT(**__snake_case ) __a =None __a =None __a =W_supports['input_ids'] == start_token_id __a =W_supports['input_ids'] == end_token_id for i, size in enumerate(__snake_case ): if i == 0: __a =0 else: __a =support_sizes[i - 1] __a =S[s : s + size][start_token_masks[s : s + size]] __a =S[s : s + size][end_token_masks[s : s + size]] __a =torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) __a =torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: __a =torch.vstack((p_starts, p_start) ) __a =torch.vstack((p_ends, p_end) ) else: __a =p_start __a =p_end return p_starts, p_ends
308
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class __magic_name__ ( pl.LightningModule ): def __init__( self , __snake_case ) -> List[Any]: '''simple docstring''' super().__init__() __a =model __a =2 __a =nn.Linear(self.model.config.hidden_size , self.num_labels ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' pass def UpperCamelCase_( _snake_case : str , _snake_case : str , _snake_case : str ): """simple docstring""" __a =LongformerModel.from_pretrained(_snake_case ) __a =LightningModel(_snake_case ) __a =torch.load(_snake_case , map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model __a =LongformerForQuestionAnswering.from_pretrained(_snake_case ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(_snake_case ) print(F'Conversion successful. Model saved under {pytorch_dump_folder_path}' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowerCAmelCase : Optional[int] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
308
1
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 42 @flax_register_to_config class __magic_name__ ( nn.Module , lowerCAmelCase_ , lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 3_2 SCREAMING_SNAKE_CASE = 4 SCREAMING_SNAKE_CASE = 4 SCREAMING_SNAKE_CASE = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) SCREAMING_SNAKE_CASE = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = 8 SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = 1_2_8_0 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = False def __magic_name__ ( self , __snake_case ) -> FrozenDict: '''simple docstring''' # init input tensors __a =(1, self.in_channels, self.sample_size, self.sample_size) __a =jnp.zeros(__snake_case , dtype=jnp.floataa ) __a =jnp.ones((1,) , dtype=jnp.intaa ) __a =jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) __a , __a =jax.random.split(__snake_case ) __a ={'params': params_rng, 'dropout': dropout_rng} return self.init(__snake_case , __snake_case , __snake_case , __snake_case )["params"] def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =self.block_out_channels __a =block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( 'At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __a =self.num_attention_heads or self.attention_head_dim # input __a =nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time __a =FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) __a =FlaxTimestepEmbedding(__snake_case , dtype=self.dtype ) __a =self.only_cross_attention if isinstance(__snake_case , __snake_case ): __a =(only_cross_attention,) * len(self.down_block_types ) if isinstance(__snake_case , __snake_case ): __a =(num_attention_heads,) * len(self.down_block_types ) # down __a =[] __a =block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): __a =output_channel __a =block_out_channels[i] __a =i == len(__snake_case ) - 1 if down_block_type == "CrossAttnDownBlock2D": __a =FlaxCrossAttnDownBlockaD( in_channels=__snake_case , out_channels=__snake_case , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: __a =FlaxDownBlockaD( in_channels=__snake_case , out_channels=__snake_case , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(__snake_case ) __a =down_blocks # mid __a =FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up __a =[] __a =list(reversed(__snake_case ) ) __a =list(reversed(__snake_case ) ) __a =list(reversed(__snake_case ) ) __a =reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): __a =output_channel __a =reversed_block_out_channels[i] __a =reversed_block_out_channels[min(i + 1 , len(__snake_case ) - 1 )] __a =i == len(__snake_case ) - 1 if up_block_type == "CrossAttnUpBlock2D": __a =FlaxCrossAttnUpBlockaD( in_channels=__snake_case , out_channels=__snake_case , prev_output_channel=__snake_case , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: __a =FlaxUpBlockaD( in_channels=__snake_case , out_channels=__snake_case , prev_output_channel=__snake_case , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(__snake_case ) __a =output_channel __a =up_blocks # out __a =nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __a =nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=None , __snake_case=None , __snake_case = True , __snake_case = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]: '''simple docstring''' # 1. time if not isinstance(__snake_case , jnp.ndarray ): __a =jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(__snake_case , jnp.ndarray ) and len(timesteps.shape ) == 0: __a =timesteps.astype(dtype=jnp.floataa ) __a =jnp.expand_dims(__snake_case , 0 ) __a =self.time_proj(__snake_case ) __a =self.time_embedding(__snake_case ) # 2. pre-process __a =jnp.transpose(__snake_case , (0, 2, 3, 1) ) __a =self.conv_in(__snake_case ) # 3. down __a =(sample,) for down_block in self.down_blocks: if isinstance(__snake_case , __snake_case ): __a , __a =down_block(__snake_case , __snake_case , __snake_case , deterministic=not train ) else: __a , __a =down_block(__snake_case , __snake_case , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: __a =() for down_block_res_sample, down_block_additional_residual in zip( __snake_case , __snake_case ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) __a =new_down_block_res_samples # 4. mid __a =self.mid_block(__snake_case , __snake_case , __snake_case , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: __a =down_block_res_samples[-(self.layers_per_block + 1) :] __a =down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(__snake_case , __snake_case ): __a =up_block( __snake_case , temb=__snake_case , encoder_hidden_states=__snake_case , res_hidden_states_tuple=__snake_case , deterministic=not train , ) else: __a =up_block(__snake_case , temb=__snake_case , res_hidden_states_tuple=__snake_case , deterministic=not train ) # 6. post-process __a =self.conv_norm_out(__snake_case ) __a =nn.silu(__snake_case ) __a =self.conv_out(__snake_case ) __a =jnp.transpose(__snake_case , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=__snake_case )
308
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") _lowerCAmelCase : Optional[Any] = logging.getLogger(__name__) @dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) SCREAMING_SNAKE_CASE = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) SCREAMING_SNAKE_CASE = field( default=1_0_2_4 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the training data.'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the validation data.'} ) SCREAMING_SNAKE_CASE = field(default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the test data.'} ) def __magic_name__ ( self ) -> str: '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: __a =self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __a =self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) SCREAMING_SNAKE_CASE = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def UpperCamelCase_( ): """simple docstring""" __a =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __a , __a , __a =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __a , __a , __a =parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) __a =training_args.get_process_log_level() logger.setLevel(_snake_case ) datasets.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __a =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __a =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __a =load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __a ={'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __a =data_args.train_file.split('.' )[-1] __a =data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __a =data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(F'load a local file for {key}: {data_files[key]}' ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files __a =load_dataset('csv' , data_files=_snake_case , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __a =load_dataset('json' , data_files=_snake_case , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __a =raw_datasets['train'].features['label'].names __a =len(_snake_case ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __a =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __a =TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=_snake_case , ) __a =BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __a ='max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __a =False # Some models have set the order of the labels to use, so let's make sure we do use it. __a ={'Refused': 0, 'Entailed': 1} __a ={0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __a =min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(_snake_case : Tuple ): # Tokenize the texts def _convert_table_text_to_pandas(_snake_case : Optional[Any] ): __a =[_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] __a =pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __a =examples['statement'] __a =list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) __a =tokenizer(_snake_case , _snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case ) __a =examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): __a =raw_datasets.map( _snake_case , batched=_snake_case , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) __a =raw_datasets['train'] if data_args.max_train_samples is not None: __a =train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) __a =raw_datasets['validation'] if data_args.max_eval_samples is not None: __a =eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) __a =raw_datasets['test'] if data_args.max_predict_samples is not None: __a =predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(_snake_case ) ) , 3 ): logger.info(F'Sample {index} of the training set: {train_dataset[index]}.' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_snake_case : EvalPrediction ): __a =p.predictions[0] if isinstance(p.predictions , _snake_case ) else p.predictions __a =np.argmax(_snake_case , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __a =default_data_collator elif training_args.fpaa: __a =DataCollatorWithPadding(_snake_case , pad_to_multiple_of=8 ) else: __a =None # Initialize our Trainer __a =Trainer( model=_snake_case , args=_snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_snake_case , tokenizer=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: __a =None if training_args.resume_from_checkpoint is not None: __a =training_args.resume_from_checkpoint elif last_checkpoint is not None: __a =last_checkpoint __a =trainer.train(resume_from_checkpoint=_snake_case ) __a =train_result.metrics __a =( data_args.max_train_samples if data_args.max_train_samples is not None else len(_snake_case ) ) __a =min(_snake_case , len(_snake_case ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , _snake_case ) trainer.save_metrics('train' , _snake_case ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __a =trainer.evaluate(eval_dataset=_snake_case ) __a =data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_snake_case ) __a =min(_snake_case , len(_snake_case ) ) trainer.log_metrics('eval' , _snake_case ) trainer.save_metrics('eval' , _snake_case ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __a =predict_dataset.remove_columns('label' ) __a =trainer.predict(_snake_case , metric_key_prefix='predict' ).predictions __a =np.argmax(_snake_case , axis=1 ) __a =os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(_snake_case , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(_snake_case ): __a =label_list[item] writer.write(F'{index}\t{item}\n' ) __a ={'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**_snake_case ) else: trainer.create_model_card(**_snake_case ) def UpperCamelCase_( _snake_case : Union[str, Any] ): """simple docstring""" main() if __name__ == "__main__": main()
308
1
from math import pi, sqrt, tan def UpperCamelCase_( _snake_case : float ): """simple docstring""" if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def UpperCamelCase_( _snake_case : float , _snake_case : float , _snake_case : float ): """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def UpperCamelCase_( _snake_case : float ): """simple docstring""" if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def UpperCamelCase_( _snake_case : float ): """simple docstring""" if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def UpperCamelCase_( _snake_case : float , _snake_case : float ): """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def UpperCamelCase_( _snake_case : float , _snake_case : float , _snake_case : float ): """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) __a =(height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def UpperCamelCase_( _snake_case : float , _snake_case : float ): """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def UpperCamelCase_( _snake_case : float , _snake_case : float ): """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_snake_case , 2 ) * torus_radius * tube_radius def UpperCamelCase_( _snake_case : float , _snake_case : float ): """simple docstring""" if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def UpperCamelCase_( _snake_case : float ): """simple docstring""" if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def UpperCamelCase_( _snake_case : float , _snake_case : float ): """simple docstring""" if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def UpperCamelCase_( _snake_case : float , _snake_case : float , _snake_case : float ): """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) __a =(sidea + sidea + sidea) / 2 __a =sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def UpperCamelCase_( _snake_case : float , _snake_case : float ): """simple docstring""" if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def UpperCamelCase_( _snake_case : float , _snake_case : float , _snake_case : float ): """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def UpperCamelCase_( _snake_case : float ): """simple docstring""" if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def UpperCamelCase_( _snake_case : float , _snake_case : float ): """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def UpperCamelCase_( _snake_case : float , _snake_case : float ): """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def UpperCamelCase_( _snake_case : int , _snake_case : float ): """simple docstring""" if not isinstance(_snake_case , _snake_case ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("[DEMO] Areas of various geometric shapes: \n") print(f'''Rectangle: {area_rectangle(10, 20) = }''') print(f'''Square: {area_square(10) = }''') print(f'''Triangle: {area_triangle(10, 10) = }''') print(f'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(f'''Parallelogram: {area_parallelogram(10, 20) = }''') print(f'''Rhombus: {area_rhombus(10, 20) = }''') print(f'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(f'''Circle: {area_circle(20) = }''') print(f'''Ellipse: {area_ellipse(10, 20) = }''') print("\nSurface Areas of various geometric shapes: \n") print(f'''Cube: {surface_area_cube(20) = }''') print(f'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(f'''Sphere: {surface_area_sphere(20) = }''') print(f'''Hemisphere: {surface_area_hemisphere(20) = }''') print(f'''Cone: {surface_area_cone(10, 20) = }''') print(f'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(f'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(f'''Torus: {surface_area_torus(20, 10) = }''') print(f'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(f'''Square: {area_reg_polygon(4, 10) = }''') print(f'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
308
from __future__ import annotations import time import numpy as np _lowerCAmelCase : List[str] = [8, 5, 9, 7] _lowerCAmelCase : List[str] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] _lowerCAmelCase : List[Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class __magic_name__ : def __init__( self , __snake_case , __snake_case , __snake_case , ) -> None: '''simple docstring''' __a =claim_vector __a =allocated_resources_table __a =maximum_claim_table def __magic_name__ ( self ) -> list[int]: '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def __magic_name__ ( self ) -> list[int]: '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def __magic_name__ ( self ) -> list[list[int]]: '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__snake_case ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def __magic_name__ ( self ) -> dict[int, list[int]]: '''simple docstring''' return {self.__need().index(__snake_case ): i for i in self.__need()} def __magic_name__ ( self , **__snake_case ) -> None: '''simple docstring''' __a =self.__need() __a =self.__allocated_resources_table __a =self.__available_resources() __a =self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: __a =False for each_need in need_list: __a =True for index, need in enumerate(__snake_case ): if need > available_resources[index]: __a =False break if execution: __a =True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __a =original_need_index print(f'Process {process_number + 1} is executing.' ) # remove the process run from stack need_list.remove(__snake_case ) # update available/freed resources stack __a =np.array(__snake_case ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(__snake_case ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( f'P{self.__allocated_resources_table.index(__snake_case ) + 1}' + ' '.join(f'{it:>8}' for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( f'P{self.__maximum_claim_table.index(__snake_case ) + 1}' + ' '.join(f'{it:>8}' for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(__snake_case ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(__snake_case ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
308
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase : List[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { "ut/deta": "https://huggingface.co/ut/deta/resolve/main/config.json", } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'deta' SCREAMING_SNAKE_CASE = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , __snake_case=None , __snake_case=900 , __snake_case=2048 , __snake_case=6 , __snake_case=2048 , __snake_case=8 , __snake_case=6 , __snake_case=1024 , __snake_case=8 , __snake_case=0.0 , __snake_case=True , __snake_case="relu" , __snake_case=256 , __snake_case=0.1 , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.02 , __snake_case=1.0 , __snake_case=True , __snake_case=False , __snake_case="sine" , __snake_case=5 , __snake_case=4 , __snake_case=4 , __snake_case=True , __snake_case=300 , __snake_case=True , __snake_case=True , __snake_case=1 , __snake_case=5 , __snake_case=2 , __snake_case=1 , __snake_case=1 , __snake_case=5 , __snake_case=2 , __snake_case=0.1 , __snake_case=0.25 , **__snake_case , ) -> Union[str, Any]: '''simple docstring''' if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) __a =CONFIG_MAPPING['resnet'](out_features=['stage2', 'stage3', 'stage4'] ) else: if isinstance(__snake_case , __snake_case ): __a =backbone_config.pop('model_type' ) __a =CONFIG_MAPPING[backbone_model_type] __a =config_class.from_dict(__snake_case ) __a =backbone_config __a =num_queries __a =max_position_embeddings __a =d_model __a =encoder_ffn_dim __a =encoder_layers __a =encoder_attention_heads __a =decoder_ffn_dim __a =decoder_layers __a =decoder_attention_heads __a =dropout __a =attention_dropout __a =activation_dropout __a =activation_function __a =init_std __a =init_xavier_std __a =encoder_layerdrop __a =auxiliary_loss __a =position_embedding_type # deformable attributes __a =num_feature_levels __a =encoder_n_points __a =decoder_n_points __a =two_stage __a =two_stage_num_proposals __a =with_box_refine __a =assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher __a =class_cost __a =bbox_cost __a =giou_cost # Loss coefficients __a =mask_loss_coefficient __a =dice_loss_coefficient __a =bbox_loss_coefficient __a =giou_loss_coefficient __a =eos_coefficient __a =focal_alpha super().__init__(is_encoder_decoder=__snake_case , **__snake_case ) @property def __magic_name__ ( self ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def __magic_name__ ( self ) -> int: '''simple docstring''' return self.d_model def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =copy.deepcopy(self.__dict__ ) __a =self.backbone_config.to_dict() __a =self.__class__.model_type return output
308
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency _lowerCAmelCase : Tuple = { "E": 12.70, "T": 9.06, "A": 8.17, "O": 7.51, "I": 6.97, "N": 6.75, "S": 6.33, "H": 6.09, "R": 5.99, "D": 4.25, "L": 4.03, "C": 2.78, "U": 2.76, "M": 2.41, "W": 2.36, "F": 2.23, "G": 2.02, "Y": 1.97, "P": 1.93, "B": 1.29, "V": 0.98, "K": 0.77, "J": 0.15, "X": 0.15, "Q": 0.10, "Z": 0.07, } _lowerCAmelCase : Optional[int] = "ETAOINSHRDLCUMWFGYPBVKJXQZ" _lowerCAmelCase : Any = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a ={letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def UpperCamelCase_( _snake_case : tuple ): """simple docstring""" return x[0] def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =get_letter_count(_snake_case ) __a ={ freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(_snake_case ) __a ={} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=_snake_case ) __a =''.join(freq_to_letter[freq] ) __a =list(freq_to_letter_str.items() ) freq_pairs.sort(key=_snake_case , reverse=_snake_case ) __a =[freq_pair[1] for freq_pair in freq_pairs] return "".join(_snake_case ) def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =get_frequency_order(_snake_case ) __a =0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
308
1
def UpperCamelCase_( _snake_case : Dict , _snake_case : Dict , _snake_case : int , _snake_case : int ): """simple docstring""" __a =[False] * len(_snake_case ) __a =[] queue.append(_snake_case ) __a =True while queue: __a =queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_snake_case ) __a =True __a =u return visited[t] def UpperCamelCase_( _snake_case : int , _snake_case : str , _snake_case : Union[str, Any] ): """simple docstring""" __a =[-1] * (len(_snake_case )) __a =0 while bfs(_snake_case , _snake_case , _snake_case , _snake_case ): __a =float('Inf' ) __a =sink while s != source: # Find the minimum value in select path __a =min(_snake_case , graph[parent[s]][s] ) __a =parent[s] max_flow += path_flow __a =sink while v != source: __a =parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __a =parent[v] return max_flow _lowerCAmelCase : str = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = 0, 5 print(ford_fulkerson(graph, source, sink))
308
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : int = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'swin2sr' SCREAMING_SNAKE_CASE = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , __snake_case=64 , __snake_case=1 , __snake_case=3 , __snake_case=180 , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=8 , __snake_case=2.0 , __snake_case=True , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.1 , __snake_case="gelu" , __snake_case=False , __snake_case=0.02 , __snake_case=1e-5 , __snake_case=2 , __snake_case=1.0 , __snake_case="1conv" , __snake_case="pixelshuffle" , **__snake_case , ) -> Dict: '''simple docstring''' super().__init__(**__snake_case ) __a =image_size __a =patch_size __a =num_channels __a =embed_dim __a =depths __a =len(__snake_case ) __a =num_heads __a =window_size __a =mlp_ratio __a =qkv_bias __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =drop_path_rate __a =hidden_act __a =use_absolute_embeddings __a =layer_norm_eps __a =initializer_range __a =upscale __a =img_range __a =resi_connection __a =upsampler
308
1
def UpperCamelCase_( _snake_case : float , _snake_case : list[float] ): """simple docstring""" if discount_rate < 0: raise ValueError('Discount rate cannot be negative' ) if not cash_flows: raise ValueError('Cash flows list cannot be empty' ) __a =sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_snake_case ) ) return round(_snake_case , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
308
import os def UpperCamelCase_( _snake_case : str = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(_snake_case ) , _snake_case ) ) as input_file: __a =[ [int(_snake_case ) for element in line.split(',' )] for line in input_file.readlines() ] __a =len(_snake_case ) __a =len(matrix[0] ) __a =[[-1 for _ in range(_snake_case )] for _ in range(_snake_case )] for i in range(_snake_case ): __a =matrix[i][0] for j in range(1 , _snake_case ): for i in range(_snake_case ): __a =minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _snake_case ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
308
1
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) _lowerCAmelCase : Optional[int] = logging.getLogger(__name__) def UpperCamelCase_( ): """simple docstring""" __a =argparse.ArgumentParser( description='Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).' ) parser.add_argument('--file_path' , type=_snake_case , default='data/dump.txt' , help='The path to the data.' ) parser.add_argument('--tokenizer_type' , type=_snake_case , default='bert' , choices=['bert', 'roberta', 'gpt2'] ) parser.add_argument('--tokenizer_name' , type=_snake_case , default='bert-base-uncased' , help='The tokenizer to use.' ) parser.add_argument('--dump_file' , type=_snake_case , default='data/dump' , help='The dump file prefix.' ) __a =parser.parse_args() logger.info(F'Loading Tokenizer ({args.tokenizer_name})' ) if args.tokenizer_type == "bert": __a =BertTokenizer.from_pretrained(args.tokenizer_name ) __a =tokenizer.special_tokens_map['cls_token'] # `[CLS]` __a =tokenizer.special_tokens_map['sep_token'] # `[SEP]` elif args.tokenizer_type == "roberta": __a =RobertaTokenizer.from_pretrained(args.tokenizer_name ) __a =tokenizer.special_tokens_map['cls_token'] # `<s>` __a =tokenizer.special_tokens_map['sep_token'] # `</s>` elif args.tokenizer_type == "gpt2": __a =GPTaTokenizer.from_pretrained(args.tokenizer_name ) __a =tokenizer.special_tokens_map['bos_token'] # `<|endoftext|>` __a =tokenizer.special_tokens_map['eos_token'] # `<|endoftext|>` logger.info(F'Loading text from {args.file_path}' ) with open(args.file_path , 'r' , encoding='utf8' ) as fp: __a =fp.readlines() logger.info('Start encoding' ) logger.info(F'{len(_snake_case )} examples to process.' ) __a =[] __a =0 __a =10000 __a =time.time() for text in data: __a =F'{bos} {text.strip()} {sep}' __a =tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) rslt.append(_snake_case ) iter += 1 if iter % interval == 0: __a =time.time() logger.info(F'{iter} examples processed. - {(end-start):.2f}s/{interval}expl' ) __a =time.time() logger.info('Finished binarization' ) logger.info(F'{len(_snake_case )} examples processed.' ) __a =F'{args.dump_file}.{args.tokenizer_name}.pickle' __a =tokenizer.vocab_size if vocab_size < (1 << 16): __a =[np.uintaa(_snake_case ) for d in rslt] else: __a =[np.intaa(_snake_case ) for d in rslt] random.shuffle(rslt_ ) logger.info(F'Dump to {dp_file}' ) with open(_snake_case , 'wb' ) as handle: pickle.dump(rslt_ , _snake_case , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
308
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _lowerCAmelCase : Any = logging.get_logger(__name__) class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , *__snake_case , **__snake_case ) -> None: '''simple docstring''' warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
308
1
_lowerCAmelCase : str = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} _lowerCAmelCase : Any = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def UpperCamelCase_( _snake_case : dict[int, list[int]] , _snake_case : int , _snake_case : list[bool] ): """simple docstring""" __a =True __a =[] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(_snake_case , _snake_case , _snake_case ) order.append(_snake_case ) return order def UpperCamelCase_( _snake_case : dict[int, list[int]] , _snake_case : int , _snake_case : list[bool] ): """simple docstring""" __a =True __a =[vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(_snake_case , _snake_case , _snake_case ) return component def UpperCamelCase_( _snake_case : dict[int, list[int]] ): """simple docstring""" __a =len(_snake_case ) * [False] __a ={vert: [] for vert in range(len(_snake_case ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(_snake_case ) __a =[] for i, was_visited in enumerate(_snake_case ): if not was_visited: order += topology_sort(_snake_case , _snake_case , _snake_case ) __a =[] __a =len(_snake_case ) * [False] for i in range(len(_snake_case ) ): __a =order[len(_snake_case ) - i - 1] if not visited[vert]: __a =find_components(_snake_case , _snake_case , _snake_case ) components_list.append(_snake_case ) return components_list
308
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : int = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'microsoft/speecht5_tts' SCREAMING_SNAKE_CASE = ( 'This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ' 'text to read (in English) and returns a waveform object containing the sound.' ) SCREAMING_SNAKE_CASE = 'text_reader' SCREAMING_SNAKE_CASE = SpeechTaProcessor SCREAMING_SNAKE_CASE = SpeechTaForTextToSpeech SCREAMING_SNAKE_CASE = SpeechTaHifiGan SCREAMING_SNAKE_CASE = ['text'] SCREAMING_SNAKE_CASE = ['audio'] def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' if self.post_processor is None: __a ='microsoft/speecht5_hifigan' super().setup() def __magic_name__ ( self , __snake_case , __snake_case=None ) -> Any: '''simple docstring''' __a =self.pre_processor(text=__snake_case , return_tensors='pt' , truncation=__snake_case ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('Datasets needs to be installed if not passing speaker embeddings.' ) __a =load_dataset('Matthijs/cmu-arctic-xvectors' , split='validation' ) __a =torch.tensor(embeddings_dataset[7305]['xvector'] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __magic_name__ ( self , __snake_case ) -> Optional[Any]: '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**__snake_case ) def __magic_name__ ( self , __snake_case ) -> List[str]: '''simple docstring''' with torch.no_grad(): return self.post_processor(__snake_case ).cpu().detach()
308
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'yolos' def __init__( self , __snake_case=768 , __snake_case=12 , __snake_case=12 , __snake_case=3072 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.02 , __snake_case=1e-12 , __snake_case=[512, 864] , __snake_case=16 , __snake_case=3 , __snake_case=True , __snake_case=100 , __snake_case=True , __snake_case=False , __snake_case=1 , __snake_case=5 , __snake_case=2 , __snake_case=5 , __snake_case=2 , __snake_case=0.1 , **__snake_case , ) -> str: '''simple docstring''' super().__init__(**__snake_case ) __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =intermediate_size __a =hidden_act __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =initializer_range __a =layer_norm_eps __a =image_size __a =patch_size __a =num_channels __a =qkv_bias __a =num_detection_tokens __a =use_mid_position_embeddings __a =auxiliary_loss # Hungarian matcher __a =class_cost __a =bbox_cost __a =giou_cost # Loss coefficients __a =bbox_loss_coefficient __a =giou_loss_coefficient __a =eos_coefficient class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = version.parse('1.11' ) @property def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __magic_name__ ( self ) -> float: '''simple docstring''' return 1e-4 @property def __magic_name__ ( self ) -> int: '''simple docstring''' return 12
308
1
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def UpperCamelCase_( _snake_case : str ): """simple docstring""" assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def UpperCamelCase_( ): """simple docstring""" assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def UpperCamelCase_( ): """simple docstring""" __a ='mock-s3-bucket' __a =F's3://{mock_bucket}' __a =extract_path_from_uri(_snake_case ) assert dataset_path.startswith('s3://' ) is False __a ='./local/path' __a =extract_path_from_uri(_snake_case ) assert dataset_path == new_dataset_path def UpperCamelCase_( _snake_case : Optional[Any] ): """simple docstring""" __a =is_remote_filesystem(_snake_case ) assert is_remote is True __a =fsspec.filesystem('file' ) __a =is_remote_filesystem(_snake_case ) assert is_remote is False @pytest.mark.parametrize('compression_fs_class' , _snake_case ) def UpperCamelCase_( _snake_case : List[str] , _snake_case : Any , _snake_case : List[Any] , _snake_case : Tuple , _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Optional[Any] ): """simple docstring""" __a ={'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_file, 'bz2': bza_file, 'lz4': lza_file} __a =input_paths[compression_fs_class.protocol] if input_path is None: __a =F'for \'{compression_fs_class.protocol}\' compression protocol, ' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_snake_case ) __a =fsspec.filesystem(compression_fs_class.protocol , fo=_snake_case ) assert isinstance(_snake_case , _snake_case ) __a =os.path.basename(_snake_case ) __a =expected_filename[: expected_filename.rindex('.' )] assert fs.glob('*' ) == [expected_filename] with fs.open(_snake_case , 'r' , encoding='utf-8' ) as f, open(_snake_case , encoding='utf-8' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('protocol' , ['zip', 'gzip'] ) def UpperCamelCase_( _snake_case : Dict , _snake_case : Dict , _snake_case : Union[str, Any] ): """simple docstring""" __a ={'zip': zip_jsonl_path, 'gzip': jsonl_gz_path} __a =compressed_file_paths[protocol] __a ='dataset.jsonl' __a =F'{protocol}://{member_file_path}::{compressed_file_path}' __a , *__a =fsspec.get_fs_token_paths(_snake_case ) assert fs.isfile(_snake_case ) assert not fs.isfile('non_existing_' + member_file_path ) @pytest.mark.integration def UpperCamelCase_( _snake_case : Union[str, Any] , _snake_case : Union[str, Any] , _snake_case : Dict , _snake_case : int ): """simple docstring""" __a =hf_api.dataset_info(_snake_case , token=_snake_case ) __a =HfFileSystem(repo_info=_snake_case , token=_snake_case ) assert sorted(hffs.glob('*' ) ) == [".gitattributes", "data"] assert hffs.isdir('data' ) assert hffs.isfile('.gitattributes' ) and hffs.isfile('data/text_data.txt' ) with open(_snake_case ) as f: assert hffs.open('data/text_data.txt' , 'r' ).read() == f.read() def UpperCamelCase_( ): """simple docstring""" __a ='bz2' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(_snake_case , _snake_case , clobber=_snake_case ) with pytest.warns(_snake_case ) as warning_info: importlib.reload(datasets.filesystems ) assert len(_snake_case ) == 1 assert ( str(warning_info[0].message ) == F'A filesystem protocol was already set for {protocol} and will be overwritten.' )
308
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def UpperCamelCase_( _snake_case : Optional[Any] ): """simple docstring""" __a =model.config __a =DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) __a =MBartConfig( is_decoder=_snake_case , is_encoder_decoder=_snake_case , add_cross_attention=_snake_case , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=_snake_case , add_final_layer_norm=_snake_case , ) return encoder_config, decoder_config def UpperCamelCase_( _snake_case : Tuple ): """simple docstring""" if "encoder.model" in name: __a =name.replace('encoder.model' , 'encoder' ) if "decoder.model" in name: __a =name.replace('decoder.model' , 'decoder' ) if "patch_embed.proj" in name: __a =name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __a =name.replace('patch_embed.norm' , 'embeddings.norm' ) if name.startswith('encoder' ): if "layers" in name: __a ='encoder.' + name if "attn.proj" in name: __a =name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "mask" not in name: __a =name.replace('attn' , 'attention.self' ) if "norm1" in name: __a =name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __a =name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __a =name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __a =name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": __a ='encoder.layernorm.weight' if name == "encoder.norm.bias": __a ='encoder.layernorm.bias' return name def UpperCamelCase_( _snake_case : Tuple , _snake_case : str ): """simple docstring""" for key in orig_state_dict.copy().keys(): __a =orig_state_dict.pop(_snake_case ) if "qkv" in key: __a =key.split('.' ) __a =int(key_split[3] ) __a =int(key_split[5] ) __a =model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __a =val[:dim, :] __a =val[dim : dim * 2, :] __a =val[-dim:, :] else: __a =val[:dim] __a =val[dim : dim * 2] __a =val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: __a =val return orig_state_dict def UpperCamelCase_( _snake_case : Tuple , _snake_case : Union[str, Any]=None , _snake_case : List[Any]=False ): """simple docstring""" __a =DonutModel.from_pretrained(_snake_case ).eval() # load HuggingFace model __a , __a =get_configs(_snake_case ) __a =DonutSwinModel(_snake_case ) __a =MBartForCausalLM(_snake_case ) __a =VisionEncoderDecoderModel(encoder=_snake_case , decoder=_snake_case ) model.eval() __a =original_model.state_dict() __a =convert_state_dict(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) # verify results on scanned document __a =load_dataset('hf-internal-testing/example-documents' ) __a =dataset['test'][0]['image'].convert('RGB' ) __a =XLMRobertaTokenizerFast.from_pretrained(_snake_case , from_slow=_snake_case ) __a =DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) __a =DonutProcessor(_snake_case , _snake_case ) __a =processor(_snake_case , return_tensors='pt' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": __a ='<s_docvqa><s_question>{user_input}</s_question><s_answer>' __a ='When is the coffee break?' __a =task_prompt.replace('{user_input}' , _snake_case ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": __a ='<s_rvlcdip>' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: __a ='<s_cord>' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": __a ='s_cord-v2>' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": __a ='<s_zhtrainticket>' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt __a ='hello world' else: raise ValueError('Model name not supported' ) __a =original_model.decoder.tokenizer(_snake_case , add_special_tokens=_snake_case , return_tensors='pt' )[ 'input_ids' ] __a =original_model.encoder.model.patch_embed(_snake_case ) __a , __a =model.encoder.embeddings(_snake_case ) assert torch.allclose(_snake_case , _snake_case , atol=1e-3 ) # verify encoder hidden states __a =original_model.encoder(_snake_case ) __a =model.encoder(_snake_case ).last_hidden_state assert torch.allclose(_snake_case , _snake_case , atol=1e-2 ) # verify decoder hidden states __a =original_model(_snake_case , _snake_case , _snake_case ).logits __a =model(_snake_case , decoder_input_ids=_snake_case ).logits assert torch.allclose(_snake_case , _snake_case , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(_snake_case ) processor.save_pretrained(_snake_case ) if push_to_hub: model.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) processor.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) _lowerCAmelCase : List[Any] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
308
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class __magic_name__ ( unittest.TestCase ): @slow def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =TFAutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' ) __a =AutoTokenizer.from_pretrained('google/mt5-small' ) __a =tokenizer('Hello there' , return_tensors='tf' ).input_ids __a =tokenizer('Hi I am' , return_tensors='tf' ).input_ids __a =model(__snake_case , labels=__snake_case ).loss __a =-tf.math.reduce_mean(__snake_case ).numpy() __a =-21.22_8168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
308
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer SCREAMING_SNAKE_CASE = False def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' super().setUp() __a =['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] __a =dict(zip(__snake_case , range(len(__snake_case ) ) ) ) __a =['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] __a ={'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__snake_case ) ) def __magic_name__ ( self , **__snake_case ) -> Any: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def __magic_name__ ( self , __snake_case ) -> List[Any]: '''simple docstring''' __a ='adapt act apte' __a ='adapt act apte' return input_text, output_text def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __a ='adapt act apte' __a =['adapt', 'act', 'ap@@', 'te'] __a =tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) __a =[tokenizer.bos_token] + tokens + [tokenizer.eos_token] __a =[0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1384] __a ='I am a small frog.' __a =tok([src_text] , padding=__snake_case , truncation=__snake_case )['input_ids'] __a =tok.batch_decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) __a ='I am a small frog .' __a ='.' __a =tok(__snake_case )['input_ids'] __a =tok(__snake_case )['input_ids'] assert encoded[-1] == encoded_dot[0]
308
1
import os import numpy import onnx def UpperCamelCase_( _snake_case : Any , _snake_case : Optional[Any] ): """simple docstring""" __a =a.name __a =b.name __a ='' __a ='' __a =a == b __a =name_a __a =name_b return res def UpperCamelCase_( _snake_case : Any , _snake_case : List[Any] , _snake_case : List[Any] ): """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(_snake_case , _snake_case ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , _snake_case , _snake_case ) _graph_replace_input_with(node_proto.attribute[1].g , _snake_case , _snake_case ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , _snake_case , _snake_case ) def UpperCamelCase_( _snake_case : str , _snake_case : Any , _snake_case : str ): """simple docstring""" for n in graph_proto.node: _node_replace_input_with(_snake_case , _snake_case , _snake_case ) def UpperCamelCase_( _snake_case : List[str] , _snake_case : Tuple , _snake_case : Tuple ): """simple docstring""" __a =list(model.graph.initializer ) __a =list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i __a =inits[i].name __a =inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , _snake_case , _snake_case ) def UpperCamelCase_( _snake_case : Any ): """simple docstring""" __a =os.path.dirname(_snake_case ) __a =os.path.basename(_snake_case ) __a =onnx.load(os.path.join(_snake_case , _snake_case ) ) __a =list(model.graph.initializer ) __a =set() __a ={} __a =[] __a =0 for i in range(len(_snake_case ) ): if i in dup_set: continue for j in range(i + 1 , len(_snake_case ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(_snake_case ) dup_set.add(_snake_case ) __a =inits[j].data_type __a =numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('unexpected data type: ' , _snake_case ) total_reduced_size += mem_size __a =inits[i].name __a =inits[j].name if name_i in dup_map: dup_map[name_i].append(_snake_case ) else: __a =[name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 1024 / 1024 / 1024 , 'GB' ) __a =sorted(_snake_case ) _remove_dup_initializers_from_model(_snake_case , _snake_case , _snake_case ) __a ='optimized_' + model_file_name __a =os.path.join(_snake_case , _snake_case ) onnx.save(_snake_case , _snake_case ) return new_model
308
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __magic_name__ ( unittest.TestCase , lowerCAmelCase_ ): def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =load_tool('text-to-speech' ) self.tool.setup() def __magic_name__ ( self ) -> Dict: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) __a =self.tool('hey' ) __a =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) __a =self.tool('hey' ) __a =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) )
308
1
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer SCREAMING_SNAKE_CASE = False def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' super().setUp() __a =['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] __a =dict(zip(__snake_case , range(len(__snake_case ) ) ) ) __a =['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] __a ={'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__snake_case ) ) def __magic_name__ ( self , **__snake_case ) -> Any: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def __magic_name__ ( self , __snake_case ) -> List[Any]: '''simple docstring''' __a ='adapt act apte' __a ='adapt act apte' return input_text, output_text def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __a ='adapt act apte' __a =['adapt', 'act', 'ap@@', 'te'] __a =tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) __a =[tokenizer.bos_token] + tokens + [tokenizer.eos_token] __a =[0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1384] __a ='I am a small frog.' __a =tok([src_text] , padding=__snake_case , truncation=__snake_case )['input_ids'] __a =tok.batch_decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) __a ='I am a small frog .' __a ='.' __a =tok(__snake_case )['input_ids'] __a =tok(__snake_case )['input_ids'] assert encoded[-1] == encoded_dot[0]
308
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> int: '''simple docstring''' __a =[] __a =[] for i in range(self.num_layers ): __a =self.in_channels if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =resnets __a =attentions if self.add_downsample: __a =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> Optional[Any]: '''simple docstring''' __a =() for resnet, attn in zip(self.resnets , self.attentions ): __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __a =self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> int: '''simple docstring''' __a =[] for i in range(self.num_layers ): __a =self.in_channels if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets if self.add_downsample: __a =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case=True ) -> Optional[int]: '''simple docstring''' __a =() for resnet in self.resnets: __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __a =self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =[] __a =[] for i in range(self.num_layers ): __a =self.in_channels if (i == self.num_layers - 1) else self.out_channels __a =self.prev_output_channel if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =resnets __a =attentions if self.add_upsample: __a =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[Any]: '''simple docstring''' for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states __a =res_hidden_states_tuple[-1] __a =res_hidden_states_tuple[:-1] __a =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __a =self.upsamplers_a(__snake_case ) return hidden_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =[] for i in range(self.num_layers ): __a =self.in_channels if (i == self.num_layers - 1) else self.out_channels __a =self.prev_output_channel if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets if self.add_upsample: __a =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[Any]: '''simple docstring''' for resnet in self.resnets: # pop res hidden states __a =res_hidden_states_tuple[-1] __a =res_hidden_states_tuple[:-1] __a =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __a =self.upsamplers_a(__snake_case ) return hidden_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # there is always at least one resnet __a =[ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] __a =[] for _ in range(self.num_layers ): __a =FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets __a =attentions def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[str]: '''simple docstring''' __a =self.resnets[0](__snake_case , __snake_case ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) return hidden_states
308
1
from __future__ import annotations _lowerCAmelCase : Dict = 8.988E9 # units = N * m^s * C^-2 def UpperCamelCase_( _snake_case : float , _snake_case : float , _snake_case : float , _snake_case : float ): """simple docstring""" __a =abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if distance < 0: raise ValueError('Distance cannot be negative' ) if force == 0: __a =COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: __a =abs(_snake_case ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: __a =abs(_snake_case ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: __a =(COULOMBS_CONSTANT * charge_product / abs(_snake_case )) ** 0.5 return {"distance": distance} raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
308
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_5_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self ) -> int: '''simple docstring''' if self.framework == "pytorch": subprocess.run( f'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding='utf-8' , check=__snake_case , ) assert hasattr(self , 'env' ) def __magic_name__ ( self , __snake_case ) -> int: '''simple docstring''' __a =f'{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}' # distributed data settings __a ={'smdistributed': {'dataparallel': {'enabled': True}}} if self.script != 'run_ddp.py' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__snake_case , instance_count=__snake_case , instance_type=self.instance_type , debugger_hook_config=__snake_case , hyperparameters={**self.env.distributed_hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__snake_case , py_version='py36' , ) def __magic_name__ ( self , __snake_case ) -> Optional[Any]: '''simple docstring''' TrainingJobAnalytics(__snake_case ).export_csv(f'{self.env.test_path}/{job_name}_metrics.csv' ) @parameterized.expand([(2,)] ) def __magic_name__ ( self , __snake_case ) -> Optional[int]: '''simple docstring''' # create estimator __a =self.create_estimator(__snake_case ) # run training estimator.fit() # result dataframe __a =TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __a =list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) __a =list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __a =( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'{estimator.latest_training_job.name}.json' , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , __snake_case )
308
1
from PIL import Image def UpperCamelCase_( _snake_case : Image , _snake_case : float ): """simple docstring""" def brightness(_snake_case : int ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(_snake_case ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change brightness to 100 _lowerCAmelCase : str = change_brightness(img, 100) brigt_img.save("image_data/lena_brightness.png", format="png")
308
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _lowerCAmelCase : List[Any] = logging.getLogger(__name__) _lowerCAmelCase : Optional[Any] = "Hello world! cécé herlolip" _lowerCAmelCase : str = namedtuple( "BertAbsConfig", [ "temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout", ], ) def UpperCamelCase_( _snake_case : str , _snake_case : List[Any] ): """simple docstring""" __a =BertAbsConfig( temp_dir='.' , finetune_bert=_snake_case , large=_snake_case , share_emb=_snake_case , use_bert_emb=_snake_case , encoder='bert' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) __a =torch.load(_snake_case , lambda _snake_case , _snake_case : storage ) __a =AbsSummarizer(_snake_case , torch.device('cpu' ) , _snake_case ) original.eval() __a =BertAbsSummarizer(_snake_case , torch.device('cpu' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('convert the model' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('Make sure that the models\' outputs are identical' ) __a =BertTokenizer.from_pretrained('bert-base-uncased' ) # prepare the model inputs __a =tokenizer.encode('This is sample éàalj\'-.' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_snake_case )) ) __a =torch.tensor(_snake_case ).unsqueeze(0 ) __a =tokenizer.encode('This is sample 3 éàalj\'-.' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_snake_case )) ) __a =torch.tensor(_snake_case ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __a =encoder_input_ids __a =decoder_input_ids __a =__a =None __a =None __a =__a =None __a =__a =None __a =None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __a =original(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )[0] __a =original.generator(_snake_case ) __a =new_model( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )[0] __a =new_model.generator(_snake_case ) __a =torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_snake_case ) ) __a =torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_snake_case ) ) __a =torch.allclose(_snake_case , _snake_case , atol=1e-3 ) if are_identical: logging.info('all weights are equal up to 1e-3' ) else: raise ValueError('the weights are different. The new model is likely different from the original one.' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('saving the model\'s state dictionary' ) torch.save( new_model.state_dict() , './bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--bertabs_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model.", ) _lowerCAmelCase : Optional[Any] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
308
1
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __magic_name__ ( unittest.TestCase , lowerCAmelCase_ ): def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =load_tool('text-to-speech' ) self.tool.setup() def __magic_name__ ( self ) -> Dict: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) __a =self.tool('hey' ) __a =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) __a =self.tool('hey' ) __a =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) )
308
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ : def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=False , __snake_case=False , __snake_case=False , __snake_case=2 , __snake_case=99 , __snake_case=0 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=0.1 , __snake_case=0.1 , __snake_case=512 , __snake_case=2 , __snake_case=0.02 , __snake_case=2 , __snake_case=4 , __snake_case="last" , __snake_case=True , __snake_case=None , __snake_case=0 , ) -> Optional[Any]: '''simple docstring''' __a =parent __a =batch_size __a =seq_length __a =is_training __a =use_input_lengths __a =use_token_type_ids __a =use_labels __a =gelu_activation __a =sinusoidal_embeddings __a =causal __a =asm __a =n_langs __a =vocab_size __a =n_special __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =max_position_embeddings __a =type_sequence_label_size __a =initializer_range __a =num_labels __a =num_choices __a =summary_type __a =use_proj __a =scope __a =bos_token_id def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a =random_attention_mask([self.batch_size, self.seq_length] ) __a =None if self.use_input_lengths: __a =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __a =None if self.use_token_type_ids: __a =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __a =None __a =None __a =None if self.use_labels: __a =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a =ids_tensor([self.batch_size] , 2 ).float() __a =ids_tensor([self.batch_size] , self.num_choices ) __a =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __magic_name__ ( self ) -> Any: '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> List[Any]: '''simple docstring''' __a =XLMModel(config=__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , lengths=__snake_case , langs=__snake_case ) __a =model(__snake_case , langs=__snake_case ) __a =model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Optional[int]: '''simple docstring''' __a =XLMWithLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Dict: '''simple docstring''' __a =XLMForQuestionAnsweringSimple(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) __a =outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> List[Any]: '''simple docstring''' __a =XLMForQuestionAnswering(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , p_mask=__snake_case , ) __a =model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , ) ((__a) , ) =result_with_labels.to_tuple() __a =model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) ((__a) , ) =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Optional[Any]: '''simple docstring''' __a =XLMForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Any: '''simple docstring''' __a =self.num_labels __a =XLMForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Tuple: '''simple docstring''' __a =self.num_choices __a =XLMForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() __a =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) =config_and_inputs __a ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable SCREAMING_SNAKE_CASE = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> int: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __magic_name__ ( self , __snake_case , __snake_case , __snake_case=False ) -> str: '''simple docstring''' __a =super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __a =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) __a =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =XLMModelTester(self ) __a =ConfigTester(self , config_class=__snake_case , emb_dim=37 ) def __magic_name__ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=False , __snake_case=1 ) -> Optional[Any]: '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_attentions in attentions] , [True] * len(__snake_case ) ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__snake_case ): # adds PAD dummy token __a =min_length + idx + 1 __a =min_length + idx + 1 __a =( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__snake_case ) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=False , __snake_case=1 ) -> Dict: '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_hidden_states in hidden_states] , [True] * len(__snake_case ) , ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__snake_case ): # adds PAD dummy token __a =min_length + idx + 1 __a =(batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__snake_case ) , ) pass @slow def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a =XLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class __magic_name__ ( unittest.TestCase ): @slow def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(__snake_case ) __a =torch.tensor([[14, 447]] , dtype=torch.long , device=__snake_case ) # the president __a =[ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __a =model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __snake_case )
308
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin _lowerCAmelCase : List[str] = False @skip_mps class __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = StableDiffusionAttendAndExcitePipeline SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_BATCH_PARAMS.union({'token_indices'} ) SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def __magic_name__ ( cls ) -> int: '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(__snake_case ) @classmethod def __magic_name__ ( cls ) -> List[str]: '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(__snake_case ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) __a =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__snake_case , ) __a =DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) torch.manual_seed(0 ) __a =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __a =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) __a =CLIPTextModel(__snake_case ) __a =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __a ={ 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __magic_name__ ( self , __snake_case , __snake_case=0 ) -> str: '''simple docstring''' if str(__snake_case ).startswith('mps' ): __a =torch.manual_seed(__snake_case ) else: __a =torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __a =__a ={ 'prompt': 'a cat and a frog', 'token_indices': [2, 5], 'generator': generator, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', 'max_iter_to_alter': 2, 'thresholds': {0: 0.7}, } return inputs def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a ='cpu' __a =self.get_dummy_components() __a =self.pipeline_class(**__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __a =self.get_dummy_inputs(__snake_case ) __a =pipe(**__snake_case ).images __a =image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) __a =np.array( [0.6390_5364, 0.6289_7307, 0.4859_9017, 0.513_3624, 0.555_0048, 0.4576_9516, 0.5032_6973, 0.502_3139, 0.4538_4496] ) __a =np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__snake_case , 1e-3 ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=5e-4 ) def __magic_name__ ( self ) -> str: '''simple docstring''' # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __magic_name__ ( self ) -> Any: '''simple docstring''' self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4 ) def __magic_name__ ( self ) -> Any: '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __magic_name__ ( self ) -> Any: '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4 ) def __magic_name__ ( self ) -> str: '''simple docstring''' super().test_save_load_local(expected_max_difference=5e-4 ) def __magic_name__ ( self ) -> Any: '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=4e-4 ) @require_torch_gpu @slow class __magic_name__ ( unittest.TestCase ): @classmethod def __magic_name__ ( cls ) -> Tuple: '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(__snake_case ) @classmethod def __magic_name__ ( cls ) -> int: '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(__snake_case ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =torch.manual_seed(51 ) __a =StableDiffusionAttendAndExcitePipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , safety_checker=__snake_case , torch_dtype=torch.floataa ) pipe.to('cuda' ) __a ='a painting of an elephant with glasses' __a =[5, 7] __a =pipe( prompt=__snake_case , token_indices=__snake_case , guidance_scale=7.5 , generator=__snake_case , num_inference_steps=5 , max_iter_to_alter=5 , output_type='numpy' , ).images[0] __a =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy' ) assert np.abs((expected_image - image).max() ) < 5e-1
308
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake _lowerCAmelCase : Optional[Any] = numpy.array([0, 0]) _lowerCAmelCase : Dict = numpy.array([0.5, 0.8660254]) _lowerCAmelCase : Any = numpy.array([1, 0]) _lowerCAmelCase : int = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCamelCase_( _snake_case : list[numpy.ndarray] , _snake_case : int ): """simple docstring""" __a =initial_vectors for _ in range(_snake_case ): __a =iteration_step(_snake_case ) return vectors def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =[] for i, start_vector in enumerate(vectors[:-1] ): __a =vectors[i + 1] new_vectors.append(_snake_case ) __a =end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCamelCase_( _snake_case : numpy.ndarray , _snake_case : float ): """simple docstring""" __a =numpy.radians(_snake_case ) __a , __a =numpy.cos(_snake_case ), numpy.sin(_snake_case ) __a =numpy.array(((c, -s), (s, c)) ) return numpy.dot(_snake_case , _snake_case ) def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() __a , __a =zip(*_snake_case ) plt.plot(_snake_case , _snake_case ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : List[Any] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
308
1
def UpperCamelCase_( _snake_case : str ): """simple docstring""" assert column_title.isupper() __a =0 __a =len(_snake_case ) - 1 __a =0 while index >= 0: __a =(ord(column_title[index] ) - 64) * pow(26 , _snake_case ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
308
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Tuple = { "configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MegatronBertForCausalLM", "MegatronBertForMaskedLM", "MegatronBertForMultipleChoice", "MegatronBertForNextSentencePrediction", "MegatronBertForPreTraining", "MegatronBertForQuestionAnswering", "MegatronBertForSequenceClassification", "MegatronBertForTokenClassification", "MegatronBertModel", "MegatronBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys _lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCAmelCase : Any = { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/config.json", # See all XGLM models at https://huggingface.co/models?filter=xglm } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'xglm' SCREAMING_SNAKE_CASE = ['past_key_values'] SCREAMING_SNAKE_CASE = { 'num_attention_heads': 'attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'num_layers', } def __init__( self , __snake_case=25_6008 , __snake_case=2048 , __snake_case=1024 , __snake_case=4096 , __snake_case=24 , __snake_case=16 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.02 , __snake_case=True , __snake_case=True , __snake_case=2 , __snake_case=1 , __snake_case=0 , __snake_case=2 , **__snake_case , ) -> List[Any]: '''simple docstring''' __a =vocab_size __a =max_position_embeddings __a =d_model __a =ffn_dim __a =num_layers __a =attention_heads __a =activation_function __a =dropout __a =attention_dropout __a =activation_dropout __a =layerdrop __a =init_std __a =scale_embedding # scale factor will be sqrt(d_model) if True __a =use_cache super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , decoder_start_token_id=__snake_case , **__snake_case , )
308
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __magic_name__ : @staticmethod def __magic_name__ ( *__snake_case , **__snake_case ) -> List[str]: '''simple docstring''' pass def UpperCamelCase_( _snake_case : Image ): """simple docstring""" __a =hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __magic_name__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def __magic_name__ ( self , __snake_case , __snake_case , __snake_case ) -> Dict: '''simple docstring''' __a =DepthEstimationPipeline(model=__snake_case , image_processor=__snake_case ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __magic_name__ ( self , __snake_case , __snake_case ) -> Tuple: '''simple docstring''' __a =depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , __snake_case ) import datasets __a =datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) __a =depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , __snake_case , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' pass @slow @require_torch def __magic_name__ ( self ) -> int: '''simple docstring''' __a ='Intel/dpt-large' __a =pipeline('depth-estimation' , model=__snake_case ) __a =depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) __a =hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.662 ) @require_torch def __magic_name__ ( self ) -> Any: '''simple docstring''' # This is highly irregular to have no small tests. self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
308
1
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : Union[str, Any] = [ ("bert.bert", "visual_bert"), ("bert.cls", "cls"), ("bert.classifier", "cls"), ("token_type_embeddings_visual", "visual_token_type_embeddings"), ("position_embeddings_visual", "visual_position_embeddings"), ("projection", "visual_projection"), ] _lowerCAmelCase : int = [ "nlvr2_coco_pre_trained.th", "nlvr2_fine_tuned.th", "nlvr2_pre_trained.th", "vcr_coco_pre_train.th", "vcr_fine_tune.th", "vcr_pre_train.th", "vqa_coco_pre_trained.th", "vqa_fine_tuned.th", "vqa_pre_trained.th", ] def UpperCamelCase_( _snake_case : int ): """simple docstring""" __a =torch.load(_snake_case , map_location='cpu' ) return sd def UpperCamelCase_( _snake_case : Optional[int] , _snake_case : List[str] , _snake_case : int=rename_keys_prefix ): """simple docstring""" __a =OrderedDict() __a =torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue __a =key for name_pair in rename_keys_prefix: __a =new_key.replace(name_pair[0] , name_pair[1] ) __a =d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately __a =new_d['cls.predictions.bias'] return new_d @torch.no_grad() def UpperCamelCase_( _snake_case : List[Any] , _snake_case : int ): """simple docstring""" assert ( checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS ), F'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: __a ='pretraining' if "vcr" in checkpoint_path: __a ={'visual_embedding_dim': 512} elif "vqa_advanced" in checkpoint_path: __a ={'visual_embedding_dim': 2048} elif "vqa" in checkpoint_path: __a ={'visual_embedding_dim': 2048} elif "nlvr" in checkpoint_path: __a ={'visual_embedding_dim': 1024} else: raise NotImplementedError(F'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: __a ={'visual_embedding_dim': 512} __a ='multichoice' elif "vqa_advanced" in checkpoint_path: __a ={'visual_embedding_dim': 2048} __a ='vqa_advanced' elif "vqa" in checkpoint_path: __a ={'visual_embedding_dim': 2048, 'num_labels': 3129} __a ='vqa' elif "nlvr" in checkpoint_path: __a ={ 'visual_embedding_dim': 1024, 'num_labels': 2, } __a ='nlvr' __a =VisualBertConfig(**_snake_case ) # Load State Dict __a =load_state_dict(_snake_case ) __a =get_new_dict(_snake_case , _snake_case ) if model_type == "pretraining": __a =VisualBertForPreTraining(_snake_case ) elif model_type == "vqa": __a =VisualBertForQuestionAnswering(_snake_case ) elif model_type == "nlvr": __a =VisualBertForVisualReasoning(_snake_case ) elif model_type == "multichoice": __a =VisualBertForMultipleChoice(_snake_case ) model.load_state_dict(_snake_case ) # Save Checkpoints Path(_snake_case ).mkdir(exist_ok=_snake_case ) model.save_pretrained(_snake_case ) if __name__ == "__main__": _lowerCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.") parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.") _lowerCAmelCase : Any = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
308
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _lowerCAmelCase : Optional[int] = logging.getLogger(__name__) _lowerCAmelCase : Any = "pytorch_model.bin" @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co.'} , ) @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field(metadata={'help': 'A csv or a json file containing the training data.'} ) SCREAMING_SNAKE_CASE = dataclasses.field(metadata={'help': 'A csv or a json file containing the data to predict on.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the validation data.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'The name of the task to train on.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'The list of labels for the task.'} ) @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field( metadata={'help': 'The output directory where the model predictions and checkpoints will be written.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default='accuracy' , metadata={'help': 'The evaluation metric used for the task.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default='no' , metadata={ 'help': 'The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]' } , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=1_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0 , metadata={ 'help': 'How much the specified evaluation metric must improve to satisfy early stopping conditions.' } , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the confidence score.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the validation performance.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to fine-tune on labeled data after pseudo training.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0 , metadata={'help': 'Confidence threshold for pseudo-labeled data filtering.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=1_0_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Random seed for initialization.'} , ) def UpperCamelCase_( _snake_case : int , _snake_case : str , _snake_case : Optional[int] , _snake_case : str , _snake_case : Union[str, Any] , _snake_case : List[Any] ): """simple docstring""" __a =datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: __a =dataset.filter(lambda _snake_case : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 __a =int(eval_result * len(_snake_case ) ) print(_snake_case ) __a =dataset.sort('probability' , reverse=_snake_case ) __a =dataset.select(range(_snake_case ) ) __a =dataset.remove_columns(['label', 'probability'] ) __a =dataset.rename_column('prediction' , 'label' ) __a =dataset.map(lambda _snake_case : {"label": idalabel[example["label"]]} ) __a =dataset.shuffle(seed=args.seed ) __a =os.path.join(_snake_case , F'train_pseudo.{args.data_file_extension}' ) if args.data_file_extension == "csv": dataset.to_csv(_snake_case , index=_snake_case ) else: dataset.to_json(_snake_case ) def UpperCamelCase_( _snake_case : List[Any] , _snake_case : str , _snake_case : int , _snake_case : Optional[int] , **_snake_case : List[str] ): """simple docstring""" __a =Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() __a =STModelArguments(model_name_or_path=_snake_case ) __a =STDataArguments(train_file=_snake_case , infer_file=_snake_case ) __a =STTrainingArguments(output_dir=_snake_case ) __a =argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(_snake_case ).items(): setattr(_snake_case , _snake_case , _snake_case ) for key, value in kwargs.items(): if hasattr(_snake_case , _snake_case ): setattr(_snake_case , _snake_case , _snake_case ) # Sanity checks __a ={} __a =None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None __a =args.train_file __a =args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None __a =args.eval_file for key in data_files: __a =data_files[key].split('.' )[-1] assert extension in ["csv", "json"], F'`{key}_file` should be a csv or a json file.' if args.data_file_extension is None: __a =extension else: assert extension == args.data_file_extension, F'`{key}_file` should be a {args.data_file_extension} file`.' assert ( args.eval_metric in datasets.list_metrics() ), F'{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('Creating the initial data directory for self-training...' ) __a =F'{args.output_dir}/self-train_iter-{{}}'.format __a =data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=_snake_case ) os.makedirs(_snake_case , exist_ok=_snake_case ) accelerator.wait_for_everyone() __a =None __a =None __a =0 __a =False # Show the progress bar __a =tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): __a =data_dir_format(_snake_case ) assert os.path.exists(_snake_case ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 __a =os.path.join(_snake_case , 'stage-1' ) __a ={ 'accelerator': accelerator, 'model_name_or_path': args.model_name_or_path, 'cache_dir': args.cache_dir, 'do_train': True, 'train_file': data_files['train'] if iteration == 0 else data_files['train_pseudo'], 'do_eval': True if args.eval_file is not None else False, 'eval_file': data_files['eval'], 'do_predict': True, 'infer_file': data_files['infer'], 'task_name': args.task_name, 'label_list': args.label_list, 'output_dir': current_output_dir, 'eval_metric': args.eval_metric, 'evaluation_strategy': args.evaluation_strategy, 'early_stopping_patience': args.early_stopping_patience, 'early_stopping_threshold': args.early_stopping_threshold, 'seed': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(_snake_case , _snake_case ): arguments_dict.update({key: value} ) __a =os.path.join(_snake_case , 'best-checkpoint' , _snake_case ) if os.path.exists(_snake_case ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.' , _snake_case , _snake_case , ) else: logger.info('***** Running self-training: iteration: %d, stage: 1 *****' , _snake_case ) finetune(**_snake_case ) accelerator.wait_for_everyone() assert os.path.exists(_snake_case ) logger.info('Self-training job completed: iteration: %d, stage: 1.' , _snake_case ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data __a =os.path.join(_snake_case , 'best-checkpoint' ) __a =os.path.join(_snake_case , 'stage-2' ) # Update arguments_dict __a =model_path __a =data_files['train'] __a =current_output_dir __a =os.path.join(_snake_case , 'best-checkpoint' , _snake_case ) if os.path.exists(_snake_case ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.' , _snake_case , _snake_case , ) else: logger.info('***** Running self-training: iteration: %d, stage: 2 *****' , _snake_case ) finetune(**_snake_case ) accelerator.wait_for_everyone() assert os.path.exists(_snake_case ) logger.info('Self-training job completed: iteration: %d, stage: 2.' , _snake_case ) __a =iteration __a =data_dir_format(iteration + 1 ) __a =AutoConfig.from_pretrained(os.path.join(_snake_case , 'best-checkpoint' ) ) __a =config.idalabel __a =os.path.join(_snake_case , 'eval_results_best-checkpoint.json' ) __a =os.path.join(_snake_case , 'test_results_best-checkpoint.json' ) assert os.path.exists(_snake_case ) with open(_snake_case , 'r' ) as f: __a =float(json.load(_snake_case )[args.eval_metric] ) __a =os.path.join(_snake_case , 'infer_output_best-checkpoint.csv' ) assert os.path.exists(_snake_case ) # Loading the dataset from local csv or json files. __a =load_dataset(args.data_file_extension , data_files={'data': data_files['infer']} )['data'] __a =load_dataset('csv' , data_files={'data': infer_output_file} )['data'] if accelerator.is_main_process: os.makedirs(_snake_case , exist_ok=_snake_case ) shutil.copy(_snake_case , os.path.join(_snake_case , F'eval_results_iter-{iteration}.json' ) ) if os.path.exists(_snake_case ): shutil.copy(_snake_case , os.path.join(_snake_case , F'test_results_iter-{iteration}.json' ) ) create_pseudo_labeled_data(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) accelerator.wait_for_everyone() __a =os.path.join(_snake_case , F'train_pseudo.{args.data_file_extension}' ) if args.evaluation_strategy != IntervalStrategy.NO.value: __a =eval_result if best_iteration is None: __a =new_iteration __a =new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: __a =new_iteration __a =new_eval_result __a =0 else: if new_eval_result == best_eval_result: __a =new_iteration __a =new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: __a =True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('Best iteration: %d' , _snake_case ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , _snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_snake_case , F'eval_results_iter-{iteration}.json' ) , os.path.join(_snake_case , 'eval_results_best-iteration.json' ) , ) else: # Assume that the last iteration is the best logger.info('Best iteration: %d' , args.max_selftrain_iterations - 1 ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , _snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_snake_case , F'eval_results_iter-{args.max_selftrain_iterations - 1}.json' ) , os.path.join(_snake_case , 'eval_results_best-iteration.json' ) , )
308
1
from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = ['input_values', 'padding_mask'] def __init__( self , __snake_case = 1 , __snake_case = 2_4000 , __snake_case = 0.0 , __snake_case = None , __snake_case = None , **__snake_case , ) -> Optional[int]: '''simple docstring''' super().__init__(feature_size=__snake_case , sampling_rate=__snake_case , padding_value=__snake_case , **__snake_case ) __a =chunk_length_s __a =overlap @property def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self , __snake_case , __snake_case = None , __snake_case = False , __snake_case = None , __snake_case = None , __snake_case = None , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if padding and truncation: raise ValueError('Both padding and truncation were set. Make sure you only set one.' ) elif padding is None: # by default let's pad the inputs __a =True __a =bool( isinstance(__snake_case , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: __a =[np.asarray(__snake_case , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(__snake_case , np.ndarray ): __a =np.asarray(__snake_case , dtype=np.floataa ) elif isinstance(__snake_case , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): __a =raw_audio.astype(np.floataa ) # always return batch if not is_batched: __a =[np.asarray(__snake_case ).T] # verify inputs are valid for idx, example in enumerate(__snake_case ): if example.ndim > 2: raise ValueError(f'Expected input shape (channels, length) but got shape {example.shape}' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f'Expected mono audio but example has {example.shape[-1]} channels' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f'Expected stereo audio but example has {example.shape[-1]} channels' ) __a =None __a =BatchFeature({'input_values': raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: __a =min(array.shape[0] for array in raw_audio ) __a =int(np.floor(max_length / self.chunk_stride ) ) __a =(nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: __a =max(array.shape[0] for array in raw_audio ) __a =int(np.ceil(max_length / self.chunk_stride ) ) __a =(nb_step - 1) * self.chunk_stride + self.chunk_length __a ='max_length' else: __a =input_values # normal padding on batch if padded_inputs is None: __a =self.pad( __snake_case , max_length=__snake_case , truncation=__snake_case , padding=__snake_case , return_attention_mask=__snake_case , ) if padding: __a =padded_inputs.pop('attention_mask' ) __a =[] for example in padded_inputs.pop('input_values' ): if self.feature_size == 1: __a =example[..., None] input_values.append(example.T ) __a =input_values if return_tensors is not None: __a =padded_inputs.convert_to_tensors(__snake_case ) return padded_inputs
308
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Any = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right _lowerCAmelCase : List[Any] = 256_047 _lowerCAmelCase : Dict = 256_145 @require_sentencepiece @require_tokenizers class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = NllbTokenizer SCREAMING_SNAKE_CASE = NllbTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = {} def __magic_name__ ( self ) -> int: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __a =NllbTokenizer(__snake_case , keep_accents=__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self ) -> int: '''simple docstring''' __a =NllbTokenizer(__snake_case , keep_accents=__snake_case ) __a =tokenizer.tokenize('This is a test' ) self.assertListEqual(__snake_case , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __a =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __a =tokenizer.convert_tokens_to_ids(__snake_case ) self.assertListEqual( __snake_case , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __a =tokenizer.convert_ids_to_tokens(__snake_case ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-nllb', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __a =self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __a =self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) __a =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=True __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=False __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) @require_torch def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' if not self.test_seqaseq: return __a =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Longer text that will definitely require truncation. __a =[ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for' ' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons' ' will only worsen the violence and misery for millions of people.', ] __a =[ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al' ' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi' ' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] try: __a =tokenizer.prepare_seqaseq_batch( src_texts=__snake_case , tgt_texts=__snake_case , max_length=3 , max_target_length=10 , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='ron_Latn' , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified __a =tokenizer.prepare_seqaseq_batch( __snake_case , tgt_texts=__snake_case , max_length=3 , return_tensors='pt' ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) __a =tokenizer.prepare_seqaseq_batch( src_texts=__snake_case , max_length=3 , max_target_length=10 , return_tensors='pt' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn('decoder_input_ids' , __snake_case ) @unittest.skip('Unfortunately way too slow to build a BPE with SentencePiece.' ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' pass def __magic_name__ ( self ) -> Tuple: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __a =[AddedToken('<special>' , lstrip=__snake_case )] __a =self.rust_tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case ) __a =tokenizer_r.encode('Hey this is a <special> token' ) __a =tokenizer_r.encode('<special>' , add_special_tokens=__snake_case )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: __a =self.rust_tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case , ) __a =self.tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case ) __a =tokenizer_p.encode('Hey this is a <special> token' ) __a =tokenizer_cr.encode('Hey this is a <special> token' ) self.assertEqual(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class __magic_name__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = 'facebook/nllb-200-distilled-600M' SCREAMING_SNAKE_CASE = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] SCREAMING_SNAKE_CASE = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] SCREAMING_SNAKE_CASE = [ 2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 8_1_6_5, 2_4_8_0_6_6, 1_4_7_3_4, 9_5_0, 1_1_3_5, 1_0_5_7_2_1, 3_5_7_3, 8_3, 2_7_3_5_2, 1_0_8, 4_9_4_8_6, 2, ] @classmethod def __magic_name__ ( cls ) -> Tuple: '''simple docstring''' __a =NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang='eng_Latn' , tgt_lang='ron_Latn' ) __a =1 return cls def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Arab'] , 25_6001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Latn'] , 25_6002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['fra_Latn'] , 25_6057 ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' self.assertIn(__snake_case , self.tokenizer.all_special_ids ) # fmt: off __a =[RO_CODE, 4254, 9_8068, 11_2923, 3_9072, 3909, 713, 10_2767, 26, 1_7314, 3_5642, 1_4683, 3_3118, 2022, 6_6987, 2, 25_6047] # fmt: on __a =self.tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) __a =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertNotIn(self.tokenizer.eos_token , __snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , __snake_case ) __a =10 __a =self.tokenizer(__snake_case , max_length=__snake_case , truncation=__snake_case ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , __snake_case ) self.assertEqual(len(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_6203, 3] ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =tempfile.mkdtemp() __a =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__snake_case ) __a =NllbTokenizer.from_pretrained(__snake_case ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __snake_case ) @require_torch def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) __a =shift_tokens_right( batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['ron_Latn'] ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) __a =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) self.assertEqual(__snake_case , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =self.tokenizer(self.src_text , padding=__snake_case , truncation=__snake_case , max_length=3 , return_tensors='pt' ) __a =self.tokenizer( text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=10 , return_tensors='pt' ) __a =targets['input_ids'] __a =shift_tokens_right( __snake_case , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( nested_simplify(__snake_case ) , { # A, test, EOS, en_XX 'input_ids': [[25_6047, 70, 7356, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_6057, } , ) @require_torch def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =True __a =self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2, 25_6047] ) __a =False __a =self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [25_6047, 1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2] )
308
1
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger _lowerCAmelCase : Union[str, Any] = get_logger(__name__) _lowerCAmelCase : Dict = Path(__file__).parent / "model_card_template.md" _lowerCAmelCase : Optional[Any] = uuida().hex _lowerCAmelCase : Any = os.getenv("HF_HUB_OFFLINE", "").upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase : Dict = os.getenv("DISABLE_TELEMETRY", "").upper() in ENV_VARS_TRUE_VALUES _lowerCAmelCase : List[Any] = HUGGINGFACE_CO_RESOLVE_ENDPOINT + "/api/telemetry/" def UpperCamelCase_( _snake_case : Union[Dict, str, None] = None ): """simple docstring""" __a =F'diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F'; torch/{_torch_version}' if is_flax_available(): ua += F'; jax/{_jax_version}' ua += F'; flax/{_flax_version}' if is_onnx_available(): ua += F'; onnxruntime/{_onnxruntime_version}' # CI will set this value to True if os.environ.get('DIFFUSERS_IS_CI' , '' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(_snake_case , _snake_case ): ua += "; " + "; ".join(F'{k}/{v}' for k, v in user_agent.items() ) elif isinstance(_snake_case , _snake_case ): ua += "; " + user_agent return ua def UpperCamelCase_( _snake_case : str , _snake_case : Optional[str] = None , _snake_case : Optional[str] = None ): """simple docstring""" if token is None: __a =HfFolder.get_token() if organization is None: __a =whoami(_snake_case )['name'] return F'{username}/{model_id}' else: return F'{organization}/{model_id}' def UpperCamelCase_( _snake_case : Optional[int] , _snake_case : Union[str, Any] ): """simple docstring""" if not is_jinja_available(): raise ValueError( 'Modelcard rendering is based on Jinja templates.' ' Please make sure to have `jinja` installed before using `create_model_card`.' ' To install it, please run `pip install Jinja2`.' ) if hasattr(_snake_case , 'local_rank' ) and args.local_rank not in [-1, 0]: return __a =args.hub_token if hasattr(_snake_case , 'hub_token' ) else None __a =get_full_repo_name(_snake_case , token=_snake_case ) __a =ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='en' , license='apache-2.0' , library_name='diffusers' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=_snake_case , model_name=_snake_case , repo_name=_snake_case , dataset_name=args.dataset_name if hasattr(_snake_case , 'dataset_name' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(_snake_case , 'gradient_accumulation_steps' ) else None ) , adam_betaa=args.adam_betaa if hasattr(_snake_case , 'adam_beta1' ) else None , adam_betaa=args.adam_betaa if hasattr(_snake_case , 'adam_beta2' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(_snake_case , 'adam_weight_decay' ) else None , adam_epsilon=args.adam_epsilon if hasattr(_snake_case , 'adam_epsilon' ) else None , lr_scheduler=args.lr_scheduler if hasattr(_snake_case , 'lr_scheduler' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(_snake_case , 'lr_warmup_steps' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(_snake_case , 'ema_inv_gamma' ) else None , ema_power=args.ema_power if hasattr(_snake_case , 'ema_power' ) else None , ema_max_decay=args.ema_max_decay if hasattr(_snake_case , 'ema_max_decay' ) else None , mixed_precision=args.mixed_precision , ) __a =os.path.join(args.output_dir , 'README.md' ) model_card.save(_snake_case ) def UpperCamelCase_( _snake_case : Optional[str] , _snake_case : Optional[str] = None ): """simple docstring""" if resolved_file is None or commit_hash is not None: return commit_hash __a =str(Path(_snake_case ).as_posix() ) __a =re.search(r'snapshots/([^/]+)/' , _snake_case ) if search is None: return None __a =search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(_snake_case ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. _lowerCAmelCase : List[str] = os.path.expanduser( os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface")) ) _lowerCAmelCase : Any = os.path.join(hf_cache_home, "diffusers") def UpperCamelCase_( _snake_case : Optional[str] = None , _snake_case : Optional[str] = None ): """simple docstring""" if new_cache_dir is None: __a =DIFFUSERS_CACHE if old_cache_dir is None: __a =old_diffusers_cache __a =Path(_snake_case ).expanduser() __a =Path(_snake_case ).expanduser() for old_blob_path in old_cache_dir.glob('**/blobs/*' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): __a =new_cache_dir / old_blob_path.relative_to(_snake_case ) new_blob_path.parent.mkdir(parents=_snake_case , exist_ok=_snake_case ) os.replace(_snake_case , _snake_case ) try: os.symlink(_snake_case , _snake_case ) except OSError: logger.warning( 'Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). _lowerCAmelCase : List[str] = os.path.join(DIFFUSERS_CACHE, "version_diffusers_cache.txt") if not os.path.isfile(cache_version_file): _lowerCAmelCase : Optional[Any] = 0 else: with open(cache_version_file) as f: try: _lowerCAmelCase : str = int(f.read()) except ValueError: _lowerCAmelCase : Optional[int] = 0 if cache_version < 1: _lowerCAmelCase : Any = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( "The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your " "existing cached models. This is a one-time operation, you can interrupt it or run it " "later by calling `diffusers.utils.hub_utils.move_cache()`." ) try: move_cache() except Exception as e: _lowerCAmelCase : Optional[int] = "\n".join(traceback.format_tb(e.__traceback__)) logger.error( f'''There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ''' "file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole " "message and we will do our best to help." ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, "w") as f: f.write("1") except Exception: logger.warning( f'''There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ''' "the directory exists and can be written to." ) def UpperCamelCase_( _snake_case : str , _snake_case : Optional[str] = None ): """simple docstring""" if variant is not None: __a =weights_name.split('.' ) __a =splits[:-1] + [variant] + splits[-1:] __a ='.'.join(_snake_case ) return weights_name def UpperCamelCase_( _snake_case : Dict , *, _snake_case : Any , _snake_case : Any , _snake_case : Optional[int] , _snake_case : Dict , _snake_case : int , _snake_case : str , _snake_case : Tuple , _snake_case : List[Any] , _snake_case : Optional[int] , _snake_case : Any , _snake_case : Optional[int]=None , ): """simple docstring""" __a =str(_snake_case ) if os.path.isfile(_snake_case ): return pretrained_model_name_or_path elif os.path.isdir(_snake_case ): if os.path.isfile(os.path.join(_snake_case , _snake_case ) ): # Load from a PyTorch checkpoint __a =os.path.join(_snake_case , _snake_case ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(_snake_case , _snake_case , _snake_case ) ): __a =os.path.join(_snake_case , _snake_case , _snake_case ) return model_file else: raise EnvironmentError( F'Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(_snake_case ).base_version ) >= version.parse('0.20.0' ) ): try: __a =hf_hub_download( _snake_case , filename=_add_variant(_snake_case , _snake_case ) , cache_dir=_snake_case , force_download=_snake_case , proxies=_snake_case , resume_download=_snake_case , local_files_only=_snake_case , use_auth_token=_snake_case , user_agent=_snake_case , subfolder=_snake_case , revision=revision or commit_hash , ) warnings.warn( F'Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.' , _snake_case , ) return model_file except: # noqa: E722 warnings.warn( F'You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(_snake_case , _snake_case )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(_snake_case , _snake_case )}\' so that the correct variant file can be added.' , _snake_case , ) try: # 2. Load model file as usual __a =hf_hub_download( _snake_case , filename=_snake_case , cache_dir=_snake_case , force_download=_snake_case , proxies=_snake_case , resume_download=_snake_case , local_files_only=_snake_case , use_auth_token=_snake_case , user_agent=_snake_case , subfolder=_snake_case , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F'{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ' 'listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ' 'token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ' 'login`.' ) except RevisionNotFoundError: raise EnvironmentError( F'{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ' 'this model name. Check the model page at ' F'\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.' ) except EntryNotFoundError: raise EnvironmentError( F'{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.' ) except HTTPError as err: raise EnvironmentError( F'There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}' ) except ValueError: raise EnvironmentError( F'We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it' F' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a' F' directory containing a file named {weights_name} or' ' \nCheckout your internet connection or see how to run the library in' ' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.' ) except EnvironmentError: raise EnvironmentError( F'Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ' '\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ' F'Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ' F'containing a file named {weights_name}' )
308
def UpperCamelCase_( _snake_case : str , _snake_case : int ): """simple docstring""" return [sentence[i : i + ngram_size] for i in range(len(_snake_case ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
308
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = ['image_processor', 'tokenizer'] SCREAMING_SNAKE_CASE = 'CLIPImageProcessor' SCREAMING_SNAKE_CASE = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , __snake_case=None , __snake_case=None , **__snake_case ) -> Optional[int]: '''simple docstring''' __a =None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __snake_case , ) __a =kwargs.pop('feature_extractor' ) __a =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__snake_case , __snake_case ) def __call__( self , __snake_case=None , __snake_case=None , __snake_case=None , **__snake_case ) -> Tuple: '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: __a =self.tokenizer(__snake_case , return_tensors=__snake_case , **__snake_case ) if images is not None: __a =self.image_processor(__snake_case , return_tensors=__snake_case , **__snake_case ) if text is not None and images is not None: __a =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__snake_case ) , tensor_type=__snake_case ) def __magic_name__ ( self , *__snake_case , **__snake_case ) -> List[str]: '''simple docstring''' return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def __magic_name__ ( self , *__snake_case , **__snake_case ) -> Any: '''simple docstring''' return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =self.tokenizer.model_input_names __a =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __snake_case , ) return self.image_processor_class @property def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __snake_case , ) return self.image_processor
308
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class __magic_name__ ( pl.LightningModule ): def __init__( self , __snake_case ) -> List[Any]: '''simple docstring''' super().__init__() __a =model __a =2 __a =nn.Linear(self.model.config.hidden_size , self.num_labels ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' pass def UpperCamelCase_( _snake_case : str , _snake_case : str , _snake_case : str ): """simple docstring""" __a =LongformerModel.from_pretrained(_snake_case ) __a =LightningModel(_snake_case ) __a =torch.load(_snake_case , map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model __a =LongformerForQuestionAnswering.from_pretrained(_snake_case ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(_snake_case ) print(F'Conversion successful. Model saved under {pytorch_dump_folder_path}' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowerCAmelCase : Optional[int] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
308
1
from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class __magic_name__ : pass
308
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") _lowerCAmelCase : Optional[Any] = logging.getLogger(__name__) @dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) SCREAMING_SNAKE_CASE = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) SCREAMING_SNAKE_CASE = field( default=1_0_2_4 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the training data.'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the validation data.'} ) SCREAMING_SNAKE_CASE = field(default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the test data.'} ) def __magic_name__ ( self ) -> str: '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: __a =self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __a =self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) SCREAMING_SNAKE_CASE = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def UpperCamelCase_( ): """simple docstring""" __a =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __a , __a , __a =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __a , __a , __a =parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) __a =training_args.get_process_log_level() logger.setLevel(_snake_case ) datasets.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __a =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __a =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __a =load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __a ={'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __a =data_args.train_file.split('.' )[-1] __a =data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __a =data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(F'load a local file for {key}: {data_files[key]}' ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files __a =load_dataset('csv' , data_files=_snake_case , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __a =load_dataset('json' , data_files=_snake_case , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __a =raw_datasets['train'].features['label'].names __a =len(_snake_case ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __a =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __a =TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=_snake_case , ) __a =BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __a ='max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __a =False # Some models have set the order of the labels to use, so let's make sure we do use it. __a ={'Refused': 0, 'Entailed': 1} __a ={0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __a =min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(_snake_case : Tuple ): # Tokenize the texts def _convert_table_text_to_pandas(_snake_case : Optional[Any] ): __a =[_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] __a =pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __a =examples['statement'] __a =list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) __a =tokenizer(_snake_case , _snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case ) __a =examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): __a =raw_datasets.map( _snake_case , batched=_snake_case , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) __a =raw_datasets['train'] if data_args.max_train_samples is not None: __a =train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) __a =raw_datasets['validation'] if data_args.max_eval_samples is not None: __a =eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) __a =raw_datasets['test'] if data_args.max_predict_samples is not None: __a =predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(_snake_case ) ) , 3 ): logger.info(F'Sample {index} of the training set: {train_dataset[index]}.' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_snake_case : EvalPrediction ): __a =p.predictions[0] if isinstance(p.predictions , _snake_case ) else p.predictions __a =np.argmax(_snake_case , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __a =default_data_collator elif training_args.fpaa: __a =DataCollatorWithPadding(_snake_case , pad_to_multiple_of=8 ) else: __a =None # Initialize our Trainer __a =Trainer( model=_snake_case , args=_snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_snake_case , tokenizer=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: __a =None if training_args.resume_from_checkpoint is not None: __a =training_args.resume_from_checkpoint elif last_checkpoint is not None: __a =last_checkpoint __a =trainer.train(resume_from_checkpoint=_snake_case ) __a =train_result.metrics __a =( data_args.max_train_samples if data_args.max_train_samples is not None else len(_snake_case ) ) __a =min(_snake_case , len(_snake_case ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , _snake_case ) trainer.save_metrics('train' , _snake_case ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __a =trainer.evaluate(eval_dataset=_snake_case ) __a =data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_snake_case ) __a =min(_snake_case , len(_snake_case ) ) trainer.log_metrics('eval' , _snake_case ) trainer.save_metrics('eval' , _snake_case ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __a =predict_dataset.remove_columns('label' ) __a =trainer.predict(_snake_case , metric_key_prefix='predict' ).predictions __a =np.argmax(_snake_case , axis=1 ) __a =os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(_snake_case , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(_snake_case ): __a =label_list[item] writer.write(F'{index}\t{item}\n' ) __a ={'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**_snake_case ) else: trainer.create_model_card(**_snake_case ) def UpperCamelCase_( _snake_case : Union[str, Any] ): """simple docstring""" main() if __name__ == "__main__": main()
308
1
def UpperCamelCase_( _snake_case : int , _snake_case : int ): """simple docstring""" if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) __a =str(bin(_snake_case ) )[2:] # remove the leading "0b" __a =str(bin(_snake_case ) )[2:] __a =max(len(_snake_case ) , len(_snake_case ) ) return "0b" + "".join( str(int('1' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(_snake_case ) , b_binary.zfill(_snake_case ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
308
from __future__ import annotations import time import numpy as np _lowerCAmelCase : List[str] = [8, 5, 9, 7] _lowerCAmelCase : List[str] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] _lowerCAmelCase : List[Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class __magic_name__ : def __init__( self , __snake_case , __snake_case , __snake_case , ) -> None: '''simple docstring''' __a =claim_vector __a =allocated_resources_table __a =maximum_claim_table def __magic_name__ ( self ) -> list[int]: '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def __magic_name__ ( self ) -> list[int]: '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def __magic_name__ ( self ) -> list[list[int]]: '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__snake_case ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def __magic_name__ ( self ) -> dict[int, list[int]]: '''simple docstring''' return {self.__need().index(__snake_case ): i for i in self.__need()} def __magic_name__ ( self , **__snake_case ) -> None: '''simple docstring''' __a =self.__need() __a =self.__allocated_resources_table __a =self.__available_resources() __a =self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: __a =False for each_need in need_list: __a =True for index, need in enumerate(__snake_case ): if need > available_resources[index]: __a =False break if execution: __a =True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __a =original_need_index print(f'Process {process_number + 1} is executing.' ) # remove the process run from stack need_list.remove(__snake_case ) # update available/freed resources stack __a =np.array(__snake_case ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(__snake_case ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( f'P{self.__allocated_resources_table.index(__snake_case ) + 1}' + ' '.join(f'{it:>8}' for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( f'P{self.__maximum_claim_table.index(__snake_case ) + 1}' + ' '.join(f'{it:>8}' for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(__snake_case ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(__snake_case ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
308
1
import string def UpperCamelCase_( _snake_case : str ): """simple docstring""" for key in range(len(string.ascii_uppercase ) ): __a ='' for symbol in message: if symbol in string.ascii_uppercase: __a =string.ascii_uppercase.find(_snake_case ) __a =num - key if num < 0: __a =num + len(string.ascii_uppercase ) __a =translated + string.ascii_uppercase[num] else: __a =translated + symbol print(F'Decryption using Key #{key}: {translated}' ) def UpperCamelCase_( ): """simple docstring""" __a =input('Encrypted message: ' ) __a =message.upper() decrypt(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod() main()
308
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency _lowerCAmelCase : Tuple = { "E": 12.70, "T": 9.06, "A": 8.17, "O": 7.51, "I": 6.97, "N": 6.75, "S": 6.33, "H": 6.09, "R": 5.99, "D": 4.25, "L": 4.03, "C": 2.78, "U": 2.76, "M": 2.41, "W": 2.36, "F": 2.23, "G": 2.02, "Y": 1.97, "P": 1.93, "B": 1.29, "V": 0.98, "K": 0.77, "J": 0.15, "X": 0.15, "Q": 0.10, "Z": 0.07, } _lowerCAmelCase : Optional[int] = "ETAOINSHRDLCUMWFGYPBVKJXQZ" _lowerCAmelCase : Any = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a ={letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def UpperCamelCase_( _snake_case : tuple ): """simple docstring""" return x[0] def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =get_letter_count(_snake_case ) __a ={ freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(_snake_case ) __a ={} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=_snake_case ) __a =''.join(freq_to_letter[freq] ) __a =list(freq_to_letter_str.items() ) freq_pairs.sort(key=_snake_case , reverse=_snake_case ) __a =[freq_pair[1] for freq_pair in freq_pairs] return "".join(_snake_case ) def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =get_frequency_order(_snake_case ) __a =0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
308
1
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : Tuple = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _lowerCAmelCase : Optional[Any] = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } _lowerCAmelCase : Union[str, Any] = { "allenai/led-base-16384": 16_384, } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = LEDTokenizer SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] def __init__( self , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case="replace" , __snake_case="<s>" , __snake_case="</s>" , __snake_case="</s>" , __snake_case="<s>" , __snake_case="<unk>" , __snake_case="<pad>" , __snake_case="<mask>" , __snake_case=False , __snake_case=True , **__snake_case , ) -> Optional[int]: '''simple docstring''' super().__init__( __snake_case , __snake_case , tokenizer_file=__snake_case , errors=__snake_case , bos_token=__snake_case , eos_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , add_prefix_space=__snake_case , trim_offsets=__snake_case , **__snake_case , ) __a =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , __snake_case ) != add_prefix_space: __a =getattr(__snake_case , pre_tok_state.pop('type' ) ) __a =add_prefix_space __a =pre_tok_class(**__snake_case ) __a =add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __a ='post_processor' __a =getattr(self.backend_tokenizer , __snake_case , __snake_case ) if tokenizer_component_instance: __a =json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __a =tuple(state['sep'] ) if "cls" in state: __a =tuple(state['cls'] ) __a =False if state.get('add_prefix_space' , __snake_case ) != add_prefix_space: __a =add_prefix_space __a =True if state.get('trim_offsets' , __snake_case ) != trim_offsets: __a =trim_offsets __a =True if changes_to_apply: __a =getattr(__snake_case , state.pop('type' ) ) __a =component_class(**__snake_case ) setattr(self.backend_tokenizer , __snake_case , __snake_case ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def __magic_name__ ( self ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def __magic_name__ ( self , __snake_case ) -> Any: '''simple docstring''' __a =AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else value __a =value def __magic_name__ ( self , *__snake_case , **__snake_case ) -> BatchEncoding: '''simple docstring''' __a =kwargs.get('is_split_into_words' , __snake_case ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*__snake_case , **__snake_case ) def __magic_name__ ( self , *__snake_case , **__snake_case ) -> BatchEncoding: '''simple docstring''' __a =kwargs.get('is_split_into_words' , __snake_case ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*__snake_case , **__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case = None ) -> Tuple[str]: '''simple docstring''' __a =self._tokenizer.model.save(__snake_case , name=__snake_case ) return tuple(__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case=None ) -> int: '''simple docstring''' __a =[self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __magic_name__ ( self , __snake_case , __snake_case = None ) -> List[int]: '''simple docstring''' __a =[self.sep_token_id] __a =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self , __snake_case , __snake_case = None , __snake_case = PaddingStrategy.DO_NOT_PAD , __snake_case = None , __snake_case = None , ) -> dict: '''simple docstring''' __a =super()._pad( encoded_inputs=__snake_case , max_length=__snake_case , padding_strategy=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , ) # Load from model defaults if return_attention_mask is None: __a ='attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __a =encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __a =len(encoded_inputs['global_attention_mask'] ) != len(__snake_case ) if needs_to_be_padded: __a =len(__snake_case ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __a =( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": __a =[-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
308
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : int = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'swin2sr' SCREAMING_SNAKE_CASE = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , __snake_case=64 , __snake_case=1 , __snake_case=3 , __snake_case=180 , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=8 , __snake_case=2.0 , __snake_case=True , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.1 , __snake_case="gelu" , __snake_case=False , __snake_case=0.02 , __snake_case=1e-5 , __snake_case=2 , __snake_case=1.0 , __snake_case="1conv" , __snake_case="pixelshuffle" , **__snake_case , ) -> Dict: '''simple docstring''' super().__init__(**__snake_case ) __a =image_size __a =patch_size __a =num_channels __a =embed_dim __a =depths __a =len(__snake_case ) __a =num_heads __a =window_size __a =mlp_ratio __a =qkv_bias __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =drop_path_rate __a =hidden_act __a =use_absolute_embeddings __a =layer_norm_eps __a =initializer_range __a =upscale __a =img_range __a =resi_connection __a =upsampler
308
1
from __future__ import annotations def UpperCamelCase_( _snake_case : list[int] , _snake_case : int , _snake_case : int , _snake_case : int ): """simple docstring""" if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): __a , __a =array[indexa], array[indexa] def UpperCamelCase_( _snake_case : list[int] , _snake_case : int , _snake_case : int , _snake_case : int ): """simple docstring""" if length > 1: __a =int(length / 2 ) for i in range(_snake_case , low + middle ): comp_and_swap(_snake_case , _snake_case , i + middle , _snake_case ) bitonic_merge(_snake_case , _snake_case , _snake_case , _snake_case ) bitonic_merge(_snake_case , low + middle , _snake_case , _snake_case ) def UpperCamelCase_( _snake_case : list[int] , _snake_case : int , _snake_case : int , _snake_case : int ): """simple docstring""" if length > 1: __a =int(length / 2 ) bitonic_sort(_snake_case , _snake_case , _snake_case , 1 ) bitonic_sort(_snake_case , low + middle , _snake_case , 0 ) bitonic_merge(_snake_case , _snake_case , _snake_case , _snake_case ) if __name__ == "__main__": _lowerCAmelCase : Tuple = input("Enter numbers separated by a comma:\n").strip() _lowerCAmelCase : Optional[int] = [int(item.strip()) for item in user_input.split(",")] bitonic_sort(unsorted, 0, len(unsorted), 1) print("\nSorted array in ascending order is: ", end="") print(*unsorted, sep=", ") bitonic_merge(unsorted, 0, len(unsorted), 0) print("Sorted array in descending order is: ", end="") print(*unsorted, sep=", ")
308
import os def UpperCamelCase_( _snake_case : str = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(_snake_case ) , _snake_case ) ) as input_file: __a =[ [int(_snake_case ) for element in line.split(',' )] for line in input_file.readlines() ] __a =len(_snake_case ) __a =len(matrix[0] ) __a =[[-1 for _ in range(_snake_case )] for _ in range(_snake_case )] for i in range(_snake_case ): __a =matrix[i][0] for j in range(1 , _snake_case ): for i in range(_snake_case ): __a =minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _snake_case ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
308
1
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = AudioLDMPipeline SCREAMING_SNAKE_CASE = TEXT_TO_AUDIO_PARAMS SCREAMING_SNAKE_CASE = TEXT_TO_AUDIO_BATCH_PARAMS SCREAMING_SNAKE_CASE = frozenset( [ 'num_inference_steps', 'num_waveforms_per_prompt', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) __a =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=(32, 64) , class_embed_type='simple_projection' , projection_class_embeddings_input_dim=32 , class_embeddings_concat=__snake_case , ) __a =DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) torch.manual_seed(0 ) __a =AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) __a =ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , ) __a =ClapTextModelWithProjection(__snake_case ) __a =RobertaTokenizer.from_pretrained('hf-internal-testing/tiny-random-roberta' , model_max_length=77 ) __a =SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=__snake_case , ) __a =SpeechTaHifiGan(__snake_case ) __a ={ 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'vocoder': vocoder, } return components def __magic_name__ ( self , __snake_case , __snake_case=0 ) -> Dict: '''simple docstring''' if str(__snake_case ).startswith('mps' ): __a =torch.manual_seed(__snake_case ) else: __a =torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __a ={ 'prompt': 'A hammer hitting a wooden surface', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, } return inputs def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a ='cpu' # ensure determinism for the device-dependent torch.Generator __a =self.get_dummy_components() __a =AudioLDMPipeline(**__snake_case ) __a =audioldm_pipe.to(__snake_case ) audioldm_pipe.set_progress_bar_config(disable=__snake_case ) __a =self.get_dummy_inputs(__snake_case ) __a =audioldm_pipe(**__snake_case ) __a =output.audios[0] assert audio.ndim == 1 assert len(__snake_case ) == 256 __a =audio[:10] __a =np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.get_dummy_components() __a =AudioLDMPipeline(**__snake_case ) __a =audioldm_pipe.to(__snake_case ) __a =audioldm_pipe.to(__snake_case ) audioldm_pipe.set_progress_bar_config(disable=__snake_case ) __a =self.get_dummy_inputs(__snake_case ) __a =3 * [inputs['prompt']] # forward __a =audioldm_pipe(**__snake_case ) __a =output.audios[0] __a =self.get_dummy_inputs(__snake_case ) __a =3 * [inputs.pop('prompt' )] __a =audioldm_pipe.tokenizer( __snake_case , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=__snake_case , return_tensors='pt' , ) __a =text_inputs['input_ids'].to(__snake_case ) __a =audioldm_pipe.text_encoder( __snake_case , ) __a =prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state __a =F.normalize(__snake_case , dim=-1 ) __a =prompt_embeds # forward __a =audioldm_pipe(**__snake_case ) __a =output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.get_dummy_components() __a =AudioLDMPipeline(**__snake_case ) __a =audioldm_pipe.to(__snake_case ) __a =audioldm_pipe.to(__snake_case ) audioldm_pipe.set_progress_bar_config(disable=__snake_case ) __a =self.get_dummy_inputs(__snake_case ) __a =3 * ['this is a negative prompt'] __a =negative_prompt __a =3 * [inputs['prompt']] # forward __a =audioldm_pipe(**__snake_case ) __a =output.audios[0] __a =self.get_dummy_inputs(__snake_case ) __a =3 * [inputs.pop('prompt' )] __a =[] for p in [prompt, negative_prompt]: __a =audioldm_pipe.tokenizer( __snake_case , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=__snake_case , return_tensors='pt' , ) __a =text_inputs['input_ids'].to(__snake_case ) __a =audioldm_pipe.text_encoder( __snake_case , ) __a =text_embeds.text_embeds # additional L_2 normalization over each hidden-state __a =F.normalize(__snake_case , dim=-1 ) embeds.append(__snake_case ) __a , __a =embeds # forward __a =audioldm_pipe(**__snake_case ) __a =output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a ='cpu' # ensure determinism for the device-dependent torch.Generator __a =self.get_dummy_components() __a =PNDMScheduler(skip_prk_steps=__snake_case ) __a =AudioLDMPipeline(**__snake_case ) __a =audioldm_pipe.to(__snake_case ) audioldm_pipe.set_progress_bar_config(disable=__snake_case ) __a =self.get_dummy_inputs(__snake_case ) __a ='egg cracking' __a =audioldm_pipe(**__snake_case , negative_prompt=__snake_case ) __a =output.audios[0] assert audio.ndim == 1 assert len(__snake_case ) == 256 __a =audio[:10] __a =np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a ='cpu' # ensure determinism for the device-dependent torch.Generator __a =self.get_dummy_components() __a =PNDMScheduler(skip_prk_steps=__snake_case ) __a =AudioLDMPipeline(**__snake_case ) __a =audioldm_pipe.to(__snake_case ) audioldm_pipe.set_progress_bar_config(disable=__snake_case ) __a ='A hammer hitting a wooden surface' # test num_waveforms_per_prompt=1 (default) __a =audioldm_pipe(__snake_case , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts __a =2 __a =audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt __a =2 __a =audioldm_pipe(__snake_case , num_inference_steps=2 , num_waveforms_per_prompt=__snake_case ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts __a =2 __a =audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=__snake_case ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a ='cpu' # ensure determinism for the device-dependent torch.Generator __a =self.get_dummy_components() __a =AudioLDMPipeline(**__snake_case ) __a =audioldm_pipe.to(__snake_case ) audioldm_pipe.set_progress_bar_config(disable=__snake_case ) __a =audioldm_pipe.vocoder.config.sampling_rate __a =self.get_dummy_inputs(__snake_case ) __a =audioldm_pipe(audio_length_in_s=0.016 , **__snake_case ) __a =output.audios[0] assert audio.ndim == 1 assert len(__snake_case ) / vocoder_sampling_rate == 0.016 __a =audioldm_pipe(audio_length_in_s=0.032 , **__snake_case ) __a =output.audios[0] assert audio.ndim == 1 assert len(__snake_case ) / vocoder_sampling_rate == 0.032 def __magic_name__ ( self ) -> str: '''simple docstring''' __a =self.get_dummy_components() __a =AudioLDMPipeline(**__snake_case ) __a =audioldm_pipe.to(__snake_case ) audioldm_pipe.set_progress_bar_config(disable=__snake_case ) __a =['hey'] __a =audioldm_pipe(__snake_case , num_inference_steps=1 ) __a =output.audios.shape assert audio_shape == (1, 256) __a =audioldm_pipe.vocoder.config config.model_in_dim *= 2 __a =SpeechTaHifiGan(__snake_case ).to(__snake_case ) __a =audioldm_pipe(__snake_case , num_inference_steps=1 ) __a =output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__snake_case ) def __magic_name__ ( self ) -> str: '''simple docstring''' self._test_inference_batch_single_identical(test_mean_pixel_difference=__snake_case ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__snake_case ) @slow class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self , __snake_case , __snake_case="cpu" , __snake_case=torch.floataa , __snake_case=0 ) -> Union[str, Any]: '''simple docstring''' __a =torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __a =np.random.RandomState(__snake_case ).standard_normal((1, 8, 128, 16) ) __a =torch.from_numpy(__snake_case ).to(device=__snake_case , dtype=__snake_case ) __a ={ 'prompt': 'A hammer hitting a wooden surface', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 2.5, } return inputs def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) __a =audioldm_pipe.to(__snake_case ) audioldm_pipe.set_progress_bar_config(disable=__snake_case ) __a =self.get_inputs(__snake_case ) __a =25 __a =audioldm_pipe(**__snake_case ).audios[0] assert audio.ndim == 1 assert len(__snake_case ) == 8_1920 __a =audio[7_7230:7_7240] __a =np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) __a =np.abs(expected_slice - audio_slice ).max() assert max_diff < 1e-2 def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) __a =LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) __a =audioldm_pipe.to(__snake_case ) audioldm_pipe.set_progress_bar_config(disable=__snake_case ) __a =self.get_inputs(__snake_case ) __a =audioldm_pipe(**__snake_case ).audios[0] assert audio.ndim == 1 assert len(__snake_case ) == 8_1920 __a =audio[2_7780:2_7790] __a =np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) __a =np.abs(expected_slice - audio_slice ).max() assert max_diff < 3e-2
308
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _lowerCAmelCase : Any = logging.get_logger(__name__) class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , *__snake_case , **__snake_case ) -> None: '''simple docstring''' warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
308
1
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ : def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=False , __snake_case=False , __snake_case=False , __snake_case=2 , __snake_case=99 , __snake_case=0 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=0.1 , __snake_case=0.1 , __snake_case=512 , __snake_case=2 , __snake_case=0.02 , __snake_case=2 , __snake_case=4 , __snake_case="last" , __snake_case=True , __snake_case=None , __snake_case=0 , ) -> Optional[Any]: '''simple docstring''' __a =parent __a =batch_size __a =seq_length __a =is_training __a =use_input_lengths __a =use_token_type_ids __a =use_labels __a =gelu_activation __a =sinusoidal_embeddings __a =causal __a =asm __a =n_langs __a =vocab_size __a =n_special __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =max_position_embeddings __a =type_sequence_label_size __a =initializer_range __a =num_labels __a =num_choices __a =summary_type __a =use_proj __a =scope __a =bos_token_id def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a =random_attention_mask([self.batch_size, self.seq_length] ) __a =None if self.use_input_lengths: __a =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __a =None if self.use_token_type_ids: __a =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __a =None __a =None __a =None if self.use_labels: __a =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a =ids_tensor([self.batch_size] , 2 ).float() __a =ids_tensor([self.batch_size] , self.num_choices ) __a =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __magic_name__ ( self ) -> Any: '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> List[Any]: '''simple docstring''' __a =XLMModel(config=__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , lengths=__snake_case , langs=__snake_case ) __a =model(__snake_case , langs=__snake_case ) __a =model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Optional[int]: '''simple docstring''' __a =XLMWithLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Dict: '''simple docstring''' __a =XLMForQuestionAnsweringSimple(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) __a =outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> List[Any]: '''simple docstring''' __a =XLMForQuestionAnswering(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , p_mask=__snake_case , ) __a =model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , ) ((__a) , ) =result_with_labels.to_tuple() __a =model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) ((__a) , ) =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Optional[Any]: '''simple docstring''' __a =XLMForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Any: '''simple docstring''' __a =self.num_labels __a =XLMForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Tuple: '''simple docstring''' __a =self.num_choices __a =XLMForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() __a =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) =config_and_inputs __a ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable SCREAMING_SNAKE_CASE = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> int: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __magic_name__ ( self , __snake_case , __snake_case , __snake_case=False ) -> str: '''simple docstring''' __a =super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __a =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) __a =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =XLMModelTester(self ) __a =ConfigTester(self , config_class=__snake_case , emb_dim=37 ) def __magic_name__ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=False , __snake_case=1 ) -> Optional[Any]: '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_attentions in attentions] , [True] * len(__snake_case ) ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__snake_case ): # adds PAD dummy token __a =min_length + idx + 1 __a =min_length + idx + 1 __a =( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__snake_case ) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=False , __snake_case=1 ) -> Dict: '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_hidden_states in hidden_states] , [True] * len(__snake_case ) , ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__snake_case ): # adds PAD dummy token __a =min_length + idx + 1 __a =(batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__snake_case ) , ) pass @slow def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a =XLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class __magic_name__ ( unittest.TestCase ): @slow def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(__snake_case ) __a =torch.tensor([[14, 447]] , dtype=torch.long , device=__snake_case ) # the president __a =[ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __a =model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __snake_case )
308
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : int = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
1
import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def UpperCamelCase_( _snake_case : Dict , _snake_case : Tuple , _snake_case : int , _snake_case : Dict , _snake_case : Tuple ): """simple docstring""" with open(_snake_case ) as metadata_file: __a =json.load(_snake_case ) __a =LukeConfig(use_entity_aware_attention=_snake_case , **metadata['model_config'] ) # Load in the weights from the checkpoint_path __a =torch.load(_snake_case , map_location='cpu' ) # Load the entity vocab file __a =load_entity_vocab(_snake_case ) __a =RobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks __a =AddedToken('<ent>' , lstrip=_snake_case , rstrip=_snake_case ) __a =AddedToken('<ent2>' , lstrip=_snake_case , rstrip=_snake_case ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(_snake_case ) with open(os.path.join(_snake_case , LukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(_snake_case , _snake_case ) __a =LukeTokenizer.from_pretrained(_snake_case ) # Initialize the embeddings of the special tokens __a =state_dict['embeddings.word_embeddings.weight'] __a =word_emb[tokenizer.convert_tokens_to_ids(['@'] )[0]].unsqueeze(0 ) __a =word_emb[tokenizer.convert_tokens_to_ids(['#'] )[0]].unsqueeze(0 ) __a =torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __a =F'encoder.layer.{layer_index}.attention.self.' __a =state_dict[prefix + matrix_name] __a =state_dict[prefix + matrix_name] __a =state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __a =state_dict['entity_embeddings.entity_embeddings.weight'] __a =entity_emb[entity_vocab['[MASK]']] __a =LukeModel(config=_snake_case ).eval() __a , __a =model.load_state_dict(_snake_case , strict=_snake_case ) if not (len(_snake_case ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(F'Missing keys {", ".join(_snake_case )}. Expected only missing embeddings.position_ids' ) if not (all(key.startswith('entity_predictions' ) or key.startswith('lm_head' ) for key in unexpected_keys )): raise ValueError( 'Unexpected keys' F' {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}' ) # Check outputs __a =LukeTokenizer.from_pretrained(_snake_case , task='entity_classification' ) __a =( 'Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the' ' new world number one avoid a humiliating second- round exit at Wimbledon .' ) __a =(39, 42) __a =tokenizer(_snake_case , entity_spans=[span] , add_prefix_space=_snake_case , return_tensors='pt' ) __a =model(**_snake_case ) # Verify word hidden states if model_size == "large": __a =torch.Size((1, 42, 1024) ) __a =torch.tensor( [[0.0_133, 0.0_865, 0.0_095], [0.3_093, -0.2_576, -0.7_418], [-0.1_720, -0.2_117, -0.2_869]] ) else: # base __a =torch.Size((1, 42, 768) ) __a =torch.tensor([[0.0_037, 0.1_368, -0.0_091], [0.1_099, 0.3_329, -0.1_095], [0.0_765, 0.5_335, 0.1_179]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _snake_case , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": __a =torch.Size((1, 1, 1024) ) __a =torch.tensor([[0.0_466, -0.0_106, -0.0_179]] ) else: # base __a =torch.Size((1, 1, 768) ) __a =torch.tensor([[0.1_457, 0.1_044, 0.0_174]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( F'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' F' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _snake_case , atol=1e-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(_snake_case ) ) model.save_pretrained(_snake_case ) def UpperCamelCase_( _snake_case : Optional[int] ): """simple docstring""" __a ={} with open(_snake_case , 'r' , encoding='utf-8' ) as f: for index, line in enumerate(_snake_case ): __a , __a =line.rstrip().split('\t' ) __a =index return entity_vocab if __name__ == "__main__": _lowerCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) _lowerCAmelCase : int = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
308
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'yolos' def __init__( self , __snake_case=768 , __snake_case=12 , __snake_case=12 , __snake_case=3072 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.02 , __snake_case=1e-12 , __snake_case=[512, 864] , __snake_case=16 , __snake_case=3 , __snake_case=True , __snake_case=100 , __snake_case=True , __snake_case=False , __snake_case=1 , __snake_case=5 , __snake_case=2 , __snake_case=5 , __snake_case=2 , __snake_case=0.1 , **__snake_case , ) -> str: '''simple docstring''' super().__init__(**__snake_case ) __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =intermediate_size __a =hidden_act __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =initializer_range __a =layer_norm_eps __a =image_size __a =patch_size __a =num_channels __a =qkv_bias __a =num_detection_tokens __a =use_mid_position_embeddings __a =auxiliary_loss # Hungarian matcher __a =class_cost __a =bbox_cost __a =giou_cost # Loss coefficients __a =bbox_loss_coefficient __a =giou_loss_coefficient __a =eos_coefficient class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = version.parse('1.11' ) @property def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __magic_name__ ( self ) -> float: '''simple docstring''' return 1e-4 @property def __magic_name__ ( self ) -> int: '''simple docstring''' return 12
308
1
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __magic_name__ ( tf.keras.layers.Layer ): def __init__( self , __snake_case , __snake_case , __snake_case = None , __snake_case = None ) -> Optional[int]: '''simple docstring''' super().__init__() __a =pad_token_id __a =max_length __a =vocab __a =merges __a =BytePairTokenizer(__snake_case , __snake_case , sequence_length=__snake_case ) @classmethod def __magic_name__ ( cls , __snake_case , *__snake_case , **__snake_case ) -> str: '''simple docstring''' __a =[' '.join(__snake_case ) for m in tokenizer.bpe_ranks.keys()] __a =tokenizer.get_vocab() return cls(__snake_case , __snake_case , *__snake_case , **__snake_case ) @classmethod def __magic_name__ ( cls , __snake_case , *__snake_case , **__snake_case ) -> str: '''simple docstring''' __a =GPTaTokenizer.from_pretrained(__snake_case , *__snake_case , **__snake_case ) return cls.from_tokenizer(__snake_case , *__snake_case , **__snake_case ) @classmethod def __magic_name__ ( cls , __snake_case ) -> List[str]: '''simple docstring''' return cls(**__snake_case ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def __magic_name__ ( self , __snake_case , __snake_case = None ) -> int: '''simple docstring''' __a =self.tf_tokenizer(__snake_case ) __a =tf.ones_like(__snake_case ) if self.pad_token_id is not None: # pad the tokens up to max length __a =max_length if max_length is not None else self.max_length if max_length is not None: __a , __a =pad_model_inputs( __snake_case , max_seq_length=__snake_case , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
308
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def UpperCamelCase_( _snake_case : Optional[Any] ): """simple docstring""" __a =model.config __a =DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) __a =MBartConfig( is_decoder=_snake_case , is_encoder_decoder=_snake_case , add_cross_attention=_snake_case , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=_snake_case , add_final_layer_norm=_snake_case , ) return encoder_config, decoder_config def UpperCamelCase_( _snake_case : Tuple ): """simple docstring""" if "encoder.model" in name: __a =name.replace('encoder.model' , 'encoder' ) if "decoder.model" in name: __a =name.replace('decoder.model' , 'decoder' ) if "patch_embed.proj" in name: __a =name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __a =name.replace('patch_embed.norm' , 'embeddings.norm' ) if name.startswith('encoder' ): if "layers" in name: __a ='encoder.' + name if "attn.proj" in name: __a =name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "mask" not in name: __a =name.replace('attn' , 'attention.self' ) if "norm1" in name: __a =name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __a =name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __a =name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __a =name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": __a ='encoder.layernorm.weight' if name == "encoder.norm.bias": __a ='encoder.layernorm.bias' return name def UpperCamelCase_( _snake_case : Tuple , _snake_case : str ): """simple docstring""" for key in orig_state_dict.copy().keys(): __a =orig_state_dict.pop(_snake_case ) if "qkv" in key: __a =key.split('.' ) __a =int(key_split[3] ) __a =int(key_split[5] ) __a =model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __a =val[:dim, :] __a =val[dim : dim * 2, :] __a =val[-dim:, :] else: __a =val[:dim] __a =val[dim : dim * 2] __a =val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: __a =val return orig_state_dict def UpperCamelCase_( _snake_case : Tuple , _snake_case : Union[str, Any]=None , _snake_case : List[Any]=False ): """simple docstring""" __a =DonutModel.from_pretrained(_snake_case ).eval() # load HuggingFace model __a , __a =get_configs(_snake_case ) __a =DonutSwinModel(_snake_case ) __a =MBartForCausalLM(_snake_case ) __a =VisionEncoderDecoderModel(encoder=_snake_case , decoder=_snake_case ) model.eval() __a =original_model.state_dict() __a =convert_state_dict(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) # verify results on scanned document __a =load_dataset('hf-internal-testing/example-documents' ) __a =dataset['test'][0]['image'].convert('RGB' ) __a =XLMRobertaTokenizerFast.from_pretrained(_snake_case , from_slow=_snake_case ) __a =DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) __a =DonutProcessor(_snake_case , _snake_case ) __a =processor(_snake_case , return_tensors='pt' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": __a ='<s_docvqa><s_question>{user_input}</s_question><s_answer>' __a ='When is the coffee break?' __a =task_prompt.replace('{user_input}' , _snake_case ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": __a ='<s_rvlcdip>' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: __a ='<s_cord>' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": __a ='s_cord-v2>' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": __a ='<s_zhtrainticket>' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt __a ='hello world' else: raise ValueError('Model name not supported' ) __a =original_model.decoder.tokenizer(_snake_case , add_special_tokens=_snake_case , return_tensors='pt' )[ 'input_ids' ] __a =original_model.encoder.model.patch_embed(_snake_case ) __a , __a =model.encoder.embeddings(_snake_case ) assert torch.allclose(_snake_case , _snake_case , atol=1e-3 ) # verify encoder hidden states __a =original_model.encoder(_snake_case ) __a =model.encoder(_snake_case ).last_hidden_state assert torch.allclose(_snake_case , _snake_case , atol=1e-2 ) # verify decoder hidden states __a =original_model(_snake_case , _snake_case , _snake_case ).logits __a =model(_snake_case , decoder_input_ids=_snake_case ).logits assert torch.allclose(_snake_case , _snake_case , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(_snake_case ) processor.save_pretrained(_snake_case ) if push_to_hub: model.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) processor.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) _lowerCAmelCase : List[Any] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
308
1
from collections import namedtuple import requests from lxml import html # type: ignore _lowerCAmelCase : Tuple = namedtuple("covid_data", "cases deaths recovered") def UpperCamelCase_( _snake_case : str = "https://www.worldometers.info/coronavirus/" ): """simple docstring""" __a ='//div[@class = "maincounter-number"]/span/text()' return covid_data(*html.fromstring(requests.get(_snake_case ).content ).xpath(_snake_case ) ) _lowerCAmelCase : str = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
308
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer SCREAMING_SNAKE_CASE = False def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' super().setUp() __a =['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] __a =dict(zip(__snake_case , range(len(__snake_case ) ) ) ) __a =['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] __a ={'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__snake_case ) ) def __magic_name__ ( self , **__snake_case ) -> Any: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def __magic_name__ ( self , __snake_case ) -> List[Any]: '''simple docstring''' __a ='adapt act apte' __a ='adapt act apte' return input_text, output_text def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __a ='adapt act apte' __a =['adapt', 'act', 'ap@@', 'te'] __a =tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) __a =[tokenizer.bos_token] + tokens + [tokenizer.eos_token] __a =[0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1384] __a ='I am a small frog.' __a =tok([src_text] , padding=__snake_case , truncation=__snake_case )['input_ids'] __a =tok.batch_decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) __a ='I am a small frog .' __a ='.' __a =tok(__snake_case )['input_ids'] __a =tok(__snake_case )['input_ids'] assert encoded[-1] == encoded_dot[0]
308
1
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def UpperCamelCase_( _snake_case : Optional[int] , _snake_case : Dict , _snake_case : Union[str, Any] ): """simple docstring""" __a =1.5 __a =int(factor * num_class_images ) __a =ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=_snake_case , aesthetic_weight=0.1 ) os.makedirs(F'{class_data_dir}/images' , exist_ok=_snake_case ) if len(list(Path(F'{class_data_dir}/images' ).iterdir() ) ) >= num_class_images: return while True: __a =client.query(text=_snake_case ) if len(_snake_case ) >= factor * num_class_images or num_images > 1e4: break else: __a =int(factor * num_images ) __a =ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=_snake_case , aesthetic_weight=0.1 , ) __a =0 __a =0 __a =tqdm(desc='downloading real regularization images' , total=_snake_case ) with open(F'{class_data_dir}/caption.txt' , 'w' ) as fa, open(F'{class_data_dir}/urls.txt' , 'w' ) as fa, open( F'{class_data_dir}/images.txt' , 'w' ) as fa: while total < num_class_images: __a =class_images[count] count += 1 try: __a =requests.get(images['url'] ) if img.status_code == 200: __a =Image.open(BytesIO(img.content ) ) with open(F'{class_data_dir}/images/{total}.jpg' , 'wb' ) as f: f.write(img.content ) fa.write(images['caption'] + '\n' ) fa.write(images['url'] + '\n' ) fa.write(F'{class_data_dir}/images/{total}.jpg' + '\n' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def UpperCamelCase_( ): """simple docstring""" __a =argparse.ArgumentParser('' , add_help=_snake_case ) parser.add_argument('--class_prompt' , help='text prompt to retrieve images' , required=_snake_case , type=_snake_case ) parser.add_argument('--class_data_dir' , help='path to save images' , required=_snake_case , type=_snake_case ) parser.add_argument('--num_class_images' , help='number of images to download' , default=200 , type=_snake_case ) return parser.parse_args() if __name__ == "__main__": _lowerCAmelCase : List[Any] = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
308
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __magic_name__ ( unittest.TestCase , lowerCAmelCase_ ): def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =load_tool('text-to-speech' ) self.tool.setup() def __magic_name__ ( self ) -> Dict: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) __a =self.tool('hey' ) __a =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) __a =self.tool('hey' ) __a =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) )
308
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : int = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json", "google/bigbird-roberta-large": "https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json", "google/bigbird-base-trivia-itc": "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json", # See all BigBird models at https://huggingface.co/models?filter=big_bird } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'big_bird' def __init__( self , __snake_case=5_0358 , __snake_case=768 , __snake_case=12 , __snake_case=12 , __snake_case=3072 , __snake_case="gelu_new" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=4096 , __snake_case=2 , __snake_case=0.02 , __snake_case=1e-12 , __snake_case=True , __snake_case=0 , __snake_case=1 , __snake_case=2 , __snake_case=66 , __snake_case="block_sparse" , __snake_case=True , __snake_case=False , __snake_case=64 , __snake_case=3 , __snake_case=None , **__snake_case , ) -> Union[str, Any]: '''simple docstring''' super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , sep_token_id=__snake_case , **__snake_case , ) __a =vocab_size __a =max_position_embeddings __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =intermediate_size __a =hidden_act __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =initializer_range __a =type_vocab_size __a =layer_norm_eps __a =use_cache __a =rescale_embeddings __a =attention_type __a =use_bias __a =block_size __a =num_random_blocks __a =classifier_dropout class __magic_name__ ( lowerCAmelCase_ ): @property def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": __a ={0: 'batch', 1: 'choice', 2: 'sequence'} else: __a ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
308
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> int: '''simple docstring''' __a =[] __a =[] for i in range(self.num_layers ): __a =self.in_channels if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =resnets __a =attentions if self.add_downsample: __a =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> Optional[Any]: '''simple docstring''' __a =() for resnet, attn in zip(self.resnets , self.attentions ): __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __a =self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> int: '''simple docstring''' __a =[] for i in range(self.num_layers ): __a =self.in_channels if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets if self.add_downsample: __a =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case=True ) -> Optional[int]: '''simple docstring''' __a =() for resnet in self.resnets: __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __a =self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =[] __a =[] for i in range(self.num_layers ): __a =self.in_channels if (i == self.num_layers - 1) else self.out_channels __a =self.prev_output_channel if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =resnets __a =attentions if self.add_upsample: __a =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[Any]: '''simple docstring''' for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states __a =res_hidden_states_tuple[-1] __a =res_hidden_states_tuple[:-1] __a =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __a =self.upsamplers_a(__snake_case ) return hidden_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =[] for i in range(self.num_layers ): __a =self.in_channels if (i == self.num_layers - 1) else self.out_channels __a =self.prev_output_channel if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets if self.add_upsample: __a =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[Any]: '''simple docstring''' for resnet in self.resnets: # pop res hidden states __a =res_hidden_states_tuple[-1] __a =res_hidden_states_tuple[:-1] __a =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __a =self.upsamplers_a(__snake_case ) return hidden_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # there is always at least one resnet __a =[ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] __a =[] for _ in range(self.num_layers ): __a =FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets __a =attentions def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[str]: '''simple docstring''' __a =self.resnets[0](__snake_case , __snake_case ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) return hidden_states
308
1
from __future__ import annotations _lowerCAmelCase : str = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } class __magic_name__ : def __init__( self , __snake_case , __snake_case ) -> None: '''simple docstring''' __a =graph # mapping node to its parent in resulting breadth first tree __a ={} __a =source_vertex def __magic_name__ ( self ) -> None: '''simple docstring''' __a ={self.source_vertex} __a =None __a =[self.source_vertex] # first in first out queue while queue: __a =queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__snake_case ) __a =vertex queue.append(__snake_case ) def __magic_name__ ( self , __snake_case ) -> str: '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex __a =self.parent.get(__snake_case ) if target_vertex_parent is None: __a =( f'No path from vertex: {self.source_vertex} to vertex: {target_vertex}' ) raise ValueError(__snake_case ) return self.shortest_path(__snake_case ) + f'->{target_vertex}' if __name__ == "__main__": _lowerCAmelCase : List[Any] = Graph(graph, "G") g.breath_first_search() print(g.shortest_path("D")) print(g.shortest_path("G")) print(g.shortest_path("Foo"))
308
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_5_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self ) -> int: '''simple docstring''' if self.framework == "pytorch": subprocess.run( f'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding='utf-8' , check=__snake_case , ) assert hasattr(self , 'env' ) def __magic_name__ ( self , __snake_case ) -> int: '''simple docstring''' __a =f'{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}' # distributed data settings __a ={'smdistributed': {'dataparallel': {'enabled': True}}} if self.script != 'run_ddp.py' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__snake_case , instance_count=__snake_case , instance_type=self.instance_type , debugger_hook_config=__snake_case , hyperparameters={**self.env.distributed_hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__snake_case , py_version='py36' , ) def __magic_name__ ( self , __snake_case ) -> Optional[Any]: '''simple docstring''' TrainingJobAnalytics(__snake_case ).export_csv(f'{self.env.test_path}/{job_name}_metrics.csv' ) @parameterized.expand([(2,)] ) def __magic_name__ ( self , __snake_case ) -> Optional[int]: '''simple docstring''' # create estimator __a =self.create_estimator(__snake_case ) # run training estimator.fit() # result dataframe __a =TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __a =list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) __a =list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __a =( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'{estimator.latest_training_job.name}.json' , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , __snake_case )
308
1
def UpperCamelCase_( _snake_case : int = 50 ): """simple docstring""" __a =[1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
308
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _lowerCAmelCase : List[Any] = logging.getLogger(__name__) _lowerCAmelCase : Optional[Any] = "Hello world! cécé herlolip" _lowerCAmelCase : str = namedtuple( "BertAbsConfig", [ "temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout", ], ) def UpperCamelCase_( _snake_case : str , _snake_case : List[Any] ): """simple docstring""" __a =BertAbsConfig( temp_dir='.' , finetune_bert=_snake_case , large=_snake_case , share_emb=_snake_case , use_bert_emb=_snake_case , encoder='bert' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) __a =torch.load(_snake_case , lambda _snake_case , _snake_case : storage ) __a =AbsSummarizer(_snake_case , torch.device('cpu' ) , _snake_case ) original.eval() __a =BertAbsSummarizer(_snake_case , torch.device('cpu' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('convert the model' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('Make sure that the models\' outputs are identical' ) __a =BertTokenizer.from_pretrained('bert-base-uncased' ) # prepare the model inputs __a =tokenizer.encode('This is sample éàalj\'-.' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_snake_case )) ) __a =torch.tensor(_snake_case ).unsqueeze(0 ) __a =tokenizer.encode('This is sample 3 éàalj\'-.' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_snake_case )) ) __a =torch.tensor(_snake_case ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __a =encoder_input_ids __a =decoder_input_ids __a =__a =None __a =None __a =__a =None __a =__a =None __a =None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __a =original(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )[0] __a =original.generator(_snake_case ) __a =new_model( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )[0] __a =new_model.generator(_snake_case ) __a =torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_snake_case ) ) __a =torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_snake_case ) ) __a =torch.allclose(_snake_case , _snake_case , atol=1e-3 ) if are_identical: logging.info('all weights are equal up to 1e-3' ) else: raise ValueError('the weights are different. The new model is likely different from the original one.' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('saving the model\'s state dictionary' ) torch.save( new_model.state_dict() , './bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--bertabs_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model.", ) _lowerCAmelCase : Optional[Any] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
308
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Dict = logging.get_logger(__name__) def UpperCamelCase_( _snake_case : Tuple ): """simple docstring""" __a ='huggingface/label-files' __a ='imagenet-1k-id2label.json' __a =json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='dataset' ) , 'r' ) ) __a ={int(_snake_case ): v for k, v in idalabel.items()} __a ={v: k for k, v in idalabel.items()} __a ='std_conv' if 'bit' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" __a =BitConfig( conv_layer=_snake_case , num_labels=1000 , idalabel=_snake_case , labelaid=_snake_case , ) return config def UpperCamelCase_( _snake_case : str ): """simple docstring""" if "stem.conv" in name: __a =name.replace('stem.conv' , 'bit.embedder.convolution' ) if "blocks" in name: __a =name.replace('blocks' , 'layers' ) if "head.fc" in name: __a =name.replace('head.fc' , 'classifier.1' ) if name.startswith('norm' ): __a ='bit.' + name if "bit" not in name and "classifier" not in name: __a ='bit.encoder.' + name return name def UpperCamelCase_( ): """simple docstring""" __a ='http://images.cocodataset.org/val2017/000000039769.jpg' __a =Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return im @torch.no_grad() def UpperCamelCase_( _snake_case : Optional[Any] , _snake_case : Optional[Any] , _snake_case : Any=False ): """simple docstring""" __a =get_config(_snake_case ) # load original model from timm __a =create_model(_snake_case , pretrained=_snake_case ) timm_model.eval() # load state_dict of original model __a =timm_model.state_dict() for key in state_dict.copy().keys(): __a =state_dict.pop(_snake_case ) __a =val.squeeze() if 'head' in key else val # load HuggingFace model __a =BitForImageClassification(_snake_case ) model.eval() model.load_state_dict(_snake_case ) # create image processor __a =create_transform(**resolve_data_config({} , model=_snake_case ) ) __a =transform.transforms __a ={ 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } __a =BitImageProcessor( do_resize=_snake_case , size={'shortest_edge': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_snake_case , crop_size={'height': timm_transforms[1].size[0], 'width': timm_transforms[1].size[1]} , do_normalize=_snake_case , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) __a =prepare_img() __a =transform(_snake_case ).unsqueeze(0 ) __a =processor(_snake_case , return_tensors='pt' ).pixel_values # verify pixel values assert torch.allclose(_snake_case , _snake_case ) # verify logits with torch.no_grad(): __a =model(_snake_case ) __a =outputs.logits print('Logits:' , logits[0, :3] ) print('Predicted class:' , model.config.idalabel[logits.argmax(-1 ).item()] ) __a =timm_model(_snake_case ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_snake_case , outputs.logits , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(_snake_case ).mkdir(exist_ok=_snake_case ) print(F'Saving model {model_name} and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(_snake_case ) processor.save_pretrained(_snake_case ) if push_to_hub: print(F'Pushing model {model_name} and processor to the hub' ) model.push_to_hub(F'ybelkada/{model_name}' ) processor.push_to_hub(F'ybelkada/{model_name}' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="resnetv2_50x1_bitm", type=str, help="Name of the BiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model to the hub.", ) _lowerCAmelCase : Dict = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
308
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ : def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=False , __snake_case=False , __snake_case=False , __snake_case=2 , __snake_case=99 , __snake_case=0 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=0.1 , __snake_case=0.1 , __snake_case=512 , __snake_case=2 , __snake_case=0.02 , __snake_case=2 , __snake_case=4 , __snake_case="last" , __snake_case=True , __snake_case=None , __snake_case=0 , ) -> Optional[Any]: '''simple docstring''' __a =parent __a =batch_size __a =seq_length __a =is_training __a =use_input_lengths __a =use_token_type_ids __a =use_labels __a =gelu_activation __a =sinusoidal_embeddings __a =causal __a =asm __a =n_langs __a =vocab_size __a =n_special __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =max_position_embeddings __a =type_sequence_label_size __a =initializer_range __a =num_labels __a =num_choices __a =summary_type __a =use_proj __a =scope __a =bos_token_id def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a =random_attention_mask([self.batch_size, self.seq_length] ) __a =None if self.use_input_lengths: __a =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __a =None if self.use_token_type_ids: __a =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __a =None __a =None __a =None if self.use_labels: __a =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a =ids_tensor([self.batch_size] , 2 ).float() __a =ids_tensor([self.batch_size] , self.num_choices ) __a =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __magic_name__ ( self ) -> Any: '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> List[Any]: '''simple docstring''' __a =XLMModel(config=__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , lengths=__snake_case , langs=__snake_case ) __a =model(__snake_case , langs=__snake_case ) __a =model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Optional[int]: '''simple docstring''' __a =XLMWithLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Dict: '''simple docstring''' __a =XLMForQuestionAnsweringSimple(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) __a =outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> List[Any]: '''simple docstring''' __a =XLMForQuestionAnswering(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , p_mask=__snake_case , ) __a =model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , ) ((__a) , ) =result_with_labels.to_tuple() __a =model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) ((__a) , ) =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Optional[Any]: '''simple docstring''' __a =XLMForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Any: '''simple docstring''' __a =self.num_labels __a =XLMForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Tuple: '''simple docstring''' __a =self.num_choices __a =XLMForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() __a =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) =config_and_inputs __a ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable SCREAMING_SNAKE_CASE = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> int: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __magic_name__ ( self , __snake_case , __snake_case , __snake_case=False ) -> str: '''simple docstring''' __a =super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __a =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) __a =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =XLMModelTester(self ) __a =ConfigTester(self , config_class=__snake_case , emb_dim=37 ) def __magic_name__ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=False , __snake_case=1 ) -> Optional[Any]: '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_attentions in attentions] , [True] * len(__snake_case ) ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__snake_case ): # adds PAD dummy token __a =min_length + idx + 1 __a =min_length + idx + 1 __a =( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__snake_case ) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=False , __snake_case=1 ) -> Dict: '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_hidden_states in hidden_states] , [True] * len(__snake_case ) , ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__snake_case ): # adds PAD dummy token __a =min_length + idx + 1 __a =(batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__snake_case ) , ) pass @slow def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a =XLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class __magic_name__ ( unittest.TestCase ): @slow def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(__snake_case ) __a =torch.tensor([[14, 447]] , dtype=torch.long , device=__snake_case ) # the president __a =[ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __a =model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __snake_case )
308
1
def UpperCamelCase_( _snake_case : int = 10**9 ): """simple docstring""" __a =1 __a =2 __a =0 __a =0 __a =0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __a =2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
308
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake _lowerCAmelCase : Optional[Any] = numpy.array([0, 0]) _lowerCAmelCase : Dict = numpy.array([0.5, 0.8660254]) _lowerCAmelCase : Any = numpy.array([1, 0]) _lowerCAmelCase : int = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCamelCase_( _snake_case : list[numpy.ndarray] , _snake_case : int ): """simple docstring""" __a =initial_vectors for _ in range(_snake_case ): __a =iteration_step(_snake_case ) return vectors def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =[] for i, start_vector in enumerate(vectors[:-1] ): __a =vectors[i + 1] new_vectors.append(_snake_case ) __a =end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCamelCase_( _snake_case : numpy.ndarray , _snake_case : float ): """simple docstring""" __a =numpy.radians(_snake_case ) __a , __a =numpy.cos(_snake_case ), numpy.sin(_snake_case ) __a =numpy.array(((c, -s), (s, c)) ) return numpy.dot(_snake_case , _snake_case ) def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() __a , __a =zip(*_snake_case ) plt.plot(_snake_case , _snake_case ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : List[Any] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
308
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : str = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[int] = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys _lowerCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Tuple = { "configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MegatronBertForCausalLM", "MegatronBertForMaskedLM", "MegatronBertForMultipleChoice", "MegatronBertForNextSentencePrediction", "MegatronBertForPreTraining", "MegatronBertForQuestionAnswering", "MegatronBertForSequenceClassification", "MegatronBertForTokenClassification", "MegatronBertModel", "MegatronBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys _lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class __magic_name__ ( unittest.TestCase ): def __init__( self , __snake_case , __snake_case=7 , __snake_case=3 , __snake_case=30 , __snake_case=400 , __snake_case=True , __snake_case=None , __snake_case=True , __snake_case=[0.5, 0.5, 0.5] , __snake_case=[0.5, 0.5, 0.5] , __snake_case=True , __snake_case=1 / 255 , __snake_case=True , ) -> List[Any]: '''simple docstring''' # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __a =size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} __a =parent __a =batch_size __a =num_channels __a =min_resolution __a =max_resolution __a =do_resize __a =size __a =do_normalize __a =image_mean __a =image_std __a =do_rescale __a =rescale_factor __a =do_pad def __magic_name__ ( self ) -> List[str]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __magic_name__ ( self , __snake_case , __snake_case=False ) -> List[str]: '''simple docstring''' if not batched: __a =image_inputs[0] if isinstance(__snake_case , Image.Image ): __a , __a =image.size else: __a , __a =image.shape[1], image.shape[2] if w < h: __a =int(self.size['shortest_edge'] * h / w ) __a =self.size['shortest_edge'] elif w > h: __a =self.size['shortest_edge'] __a =int(self.size['shortest_edge'] * w / h ) else: __a =self.size['shortest_edge'] __a =self.size['shortest_edge'] else: __a =[] for image in image_inputs: __a , __a =self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __a =max(__snake_case , key=lambda __snake_case : item[0] )[0] __a =max(__snake_case , key=lambda __snake_case : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = DetaImageProcessor if is_vision_available() else None def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =DetaImageProcessingTester(self ) @property def __magic_name__ ( self ) -> Dict: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , 'image_mean' ) ) self.assertTrue(hasattr(__snake_case , 'image_std' ) ) self.assertTrue(hasattr(__snake_case , 'do_normalize' ) ) self.assertTrue(hasattr(__snake_case , 'do_resize' ) ) self.assertTrue(hasattr(__snake_case , 'do_rescale' ) ) self.assertTrue(hasattr(__snake_case , 'do_pad' ) ) self.assertTrue(hasattr(__snake_case , 'size' ) ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , __snake_case ) def __magic_name__ ( self ) -> int: '''simple docstring''' pass def __magic_name__ ( self ) -> str: '''simple docstring''' # Initialize image_processing __a =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a =prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input __a =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __a , __a =self.image_processor_tester.get_expected_values(__snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __a , __a =self.image_processor_tester.get_expected_values(__snake_case , batched=__snake_case ) __a =image_processing(__snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' # Initialize image_processing __a =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a =prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input __a =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __a , __a =self.image_processor_tester.get_expected_values(__snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __a =image_processing(__snake_case , return_tensors='pt' ).pixel_values __a , __a =self.image_processor_tester.get_expected_values(__snake_case , batched=__snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' # Initialize image_processing __a =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a =prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input __a =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __a , __a =self.image_processor_tester.get_expected_values(__snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __a =image_processing(__snake_case , return_tensors='pt' ).pixel_values __a , __a =self.image_processor_tester.get_expected_values(__snake_case , batched=__snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __magic_name__ ( self ) -> int: '''simple docstring''' # prepare image and target __a =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: __a =json.loads(f.read() ) __a ={'image_id': 3_9769, 'annotations': target} # encode them __a =DetaImageProcessor() __a =image_processing(images=__snake_case , annotations=__snake_case , return_tensors='pt' ) # verify pixel values __a =torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , __snake_case ) __a =torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , __snake_case , atol=1e-4 ) ) # verify area __a =torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , __snake_case ) ) # verify boxes __a =torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , __snake_case ) __a =torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , __snake_case , atol=1e-3 ) ) # verify image_id __a =torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , __snake_case ) ) # verify is_crowd __a =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , __snake_case ) ) # verify class_labels __a =torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , __snake_case ) ) # verify orig_size __a =torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , __snake_case ) ) # verify size __a =torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , __snake_case ) ) @slow def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # prepare image, target and masks_path __a =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: __a =json.loads(f.read() ) __a ={'file_name': '000000039769.png', 'image_id': 3_9769, 'segments_info': target} __a =pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them __a =DetaImageProcessor(format='coco_panoptic' ) __a =image_processing(images=__snake_case , annotations=__snake_case , masks_path=__snake_case , return_tensors='pt' ) # verify pixel values __a =torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , __snake_case ) __a =torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , __snake_case , atol=1e-4 ) ) # verify area __a =torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , __snake_case ) ) # verify boxes __a =torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , __snake_case ) __a =torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , __snake_case , atol=1e-3 ) ) # verify image_id __a =torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , __snake_case ) ) # verify is_crowd __a =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , __snake_case ) ) # verify class_labels __a =torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , __snake_case ) ) # verify masks __a =82_2873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , __snake_case ) # verify orig_size __a =torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , __snake_case ) ) # verify size __a =torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , __snake_case ) )
308
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __magic_name__ : @staticmethod def __magic_name__ ( *__snake_case , **__snake_case ) -> List[str]: '''simple docstring''' pass def UpperCamelCase_( _snake_case : Image ): """simple docstring""" __a =hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __magic_name__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def __magic_name__ ( self , __snake_case , __snake_case , __snake_case ) -> Dict: '''simple docstring''' __a =DepthEstimationPipeline(model=__snake_case , image_processor=__snake_case ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __magic_name__ ( self , __snake_case , __snake_case ) -> Tuple: '''simple docstring''' __a =depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , __snake_case ) import datasets __a =datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) __a =depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , __snake_case , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' pass @slow @require_torch def __magic_name__ ( self ) -> int: '''simple docstring''' __a ='Intel/dpt-large' __a =pipeline('depth-estimation' , model=__snake_case ) __a =depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) __a =hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.662 ) @require_torch def __magic_name__ ( self ) -> Any: '''simple docstring''' # This is highly irregular to have no small tests. self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
308
1
from __future__ import annotations from statistics import mean def UpperCamelCase_( _snake_case : list[int] , _snake_case : list[int] , _snake_case : int ): """simple docstring""" __a =[0] * no_of_processes __a =[0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(_snake_case ): __a =burst_time[i] __a =[] __a =0 __a =0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __a =[] __a =-1 for i in range(_snake_case ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(_snake_case ) if len(_snake_case ) > 0: __a =ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __a =i total_time += burst_time[target_process] completed += 1 __a =0 __a =( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def UpperCamelCase_( _snake_case : list[int] , _snake_case : int , _snake_case : list[int] ): """simple docstring""" __a =[0] * no_of_processes for i in range(_snake_case ): __a =burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("[TEST CASE 01]") _lowerCAmelCase : Union[str, Any] = 4 _lowerCAmelCase : Tuple = [2, 5, 3, 7] _lowerCAmelCase : Union[str, Any] = [0, 0, 0, 0] _lowerCAmelCase : Optional[Any] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) _lowerCAmelCase : Optional[Any] = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time") for i, process_id in enumerate(list(range(1, 5))): print( f'''{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t''' f'''{waiting_time[i]}\t\t\t\t{turn_around_time[i]}''' ) print(f'''\nAverage waiting time = {mean(waiting_time):.5f}''') print(f'''Average turnaround time = {mean(turn_around_time):.5f}''')
308
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _lowerCAmelCase : Optional[int] = logging.getLogger(__name__) _lowerCAmelCase : Any = "pytorch_model.bin" @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co.'} , ) @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field(metadata={'help': 'A csv or a json file containing the training data.'} ) SCREAMING_SNAKE_CASE = dataclasses.field(metadata={'help': 'A csv or a json file containing the data to predict on.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the validation data.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'The name of the task to train on.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'The list of labels for the task.'} ) @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field( metadata={'help': 'The output directory where the model predictions and checkpoints will be written.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default='accuracy' , metadata={'help': 'The evaluation metric used for the task.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default='no' , metadata={ 'help': 'The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]' } , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=1_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0 , metadata={ 'help': 'How much the specified evaluation metric must improve to satisfy early stopping conditions.' } , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the confidence score.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the validation performance.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to fine-tune on labeled data after pseudo training.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0 , metadata={'help': 'Confidence threshold for pseudo-labeled data filtering.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=1_0_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Random seed for initialization.'} , ) def UpperCamelCase_( _snake_case : int , _snake_case : str , _snake_case : Optional[int] , _snake_case : str , _snake_case : Union[str, Any] , _snake_case : List[Any] ): """simple docstring""" __a =datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: __a =dataset.filter(lambda _snake_case : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 __a =int(eval_result * len(_snake_case ) ) print(_snake_case ) __a =dataset.sort('probability' , reverse=_snake_case ) __a =dataset.select(range(_snake_case ) ) __a =dataset.remove_columns(['label', 'probability'] ) __a =dataset.rename_column('prediction' , 'label' ) __a =dataset.map(lambda _snake_case : {"label": idalabel[example["label"]]} ) __a =dataset.shuffle(seed=args.seed ) __a =os.path.join(_snake_case , F'train_pseudo.{args.data_file_extension}' ) if args.data_file_extension == "csv": dataset.to_csv(_snake_case , index=_snake_case ) else: dataset.to_json(_snake_case ) def UpperCamelCase_( _snake_case : List[Any] , _snake_case : str , _snake_case : int , _snake_case : Optional[int] , **_snake_case : List[str] ): """simple docstring""" __a =Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() __a =STModelArguments(model_name_or_path=_snake_case ) __a =STDataArguments(train_file=_snake_case , infer_file=_snake_case ) __a =STTrainingArguments(output_dir=_snake_case ) __a =argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(_snake_case ).items(): setattr(_snake_case , _snake_case , _snake_case ) for key, value in kwargs.items(): if hasattr(_snake_case , _snake_case ): setattr(_snake_case , _snake_case , _snake_case ) # Sanity checks __a ={} __a =None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None __a =args.train_file __a =args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None __a =args.eval_file for key in data_files: __a =data_files[key].split('.' )[-1] assert extension in ["csv", "json"], F'`{key}_file` should be a csv or a json file.' if args.data_file_extension is None: __a =extension else: assert extension == args.data_file_extension, F'`{key}_file` should be a {args.data_file_extension} file`.' assert ( args.eval_metric in datasets.list_metrics() ), F'{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('Creating the initial data directory for self-training...' ) __a =F'{args.output_dir}/self-train_iter-{{}}'.format __a =data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=_snake_case ) os.makedirs(_snake_case , exist_ok=_snake_case ) accelerator.wait_for_everyone() __a =None __a =None __a =0 __a =False # Show the progress bar __a =tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): __a =data_dir_format(_snake_case ) assert os.path.exists(_snake_case ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 __a =os.path.join(_snake_case , 'stage-1' ) __a ={ 'accelerator': accelerator, 'model_name_or_path': args.model_name_or_path, 'cache_dir': args.cache_dir, 'do_train': True, 'train_file': data_files['train'] if iteration == 0 else data_files['train_pseudo'], 'do_eval': True if args.eval_file is not None else False, 'eval_file': data_files['eval'], 'do_predict': True, 'infer_file': data_files['infer'], 'task_name': args.task_name, 'label_list': args.label_list, 'output_dir': current_output_dir, 'eval_metric': args.eval_metric, 'evaluation_strategy': args.evaluation_strategy, 'early_stopping_patience': args.early_stopping_patience, 'early_stopping_threshold': args.early_stopping_threshold, 'seed': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(_snake_case , _snake_case ): arguments_dict.update({key: value} ) __a =os.path.join(_snake_case , 'best-checkpoint' , _snake_case ) if os.path.exists(_snake_case ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.' , _snake_case , _snake_case , ) else: logger.info('***** Running self-training: iteration: %d, stage: 1 *****' , _snake_case ) finetune(**_snake_case ) accelerator.wait_for_everyone() assert os.path.exists(_snake_case ) logger.info('Self-training job completed: iteration: %d, stage: 1.' , _snake_case ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data __a =os.path.join(_snake_case , 'best-checkpoint' ) __a =os.path.join(_snake_case , 'stage-2' ) # Update arguments_dict __a =model_path __a =data_files['train'] __a =current_output_dir __a =os.path.join(_snake_case , 'best-checkpoint' , _snake_case ) if os.path.exists(_snake_case ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.' , _snake_case , _snake_case , ) else: logger.info('***** Running self-training: iteration: %d, stage: 2 *****' , _snake_case ) finetune(**_snake_case ) accelerator.wait_for_everyone() assert os.path.exists(_snake_case ) logger.info('Self-training job completed: iteration: %d, stage: 2.' , _snake_case ) __a =iteration __a =data_dir_format(iteration + 1 ) __a =AutoConfig.from_pretrained(os.path.join(_snake_case , 'best-checkpoint' ) ) __a =config.idalabel __a =os.path.join(_snake_case , 'eval_results_best-checkpoint.json' ) __a =os.path.join(_snake_case , 'test_results_best-checkpoint.json' ) assert os.path.exists(_snake_case ) with open(_snake_case , 'r' ) as f: __a =float(json.load(_snake_case )[args.eval_metric] ) __a =os.path.join(_snake_case , 'infer_output_best-checkpoint.csv' ) assert os.path.exists(_snake_case ) # Loading the dataset from local csv or json files. __a =load_dataset(args.data_file_extension , data_files={'data': data_files['infer']} )['data'] __a =load_dataset('csv' , data_files={'data': infer_output_file} )['data'] if accelerator.is_main_process: os.makedirs(_snake_case , exist_ok=_snake_case ) shutil.copy(_snake_case , os.path.join(_snake_case , F'eval_results_iter-{iteration}.json' ) ) if os.path.exists(_snake_case ): shutil.copy(_snake_case , os.path.join(_snake_case , F'test_results_iter-{iteration}.json' ) ) create_pseudo_labeled_data(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) accelerator.wait_for_everyone() __a =os.path.join(_snake_case , F'train_pseudo.{args.data_file_extension}' ) if args.evaluation_strategy != IntervalStrategy.NO.value: __a =eval_result if best_iteration is None: __a =new_iteration __a =new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: __a =new_iteration __a =new_eval_result __a =0 else: if new_eval_result == best_eval_result: __a =new_iteration __a =new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: __a =True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('Best iteration: %d' , _snake_case ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , _snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_snake_case , F'eval_results_iter-{iteration}.json' ) , os.path.join(_snake_case , 'eval_results_best-iteration.json' ) , ) else: # Assume that the last iteration is the best logger.info('Best iteration: %d' , args.max_selftrain_iterations - 1 ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , _snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_snake_case , F'eval_results_iter-{args.max_selftrain_iterations - 1}.json' ) , os.path.join(_snake_case , 'eval_results_best-iteration.json' ) , )
308
1
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _lowerCAmelCase : List[Any] = logging.getLogger(__name__) _lowerCAmelCase : Optional[Any] = "Hello world! cécé herlolip" _lowerCAmelCase : str = namedtuple( "BertAbsConfig", [ "temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout", ], ) def UpperCamelCase_( _snake_case : str , _snake_case : List[Any] ): """simple docstring""" __a =BertAbsConfig( temp_dir='.' , finetune_bert=_snake_case , large=_snake_case , share_emb=_snake_case , use_bert_emb=_snake_case , encoder='bert' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) __a =torch.load(_snake_case , lambda _snake_case , _snake_case : storage ) __a =AbsSummarizer(_snake_case , torch.device('cpu' ) , _snake_case ) original.eval() __a =BertAbsSummarizer(_snake_case , torch.device('cpu' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('convert the model' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('Make sure that the models\' outputs are identical' ) __a =BertTokenizer.from_pretrained('bert-base-uncased' ) # prepare the model inputs __a =tokenizer.encode('This is sample éàalj\'-.' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_snake_case )) ) __a =torch.tensor(_snake_case ).unsqueeze(0 ) __a =tokenizer.encode('This is sample 3 éàalj\'-.' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_snake_case )) ) __a =torch.tensor(_snake_case ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __a =encoder_input_ids __a =decoder_input_ids __a =__a =None __a =None __a =__a =None __a =__a =None __a =None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __a =original(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )[0] __a =original.generator(_snake_case ) __a =new_model( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )[0] __a =new_model.generator(_snake_case ) __a =torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_snake_case ) ) __a =torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_snake_case ) ) __a =torch.allclose(_snake_case , _snake_case , atol=1e-3 ) if are_identical: logging.info('all weights are equal up to 1e-3' ) else: raise ValueError('the weights are different. The new model is likely different from the original one.' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('saving the model\'s state dictionary' ) torch.save( new_model.state_dict() , './bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--bertabs_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model.", ) _lowerCAmelCase : Optional[Any] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
308
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Any = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right _lowerCAmelCase : List[Any] = 256_047 _lowerCAmelCase : Dict = 256_145 @require_sentencepiece @require_tokenizers class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = NllbTokenizer SCREAMING_SNAKE_CASE = NllbTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = {} def __magic_name__ ( self ) -> int: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __a =NllbTokenizer(__snake_case , keep_accents=__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self ) -> int: '''simple docstring''' __a =NllbTokenizer(__snake_case , keep_accents=__snake_case ) __a =tokenizer.tokenize('This is a test' ) self.assertListEqual(__snake_case , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __a =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __a =tokenizer.convert_tokens_to_ids(__snake_case ) self.assertListEqual( __snake_case , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __a =tokenizer.convert_ids_to_tokens(__snake_case ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-nllb', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __a =self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __a =self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) __a =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=True __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=False __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) @require_torch def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' if not self.test_seqaseq: return __a =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Longer text that will definitely require truncation. __a =[ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for' ' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons' ' will only worsen the violence and misery for millions of people.', ] __a =[ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al' ' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi' ' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] try: __a =tokenizer.prepare_seqaseq_batch( src_texts=__snake_case , tgt_texts=__snake_case , max_length=3 , max_target_length=10 , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='ron_Latn' , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified __a =tokenizer.prepare_seqaseq_batch( __snake_case , tgt_texts=__snake_case , max_length=3 , return_tensors='pt' ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) __a =tokenizer.prepare_seqaseq_batch( src_texts=__snake_case , max_length=3 , max_target_length=10 , return_tensors='pt' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn('decoder_input_ids' , __snake_case ) @unittest.skip('Unfortunately way too slow to build a BPE with SentencePiece.' ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' pass def __magic_name__ ( self ) -> Tuple: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __a =[AddedToken('<special>' , lstrip=__snake_case )] __a =self.rust_tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case ) __a =tokenizer_r.encode('Hey this is a <special> token' ) __a =tokenizer_r.encode('<special>' , add_special_tokens=__snake_case )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: __a =self.rust_tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case , ) __a =self.tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case ) __a =tokenizer_p.encode('Hey this is a <special> token' ) __a =tokenizer_cr.encode('Hey this is a <special> token' ) self.assertEqual(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class __magic_name__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = 'facebook/nllb-200-distilled-600M' SCREAMING_SNAKE_CASE = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] SCREAMING_SNAKE_CASE = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] SCREAMING_SNAKE_CASE = [ 2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 8_1_6_5, 2_4_8_0_6_6, 1_4_7_3_4, 9_5_0, 1_1_3_5, 1_0_5_7_2_1, 3_5_7_3, 8_3, 2_7_3_5_2, 1_0_8, 4_9_4_8_6, 2, ] @classmethod def __magic_name__ ( cls ) -> Tuple: '''simple docstring''' __a =NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang='eng_Latn' , tgt_lang='ron_Latn' ) __a =1 return cls def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Arab'] , 25_6001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Latn'] , 25_6002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['fra_Latn'] , 25_6057 ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' self.assertIn(__snake_case , self.tokenizer.all_special_ids ) # fmt: off __a =[RO_CODE, 4254, 9_8068, 11_2923, 3_9072, 3909, 713, 10_2767, 26, 1_7314, 3_5642, 1_4683, 3_3118, 2022, 6_6987, 2, 25_6047] # fmt: on __a =self.tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) __a =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertNotIn(self.tokenizer.eos_token , __snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , __snake_case ) __a =10 __a =self.tokenizer(__snake_case , max_length=__snake_case , truncation=__snake_case ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , __snake_case ) self.assertEqual(len(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_6203, 3] ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =tempfile.mkdtemp() __a =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__snake_case ) __a =NllbTokenizer.from_pretrained(__snake_case ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __snake_case ) @require_torch def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) __a =shift_tokens_right( batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['ron_Latn'] ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) __a =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) self.assertEqual(__snake_case , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =self.tokenizer(self.src_text , padding=__snake_case , truncation=__snake_case , max_length=3 , return_tensors='pt' ) __a =self.tokenizer( text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=10 , return_tensors='pt' ) __a =targets['input_ids'] __a =shift_tokens_right( __snake_case , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( nested_simplify(__snake_case ) , { # A, test, EOS, en_XX 'input_ids': [[25_6047, 70, 7356, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_6057, } , ) @require_torch def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =True __a =self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2, 25_6047] ) __a =False __a =self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [25_6047, 1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2] )
308
1
from abc import ABC, abstractmethod from argparse import ArgumentParser class __magic_name__ ( lowerCAmelCase_ ): @staticmethod @abstractmethod def __magic_name__ ( __snake_case ) -> List[Any]: '''simple docstring''' raise NotImplementedError() @abstractmethod def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' raise NotImplementedError()
308
def UpperCamelCase_( _snake_case : str , _snake_case : int ): """simple docstring""" return [sentence[i : i + ngram_size] for i in range(len(_snake_case ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
308
1
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def UpperCamelCase_( _snake_case : Union[str, Any]=32 , _snake_case : Any=10 , _snake_case : Optional[Any]=100 , _snake_case : List[Any]=1026 , _snake_case : List[str]=True , _snake_case : str="data/tokenized_stories_train_wikitext103.jbl" , _snake_case : List[str]="igf_context_pairs.jbl" , ): """simple docstring""" set_seed(3 ) # generate train_data and objective_set __a , __a =generate_datasets( _snake_case , _snake_case , number=_snake_case , min_len=1026 , trim=_snake_case ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? __a =torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # load pretrained model __a =load_gpta('gpt2' ).to(_snake_case ) print('computing perplexity on objective set' ) __a =compute_perplexity(_snake_case , _snake_case , _snake_case ).item() print('perplexity on objective set:' , _snake_case ) # collect igf pairs and save to file demo.jbl collect_objective_set(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def UpperCamelCase_( _snake_case : Optional[Any] , _snake_case : str=15 , _snake_case : Dict=128 , _snake_case : Union[str, Any]=100 , _snake_case : Dict="igf_model.pt" , ): """simple docstring""" set_seed(42 ) # Load pre-trained model __a =GPTaLMHeadModel.from_pretrained('gpt2' ) # Initialize secondary learner to use embedding weights of model __a =SecondaryLearner(_snake_case ) # Train secondary learner __a =train_secondary_learner( _snake_case , _snake_case , max_epochs=_snake_case , batch_size=_snake_case , eval_freq=100 , igf_model_path=_snake_case , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def UpperCamelCase_( _snake_case : Optional[Any] , _snake_case : Optional[int] , _snake_case : List[Any] , _snake_case : List[str]=32 , _snake_case : int=1000 , _snake_case : Union[str, Any]=16 , _snake_case : str=1.0 , _snake_case : Union[str, Any]=recopy_gpta , _snake_case : Union[str, Any]=None , _snake_case : int=10 , _snake_case : Any="gpt2_finetuned.pt" , ): """simple docstring""" __a =torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) __a =RandomSampler(_snake_case ) __a =DataLoader(_snake_case , sampler=_snake_case ) __a =max_steps // (len(_snake_case )) + 1 __a =0 __a =torch.zeros((1, context_len) , dtype=torch.long , device=_snake_case ) __a , __a , __a =recopy_model(_snake_case , _snake_case , _snake_case ) model.train() if secondary_learner is not None: secondary_learner.to(_snake_case ) secondary_learner.eval() __a =[] __a =0 __a =[] __a =[] # Compute the performance of the transformer model at the beginning __a =compute_perplexity(_snake_case , _snake_case , _snake_case ) test_perps.append(_snake_case ) print('Test perplexity, step' , _snake_case , ':' , _snake_case ) for epoch in range(int(_snake_case ) ): for step, example in enumerate(_snake_case ): torch.cuda.empty_cache() __a =random.randint(0 , example.size(2 ) - context_len - 1 ) __a =example[0, 0, start : start + context_len] lm_optimizer.zero_grad() __a =model(_snake_case , labels=_snake_case ) __a =True if secondary_learner is not None: __a =secondary_learner.forward( torch.tensor(_snake_case , dtype=torch.long , device=_snake_case ).unsqueeze(0 ) )[0].item() observed_qs.append(float(_snake_case ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: __a =-1 if predicted_q < threshold: __a =False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) __a =outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() __a =0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: __a =compute_perplexity(_snake_case , _snake_case , _snake_case ) test_perps.append(_snake_case ) print('Test perplexity, step' , _snake_case , ':' , _snake_case ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , _snake_case ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def UpperCamelCase_( ): """simple docstring""" __a =argparse.ArgumentParser(description='Fine-tune a transformer model with IGF on a language modeling task' ) # Required parameters parser.add_argument( '--data_dir' , default=_snake_case , type=_snake_case , required=_snake_case , help='The input data dir. Should contain data files for WikiText.' , ) parser.add_argument( '--model_name_or_path' , default=_snake_case , type=_snake_case , required=_snake_case , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--data_file' , type=_snake_case , default=_snake_case , help=( 'A jbl file containing tokenized data which can be split as objective dataset, ' 'train_dataset and test_dataset.' ) , ) parser.add_argument( '--igf_data_file' , type=_snake_case , default=_snake_case , help='A jbl file containing the context and information gain pairs to train secondary learner.' , ) parser.add_argument( '--output_dir' , default=_snake_case , type=_snake_case , required=_snake_case , help='The output directory where the final fine-tuned model is stored.' , ) parser.add_argument( '--tokenizer_name' , default=_snake_case , type=_snake_case , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument('--seed' , type=_snake_case , default=_snake_case , help='A seed for reproducible training.' ) parser.add_argument( '--context_len' , default=32 , type=_snake_case , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--size_objective_set' , default=100 , type=_snake_case , help='number of articles that are long enough to be used as our objective set' , ) parser.add_argument( '--eval_freq' , default=100 , type=_snake_case , help='secondary model evaluation is triggered at eval_freq' ) parser.add_argument('--max_steps' , default=1000 , type=_snake_case , help='To calculate training epochs' ) parser.add_argument( '--secondary_learner_batch_size' , default=128 , type=_snake_case , help='batch size of training data for secondary learner' , ) parser.add_argument( '--batch_size' , default=16 , type=_snake_case , help='batch size of training data of language model(gpt2) ' ) parser.add_argument( '--eval_interval' , default=10 , type=_snake_case , help=( 'decay the selectivity of our secondary learner filter from' '1 standard deviation above average to 1 below average after 10 batches' ) , ) parser.add_argument( '--number' , default=100 , type=_snake_case , help='The number of examples split to be used as objective_set/test_data' ) parser.add_argument( '--min_len' , default=1026 , type=_snake_case , help='The minimum length of the article to be used as objective set' ) parser.add_argument( '--secondary_learner_max_epochs' , default=15 , type=_snake_case , help='number of epochs to train secondary learner' ) parser.add_argument('--trim' , default=_snake_case , type=_snake_case , help='truncate the example if it exceeds context length' ) parser.add_argument( '--threshold' , default=1.0 , type=_snake_case , help=( 'The threshold value used by secondary learner to filter the train_data and allow only' ' informative data as input to the model' ) , ) parser.add_argument('--finetuned_model_name' , default='gpt2_finetuned.pt' , type=_snake_case , help='finetuned_model_name' ) parser.add_argument( '--recopy_model' , default=_snake_case , type=_snake_case , help='Reset the model to the original pretrained GPT-2 weights after each iteration' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=_snake_case , data_file='data/tokenized_stories_train_wikitext103.jbl' , igf_data_file='igf_context_pairs.jbl' , ) # Load train data for secondary learner __a =joblib.load('data/IGF_values.jbl' ) # Train secondary learner __a =training_secondary_learner( _snake_case , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path='igf_model.pt' , ) # load pretrained gpt2 model __a =GPTaLMHeadModel.from_pretrained('gpt2' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model __a , __a =generate_datasets( context_len=32 , file='data/tokenized_stories_train_wikitext103.jbl' , number=100 , min_len=1026 , trim=_snake_case ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( _snake_case , _snake_case , _snake_case , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=_snake_case , secondary_learner=_snake_case , eval_interval=10 , finetuned_model_name='gpt2_finetuned.pt' , ) if __name__ == "__main__": main()
308
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class __magic_name__ ( pl.LightningModule ): def __init__( self , __snake_case ) -> List[Any]: '''simple docstring''' super().__init__() __a =model __a =2 __a =nn.Linear(self.model.config.hidden_size , self.num_labels ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' pass def UpperCamelCase_( _snake_case : str , _snake_case : str , _snake_case : str ): """simple docstring""" __a =LongformerModel.from_pretrained(_snake_case ) __a =LightningModel(_snake_case ) __a =torch.load(_snake_case , map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model __a =LongformerForQuestionAnswering.from_pretrained(_snake_case ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(_snake_case ) print(F'Conversion successful. Model saved under {pytorch_dump_folder_path}' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowerCAmelCase : Optional[int] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
308
1
from functools import lru_cache @lru_cache def UpperCamelCase_( _snake_case : int ): """simple docstring""" if num < 0: raise ValueError('Number should not be negative.' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
308
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") _lowerCAmelCase : Optional[Any] = logging.getLogger(__name__) @dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) SCREAMING_SNAKE_CASE = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) SCREAMING_SNAKE_CASE = field( default=1_0_2_4 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the training data.'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the validation data.'} ) SCREAMING_SNAKE_CASE = field(default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the test data.'} ) def __magic_name__ ( self ) -> str: '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: __a =self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __a =self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) SCREAMING_SNAKE_CASE = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def UpperCamelCase_( ): """simple docstring""" __a =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __a , __a , __a =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __a , __a , __a =parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) __a =training_args.get_process_log_level() logger.setLevel(_snake_case ) datasets.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __a =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __a =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __a =load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __a ={'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __a =data_args.train_file.split('.' )[-1] __a =data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __a =data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(F'load a local file for {key}: {data_files[key]}' ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files __a =load_dataset('csv' , data_files=_snake_case , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __a =load_dataset('json' , data_files=_snake_case , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __a =raw_datasets['train'].features['label'].names __a =len(_snake_case ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __a =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __a =TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=_snake_case , ) __a =BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __a ='max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __a =False # Some models have set the order of the labels to use, so let's make sure we do use it. __a ={'Refused': 0, 'Entailed': 1} __a ={0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __a =min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(_snake_case : Tuple ): # Tokenize the texts def _convert_table_text_to_pandas(_snake_case : Optional[Any] ): __a =[_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] __a =pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __a =examples['statement'] __a =list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) __a =tokenizer(_snake_case , _snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case ) __a =examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): __a =raw_datasets.map( _snake_case , batched=_snake_case , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) __a =raw_datasets['train'] if data_args.max_train_samples is not None: __a =train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) __a =raw_datasets['validation'] if data_args.max_eval_samples is not None: __a =eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) __a =raw_datasets['test'] if data_args.max_predict_samples is not None: __a =predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(_snake_case ) ) , 3 ): logger.info(F'Sample {index} of the training set: {train_dataset[index]}.' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_snake_case : EvalPrediction ): __a =p.predictions[0] if isinstance(p.predictions , _snake_case ) else p.predictions __a =np.argmax(_snake_case , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __a =default_data_collator elif training_args.fpaa: __a =DataCollatorWithPadding(_snake_case , pad_to_multiple_of=8 ) else: __a =None # Initialize our Trainer __a =Trainer( model=_snake_case , args=_snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_snake_case , tokenizer=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: __a =None if training_args.resume_from_checkpoint is not None: __a =training_args.resume_from_checkpoint elif last_checkpoint is not None: __a =last_checkpoint __a =trainer.train(resume_from_checkpoint=_snake_case ) __a =train_result.metrics __a =( data_args.max_train_samples if data_args.max_train_samples is not None else len(_snake_case ) ) __a =min(_snake_case , len(_snake_case ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , _snake_case ) trainer.save_metrics('train' , _snake_case ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __a =trainer.evaluate(eval_dataset=_snake_case ) __a =data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_snake_case ) __a =min(_snake_case , len(_snake_case ) ) trainer.log_metrics('eval' , _snake_case ) trainer.save_metrics('eval' , _snake_case ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __a =predict_dataset.remove_columns('label' ) __a =trainer.predict(_snake_case , metric_key_prefix='predict' ).predictions __a =np.argmax(_snake_case , axis=1 ) __a =os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(_snake_case , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(_snake_case ): __a =label_list[item] writer.write(F'{index}\t{item}\n' ) __a ={'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**_snake_case ) else: trainer.create_model_card(**_snake_case ) def UpperCamelCase_( _snake_case : Union[str, Any] ): """simple docstring""" main() if __name__ == "__main__": main()
308
1
from ..utils import DummyObject, requires_backends class __magic_name__ ( metaclass=lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = ['flax'] def __init__( self , *__snake_case , **__snake_case ) -> Any: '''simple docstring''' requires_backends(self , ['flax'] ) @classmethod def __magic_name__ ( cls , *__snake_case , **__snake_case ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['flax'] ) @classmethod def __magic_name__ ( cls , *__snake_case , **__snake_case ) -> int: '''simple docstring''' requires_backends(cls , ['flax'] ) class __magic_name__ ( metaclass=lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = ['flax'] def __init__( self , *__snake_case , **__snake_case ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['flax'] ) @classmethod def __magic_name__ ( cls , *__snake_case , **__snake_case ) -> List[str]: '''simple docstring''' requires_backends(cls , ['flax'] ) @classmethod def __magic_name__ ( cls , *__snake_case , **__snake_case ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['flax'] ) class __magic_name__ ( metaclass=lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = ['flax'] def __init__( self , *__snake_case , **__snake_case ) -> List[Any]: '''simple docstring''' requires_backends(self , ['flax'] ) @classmethod def __magic_name__ ( cls , *__snake_case , **__snake_case ) -> List[str]: '''simple docstring''' requires_backends(cls , ['flax'] ) @classmethod def __magic_name__ ( cls , *__snake_case , **__snake_case ) -> str: '''simple docstring''' requires_backends(cls , ['flax'] ) class __magic_name__ ( metaclass=lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = ['flax'] def __init__( self , *__snake_case , **__snake_case ) -> Dict: '''simple docstring''' requires_backends(self , ['flax'] ) @classmethod def __magic_name__ ( cls , *__snake_case , **__snake_case ) -> int: '''simple docstring''' requires_backends(cls , ['flax'] ) @classmethod def __magic_name__ ( cls , *__snake_case , **__snake_case ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['flax'] ) class __magic_name__ ( metaclass=lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = ['flax'] def __init__( self , *__snake_case , **__snake_case ) -> List[Any]: '''simple docstring''' requires_backends(self , ['flax'] ) @classmethod def __magic_name__ ( cls , *__snake_case , **__snake_case ) -> Any: '''simple docstring''' requires_backends(cls , ['flax'] ) @classmethod def __magic_name__ ( cls , *__snake_case , **__snake_case ) -> List[str]: '''simple docstring''' requires_backends(cls , ['flax'] ) class __magic_name__ ( metaclass=lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = ['flax'] def __init__( self , *__snake_case , **__snake_case ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['flax'] ) @classmethod def __magic_name__ ( cls , *__snake_case , **__snake_case ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['flax'] ) @classmethod def __magic_name__ ( cls , *__snake_case , **__snake_case ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['flax'] ) class __magic_name__ ( metaclass=lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = ['flax'] def __init__( self , *__snake_case , **__snake_case ) -> List[str]: '''simple docstring''' requires_backends(self , ['flax'] ) @classmethod def __magic_name__ ( cls , *__snake_case , **__snake_case ) -> Dict: '''simple docstring''' requires_backends(cls , ['flax'] ) @classmethod def __magic_name__ ( cls , *__snake_case , **__snake_case ) -> str: '''simple docstring''' requires_backends(cls , ['flax'] ) class __magic_name__ ( metaclass=lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = ['flax'] def __init__( self , *__snake_case , **__snake_case ) -> Dict: '''simple docstring''' requires_backends(self , ['flax'] ) @classmethod def __magic_name__ ( cls , *__snake_case , **__snake_case ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['flax'] ) @classmethod def __magic_name__ ( cls , *__snake_case , **__snake_case ) -> Dict: '''simple docstring''' requires_backends(cls , ['flax'] ) class __magic_name__ ( metaclass=lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = ['flax'] def __init__( self , *__snake_case , **__snake_case ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['flax'] ) @classmethod def __magic_name__ ( cls , *__snake_case , **__snake_case ) -> Tuple: '''simple docstring''' requires_backends(cls , ['flax'] ) @classmethod def __magic_name__ ( cls , *__snake_case , **__snake_case ) -> Tuple: '''simple docstring''' requires_backends(cls , ['flax'] ) class __magic_name__ ( metaclass=lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = ['flax'] def __init__( self , *__snake_case , **__snake_case ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['flax'] ) @classmethod def __magic_name__ ( cls , *__snake_case , **__snake_case ) -> int: '''simple docstring''' requires_backends(cls , ['flax'] ) @classmethod def __magic_name__ ( cls , *__snake_case , **__snake_case ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['flax'] ) class __magic_name__ ( metaclass=lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = ['flax'] def __init__( self , *__snake_case , **__snake_case ) -> str: '''simple docstring''' requires_backends(self , ['flax'] ) @classmethod def __magic_name__ ( cls , *__snake_case , **__snake_case ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['flax'] ) @classmethod def __magic_name__ ( cls , *__snake_case , **__snake_case ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['flax'] ) class __magic_name__ ( metaclass=lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = ['flax'] def __init__( self , *__snake_case , **__snake_case ) -> int: '''simple docstring''' requires_backends(self , ['flax'] ) @classmethod def __magic_name__ ( cls , *__snake_case , **__snake_case ) -> int: '''simple docstring''' requires_backends(cls , ['flax'] ) @classmethod def __magic_name__ ( cls , *__snake_case , **__snake_case ) -> Dict: '''simple docstring''' requires_backends(cls , ['flax'] ) class __magic_name__ ( metaclass=lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = ['flax'] def __init__( self , *__snake_case , **__snake_case ) -> Dict: '''simple docstring''' requires_backends(self , ['flax'] ) @classmethod def __magic_name__ ( cls , *__snake_case , **__snake_case ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['flax'] ) @classmethod def __magic_name__ ( cls , *__snake_case , **__snake_case ) -> int: '''simple docstring''' requires_backends(cls , ['flax'] )
308
from __future__ import annotations import time import numpy as np _lowerCAmelCase : List[str] = [8, 5, 9, 7] _lowerCAmelCase : List[str] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] _lowerCAmelCase : List[Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class __magic_name__ : def __init__( self , __snake_case , __snake_case , __snake_case , ) -> None: '''simple docstring''' __a =claim_vector __a =allocated_resources_table __a =maximum_claim_table def __magic_name__ ( self ) -> list[int]: '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def __magic_name__ ( self ) -> list[int]: '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def __magic_name__ ( self ) -> list[list[int]]: '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__snake_case ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def __magic_name__ ( self ) -> dict[int, list[int]]: '''simple docstring''' return {self.__need().index(__snake_case ): i for i in self.__need()} def __magic_name__ ( self , **__snake_case ) -> None: '''simple docstring''' __a =self.__need() __a =self.__allocated_resources_table __a =self.__available_resources() __a =self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: __a =False for each_need in need_list: __a =True for index, need in enumerate(__snake_case ): if need > available_resources[index]: __a =False break if execution: __a =True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __a =original_need_index print(f'Process {process_number + 1} is executing.' ) # remove the process run from stack need_list.remove(__snake_case ) # update available/freed resources stack __a =np.array(__snake_case ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(__snake_case ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( f'P{self.__allocated_resources_table.index(__snake_case ) + 1}' + ' '.join(f'{it:>8}' for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( f'P{self.__maximum_claim_table.index(__snake_case ) + 1}' + ' '.join(f'{it:>8}' for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(__snake_case ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(__snake_case ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
308
1
from __future__ import annotations def UpperCamelCase_( _snake_case : int = 4 ): """simple docstring""" __a =abs(_snake_case ) or 4 return [[1 + x + y * row_size for x in range(_snake_case )] for y in range(_snake_case )] def UpperCamelCase_( _snake_case : list[list[int]] ): """simple docstring""" return reverse_row(transpose(_snake_case ) ) # OR.. transpose(reverse_column(matrix)) def UpperCamelCase_( _snake_case : list[list[int]] ): """simple docstring""" return reverse_row(reverse_column(_snake_case ) ) # OR.. reverse_column(reverse_row(matrix)) def UpperCamelCase_( _snake_case : list[list[int]] ): """simple docstring""" return reverse_column(transpose(_snake_case ) ) # OR.. transpose(reverse_row(matrix)) def UpperCamelCase_( _snake_case : list[list[int]] ): """simple docstring""" __a =[list(_snake_case ) for x in zip(*_snake_case )] return matrix def UpperCamelCase_( _snake_case : list[list[int]] ): """simple docstring""" __a =matrix[::-1] return matrix def UpperCamelCase_( _snake_case : list[list[int]] ): """simple docstring""" __a =[x[::-1] for x in matrix] return matrix def UpperCamelCase_( _snake_case : list[list[int]] ): """simple docstring""" for i in matrix: print(*_snake_case ) if __name__ == "__main__": _lowerCAmelCase : Any = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 90 counterclockwise:\n") print_matrix(rotate_aa(matrix)) _lowerCAmelCase : Union[str, Any] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 180:\n") print_matrix(rotate_aaa(matrix)) _lowerCAmelCase : Any = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 270 counterclockwise:\n") print_matrix(rotate_aaa(matrix))
308
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency _lowerCAmelCase : Tuple = { "E": 12.70, "T": 9.06, "A": 8.17, "O": 7.51, "I": 6.97, "N": 6.75, "S": 6.33, "H": 6.09, "R": 5.99, "D": 4.25, "L": 4.03, "C": 2.78, "U": 2.76, "M": 2.41, "W": 2.36, "F": 2.23, "G": 2.02, "Y": 1.97, "P": 1.93, "B": 1.29, "V": 0.98, "K": 0.77, "J": 0.15, "X": 0.15, "Q": 0.10, "Z": 0.07, } _lowerCAmelCase : Optional[int] = "ETAOINSHRDLCUMWFGYPBVKJXQZ" _lowerCAmelCase : Any = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a ={letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def UpperCamelCase_( _snake_case : tuple ): """simple docstring""" return x[0] def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =get_letter_count(_snake_case ) __a ={ freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(_snake_case ) __a ={} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=_snake_case ) __a =''.join(freq_to_letter[freq] ) __a =list(freq_to_letter_str.items() ) freq_pairs.sort(key=_snake_case , reverse=_snake_case ) __a =[freq_pair[1] for freq_pair in freq_pairs] return "".join(_snake_case ) def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =get_frequency_order(_snake_case ) __a =0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
308
1
def UpperCamelCase_( _snake_case : int = 1000000 ): """simple docstring""" __a =limit + 1 __a =[0] * limit for first_term in range(1 , _snake_case ): for n in range(_snake_case , _snake_case , _snake_case ): __a =first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a __a =sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f'''{solution() = }''')
308
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : int = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'swin2sr' SCREAMING_SNAKE_CASE = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , __snake_case=64 , __snake_case=1 , __snake_case=3 , __snake_case=180 , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=8 , __snake_case=2.0 , __snake_case=True , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.1 , __snake_case="gelu" , __snake_case=False , __snake_case=0.02 , __snake_case=1e-5 , __snake_case=2 , __snake_case=1.0 , __snake_case="1conv" , __snake_case="pixelshuffle" , **__snake_case , ) -> Dict: '''simple docstring''' super().__init__(**__snake_case ) __a =image_size __a =patch_size __a =num_channels __a =embed_dim __a =depths __a =len(__snake_case ) __a =num_heads __a =window_size __a =mlp_ratio __a =qkv_bias __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =drop_path_rate __a =hidden_act __a =use_absolute_embeddings __a =layer_norm_eps __a =initializer_range __a =upscale __a =img_range __a =resi_connection __a =upsampler
308
1
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency _lowerCAmelCase : Tuple = { "E": 12.70, "T": 9.06, "A": 8.17, "O": 7.51, "I": 6.97, "N": 6.75, "S": 6.33, "H": 6.09, "R": 5.99, "D": 4.25, "L": 4.03, "C": 2.78, "U": 2.76, "M": 2.41, "W": 2.36, "F": 2.23, "G": 2.02, "Y": 1.97, "P": 1.93, "B": 1.29, "V": 0.98, "K": 0.77, "J": 0.15, "X": 0.15, "Q": 0.10, "Z": 0.07, } _lowerCAmelCase : Optional[int] = "ETAOINSHRDLCUMWFGYPBVKJXQZ" _lowerCAmelCase : Any = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a ={letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def UpperCamelCase_( _snake_case : tuple ): """simple docstring""" return x[0] def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =get_letter_count(_snake_case ) __a ={ freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(_snake_case ) __a ={} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=_snake_case ) __a =''.join(freq_to_letter[freq] ) __a =list(freq_to_letter_str.items() ) freq_pairs.sort(key=_snake_case , reverse=_snake_case ) __a =[freq_pair[1] for freq_pair in freq_pairs] return "".join(_snake_case ) def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =get_frequency_order(_snake_case ) __a =0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
308
import os def UpperCamelCase_( _snake_case : str = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(_snake_case ) , _snake_case ) ) as input_file: __a =[ [int(_snake_case ) for element in line.split(',' )] for line in input_file.readlines() ] __a =len(_snake_case ) __a =len(matrix[0] ) __a =[[-1 for _ in range(_snake_case )] for _ in range(_snake_case )] for i in range(_snake_case ): __a =matrix[i][0] for j in range(1 , _snake_case ): for i in range(_snake_case ): __a =minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _snake_case ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
308
1
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class __magic_name__ ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case = 1.0 , __snake_case = None , ) -> Optional[Any]: '''simple docstring''' super().__init__() __a =initial_learning_rate __a =warmup_steps __a =power __a =decay_schedule_fn __a =name def __call__( self , __snake_case ) -> Optional[Any]: '''simple docstring''' with tf.name_scope(self.name or 'WarmUp' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. __a =tf.cast(__snake_case , tf.floataa ) __a =tf.cast(self.warmup_steps , tf.floataa ) __a =global_step_float / warmup_steps_float __a =self.initial_learning_rate * tf.math.pow(__snake_case , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=__snake_case , ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def UpperCamelCase_( _snake_case : float , _snake_case : int , _snake_case : int , _snake_case : float = 0.0 , _snake_case : float = 0.9 , _snake_case : float = 0.999 , _snake_case : float = 1e-8 , _snake_case : Optional[float] = None , _snake_case : Optional[float] = None , _snake_case : float = 0.0 , _snake_case : float = 1.0 , _snake_case : Optional[List[str]] = None , ): """simple docstring""" __a =tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=_snake_case , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=_snake_case , ) if num_warmup_steps: __a =WarmUp( initial_learning_rate=_snake_case , decay_schedule_fn=_snake_case , warmup_steps=_snake_case , ) if weight_decay_rate > 0.0: __a =AdamWeightDecay( learning_rate=_snake_case , weight_decay_rate=_snake_case , beta_a=_snake_case , beta_a=_snake_case , epsilon=_snake_case , clipnorm=_snake_case , global_clipnorm=_snake_case , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=_snake_case , ) else: __a =tf.keras.optimizers.Adam( learning_rate=_snake_case , beta_a=_snake_case , beta_a=_snake_case , epsilon=_snake_case , clipnorm=_snake_case , global_clipnorm=_snake_case , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , __snake_case = 0.001 , __snake_case = 0.9 , __snake_case = 0.999 , __snake_case = 1e-7 , __snake_case = False , __snake_case = 0.0 , __snake_case = None , __snake_case = None , __snake_case = "AdamWeightDecay" , **__snake_case , ) -> List[str]: '''simple docstring''' super().__init__(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , **__snake_case ) __a =weight_decay_rate __a =include_in_weight_decay __a =exclude_from_weight_decay @classmethod def __magic_name__ ( cls , __snake_case ) -> Optional[int]: '''simple docstring''' __a ={'WarmUp': WarmUp} return super(__snake_case , cls ).from_config(__snake_case , custom_objects=__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case ) -> Optional[int]: '''simple docstring''' super(__snake_case , self )._prepare_local(__snake_case , __snake_case , __snake_case ) __a =tf.constant( self.weight_decay_rate , name='adam_weight_decay_rate' ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case ) -> Optional[Any]: '''simple docstring''' __a =self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , ) return tf.no_op() def __magic_name__ ( self , __snake_case , __snake_case=None , **__snake_case ) -> Union[str, Any]: '''simple docstring''' __a , __a =list(zip(*__snake_case ) ) return super(__snake_case , self ).apply_gradients(zip(__snake_case , __snake_case ) , name=__snake_case , **__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case ) -> Any: '''simple docstring''' if apply_state is None: return self._decayed_lr_t[var_dtype], {} __a =apply_state or {} __a =apply_state.get((var_device, var_dtype) ) if coefficients is None: __a =self._fallback_apply_state(__snake_case , __snake_case ) __a =coefficients return coefficients["lr_t"], {"apply_state": apply_state} def __magic_name__ ( self , __snake_case , __snake_case , __snake_case=None ) -> List[str]: '''simple docstring''' __a , __a =self._get_lr(var.device , var.dtype.base_dtype , __snake_case ) __a =self._decay_weights_op(__snake_case , __snake_case , __snake_case ) with tf.control_dependencies([decay] ): return super(__snake_case , self )._resource_apply_dense(__snake_case , __snake_case , **__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case=None ) -> Optional[Any]: '''simple docstring''' __a , __a =self._get_lr(var.device , var.dtype.base_dtype , __snake_case ) __a =self._decay_weights_op(__snake_case , __snake_case , __snake_case ) with tf.control_dependencies([decay] ): return super(__snake_case , self )._resource_apply_sparse(__snake_case , __snake_case , __snake_case , **__snake_case ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =super().get_config() config.update({'weight_decay_rate': self.weight_decay_rate} ) return config def __magic_name__ ( self , __snake_case ) -> str: '''simple docstring''' if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(__snake_case , __snake_case ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(__snake_case , __snake_case ) is not None: return False return True class __magic_name__ ( lowerCAmelCase_ ): def __init__( self ) -> Any: '''simple docstring''' __a =[] __a =None @property def __magic_name__ ( self ) -> Any: '''simple docstring''' if self._accum_steps is None: __a =tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=__snake_case , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' if not self._gradients: raise ValueError('The accumulator should be called first to initialize the gradients' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , __snake_case ) -> Union[str, Any]: '''simple docstring''' if not self._gradients: __a =self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(__snake_case ) , trainable=__snake_case , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(__snake_case ) != len(self._gradients ): raise ValueError(f'Expected {len(self._gradients )} gradients, but got {len(__snake_case )}' ) for accum_gradient, gradient in zip(self._gradients , __snake_case ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(__snake_case ) self._accum_steps.assign_add(1 ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(__snake_case ) )
308
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _lowerCAmelCase : Any = logging.get_logger(__name__) class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , *__snake_case , **__snake_case ) -> None: '''simple docstring''' warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
308
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _lowerCAmelCase : Dict = logging.get_logger(__name__) if is_vision_available(): import PIL class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = ['pixel_values'] def __init__( self , __snake_case = True , __snake_case = None , __snake_case = PILImageResampling.BICUBIC , __snake_case = True , __snake_case = None , __snake_case = True , __snake_case = 1 / 255 , __snake_case = True , __snake_case = None , __snake_case = None , __snake_case = True , **__snake_case , ) -> None: '''simple docstring''' super().__init__(**__snake_case ) __a =size if size is not None else {'shortest_edge': 224} __a =get_size_dict(__snake_case , default_to_square=__snake_case ) __a =crop_size if crop_size is not None else {'height': 224, 'width': 224} __a =get_size_dict(__snake_case , default_to_square=__snake_case , param_name='crop_size' ) __a =do_resize __a =size __a =resample __a =do_center_crop __a =crop_size __a =do_rescale __a =rescale_factor __a =do_normalize __a =image_mean if image_mean is not None else OPENAI_CLIP_MEAN __a =image_std if image_std is not None else OPENAI_CLIP_STD __a =do_convert_rgb def __magic_name__ ( self , __snake_case , __snake_case , __snake_case = PILImageResampling.BICUBIC , __snake_case = None , **__snake_case , ) -> np.ndarray: '''simple docstring''' __a =get_size_dict(__snake_case , default_to_square=__snake_case ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) __a =get_resize_output_image_size(__snake_case , size=size['shortest_edge'] , default_to_square=__snake_case ) return resize(__snake_case , size=__snake_case , resample=__snake_case , data_format=__snake_case , **__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case = None , **__snake_case , ) -> np.ndarray: '''simple docstring''' __a =get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(__snake_case , size=(size['height'], size['width']) , data_format=__snake_case , **__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case = None , **__snake_case , ) -> int: '''simple docstring''' return rescale(__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case = None , **__snake_case , ) -> np.ndarray: '''simple docstring''' return normalize(__snake_case , mean=__snake_case , std=__snake_case , data_format=__snake_case , **__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = ChannelDimension.FIRST , **__snake_case , ) -> PIL.Image.Image: '''simple docstring''' __a =do_resize if do_resize is not None else self.do_resize __a =size if size is not None else self.size __a =get_size_dict(__snake_case , param_name='size' , default_to_square=__snake_case ) __a =resample if resample is not None else self.resample __a =do_center_crop if do_center_crop is not None else self.do_center_crop __a =crop_size if crop_size is not None else self.crop_size __a =get_size_dict(__snake_case , param_name='crop_size' , default_to_square=__snake_case ) __a =do_rescale if do_rescale is not None else self.do_rescale __a =rescale_factor if rescale_factor is not None else self.rescale_factor __a =do_normalize if do_normalize is not None else self.do_normalize __a =image_mean if image_mean is not None else self.image_mean __a =image_std if image_std is not None else self.image_std __a =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __a =make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __a =[convert_to_rgb(__snake_case ) for image in images] # All transformations expect numpy arrays. __a =[to_numpy_array(__snake_case ) for image in images] if do_resize: __a =[self.resize(image=__snake_case , size=__snake_case , resample=__snake_case ) for image in images] if do_center_crop: __a =[self.center_crop(image=__snake_case , size=__snake_case ) for image in images] if do_rescale: __a =[self.rescale(image=__snake_case , scale=__snake_case ) for image in images] if do_normalize: __a =[self.normalize(image=__snake_case , mean=__snake_case , std=__snake_case ) for image in images] __a =[to_channel_dimension_format(__snake_case , __snake_case ) for image in images] __a ={'pixel_values': images} return BatchFeature(data=__snake_case , tensor_type=__snake_case )
308
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : int = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
1
def UpperCamelCase_( _snake_case : float , _snake_case : float ): """simple docstring""" return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(100, 0.25) = }''') print(f'''{price_plus_tax(125.50, 0.05) = }''')
308
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'yolos' def __init__( self , __snake_case=768 , __snake_case=12 , __snake_case=12 , __snake_case=3072 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.02 , __snake_case=1e-12 , __snake_case=[512, 864] , __snake_case=16 , __snake_case=3 , __snake_case=True , __snake_case=100 , __snake_case=True , __snake_case=False , __snake_case=1 , __snake_case=5 , __snake_case=2 , __snake_case=5 , __snake_case=2 , __snake_case=0.1 , **__snake_case , ) -> str: '''simple docstring''' super().__init__(**__snake_case ) __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =intermediate_size __a =hidden_act __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =initializer_range __a =layer_norm_eps __a =image_size __a =patch_size __a =num_channels __a =qkv_bias __a =num_detection_tokens __a =use_mid_position_embeddings __a =auxiliary_loss # Hungarian matcher __a =class_cost __a =bbox_cost __a =giou_cost # Loss coefficients __a =bbox_loss_coefficient __a =giou_loss_coefficient __a =eos_coefficient class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = version.parse('1.11' ) @property def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __magic_name__ ( self ) -> float: '''simple docstring''' return 1e-4 @property def __magic_name__ ( self ) -> int: '''simple docstring''' return 12
308
1
def UpperCamelCase_( _snake_case : list ): """simple docstring""" if not grid or not grid[0]: raise TypeError('The grid does not contain the appropriate information' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] __a =grid[0] for row_n in range(1 , len(_snake_case ) ): __a =grid[row_n] __a =fill_row(_snake_case , _snake_case ) __a =grid[row_n] return grid[-1][-1] def UpperCamelCase_( _snake_case : list , _snake_case : list ): """simple docstring""" current_row[0] += row_above[0] for cell_n in range(1 , len(_snake_case ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
308
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def UpperCamelCase_( _snake_case : Optional[Any] ): """simple docstring""" __a =model.config __a =DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) __a =MBartConfig( is_decoder=_snake_case , is_encoder_decoder=_snake_case , add_cross_attention=_snake_case , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=_snake_case , add_final_layer_norm=_snake_case , ) return encoder_config, decoder_config def UpperCamelCase_( _snake_case : Tuple ): """simple docstring""" if "encoder.model" in name: __a =name.replace('encoder.model' , 'encoder' ) if "decoder.model" in name: __a =name.replace('decoder.model' , 'decoder' ) if "patch_embed.proj" in name: __a =name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __a =name.replace('patch_embed.norm' , 'embeddings.norm' ) if name.startswith('encoder' ): if "layers" in name: __a ='encoder.' + name if "attn.proj" in name: __a =name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "mask" not in name: __a =name.replace('attn' , 'attention.self' ) if "norm1" in name: __a =name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __a =name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __a =name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __a =name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": __a ='encoder.layernorm.weight' if name == "encoder.norm.bias": __a ='encoder.layernorm.bias' return name def UpperCamelCase_( _snake_case : Tuple , _snake_case : str ): """simple docstring""" for key in orig_state_dict.copy().keys(): __a =orig_state_dict.pop(_snake_case ) if "qkv" in key: __a =key.split('.' ) __a =int(key_split[3] ) __a =int(key_split[5] ) __a =model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __a =val[:dim, :] __a =val[dim : dim * 2, :] __a =val[-dim:, :] else: __a =val[:dim] __a =val[dim : dim * 2] __a =val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: __a =val return orig_state_dict def UpperCamelCase_( _snake_case : Tuple , _snake_case : Union[str, Any]=None , _snake_case : List[Any]=False ): """simple docstring""" __a =DonutModel.from_pretrained(_snake_case ).eval() # load HuggingFace model __a , __a =get_configs(_snake_case ) __a =DonutSwinModel(_snake_case ) __a =MBartForCausalLM(_snake_case ) __a =VisionEncoderDecoderModel(encoder=_snake_case , decoder=_snake_case ) model.eval() __a =original_model.state_dict() __a =convert_state_dict(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) # verify results on scanned document __a =load_dataset('hf-internal-testing/example-documents' ) __a =dataset['test'][0]['image'].convert('RGB' ) __a =XLMRobertaTokenizerFast.from_pretrained(_snake_case , from_slow=_snake_case ) __a =DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) __a =DonutProcessor(_snake_case , _snake_case ) __a =processor(_snake_case , return_tensors='pt' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": __a ='<s_docvqa><s_question>{user_input}</s_question><s_answer>' __a ='When is the coffee break?' __a =task_prompt.replace('{user_input}' , _snake_case ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": __a ='<s_rvlcdip>' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: __a ='<s_cord>' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": __a ='s_cord-v2>' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": __a ='<s_zhtrainticket>' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt __a ='hello world' else: raise ValueError('Model name not supported' ) __a =original_model.decoder.tokenizer(_snake_case , add_special_tokens=_snake_case , return_tensors='pt' )[ 'input_ids' ] __a =original_model.encoder.model.patch_embed(_snake_case ) __a , __a =model.encoder.embeddings(_snake_case ) assert torch.allclose(_snake_case , _snake_case , atol=1e-3 ) # verify encoder hidden states __a =original_model.encoder(_snake_case ) __a =model.encoder(_snake_case ).last_hidden_state assert torch.allclose(_snake_case , _snake_case , atol=1e-2 ) # verify decoder hidden states __a =original_model(_snake_case , _snake_case , _snake_case ).logits __a =model(_snake_case , decoder_input_ids=_snake_case ).logits assert torch.allclose(_snake_case , _snake_case , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(_snake_case ) processor.save_pretrained(_snake_case ) if push_to_hub: model.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) processor.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) _lowerCAmelCase : List[Any] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
308
1
import math def UpperCamelCase_( _snake_case : float , _snake_case : float ): """simple docstring""" if initial_intensity < 0: raise ValueError('The value of intensity cannot be negative' ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError('In Malus Law, the angle is in the range 0-360 degrees' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(_snake_case ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="malus_law")
308
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer SCREAMING_SNAKE_CASE = False def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' super().setUp() __a =['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] __a =dict(zip(__snake_case , range(len(__snake_case ) ) ) ) __a =['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] __a ={'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__snake_case ) ) def __magic_name__ ( self , **__snake_case ) -> Any: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def __magic_name__ ( self , __snake_case ) -> List[Any]: '''simple docstring''' __a ='adapt act apte' __a ='adapt act apte' return input_text, output_text def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __a ='adapt act apte' __a =['adapt', 'act', 'ap@@', 'te'] __a =tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) __a =[tokenizer.bos_token] + tokens + [tokenizer.eos_token] __a =[0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1384] __a ='I am a small frog.' __a =tok([src_text] , padding=__snake_case , truncation=__snake_case )['input_ids'] __a =tok.batch_decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) __a ='I am a small frog .' __a ='.' __a =tok(__snake_case )['input_ids'] __a =tok(__snake_case )['input_ids'] assert encoded[-1] == encoded_dot[0]
308
1
import itertools import string from collections.abc import Generator, Iterable def UpperCamelCase_( _snake_case : Iterable[str] , _snake_case : int ): """simple docstring""" __a =iter(_snake_case ) while True: __a =tuple(itertools.islice(_snake_case , _snake_case ) ) if not chunk: return yield chunk def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =''.join([c.upper() for c in dirty if c in string.ascii_letters] ) __a ='' if len(_snake_case ) < 2: return dirty for i in range(len(_snake_case ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(_snake_case ) & 1: clean += "X" return clean def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a ='ABCDEFGHIKLMNOPQRSTUVWXYZ' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler __a =[] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(_snake_case ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(_snake_case ) return table def UpperCamelCase_( _snake_case : str , _snake_case : str ): """simple docstring""" __a =generate_table(_snake_case ) __a =prepare_input(_snake_case ) __a ='' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_snake_case , 2 ): __a , __a =divmod(table.index(_snake_case ) , 5 ) __a , __a =divmod(table.index(_snake_case ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def UpperCamelCase_( _snake_case : str , _snake_case : str ): """simple docstring""" __a =generate_table(_snake_case ) __a ='' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_snake_case , 2 ): __a , __a =divmod(table.index(_snake_case ) , 5 ) __a , __a =divmod(table.index(_snake_case ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
308
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __magic_name__ ( unittest.TestCase , lowerCAmelCase_ ): def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =load_tool('text-to-speech' ) self.tool.setup() def __magic_name__ ( self ) -> Dict: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) __a =self.tool('hey' ) __a =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) __a =self.tool('hey' ) __a =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) )
308
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) def UpperCamelCase_( _snake_case : List[str] ): """simple docstring""" if isinstance(_snake_case , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(_snake_case , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(_snake_case ): return [[videos]] raise ValueError(F'Could not make batched video from {videos}' ) class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = ['pixel_values'] def __init__( self , __snake_case = True , __snake_case = None , __snake_case = PILImageResampling.BILINEAR , __snake_case = True , __snake_case = None , __snake_case = True , __snake_case = 1 / 255 , __snake_case = True , __snake_case = None , __snake_case = None , **__snake_case , ) -> None: '''simple docstring''' super().__init__(**__snake_case ) __a =size if size is not None else {'shortest_edge': 224} __a =get_size_dict(__snake_case , default_to_square=__snake_case ) __a =crop_size if crop_size is not None else {'height': 224, 'width': 224} __a =get_size_dict(__snake_case , param_name='crop_size' ) __a =do_resize __a =size __a =do_center_crop __a =crop_size __a =resample __a =do_rescale __a =rescale_factor __a =do_normalize __a =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __a =image_std if image_std is not None else IMAGENET_STANDARD_STD def __magic_name__ ( self , __snake_case , __snake_case , __snake_case = PILImageResampling.BILINEAR , __snake_case = None , **__snake_case , ) -> np.ndarray: '''simple docstring''' __a =get_size_dict(__snake_case , default_to_square=__snake_case ) if "shortest_edge" in size: __a =get_resize_output_image_size(__snake_case , size['shortest_edge'] , default_to_square=__snake_case ) elif "height" in size and "width" in size: __a =(size['height'], size['width']) else: raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(__snake_case , size=__snake_case , resample=__snake_case , data_format=__snake_case , **__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case = None , **__snake_case , ) -> np.ndarray: '''simple docstring''' __a =get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(__snake_case , size=(size['height'], size['width']) , data_format=__snake_case , **__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case = None , **__snake_case , ) -> str: '''simple docstring''' return rescale(__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case = None , **__snake_case , ) -> np.ndarray: '''simple docstring''' return normalize(__snake_case , mean=__snake_case , std=__snake_case , data_format=__snake_case , **__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __a =to_numpy_array(__snake_case ) if do_resize: __a =self.resize(image=__snake_case , size=__snake_case , resample=__snake_case ) if do_center_crop: __a =self.center_crop(__snake_case , size=__snake_case ) if do_rescale: __a =self.rescale(image=__snake_case , scale=__snake_case ) if do_normalize: __a =self.normalize(image=__snake_case , mean=__snake_case , std=__snake_case ) __a =to_channel_dimension_format(__snake_case , __snake_case ) return image def __magic_name__ ( self , __snake_case , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = ChannelDimension.FIRST , **__snake_case , ) -> PIL.Image.Image: '''simple docstring''' __a =do_resize if do_resize is not None else self.do_resize __a =resample if resample is not None else self.resample __a =do_center_crop if do_center_crop is not None else self.do_center_crop __a =do_rescale if do_rescale is not None else self.do_rescale __a =rescale_factor if rescale_factor is not None else self.rescale_factor __a =do_normalize if do_normalize is not None else self.do_normalize __a =image_mean if image_mean is not None else self.image_mean __a =image_std if image_std is not None else self.image_std __a =size if size is not None else self.size __a =get_size_dict(__snake_case , default_to_square=__snake_case ) __a =crop_size if crop_size is not None else self.crop_size __a =get_size_dict(__snake_case , param_name='crop_size' ) if not valid_images(__snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) __a =make_batched(__snake_case ) __a =[ [ self._preprocess_image( image=__snake_case , do_resize=__snake_case , size=__snake_case , resample=__snake_case , do_center_crop=__snake_case , crop_size=__snake_case , do_rescale=__snake_case , rescale_factor=__snake_case , do_normalize=__snake_case , image_mean=__snake_case , image_std=__snake_case , data_format=__snake_case , ) for img in video ] for video in videos ] __a ={'pixel_values': videos} return BatchFeature(data=__snake_case , tensor_type=__snake_case )
308
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> int: '''simple docstring''' __a =[] __a =[] for i in range(self.num_layers ): __a =self.in_channels if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =resnets __a =attentions if self.add_downsample: __a =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> Optional[Any]: '''simple docstring''' __a =() for resnet, attn in zip(self.resnets , self.attentions ): __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __a =self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> int: '''simple docstring''' __a =[] for i in range(self.num_layers ): __a =self.in_channels if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets if self.add_downsample: __a =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case=True ) -> Optional[int]: '''simple docstring''' __a =() for resnet in self.resnets: __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __a =self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =[] __a =[] for i in range(self.num_layers ): __a =self.in_channels if (i == self.num_layers - 1) else self.out_channels __a =self.prev_output_channel if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =resnets __a =attentions if self.add_upsample: __a =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[Any]: '''simple docstring''' for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states __a =res_hidden_states_tuple[-1] __a =res_hidden_states_tuple[:-1] __a =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __a =self.upsamplers_a(__snake_case ) return hidden_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =[] for i in range(self.num_layers ): __a =self.in_channels if (i == self.num_layers - 1) else self.out_channels __a =self.prev_output_channel if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets if self.add_upsample: __a =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[Any]: '''simple docstring''' for resnet in self.resnets: # pop res hidden states __a =res_hidden_states_tuple[-1] __a =res_hidden_states_tuple[:-1] __a =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __a =self.upsamplers_a(__snake_case ) return hidden_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # there is always at least one resnet __a =[ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] __a =[] for _ in range(self.num_layers ): __a =FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets __a =attentions def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[str]: '''simple docstring''' __a =self.resnets[0](__snake_case , __snake_case ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) return hidden_states
308
1
def UpperCamelCase_( _snake_case : list[list[int]] , _snake_case : int , _snake_case : int , _snake_case : list[int] ): """simple docstring""" if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def UpperCamelCase_( _snake_case : list[list[int]] , _snake_case : list[int] , _snake_case : int ): """simple docstring""" if curr_ind == len(_snake_case ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(_snake_case ) ): if valid_connection(_snake_case , _snake_case , _snake_case , _snake_case ): # Insert current vertex into path as next transition __a =next_ver # Validate created path if util_hamilton_cycle(_snake_case , _snake_case , curr_ind + 1 ): return True # Backtrack __a =-1 return False def UpperCamelCase_( _snake_case : list[list[int]] , _snake_case : int = 0 ): """simple docstring""" __a =[-1] * (len(_snake_case ) + 1) # initialize start and end of path with starting index __a =__a =start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(_snake_case , _snake_case , 1 ) else []
308
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_5_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self ) -> int: '''simple docstring''' if self.framework == "pytorch": subprocess.run( f'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding='utf-8' , check=__snake_case , ) assert hasattr(self , 'env' ) def __magic_name__ ( self , __snake_case ) -> int: '''simple docstring''' __a =f'{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}' # distributed data settings __a ={'smdistributed': {'dataparallel': {'enabled': True}}} if self.script != 'run_ddp.py' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__snake_case , instance_count=__snake_case , instance_type=self.instance_type , debugger_hook_config=__snake_case , hyperparameters={**self.env.distributed_hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__snake_case , py_version='py36' , ) def __magic_name__ ( self , __snake_case ) -> Optional[Any]: '''simple docstring''' TrainingJobAnalytics(__snake_case ).export_csv(f'{self.env.test_path}/{job_name}_metrics.csv' ) @parameterized.expand([(2,)] ) def __magic_name__ ( self , __snake_case ) -> Optional[int]: '''simple docstring''' # create estimator __a =self.create_estimator(__snake_case ) # run training estimator.fit() # result dataframe __a =TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __a =list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) __a =list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __a =( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'{estimator.latest_training_job.name}.json' , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , __snake_case )
308
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def UpperCamelCase_( _snake_case : Optional[int] , _snake_case : int=False ): """simple docstring""" __a =[] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'module.blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'module.blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (F'module.blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'module.blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'module.blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'module.blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'module.blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'module.blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'module.blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'module.blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __a =[(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def UpperCamelCase_( _snake_case : Any , _snake_case : List[Any] , _snake_case : List[str]=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: __a ='' else: __a ='vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __a =state_dict.pop(F'module.blocks.{i}.attn.qkv.weight' ) __a =state_dict.pop(F'module.blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __a =in_proj_weight[ : config.hidden_size, : ] __a =in_proj_bias[: config.hidden_size] __a =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __a =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __a =in_proj_weight[ -config.hidden_size :, : ] __a =in_proj_bias[-config.hidden_size :] def UpperCamelCase_( _snake_case : Optional[Any] ): """simple docstring""" __a =['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) def UpperCamelCase_( _snake_case : List[Any] ): """simple docstring""" __a =[ 'module.fc.fc1.weight', 'module.fc.fc1.bias', 'module.fc.bn1.weight', 'module.fc.bn1.bias', 'module.fc.bn1.running_mean', 'module.fc.bn1.running_var', 'module.fc.bn1.num_batches_tracked', 'module.fc.fc2.weight', 'module.fc.fc2.bias', 'module.fc.bn2.weight', 'module.fc.bn2.bias', 'module.fc.bn2.running_mean', 'module.fc.bn2.running_var', 'module.fc.bn2.num_batches_tracked', 'module.fc.fc3.weight', 'module.fc.fc3.bias', ] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) def UpperCamelCase_( _snake_case : Optional[Any] , _snake_case : Union[str, Any] , _snake_case : Optional[int] ): """simple docstring""" __a =dct.pop(_snake_case ) __a =val def UpperCamelCase_( _snake_case : Optional[Any] , _snake_case : Tuple ): """simple docstring""" __a =ViTMSNConfig() __a =1000 __a ='datasets/huggingface/label-files' __a ='imagenet-1k-id2label.json' __a =json.load(open(hf_hub_download(_snake_case , _snake_case ) , 'r' ) ) __a ={int(_snake_case ): v for k, v in idalabel.items()} __a =idalabel __a ={v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: __a =384 __a =1536 __a =6 elif "l16" in checkpoint_url: __a =1024 __a =4096 __a =24 __a =16 __a =0.1 elif "b4" in checkpoint_url: __a =4 elif "l7" in checkpoint_url: __a =7 __a =1024 __a =4096 __a =24 __a =16 __a =0.1 __a =ViTMSNModel(_snake_case ) __a =torch.hub.load_state_dict_from_url(_snake_case , map_location='cpu' )['target_encoder'] __a =ViTImageProcessor(size=config.image_size ) remove_projection_head(_snake_case ) __a =create_rename_keys(_snake_case , base_model=_snake_case ) for src, dest in rename_keys: rename_key(_snake_case , _snake_case , _snake_case ) read_in_q_k_v(_snake_case , _snake_case , base_model=_snake_case ) model.load_state_dict(_snake_case ) model.eval() __a ='http://images.cocodataset.org/val2017/000000039769.jpg' __a =Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) __a =ViTImageProcessor( size=config.image_size , image_mean=_snake_case , image_std=_snake_case ) __a =image_processor(images=_snake_case , return_tensors='pt' ) # forward pass torch.manual_seed(2 ) __a =model(**_snake_case ) __a =outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: __a =torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: __a =torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: __a =torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: __a =torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: __a =torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , _snake_case , atol=1e-4 ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_snake_case ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_snake_case ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _lowerCAmelCase : Tuple = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
308
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _lowerCAmelCase : List[Any] = logging.getLogger(__name__) _lowerCAmelCase : Optional[Any] = "Hello world! cécé herlolip" _lowerCAmelCase : str = namedtuple( "BertAbsConfig", [ "temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout", ], ) def UpperCamelCase_( _snake_case : str , _snake_case : List[Any] ): """simple docstring""" __a =BertAbsConfig( temp_dir='.' , finetune_bert=_snake_case , large=_snake_case , share_emb=_snake_case , use_bert_emb=_snake_case , encoder='bert' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) __a =torch.load(_snake_case , lambda _snake_case , _snake_case : storage ) __a =AbsSummarizer(_snake_case , torch.device('cpu' ) , _snake_case ) original.eval() __a =BertAbsSummarizer(_snake_case , torch.device('cpu' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('convert the model' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('Make sure that the models\' outputs are identical' ) __a =BertTokenizer.from_pretrained('bert-base-uncased' ) # prepare the model inputs __a =tokenizer.encode('This is sample éàalj\'-.' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_snake_case )) ) __a =torch.tensor(_snake_case ).unsqueeze(0 ) __a =tokenizer.encode('This is sample 3 éàalj\'-.' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_snake_case )) ) __a =torch.tensor(_snake_case ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __a =encoder_input_ids __a =decoder_input_ids __a =__a =None __a =None __a =__a =None __a =__a =None __a =None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __a =original(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )[0] __a =original.generator(_snake_case ) __a =new_model( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )[0] __a =new_model.generator(_snake_case ) __a =torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_snake_case ) ) __a =torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_snake_case ) ) __a =torch.allclose(_snake_case , _snake_case , atol=1e-3 ) if are_identical: logging.info('all weights are equal up to 1e-3' ) else: raise ValueError('the weights are different. The new model is likely different from the original one.' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('saving the model\'s state dictionary' ) torch.save( new_model.state_dict() , './bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--bertabs_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model.", ) _lowerCAmelCase : Optional[Any] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
308
1
import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline _lowerCAmelCase : List[str] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def UpperCamelCase_( _snake_case : Optional[int] , _snake_case : tuple , _snake_case : Path , _snake_case : Any , _snake_case : Any , _snake_case : Union[str, Any] , _snake_case : Union[str, Any] , _snake_case : int=False , ): """simple docstring""" output_path.parent.mkdir(parents=_snake_case , exist_ok=_snake_case ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( _snake_case , _snake_case , f=output_path.as_posix() , input_names=_snake_case , output_names=_snake_case , dynamic_axes=_snake_case , do_constant_folding=_snake_case , use_external_data_format=_snake_case , enable_onnx_checker=_snake_case , opset_version=_snake_case , ) else: export( _snake_case , _snake_case , f=output_path.as_posix() , input_names=_snake_case , output_names=_snake_case , dynamic_axes=_snake_case , do_constant_folding=_snake_case , opset_version=_snake_case , ) @torch.no_grad() def UpperCamelCase_( _snake_case : str , _snake_case : str , _snake_case : int , _snake_case : bool = False ): """simple docstring""" __a =torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __a ='cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: __a ='cpu' __a =StableDiffusionPipeline.from_pretrained(_snake_case , torch_dtype=_snake_case ).to(_snake_case ) __a =Path(_snake_case ) # TEXT ENCODER __a =pipeline.text_encoder.config.max_position_embeddings __a =pipeline.text_encoder.config.hidden_size __a =pipeline.tokenizer( 'A sample prompt' , padding='max_length' , max_length=pipeline.tokenizer.model_max_length , truncation=_snake_case , return_tensors='pt' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=_snake_case , dtype=torch.intaa )) , output_path=output_path / 'text_encoder' / 'model.onnx' , ordered_input_names=['input_ids'] , output_names=['last_hidden_state', 'pooler_output'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'sequence'}, } , opset=_snake_case , ) del pipeline.text_encoder # UNET __a =pipeline.unet.config.in_channels __a =pipeline.unet.config.sample_size __a =output_path / 'unet' / 'model.onnx' onnx_export( pipeline.unet , model_args=( torch.randn(2 , _snake_case , _snake_case , _snake_case ).to(device=_snake_case , dtype=_snake_case ), torch.randn(2 ).to(device=_snake_case , dtype=_snake_case ), torch.randn(2 , _snake_case , _snake_case ).to(device=_snake_case , dtype=_snake_case ), False, ) , output_path=_snake_case , ordered_input_names=['sample', 'timestep', 'encoder_hidden_states', 'return_dict'] , output_names=['out_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'timestep': {0: 'batch'}, 'encoder_hidden_states': {0: 'batch', 1: 'sequence'}, } , opset=_snake_case , use_external_data_format=_snake_case , ) __a =str(unet_path.absolute().as_posix() ) __a =os.path.dirname(_snake_case ) __a =onnx.load(_snake_case ) # clean up existing tensor files shutil.rmtree(_snake_case ) os.mkdir(_snake_case ) # collate external tensor files into one onnx.save_model( _snake_case , _snake_case , save_as_external_data=_snake_case , all_tensors_to_one_file=_snake_case , location='weights.pb' , convert_attribute=_snake_case , ) del pipeline.unet # VAE ENCODER __a =pipeline.vae __a =vae_encoder.config.in_channels __a =vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder __a =lambda _snake_case , _snake_case : vae_encoder.encode(_snake_case , _snake_case )[0].sample() onnx_export( _snake_case , model_args=( torch.randn(1 , _snake_case , _snake_case , _snake_case ).to(device=_snake_case , dtype=_snake_case ), False, ) , output_path=output_path / 'vae_encoder' / 'model.onnx' , ordered_input_names=['sample', 'return_dict'] , output_names=['latent_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=_snake_case , ) # VAE DECODER __a =pipeline.vae __a =vae_decoder.config.latent_channels __a =vae_decoder.config.out_channels # forward only through the decoder part __a =vae_encoder.decode onnx_export( _snake_case , model_args=( torch.randn(1 , _snake_case , _snake_case , _snake_case ).to(device=_snake_case , dtype=_snake_case ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=_snake_case , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: __a =pipeline.safety_checker __a =safety_checker.config.vision_config.num_channels __a =safety_checker.config.vision_config.image_size __a =safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , _snake_case , _snake_case , _snake_case , ).to(device=_snake_case , dtype=_snake_case ), torch.randn(1 , _snake_case , _snake_case , _snake_case ).to(device=_snake_case , dtype=_snake_case ), ) , output_path=output_path / 'safety_checker' / 'model.onnx' , ordered_input_names=['clip_input', 'images'] , output_names=['out_images', 'has_nsfw_concepts'] , dynamic_axes={ 'clip_input': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'images': {0: 'batch', 1: 'height', 2: 'width', 3: 'channels'}, } , opset=_snake_case , ) del pipeline.safety_checker __a =OnnxRuntimeModel.from_pretrained(output_path / 'safety_checker' ) __a =pipeline.feature_extractor else: __a =None __a =None __a =OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_encoder' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_decoder' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'text_encoder' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / 'unet' ) , scheduler=pipeline.scheduler , safety_checker=_snake_case , feature_extractor=_snake_case , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(_snake_case ) print('ONNX pipeline saved to' , _snake_case ) del pipeline del onnx_pipeline __a =OnnxStableDiffusionPipeline.from_pretrained(_snake_case , provider='CPUExecutionProvider' ) print('ONNX pipeline is loadable' ) if __name__ == "__main__": _lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") _lowerCAmelCase : List[str] = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
308
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ : def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=False , __snake_case=False , __snake_case=False , __snake_case=2 , __snake_case=99 , __snake_case=0 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=0.1 , __snake_case=0.1 , __snake_case=512 , __snake_case=2 , __snake_case=0.02 , __snake_case=2 , __snake_case=4 , __snake_case="last" , __snake_case=True , __snake_case=None , __snake_case=0 , ) -> Optional[Any]: '''simple docstring''' __a =parent __a =batch_size __a =seq_length __a =is_training __a =use_input_lengths __a =use_token_type_ids __a =use_labels __a =gelu_activation __a =sinusoidal_embeddings __a =causal __a =asm __a =n_langs __a =vocab_size __a =n_special __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =max_position_embeddings __a =type_sequence_label_size __a =initializer_range __a =num_labels __a =num_choices __a =summary_type __a =use_proj __a =scope __a =bos_token_id def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a =random_attention_mask([self.batch_size, self.seq_length] ) __a =None if self.use_input_lengths: __a =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __a =None if self.use_token_type_ids: __a =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __a =None __a =None __a =None if self.use_labels: __a =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a =ids_tensor([self.batch_size] , 2 ).float() __a =ids_tensor([self.batch_size] , self.num_choices ) __a =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __magic_name__ ( self ) -> Any: '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> List[Any]: '''simple docstring''' __a =XLMModel(config=__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , lengths=__snake_case , langs=__snake_case ) __a =model(__snake_case , langs=__snake_case ) __a =model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Optional[int]: '''simple docstring''' __a =XLMWithLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Dict: '''simple docstring''' __a =XLMForQuestionAnsweringSimple(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) __a =outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> List[Any]: '''simple docstring''' __a =XLMForQuestionAnswering(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , p_mask=__snake_case , ) __a =model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , ) ((__a) , ) =result_with_labels.to_tuple() __a =model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) ((__a) , ) =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Optional[Any]: '''simple docstring''' __a =XLMForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Any: '''simple docstring''' __a =self.num_labels __a =XLMForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Tuple: '''simple docstring''' __a =self.num_choices __a =XLMForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() __a =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) =config_and_inputs __a ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable SCREAMING_SNAKE_CASE = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> int: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __magic_name__ ( self , __snake_case , __snake_case , __snake_case=False ) -> str: '''simple docstring''' __a =super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __a =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) __a =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =XLMModelTester(self ) __a =ConfigTester(self , config_class=__snake_case , emb_dim=37 ) def __magic_name__ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=False , __snake_case=1 ) -> Optional[Any]: '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_attentions in attentions] , [True] * len(__snake_case ) ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__snake_case ): # adds PAD dummy token __a =min_length + idx + 1 __a =min_length + idx + 1 __a =( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__snake_case ) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=False , __snake_case=1 ) -> Dict: '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_hidden_states in hidden_states] , [True] * len(__snake_case ) , ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__snake_case ): # adds PAD dummy token __a =min_length + idx + 1 __a =(batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__snake_case ) , ) pass @slow def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a =XLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class __magic_name__ ( unittest.TestCase ): @slow def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(__snake_case ) __a =torch.tensor([[14, 447]] , dtype=torch.long , device=__snake_case ) # the president __a =[ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __a =model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __snake_case )
308
1
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) _lowerCAmelCase : Dict = "\\n Text data.\n Second line of data." _lowerCAmelCase : Any = "file" @pytest.fixture(scope='session' ) def UpperCamelCase_( _snake_case : List[Any] ): """simple docstring""" __a =tmp_path_factory.mktemp('data' ) / (FILE_PATH + '.zstd') __a =bytes(_snake_case , 'utf-8' ) with zstd.open(_snake_case , 'wb' ) as f: f.write(_snake_case ) return path @pytest.fixture def UpperCamelCase_( _snake_case : Union[str, Any] ): """simple docstring""" with open(os.path.join(tmpfs.local_root_dir , _snake_case ) , 'w' ) as f: f.write(_snake_case ) return FILE_PATH @pytest.mark.parametrize('compression_format' , ['gzip', 'xz', 'zstd'] ) def UpperCamelCase_( _snake_case : List[Any] , _snake_case : List[str] , _snake_case : List[str] , _snake_case : Union[str, Any] , _snake_case : List[str] , _snake_case : str ): """simple docstring""" __a ={'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_path} __a =input_paths[compression_format] __a =tmp_path / 'cache' __a =DownloadConfig(cache_dir=_snake_case , extract_compressed_file=_snake_case ) __a =cached_path(_snake_case , download_config=_snake_case ) with open(_snake_case ) as f: __a =f.read() with open(_snake_case ) as f: __a =f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('default_extracted' , [True, False] ) @pytest.mark.parametrize('default_cache_dir' , [True, False] ) def UpperCamelCase_( _snake_case : List[str] , _snake_case : str , _snake_case : Dict , _snake_case : Any , _snake_case : Tuple ): """simple docstring""" __a ='custom_cache' __a ='custom_extracted_dir' __a =tmp_path / 'custom_extracted_path' if default_extracted: __a =('downloads' if default_cache_dir else custom_cache_dir, 'extracted') else: monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_DIR' , _snake_case ) monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(_snake_case ) ) __a =custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) __a =xz_file __a =( DownloadConfig(extract_compressed_file=_snake_case ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_snake_case ) ) __a =cached_path(_snake_case , download_config=_snake_case ) assert Path(_snake_case ).parent.parts[-2:] == expected def UpperCamelCase_( _snake_case : int ): """simple docstring""" __a =str(Path(_snake_case ).resolve() ) assert cached_path(_snake_case ) == text_file # relative path __a =str(Path(_snake_case ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(_snake_case ) == text_file def UpperCamelCase_( _snake_case : Tuple ): """simple docstring""" __a =str(tmp_path.resolve() / '__missing_file__.txt' ) with pytest.raises(_snake_case ): cached_path(_snake_case ) # relative path __a ='./__missing_file__.txt' with pytest.raises(_snake_case ): cached_path(_snake_case ) def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =get_from_cache(F'tmp://{tmpfs_file}' ) with open(_snake_case ) as f: __a =f.read() assert output_file_content == FILE_CONTENT @patch('datasets.config.HF_DATASETS_OFFLINE' , _snake_case ) def UpperCamelCase_( ): """simple docstring""" with pytest.raises(_snake_case ): cached_path('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , _snake_case ) def UpperCamelCase_( _snake_case : Dict ): """simple docstring""" __a =tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(_snake_case ): http_get('https://huggingface.co' , temp_file=_snake_case ) with pytest.raises(_snake_case ): http_head('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , _snake_case ) def UpperCamelCase_( _snake_case : Tuple ): """simple docstring""" __a =tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(_snake_case ): ftp_get('ftp://huggingface.co' , temp_file=_snake_case ) with pytest.raises(_snake_case ): ftp_head('ftp://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , _snake_case ) def UpperCamelCase_( _snake_case : List[str] ): """simple docstring""" __a =tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(_snake_case ): fsspec_get('s3://huggingface.co' , temp_file=_snake_case ) with pytest.raises(_snake_case ): fsspec_head('s3://huggingface.co' )
308
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake _lowerCAmelCase : Optional[Any] = numpy.array([0, 0]) _lowerCAmelCase : Dict = numpy.array([0.5, 0.8660254]) _lowerCAmelCase : Any = numpy.array([1, 0]) _lowerCAmelCase : int = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCamelCase_( _snake_case : list[numpy.ndarray] , _snake_case : int ): """simple docstring""" __a =initial_vectors for _ in range(_snake_case ): __a =iteration_step(_snake_case ) return vectors def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =[] for i, start_vector in enumerate(vectors[:-1] ): __a =vectors[i + 1] new_vectors.append(_snake_case ) __a =end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCamelCase_( _snake_case : numpy.ndarray , _snake_case : float ): """simple docstring""" __a =numpy.radians(_snake_case ) __a , __a =numpy.cos(_snake_case ), numpy.sin(_snake_case ) __a =numpy.array(((c, -s), (s, c)) ) return numpy.dot(_snake_case , _snake_case ) def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() __a , __a =zip(*_snake_case ) plt.plot(_snake_case , _snake_case ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : List[Any] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
308
1
class __magic_name__ : def __init__( self , __snake_case ) -> Optional[Any]: '''simple docstring''' __a =n __a =[None] * self.n __a =0 # index of the first element __a =0 __a =0 def __len__( self ) -> int: '''simple docstring''' return self.size def __magic_name__ ( self ) -> bool: '''simple docstring''' return self.size == 0 def __magic_name__ ( self ) -> Any: '''simple docstring''' return False if self.is_empty() else self.array[self.front] def __magic_name__ ( self , __snake_case ) -> int: '''simple docstring''' if self.size >= self.n: raise Exception('QUEUE IS FULL' ) __a =data __a =(self.rear + 1) % self.n self.size += 1 return self def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' if self.size == 0: raise Exception('UNDERFLOW' ) __a =self.array[self.front] __a =None __a =(self.front + 1) % self.n self.size -= 1 return temp
308
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Tuple = { "configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MegatronBertForCausalLM", "MegatronBertForMaskedLM", "MegatronBertForMultipleChoice", "MegatronBertForNextSentencePrediction", "MegatronBertForPreTraining", "MegatronBertForQuestionAnswering", "MegatronBertForSequenceClassification", "MegatronBertForTokenClassification", "MegatronBertModel", "MegatronBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys _lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
1
from __future__ import annotations import requests def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =F'https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty' return requests.get(_snake_case ).json() def UpperCamelCase_( _snake_case : int = 10 ): """simple docstring""" __a ='https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' __a =requests.get(_snake_case ).json()[:max_stories] return [get_hackernews_story(_snake_case ) for story_id in story_ids] def UpperCamelCase_( _snake_case : int = 10 ): """simple docstring""" __a =hackernews_top_stories(_snake_case ) return "\n".join('* [{title}]({url})'.format(**_snake_case ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
308
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __magic_name__ : @staticmethod def __magic_name__ ( *__snake_case , **__snake_case ) -> List[str]: '''simple docstring''' pass def UpperCamelCase_( _snake_case : Image ): """simple docstring""" __a =hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __magic_name__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def __magic_name__ ( self , __snake_case , __snake_case , __snake_case ) -> Dict: '''simple docstring''' __a =DepthEstimationPipeline(model=__snake_case , image_processor=__snake_case ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __magic_name__ ( self , __snake_case , __snake_case ) -> Tuple: '''simple docstring''' __a =depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , __snake_case ) import datasets __a =datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) __a =depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , __snake_case , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' pass @slow @require_torch def __magic_name__ ( self ) -> int: '''simple docstring''' __a ='Intel/dpt-large' __a =pipeline('depth-estimation' , model=__snake_case ) __a =depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) __a =hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.662 ) @require_torch def __magic_name__ ( self ) -> Any: '''simple docstring''' # This is highly irregular to have no small tests. self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
308
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'yolos' def __init__( self , __snake_case=768 , __snake_case=12 , __snake_case=12 , __snake_case=3072 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.02 , __snake_case=1e-12 , __snake_case=[512, 864] , __snake_case=16 , __snake_case=3 , __snake_case=True , __snake_case=100 , __snake_case=True , __snake_case=False , __snake_case=1 , __snake_case=5 , __snake_case=2 , __snake_case=5 , __snake_case=2 , __snake_case=0.1 , **__snake_case , ) -> str: '''simple docstring''' super().__init__(**__snake_case ) __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =intermediate_size __a =hidden_act __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =initializer_range __a =layer_norm_eps __a =image_size __a =patch_size __a =num_channels __a =qkv_bias __a =num_detection_tokens __a =use_mid_position_embeddings __a =auxiliary_loss # Hungarian matcher __a =class_cost __a =bbox_cost __a =giou_cost # Loss coefficients __a =bbox_loss_coefficient __a =giou_loss_coefficient __a =eos_coefficient class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = version.parse('1.11' ) @property def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __magic_name__ ( self ) -> float: '''simple docstring''' return 1e-4 @property def __magic_name__ ( self ) -> int: '''simple docstring''' return 12
308
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _lowerCAmelCase : Optional[int] = logging.getLogger(__name__) _lowerCAmelCase : Any = "pytorch_model.bin" @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co.'} , ) @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field(metadata={'help': 'A csv or a json file containing the training data.'} ) SCREAMING_SNAKE_CASE = dataclasses.field(metadata={'help': 'A csv or a json file containing the data to predict on.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the validation data.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'The name of the task to train on.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'The list of labels for the task.'} ) @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field( metadata={'help': 'The output directory where the model predictions and checkpoints will be written.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default='accuracy' , metadata={'help': 'The evaluation metric used for the task.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default='no' , metadata={ 'help': 'The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]' } , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=1_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0 , metadata={ 'help': 'How much the specified evaluation metric must improve to satisfy early stopping conditions.' } , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the confidence score.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the validation performance.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to fine-tune on labeled data after pseudo training.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0 , metadata={'help': 'Confidence threshold for pseudo-labeled data filtering.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=1_0_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Random seed for initialization.'} , ) def UpperCamelCase_( _snake_case : int , _snake_case : str , _snake_case : Optional[int] , _snake_case : str , _snake_case : Union[str, Any] , _snake_case : List[Any] ): """simple docstring""" __a =datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: __a =dataset.filter(lambda _snake_case : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 __a =int(eval_result * len(_snake_case ) ) print(_snake_case ) __a =dataset.sort('probability' , reverse=_snake_case ) __a =dataset.select(range(_snake_case ) ) __a =dataset.remove_columns(['label', 'probability'] ) __a =dataset.rename_column('prediction' , 'label' ) __a =dataset.map(lambda _snake_case : {"label": idalabel[example["label"]]} ) __a =dataset.shuffle(seed=args.seed ) __a =os.path.join(_snake_case , F'train_pseudo.{args.data_file_extension}' ) if args.data_file_extension == "csv": dataset.to_csv(_snake_case , index=_snake_case ) else: dataset.to_json(_snake_case ) def UpperCamelCase_( _snake_case : List[Any] , _snake_case : str , _snake_case : int , _snake_case : Optional[int] , **_snake_case : List[str] ): """simple docstring""" __a =Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() __a =STModelArguments(model_name_or_path=_snake_case ) __a =STDataArguments(train_file=_snake_case , infer_file=_snake_case ) __a =STTrainingArguments(output_dir=_snake_case ) __a =argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(_snake_case ).items(): setattr(_snake_case , _snake_case , _snake_case ) for key, value in kwargs.items(): if hasattr(_snake_case , _snake_case ): setattr(_snake_case , _snake_case , _snake_case ) # Sanity checks __a ={} __a =None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None __a =args.train_file __a =args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None __a =args.eval_file for key in data_files: __a =data_files[key].split('.' )[-1] assert extension in ["csv", "json"], F'`{key}_file` should be a csv or a json file.' if args.data_file_extension is None: __a =extension else: assert extension == args.data_file_extension, F'`{key}_file` should be a {args.data_file_extension} file`.' assert ( args.eval_metric in datasets.list_metrics() ), F'{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('Creating the initial data directory for self-training...' ) __a =F'{args.output_dir}/self-train_iter-{{}}'.format __a =data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=_snake_case ) os.makedirs(_snake_case , exist_ok=_snake_case ) accelerator.wait_for_everyone() __a =None __a =None __a =0 __a =False # Show the progress bar __a =tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): __a =data_dir_format(_snake_case ) assert os.path.exists(_snake_case ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 __a =os.path.join(_snake_case , 'stage-1' ) __a ={ 'accelerator': accelerator, 'model_name_or_path': args.model_name_or_path, 'cache_dir': args.cache_dir, 'do_train': True, 'train_file': data_files['train'] if iteration == 0 else data_files['train_pseudo'], 'do_eval': True if args.eval_file is not None else False, 'eval_file': data_files['eval'], 'do_predict': True, 'infer_file': data_files['infer'], 'task_name': args.task_name, 'label_list': args.label_list, 'output_dir': current_output_dir, 'eval_metric': args.eval_metric, 'evaluation_strategy': args.evaluation_strategy, 'early_stopping_patience': args.early_stopping_patience, 'early_stopping_threshold': args.early_stopping_threshold, 'seed': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(_snake_case , _snake_case ): arguments_dict.update({key: value} ) __a =os.path.join(_snake_case , 'best-checkpoint' , _snake_case ) if os.path.exists(_snake_case ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.' , _snake_case , _snake_case , ) else: logger.info('***** Running self-training: iteration: %d, stage: 1 *****' , _snake_case ) finetune(**_snake_case ) accelerator.wait_for_everyone() assert os.path.exists(_snake_case ) logger.info('Self-training job completed: iteration: %d, stage: 1.' , _snake_case ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data __a =os.path.join(_snake_case , 'best-checkpoint' ) __a =os.path.join(_snake_case , 'stage-2' ) # Update arguments_dict __a =model_path __a =data_files['train'] __a =current_output_dir __a =os.path.join(_snake_case , 'best-checkpoint' , _snake_case ) if os.path.exists(_snake_case ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.' , _snake_case , _snake_case , ) else: logger.info('***** Running self-training: iteration: %d, stage: 2 *****' , _snake_case ) finetune(**_snake_case ) accelerator.wait_for_everyone() assert os.path.exists(_snake_case ) logger.info('Self-training job completed: iteration: %d, stage: 2.' , _snake_case ) __a =iteration __a =data_dir_format(iteration + 1 ) __a =AutoConfig.from_pretrained(os.path.join(_snake_case , 'best-checkpoint' ) ) __a =config.idalabel __a =os.path.join(_snake_case , 'eval_results_best-checkpoint.json' ) __a =os.path.join(_snake_case , 'test_results_best-checkpoint.json' ) assert os.path.exists(_snake_case ) with open(_snake_case , 'r' ) as f: __a =float(json.load(_snake_case )[args.eval_metric] ) __a =os.path.join(_snake_case , 'infer_output_best-checkpoint.csv' ) assert os.path.exists(_snake_case ) # Loading the dataset from local csv or json files. __a =load_dataset(args.data_file_extension , data_files={'data': data_files['infer']} )['data'] __a =load_dataset('csv' , data_files={'data': infer_output_file} )['data'] if accelerator.is_main_process: os.makedirs(_snake_case , exist_ok=_snake_case ) shutil.copy(_snake_case , os.path.join(_snake_case , F'eval_results_iter-{iteration}.json' ) ) if os.path.exists(_snake_case ): shutil.copy(_snake_case , os.path.join(_snake_case , F'test_results_iter-{iteration}.json' ) ) create_pseudo_labeled_data(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) accelerator.wait_for_everyone() __a =os.path.join(_snake_case , F'train_pseudo.{args.data_file_extension}' ) if args.evaluation_strategy != IntervalStrategy.NO.value: __a =eval_result if best_iteration is None: __a =new_iteration __a =new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: __a =new_iteration __a =new_eval_result __a =0 else: if new_eval_result == best_eval_result: __a =new_iteration __a =new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: __a =True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('Best iteration: %d' , _snake_case ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , _snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_snake_case , F'eval_results_iter-{iteration}.json' ) , os.path.join(_snake_case , 'eval_results_best-iteration.json' ) , ) else: # Assume that the last iteration is the best logger.info('Best iteration: %d' , args.max_selftrain_iterations - 1 ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , _snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_snake_case , F'eval_results_iter-{args.max_selftrain_iterations - 1}.json' ) , os.path.join(_snake_case , 'eval_results_best-iteration.json' ) , )
308
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCAmelCase : int = { "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = [ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys _lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Any = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right _lowerCAmelCase : List[Any] = 256_047 _lowerCAmelCase : Dict = 256_145 @require_sentencepiece @require_tokenizers class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = NllbTokenizer SCREAMING_SNAKE_CASE = NllbTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = {} def __magic_name__ ( self ) -> int: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __a =NllbTokenizer(__snake_case , keep_accents=__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self ) -> int: '''simple docstring''' __a =NllbTokenizer(__snake_case , keep_accents=__snake_case ) __a =tokenizer.tokenize('This is a test' ) self.assertListEqual(__snake_case , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __a =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __a =tokenizer.convert_tokens_to_ids(__snake_case ) self.assertListEqual( __snake_case , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __a =tokenizer.convert_ids_to_tokens(__snake_case ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-nllb', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __a =self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __a =self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) __a =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=True __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=False __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) @require_torch def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' if not self.test_seqaseq: return __a =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Longer text that will definitely require truncation. __a =[ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for' ' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons' ' will only worsen the violence and misery for millions of people.', ] __a =[ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al' ' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi' ' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] try: __a =tokenizer.prepare_seqaseq_batch( src_texts=__snake_case , tgt_texts=__snake_case , max_length=3 , max_target_length=10 , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='ron_Latn' , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified __a =tokenizer.prepare_seqaseq_batch( __snake_case , tgt_texts=__snake_case , max_length=3 , return_tensors='pt' ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) __a =tokenizer.prepare_seqaseq_batch( src_texts=__snake_case , max_length=3 , max_target_length=10 , return_tensors='pt' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn('decoder_input_ids' , __snake_case ) @unittest.skip('Unfortunately way too slow to build a BPE with SentencePiece.' ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' pass def __magic_name__ ( self ) -> Tuple: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __a =[AddedToken('<special>' , lstrip=__snake_case )] __a =self.rust_tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case ) __a =tokenizer_r.encode('Hey this is a <special> token' ) __a =tokenizer_r.encode('<special>' , add_special_tokens=__snake_case )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: __a =self.rust_tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case , ) __a =self.tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case ) __a =tokenizer_p.encode('Hey this is a <special> token' ) __a =tokenizer_cr.encode('Hey this is a <special> token' ) self.assertEqual(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class __magic_name__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = 'facebook/nllb-200-distilled-600M' SCREAMING_SNAKE_CASE = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] SCREAMING_SNAKE_CASE = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] SCREAMING_SNAKE_CASE = [ 2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 8_1_6_5, 2_4_8_0_6_6, 1_4_7_3_4, 9_5_0, 1_1_3_5, 1_0_5_7_2_1, 3_5_7_3, 8_3, 2_7_3_5_2, 1_0_8, 4_9_4_8_6, 2, ] @classmethod def __magic_name__ ( cls ) -> Tuple: '''simple docstring''' __a =NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang='eng_Latn' , tgt_lang='ron_Latn' ) __a =1 return cls def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Arab'] , 25_6001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Latn'] , 25_6002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['fra_Latn'] , 25_6057 ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' self.assertIn(__snake_case , self.tokenizer.all_special_ids ) # fmt: off __a =[RO_CODE, 4254, 9_8068, 11_2923, 3_9072, 3909, 713, 10_2767, 26, 1_7314, 3_5642, 1_4683, 3_3118, 2022, 6_6987, 2, 25_6047] # fmt: on __a =self.tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) __a =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertNotIn(self.tokenizer.eos_token , __snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , __snake_case ) __a =10 __a =self.tokenizer(__snake_case , max_length=__snake_case , truncation=__snake_case ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , __snake_case ) self.assertEqual(len(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_6203, 3] ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =tempfile.mkdtemp() __a =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__snake_case ) __a =NllbTokenizer.from_pretrained(__snake_case ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __snake_case ) @require_torch def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) __a =shift_tokens_right( batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['ron_Latn'] ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) __a =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) self.assertEqual(__snake_case , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =self.tokenizer(self.src_text , padding=__snake_case , truncation=__snake_case , max_length=3 , return_tensors='pt' ) __a =self.tokenizer( text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=10 , return_tensors='pt' ) __a =targets['input_ids'] __a =shift_tokens_right( __snake_case , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( nested_simplify(__snake_case ) , { # A, test, EOS, en_XX 'input_ids': [[25_6047, 70, 7356, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_6057, } , ) @require_torch def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =True __a =self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2, 25_6047] ) __a =False __a =self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [25_6047, 1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2] )
308
1
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Any = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right _lowerCAmelCase : List[Any] = 256_047 _lowerCAmelCase : Dict = 256_145 @require_sentencepiece @require_tokenizers class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = NllbTokenizer SCREAMING_SNAKE_CASE = NllbTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = {} def __magic_name__ ( self ) -> int: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __a =NllbTokenizer(__snake_case , keep_accents=__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self ) -> int: '''simple docstring''' __a =NllbTokenizer(__snake_case , keep_accents=__snake_case ) __a =tokenizer.tokenize('This is a test' ) self.assertListEqual(__snake_case , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __a =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __a =tokenizer.convert_tokens_to_ids(__snake_case ) self.assertListEqual( __snake_case , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __a =tokenizer.convert_ids_to_tokens(__snake_case ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-nllb', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __a =self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __a =self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) __a =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=True __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it save with the same files self.assertSequenceEqual(__snake_case , __snake_case ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) # Save tokenizer rust, legacy_format=False __a =tempfile.mkdtemp() __a =tokenizer_r.save_pretrained(__snake_case , legacy_format=__snake_case ) __a =tokenizer_p.save_pretrained(__snake_case ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __a =tokenizer_r.from_pretrained(__snake_case ) __a =tokenizer_p.from_pretrained(__snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__snake_case , __snake_case ) ) shutil.rmtree(__snake_case ) @require_torch def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' if not self.test_seqaseq: return __a =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Longer text that will definitely require truncation. __a =[ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for' ' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons' ' will only worsen the violence and misery for millions of people.', ] __a =[ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al' ' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi' ' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] try: __a =tokenizer.prepare_seqaseq_batch( src_texts=__snake_case , tgt_texts=__snake_case , max_length=3 , max_target_length=10 , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='ron_Latn' , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified __a =tokenizer.prepare_seqaseq_batch( __snake_case , tgt_texts=__snake_case , max_length=3 , return_tensors='pt' ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) __a =tokenizer.prepare_seqaseq_batch( src_texts=__snake_case , max_length=3 , max_target_length=10 , return_tensors='pt' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn('decoder_input_ids' , __snake_case ) @unittest.skip('Unfortunately way too slow to build a BPE with SentencePiece.' ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' pass def __magic_name__ ( self ) -> Tuple: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __a =[AddedToken('<special>' , lstrip=__snake_case )] __a =self.rust_tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case ) __a =tokenizer_r.encode('Hey this is a <special> token' ) __a =tokenizer_r.encode('<special>' , add_special_tokens=__snake_case )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: __a =self.rust_tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case , ) __a =self.tokenizer_class.from_pretrained( __snake_case , additional_special_tokens=__snake_case , **__snake_case ) __a =tokenizer_p.encode('Hey this is a <special> token' ) __a =tokenizer_cr.encode('Hey this is a <special> token' ) self.assertEqual(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class __magic_name__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE = 'facebook/nllb-200-distilled-600M' SCREAMING_SNAKE_CASE = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] SCREAMING_SNAKE_CASE = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] SCREAMING_SNAKE_CASE = [ 2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 8_1_6_5, 2_4_8_0_6_6, 1_4_7_3_4, 9_5_0, 1_1_3_5, 1_0_5_7_2_1, 3_5_7_3, 8_3, 2_7_3_5_2, 1_0_8, 4_9_4_8_6, 2, ] @classmethod def __magic_name__ ( cls ) -> Tuple: '''simple docstring''' __a =NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang='eng_Latn' , tgt_lang='ron_Latn' ) __a =1 return cls def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Arab'] , 25_6001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Latn'] , 25_6002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['fra_Latn'] , 25_6057 ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' self.assertIn(__snake_case , self.tokenizer.all_special_ids ) # fmt: off __a =[RO_CODE, 4254, 9_8068, 11_2923, 3_9072, 3909, 713, 10_2767, 26, 1_7314, 3_5642, 1_4683, 3_3118, 2022, 6_6987, 2, 25_6047] # fmt: on __a =self.tokenizer.decode(__snake_case , skip_special_tokens=__snake_case ) __a =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__snake_case ) self.assertEqual(__snake_case , __snake_case ) self.assertNotIn(self.tokenizer.eos_token , __snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , __snake_case ) __a =10 __a =self.tokenizer(__snake_case , max_length=__snake_case , truncation=__snake_case ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , __snake_case ) self.assertEqual(len(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_6203, 3] ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =tempfile.mkdtemp() __a =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__snake_case ) __a =NllbTokenizer.from_pretrained(__snake_case ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __snake_case ) @require_torch def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) __a =shift_tokens_right( batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['ron_Latn'] ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) __a =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __snake_case ) self.assertEqual(__snake_case , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =self.tokenizer(self.src_text , padding=__snake_case , truncation=__snake_case , max_length=3 , return_tensors='pt' ) __a =self.tokenizer( text_target=self.tgt_text , padding=__snake_case , truncation=__snake_case , max_length=10 , return_tensors='pt' ) __a =targets['input_ids'] __a =shift_tokens_right( __snake_case , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' __a =self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( nested_simplify(__snake_case ) , { # A, test, EOS, en_XX 'input_ids': [[25_6047, 70, 7356, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_6057, } , ) @require_torch def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =True __a =self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2, 25_6047] ) __a =False __a =self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [25_6047, 1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2] )
308
def UpperCamelCase_( _snake_case : str , _snake_case : int ): """simple docstring""" return [sentence[i : i + ngram_size] for i in range(len(_snake_case ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
308
1
def UpperCamelCase_( _snake_case : int = 10 , _snake_case : int = 1000 , _snake_case : bool = True ): """simple docstring""" assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('Invalid value for min_val or max_val (min_value < max_value)' ) return min_val if option else max_val def UpperCamelCase_( _snake_case : int , _snake_case : int ): """simple docstring""" return int((number_a + number_a) / 2 ) def UpperCamelCase_( _snake_case : int , _snake_case : int , _snake_case : int ): """simple docstring""" assert ( isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('argument value for lower and higher must be(lower > higher)' ) if not lower < to_guess < higher: raise ValueError( 'guess value must be within the range of lower and higher value' ) def answer(_snake_case : int ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('started...' ) __a =lower __a =higher __a =[] while True: __a =get_avg(_snake_case , _snake_case ) last_numbers.append(_snake_case ) if answer(_snake_case ) == "low": __a =number elif answer(_snake_case ) == "high": __a =number else: break print(F'guess the number : {last_numbers[-1]}' ) print(F'details : {last_numbers!s}' ) def UpperCamelCase_( ): """simple docstring""" __a =int(input('Enter lower value : ' ).strip() ) __a =int(input('Enter high value : ' ).strip() ) __a =int(input('Enter value to guess : ' ).strip() ) guess_the_number(_snake_case , _snake_case , _snake_case ) if __name__ == "__main__": main()
308
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class __magic_name__ ( pl.LightningModule ): def __init__( self , __snake_case ) -> List[Any]: '''simple docstring''' super().__init__() __a =model __a =2 __a =nn.Linear(self.model.config.hidden_size , self.num_labels ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' pass def UpperCamelCase_( _snake_case : str , _snake_case : str , _snake_case : str ): """simple docstring""" __a =LongformerModel.from_pretrained(_snake_case ) __a =LightningModel(_snake_case ) __a =torch.load(_snake_case , map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model __a =LongformerForQuestionAnswering.from_pretrained(_snake_case ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(_snake_case ) print(F'Conversion successful. Model saved under {pytorch_dump_folder_path}' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowerCAmelCase : Optional[int] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
308
1
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _lowerCAmelCase : Optional[int] = logging.getLogger(__name__) _lowerCAmelCase : Any = "pytorch_model.bin" @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co.'} , ) @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field(metadata={'help': 'A csv or a json file containing the training data.'} ) SCREAMING_SNAKE_CASE = dataclasses.field(metadata={'help': 'A csv or a json file containing the data to predict on.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the validation data.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'The name of the task to train on.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'The list of labels for the task.'} ) @dataclasses.dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = dataclasses.field( metadata={'help': 'The output directory where the model predictions and checkpoints will be written.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default='accuracy' , metadata={'help': 'The evaluation metric used for the task.'} ) SCREAMING_SNAKE_CASE = dataclasses.field( default='no' , metadata={ 'help': 'The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]' } , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=1_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0 , metadata={ 'help': 'How much the specified evaluation metric must improve to satisfy early stopping conditions.' } , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the confidence score.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the validation performance.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Whether to fine-tune on labeled data after pseudo training.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0 , metadata={'help': 'Confidence threshold for pseudo-labeled data filtering.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=1_0_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) SCREAMING_SNAKE_CASE = dataclasses.field( default=lowerCAmelCase_ , metadata={'help': 'Random seed for initialization.'} , ) def UpperCamelCase_( _snake_case : int , _snake_case : str , _snake_case : Optional[int] , _snake_case : str , _snake_case : Union[str, Any] , _snake_case : List[Any] ): """simple docstring""" __a =datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: __a =dataset.filter(lambda _snake_case : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 __a =int(eval_result * len(_snake_case ) ) print(_snake_case ) __a =dataset.sort('probability' , reverse=_snake_case ) __a =dataset.select(range(_snake_case ) ) __a =dataset.remove_columns(['label', 'probability'] ) __a =dataset.rename_column('prediction' , 'label' ) __a =dataset.map(lambda _snake_case : {"label": idalabel[example["label"]]} ) __a =dataset.shuffle(seed=args.seed ) __a =os.path.join(_snake_case , F'train_pseudo.{args.data_file_extension}' ) if args.data_file_extension == "csv": dataset.to_csv(_snake_case , index=_snake_case ) else: dataset.to_json(_snake_case ) def UpperCamelCase_( _snake_case : List[Any] , _snake_case : str , _snake_case : int , _snake_case : Optional[int] , **_snake_case : List[str] ): """simple docstring""" __a =Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() __a =STModelArguments(model_name_or_path=_snake_case ) __a =STDataArguments(train_file=_snake_case , infer_file=_snake_case ) __a =STTrainingArguments(output_dir=_snake_case ) __a =argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(_snake_case ).items(): setattr(_snake_case , _snake_case , _snake_case ) for key, value in kwargs.items(): if hasattr(_snake_case , _snake_case ): setattr(_snake_case , _snake_case , _snake_case ) # Sanity checks __a ={} __a =None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None __a =args.train_file __a =args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None __a =args.eval_file for key in data_files: __a =data_files[key].split('.' )[-1] assert extension in ["csv", "json"], F'`{key}_file` should be a csv or a json file.' if args.data_file_extension is None: __a =extension else: assert extension == args.data_file_extension, F'`{key}_file` should be a {args.data_file_extension} file`.' assert ( args.eval_metric in datasets.list_metrics() ), F'{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('Creating the initial data directory for self-training...' ) __a =F'{args.output_dir}/self-train_iter-{{}}'.format __a =data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=_snake_case ) os.makedirs(_snake_case , exist_ok=_snake_case ) accelerator.wait_for_everyone() __a =None __a =None __a =0 __a =False # Show the progress bar __a =tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): __a =data_dir_format(_snake_case ) assert os.path.exists(_snake_case ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 __a =os.path.join(_snake_case , 'stage-1' ) __a ={ 'accelerator': accelerator, 'model_name_or_path': args.model_name_or_path, 'cache_dir': args.cache_dir, 'do_train': True, 'train_file': data_files['train'] if iteration == 0 else data_files['train_pseudo'], 'do_eval': True if args.eval_file is not None else False, 'eval_file': data_files['eval'], 'do_predict': True, 'infer_file': data_files['infer'], 'task_name': args.task_name, 'label_list': args.label_list, 'output_dir': current_output_dir, 'eval_metric': args.eval_metric, 'evaluation_strategy': args.evaluation_strategy, 'early_stopping_patience': args.early_stopping_patience, 'early_stopping_threshold': args.early_stopping_threshold, 'seed': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(_snake_case , _snake_case ): arguments_dict.update({key: value} ) __a =os.path.join(_snake_case , 'best-checkpoint' , _snake_case ) if os.path.exists(_snake_case ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.' , _snake_case , _snake_case , ) else: logger.info('***** Running self-training: iteration: %d, stage: 1 *****' , _snake_case ) finetune(**_snake_case ) accelerator.wait_for_everyone() assert os.path.exists(_snake_case ) logger.info('Self-training job completed: iteration: %d, stage: 1.' , _snake_case ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data __a =os.path.join(_snake_case , 'best-checkpoint' ) __a =os.path.join(_snake_case , 'stage-2' ) # Update arguments_dict __a =model_path __a =data_files['train'] __a =current_output_dir __a =os.path.join(_snake_case , 'best-checkpoint' , _snake_case ) if os.path.exists(_snake_case ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.' , _snake_case , _snake_case , ) else: logger.info('***** Running self-training: iteration: %d, stage: 2 *****' , _snake_case ) finetune(**_snake_case ) accelerator.wait_for_everyone() assert os.path.exists(_snake_case ) logger.info('Self-training job completed: iteration: %d, stage: 2.' , _snake_case ) __a =iteration __a =data_dir_format(iteration + 1 ) __a =AutoConfig.from_pretrained(os.path.join(_snake_case , 'best-checkpoint' ) ) __a =config.idalabel __a =os.path.join(_snake_case , 'eval_results_best-checkpoint.json' ) __a =os.path.join(_snake_case , 'test_results_best-checkpoint.json' ) assert os.path.exists(_snake_case ) with open(_snake_case , 'r' ) as f: __a =float(json.load(_snake_case )[args.eval_metric] ) __a =os.path.join(_snake_case , 'infer_output_best-checkpoint.csv' ) assert os.path.exists(_snake_case ) # Loading the dataset from local csv or json files. __a =load_dataset(args.data_file_extension , data_files={'data': data_files['infer']} )['data'] __a =load_dataset('csv' , data_files={'data': infer_output_file} )['data'] if accelerator.is_main_process: os.makedirs(_snake_case , exist_ok=_snake_case ) shutil.copy(_snake_case , os.path.join(_snake_case , F'eval_results_iter-{iteration}.json' ) ) if os.path.exists(_snake_case ): shutil.copy(_snake_case , os.path.join(_snake_case , F'test_results_iter-{iteration}.json' ) ) create_pseudo_labeled_data(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) accelerator.wait_for_everyone() __a =os.path.join(_snake_case , F'train_pseudo.{args.data_file_extension}' ) if args.evaluation_strategy != IntervalStrategy.NO.value: __a =eval_result if best_iteration is None: __a =new_iteration __a =new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: __a =new_iteration __a =new_eval_result __a =0 else: if new_eval_result == best_eval_result: __a =new_iteration __a =new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: __a =True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('Best iteration: %d' , _snake_case ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , _snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_snake_case , F'eval_results_iter-{iteration}.json' ) , os.path.join(_snake_case , 'eval_results_best-iteration.json' ) , ) else: # Assume that the last iteration is the best logger.info('Best iteration: %d' , args.max_selftrain_iterations - 1 ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , _snake_case ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_snake_case , F'eval_results_iter-{args.max_selftrain_iterations - 1}.json' ) , os.path.join(_snake_case , 'eval_results_best-iteration.json' ) , )
308
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") _lowerCAmelCase : Optional[Any] = logging.getLogger(__name__) @dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) SCREAMING_SNAKE_CASE = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) SCREAMING_SNAKE_CASE = field( default=1_0_2_4 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the training data.'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the validation data.'} ) SCREAMING_SNAKE_CASE = field(default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the test data.'} ) def __magic_name__ ( self ) -> str: '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: __a =self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __a =self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) SCREAMING_SNAKE_CASE = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def UpperCamelCase_( ): """simple docstring""" __a =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __a , __a , __a =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __a , __a , __a =parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) __a =training_args.get_process_log_level() logger.setLevel(_snake_case ) datasets.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __a =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __a =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __a =load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __a ={'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __a =data_args.train_file.split('.' )[-1] __a =data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __a =data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(F'load a local file for {key}: {data_files[key]}' ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files __a =load_dataset('csv' , data_files=_snake_case , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __a =load_dataset('json' , data_files=_snake_case , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __a =raw_datasets['train'].features['label'].names __a =len(_snake_case ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __a =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __a =TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=_snake_case , ) __a =BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __a ='max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __a =False # Some models have set the order of the labels to use, so let's make sure we do use it. __a ={'Refused': 0, 'Entailed': 1} __a ={0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __a =min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(_snake_case : Tuple ): # Tokenize the texts def _convert_table_text_to_pandas(_snake_case : Optional[Any] ): __a =[_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] __a =pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __a =examples['statement'] __a =list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) __a =tokenizer(_snake_case , _snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case ) __a =examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): __a =raw_datasets.map( _snake_case , batched=_snake_case , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) __a =raw_datasets['train'] if data_args.max_train_samples is not None: __a =train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) __a =raw_datasets['validation'] if data_args.max_eval_samples is not None: __a =eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) __a =raw_datasets['test'] if data_args.max_predict_samples is not None: __a =predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(_snake_case ) ) , 3 ): logger.info(F'Sample {index} of the training set: {train_dataset[index]}.' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_snake_case : EvalPrediction ): __a =p.predictions[0] if isinstance(p.predictions , _snake_case ) else p.predictions __a =np.argmax(_snake_case , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __a =default_data_collator elif training_args.fpaa: __a =DataCollatorWithPadding(_snake_case , pad_to_multiple_of=8 ) else: __a =None # Initialize our Trainer __a =Trainer( model=_snake_case , args=_snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_snake_case , tokenizer=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: __a =None if training_args.resume_from_checkpoint is not None: __a =training_args.resume_from_checkpoint elif last_checkpoint is not None: __a =last_checkpoint __a =trainer.train(resume_from_checkpoint=_snake_case ) __a =train_result.metrics __a =( data_args.max_train_samples if data_args.max_train_samples is not None else len(_snake_case ) ) __a =min(_snake_case , len(_snake_case ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , _snake_case ) trainer.save_metrics('train' , _snake_case ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __a =trainer.evaluate(eval_dataset=_snake_case ) __a =data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_snake_case ) __a =min(_snake_case , len(_snake_case ) ) trainer.log_metrics('eval' , _snake_case ) trainer.save_metrics('eval' , _snake_case ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __a =predict_dataset.remove_columns('label' ) __a =trainer.predict(_snake_case , metric_key_prefix='predict' ).predictions __a =np.argmax(_snake_case , axis=1 ) __a =os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(_snake_case , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(_snake_case ): __a =label_list[item] writer.write(F'{index}\t{item}\n' ) __a ={'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**_snake_case ) else: trainer.create_model_card(**_snake_case ) def UpperCamelCase_( _snake_case : Union[str, Any] ): """simple docstring""" main() if __name__ == "__main__": main()
308
1
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def UpperCamelCase_( ): """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(_snake_case ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def UpperCamelCase_( ): """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def UpperCamelCase_( ): """simple docstring""" with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(_snake_case ): http_head('https://huggingface.co' )
308
from __future__ import annotations import time import numpy as np _lowerCAmelCase : List[str] = [8, 5, 9, 7] _lowerCAmelCase : List[str] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] _lowerCAmelCase : List[Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class __magic_name__ : def __init__( self , __snake_case , __snake_case , __snake_case , ) -> None: '''simple docstring''' __a =claim_vector __a =allocated_resources_table __a =maximum_claim_table def __magic_name__ ( self ) -> list[int]: '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def __magic_name__ ( self ) -> list[int]: '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def __magic_name__ ( self ) -> list[list[int]]: '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__snake_case ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def __magic_name__ ( self ) -> dict[int, list[int]]: '''simple docstring''' return {self.__need().index(__snake_case ): i for i in self.__need()} def __magic_name__ ( self , **__snake_case ) -> None: '''simple docstring''' __a =self.__need() __a =self.__allocated_resources_table __a =self.__available_resources() __a =self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: __a =False for each_need in need_list: __a =True for index, need in enumerate(__snake_case ): if need > available_resources[index]: __a =False break if execution: __a =True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __a =original_need_index print(f'Process {process_number + 1} is executing.' ) # remove the process run from stack need_list.remove(__snake_case ) # update available/freed resources stack __a =np.array(__snake_case ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(__snake_case ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( f'P{self.__allocated_resources_table.index(__snake_case ) + 1}' + ' '.join(f'{it:>8}' for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( f'P{self.__maximum_claim_table.index(__snake_case ) + 1}' + ' '.join(f'{it:>8}' for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(__snake_case ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(__snake_case ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
308
1
_lowerCAmelCase : int = { 0: "0", 1: "1", 2: "2", 3: "3", 4: "4", 5: "5", 6: "6", 7: "7", 8: "8", 9: "9", 10: "a", 11: "b", 12: "c", 13: "d", 14: "e", 15: "f", } def UpperCamelCase_( _snake_case : float ): """simple docstring""" assert type(_snake_case ) in (int, float) and decimal == int(_snake_case ) __a =int(_snake_case ) __a ='' __a =False if decimal < 0: __a =True decimal *= -1 while decimal > 0: __a , __a =divmod(_snake_case , 16 ) __a =values[remainder] + hexadecimal __a ='0x' + hexadecimal if negative: __a ='-' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
308
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency _lowerCAmelCase : Tuple = { "E": 12.70, "T": 9.06, "A": 8.17, "O": 7.51, "I": 6.97, "N": 6.75, "S": 6.33, "H": 6.09, "R": 5.99, "D": 4.25, "L": 4.03, "C": 2.78, "U": 2.76, "M": 2.41, "W": 2.36, "F": 2.23, "G": 2.02, "Y": 1.97, "P": 1.93, "B": 1.29, "V": 0.98, "K": 0.77, "J": 0.15, "X": 0.15, "Q": 0.10, "Z": 0.07, } _lowerCAmelCase : Optional[int] = "ETAOINSHRDLCUMWFGYPBVKJXQZ" _lowerCAmelCase : Any = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a ={letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def UpperCamelCase_( _snake_case : tuple ): """simple docstring""" return x[0] def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =get_letter_count(_snake_case ) __a ={ freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(_snake_case ) __a ={} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=_snake_case ) __a =''.join(freq_to_letter[freq] ) __a =list(freq_to_letter_str.items() ) freq_pairs.sort(key=_snake_case , reverse=_snake_case ) __a =[freq_pair[1] for freq_pair in freq_pairs] return "".join(_snake_case ) def UpperCamelCase_( _snake_case : str ): """simple docstring""" __a =get_frequency_order(_snake_case ) __a =0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
308
1
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(lowerCAmelCase_ ) , 'Tatoeba directory does not exist.' ) class __magic_name__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =tempfile.mkdtemp() return TatoebaConverter(save_dir=__snake_case ) @slow def __magic_name__ ( self ) -> List[str]: '''simple docstring''' self.resolver.convert_models(['heb-eng'] ) @slow def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a , __a =self.resolver.write_model_card('opus-mt-he-en' , dry_run=__snake_case ) assert mmeta["long_pair"] == "heb-eng"
308
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) _lowerCAmelCase : int = { "caidas/swin2sr-classicalsr-x2-64": ( "https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json" ), } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'swin2sr' SCREAMING_SNAKE_CASE = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , __snake_case=64 , __snake_case=1 , __snake_case=3 , __snake_case=180 , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=[6, 6, 6, 6, 6, 6] , __snake_case=8 , __snake_case=2.0 , __snake_case=True , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.1 , __snake_case="gelu" , __snake_case=False , __snake_case=0.02 , __snake_case=1e-5 , __snake_case=2 , __snake_case=1.0 , __snake_case="1conv" , __snake_case="pixelshuffle" , **__snake_case , ) -> Dict: '''simple docstring''' super().__init__(**__snake_case ) __a =image_size __a =patch_size __a =num_channels __a =embed_dim __a =depths __a =len(__snake_case ) __a =num_heads __a =window_size __a =mlp_ratio __a =qkv_bias __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =drop_path_rate __a =hidden_act __a =use_absolute_embeddings __a =layer_norm_eps __a =initializer_range __a =upscale __a =img_range __a =resi_connection __a =upsampler
308
1
from __future__ import annotations import bisect def UpperCamelCase_( _snake_case : list[int] , _snake_case : int , _snake_case : int = 0 , _snake_case : int = -1 ): """simple docstring""" if hi < 0: __a =len(_snake_case ) while lo < hi: __a =lo + (hi - lo) // 2 if sorted_collection[mid] < item: __a =mid + 1 else: __a =mid return lo def UpperCamelCase_( _snake_case : list[int] , _snake_case : int , _snake_case : int = 0 , _snake_case : int = -1 ): """simple docstring""" if hi < 0: __a =len(_snake_case ) while lo < hi: __a =lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __a =mid + 1 else: __a =mid return lo def UpperCamelCase_( _snake_case : list[int] , _snake_case : int , _snake_case : int = 0 , _snake_case : int = -1 ): """simple docstring""" sorted_collection.insert(bisect_left(_snake_case , _snake_case , _snake_case , _snake_case ) , _snake_case ) def UpperCamelCase_( _snake_case : list[int] , _snake_case : int , _snake_case : int = 0 , _snake_case : int = -1 ): """simple docstring""" sorted_collection.insert(bisect_right(_snake_case , _snake_case , _snake_case , _snake_case ) , _snake_case ) def UpperCamelCase_( _snake_case : list[int] , _snake_case : int ): """simple docstring""" __a =0 __a =len(_snake_case ) - 1 while left <= right: __a =left + (right - left) // 2 __a =sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __a =midpoint - 1 else: __a =midpoint + 1 return None def UpperCamelCase_( _snake_case : list[int] , _snake_case : int ): """simple docstring""" __a =bisect.bisect_left(_snake_case , _snake_case ) if index != len(_snake_case ) and sorted_collection[index] == item: return index return None def UpperCamelCase_( _snake_case : list[int] , _snake_case : int , _snake_case : int , _snake_case : int ): """simple docstring""" if right < left: return None __a =left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(_snake_case , _snake_case , _snake_case , midpoint - 1 ) else: return binary_search_by_recursion(_snake_case , _snake_case , midpoint + 1 , _snake_case ) if __name__ == "__main__": _lowerCAmelCase : List[str] = input("Enter numbers separated by comma:\n").strip() _lowerCAmelCase : Union[str, Any] = sorted(int(item) for item in user_input.split(",")) _lowerCAmelCase : str = int(input("Enter a single number to be found in the list:\n")) _lowerCAmelCase : List[Any] = binary_search(collection, target) if result is None: print(f'''{target} was not found in {collection}.''') else: print(f'''{target} was found at position {result} in {collection}.''')
308
import os def UpperCamelCase_( _snake_case : str = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(_snake_case ) , _snake_case ) ) as input_file: __a =[ [int(_snake_case ) for element in line.split(',' )] for line in input_file.readlines() ] __a =len(_snake_case ) __a =len(matrix[0] ) __a =[[-1 for _ in range(_snake_case )] for _ in range(_snake_case )] for i in range(_snake_case ): __a =matrix[i][0] for j in range(1 , _snake_case ): for i in range(_snake_case ): __a =minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _snake_case ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __a =min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
308
1
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = (DPMSolverSDEScheduler,) SCREAMING_SNAKE_CASE = 1_0 def __magic_name__ ( self , **__snake_case ) -> Union[str, Any]: '''simple docstring''' __a ={ 'num_train_timesteps': 1100, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'noise_sampler_seed': 0, } config.update(**__snake_case ) return config def __magic_name__ ( self ) -> int: '''simple docstring''' for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=__snake_case ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=__snake_case , beta_end=__snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__snake_case ) def __magic_name__ ( self ) -> Dict: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__snake_case ) def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =self.scheduler_classes[0] __a =self.get_scheduler_config() __a =scheduler_class(**__snake_case ) scheduler.set_timesteps(self.num_inference_steps ) __a =self.dummy_model() __a =self.dummy_sample_deter * scheduler.init_noise_sigma __a =sample.to(__snake_case ) for i, t in enumerate(scheduler.timesteps ): __a =scheduler.scale_model_input(__snake_case , __snake_case ) __a =model(__snake_case , __snake_case ) __a =scheduler.step(__snake_case , __snake_case , __snake_case ) __a =output.prev_sample __a =torch.sum(torch.abs(__snake_case ) ) __a =torch.mean(torch.abs(__snake_case ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875 ) < 1e-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406 ) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652 ) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1e-3 def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.scheduler_classes[0] __a =self.get_scheduler_config(prediction_type='v_prediction' ) __a =scheduler_class(**__snake_case ) scheduler.set_timesteps(self.num_inference_steps ) __a =self.dummy_model() __a =self.dummy_sample_deter * scheduler.init_noise_sigma __a =sample.to(__snake_case ) for i, t in enumerate(scheduler.timesteps ): __a =scheduler.scale_model_input(__snake_case , __snake_case ) __a =model(__snake_case , __snake_case ) __a =scheduler.step(__snake_case , __snake_case , __snake_case ) __a =output.prev_sample __a =torch.sum(torch.abs(__snake_case ) ) __a =torch.mean(torch.abs(__snake_case ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453 ) < 1e-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703 ) < 1e-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297 ) < 1e-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125 ) < 1e-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621 ) < 1e-3 def __magic_name__ ( self ) -> str: '''simple docstring''' __a =self.scheduler_classes[0] __a =self.get_scheduler_config() __a =scheduler_class(**__snake_case ) scheduler.set_timesteps(self.num_inference_steps , device=__snake_case ) __a =self.dummy_model() __a =self.dummy_sample_deter.to(__snake_case ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __a =scheduler.scale_model_input(__snake_case , __snake_case ) __a =model(__snake_case , __snake_case ) __a =scheduler.step(__snake_case , __snake_case , __snake_case ) __a =output.prev_sample __a =torch.sum(torch.abs(__snake_case ) ) __a =torch.mean(torch.abs(__snake_case ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938 ) < 1e-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312 ) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771 ) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1e-3 def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.scheduler_classes[0] __a =self.get_scheduler_config() __a =scheduler_class(**__snake_case , use_karras_sigmas=__snake_case ) scheduler.set_timesteps(self.num_inference_steps , device=__snake_case ) __a =self.dummy_model() __a =self.dummy_sample_deter.to(__snake_case ) * scheduler.init_noise_sigma __a =sample.to(__snake_case ) for t in scheduler.timesteps: __a =scheduler.scale_model_input(__snake_case , __snake_case ) __a =model(__snake_case , __snake_case ) __a =scheduler.step(__snake_case , __snake_case , __snake_case ) __a =output.prev_sample __a =torch.sum(torch.abs(__snake_case ) ) __a =torch.mean(torch.abs(__snake_case ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188 ) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125 ) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1e-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672 ) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1e-2
308
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _lowerCAmelCase : Any = logging.get_logger(__name__) class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , *__snake_case , **__snake_case ) -> None: '''simple docstring''' warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
308
1
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) _lowerCAmelCase : Tuple = "bert-base-cased" _lowerCAmelCase : str = "fp16" _lowerCAmelCase : Optional[int] = "bf16" _lowerCAmelCase : Optional[Any] = [FPaa, BFaa] @require_fsdp @require_cuda class __magic_name__ ( lowerCAmelCase_ ): def __magic_name__ ( self ) -> Tuple: '''simple docstring''' super().setUp() __a =dict( ACCELERATE_USE_FSDP='true' , MASTER_ADDR='localhost' , MASTER_PORT='10999' , RANK='0' , LOCAL_RANK='0' , WORLD_SIZE='1' , ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(__snake_case ): __a =self.dist_env.copy() __a =f'{i + 1}' __a =strategy with mockenv_context(**__snake_case ): __a =FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(__snake_case ): __a =self.dist_env.copy() __a =prefetch_policy with mockenv_context(**__snake_case ): __a =FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(__snake_case ): __a =self.dist_env.copy() __a =state_dict_type with mockenv_context(**__snake_case ): __a =FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =AutoModel.from_pretrained(__snake_case ) for policy in FSDP_AUTO_WRAP_POLICY: __a =self.dist_env.copy() __a =policy if policy == "TRANSFORMER_BASED_WRAP": __a ='BertLayer' elif policy == "SIZE_BASED_WRAP": __a ='2000' with mockenv_context(**__snake_case ): __a =FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__snake_case ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) __a =self.dist_env.copy() __a ='TRANSFORMER_BASED_WRAP' __a ='T5Layer' with mockenv_context(**__snake_case ): __a =FullyShardedDataParallelPlugin() with self.assertRaises(__snake_case ) as cm: fsdp_plugin.set_auto_wrap_policy(__snake_case ) self.assertTrue('Could not find the transformer layer class to wrap in the model.' in str(cm.exception ) ) __a =self.dist_env.copy() __a ='SIZE_BASED_WRAP' __a ='0' with mockenv_context(**__snake_case ): __a =FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__snake_case ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def __magic_name__ ( self ) -> Any: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: __a =self.dist_env.copy() __a =mp_dtype with mockenv_context(**__snake_case ): __a =Accelerator() if mp_dtype == "fp16": __a =torch.floataa elif mp_dtype == "bf16": __a =torch.bfloataa __a =MixedPrecision(param_dtype=__snake_case , reduce_dtype=__snake_case , buffer_dtype=__snake_case ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , __snake_case ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , __snake_case ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(__snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: __a =self.dist_env.copy() __a =str(__snake_case ).lower() with mockenv_context(**__snake_case ): __a =FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=__snake_case ) ) @require_fsdp @require_multi_gpu @slow class __magic_name__ ( lowerCAmelCase_ ): def __magic_name__ ( self ) -> Dict: '''simple docstring''' super().setUp() __a =0.82 __a =[ 'fsdp_shard_grad_op_transformer_based_wrap', 'fsdp_full_shard_transformer_based_wrap', ] __a ={ 'multi_gpu_fp16': 3200, 'fsdp_shard_grad_op_transformer_based_wrap_fp16': 2000, 'fsdp_full_shard_transformer_based_wrap_fp16': 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } __a =160 __a =160 __a =inspect.getfile(accelerate.test_utils ) __a =os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps'] ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =os.path.join(self.test_scripts_folder , 'test_performance.py' ) __a =['accelerate', 'launch', '--num_processes=2', '--num_machines=1', '--machine_rank=0', '--use_fsdp'] for config in self.performance_configs: __a =cmd.copy() for i, strategy in enumerate(__snake_case ): if strategy.lower() in config: cmd_config.append(f'--fsdp_sharding_strategy={i+1}' ) break if "fp32" in config: cmd_config.append('--mixed_precision=no' ) else: cmd_config.append('--mixed_precision=fp16' ) if "cpu_offload" in config: cmd_config.append('--fsdp_offload_params=True' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f'--fsdp_auto_wrap_policy={policy}' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('--fsdp_transformer_layer_cls_to_wrap=BertLayer' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('--fsdp_min_num_params=2000' ) cmd_config.extend( [ self.test_file_path, f'--output_dir={self.tmpdir}', f'--performance_lower_bound={self.performance_lower_bound}', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__snake_case , env=os.environ.copy() ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =os.path.join(self.test_scripts_folder , 'test_checkpointing.py' ) __a =[ 'accelerate', 'launch', '--num_processes=2', '--num_machines=1', '--machine_rank=0', '--use_fsdp', '--mixed_precision=fp16', '--fsdp_transformer_layer_cls_to_wrap=BertLayer', ] for i, strategy in enumerate(__snake_case ): __a =cmd.copy() cmd_config.append(f'--fsdp_sharding_strategy={i+1}' ) if strategy != "FULL_SHARD": continue __a =len(__snake_case ) for state_dict_type in FSDP_STATE_DICT_TYPE: __a =cmd_config[:state_dict_config_index] cmd_config.append(f'--fsdp_state_dict_type={state_dict_type}' ) cmd_config.extend( [ self.test_file_path, f'--output_dir={self.tmpdir}', '--partial_train_epoch=1', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__snake_case , env=os.environ.copy() ) __a =cmd_config[:-1] __a =os.path.join(self.tmpdir , 'epoch_0' ) cmd_config.extend( [ f'--resume_from_checkpoint={resume_from_checkpoint}', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__snake_case , env=os.environ.copy() ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =os.path.join(self.test_scripts_folder , 'test_peak_memory_usage.py' ) __a =[ 'accelerate', 'launch', '--num_processes=2', '--num_machines=1', '--machine_rank=0', ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): __a =cmd.copy() if "fp16" in spec: cmd_config.extend(['--mixed_precision=fp16'] ) else: cmd_config.extend(['--mixed_precision=no'] ) if "multi_gpu" in spec: continue else: cmd_config.extend(['--use_fsdp'] ) for i, strategy in enumerate(__snake_case ): if strategy.lower() in spec: cmd_config.append(f'--fsdp_sharding_strategy={i+1}' ) break if "cpu_offload" in spec: cmd_config.append('--fsdp_offload_params=True' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f'--fsdp_auto_wrap_policy={policy}' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('--fsdp_transformer_layer_cls_to_wrap=BertLayer' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('--fsdp_min_num_params=2000' ) cmd_config.extend( [ self.test_file_path, f'--output_dir={self.tmpdir}', f'--peak_memory_upper_bound={peak_mem_upper_bound}', f'--n_train={self.n_train}', f'--n_val={self.n_val}', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__snake_case , env=os.environ.copy() )
308
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : int = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
1
from __future__ import annotations from random import choice def UpperCamelCase_( _snake_case : Any ): """simple docstring""" return choice(_snake_case ) def UpperCamelCase_( _snake_case : list[int] , _snake_case : int ): """simple docstring""" __a =random_pivot(_snake_case ) # partition based on pivot # linear time __a =[e for e in lst if e < pivot] __a =[e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(_snake_case ) == k - 1: return pivot # pivot is in elements bigger than k elif len(_snake_case ) < k - 1: return kth_number(_snake_case , k - len(_snake_case ) - 1 ) # pivot is in elements smaller than k else: return kth_number(_snake_case , _snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
308
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : List[str] = logging.get_logger(__name__) _lowerCAmelCase : List[Any] = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = 'yolos' def __init__( self , __snake_case=768 , __snake_case=12 , __snake_case=12 , __snake_case=3072 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.02 , __snake_case=1e-12 , __snake_case=[512, 864] , __snake_case=16 , __snake_case=3 , __snake_case=True , __snake_case=100 , __snake_case=True , __snake_case=False , __snake_case=1 , __snake_case=5 , __snake_case=2 , __snake_case=5 , __snake_case=2 , __snake_case=0.1 , **__snake_case , ) -> str: '''simple docstring''' super().__init__(**__snake_case ) __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =intermediate_size __a =hidden_act __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =initializer_range __a =layer_norm_eps __a =image_size __a =patch_size __a =num_channels __a =qkv_bias __a =num_detection_tokens __a =use_mid_position_embeddings __a =auxiliary_loss # Hungarian matcher __a =class_cost __a =bbox_cost __a =giou_cost # Loss coefficients __a =bbox_loss_coefficient __a =giou_loss_coefficient __a =eos_coefficient class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = version.parse('1.11' ) @property def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __magic_name__ ( self ) -> float: '''simple docstring''' return 1e-4 @property def __magic_name__ ( self ) -> int: '''simple docstring''' return 12
308
1
def UpperCamelCase_( _snake_case : int = 1000 ): """simple docstring""" __a =2**power __a =0 while n: __a , __a =r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
308
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def UpperCamelCase_( _snake_case : Optional[Any] ): """simple docstring""" __a =model.config __a =DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) __a =MBartConfig( is_decoder=_snake_case , is_encoder_decoder=_snake_case , add_cross_attention=_snake_case , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=_snake_case , add_final_layer_norm=_snake_case , ) return encoder_config, decoder_config def UpperCamelCase_( _snake_case : Tuple ): """simple docstring""" if "encoder.model" in name: __a =name.replace('encoder.model' , 'encoder' ) if "decoder.model" in name: __a =name.replace('decoder.model' , 'decoder' ) if "patch_embed.proj" in name: __a =name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __a =name.replace('patch_embed.norm' , 'embeddings.norm' ) if name.startswith('encoder' ): if "layers" in name: __a ='encoder.' + name if "attn.proj" in name: __a =name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "mask" not in name: __a =name.replace('attn' , 'attention.self' ) if "norm1" in name: __a =name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __a =name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __a =name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __a =name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": __a ='encoder.layernorm.weight' if name == "encoder.norm.bias": __a ='encoder.layernorm.bias' return name def UpperCamelCase_( _snake_case : Tuple , _snake_case : str ): """simple docstring""" for key in orig_state_dict.copy().keys(): __a =orig_state_dict.pop(_snake_case ) if "qkv" in key: __a =key.split('.' ) __a =int(key_split[3] ) __a =int(key_split[5] ) __a =model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __a =val[:dim, :] __a =val[dim : dim * 2, :] __a =val[-dim:, :] else: __a =val[:dim] __a =val[dim : dim * 2] __a =val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: __a =val return orig_state_dict def UpperCamelCase_( _snake_case : Tuple , _snake_case : Union[str, Any]=None , _snake_case : List[Any]=False ): """simple docstring""" __a =DonutModel.from_pretrained(_snake_case ).eval() # load HuggingFace model __a , __a =get_configs(_snake_case ) __a =DonutSwinModel(_snake_case ) __a =MBartForCausalLM(_snake_case ) __a =VisionEncoderDecoderModel(encoder=_snake_case , decoder=_snake_case ) model.eval() __a =original_model.state_dict() __a =convert_state_dict(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) # verify results on scanned document __a =load_dataset('hf-internal-testing/example-documents' ) __a =dataset['test'][0]['image'].convert('RGB' ) __a =XLMRobertaTokenizerFast.from_pretrained(_snake_case , from_slow=_snake_case ) __a =DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) __a =DonutProcessor(_snake_case , _snake_case ) __a =processor(_snake_case , return_tensors='pt' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": __a ='<s_docvqa><s_question>{user_input}</s_question><s_answer>' __a ='When is the coffee break?' __a =task_prompt.replace('{user_input}' , _snake_case ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": __a ='<s_rvlcdip>' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: __a ='<s_cord>' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": __a ='s_cord-v2>' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": __a ='<s_zhtrainticket>' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt __a ='hello world' else: raise ValueError('Model name not supported' ) __a =original_model.decoder.tokenizer(_snake_case , add_special_tokens=_snake_case , return_tensors='pt' )[ 'input_ids' ] __a =original_model.encoder.model.patch_embed(_snake_case ) __a , __a =model.encoder.embeddings(_snake_case ) assert torch.allclose(_snake_case , _snake_case , atol=1e-3 ) # verify encoder hidden states __a =original_model.encoder(_snake_case ) __a =model.encoder(_snake_case ).last_hidden_state assert torch.allclose(_snake_case , _snake_case , atol=1e-2 ) # verify decoder hidden states __a =original_model(_snake_case , _snake_case , _snake_case ).logits __a =model(_snake_case , decoder_input_ids=_snake_case ).logits assert torch.allclose(_snake_case , _snake_case , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(_snake_case ) processor.save_pretrained(_snake_case ) if push_to_hub: model.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) processor.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) _lowerCAmelCase : List[Any] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
308
1
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") _lowerCAmelCase : Optional[Any] = logging.getLogger(__name__) @dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) SCREAMING_SNAKE_CASE = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) SCREAMING_SNAKE_CASE = field( default=1_0_2_4 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the training data.'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the validation data.'} ) SCREAMING_SNAKE_CASE = field(default=lowerCAmelCase_ , metadata={'help': 'A csv or a json file containing the test data.'} ) def __magic_name__ ( self ) -> str: '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: __a =self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." __a =self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __magic_name__ : SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) SCREAMING_SNAKE_CASE = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) SCREAMING_SNAKE_CASE = field( default=lowerCAmelCase_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def UpperCamelCase_( ): """simple docstring""" __a =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __a , __a , __a =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __a , __a , __a =parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) __a =training_args.get_process_log_level() logger.setLevel(_snake_case ) datasets.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __a =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __a =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __a =load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. __a ={'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: __a =data_args.train_file.split('.' )[-1] __a =data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." __a =data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(F'load a local file for {key}: {data_files[key]}' ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files __a =load_dataset('csv' , data_files=_snake_case , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files __a =load_dataset('json' , data_files=_snake_case , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels __a =raw_datasets['train'].features['label'].names __a =len(_snake_case ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __a =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer __a =TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=_snake_case , ) __a =BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: __a ='max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __a =False # Some models have set the order of the labels to use, so let's make sure we do use it. __a ={'Refused': 0, 'Entailed': 1} __a ={0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __a =min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(_snake_case : Tuple ): # Tokenize the texts def _convert_table_text_to_pandas(_snake_case : Optional[Any] ): __a =[_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] __a =pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd __a =examples['statement'] __a =list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) __a =tokenizer(_snake_case , _snake_case , padding=_snake_case , max_length=_snake_case , truncation=_snake_case ) __a =examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): __a =raw_datasets.map( _snake_case , batched=_snake_case , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) __a =raw_datasets['train'] if data_args.max_train_samples is not None: __a =train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) __a =raw_datasets['validation'] if data_args.max_eval_samples is not None: __a =eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) __a =raw_datasets['test'] if data_args.max_predict_samples is not None: __a =predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(_snake_case ) ) , 3 ): logger.info(F'Sample {index} of the training set: {train_dataset[index]}.' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_snake_case : EvalPrediction ): __a =p.predictions[0] if isinstance(p.predictions , _snake_case ) else p.predictions __a =np.argmax(_snake_case , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __a =default_data_collator elif training_args.fpaa: __a =DataCollatorWithPadding(_snake_case , pad_to_multiple_of=8 ) else: __a =None # Initialize our Trainer __a =Trainer( model=_snake_case , args=_snake_case , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_snake_case , tokenizer=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: __a =None if training_args.resume_from_checkpoint is not None: __a =training_args.resume_from_checkpoint elif last_checkpoint is not None: __a =last_checkpoint __a =trainer.train(resume_from_checkpoint=_snake_case ) __a =train_result.metrics __a =( data_args.max_train_samples if data_args.max_train_samples is not None else len(_snake_case ) ) __a =min(_snake_case , len(_snake_case ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , _snake_case ) trainer.save_metrics('train' , _snake_case ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __a =trainer.evaluate(eval_dataset=_snake_case ) __a =data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_snake_case ) __a =min(_snake_case , len(_snake_case ) ) trainer.log_metrics('eval' , _snake_case ) trainer.save_metrics('eval' , _snake_case ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. __a =predict_dataset.remove_columns('label' ) __a =trainer.predict(_snake_case , metric_key_prefix='predict' ).predictions __a =np.argmax(_snake_case , axis=1 ) __a =os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(_snake_case , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(_snake_case ): __a =label_list[item] writer.write(F'{index}\t{item}\n' ) __a ={'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**_snake_case ) else: trainer.create_model_card(**_snake_case ) def UpperCamelCase_( _snake_case : Union[str, Any] ): """simple docstring""" main() if __name__ == "__main__": main()
308
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __magic_name__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer SCREAMING_SNAKE_CASE = False def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' super().setUp() __a =['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] __a =dict(zip(__snake_case , range(len(__snake_case ) ) ) ) __a =['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] __a ={'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__snake_case ) ) def __magic_name__ ( self , **__snake_case ) -> Any: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def __magic_name__ ( self , __snake_case ) -> List[Any]: '''simple docstring''' __a ='adapt act apte' __a ='adapt act apte' return input_text, output_text def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __a ='adapt act apte' __a =['adapt', 'act', 'ap@@', 'te'] __a =tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) __a =[tokenizer.bos_token] + tokens + [tokenizer.eos_token] __a =[0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1384] __a ='I am a small frog.' __a =tok([src_text] , padding=__snake_case , truncation=__snake_case )['input_ids'] __a =tok.batch_decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __magic_name__ ( self ) -> str: '''simple docstring''' __a =BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) __a ='I am a small frog .' __a ='.' __a =tok(__snake_case )['input_ids'] __a =tok(__snake_case )['input_ids'] assert encoded[-1] == encoded_dot[0]
308
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : int = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __magic_name__ ( unittest.TestCase , lowerCAmelCase_ ): def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =load_tool('text-to-speech' ) self.tool.setup() def __magic_name__ ( self ) -> Dict: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) __a =self.tool('hey' ) __a =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) __a =self.tool('hey' ) __a =result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) )
308
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class __magic_name__ ( unittest.TestCase ): @slow def __magic_name__ ( self ) -> Dict: '''simple docstring''' __a =TFCamembertModel.from_pretrained('jplu/tf-camembert-base' ) __a =tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __a =model(__snake_case )['last_hidden_state'] __a =tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , __snake_case ) # compare the actual values for a slice. __a =tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
308
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> int: '''simple docstring''' __a =[] __a =[] for i in range(self.num_layers ): __a =self.in_channels if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =resnets __a =attentions if self.add_downsample: __a =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> Optional[Any]: '''simple docstring''' __a =() for resnet, attn in zip(self.resnets , self.attentions ): __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __a =self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> int: '''simple docstring''' __a =[] for i in range(self.num_layers ): __a =self.in_channels if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets if self.add_downsample: __a =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case=True ) -> Optional[int]: '''simple docstring''' __a =() for resnet in self.resnets: __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __a =self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =[] __a =[] for i in range(self.num_layers ): __a =self.in_channels if (i == self.num_layers - 1) else self.out_channels __a =self.prev_output_channel if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =resnets __a =attentions if self.add_upsample: __a =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[Any]: '''simple docstring''' for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states __a =res_hidden_states_tuple[-1] __a =res_hidden_states_tuple[:-1] __a =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __a =self.upsamplers_a(__snake_case ) return hidden_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =[] for i in range(self.num_layers ): __a =self.in_channels if (i == self.num_layers - 1) else self.out_channels __a =self.prev_output_channel if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets if self.add_upsample: __a =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[Any]: '''simple docstring''' for resnet in self.resnets: # pop res hidden states __a =res_hidden_states_tuple[-1] __a =res_hidden_states_tuple[:-1] __a =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __a =self.upsamplers_a(__snake_case ) return hidden_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # there is always at least one resnet __a =[ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] __a =[] for _ in range(self.num_layers ): __a =FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets __a =attentions def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[str]: '''simple docstring''' __a =self.resnets[0](__snake_case , __snake_case ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) return hidden_states
308
1
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand _lowerCAmelCase : Optional[Any] = ( "4S 3H 2C 7S 5H", "9D 8H 2C 6S 7H", "2D 6D 9D TH 7D", "TC 8C 2S JH 6C", "JH 8S TH AH QH", "TS KS 5S 9S AC", "KD 6S 9D TH AD", "KS 8D 4D 9S 4S", # pair "8C 4S KH JS 4D", # pair "QH 8H KD JH 8S", # pair "KC 4H KS 2H 8D", # pair "KD 4S KC 3H 8S", # pair "AH 8S AS KC JH", # pair "3H 4C 4H 3S 2H", # 2 pairs "5S 5D 2C KH KH", # 2 pairs "3C KH 5D 5S KH", # 2 pairs "AS 3C KH AD KH", # 2 pairs "7C 7S 3S 7H 5S", # 3 of a kind "7C 7S KH 2H 7H", # 3 of a kind "AC KH QH AH AS", # 3 of a kind "2H 4D 3C AS 5S", # straight (low ace) "3C 5C 4C 2C 6H", # straight "6S 8S 7S 5H 9H", # straight "JS QS 9H TS KH", # straight "QC KH TS JS AH", # straight (high ace) "8C 9C 5C 3C TC", # flush "3S 8S 9S 5S KS", # flush "4C 5C 9C 8C KC", # flush "JH 8H AH KH QH", # flush "3D 2H 3H 2C 2D", # full house "2H 2C 3S 3H 3D", # full house "KH KC 3S 3H 3D", # full house "JC 6H JS JD JH", # 4 of a kind "JC 7H JS JD JH", # 4 of a kind "JC KH JS JD JH", # 4 of a kind "2S AS 4S 5S 3S", # straight flush (low ace) "2D 6D 3D 4D 5D", # straight flush "5C 6C 3C 7C 4C", # straight flush "JH 9H TH KH QH", # straight flush "JH AH TH KH QH", # royal flush (high ace straight flush) ) _lowerCAmelCase : Optional[Any] = ( ("2H 3H 4H 5H 6H", "KS AS TS QS JS", "Loss"), ("2H 3H 4H 5H 6H", "AS AD AC AH JD", "Win"), ("AS AH 2H AD AC", "JS JD JC JH 3D", "Win"), ("2S AH 2H AS AC", "JS JD JC JH AD", "Loss"), ("2S AH 2H AS AC", "2H 3H 5H 6H 7H", "Win"), ("AS 3S 4S 8S 2S", "2H 3H 5H 6H 7H", "Win"), ("2H 3H 5H 6H 7H", "2S 3H 4H 5S 6C", "Win"), ("2S 3H 4H 5S 6C", "3D 4C 5H 6H 2S", "Tie"), ("2S 3H 4H 5S 6C", "AH AC 5H 6H AS", "Win"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H AS", "Loss"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H 7S", "Win"), ("6S AD 7H 4S AS", "AH AC 5H 6H 7S", "Loss"), ("2S AH 4H 5S KC", "AH AC 5H 6H 7S", "Loss"), ("2S 3H 6H 7S 9C", "7H 3C TH 6H 9S", "Loss"), ("4S 5H 6H TS AC", "3S 5H 6H TS AC", "Win"), ("2S AH 4H 5S 6C", "AD 4C 5H 6H 2C", "Tie"), ("AS AH 3H AD AC", "AS AH 2H AD AC", "Win"), ("AH AC 5H 5C QS", "AH AC 5H 5C KS", "Loss"), ("AH AC 5H 5C QS", "KH KC 5H 5C QS", "Win"), ("7C 7S KH 2H 7H", "3C 3S AH 2H 3H", "Win"), ("3C 3S AH 2H 3H", "7C 7S KH 2H 7H", "Loss"), ("6H 5H 4H 3H 2H", "5H 4H 3H 2H AH", "Win"), ("5H 4H 3H 2H AH", "5H 4H 3H 2H AH", "Tie"), ("5H 4H 3H 2H AH", "6H 5H 4H 3H 2H", "Loss"), ("AH AD KS KC AC", "AH KD KH AC KC", "Win"), ("2H 4D 3C AS 5S", "2H 4D 3C 6S 5S", "Loss"), ("2H 3S 3C 3H 2S", "3S 3C 2S 2H 2D", "Win"), ("4D 6D 5D 2D JH", "3S 8S 3H TC KH", "Loss"), ("4S 6C 8S 3S 7S", "AD KS 2D 7D 7C", "Loss"), ("6S 4C 7H 8C 3H", "5H JC AH 9D 9C", "Loss"), ("9D 9H JH TC QH", "3C 2S JS 5C 7H", "Win"), ("2H TC 8S AD 9S", "4H TS 7H 2C 5C", "Win"), ("9D 3S 2C 7S 7C", "JC TD 3C TC 9H", "Loss"), ) _lowerCAmelCase : List[Any] = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", True), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", False), ("AS 3S 4S 8S 2S", True), ) _lowerCAmelCase : Tuple = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", False), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", True), ) _lowerCAmelCase : int = ( ("2H 4D 3C AS 5S", True, [5, 4, 3, 2, 14]), ("2H 5D 3C AS 5S", False, [14, 5, 5, 3, 2]), ("JH QD KC AS TS", False, [14, 13, 12, 11, 10]), ("9D 3S 2C 7S 7C", False, [9, 7, 7, 3, 2]), ) _lowerCAmelCase : Optional[int] = ( ("JH AH TH KH QH", 0), ("JH 9H TH KH QH", 0), ("JC KH JS JD JH", 7), ("KH KC 3S 3H 3D", 6), ("8C 9C 5C 3C TC", 0), ("JS QS 9H TS KH", 0), ("7C 7S KH 2H 7H", 3), ("3C KH 5D 5S KH", 2), ("QH 8H KD JH 8S", 1), ("2D 6D 9D TH 7D", 0), ) _lowerCAmelCase : Optional[int] = ( ("JH AH TH KH QH", 23), ("JH 9H TH KH QH", 22), ("JC KH JS JD JH", 21), ("KH KC 3S 3H 3D", 20), ("8C 9C 5C 3C TC", 19), ("JS QS 9H TS KH", 18), ("7C 7S KH 2H 7H", 17), ("3C KH 5D 5S KH", 16), ("QH 8H KD JH 8S", 15), ("2D 6D 9D TH 7D", 14), ) def UpperCamelCase_( ): """simple docstring""" __a , __a =randrange(len(_snake_case ) ), randrange(len(_snake_case ) ) __a =['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] __a , __a =SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def UpperCamelCase_( _snake_case : int = 100 ): """simple docstring""" return (generate_random_hand() for _ in range(_snake_case )) @pytest.mark.parametrize('hand, expected' , _snake_case ) def UpperCamelCase_( _snake_case : List[Any] , _snake_case : Union[str, Any] ): """simple docstring""" assert PokerHand(_snake_case )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , _snake_case ) def UpperCamelCase_( _snake_case : Any , _snake_case : int ): """simple docstring""" assert PokerHand(_snake_case )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , _snake_case ) def UpperCamelCase_( _snake_case : int , _snake_case : List[str] , _snake_case : Any ): """simple docstring""" __a =PokerHand(_snake_case ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , _snake_case ) def UpperCamelCase_( _snake_case : Optional[int] , _snake_case : str ): """simple docstring""" assert PokerHand(_snake_case )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , _snake_case ) def UpperCamelCase_( _snake_case : List[str] , _snake_case : Tuple ): """simple docstring""" assert PokerHand(_snake_case )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , _snake_case ) def UpperCamelCase_( _snake_case : List[Any] , _snake_case : List[str] , _snake_case : str ): """simple docstring""" assert PokerHand(_snake_case ).compare_with(PokerHand(_snake_case ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def UpperCamelCase_( _snake_case : Optional[int] , _snake_case : List[str] , _snake_case : Optional[Any] ): """simple docstring""" assert PokerHand(_snake_case ).compare_with(PokerHand(_snake_case ) ) == expected def UpperCamelCase_( ): """simple docstring""" __a =[PokerHand(_snake_case ) for hand in SORTED_HANDS] __a =poker_hands.copy() shuffle(_snake_case ) __a =chain(sorted(_snake_case ) ) for index, hand in enumerate(_snake_case ): assert hand == poker_hands[index] def UpperCamelCase_( ): """simple docstring""" __a =[PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=_snake_case ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def UpperCamelCase_( ): """simple docstring""" __a =PokerHand('2C 4S AS 3D 5C' ) __a =True __a =[5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def UpperCamelCase_( ): """simple docstring""" __a =0 __a =os.path.abspath(os.path.dirname(_snake_case ) ) __a =os.path.join(_snake_case , 'poker_hands.txt' ) with open(_snake_case ) as file_hand: for line in file_hand: __a =line[:14].strip() __a =line[15:].strip() __a , __a =PokerHand(_snake_case ), PokerHand(_snake_case ) __a =player.compare_with(_snake_case ) if output == "Win": answer += 1 assert answer == 376
308
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_5_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self ) -> int: '''simple docstring''' if self.framework == "pytorch": subprocess.run( f'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding='utf-8' , check=__snake_case , ) assert hasattr(self , 'env' ) def __magic_name__ ( self , __snake_case ) -> int: '''simple docstring''' __a =f'{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}' # distributed data settings __a ={'smdistributed': {'dataparallel': {'enabled': True}}} if self.script != 'run_ddp.py' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=__snake_case , instance_count=__snake_case , instance_type=self.instance_type , debugger_hook_config=__snake_case , hyperparameters={**self.env.distributed_hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=__snake_case , py_version='py36' , ) def __magic_name__ ( self , __snake_case ) -> Optional[Any]: '''simple docstring''' TrainingJobAnalytics(__snake_case ).export_csv(f'{self.env.test_path}/{job_name}_metrics.csv' ) @parameterized.expand([(2,)] ) def __magic_name__ ( self , __snake_case ) -> Optional[int]: '''simple docstring''' # create estimator __a =self.create_estimator(__snake_case ) # run training estimator.fit() # result dataframe __a =TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __a =list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) __a =list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __a =( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'{estimator.latest_training_job.name}.json' , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , __snake_case )
308
1
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging _lowerCAmelCase : Any = logging.get_logger(__name__) class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = ['input_features', 'attention_mask'] def __init__( self , __snake_case=80 , __snake_case=1_6000 , __snake_case=0.0 , __snake_case=10 , __snake_case=25 , __snake_case="hamming_window" , __snake_case=3_2768.0 , __snake_case=0.97 , __snake_case=1.0 , __snake_case=True , __snake_case=True , __snake_case=False , **__snake_case , ) -> int: '''simple docstring''' super().__init__(feature_size=__snake_case , sampling_rate=__snake_case , padding_value=__snake_case , **__snake_case ) __a =feature_size __a =sampling_rate __a =padding_value __a =hop_length __a =win_length __a =frame_signal_scale __a =preemphasis_coeff __a =mel_floor __a =normalize_means __a =normalize_vars __a =win_function __a =return_attention_mask __a =win_length * sampling_rate // 1000 __a =hop_length * sampling_rate // 1000 __a =optimal_fft_length(self.sample_size ) __a =(self.n_fft // 2) + 1 def __magic_name__ ( self , __snake_case ) -> np.ndarray: '''simple docstring''' if self.win_function == "hamming_window": __a =window_function(window_length=self.sample_size , name=self.win_function , periodic=__snake_case ) else: __a =window_function(window_length=self.sample_size , name=self.win_function ) __a =mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) __a =spectrogram( one_waveform * self.frame_signal_scale , window=__snake_case , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=__snake_case , preemphasis=self.preemphasis_coeff , mel_filters=__snake_case , mel_floor=self.mel_floor , log_mel='log' , ) return msfc_features.T def __magic_name__ ( self , __snake_case , __snake_case , __snake_case ) -> int: '''simple docstring''' # make sure we normalize float32 arrays if self.normalize_means: __a =x[:input_length].mean(axis=0 ) __a =np.subtract(__snake_case , __snake_case ) if self.normalize_vars: __a =x[:input_length].std(axis=0 ) __a =np.divide(__snake_case , __snake_case ) if input_length < x.shape[0]: __a =padding_value # make sure array is in float32 __a =x.astype(np.floataa ) return x def __magic_name__ ( self , __snake_case , __snake_case = None ) -> List[np.ndarray]: '''simple docstring''' __a =attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(__snake_case , __snake_case , self.padding_value ) for x, n in zip(__snake_case , __snake_case )] def __call__( self , __snake_case , __snake_case = False , __snake_case = None , __snake_case = False , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , **__snake_case , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) __a =isinstance(__snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) __a =is_batched_numpy or ( isinstance(__snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __a =[np.asarray(__snake_case , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__snake_case , np.ndarray ): __a =np.asarray(__snake_case , dtype=np.floataa ) elif isinstance(__snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __a =raw_speech.astype(np.floataa ) # always return batch if not is_batched: __a =[raw_speech] # extract fbank features __a =[self._extract_mfsc_features(__snake_case ) for one_waveform in raw_speech] # convert into correct format for padding __a =BatchFeature({'input_features': features} ) __a =self.pad( __snake_case , padding=__snake_case , max_length=__snake_case , truncation=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , **__snake_case , ) # make sure list is in array format __a =padded_inputs.get('input_features' ) if isinstance(input_features[0] , __snake_case ): __a =[np.asarray(__snake_case , dtype=np.floataa ) for feature in input_features] __a =padded_inputs.get('attention_mask' ) if attention_mask is not None: __a =[np.asarray(__snake_case , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: __a =( np.array(__snake_case , dtype=np.intaa ) if self._get_padding_strategies(__snake_case , max_length=__snake_case ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) __a =self.normalize( padded_inputs['input_features'] , attention_mask=__snake_case ) if return_tensors is not None: __a =padded_inputs.convert_to_tensors(__snake_case ) return padded_inputs
308
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _lowerCAmelCase : List[Any] = logging.getLogger(__name__) _lowerCAmelCase : Optional[Any] = "Hello world! cécé herlolip" _lowerCAmelCase : str = namedtuple( "BertAbsConfig", [ "temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout", ], ) def UpperCamelCase_( _snake_case : str , _snake_case : List[Any] ): """simple docstring""" __a =BertAbsConfig( temp_dir='.' , finetune_bert=_snake_case , large=_snake_case , share_emb=_snake_case , use_bert_emb=_snake_case , encoder='bert' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) __a =torch.load(_snake_case , lambda _snake_case , _snake_case : storage ) __a =AbsSummarizer(_snake_case , torch.device('cpu' ) , _snake_case ) original.eval() __a =BertAbsSummarizer(_snake_case , torch.device('cpu' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('convert the model' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('Make sure that the models\' outputs are identical' ) __a =BertTokenizer.from_pretrained('bert-base-uncased' ) # prepare the model inputs __a =tokenizer.encode('This is sample éàalj\'-.' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_snake_case )) ) __a =torch.tensor(_snake_case ).unsqueeze(0 ) __a =tokenizer.encode('This is sample 3 éàalj\'-.' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_snake_case )) ) __a =torch.tensor(_snake_case ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __a =encoder_input_ids __a =decoder_input_ids __a =__a =None __a =None __a =__a =None __a =__a =None __a =None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __a =original(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )[0] __a =original.generator(_snake_case ) __a =new_model( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )[0] __a =new_model.generator(_snake_case ) __a =torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_snake_case ) ) __a =torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_snake_case ) ) __a =torch.allclose(_snake_case , _snake_case , atol=1e-3 ) if are_identical: logging.info('all weights are equal up to 1e-3' ) else: raise ValueError('the weights are different. The new model is likely different from the original one.' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('saving the model\'s state dictionary' ) torch.save( new_model.state_dict() , './bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--bertabs_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model.", ) _lowerCAmelCase : Optional[Any] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
308
1
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class __magic_name__ ( pl.LightningModule ): def __init__( self , __snake_case ) -> List[Any]: '''simple docstring''' super().__init__() __a =model __a =2 __a =nn.Linear(self.model.config.hidden_size , self.num_labels ) def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' pass def UpperCamelCase_( _snake_case : str , _snake_case : str , _snake_case : str ): """simple docstring""" __a =LongformerModel.from_pretrained(_snake_case ) __a =LightningModel(_snake_case ) __a =torch.load(_snake_case , map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model __a =LongformerForQuestionAnswering.from_pretrained(_snake_case ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(_snake_case ) print(F'Conversion successful. Model saved under {pytorch_dump_folder_path}' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowerCAmelCase : Optional[int] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
308
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ : def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=False , __snake_case=False , __snake_case=False , __snake_case=2 , __snake_case=99 , __snake_case=0 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=0.1 , __snake_case=0.1 , __snake_case=512 , __snake_case=2 , __snake_case=0.02 , __snake_case=2 , __snake_case=4 , __snake_case="last" , __snake_case=True , __snake_case=None , __snake_case=0 , ) -> Optional[Any]: '''simple docstring''' __a =parent __a =batch_size __a =seq_length __a =is_training __a =use_input_lengths __a =use_token_type_ids __a =use_labels __a =gelu_activation __a =sinusoidal_embeddings __a =causal __a =asm __a =n_langs __a =vocab_size __a =n_special __a =hidden_size __a =num_hidden_layers __a =num_attention_heads __a =hidden_dropout_prob __a =attention_probs_dropout_prob __a =max_position_embeddings __a =type_sequence_label_size __a =initializer_range __a =num_labels __a =num_choices __a =summary_type __a =use_proj __a =scope __a =bos_token_id def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a =random_attention_mask([self.batch_size, self.seq_length] ) __a =None if self.use_input_lengths: __a =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __a =None if self.use_token_type_ids: __a =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __a =None __a =None __a =None if self.use_labels: __a =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a =ids_tensor([self.batch_size] , 2 ).float() __a =ids_tensor([self.batch_size] , self.num_choices ) __a =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __magic_name__ ( self ) -> Any: '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> List[Any]: '''simple docstring''' __a =XLMModel(config=__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , lengths=__snake_case , langs=__snake_case ) __a =model(__snake_case , langs=__snake_case ) __a =model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Optional[int]: '''simple docstring''' __a =XLMWithLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Dict: '''simple docstring''' __a =XLMForQuestionAnsweringSimple(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) __a =outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> List[Any]: '''simple docstring''' __a =XLMForQuestionAnswering(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , p_mask=__snake_case , ) __a =model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , ) ((__a) , ) =result_with_labels.to_tuple() __a =model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) ((__a) , ) =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Optional[Any]: '''simple docstring''' __a =XLMForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case ) __a =model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Any: '''simple docstring''' __a =self.num_labels __a =XLMForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() __a =model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> Tuple: '''simple docstring''' __a =self.num_choices __a =XLMForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() __a =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a =model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) =config_and_inputs __a ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable SCREAMING_SNAKE_CASE = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> int: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __magic_name__ ( self , __snake_case , __snake_case , __snake_case=False ) -> str: '''simple docstring''' __a =super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __a =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) __a =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =XLMModelTester(self ) __a =ConfigTester(self , config_class=__snake_case , emb_dim=37 ) def __magic_name__ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__snake_case ) def __magic_name__ ( self ) -> List[str]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__snake_case ) def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__snake_case ) def __magic_name__ ( self ) -> Any: '''simple docstring''' __a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__snake_case ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=False , __snake_case=1 ) -> Optional[Any]: '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_attentions in attentions] , [True] * len(__snake_case ) ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__snake_case ): # adds PAD dummy token __a =min_length + idx + 1 __a =min_length + idx + 1 __a =( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__snake_case ) ) def __magic_name__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=False , __snake_case=1 ) -> Dict: '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_hidden_states in hidden_states] , [True] * len(__snake_case ) , ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__snake_case ): # adds PAD dummy token __a =min_length + idx + 1 __a =(batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__snake_case ) , ) pass @slow def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a =XLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class __magic_name__ ( unittest.TestCase ): @slow def __magic_name__ ( self ) -> Tuple: '''simple docstring''' __a =XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(__snake_case ) __a =torch.tensor([[14, 447]] , dtype=torch.long , device=__snake_case ) # the president __a =[ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __a =model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __snake_case )
308
1
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def UpperCamelCase_( _snake_case : np.ndarray ): """simple docstring""" return input_array.reshape((input_array.size, 1) ) def UpperCamelCase_( _snake_case : np.ndarray , _snake_case : np.ndarray , _snake_case : int ): """simple docstring""" __a =np.nan for i in range(_snake_case ): __a =features[:, labels == i] __a =data.mean(1 ) # Centralize the data of class i __a =data - column_reshape(_snake_case ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_snake_case , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) __a =np.dot(_snake_case , centered_data.T ) return covariance_sum / features.shape[1] def UpperCamelCase_( _snake_case : np.ndarray , _snake_case : np.ndarray , _snake_case : int ): """simple docstring""" __a =features.mean(1 ) __a =np.nan for i in range(_snake_case ): __a =features[:, labels == i] __a =data.shape[1] __a =data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_snake_case ) - column_reshape(_snake_case ) , (column_reshape(_snake_case ) - column_reshape(_snake_case )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) __a =device_data * np.dot( column_reshape(_snake_case ) - column_reshape(_snake_case ) , (column_reshape(_snake_case ) - column_reshape(_snake_case )).T , ) return covariance_sum / features.shape[1] def UpperCamelCase_( _snake_case : np.ndarray , _snake_case : int ): """simple docstring""" if features.any(): __a =features.mean(1 ) # Center the dataset __a =features - np.reshape(_snake_case , (data_mean.size, 1) ) __a =np.dot(_snake_case , centered_data.T ) / features.shape[1] __a , __a =np.linalg.eigh(_snake_case ) # Take all the columns in the reverse order (-1), and then takes only the first __a =eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space __a =np.dot(filtered_eigenvectors.T , _snake_case ) logging.info('Principal Component Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='%(message)s' , force=_snake_case ) logging.error('Dataset empty' ) raise AssertionError def UpperCamelCase_( _snake_case : np.ndarray , _snake_case : np.ndarray , _snake_case : int , _snake_case : int ): """simple docstring""" assert classes > dimensions # Check if features have been already loaded if features.any: __a , __a =eigh( covariance_between_classes(_snake_case , _snake_case , _snake_case ) , covariance_within_classes(_snake_case , _snake_case , _snake_case ) , ) __a =eigenvectors[:, ::-1][:, :dimensions] __a , __a , __a =np.linalg.svd(_snake_case ) __a =svd_matrix[:, 0:dimensions] __a =np.dot(filtered_svd_matrix.T , _snake_case ) logging.info('Linear Discriminant Analysis computed' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='%(message)s' , force=_snake_case ) logging.error('Dataset empty' ) raise AssertionError def UpperCamelCase_( ): """simple docstring""" __a =np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) __a =np.array([0, 0, 0, 1, 1] ) __a =2 __a =2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_snake_case ) as error_info: __a =linear_discriminant_analysis( _snake_case , _snake_case , _snake_case , _snake_case ) if isinstance(_snake_case , np.ndarray ): raise AssertionError( 'Did not raise AssertionError for dimensions > classes' ) assert error_info.type is AssertionError def UpperCamelCase_( ): """simple docstring""" __a =np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) __a =2 __a =np.array([[6.92_820_323, 8.66_025_404, 10.39_230_485], [3.0, 3.0, 3.0]] ) with pytest.raises(_snake_case ) as error_info: __a =principal_component_analysis(_snake_case , _snake_case ) if not np.allclose(_snake_case , _snake_case ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
308
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake _lowerCAmelCase : Optional[Any] = numpy.array([0, 0]) _lowerCAmelCase : Dict = numpy.array([0.5, 0.8660254]) _lowerCAmelCase : Any = numpy.array([1, 0]) _lowerCAmelCase : int = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCamelCase_( _snake_case : list[numpy.ndarray] , _snake_case : int ): """simple docstring""" __a =initial_vectors for _ in range(_snake_case ): __a =iteration_step(_snake_case ) return vectors def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =[] for i, start_vector in enumerate(vectors[:-1] ): __a =vectors[i + 1] new_vectors.append(_snake_case ) __a =end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCamelCase_( _snake_case : numpy.ndarray , _snake_case : float ): """simple docstring""" __a =numpy.radians(_snake_case ) __a , __a =numpy.cos(_snake_case ), numpy.sin(_snake_case ) __a =numpy.array(((c, -s), (s, c)) ) return numpy.dot(_snake_case , _snake_case ) def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() __a , __a =zip(*_snake_case ) plt.plot(_snake_case , _snake_case ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : List[Any] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
308
1
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake _lowerCAmelCase : Optional[Any] = numpy.array([0, 0]) _lowerCAmelCase : Dict = numpy.array([0.5, 0.8660254]) _lowerCAmelCase : Any = numpy.array([1, 0]) _lowerCAmelCase : int = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCamelCase_( _snake_case : list[numpy.ndarray] , _snake_case : int ): """simple docstring""" __a =initial_vectors for _ in range(_snake_case ): __a =iteration_step(_snake_case ) return vectors def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =[] for i, start_vector in enumerate(vectors[:-1] ): __a =vectors[i + 1] new_vectors.append(_snake_case ) __a =end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCamelCase_( _snake_case : numpy.ndarray , _snake_case : float ): """simple docstring""" __a =numpy.radians(_snake_case ) __a , __a =numpy.cos(_snake_case ), numpy.sin(_snake_case ) __a =numpy.array(((c, -s), (s, c)) ) return numpy.dot(_snake_case , _snake_case ) def UpperCamelCase_( _snake_case : list[numpy.ndarray] ): """simple docstring""" __a =plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() __a , __a =zip(*_snake_case ) plt.plot(_snake_case , _snake_case ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : List[Any] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
308
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Tuple = { "configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MegatronBertForCausalLM", "MegatronBertForMaskedLM", "MegatronBertForMultipleChoice", "MegatronBertForNextSentencePrediction", "MegatronBertForPreTraining", "MegatronBertForQuestionAnswering", "MegatronBertForSequenceClassification", "MegatronBertForTokenClassification", "MegatronBertModel", "MegatronBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys _lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
308
1