code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def snake_case_ ( lowerCAmelCase_ : List[str] ): return np.dot(_lowerCAmelCase , _lowerCAmelCase ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , *, __a : float = np.inf , __a : str = "linear" , __a : float = 0.0 , ) -> Tuple: """simple docstring""" __lowercase : List[Any] = regularization __lowercase : List[Any] = gamma if kernel == "linear": __lowercase : List[str] = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError("""rbf kernel requires gamma""" ) if not isinstance(self.gamma , (float, int) ): raise ValueError("""gamma must be float or int""" ) if not self.gamma > 0: raise ValueError("""gamma must be > 0""" ) __lowercase : int = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: __lowercase : int = F"Unknown kernel: {kernel}" raise ValueError(_lowerCAmelCase ) def lowerCAmelCase ( self : List[Any] , __a : ndarray , __a : ndarray ) -> Optional[int]: """simple docstring""" return np.dot(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase ( self : List[Any] , __a : ndarray , __a : ndarray ) -> Tuple: """simple docstring""" return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def lowerCAmelCase ( self : Union[str, Any] , __a : list[ndarray] , __a : ndarray ) -> Dict: """simple docstring""" __lowercase : Optional[Any] = observations __lowercase : Union[str, Any] = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((__lowercase ) , ) : str = np.shape(_lowerCAmelCase ) def to_minimize(__a : ndarray ) -> float: __lowercase : List[Any] = 0 ((__lowercase ) , ) : List[str] = np.shape(_lowerCAmelCase ) for i in range(_lowerCAmelCase ): for j in range(_lowerCAmelCase ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(_lowerCAmelCase ) __lowercase : List[str] = LinearConstraint(_lowerCAmelCase , 0 , 0 ) __lowercase : str = Bounds(0 , self.regularization ) __lowercase : List[Any] = minimize( _lowerCAmelCase , np.ones(_lowerCAmelCase ) , bounds=_lowerCAmelCase , constraints=[ly_contraint] ).x __lowercase : Optional[Any] = l_star # calculating mean offset of separation plane to points __lowercase : Any = 0 for i in range(_lowerCAmelCase ): for j in range(_lowerCAmelCase ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) __lowercase : Union[str, Any] = s / n def lowerCAmelCase ( self : Tuple , __a : ndarray ) -> str: """simple docstring""" __lowercase : Any = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , _lowerCAmelCase ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
354
from scipy.stats import spearmanr import datasets lowerCamelCase : List[str] = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' lowerCamelCase : List[str] = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' lowerCamelCase : Union[str, Any] = r'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def lowerCAmelCase ( self : List[Any] , __a : str , __a : Any , __a : Optional[int]=False ) -> List[str]: """simple docstring""" __lowercase : Optional[Any] = spearmanr(__a , __a ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
306
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 650, '''eval_accuracy''': 0.6, '''eval_loss''': 0.9}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 600, '''eval_accuracy''': 0.3, '''eval_loss''': 0.9}, }, ] ) class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" if self.framework == "pytorch": subprocess.run( F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding="""utf-8""" , check=_SCREAMING_SNAKE_CASE , ) assert hasattr(self , """env""" ) def lowerCAmelCase ( self : List[str] , __a : str=1 ) -> Dict: """simple docstring""" return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"{self.env.base_job_name}-single" , instance_count=_SCREAMING_SNAKE_CASE , instance_type=self.instance_type , debugger_hook_config=_SCREAMING_SNAKE_CASE , hyperparameters={**self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version="""py36""" , ) def lowerCAmelCase ( self : Tuple , __a : Any ) -> List[Any]: """simple docstring""" TrainingJobAnalytics(_SCREAMING_SNAKE_CASE ).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv" ) def lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" __lowercase : Optional[int] = self.create_estimator() # run training estimator.fit() # result dataframe __lowercase : List[Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __lowercase : List[str] = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) __lowercase : Optional[Any] = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __lowercase : Optional[int] = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"{estimator.latest_training_job.name}.json" , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , _SCREAMING_SNAKE_CASE )
355
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Any = get_failure_array(lowerCAmelCase_ ) # 2) Step through text searching for pattern __lowercase , __lowercase : Optional[int] = 0, 0 # index into text, pattern while i < len(lowerCAmelCase_ ): if pattern[j] == text[i]: if j == (len(lowerCAmelCase_ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: __lowercase : Optional[Any] = failure[j - 1] continue i += 1 return False def snake_case_ ( lowerCAmelCase_ : str ): __lowercase : List[Any] = [0] __lowercase : Optional[Any] = 0 __lowercase : List[Any] = 1 while j < len(lowerCAmelCase_ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: __lowercase : List[str] = failure[i - 1] continue j += 1 failure.append(lowerCAmelCase_ ) return failure if __name__ == "__main__": # Test 1) lowerCamelCase : Dict = '''abc1abc12''' lowerCamelCase : Union[str, Any] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' lowerCamelCase : Any = '''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) lowerCamelCase : List[Any] = '''ABABX''' lowerCamelCase : List[Any] = '''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) lowerCamelCase : int = '''AAAB''' lowerCamelCase : Optional[int] = '''ABAAAAAB''' assert kmp(pattern, text) # Test 4) lowerCamelCase : Optional[Any] = '''abcdabcy''' lowerCamelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) lowerCamelCase : Dict = '''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
306
0
import math import flax.linen as nn import jax.numpy as jnp def snake_case_ ( lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : int , lowerCAmelCase_ : float = 1 , lowerCAmelCase_ : float = 1 , lowerCAmelCase_ : float = 1.0e4 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : float = 1.0 , ): assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, F"Embedding dimension {embedding_dim} should be even" __lowercase : Dict = float(embedding_dim // 2 ) __lowercase : Dict = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) __lowercase : Optional[int] = min_timescale * jnp.exp(jnp.arange(lowerCAmelCase_ , dtype=jnp.floataa ) * -log_timescale_increment ) __lowercase : int = jnp.expand_dims(lowerCAmelCase_ , 1 ) * jnp.expand_dims(lowerCAmelCase_ , 0 ) # scale embeddings __lowercase : Tuple = scale * emb if flip_sin_to_cos: __lowercase : Tuple = jnp.concatenate([jnp.cos(lowerCAmelCase_ ), jnp.sin(lowerCAmelCase_ )] , axis=1 ) else: __lowercase : Optional[int] = jnp.concatenate([jnp.sin(lowerCAmelCase_ ), jnp.cos(lowerCAmelCase_ )] , axis=1 ) __lowercase : Optional[Any] = jnp.reshape(lowerCAmelCase_ , [jnp.shape(lowerCAmelCase_ )[0], embedding_dim] ) return signal class lowerCAmelCase ( nn.Module ): '''simple docstring''' _A : Any = 32 _A : Union[str, Any] = jnp.floataa @nn.compact def __call__( self : str , __a : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase : str = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="""linear_1""" )(__a ) __lowercase : int = nn.silu(__a ) __lowercase : Optional[Any] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="""linear_2""" )(__a ) return temb class lowerCAmelCase ( nn.Module ): '''simple docstring''' _A : Optional[Any] = 32 _A : int = False _A : List[Any] = 1 @nn.compact def __call__( self : int , __a : Any ) -> str: """simple docstring""" return get_sinusoidal_embeddings( __a , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
356
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = ['''pixel_values'''] def __init__( self : Any , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : bool = True , __a : Dict[str, int] = None , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = True , **__a : str , ) -> None: """simple docstring""" super().__init__(**__a ) __lowercase : Dict = size if size is not None else {"""shortest_edge""": 224} __lowercase : Union[str, Any] = get_size_dict(__a , default_to_square=__a ) __lowercase : int = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __lowercase : Any = get_size_dict(__a , default_to_square=__a , param_name="""crop_size""" ) __lowercase : Optional[int] = do_resize __lowercase : Union[str, Any] = size __lowercase : List[Any] = resample __lowercase : Any = do_center_crop __lowercase : Dict = crop_size __lowercase : int = do_rescale __lowercase : Tuple = rescale_factor __lowercase : List[Any] = do_normalize __lowercase : Union[str, Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowercase : int = image_std if image_std is not None else OPENAI_CLIP_STD __lowercase : Union[str, Any] = do_convert_rgb def lowerCAmelCase ( self : Union[str, Any] , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[Any] , ) -> np.ndarray: """simple docstring""" __lowercase : Dict = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) __lowercase : str = get_resize_output_image_size(__a , size=size["""shortest_edge"""] , default_to_square=__a ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Any , ) -> np.ndarray: """simple docstring""" __lowercase : Tuple = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(__a , size=(size["""height"""], size["""width"""]) , data_format=__a , **__a ) def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : Union[int, float] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[Any] , ) -> List[str]: """simple docstring""" return rescale(__a , scale=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Optional[int] , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] , ) -> np.ndarray: """simple docstring""" return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Optional[int] , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : int = None , __a : bool = None , __a : float = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = None , __a : Optional[Union[str, TensorType]] = None , __a : Optional[ChannelDimension] = ChannelDimension.FIRST , **__a : List[Any] , ) -> PIL.Image.Image: """simple docstring""" __lowercase : List[Any] = do_resize if do_resize is not None else self.do_resize __lowercase : Dict = size if size is not None else self.size __lowercase : Tuple = get_size_dict(__a , param_name="""size""" , default_to_square=__a ) __lowercase : int = resample if resample is not None else self.resample __lowercase : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase : List[Any] = crop_size if crop_size is not None else self.crop_size __lowercase : List[str] = get_size_dict(__a , param_name="""crop_size""" , default_to_square=__a ) __lowercase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __lowercase : str = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase : Dict = do_normalize if do_normalize is not None else self.do_normalize __lowercase : Tuple = image_mean if image_mean is not None else self.image_mean __lowercase : str = image_std if image_std is not None else self.image_std __lowercase : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase : Union[str, Any] = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase : Union[str, Any] = [convert_to_rgb(__a ) for image in images] # All transformations expect numpy arrays. __lowercase : Any = [to_numpy_array(__a ) for image in images] if do_resize: __lowercase : str = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: __lowercase : str = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: __lowercase : Dict = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: __lowercase : Optional[Any] = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] __lowercase : Any = [to_channel_dimension_format(__a , __a ) for image in images] __lowercase : Optional[int] = {"""pixel_values""": images} return BatchFeature(data=__a , tensor_type=__a )
306
0
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : int = len(lowerCAmelCase_ ) __lowercase : int = len(lowerCAmelCase_ ) __lowercase : int = ( first_str_length if first_str_length > second_str_length else second_str_length ) __lowercase : list = [] for char_count in range(lowerCAmelCase_ ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(lowerCAmelCase_ ) if __name__ == "__main__": print(alternative_string_arrange('''AB''', '''XYZ'''), end=''' ''')
357
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str ): __lowercase : Tuple = s.rsplit(lowerCAmelCase_ , lowerCAmelCase_ ) return new.join(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : List[Any] ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : List[str] = {} __lowercase : Tuple = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __lowercase : List[str] = key.replace(F"{group_key}." , F"{group_key}.group." ) if "res_path" in key: __lowercase : List[Any] = key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): __lowercase : Union[str, Any] = rreplace(lowerCAmelCase_ , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): __lowercase : Tuple = rreplace(lowerCAmelCase_ , """.b""" , """.bias""" , 1 ) __lowercase : Dict = value.float() return upgrade @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=True ): from dall_e import Encoder __lowercase : Any = Encoder() if os.path.exists(lowerCAmelCase_ ): __lowercase : List[Any] = torch.load(lowerCAmelCase_ ) else: __lowercase : List[Any] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : int = ckpt.state_dict() encoder.load_state_dict(lowerCAmelCase_ ) if config_path is not None: __lowercase : Optional[int] = FlavaImageCodebookConfig.from_pretrained(lowerCAmelCase_ ) else: __lowercase : List[str] = FlavaImageCodebookConfig() __lowercase : Optional[Any] = FlavaImageCodebook(lowerCAmelCase_ ).eval() __lowercase : List[Any] = encoder.state_dict() __lowercase : Union[str, Any] = upgrade_state_dict(lowerCAmelCase_ ) hf_model.load_state_dict(lowerCAmelCase_ ) __lowercase : Dict = hf_model.state_dict() __lowercase : Tuple = count_parameters(lowerCAmelCase_ ) __lowercase : Tuple = count_parameters(lowerCAmelCase_ ) assert torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(lowerCAmelCase_ ) else: return hf_state_dict if __name__ == "__main__": lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowerCamelCase : Union[str, Any] = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
306
0
def snake_case_ ( lowerCAmelCase_ : Dict ): if not all(char in """01""" for char in bin_string ): raise ValueError("""Non-binary value was passed to the function""" ) if not bin_string: raise ValueError("""Empty string was passed to the function""" ) __lowercase : Union[str, Any] = """""" while len(A__ ) % 3 != 0: __lowercase : Optional[int] = """0""" + bin_string __lowercase : Optional[int] = [ bin_string[index : index + 3] for index in range(len(A__ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: __lowercase : Any = 0 for index, val in enumerate(A__ ): oct_val += int(2 ** (2 - index) * int(A__ ) ) oct_string += str(A__ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
358
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging lowerCamelCase : Tuple = logging.get_logger(__name__) logging.set_verbosity_info() def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): if "xprophetnet" in prophetnet_checkpoint_path: __lowercase : List[str] = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) __lowercase , __lowercase : int = XLMProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) else: __lowercase : List[Any] = ProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) __lowercase , __lowercase : Optional[Any] = ProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) __lowercase : List[str] = ["""key_proj""", """value_proj""", """query_proj"""] __lowercase : Optional[int] = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: __lowercase : Tuple = key.split(""".""" ) if attributes[0] == "lm_head": __lowercase : str = prophet __lowercase : List[str] = prophet_old else: __lowercase : Tuple = prophet.prophetnet __lowercase : Union[str, Any] = prophet_old.model __lowercase : Optional[Any] = False for attribute in attributes: if attribute in mapping: __lowercase : Optional[int] = mapping[attribute] if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) > 0: __lowercase : str = attribute elif hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : List[Any] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" __lowercase : Any = old_model.weight logger.info(F"{attribute} is initialized." ) __lowercase : Any = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" __lowercase : Dict = old_model.bias logger.info(F"{attribute} is initialized" ) __lowercase : int = True break elif attribute in special_keys and hasattr(lowerCAmelCase_ , """in_proj_weight""" ): __lowercase : Dict = old_model.in_proj_weight.shape[0] // 3 __lowercase : Tuple = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": __lowercase : Union[str, Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) __lowercase : int = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": __lowercase : Any = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) __lowercase : List[Any] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": __lowercase : Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) __lowercase : int = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) __lowercase : int = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." __lowercase : Optional[Any] = nn.Parameter(old_model.embed_positions.weight[:512, :] ) __lowercase : int = True break if attribute.isdigit(): __lowercase : Tuple = model[int(lowerCAmelCase_ )] __lowercase : int = old_model[int(lowerCAmelCase_ )] else: __lowercase : Union[str, Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if old_attribute == "": __lowercase : int = old_model else: if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError(F"{old_model} does not have {old_attribute}" ) __lowercase : List[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if not is_key_init: raise ValueError(F"{key} was not correctly initialized!" ) print(F"Saving model to {pytorch_dump_folder_path}" ) prophet.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCamelCase : Any = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
306
0
"""simple docstring""" import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : str ): return params[F"{prefix}/{prefix}/relpos_bias/rel_embedding"][:, i, :] def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int]="attention" ): __lowercase : Optional[int] = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/key/kernel"][:, i, :, :] ) __lowercase : Dict = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) __lowercase : str = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/out/kernel"][:, i, :, :] ) __lowercase : Union[str, Any] = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) __lowercase : Any = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/query/kernel"][:, i, :, :] ) __lowercase : Any = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) __lowercase : Any = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/value/kernel"][:, i, :, :] ) __lowercase : Optional[Any] = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any]=False ): if split_mlp_wi: __lowercase : Any = params[F"{prefix}/{prefix}/mlp/wi_0/kernel"][:, i, :] __lowercase : List[Any] = params[F"{prefix}/{prefix}/mlp/wi_1/kernel"][:, i, :] __lowercase : Tuple = (wi_a, wi_a) else: __lowercase : Any = params[F"{prefix}/{prefix}/mlp/wi/kernel"][:, i, :] __lowercase : str = params[F"{prefix}/{prefix}/mlp/wo/kernel"][:, i, :] return wi, wo def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[int] ): return params[F"{prefix}/{prefix}/{layer_name}/scale"][:, i] def snake_case_ ( lowerCAmelCase_ : List[str] , *, lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple = False ): __lowercase : Optional[Any] = traverse_util.flatten_dict(variables["""target"""] ) __lowercase : Tuple = {'/'.join(_UpperCAmelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __lowercase : Optional[Any] = 'encoder/encoder/mlp/wi_0/kernel' in old print("""Split MLP:""" , _UpperCAmelCase ) __lowercase : int = collections.OrderedDict() # Shared embeddings. __lowercase : List[Any] = old['token_embedder/embedding'] # Encoder. for i in range(_UpperCAmelCase ): # Block i, layer 0 (Self Attention). __lowercase : Dict = tax_layer_norm_lookup(_UpperCAmelCase , _UpperCAmelCase , """encoder""" , """pre_attention_layer_norm""" ) __lowercase : Tuple = tax_attention_lookup(_UpperCAmelCase , _UpperCAmelCase , """encoder""" , """attention""" ) __lowercase : Optional[int] = layer_norm __lowercase : str = k.T __lowercase : Union[str, Any] = o.T __lowercase : Any = q.T __lowercase : Dict = v.T # Block i, layer 1 (MLP). __lowercase : Optional[Any] = tax_layer_norm_lookup(_UpperCAmelCase , _UpperCAmelCase , """encoder""" , """pre_mlp_layer_norm""" ) __lowercase : List[str] = tax_mlp_lookup(_UpperCAmelCase , _UpperCAmelCase , """encoder""" , _UpperCAmelCase ) __lowercase : List[Any] = layer_norm if split_mlp_wi: __lowercase : str = wi[0].T __lowercase : Any = wi[1].T else: __lowercase : int = wi.T __lowercase : str = wo.T if scalable_attention: # convert the rel_embedding of each layer __lowercase : str = tax_relpos_bias_lookup( _UpperCAmelCase , _UpperCAmelCase , """encoder""" ).T __lowercase : int = old['encoder/encoder_norm/scale'] if not scalable_attention: __lowercase : Optional[Any] = tax_relpos_bias_lookup( _UpperCAmelCase , 0 , """encoder""" ).T __lowercase : List[str] = tax_relpos_bias_lookup( _UpperCAmelCase , 0 , """decoder""" ).T if not is_encoder_only: # Decoder. for i in range(_UpperCAmelCase ): # Block i, layer 0 (Self Attention). __lowercase : Optional[int] = tax_layer_norm_lookup(_UpperCAmelCase , _UpperCAmelCase , """decoder""" , """pre_self_attention_layer_norm""" ) __lowercase : Tuple = tax_attention_lookup(_UpperCAmelCase , _UpperCAmelCase , """decoder""" , """self_attention""" ) __lowercase : Dict = layer_norm __lowercase : Any = k.T __lowercase : str = o.T __lowercase : List[Any] = q.T __lowercase : Optional[int] = v.T # Block i, layer 1 (Cross Attention). __lowercase : Any = tax_layer_norm_lookup(_UpperCAmelCase , _UpperCAmelCase , """decoder""" , """pre_cross_attention_layer_norm""" ) __lowercase : Dict = tax_attention_lookup(_UpperCAmelCase , _UpperCAmelCase , """decoder""" , """encoder_decoder_attention""" ) __lowercase : Optional[Any] = layer_norm __lowercase : Union[str, Any] = k.T __lowercase : List[Any] = o.T __lowercase : Any = q.T __lowercase : Dict = v.T # Block i, layer 2 (MLP). __lowercase : int = tax_layer_norm_lookup(_UpperCAmelCase , _UpperCAmelCase , """decoder""" , """pre_mlp_layer_norm""" ) __lowercase : Union[str, Any] = tax_mlp_lookup(_UpperCAmelCase , _UpperCAmelCase , """decoder""" , _UpperCAmelCase ) __lowercase : Optional[Any] = layer_norm if split_mlp_wi: __lowercase : Optional[int] = wi[0].T __lowercase : List[str] = wi[1].T else: __lowercase : Any = wi.T __lowercase : str = wo.T if scalable_attention: # convert the rel_embedding of each layer __lowercase : str = tax_relpos_bias_lookup(_UpperCAmelCase , _UpperCAmelCase , """decoder""" ).T __lowercase : List[Any] = old['decoder/decoder_norm/scale'] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __lowercase : Union[str, Any] = old['decoder/logits_dense/kernel'].T return new def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : Any ): __lowercase : Optional[Any] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __lowercase : Union[str, Any] = state_dict['shared.weight'] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __lowercase : Optional[Any] = state_dict['shared.weight'] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) __lowercase : Optional[Any] = state_dict['shared.weight'] return state_dict def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Any ): __lowercase : int = checkpoints.load_tax_checkpoint(_UpperCAmelCase ) __lowercase : Tuple = convert_tax_to_pytorch( _UpperCAmelCase , num_layers=config.num_layers , is_encoder_only=_UpperCAmelCase , scalable_attention=_UpperCAmelCase ) __lowercase : int = make_state_dict(_UpperCAmelCase , _UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) def snake_case_ ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str = False , lowerCAmelCase_ : Union[str, Any] = False , ): __lowercase : str = MTaConfig.from_json_file(_UpperCAmelCase ) print(F"Building PyTorch model from configuration: {config}" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __lowercase : Optional[int] = UMTaEncoderModel(_UpperCAmelCase ) else: __lowercase : Union[str, Any] = UMTaForConditionalGeneration(_UpperCAmelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_UpperCAmelCase ) # Verify that we can load the checkpoint. model.from_pretrained(_UpperCAmelCase ) print("""Done""" ) if __name__ == "__main__": lowerCamelCase : Tuple = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) lowerCamelCase : Dict = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
359
def snake_case_ ( lowerCAmelCase_ : int = 200 ): __lowercase : List[str] = [1, 2, 5, 10, 20, 50, 100, 200] __lowercase : List[str] = [0] * (pence + 1) __lowercase : Optional[Any] = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowerCAmelCase_ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
306
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _A : Optional[Any] = CycleDiffusionPipeline _A : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { '''negative_prompt''', '''height''', '''width''', '''negative_prompt_embeds''', } _A : List[str] = PipelineTesterMixin.required_optional_params - {'''latents'''} _A : Tuple = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''source_prompt'''} ) _A : Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS _A : Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) __lowercase : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __lowercase : Union[str, Any] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , num_train_timesteps=1000 , clip_sample=__UpperCamelCase , set_alpha_to_one=__UpperCamelCase , ) torch.manual_seed(0 ) __lowercase : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) __lowercase : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __lowercase : Dict = CLIPTextModel(__UpperCamelCase ) __lowercase : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowercase : str = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : int=0 ) -> str: """simple docstring""" __lowercase : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) __lowercase : List[str] = image / 2 + 0.5 if str(__UpperCamelCase ).startswith("""mps""" ): __lowercase : Any = torch.manual_seed(__UpperCamelCase ) else: __lowercase : Union[str, Any] = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) __lowercase : List[str] = { """prompt""": """An astronaut riding an elephant""", """source_prompt""": """An astronaut riding a horse""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """eta""": 0.1, """strength""": 0.8, """guidance_scale""": 3, """source_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : Dict = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowercase : Optional[int] = self.get_dummy_components() __lowercase : Optional[Any] = CycleDiffusionPipeline(**__UpperCamelCase ) __lowercase : Tuple = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) __lowercase : Optional[int] = self.get_dummy_inputs(__UpperCamelCase ) __lowercase : int = pipe(**__UpperCamelCase ) __lowercase : Optional[Any] = output.images __lowercase : List[str] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __lowercase : Dict = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = self.get_dummy_components() for name, module in components.items(): if hasattr(__UpperCamelCase , """half""" ): __lowercase : Any = module.half() __lowercase : List[Any] = CycleDiffusionPipeline(**__UpperCamelCase ) __lowercase : Tuple = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) __lowercase : Any = self.get_dummy_inputs(__UpperCamelCase ) __lowercase : int = pipe(**__UpperCamelCase ) __lowercase : Any = output.images __lowercase : Union[str, Any] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __lowercase : str = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" return super().test_save_load_local() @unittest.skip("""non-deterministic pipeline""" ) def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" return super().test_inference_batch_single_identical() @skip_mps def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" return super().test_dict_tuple_outputs_equivalent() @skip_mps def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" return super().test_save_load_optional_components() @skip_mps def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" __lowercase : Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) __lowercase : List[str] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy""" ) __lowercase : List[str] = init_image.resize((512, 512) ) __lowercase : Any = """CompVis/stable-diffusion-v1-4""" __lowercase : int = DDIMScheduler.from_pretrained(__UpperCamelCase , subfolder="""scheduler""" ) __lowercase : Optional[Any] = CycleDiffusionPipeline.from_pretrained( __UpperCamelCase , scheduler=__UpperCamelCase , safety_checker=__UpperCamelCase , torch_dtype=torch.floataa , revision="""fp16""" ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() __lowercase : Optional[Any] = """A black colored car""" __lowercase : str = """A blue colored car""" __lowercase : Any = torch.manual_seed(0 ) __lowercase : Optional[int] = pipe( prompt=__UpperCamelCase , source_prompt=__UpperCamelCase , image=__UpperCamelCase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=__UpperCamelCase , output_type="""np""" , ) __lowercase : Optional[int] = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) __lowercase : List[str] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy""" ) __lowercase : Tuple = init_image.resize((512, 512) ) __lowercase : Optional[Any] = """CompVis/stable-diffusion-v1-4""" __lowercase : Dict = DDIMScheduler.from_pretrained(__UpperCamelCase , subfolder="""scheduler""" ) __lowercase : Optional[int] = CycleDiffusionPipeline.from_pretrained(__UpperCamelCase , scheduler=__UpperCamelCase , safety_checker=__UpperCamelCase ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() __lowercase : List[Any] = """A black colored car""" __lowercase : Dict = """A blue colored car""" __lowercase : str = torch.manual_seed(0 ) __lowercase : Tuple = pipe( prompt=__UpperCamelCase , source_prompt=__UpperCamelCase , image=__UpperCamelCase , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=__UpperCamelCase , output_type="""np""" , ) __lowercase : str = output.images assert np.abs(image - expected_image ).max() < 2E-2
360
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , __a : Dict , __a : List[str]=None , __a : Optional[Any]=None , __a : Union[str, Any]=None , __a : int="resnet50" , __a : List[str]=3 , __a : Tuple=32 , __a : Dict=3 , __a : List[str]=True , __a : Union[str, Any]=True , ) -> Any: """simple docstring""" __lowercase : Optional[int] = parent __lowercase : List[str] = out_indices if out_indices is not None else [4] __lowercase : Optional[int] = stage_names __lowercase : Any = out_features __lowercase : Optional[Any] = backbone __lowercase : Optional[Any] = batch_size __lowercase : Union[str, Any] = image_size __lowercase : List[str] = num_channels __lowercase : str = use_pretrained_backbone __lowercase : str = is_training def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : str = self.get_config() return config, pixel_values def lowerCAmelCase ( self : int ) -> str: """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowerCAmelCase ( self : Optional[int] , __a : Dict , __a : Any ) -> Dict: """simple docstring""" __lowercase : Dict = TimmBackbone(config=__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Optional[Any] = model(__a ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.prepare_config_and_inputs() __lowercase , __lowercase : str = config_and_inputs __lowercase : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch @require_timm class lowerCAmelCase ( __a , __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[Any] = (TimmBackbone,) if is_torch_available() else () _A : Dict = {'''feature-extraction''': TimmBackbone} if is_torch_available() else {} _A : List[Any] = False _A : List[str] = False _A : Any = False _A : Optional[Any] = False def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : str = TimmBackboneModelTester(self ) __lowercase : Any = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" __lowercase : Tuple = """resnet18""" __lowercase : Optional[int] = """microsoft/resnet-18""" __lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a ) __lowercase : Dict = AutoBackbone.from_pretrained(__a ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a , out_indices=[1, 2, 3] ) __lowercase : Optional[Any] = AutoBackbone.from_pretrained(__a , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("""TimmBackbone doesn't support feed forward chunking""" ) def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""" ) def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""" ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't support output_attentions.""" ) def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Safetensors is not supported by timm.""" ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Optional[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : List[str] = [*signature.parameters.keys()] __lowercase : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Optional[Any] = True __lowercase : Union[str, Any] = self.has_attentions # no need to test all models as different heads yield the same functionality __lowercase : Union[str, Any] = self.all_model_classes[0] __lowercase : List[Any] = model_class(__a ) model.to(__a ) __lowercase : Optional[Any] = self._prepare_for_class(__a , __a ) __lowercase : Union[str, Any] = model(**__a ) __lowercase : Optional[int] = outputs[0][-1] # Encoder-/Decoder-only models __lowercase : Any = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowercase : Optional[int] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__a ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() __lowercase : int = model(**__a ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowercase : Any = copy.deepcopy(__a ) __lowercase : Dict = None __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() __lowercase : Optional[int] = model(**__a ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowercase : List[str] = copy.deepcopy(__a ) __lowercase : Optional[Any] = False __lowercase : str = model_class(__a ) model.to(__a ) model.eval() __lowercase : List[Any] = model(**__a )
306
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCamelCase : Tuple = {'''configuration_speech_encoder_decoder''': ['''SpeechEncoderDecoderConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[Any] = ['''SpeechEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = ['''FlaxSpeechEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
361
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : str = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } lowerCamelCase : Optional[Any] = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): for attribute in key.split(""".""" ): __lowercase : List[str] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if weight_type is not None: __lowercase : Union[str, Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ).shape else: __lowercase : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": __lowercase : Dict = value elif weight_type == "weight_g": __lowercase : Union[str, Any] = value elif weight_type == "weight_v": __lowercase : List[Any] = value elif weight_type == "bias": __lowercase : int = value elif weight_type == "running_mean": __lowercase : List[Any] = value elif weight_type == "running_var": __lowercase : int = value elif weight_type == "num_batches_tracked": __lowercase : int = value elif weight_type == "inv_freq": __lowercase : Optional[Any] = value else: __lowercase : Any = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] ): __lowercase : str = [] __lowercase : Any = fairseq_model.state_dict() __lowercase : List[str] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): __lowercase : Optional[Any] = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , hf_model.config.feat_extract_norm == """group""" , ) __lowercase : List[str] = True else: for key, mapped_key in MAPPING.items(): __lowercase : Any = """wav2vec2_conformer.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __lowercase : Tuple = True if "*" in mapped_key: __lowercase : List[Any] = name.split(lowerCAmelCase_ )[0].split(""".""" )[-2] __lowercase : Any = mapped_key.replace("""*""" , lowerCAmelCase_ ) if "pos_bias_u" in name: __lowercase : Any = None elif "pos_bias_v" in name: __lowercase : Tuple = None elif "weight_g" in name: __lowercase : Union[str, Any] = """weight_g""" elif "weight_v" in name: __lowercase : Dict = """weight_v""" elif "bias" in name: __lowercase : Union[str, Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowercase : str = """weight""" elif "running_mean" in name: __lowercase : str = """running_mean""" elif "inv_freq" in name: __lowercase : List[Any] = """inv_freq""" elif "running_var" in name: __lowercase : Any = """running_var""" elif "num_batches_tracked" in name: __lowercase : Any = """num_batches_tracked""" else: __lowercase : Optional[int] = None set_recursively(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) continue if not is_used: unused_weights.append(lowerCAmelCase_ ) logger.warning(F"Unused weights: {unused_weights}" ) def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] ): __lowercase : List[Any] = full_name.split("""conv_layers.""" )[-1] __lowercase : int = name.split(""".""" ) __lowercase : Optional[Any] = int(items[0] ) __lowercase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __lowercase : Union[str, Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __lowercase : List[str] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) __lowercase : Union[str, Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) __lowercase : Dict = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(lowerCAmelCase_ ) @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Dict=True ): if config_path is not None: __lowercase : List[Any] = WavaVecaConformerConfig.from_pretrained(lowerCAmelCase_ , hidden_act="""swish""" ) else: __lowercase : List[Any] = WavaVecaConformerConfig() if "rope" in checkpoint_path: __lowercase : Tuple = """rotary""" if is_finetuned: if dict_path: __lowercase : Any = Dictionary.load(lowerCAmelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __lowercase : List[Any] = target_dict.pad_index __lowercase : Optional[int] = target_dict.bos_index __lowercase : List[Any] = target_dict.eos_index __lowercase : List[str] = len(target_dict.symbols ) __lowercase : Union[str, Any] = os.path.join(lowerCAmelCase_ , """vocab.json""" ) if not os.path.isdir(lowerCAmelCase_ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowerCAmelCase_ ) ) return os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowercase : Tuple = target_dict.indices # fairseq has the <pad> and <s> switched __lowercase : int = 0 __lowercase : Any = 1 with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Dict = WavaVecaCTCTokenizer( lowerCAmelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowerCAmelCase_ , ) __lowercase : List[Any] = True if config.feat_extract_norm == """layer""" else False __lowercase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) __lowercase : Optional[int] = WavaVecaProcessor(feature_extractor=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) __lowercase : Union[str, Any] = WavaVecaConformerForCTC(lowerCAmelCase_ ) else: __lowercase : Optional[Any] = WavaVecaConformerForPreTraining(lowerCAmelCase_ ) if is_finetuned: __lowercase , __lowercase , __lowercase : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __lowercase : List[Any] = argparse.Namespace(task="""audio_pretraining""" ) __lowercase : Optional[Any] = fairseq.tasks.setup_task(lowerCAmelCase_ ) __lowercase , __lowercase , __lowercase : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase_ ) __lowercase : Dict = model[0].eval() recursively_load_weights(lowerCAmelCase_ , lowerCAmelCase_ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) lowerCamelCase : Any = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
306
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase : Optional[Any] = { "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
362
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError("""String lengths must match!""" ) __lowercase : str = 0 for chara, chara in zip(lowerCAmelCase_ , lowerCAmelCase_ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
306
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : int = { 'weiweishi/roc-bert-base-zh': 'https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json', } class lowerCAmelCase ( _A ): '''simple docstring''' _A : List[Any] = '''roc_bert''' def __init__( self : Tuple , __a : int=30522 , __a : Optional[int]=768 , __a : int=12 , __a : Tuple=12 , __a : Tuple=3072 , __a : Any="gelu" , __a : List[Any]=0.1 , __a : Optional[int]=0.1 , __a : Optional[int]=512 , __a : str=2 , __a : int=0.02 , __a : int=1E-12 , __a : Optional[int]=True , __a : List[str]=0 , __a : List[str]="absolute" , __a : Any=None , __a : Optional[Any]=True , __a : Any=True , __a : Optional[Any]=768 , __a : Optional[int]=910 , __a : List[Any]=512 , __a : Optional[Any]=24858 , __a : Dict=True , **__a : str , ) -> int: """simple docstring""" __lowercase : Tuple = vocab_size __lowercase : Tuple = max_position_embeddings __lowercase : Any = hidden_size __lowercase : Any = num_hidden_layers __lowercase : int = num_attention_heads __lowercase : List[str] = intermediate_size __lowercase : str = hidden_act __lowercase : Optional[int] = hidden_dropout_prob __lowercase : Any = attention_probs_dropout_prob __lowercase : Dict = initializer_range __lowercase : List[Any] = type_vocab_size __lowercase : int = layer_norm_eps __lowercase : Optional[int] = use_cache __lowercase : Dict = enable_pronunciation __lowercase : Tuple = enable_shape __lowercase : Optional[Any] = pronunciation_embed_dim __lowercase : Dict = pronunciation_vocab_size __lowercase : List[Any] = shape_embed_dim __lowercase : Optional[Any] = shape_vocab_size __lowercase : str = concat_input __lowercase : Any = position_embedding_type __lowercase : Optional[Any] = classifier_dropout super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
363
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def snake_case_ ( lowerCAmelCase_ : Tuple ): if isinstance(lowerCAmelCase_ , collections.abc.Iterable ): return x return (x, x) @require_flax class lowerCAmelCase : '''simple docstring''' def lowerCAmelCase ( self : Any , __a : Any , __a : List[Any] ) -> Optional[Any]: """simple docstring""" pass def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" pass def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : np.ndarray , __a : float ) -> List[Any]: """simple docstring""" __lowercase : List[str] = np.abs((a - b) ).max() self.assertLessEqual(__a , __a , F"Difference between torch and flax is {diff} (>= {tol})." ) def lowerCAmelCase ( self : Tuple , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[Any] , __a : Optional[Any]=None , **__a : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : str = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : str = FlaxVisionTextDualEncoderModel(__a ) __lowercase : Optional[Any] = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def lowerCAmelCase ( self : Optional[int] , __a : Optional[int] , __a : Dict , __a : Dict , __a : List[str] , __a : Optional[Any]=None , **__a : str ) -> str: """simple docstring""" __lowercase , __lowercase : List[str] = self.get_vision_text_model(__a , __a ) __lowercase : Union[str, Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : Any = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : Union[str, Any] , __a : Union[str, Any] , __a : Dict , __a : int=None , **__a : int ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Tuple = self.get_vision_text_model(__a , __a ) __lowercase : Union[str, Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : List[str] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : List[Any] = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) __lowercase : int = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowercase : int = FlaxVisionTextDualEncoderModel.from_pretrained(__a ) __lowercase : Tuple = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) __lowercase : int = after_output[0] __lowercase : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__a , 1E-3 ) def lowerCAmelCase ( self : List[Any] , __a : Any , __a : Tuple , __a : Optional[int] , __a : str , __a : Optional[Any]=None , **__a : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : str = self.get_vision_text_model(__a , __a ) __lowercase : Optional[Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : Union[str, Any] = model( input_ids=__a , pixel_values=__a , attention_mask=__a , output_attentions=__a ) __lowercase : Optional[int] = output.vision_model_output.attentions self.assertEqual(len(__a ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase : Optional[int] = to_atuple(vision_model.config.image_size ) __lowercase : List[str] = to_atuple(vision_model.config.patch_size ) __lowercase : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase : int = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase : Dict = output.text_model_output.attentions self.assertEqual(len(__a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowerCAmelCase ( self : Optional[int] , __a : List[str] , __a : List[Any] , __a : Optional[Any] ) -> Optional[int]: """simple docstring""" pt_model.to(__a ) pt_model.eval() # prepare inputs __lowercase : Union[str, Any] = inputs_dict __lowercase : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): __lowercase : Union[str, Any] = pt_model(**__a ).to_tuple() __lowercase : Tuple = fx_model(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(__a , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__a ) __lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained(__a , from_pt=__a ) __lowercase : Dict = fx_model_loaded(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(__a , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__a ) __lowercase : str = VisionTextDualEncoderModel.from_pretrained(__a , from_flax=__a ) pt_model_loaded.to(__a ) pt_model_loaded.eval() with torch.no_grad(): __lowercase : List[Any] = pt_model_loaded(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(__a , pt_output_loaded.numpy() , 4E-2 ) def lowerCAmelCase ( self : Optional[int] , __a : List[Any] , __a : int , __a : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : str = VisionTextDualEncoderModel(__a ) __lowercase : Union[str, Any] = FlaxVisionTextDualEncoderModel(__a ) __lowercase : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __a ) __lowercase : Any = fx_state self.check_pt_flax_equivalence(__a , __a , __a ) def lowerCAmelCase ( self : Any , __a : Any , __a : Dict , __a : Tuple ) -> str: """simple docstring""" __lowercase : int = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : Union[str, Any] = VisionTextDualEncoderModel(__a ) __lowercase : Dict = FlaxVisionTextDualEncoderModel(__a ) __lowercase : Tuple = load_flax_weights_in_pytorch_model(__a , fx_model.params ) self.check_pt_flax_equivalence(__a , __a , __a ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase : int = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__a ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() self.check_save_load(**__a ) def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" __lowercase : str = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__a ) @is_pt_flax_cross_test def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.prepare_config_and_inputs() __lowercase : Optional[int] = config_inputs_dict.pop("""vision_config""" ) __lowercase : Optional[int] = config_inputs_dict.pop("""text_config""" ) __lowercase : Dict = config_inputs_dict self.check_equivalence_pt_to_flax(__a , __a , __a ) self.check_equivalence_flax_to_pt(__a , __a , __a ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase , __lowercase : List[Any] = self.get_pretrained_model_and_inputs() __lowercase : Dict = model_a(**__a ) __lowercase : Any = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__a ) __lowercase : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(__a ) __lowercase : Optional[int] = model_a(**__a ) __lowercase : Tuple = after_outputs[0] __lowercase : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__a , 1E-5 ) @require_flax class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" __lowercase : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=__a , text_from_pt=__a , ) __lowercase : int = 13 __lowercase : Union[str, Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowercase : Dict = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __lowercase : Tuple = random_attention_mask([batch_size, 4] ) __lowercase : str = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCAmelCase ( self : Optional[Any] , __a : Union[str, Any] , __a : int ) -> Dict: """simple docstring""" __lowercase : int = FlaxViTModel(__a ) __lowercase : List[Any] = FlaxBertModel(__a ) return vision_model, text_model def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = FlaxViTModelTester(self ) __lowercase : str = FlaxBertModelTester(self ) __lowercase : List[str] = vit_model_tester.prepare_config_and_inputs() __lowercase : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase : Optional[int] = vision_config_and_inputs __lowercase , __lowercase , __lowercase , __lowercase : Any = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=__a , text_from_pt=__a , ) __lowercase : Tuple = 13 __lowercase : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowercase : Tuple = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __lowercase : List[Any] = random_attention_mask([batch_size, 4] ) __lowercase : int = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCAmelCase ( self : str , __a : str , __a : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Dict = FlaxCLIPVisionModel(__a ) __lowercase : Optional[Any] = FlaxBertModel(__a ) return vision_model, text_model def lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase : List[Any] = FlaxCLIPVisionModelTester(self ) __lowercase : Optional[Any] = FlaxBertModelTester(self ) __lowercase : Any = clip_model_tester.prepare_config_and_inputs() __lowercase : Optional[Any] = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase : Dict = vision_config_and_inputs __lowercase , __lowercase , __lowercase , __lowercase : Optional[int] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 ) __lowercase : int = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) __lowercase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowercase : Tuple = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=__a , padding=__a , return_tensors="""np""" ) __lowercase : Optional[int] = model(**__a ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowercase : Optional[Any] = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , __a , atol=1E-3 ) )
306
0
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase : str = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _A : List[Any] = XGLMTokenizer _A : List[str] = XGLMTokenizerFast _A : Union[str, Any] = True _A : int = True def lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __lowercase : List[str] = XGLMTokenizer(_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Dict = "<pad>" __lowercase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 1008 ) def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1008 ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : int = XGLMTokenizer(_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE ) __lowercase : Optional[Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __lowercase : str = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __lowercase : Union[str, Any] = tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __lowercase : Optional[int] = tokenizer.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(_SCREAMING_SNAKE_CASE , f.name ) __lowercase : List[str] = XGLMTokenizer(f.name , keep_accents=_SCREAMING_SNAKE_CASE ) __lowercase : str = pickle.dumps(_SCREAMING_SNAKE_CASE ) pickle.loads(_SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" if not self.test_rust_tokenizer: return __lowercase : int = self.get_tokenizer() __lowercase : int = self.get_rust_tokenizer() __lowercase : Optional[Any] = "I was born in 92000, and this is falsé." __lowercase : Tuple = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) __lowercase : Union[str, Any] = rust_tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowercase : Union[str, Any] = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) __lowercase : Any = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowercase : Dict = self.get_rust_tokenizer() __lowercase : Union[str, Any] = tokenizer.encode(_SCREAMING_SNAKE_CASE ) __lowercase : Optional[Any] = rust_tokenizer.encode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : List[Any] = "Hello World!" __lowercase : int = [2, 31227, 4447, 35] self.assertListEqual(_SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(_SCREAMING_SNAKE_CASE ) ) @slow def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Any = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off __lowercase : str = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 71630, 28085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 13675, 377, 652, 7580, 10341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 202277, 17892, 33, 60, 87, 4, 3234, 157, 61, 2667, 52376, 19, 88, 23, 735] # fmt: on self.assertListEqual(_SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(_SCREAMING_SNAKE_CASE ) ) @slow def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" __lowercase : Union[str, Any] = { "input_ids": [[2, 108825, 1163, 15, 88010, 473, 15898, 157, 13672, 1857, 312, 8, 238021, 1163, 53, 13672, 1857, 312, 8, 53283, 182396, 8, 18566, 16, 36733, 4101, 8, 230, 244017, 122553, 7, 15, 132597, 4, 293, 12511, 7610, 4, 3414, 132597, 9, 4, 32361, 362, 4, 734, 28512, 32569, 18, 4, 32361, 26096, 14982, 73, 18715, 21433, 235261, 15, 492, 12427, 16, 53, 18715, 21433, 65454, 15, 23659, 563, 16, 278, 597, 2843, 595, 7931, 182396, 64186, 22, 886, 595, 132981, 53, 25540, 3449, 43982, 39901, 5951, 878, 330, 4, 27694, 80269, 312, 53, 6517, 11780, 611, 20408, 5], [2, 6, 132597, 67, 42897, 33, 592, 8, 163729, 25540, 361, 136997, 109514, 173230, 7, 501, 60, 102913, 196, 5631, 235, 63243, 473, 6, 231757, 74, 5277, 7905, 53, 3095, 37317, 22, 454, 183874, 5], [2, 268, 31298, 46530, 6, 132935, 43831, 7, 597, 32, 24, 3688, 9865, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE , model_name="""facebook/xglm-564M""" , padding=_SCREAMING_SNAKE_CASE , )
364
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
306
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : Union[str, Any] = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[Any] = ['''ReformerTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Any = ['''ReformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ '''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ReformerAttention''', '''ReformerForMaskedLM''', '''ReformerForQuestionAnswering''', '''ReformerForSequenceClassification''', '''ReformerLayer''', '''ReformerModel''', '''ReformerModelWithLMHead''', '''ReformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
365
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowerCamelCase : str = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex lowerCamelCase : Union[str, Any] = 10 lowerCamelCase : List[str] = 2_56 def snake_case_ ( lowerCAmelCase_ : List[str] ): if len(lowerCAmelCase_ ) < MIN_NUM_TOKENS: return None __lowercase : Dict = MinHash(num_perm=lowerCAmelCase_ ) for token in set(lowerCAmelCase_ ): min_hash.update(token.encode() ) return min_hash def snake_case_ ( lowerCAmelCase_ : str ): return {t for t in NON_ALPHA.split(lowerCAmelCase_ ) if len(t.strip() ) > 0} class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , *, __a : float = 0.85 , ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = duplication_jaccard_threshold __lowercase : Optional[Any] = NUM_PERM __lowercase : List[Any] = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) __lowercase : List[str] = defaultdict(__a ) def lowerCAmelCase ( self : str , __a : Tuple , __a : MinHash ) -> None: """simple docstring""" __lowercase : List[Any] = self._index.query(__a ) if code_key in self._index.keys: print(F"Duplicate key {code_key}" ) return self._index.insert(__a , __a ) if len(__a ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__a ) break else: self._duplicate_clusters[close_duplicates[0]].add(__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[List[Dict]]: """simple docstring""" __lowercase : Dict = [] for base, duplicates in self._duplicate_clusters.items(): __lowercase : List[str] = [base] + list(__a ) # reformat the cluster to be a list of dict __lowercase : Optional[Any] = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(__a ) return duplicate_clusters def lowerCAmelCase ( self : Any , __a : int ) -> None: """simple docstring""" __lowercase : Tuple = self.get_duplicate_clusters() with open(__a , """w""" ) as f: json.dump(__a , __a ) def snake_case_ ( lowerCAmelCase_ : str ): __lowercase , __lowercase : Union[str, Any] = element __lowercase : Optional[Any] = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def snake_case_ ( lowerCAmelCase_ : Type[Dataset] ): with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(lowerCAmelCase_ , max_queue_size=10000 ) , chunksize=100 , ): if data is not None: yield data def snake_case_ ( lowerCAmelCase_ : Type[Dataset] , lowerCAmelCase_ : float ): __lowercase : Dict = DuplicationIndex(duplication_jaccard_threshold=lowerCAmelCase_ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(lowerCAmelCase_ ) ) , max_queue_size=100 ) ): di.add(lowerCAmelCase_ , lowerCAmelCase_ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : List[str] = get_tokens(lowerCAmelCase_ ) __lowercase : Dict = get_tokens(lowerCAmelCase_ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) lowerCamelCase : List[str] = None def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] ): __lowercase : Union[str, Any] = [] for elementa in cluster: __lowercase : Tuple = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: __lowercase : Dict = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(lowerCAmelCase_ , lowerCAmelCase_ ) >= jaccard_threshold: elementa["copies"] += 1 break else: __lowercase : Dict = 1 extremes.append(lowerCAmelCase_ ) return extremes def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple ): global _shared_dataset __lowercase : Tuple = dataset __lowercase : Optional[int] = [] __lowercase : str = partial(_find_cluster_extremes_shared , jaccard_threshold=lowerCAmelCase_ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( lowerCAmelCase_ , lowerCAmelCase_ , ) , total=len(lowerCAmelCase_ ) , ): extremes_list.append(lowerCAmelCase_ ) return extremes_list def snake_case_ ( lowerCAmelCase_ : Type[Dataset] , lowerCAmelCase_ : float = 0.85 ): __lowercase : Optional[int] = make_duplicate_clusters(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Tuple = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} __lowercase : int = {} __lowercase : Dict = find_extremes(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for extremes in extremes_clusters: for element in extremes: __lowercase : Optional[Any] = element __lowercase : int = duplicate_indices - set(extreme_dict.keys() ) __lowercase : int = dataset.filter(lambda lowerCAmelCase_ , lowerCAmelCase_ : idx not in remove_indices , with_indices=lowerCAmelCase_ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: __lowercase : List[str] = element["""base_index"""] in extreme_dict if element["is_extreme"]: __lowercase : str = extreme_dict[element["""base_index"""]]["""copies"""] print(F"Original dataset size: {len(lowerCAmelCase_ )}" ) print(F"Number of duplicate clusters: {len(lowerCAmelCase_ )}" ) print(F"Files in duplicate cluster: {len(lowerCAmelCase_ )}" ) print(F"Unique files in duplicate cluster: {len(lowerCAmelCase_ )}" ) print(F"Filtered dataset size: {len(lowerCAmelCase_ )}" ) return ds_filter, duplicate_clusters
306
0
import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder lowerCamelCase : Optional[int] = """base_with_context""" def snake_case_ ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any ): __lowercase : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights["""token_embedder"""]["""embedding"""] ) ) __lowercase : Dict = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=SCREAMING_SNAKE_CASE_ ) for lyr_num, lyr in enumerate(model.encoders ): __lowercase : Optional[int] = weights[F"layers_{lyr_num}"] __lowercase : int = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) __lowercase : List[str] = ly_weight["""attention"""] __lowercase : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) __lowercase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) __lowercase : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) __lowercase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) __lowercase : int = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) __lowercase : Any = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) __lowercase : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) __lowercase : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) __lowercase : Dict = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : int ): __lowercase : Optional[int] = nn.Parameter(torch.FloatTensor(weights["""input_proj"""]["""kernel"""].T ) ) __lowercase : Dict = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=SCREAMING_SNAKE_CASE_ ) for lyr_num, lyr in enumerate(model.encoders ): __lowercase : int = weights[F"layers_{lyr_num}"] __lowercase : int = ly_weight["""attention"""] __lowercase : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) __lowercase : str = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) __lowercase : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) __lowercase : int = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) __lowercase : Any = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) __lowercase : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) __lowercase : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) __lowercase : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) __lowercase : Dict = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) __lowercase : str = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] ): __lowercase : Optional[Any] = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense0"""]["""kernel"""].T ) ) __lowercase : Tuple = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense1"""]["""kernel"""].T ) ) __lowercase : Optional[Any] = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=SCREAMING_SNAKE_CASE_ ) __lowercase : Tuple = nn.Parameter( torch.FloatTensor(weights["""continuous_inputs_projection"""]["""kernel"""].T ) ) for lyr_num, lyr in enumerate(model.decoders ): __lowercase : Tuple = weights[F"layers_{lyr_num}"] __lowercase : Dict = nn.Parameter( torch.FloatTensor(ly_weight["""pre_self_attention_layer_norm"""]["""scale"""] ) ) __lowercase : Dict = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_0"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) __lowercase : Optional[Any] = ly_weight["""self_attention"""] __lowercase : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) __lowercase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) __lowercase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) __lowercase : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) __lowercase : int = ly_weight["""MultiHeadDotProductAttention_0"""] __lowercase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) __lowercase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) __lowercase : Any = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) __lowercase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) __lowercase : str = nn.Parameter( torch.FloatTensor(ly_weight["""pre_cross_attention_layer_norm"""]["""scale"""] ) ) __lowercase : int = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) __lowercase : str = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_1"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) __lowercase : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) __lowercase : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) __lowercase : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) __lowercase : Optional[Any] = nn.Parameter(torch.FloatTensor(weights["""decoder_norm"""]["""scale"""] ) ) __lowercase : Any = nn.Parameter(torch.FloatTensor(weights["""spec_out_dense"""]["""kernel"""].T ) ) return model def snake_case_ ( lowerCAmelCase_ : Dict ): __lowercase : Optional[Any] = checkpoints.load_tax_checkpoint(args.checkpoint_path ) __lowercase : List[Any] = jnp.tree_util.tree_map(onp.array , SCREAMING_SNAKE_CASE_ ) __lowercase : Tuple = [ """from __gin__ import dynamic_registration""", """from music_spectrogram_diffusion.models.diffusion import diffusion_utils""", """diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0""", """diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()""", ] __lowercase : List[str] = os.path.join(args.checkpoint_path , """..""" , """config.gin""" ) __lowercase : Optional[int] = inference.parse_training_gin_file(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowercase : Optional[int] = inference.InferenceModel(args.checkpoint_path , SCREAMING_SNAKE_CASE_ ) __lowercase : Optional[int] = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" , variance_type="""fixed_large""" ) __lowercase : Tuple = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["""inputs"""] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) __lowercase : Tuple = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["""targets_context"""] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) __lowercase : Tuple = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["""targets_context"""] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) __lowercase : List[Any] = load_notes_encoder(ta_checkpoint["""target"""]["""token_encoder"""] , SCREAMING_SNAKE_CASE_ ) __lowercase : int = load_continuous_encoder(ta_checkpoint["""target"""]["""continuous_encoder"""] , SCREAMING_SNAKE_CASE_ ) __lowercase : str = load_decoder(ta_checkpoint["""target"""]["""decoder"""] , SCREAMING_SNAKE_CASE_ ) __lowercase : List[str] = OnnxRuntimeModel.from_pretrained("""kashif/soundstream_mel_decoder""" ) __lowercase : Optional[int] = SpectrogramDiffusionPipeline( notes_encoder=SCREAMING_SNAKE_CASE_ , continuous_encoder=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , melgan=SCREAMING_SNAKE_CASE_ , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument('''--output_path''', default=None, type=str, required=True, help='''Path to the converted model.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument( '''--checkpoint_path''', default=f'''{MODEL}/checkpoint_500000''', type=str, required=False, help='''Path to the original jax model checkpoint.''', ) lowerCamelCase : Optional[int] = parser.parse_args() main(args)
366
from ...processing_utils import ProcessorMixin class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = ['''image_processor''', '''feature_extractor'''] _A : List[Any] = '''TvltImageProcessor''' _A : Optional[int] = '''TvltFeatureExtractor''' def __init__( self : str , __a : List[Any] , __a : Tuple ) -> Optional[Any]: """simple docstring""" super().__init__(image_processor=__a , feature_extractor=__a ) __lowercase : Union[str, Any] = image_processor __lowercase : Tuple = feature_extractor def __call__( self : Tuple , __a : Optional[int]=None , __a : Dict=None , __a : Union[str, Any]=None , __a : Tuple=None , __a : Optional[Any]=False , __a : List[Any]=False , *__a : List[str] , **__a : List[Any] , ) -> Dict: """simple docstring""" if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) __lowercase : Tuple = None if images is not None: __lowercase : Any = self.image_processor(__a , mask_pixel=__a , *__a , **__a ) if images_mixed is not None: __lowercase : Union[str, Any] = self.image_processor(__a , is_mixed=__a , *__a , **__a ) if audio is not None: __lowercase : Optional[Any] = self.feature_extractor( __a , *__a , sampling_rate=__a , mask_audio=__a , **__a ) __lowercase : Tuple = {} if audio is not None: output_dict.update(__a ) if images is not None: output_dict.update(__a ) if images_mixed_dict is not None: output_dict.update(__a ) return output_dict @property def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = self.image_processor.model_input_names __lowercase : Union[str, Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
306
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : str , __a : List[Any] , ) -> List[str]: """simple docstring""" __lowercase : Tuple = parent __lowercase : List[str] = 13 __lowercase : List[str] = 7 __lowercase : Optional[Any] = True __lowercase : Tuple = True __lowercase : Optional[Any] = True __lowercase : Any = True __lowercase : int = True __lowercase : Dict = False __lowercase : List[Any] = False __lowercase : Dict = False __lowercase : int = 2 __lowercase : Tuple = 99 __lowercase : List[str] = 0 __lowercase : int = 32 __lowercase : Dict = 2 __lowercase : str = 4 __lowercase : Optional[Any] = 0.1 __lowercase : Dict = 0.1 __lowercase : List[str] = 512 __lowercase : Dict = 16 __lowercase : Union[str, Any] = 2 __lowercase : Dict = 0.02 __lowercase : Any = 3 __lowercase : Optional[int] = 4 __lowercase : Tuple = """last""" __lowercase : Any = True __lowercase : str = None __lowercase : str = 0 def lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : Tuple = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) __lowercase : Any = None if self.use_input_lengths: __lowercase : Optional[Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __lowercase : Tuple = None if self.use_token_type_ids: __lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __lowercase : Optional[int] = None __lowercase : Dict = None __lowercase : List[str] = None if self.use_labels: __lowercase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : Dict = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) __lowercase : Dict = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : Optional[Any] = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCAmelCase ( self : List[Any] , __a : List[Any] , __a : Union[str, Any] , __a : Optional[Any] , __a : Tuple , __a : Optional[int] , __a : Optional[int] , __a : List[str] , __a : str , __a : str , ) -> str: """simple docstring""" __lowercase : Optional[int] = TFFlaubertModel(config=_UpperCAmelCase ) __lowercase : Union[str, Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} __lowercase : str = model(_UpperCAmelCase ) __lowercase : Any = [input_ids, input_mask] __lowercase : Optional[int] = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Optional[int] , __a : Optional[int] , __a : int , __a : Any , __a : Union[str, Any] , __a : Optional[int] , __a : Optional[Any] , __a : List[Any] , __a : Optional[int] , __a : int , ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = TFFlaubertWithLMHeadModel(_UpperCAmelCase ) __lowercase : Optional[Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} __lowercase : Optional[int] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : List[str] , __a : List[str] , __a : Dict , __a : Tuple , __a : Optional[Any] , __a : List[str] , __a : str , __a : str , __a : List[Any] , __a : List[Any] , ) -> List[str]: """simple docstring""" __lowercase : Optional[Any] = TFFlaubertForQuestionAnsweringSimple(_UpperCAmelCase ) __lowercase : Optional[Any] = {"""input_ids""": input_ids, """lengths""": input_lengths} __lowercase : Dict = model(_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Optional[Any] , __a : List[Any] , __a : List[str] , __a : str , __a : List[str] , __a : Optional[int] , __a : Optional[int] , __a : str , __a : List[str] , __a : Dict , ) -> List[str]: """simple docstring""" __lowercase : Union[str, Any] = TFFlaubertForSequenceClassification(_UpperCAmelCase ) __lowercase : Tuple = {"""input_ids""": input_ids, """lengths""": input_lengths} __lowercase : Optional[Any] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase ( self : int , __a : Union[str, Any] , __a : Dict , __a : str , __a : List[str] , __a : int , __a : Optional[int] , __a : Union[str, Any] , __a : Optional[Any] , __a : Optional[Any] , ) -> Any: """simple docstring""" __lowercase : int = self.num_labels __lowercase : Union[str, Any] = TFFlaubertForTokenClassification(config=_UpperCAmelCase ) __lowercase : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowercase : Any = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : int , __a : Any , __a : List[Any] , __a : Any , __a : Optional[int] , __a : Any , __a : List[str] , __a : List[Any] , __a : List[Any] , __a : str , ) -> Tuple: """simple docstring""" __lowercase : Any = self.num_choices __lowercase : List[str] = TFFlaubertForMultipleChoice(config=_UpperCAmelCase ) __lowercase : Any = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase : Dict = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase : List[str] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase : Optional[int] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __lowercase : Dict = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" __lowercase : List[Any] = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : Optional[Any] = config_and_inputs __lowercase : Tuple = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """langs""": token_type_ids, """lengths""": input_lengths, } return config, inputs_dict @require_tf class lowerCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' _A : str = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) _A : Optional[Any] = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _A : Union[str, Any] = ( { """feature-extraction""": TFFlaubertModel, """fill-mask""": TFFlaubertWithLMHeadModel, """question-answering""": TFFlaubertForQuestionAnsweringSimple, """text-classification""": TFFlaubertForSequenceClassification, """token-classification""": TFFlaubertForTokenClassification, """zero-shot""": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) _A : List[Any] = False _A : List[Any] = False def lowerCAmelCase ( self : Optional[int] , __a : Tuple , __a : Optional[int] , __a : Optional[Any] , __a : int , __a : Tuple ) -> Tuple: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : List[Any] = TFFlaubertModelTester(self ) __lowercase : Any = ConfigTester(self , config_class=_UpperCAmelCase , emb_dim=37 ) def lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_UpperCAmelCase ) def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" __lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_UpperCAmelCase ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_UpperCAmelCase ) def lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" __lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_UpperCAmelCase ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*_UpperCAmelCase ) def lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*_UpperCAmelCase ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Union[str, Any] = TFFlaubertModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase : Any = TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" ) __lowercase : Optional[Any] = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" __lowercase : int = model(_UpperCAmelCase )[0] __lowercase : str = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , _UpperCAmelCase ) # compare the actual values for a slice. __lowercase : Tuple = tf.convert_to_tensor( [ [ [-1.8768773, -1.566555, 0.27072418], [-1.6920038, -0.5873505, 1.9329599], [-2.9563985, -1.6993835, 1.7972052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
367
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Any , __a : Tuple , __a : Optional[int]=13 , __a : int=7 , __a : List[str]=False , __a : Optional[int]=True , __a : Optional[int]=False , __a : Dict=True , __a : Optional[int]=33 , __a : Dict=32 , __a : Optional[int]=5 , __a : Union[str, Any]=4 , __a : List[str]=37 , __a : Tuple="gelu" , __a : List[str]=0.1 , __a : Dict=0.1 , __a : List[Any]=512 , __a : Any=16 , __a : Optional[Any]=2 , __a : List[Any]=0.02 , __a : int=3 , __a : Union[str, Any]=4 , __a : Optional[int]=None , ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = parent __lowercase : int = batch_size __lowercase : Any = seq_length __lowercase : str = is_training __lowercase : str = use_input_mask __lowercase : Optional[int] = use_token_type_ids __lowercase : List[Any] = use_labels __lowercase : Optional[Any] = vocab_size __lowercase : int = hidden_size __lowercase : List[Any] = num_hidden_layers __lowercase : Dict = num_attention_heads __lowercase : Any = intermediate_size __lowercase : Dict = hidden_act __lowercase : Union[str, Any] = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : List[str] = max_position_embeddings __lowercase : Union[str, Any] = type_vocab_size __lowercase : Dict = type_sequence_label_size __lowercase : Union[str, Any] = initializer_range __lowercase : List[Any] = num_labels __lowercase : str = num_choices __lowercase : Tuple = scope def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : int = None if self.use_input_mask: __lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : str = None __lowercase : Optional[Any] = None __lowercase : Tuple = None if self.use_labels: __lowercase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : List[Any] , __a : int , __a : int , __a : Dict , __a : Union[str, Any] , __a : List[str] , __a : str ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = EsmModel(config=__a ) model.to(__a ) model.eval() __lowercase : str = model(__a , attention_mask=__a ) __lowercase : List[Any] = model(__a ) __lowercase : Optional[int] = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : Union[str, Any] , __a : Dict , __a : List[Any] , __a : Tuple , __a : Union[str, Any] , __a : str , __a : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase : List[str] = EsmForMaskedLM(config=__a ) model.to(__a ) model.eval() __lowercase : int = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[int] , __a : Union[str, Any] , __a : List[Any] , __a : Tuple , __a : Tuple , __a : Optional[int] , __a : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = self.num_labels __lowercase : Any = EsmForTokenClassification(config=__a ) model.to(__a ) model.eval() __lowercase : Optional[Any] = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase : Any = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : List[str] = config_and_inputs __lowercase : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Optional[Any] = False _A : Any = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) _A : Optional[Any] = () _A : List[Any] = ( { '''feature-extraction''': EsmModel, '''fill-mask''': EsmForMaskedLM, '''text-classification''': EsmForSequenceClassification, '''token-classification''': EsmForTokenClassification, '''zero-shot''': EsmForSequenceClassification, } if is_torch_available() else {} ) _A : Optional[Any] = True def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : Optional[int] = EsmModelTester(self ) __lowercase : Tuple = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase : Union[str, Any] = type self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : List[str] = EsmModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] __lowercase : List[str] = EsmEmbeddings(config=__a ) __lowercase : Union[str, Any] = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) __lowercase : int = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) __lowercase : str = create_position_ids_from_input_ids(__a , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__a , __a ) ) ) def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] __lowercase : Optional[Any] = EsmEmbeddings(config=__a ) __lowercase : Optional[int] = torch.empty(2 , 4 , 30 ) __lowercase : Tuple = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] __lowercase : List[str] = torch.as_tensor([expected_single_positions, expected_single_positions] ) __lowercase : Any = embeddings.create_position_ids_from_inputs_embeds(__a ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__a , __a ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" pass @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" pass @require_torch class lowerCAmelCase ( __a ): '''simple docstring''' @slow def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): __lowercase : Tuple = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() __lowercase : Tuple = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase : List[str] = model(__a )[0] __lowercase : Union[str, Any] = 33 __lowercase : Union[str, Any] = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , __a ) __lowercase : List[Any] = torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): __lowercase : int = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() __lowercase : int = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) __lowercase : Any = model(__a )[0] # compare the actual values for a slice. __lowercase : int = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) )
306
0
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase : str = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class lowerCAmelCase ( _a , unittest.TestCase ): '''simple docstring''' _A : List[Any] = DebertaVaTokenizer _A : Any = DebertaVaTokenizerFast _A : Union[str, Any] = True _A : Tuple = True def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __lowercase : Tuple = DebertaVaTokenizer(__lowerCamelCase , unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : int , __a : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : str = """this is a test""" __lowercase : Dict = """this is a test""" return input_text, output_text def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowercase : Optional[Any] = """<pad>""" __lowercase : Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase ) def lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" __lowercase : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """[PAD]""" ) self.assertEqual(len(__lowerCamelCase ) , 30001 ) def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" __lowercase : Optional[int] = """ \tHeLLo!how \n Are yoU? """ __lowercase : Any = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on __lowercase : Optional[Any] = DebertaVaTokenizer(__lowerCamelCase , do_lower_case=__lowerCamelCase ) __lowercase : Optional[int] = tokenizer.convert_ids_to_tokens(tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __lowercase : Any = DebertaVaTokenizerFast(__lowerCamelCase , do_lower_case=__lowerCamelCase ) __lowercase : List[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" pass def lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" __lowercase : Union[str, Any] = """I was born in 92000, and this is falsé.""" __lowercase : int = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowercase : int = DebertaVaTokenizer(__lowerCamelCase , split_by_punct=__lowerCamelCase ) __lowercase : int = tokenizer.convert_ids_to_tokens(tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __lowercase : Optional[int] = DebertaVaTokenizerFast(__lowerCamelCase , split_by_punct=__lowerCamelCase ) __lowercase : Any = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = """I was born in 92000, and this is falsé.""" __lowercase : Any = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowercase : Tuple = DebertaVaTokenizer(__lowerCamelCase , do_lower_case=__lowerCamelCase , split_by_punct=__lowerCamelCase ) __lowercase : Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __lowercase : Union[str, Any] = DebertaVaTokenizerFast(__lowerCamelCase , do_lower_case=__lowerCamelCase , split_by_punct=__lowerCamelCase ) __lowercase : int = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" __lowercase : Union[str, Any] = """I was born in 92000, and this is falsé.""" __lowercase : List[Any] = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowercase : Tuple = DebertaVaTokenizer(__lowerCamelCase , do_lower_case=__lowerCamelCase , split_by_punct=__lowerCamelCase ) __lowercase : Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __lowercase : Union[str, Any] = DebertaVaTokenizerFast(__lowerCamelCase , do_lower_case=__lowerCamelCase , split_by_punct=__lowerCamelCase ) __lowercase : Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" __lowercase : List[str] = """I was born in 92000, and this is falsé.""" __lowercase : int = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowercase : List[str] = DebertaVaTokenizer(__lowerCamelCase , do_lower_case=__lowerCamelCase , split_by_punct=__lowerCamelCase ) __lowercase : Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __lowercase : List[str] = DebertaVaTokenizerFast(__lowerCamelCase , do_lower_case=__lowerCamelCase , split_by_punct=__lowerCamelCase ) __lowercase : Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" __lowercase : Optional[Any] = """ \tHeLLo!how \n Are yoU? """ __lowercase : Dict = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on __lowercase : int = DebertaVaTokenizer(__lowerCamelCase , do_lower_case=__lowerCamelCase , split_by_punct=__lowerCamelCase ) __lowercase : Optional[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __lowercase : Any = DebertaVaTokenizerFast(__lowerCamelCase , do_lower_case=__lowerCamelCase , split_by_punct=__lowerCamelCase ) __lowercase : Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" __lowercase : int = self.get_tokenizer() __lowercase : str = self.get_rust_tokenizer() __lowercase : Dict = """I was born in 92000, and this is falsé.""" __lowercase : List[str] = tokenizer.convert_ids_to_tokens(tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) __lowercase : Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __lowercase : List[str] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __lowercase : Optional[int] = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __lowercase : int = self.get_rust_tokenizer() __lowercase : Tuple = tokenizer.encode(__lowerCamelCase ) __lowercase : Dict = rust_tokenizer.encode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[int] = """This is a test""" __lowercase : str = [13, 1, 4398, 25, 21, 1289] __lowercase : int = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] __lowercase : Any = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] __lowercase : str = DebertaVaTokenizer(__lowerCamelCase , keep_accents=__lowerCamelCase ) __lowercase : Union[str, Any] = DebertaVaTokenizerFast(__lowerCamelCase , keep_accents=__lowerCamelCase ) __lowercase : Optional[Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __lowercase : Union[str, Any] = tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __lowercase : Any = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __lowercase : List[Any] = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __lowercase : Optional[Any] = rust_tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __lowercase : int = rust_tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) # fmt: off __lowercase : Optional[Any] = """I was born in 92000, and this is falsé.""" __lowercase : Any = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] __lowercase : Union[str, Any] = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] __lowercase : Optional[Any] = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowercase : str = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __lowercase : Any = tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __lowercase : Union[str, Any] = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __lowercase : List[Any] = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __lowercase : int = rust_tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __lowercase : Dict = rust_tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase : str = DebertaVaTokenizer(__lowerCamelCase ) __lowercase : Union[str, Any] = tokenizer.encode("""sequence builders""" ) __lowercase : Any = tokenizer.encode("""multi-sequence build""" ) __lowercase : Optional[int] = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase ) __lowercase : str = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase , __lowerCamelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , __lowerCamelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , __lowerCamelCase , ) @slow def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = {"""input_ids""": [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
368
def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def snake_case_ ( lowerCAmelCase_ : int = 5000 ): __lowercase : Optional[int] = [(i * (3 * i - 1)) // 2 for i in range(1 , lowerCAmelCase_ )] for i, pentagonal_i in enumerate(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ , len(lowerCAmelCase_ ) ): __lowercase : int = pentagonal_nums[j] __lowercase : Optional[int] = pentagonal_i + pentagonal_j __lowercase : Union[str, Any] = pentagonal_j - pentagonal_i if is_pentagonal(lowerCAmelCase_ ) and is_pentagonal(lowerCAmelCase_ ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
306
0
import numpy class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[int] , __a : numpy.ndarray , __a : numpy.ndarray ) -> None: """simple docstring""" __lowercase : Any = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. __lowercase : Dict = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. __lowercase : int = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. __lowercase : List[Any] = numpy.random.rand(3 , 1 ) # Real output values provided. __lowercase : Tuple = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. __lowercase : List[str] = numpy.zeros(output_array.shape ) def lowerCAmelCase ( self : Optional[Any] ) -> numpy.ndarray: """simple docstring""" __lowercase : Dict = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. __lowercase : Optional[Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. __lowercase : Optional[int] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def lowerCAmelCase ( self : int ) -> None: """simple docstring""" __lowercase : Any = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) __lowercase : Any = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) __lowercase : str = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def lowerCAmelCase ( self : Dict , __a : numpy.ndarray , __a : int , __a : bool ) -> None: """simple docstring""" for iteration in range(1 , iterations + 1 ): __lowercase : Union[str, Any] = self.feedforward() self.back_propagation() if give_loss: __lowercase : List[str] = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F"Iteration {iteration} Loss: {loss}" ) def lowerCAmelCase ( self : Optional[Any] , __a : numpy.ndarray ) -> int: """simple docstring""" __lowercase : Dict = input_arr __lowercase : str = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) __lowercase : int = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) __lowercase : List[Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def snake_case_ ( lowerCAmelCase_ : Any ): return 1 / (1 + numpy.exp(-value )) def snake_case_ ( lowerCAmelCase_ : Tuple ): return (value) * (1 - (value)) def snake_case_ ( ): __lowercase : Dict = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. __lowercase : Optional[Any] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. __lowercase : List[Any] = TwoHiddenLayerNeuralNetwork( input_array=a__ , output_array=a__ ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=a__ , iterations=10 , give_loss=a__ ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
369
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowerCAmelCase ( __a ): '''simple docstring''' _A : Optional[Any] = (DPMSolverSDEScheduler,) _A : Dict = 10 def lowerCAmelCase ( self : Optional[int] , **__a : Dict ) -> Optional[int]: """simple docstring""" __lowercase : Any = { """num_train_timesteps""": 1100, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**__a ) return config def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=__a ) def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__a ) def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = self.scheduler_classes[0] __lowercase : List[str] = self.get_scheduler_config() __lowercase : Any = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase : Optional[Any] = self.dummy_model() __lowercase : str = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase : Optional[Any] = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): __lowercase : Union[str, Any] = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[Any] = model(__a , __a ) __lowercase : Optional[Any] = scheduler.step(__a , __a , __a ) __lowercase : str = output.prev_sample __lowercase : Optional[Any] = torch.sum(torch.abs(__a ) ) __lowercase : Union[str, Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47821044921875 ) < 1E-2 assert abs(result_mean.item() - 0.2178705964565277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59352111816406 ) < 1E-2 assert abs(result_mean.item() - 0.22342906892299652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase : Tuple = self.scheduler_classes[0] __lowercase : Dict = self.get_scheduler_config(prediction_type="""v_prediction""" ) __lowercase : int = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase : Optional[int] = self.dummy_model() __lowercase : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase : Dict = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): __lowercase : Dict = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[int] = model(__a , __a ) __lowercase : Optional[int] = scheduler.step(__a , __a , __a ) __lowercase : int = output.prev_sample __lowercase : Optional[Any] = torch.sum(torch.abs(__a ) ) __lowercase : List[str] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77149200439453 ) < 1E-2 assert abs(result_mean.item() - 0.16226289014816284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1663360595703 ) < 1E-2 assert abs(result_mean.item() - 0.16688326001167297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8487548828125 ) < 1E-2 assert abs(result_mean.item() - 0.1560530662536621 ) < 1E-3 def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = self.scheduler_classes[0] __lowercase : Dict = self.get_scheduler_config() __lowercase : Optional[int] = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps , device=__a ) __lowercase : int = self.dummy_model() __lowercase : Optional[Any] = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __lowercase : int = scheduler.scale_model_input(__a , __a ) __lowercase : List[str] = model(__a , __a ) __lowercase : List[str] = scheduler.step(__a , __a , __a ) __lowercase : int = output.prev_sample __lowercase : List[Any] = torch.sum(torch.abs(__a ) ) __lowercase : Optional[Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46957397460938 ) < 1E-2 assert abs(result_mean.item() - 0.21805934607982635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59353637695312 ) < 1E-2 assert abs(result_mean.item() - 0.22342908382415771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : str = self.scheduler_classes[0] __lowercase : List[Any] = self.get_scheduler_config() __lowercase : Tuple = scheduler_class(**__a , use_karras_sigmas=__a ) scheduler.set_timesteps(self.num_inference_steps , device=__a ) __lowercase : List[str] = self.dummy_model() __lowercase : Optional[int] = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma __lowercase : str = sample.to(__a ) for t in scheduler.timesteps: __lowercase : List[Any] = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[Any] = model(__a , __a ) __lowercase : Any = scheduler.step(__a , __a , __a ) __lowercase : Optional[Any] = output.prev_sample __lowercase : Any = torch.sum(torch.abs(__a ) ) __lowercase : Optional[Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66974135742188 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63653564453125 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3135223388672 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2
306
0
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy lowerCamelCase : Any = logging.getLogger(__name__) lowerCamelCase : Union[str, Any] = '''pytorch_model.bin''' @dataclasses.dataclass class lowerCAmelCase : '''simple docstring''' _A : Optional[int] = dataclasses.field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models.'''} ) _A : int = dataclasses.field( default=a__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co.'''} , ) @dataclasses.dataclass class lowerCAmelCase : '''simple docstring''' _A : Tuple = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the training data.'''} ) _A : Optional[int] = dataclasses.field(metadata={'''help''': '''A csv or a json file containing the data to predict on.'''} ) _A : Any = dataclasses.field( default=a__ , metadata={'''help''': '''A csv or a json file containing the validation data.'''} ) _A : Dict = dataclasses.field( default=a__ , metadata={'''help''': '''The name of the task to train on.'''} , ) _A : Optional[Any] = dataclasses.field( default=a__ , metadata={'''help''': '''The list of labels for the task.'''} ) @dataclasses.dataclass class lowerCAmelCase : '''simple docstring''' _A : List[str] = dataclasses.field( metadata={'''help''': '''The output directory where the model predictions and checkpoints will be written.'''} ) _A : Optional[int] = dataclasses.field( default='''accuracy''' , metadata={'''help''': '''The evaluation metric used for the task.'''} ) _A : Union[str, Any] = dataclasses.field( default='''no''' , metadata={ '''help''': '''The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]''' } , ) _A : Dict = dataclasses.field( default=10 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) _A : List[Any] = dataclasses.field( default=0.0 , metadata={ '''help''': '''How much the specified evaluation metric must improve to satisfy early stopping conditions.''' } , ) _A : Optional[int] = dataclasses.field( default=a__ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the confidence score.'''} , ) _A : Any = dataclasses.field( default=a__ , metadata={'''help''': '''Whether to filter the pseudo-labeled data based on the validation performance.'''} , ) _A : Tuple = dataclasses.field( default=a__ , metadata={'''help''': '''Whether to fine-tune on labeled data after pseudo training.'''} , ) _A : Union[str, Any] = dataclasses.field( default=0.0 , metadata={'''help''': '''Confidence threshold for pseudo-labeled data filtering.'''} , ) _A : Optional[Any] = dataclasses.field( default=100 , metadata={'''help''': '''Number of evaluation calls with no improvement after which training will be stopped.'''} , ) _A : Any = dataclasses.field( default=a__ , metadata={'''help''': '''Random seed for initialization.'''} , ) def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] ): __lowercase : Union[str, Any] = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: __lowercase : Optional[int] = dataset.filter(lambda lowerCAmelCase_ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 __lowercase : Any = int(eval_result * len(_lowerCamelCase ) ) print(_lowerCamelCase ) __lowercase : int = dataset.sort("""probability""" , reverse=_lowerCamelCase ) __lowercase : Optional[Any] = dataset.select(range(_lowerCamelCase ) ) __lowercase : List[str] = dataset.remove_columns(["""label""", """probability"""] ) __lowercase : Dict = dataset.rename_column("""prediction""" , """label""" ) __lowercase : Optional[int] = dataset.map(lambda lowerCAmelCase_ : {"label": idalabel[example["label"]]} ) __lowercase : str = dataset.shuffle(seed=args.seed ) __lowercase : int = os.path.join(_lowerCamelCase , F"train_pseudo.{args.data_file_extension}" ) if args.data_file_extension == "csv": dataset.to_csv(_lowerCamelCase , index=_lowerCamelCase ) else: dataset.to_json(_lowerCamelCase ) def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Any ): __lowercase : List[str] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() __lowercase : Union[str, Any] = STModelArguments(model_name_or_path=_lowerCamelCase ) __lowercase : Dict = STDataArguments(train_file=_lowerCamelCase , infer_file=_lowerCamelCase ) __lowercase : int = STTrainingArguments(output_dir=_lowerCamelCase ) __lowercase : Any = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(_lowerCamelCase ).items(): setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) for key, value in kwargs.items(): if hasattr(_lowerCamelCase , _lowerCamelCase ): setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Sanity checks __lowercase : Any = {} __lowercase : Union[str, Any] = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None __lowercase : Optional[int] = args.train_file __lowercase : str = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None __lowercase : str = args.eval_file for key in data_files: __lowercase : Optional[Any] = data_files[key].split(""".""" )[-1] assert extension in ["csv", "json"], F"`{key}_file` should be a csv or a json file." if args.data_file_extension is None: __lowercase : Optional[int] = extension else: assert extension == args.data_file_extension, F"`{key}_file` should be a {args.data_file_extension} file`." assert ( args.eval_metric in datasets.list_metrics() ), F"{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}." # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("""Creating the initial data directory for self-training...""" ) __lowercase : int = F"{args.output_dir}/self-train_iter-{{}}".format __lowercase : Optional[int] = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) accelerator.wait_for_everyone() __lowercase : Tuple = None __lowercase : Optional[Any] = None __lowercase : Optional[int] = 0 __lowercase : Any = False # Show the progress bar __lowercase : Optional[Any] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): __lowercase : Optional[Any] = data_dir_format(_lowerCamelCase ) assert os.path.exists(_lowerCamelCase ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 __lowercase : Any = os.path.join(_lowerCamelCase , """stage-1""" ) __lowercase : str = { "accelerator": accelerator, "model_name_or_path": args.model_name_or_path, "cache_dir": args.cache_dir, "do_train": True, "train_file": data_files["train"] if iteration == 0 else data_files["train_pseudo"], "do_eval": True if args.eval_file is not None else False, "eval_file": data_files["eval"], "do_predict": True, "infer_file": data_files["infer"], "task_name": args.task_name, "label_list": args.label_list, "output_dir": current_output_dir, "eval_metric": args.eval_metric, "evaluation_strategy": args.evaluation_strategy, "early_stopping_patience": args.early_stopping_patience, "early_stopping_threshold": args.early_stopping_threshold, "seed": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(_lowerCamelCase , _lowerCamelCase ): arguments_dict.update({key: value} ) __lowercase : List[str] = os.path.join(_lowerCamelCase , """best-checkpoint""" , _lowerCamelCase ) if os.path.exists(_lowerCamelCase ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.""" , _lowerCamelCase , _lowerCamelCase , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 1 *****""" , _lowerCamelCase ) finetune(**_lowerCamelCase ) accelerator.wait_for_everyone() assert os.path.exists(_lowerCamelCase ) logger.info("""Self-training job completed: iteration: %d, stage: 1.""" , _lowerCamelCase ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data __lowercase : Union[str, Any] = os.path.join(_lowerCamelCase , """best-checkpoint""" ) __lowercase : List[Any] = os.path.join(_lowerCamelCase , """stage-2""" ) # Update arguments_dict __lowercase : Any = model_path __lowercase : List[Any] = data_files["train"] __lowercase : Optional[Any] = current_output_dir __lowercase : int = os.path.join(_lowerCamelCase , """best-checkpoint""" , _lowerCamelCase ) if os.path.exists(_lowerCamelCase ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.""" , _lowerCamelCase , _lowerCamelCase , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 2 *****""" , _lowerCamelCase ) finetune(**_lowerCamelCase ) accelerator.wait_for_everyone() assert os.path.exists(_lowerCamelCase ) logger.info("""Self-training job completed: iteration: %d, stage: 2.""" , _lowerCamelCase ) __lowercase : Union[str, Any] = iteration __lowercase : Optional[Any] = data_dir_format(iteration + 1 ) __lowercase : Optional[Any] = AutoConfig.from_pretrained(os.path.join(_lowerCamelCase , """best-checkpoint""" ) ) __lowercase : Tuple = config.idalabel __lowercase : Tuple = os.path.join(_lowerCamelCase , """eval_results_best-checkpoint.json""" ) __lowercase : Any = os.path.join(_lowerCamelCase , """test_results_best-checkpoint.json""" ) assert os.path.exists(_lowerCamelCase ) with open(_lowerCamelCase , """r""" ) as f: __lowercase : Optional[Any] = float(json.load(_lowerCamelCase )[args.eval_metric] ) __lowercase : str = os.path.join(_lowerCamelCase , """infer_output_best-checkpoint.csv""" ) assert os.path.exists(_lowerCamelCase ) # Loading the dataset from local csv or json files. __lowercase : Union[str, Any] = load_dataset(args.data_file_extension , data_files={"""data""": data_files["""infer"""]} )["data"] __lowercase : Any = load_dataset("""csv""" , data_files={"""data""": infer_output_file} )["data"] if accelerator.is_main_process: os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) shutil.copy(_lowerCamelCase , os.path.join(_lowerCamelCase , F"eval_results_iter-{iteration}.json" ) ) if os.path.exists(_lowerCamelCase ): shutil.copy(_lowerCamelCase , os.path.join(_lowerCamelCase , F"test_results_iter-{iteration}.json" ) ) create_pseudo_labeled_data(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) accelerator.wait_for_everyone() __lowercase : str = os.path.join(_lowerCamelCase , F"train_pseudo.{args.data_file_extension}" ) if args.evaluation_strategy != IntervalStrategy.NO.value: __lowercase : str = eval_result if best_iteration is None: __lowercase : Union[str, Any] = new_iteration __lowercase : Optional[Any] = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: __lowercase : str = new_iteration __lowercase : List[str] = new_eval_result __lowercase : Any = 0 else: if new_eval_result == best_eval_result: __lowercase : Optional[Any] = new_iteration __lowercase : Union[str, Any] = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: __lowercase : Optional[int] = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("""Best iteration: %d""" , _lowerCamelCase ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , _lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_lowerCamelCase , F"eval_results_iter-{iteration}.json" ) , os.path.join(_lowerCamelCase , """eval_results_best-iteration.json""" ) , ) else: # Assume that the last iteration is the best logger.info("""Best iteration: %d""" , args.max_selftrain_iterations - 1 ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , _lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_lowerCamelCase , F"eval_results_iter-{args.max_selftrain_iterations - 1}.json" ) , os.path.join(_lowerCamelCase , """eval_results_best-iteration.json""" ) , )
370
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate lowerCamelCase : str = trt.Logger(trt.Logger.WARNING) lowerCamelCase : Any = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) lowerCamelCase : Optional[Any] = logging.getLogger(__name__) lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=3_84, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=1_28, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) lowerCamelCase : Dict = parser.parse_args() if args.tokenizer_name: lowerCamelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) lowerCamelCase : List[str] = args.per_device_eval_batch_size lowerCamelCase : Any = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties lowerCamelCase : List[str] = True lowerCamelCase : List[Any] = '''temp_engine/bert-fp32.engine''' if args.fpaa: lowerCamelCase : Optional[Any] = '''temp_engine/bert-fp16.engine''' if args.inta: lowerCamelCase : int = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') lowerCamelCase : int = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network lowerCamelCase : Union[str, Any] = [network.get_input(i) for i in range(network.num_inputs)] lowerCamelCase : Dict = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: lowerCamelCase : List[str] = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) lowerCamelCase : Optional[int] = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) lowerCamelCase : Optional[Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ): __lowercase : List[str] = np.asarray(inputs["""input_ids"""] , dtype=np.intaa ) __lowercase : Union[str, Any] = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa ) __lowercase : int = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowerCAmelCase_ ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowerCAmelCase_ ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowerCAmelCase_ ) # start time __lowercase : Optional[Any] = time.time() # Run inference context.execute_async( bindings=[int(lowerCAmelCase_ ) for d_inp in d_inputs] + [int(lowerCAmelCase_ ), int(lowerCAmelCase_ )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) cuda.memcpy_dtoh_async(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Synchronize the stream and take time stream.synchronize() # end time __lowercase : int = time.time() __lowercase : Union[str, Any] = end_time - start_time __lowercase : Any = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. lowerCamelCase : Tuple = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase : List[Any] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. lowerCamelCase : Optional[Any] = raw_datasets['''validation'''].column_names lowerCamelCase : Union[str, Any] = '''question''' if '''question''' in column_names else column_names[0] lowerCamelCase : str = '''context''' if '''context''' in column_names else column_names[1] lowerCamelCase : Dict = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). lowerCamelCase : Dict = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) lowerCamelCase : Tuple = min(args.max_seq_length, tokenizer.model_max_length) def snake_case_ ( lowerCAmelCase_ : int ): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace __lowercase : str = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. __lowercase : List[str] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=lowerCAmelCase_ , stride=args.doc_stride , return_overflowing_tokens=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. __lowercase : List[str] = tokenized_examples.pop("""overflow_to_sample_mapping""" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. __lowercase : Any = [] for i in range(len(tokenized_examples["""input_ids"""] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). __lowercase : Dict = tokenized_examples.sequence_ids(lowerCAmelCase_ ) __lowercase : List[Any] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. __lowercase : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. __lowercase : Dict = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i] ) ] return tokenized_examples lowerCamelCase : Tuple = raw_datasets['''validation'''] # Validation Feature Creation lowerCamelCase : Optional[int] = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) lowerCamelCase : Union[str, Any] = default_data_collator lowerCamelCase : Optional[Any] = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) lowerCamelCase : List[str] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict="eval" ): # Post-processing: we match the start logits and end logits to answers in the original context. __lowercase : int = postprocess_qa_predictions( examples=lowerCAmelCase_ , features=lowerCAmelCase_ , predictions=lowerCAmelCase_ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowerCAmelCase_ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: __lowercase : Optional[int] = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: __lowercase : List[Any] = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] __lowercase : Optional[int] = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=lowerCAmelCase_ , label_ids=lowerCAmelCase_ ) lowerCamelCase : Dict = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def snake_case_ ( lowerCAmelCase_ : str ): return trt.volume(engine.get_binding_shape(lowerCAmelCase_ ) ) * engine.get_binding_dtype(lowerCAmelCase_ ).itemsize # Allocate device memory for inputs and outputs. lowerCamelCase : int = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer lowerCamelCase : Dict = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) lowerCamelCase : str = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) lowerCamelCase : Dict = cuda.mem_alloc(h_outputa.nbytes) lowerCamelCase : Optional[Any] = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. lowerCamelCase : Optional[int] = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(f''' Num examples = {len(eval_dataset)}''') logger.info(f''' Batch size = {args.per_device_eval_batch_size}''') lowerCamelCase : int = 0.0 lowerCamelCase : List[str] = 0 lowerCamelCase : List[str] = timeit.default_timer() lowerCamelCase : List[Any] = None for step, batch in enumerate(eval_dataloader): lowerCamelCase ,lowerCamelCase : str = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 lowerCamelCase ,lowerCamelCase : Union[str, Any] = outputs lowerCamelCase : Optional[Any] = torch.tensor(start_logits) lowerCamelCase : List[str] = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered lowerCamelCase : Optional[int] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-1_00) lowerCamelCase : Dict = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-1_00) lowerCamelCase : List[Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) lowerCamelCase : Dict = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-1_00) if all_preds is not None: lowerCamelCase : Tuple = nested_truncate(all_preds, len(eval_dataset)) lowerCamelCase : Dict = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 10_00 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 10_00)) logger.info('''Total Number of Inference = %d''', niter) lowerCamelCase : str = post_processing_function(eval_examples, eval_dataset, all_preds) lowerCamelCase : Optional[Any] = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'''Evaluation metrics: {eval_metric}''')
306
0
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowerCamelCase : List[Any] = logging.get_logger(__name__) lowerCamelCase : Union[str, Any] = {'''vocab_file''': '''spiece.model'''} lowerCamelCase : Any = { '''vocab_file''': { '''TsinghuaAI/CPM-Generate''': '''https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model''', } } class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Tuple , __a : Union[str, Any] , __a : List[str]=False , __a : Dict=True , __a : Union[str, Any]=False , __a : Dict="<s>" , __a : List[Any]="</s>" , __a : List[Any]="<unk>" , __a : List[str]="<sep>" , __a : Optional[int]="<pad>" , __a : Optional[Any]="<cls>" , __a : Optional[int]="<mask>" , __a : List[str]=["<eop>", "<eod>"] , __a : int = None , **__a : Optional[Any] , ) -> None: """simple docstring""" __lowercase : str = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token __lowercase : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_SCREAMING_SNAKE_CASE , remove_space=_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) __lowercase : int = 3 __lowercase : Optional[int] = do_lower_case __lowercase : Union[str, Any] = remove_space __lowercase : Optional[int] = keep_accents __lowercase : Any = vocab_file __lowercase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( """You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """ """See https://pypi.org/project/jieba/ for installation.""" ) __lowercase : Tuple = jieba __lowercase : int = str.maketrans(""" \n""" , """\u2582\u2583""" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" return len(self.sp_model ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ) -> Any: """simple docstring""" __lowercase : Any = self.__dict__.copy() __lowercase : Optional[Any] = None return state def __setstate__( self : Dict , __a : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : List[str] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __lowercase : Any = {} __lowercase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase ( self : Tuple , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" if self.remove_space: __lowercase : Any = ''' '''.join(inputs.strip().split() ) else: __lowercase : int = inputs __lowercase : Any = outputs.replace("""``""" , """\"""" ).replace("""\'\'""" , """\"""" ) if not self.keep_accents: __lowercase : Tuple = unicodedata.normalize("""NFKD""" , _SCREAMING_SNAKE_CASE ) __lowercase : int = ''''''.join([c for c in outputs if not unicodedata.combining(_SCREAMING_SNAKE_CASE )] ) if self.do_lower_case: __lowercase : Optional[int] = outputs.lower() return outputs def lowerCAmelCase ( self : List[Any] , __a : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase : Tuple = self.preprocess_text(_SCREAMING_SNAKE_CASE ) __lowercase : int = self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) __lowercase : Optional[Any] = [] for piece in pieces: if len(_SCREAMING_SNAKE_CASE ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): __lowercase : Dict = self.sp_model.EncodeAsPieces(piece[:-1].replace(_SCREAMING_SNAKE_CASE , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __lowercase : Optional[int] = cur_pieces[1:] else: __lowercase : Optional[int] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_SCREAMING_SNAKE_CASE ) else: new_pieces.append(_SCREAMING_SNAKE_CASE ) return new_pieces def lowerCAmelCase ( self : Any , __a : Optional[Any] ) -> List[str]: """simple docstring""" return self.sp_model.PieceToId(_SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self : Any , __a : Any ) -> List[str]: """simple docstring""" return self.sp_model.IdToPiece(_SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self : Optional[int] , __a : Union[str, Any] ) -> int: """simple docstring""" __lowercase : List[Any] = ''''''.join(_SCREAMING_SNAKE_CASE ).replace(_SCREAMING_SNAKE_CASE , """ """ ).strip() return out_string def lowerCAmelCase ( self : Optional[int] , __a : List[Any] , __a : Union[str, Any] = None ) -> List[int]: """simple docstring""" __lowercase : Optional[Any] = [self.sep_token_id] __lowercase : int = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowerCAmelCase ( self : int , __a : Optional[Any] , __a : str = None , __a : List[Any] = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) if token_ids_a is not None: return ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1, 1] return ([0] * len(_SCREAMING_SNAKE_CASE )) + [1, 1] def lowerCAmelCase ( self : List[Any] , __a : int , __a : Tuple = None ) -> List[int]: """simple docstring""" __lowercase : Optional[int] = [self.sep_token_id] __lowercase : List[Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowerCAmelCase ( self : Union[str, Any] , __a : Any , __a : Dict = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __lowercase : int = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , """wb""" ) as fi: __lowercase : Dict = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def lowerCAmelCase ( self : Any , *__a : Optional[Any] , **__a : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = super()._decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) __lowercase : Tuple = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" ) return text
371
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : str = { '''facebook/nllb-moe-54B''': '''https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''nllb-moe''' _A : List[str] = ['''past_key_values'''] _A : Optional[Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Dict , __a : List[str]=128112 , __a : List[Any]=1024 , __a : List[Any]=12 , __a : Union[str, Any]=4096 , __a : List[str]=16 , __a : int=12 , __a : Optional[int]=4096 , __a : str=16 , __a : List[Any]=0.05 , __a : Any=0.05 , __a : Dict=True , __a : Optional[Any]=True , __a : List[Any]="relu" , __a : Tuple=1024 , __a : Optional[Any]=0.1 , __a : Tuple=0.1 , __a : Any=0.0 , __a : Optional[Any]=0.02 , __a : List[str]=2 , __a : Union[str, Any]=True , __a : List[Any]=False , __a : Tuple="float32" , __a : Optional[int]=False , __a : Optional[int]=128 , __a : str=64 , __a : Dict=4 , __a : str=4 , __a : List[str]=0.001 , __a : List[Any]=0.001 , __a : Optional[Any]="all" , __a : Optional[int]=False , __a : int=False , __a : int=1.0 , __a : Dict=0.2 , __a : Tuple=1 , __a : Optional[Any]=0 , __a : List[Any]=2 , __a : Any=False , **__a : Any , ) -> Any: """simple docstring""" __lowercase : int = vocab_size __lowercase : List[Any] = max_position_embeddings __lowercase : Tuple = d_model __lowercase : str = encoder_ffn_dim __lowercase : List[str] = encoder_layers __lowercase : int = encoder_attention_heads __lowercase : List[Any] = decoder_ffn_dim __lowercase : int = decoder_layers __lowercase : Optional[int] = decoder_attention_heads __lowercase : Union[str, Any] = dropout __lowercase : str = attention_dropout __lowercase : Any = activation_dropout __lowercase : List[Any] = activation_function __lowercase : List[str] = init_std __lowercase : Optional[int] = encoder_layerdrop __lowercase : str = decoder_layerdrop __lowercase : Dict = use_cache __lowercase : Optional[Any] = encoder_layers __lowercase : str = scale_embedding # scale factor will be sqrt(d_model) if True __lowercase : List[Any] = router_z_loss_coef __lowercase : Tuple = router_aux_loss_coef __lowercase : str = decoder_sparse_step __lowercase : Any = encoder_sparse_step __lowercase : str = num_experts __lowercase : List[Any] = expert_capacity __lowercase : int = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) __lowercase : Optional[int] = router_dtype __lowercase : Any = router_ignore_padding_tokens __lowercase : Optional[Any] = batch_prioritized_routing __lowercase : str = second_expert_policy __lowercase : List[str] = normalize_router_prob_before_dropping __lowercase : List[Any] = moe_eval_capacity_token_fraction __lowercase : List[str] = moe_token_dropout __lowercase : Optional[Any] = output_router_logits super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , decoder_start_token_id=__a , **__a , )
306
0
"""simple docstring""" from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Union[str, Any] = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) lowerCamelCase : Optional[Any] = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) lowerCamelCase : Optional[Any] = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) lowerCamelCase : Optional[Any] = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) lowerCamelCase : Dict = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) lowerCamelCase : Dict = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) lowerCamelCase : Union[str, Any] = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) lowerCamelCase : Dict = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) lowerCamelCase : str = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) lowerCamelCase : int = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) lowerCamelCase : List[str] = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) lowerCamelCase : Optional[Any] = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) lowerCamelCase : Union[str, Any] = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) lowerCamelCase : List[str] = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) lowerCamelCase : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) lowerCamelCase : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) lowerCamelCase : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) lowerCamelCase : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) lowerCamelCase : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) lowerCamelCase : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) lowerCamelCase : Any = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) lowerCamelCase : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) lowerCamelCase : str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) lowerCamelCase : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) lowerCamelCase : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) lowerCamelCase : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) lowerCamelCase : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) lowerCamelCase : int = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class lowerCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' _A : Any = FLAX_MODEL_MAPPING lowerCamelCase : Optional[Any] = auto_class_update(FlaxAutoModel) class lowerCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' _A : Optional[Any] = FLAX_MODEL_FOR_PRETRAINING_MAPPING lowerCamelCase : Dict = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class lowerCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' _A : str = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING lowerCamelCase : Dict = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class lowerCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' _A : Optional[Any] = FLAX_MODEL_FOR_MASKED_LM_MAPPING lowerCamelCase : Optional[Any] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class lowerCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' _A : Dict = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCamelCase : Optional[int] = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class lowerCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' _A : Dict = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCamelCase : Union[str, Any] = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class lowerCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' _A : str = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING lowerCamelCase : Tuple = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class lowerCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' _A : Optional[Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowerCamelCase : Dict = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class lowerCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' _A : int = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING lowerCamelCase : Any = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class lowerCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' _A : int = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING lowerCamelCase : str = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class lowerCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' _A : List[str] = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCamelCase : int = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class lowerCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' _A : Optional[Any] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING lowerCamelCase : List[str] = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class lowerCAmelCase ( _BaseAutoModelClass ): '''simple docstring''' _A : Dict = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING lowerCamelCase : Any = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
350
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase : Optional[Any] = { '''configuration_poolformer''': [ '''POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PoolFormerConfig''', '''PoolFormerOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = ['''PoolFormerFeatureExtractor'''] lowerCamelCase : Union[str, Any] = ['''PoolFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = [ '''POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PoolFormerForImageClassification''', '''PoolFormerModel''', '''PoolFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
306
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) class lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' _A : Union[str, Any] = "timm_backbone" def __init__( self : Dict , __a : Optional[int]=None , __a : Tuple=3 , __a : Any=True , __a : Dict=True , __a : Optional[int]=None , **__a : Optional[int] , ) -> str: """simple docstring""" super().__init__(**_snake_case ) __lowercase : Optional[int] = backbone __lowercase : List[str] = num_channels __lowercase : List[str] = features_only __lowercase : Union[str, Any] = use_pretrained_backbone __lowercase : Optional[Any] = True __lowercase : str = out_indices if out_indices is not None else (-1,)
351
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : List[str] = 2 __lowercase : Union[str, Any] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(lowerCAmelCase_ ) if n > 1: factors.append(lowerCAmelCase_ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
306
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : Tuple = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str=False ): __lowercase : Dict = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __lowercase : int = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : Dict=False ): for i in range(config.num_hidden_layers ): if base_model: __lowercase : str = '''''' else: __lowercase : Optional[Any] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowercase : Optional[int] = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) __lowercase : Any = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict __lowercase : Dict = in_proj_weight[ : config.hidden_size, : ] __lowercase : List[Any] = in_proj_bias[: config.hidden_size] __lowercase : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowercase : str = in_proj_weight[ -config.hidden_size :, : ] __lowercase : Union[str, Any] = in_proj_bias[-config.hidden_size :] def snake_case_ ( lowerCAmelCase_ : Optional[int] ): __lowercase : str = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : str ): __lowercase : int = dct.pop(UpperCamelCase__ ) __lowercase : Optional[int] = val def snake_case_ ( ): __lowercase : List[str] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowercase : Any = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return im @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] ): __lowercase : Tuple = ViTConfig() __lowercase : Optional[int] = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": __lowercase : Optional[int] = True __lowercase : List[str] = int(vit_name[-12:-10] ) __lowercase : Dict = int(vit_name[-9:-6] ) else: __lowercase : Optional[int] = 1000 __lowercase : Dict = '''huggingface/label-files''' __lowercase : Optional[Any] = '''imagenet-1k-id2label.json''' __lowercase : Tuple = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) __lowercase : Optional[int] = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} __lowercase : Optional[int] = idalabel __lowercase : Union[str, Any] = {v: k for k, v in idalabel.items()} __lowercase : List[Any] = int(vit_name[-6:-4] ) __lowercase : Any = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("""tiny""" ): __lowercase : Any = 192 __lowercase : Tuple = 768 __lowercase : str = 12 __lowercase : int = 3 elif vit_name[9:].startswith("""small""" ): __lowercase : Optional[int] = 384 __lowercase : List[Any] = 1536 __lowercase : Optional[Any] = 12 __lowercase : List[Any] = 6 else: pass else: if vit_name[4:].startswith("""small""" ): __lowercase : Dict = 768 __lowercase : List[Any] = 2304 __lowercase : Optional[int] = 8 __lowercase : Any = 8 elif vit_name[4:].startswith("""base""" ): pass elif vit_name[4:].startswith("""large""" ): __lowercase : Union[str, Any] = 1024 __lowercase : Optional[Any] = 4096 __lowercase : str = 24 __lowercase : List[Any] = 16 elif vit_name[4:].startswith("""huge""" ): __lowercase : Any = 1280 __lowercase : Optional[int] = 5120 __lowercase : Dict = 32 __lowercase : str = 16 # load original model from timm __lowercase : Any = timm.create_model(UpperCamelCase__ , pretrained=UpperCamelCase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys __lowercase : Union[str, Any] = timm_model.state_dict() if base_model: remove_classification_head_(UpperCamelCase__ ) __lowercase : Tuple = create_rename_keys(UpperCamelCase__ , UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_q_k_v(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # load HuggingFace model if vit_name[-5:] == "in21k": __lowercase : Any = ViTModel(UpperCamelCase__ ).eval() else: __lowercase : Dict = ViTForImageClassification(UpperCamelCase__ ).eval() model.load_state_dict(UpperCamelCase__ ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: __lowercase : Union[str, Any] = DeiTImageProcessor(size=config.image_size ) else: __lowercase : Optional[Any] = ViTImageProcessor(size=config.image_size ) __lowercase : Union[str, Any] = image_processor(images=prepare_img() , return_tensors="""pt""" ) __lowercase : Optional[int] = encoding['''pixel_values'''] __lowercase : List[Any] = model(UpperCamelCase__ ) if base_model: __lowercase : int = timm_model.forward_features(UpperCamelCase__ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(UpperCamelCase__ , outputs.pooler_output , atol=1e-3 ) else: __lowercase : Tuple = timm_model(UpperCamelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(UpperCamelCase__ , outputs.logits , atol=1e-3 ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCamelCase__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": lowerCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--vit_name''', default='''vit_base_patch16_224''', type=str, help='''Name of the ViT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCamelCase : Dict = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
352
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Dict = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) __lowercase : List[str] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __lowercase : Optional[Any] = model(__a )["""last_hidden_state"""] __lowercase : Any = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , __a ) # compare the actual values for a slice. __lowercase : Dict = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
306
0
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: lowerCamelCase : Union[str, Any] = None lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Any = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase : Optional[Any] = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json' ), }, } lowerCamelCase : Optional[Any] = { 'facebook/nllb-large-en-ro': 10_24, 'facebook/nllb-200-distilled-600M': 10_24, } # fmt: off lowerCamelCase : Any = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class lowerCAmelCase ( _lowerCamelCase ): '''simple docstring''' _A : int = VOCAB_FILES_NAMES _A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _A : List[str] = ['''input_ids''', '''attention_mask'''] _A : Optional[int] = NllbTokenizer _A : Optional[int] = [] _A : List[Any] = [] def __init__( self : Optional[Any] , __a : str=None , __a : Union[str, Any]=None , __a : Optional[int]="<s>" , __a : Tuple="</s>" , __a : List[Any]="</s>" , __a : int="<s>" , __a : List[str]="<unk>" , __a : List[str]="<pad>" , __a : int="<mask>" , __a : Tuple=None , __a : int=None , __a : Union[str, Any]=None , __a : int=False , **__a : Union[str, Any] , ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token __lowercase : str = legacy_behaviour super().__init__( vocab_file=__a , tokenizer_file=__a , bos_token=__a , eos_token=__a , sep_token=__a , cls_token=__a , unk_token=__a , pad_token=__a , mask_token=__a , src_lang=__a , tgt_lang=__a , additional_special_tokens=__a , legacy_behaviour=__a , **__a , ) __lowercase : int = vocab_file __lowercase : str = False if not self.vocab_file else True __lowercase : str = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) __lowercase : Optional[Any] = { lang_code: self.convert_tokens_to_ids(__a ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __lowercase : Optional[int] = src_lang if src_lang is not None else """eng_Latn""" __lowercase : List[Any] = self.convert_tokens_to_ids(self._src_lang ) __lowercase : List[str] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return self._src_lang @src_lang.setter def lowerCAmelCase ( self : List[Any] , __a : str ) -> Optional[Any]: """simple docstring""" __lowercase : str = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCAmelCase ( self : Any , __a : List[int] , __a : Optional[List[int]] = None ) -> int: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCAmelCase ( self : int , __a : List[int] , __a : Optional[List[int]] = None ) -> List[Any]: """simple docstring""" __lowercase : List[str] = [self.sep_token_id] __lowercase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase ( self : str , __a : Optional[Any] , __a : str , __a : Optional[str] , __a : Optional[str] , **__a : List[str] ) -> List[Any]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) __lowercase : Tuple = src_lang __lowercase : List[str] = self(__a , add_special_tokens=__a , return_tensors=__a , **__a ) __lowercase : Any = self.convert_tokens_to_ids(__a ) __lowercase : Optional[int] = tgt_lang_id return inputs def lowerCAmelCase ( self : Optional[int] , __a : List[str] , __a : str = "eng_Latn" , __a : Optional[List[str]] = None , __a : str = "fra_Latn" , **__a : int , ) -> int: """simple docstring""" __lowercase : List[Any] = src_lang __lowercase : Optional[Any] = tgt_lang return super().prepare_seqaseq_batch(__a , __a , **__a ) def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCAmelCase ( self : int , __a : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : List[Any] = self.convert_tokens_to_ids(__a ) if self.legacy_behaviour: __lowercase : Optional[Any] = [] __lowercase : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: __lowercase : str = [self.cur_lang_code] __lowercase : Union[str, Any] = [self.eos_token_id] __lowercase : int = self.convert_ids_to_tokens(self.prefix_tokens ) __lowercase : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) __lowercase : Union[str, Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCAmelCase ( self : List[str] , __a : str ) -> Optional[Any]: """simple docstring""" __lowercase : List[str] = self.convert_tokens_to_ids(__a ) if self.legacy_behaviour: __lowercase : List[str] = [] __lowercase : Dict = [self.eos_token_id, self.cur_lang_code] else: __lowercase : Optional[Any] = [self.cur_lang_code] __lowercase : List[str] = [self.eos_token_id] __lowercase : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) __lowercase : List[str] = self.convert_ids_to_tokens(self.suffix_tokens ) __lowercase : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCAmelCase ( self : Optional[int] , __a : str , __a : Optional[str] = None ) -> List[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__a ): logger.error(F"Vocabulary path ({save_directory}) should be a directory." ) return __lowercase : List[str] = os.path.join( __a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ): copyfile(self.vocab_file , __a ) return (out_vocab_file,)
353
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Optional[Any] = len(lowerCAmelCase_ ) __lowercase : str = len(lowerCAmelCase_ ) __lowercase : Optional[int] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __lowercase : Tuple = True for i in range(lowerCAmelCase_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __lowercase : Optional[Any] = True if a[i].islower(): __lowercase : Dict = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
306
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : Optional[int] = { '''configuration_whisper''': ['''WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WhisperConfig''', '''WhisperOnnxConfig'''], '''feature_extraction_whisper''': ['''WhisperFeatureExtractor'''], '''processing_whisper''': ['''WhisperProcessor'''], '''tokenization_whisper''': ['''WhisperTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[Any] = ['''WhisperTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = [ '''WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WhisperForConditionalGeneration''', '''WhisperModel''', '''WhisperPreTrainedModel''', '''WhisperForAudioClassification''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Any = [ '''TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWhisperForConditionalGeneration''', '''TFWhisperModel''', '''TFWhisperPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[Any] = [ '''FlaxWhisperForConditionalGeneration''', '''FlaxWhisperModel''', '''FlaxWhisperPreTrainedModel''', '''FlaxWhisperForAudioClassification''', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys lowerCamelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
354
from scipy.stats import spearmanr import datasets lowerCamelCase : List[str] = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' lowerCamelCase : List[str] = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' lowerCamelCase : Union[str, Any] = r'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def lowerCAmelCase ( self : List[Any] , __a : str , __a : Any , __a : Optional[int]=False ) -> List[str]: """simple docstring""" __lowercase : Optional[Any] = spearmanr(__a , __a ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
306
0
import warnings from functools import wraps from typing import Callable def snake_case_ ( lowerCAmelCase_ : Callable ): @wraps(lowerCAmelCase_ ) def _inner_fn(*lowerCAmelCase_ : Any , **lowerCAmelCase_ : Union[str, Any] ): warnings.warn( (F"\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.") , lowerCAmelCase_ , ) return fn(*lowerCAmelCase_ , **lowerCAmelCase_ ) return _inner_fn
355
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Any = get_failure_array(lowerCAmelCase_ ) # 2) Step through text searching for pattern __lowercase , __lowercase : Optional[int] = 0, 0 # index into text, pattern while i < len(lowerCAmelCase_ ): if pattern[j] == text[i]: if j == (len(lowerCAmelCase_ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: __lowercase : Optional[Any] = failure[j - 1] continue i += 1 return False def snake_case_ ( lowerCAmelCase_ : str ): __lowercase : List[Any] = [0] __lowercase : Optional[Any] = 0 __lowercase : List[Any] = 1 while j < len(lowerCAmelCase_ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: __lowercase : List[str] = failure[i - 1] continue j += 1 failure.append(lowerCAmelCase_ ) return failure if __name__ == "__main__": # Test 1) lowerCamelCase : Dict = '''abc1abc12''' lowerCamelCase : Union[str, Any] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' lowerCamelCase : Any = '''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) lowerCamelCase : List[Any] = '''ABABX''' lowerCamelCase : List[Any] = '''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) lowerCamelCase : int = '''AAAB''' lowerCamelCase : Optional[int] = '''ABAAAAAB''' assert kmp(pattern, text) # Test 4) lowerCamelCase : Optional[Any] = '''abcdabcy''' lowerCamelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) lowerCamelCase : Dict = '''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
306
0
import re def snake_case_ ( lowerCAmelCase_ : str ): __lowercase : Tuple = re.compile( r"""^(?:0|94|\+94|0{2}94)""" r"""7(0|1|2|4|5|6|7|8)""" r"""(-| |)""" r"""\d{7}$""" ) return bool(re.search(__UpperCAmelCase , __UpperCAmelCase ) ) if __name__ == "__main__": lowerCamelCase : Union[str, Any] = '0094702343221' print(is_sri_lankan_phone_number(phone))
356
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = ['''pixel_values'''] def __init__( self : Any , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : bool = True , __a : Dict[str, int] = None , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = True , **__a : str , ) -> None: """simple docstring""" super().__init__(**__a ) __lowercase : Dict = size if size is not None else {"""shortest_edge""": 224} __lowercase : Union[str, Any] = get_size_dict(__a , default_to_square=__a ) __lowercase : int = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __lowercase : Any = get_size_dict(__a , default_to_square=__a , param_name="""crop_size""" ) __lowercase : Optional[int] = do_resize __lowercase : Union[str, Any] = size __lowercase : List[Any] = resample __lowercase : Any = do_center_crop __lowercase : Dict = crop_size __lowercase : int = do_rescale __lowercase : Tuple = rescale_factor __lowercase : List[Any] = do_normalize __lowercase : Union[str, Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowercase : int = image_std if image_std is not None else OPENAI_CLIP_STD __lowercase : Union[str, Any] = do_convert_rgb def lowerCAmelCase ( self : Union[str, Any] , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[Any] , ) -> np.ndarray: """simple docstring""" __lowercase : Dict = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) __lowercase : str = get_resize_output_image_size(__a , size=size["""shortest_edge"""] , default_to_square=__a ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Any , ) -> np.ndarray: """simple docstring""" __lowercase : Tuple = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(__a , size=(size["""height"""], size["""width"""]) , data_format=__a , **__a ) def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : Union[int, float] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[Any] , ) -> List[str]: """simple docstring""" return rescale(__a , scale=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Optional[int] , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] , ) -> np.ndarray: """simple docstring""" return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Optional[int] , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : int = None , __a : bool = None , __a : float = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = None , __a : Optional[Union[str, TensorType]] = None , __a : Optional[ChannelDimension] = ChannelDimension.FIRST , **__a : List[Any] , ) -> PIL.Image.Image: """simple docstring""" __lowercase : List[Any] = do_resize if do_resize is not None else self.do_resize __lowercase : Dict = size if size is not None else self.size __lowercase : Tuple = get_size_dict(__a , param_name="""size""" , default_to_square=__a ) __lowercase : int = resample if resample is not None else self.resample __lowercase : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase : List[Any] = crop_size if crop_size is not None else self.crop_size __lowercase : List[str] = get_size_dict(__a , param_name="""crop_size""" , default_to_square=__a ) __lowercase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __lowercase : str = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase : Dict = do_normalize if do_normalize is not None else self.do_normalize __lowercase : Tuple = image_mean if image_mean is not None else self.image_mean __lowercase : str = image_std if image_std is not None else self.image_std __lowercase : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase : Union[str, Any] = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase : Union[str, Any] = [convert_to_rgb(__a ) for image in images] # All transformations expect numpy arrays. __lowercase : Any = [to_numpy_array(__a ) for image in images] if do_resize: __lowercase : str = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: __lowercase : str = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: __lowercase : Dict = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: __lowercase : Optional[Any] = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] __lowercase : Any = [to_channel_dimension_format(__a , __a ) for image in images] __lowercase : Optional[int] = {"""pixel_values""": images} return BatchFeature(data=__a , tensor_type=__a )
306
0
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class lowerCAmelCase ( A__ ): '''simple docstring''' _A : torch.FloatTensor _A : Optional[torch.FloatTensor] = None def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any=0.999 , lowerCAmelCase_ : int="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCAmelCase_ : str ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCAmelCase_ : List[str] ): return math.exp(t * -12.0 ) else: raise ValueError(F"Unsupported alpha_tranform_type: {alpha_transform_type}" ) __lowercase : Any = [] for i in range(lowercase_ ): __lowercase : Optional[int] = i / num_diffusion_timesteps __lowercase : Union[str, Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowercase_ ) / alpha_bar_fn(lowercase_ ) , lowercase_ ) ) return torch.tensor(lowercase_ , dtype=torch.floataa ) class lowerCAmelCase ( A__ , A__ ): '''simple docstring''' @register_to_config def __init__( self : int , __a : Dict = 1000 , __a : Tuple = "fixed_small_log" , __a : str = True , __a : Optional[int] = 1.0 , __a : Tuple = "epsilon" , __a : Any = "squaredcos_cap_v2" , ) -> Dict: """simple docstring""" if beta_schedule != "squaredcos_cap_v2": raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'""" ) __lowercase : Dict = betas_for_alpha_bar(lowerCamelCase__ ) __lowercase : Any = 1.0 - self.betas __lowercase : Optional[int] = torch.cumprod(self.alphas , dim=0 ) __lowercase : Optional[int] = torch.tensor(1.0 ) # standard deviation of the initial noise distribution __lowercase : List[Any] = 1.0 # setable values __lowercase : List[str] = None __lowercase : Any = torch.from_numpy(np.arange(0 , lowerCamelCase__ )[::-1].copy() ) __lowercase : List[str] = variance_type def lowerCAmelCase ( self : Any , __a : Optional[int] , __a : Union[str, Any] = None ) -> Tuple: """simple docstring""" return sample def lowerCAmelCase ( self : str , __a : Optional[int] , __a : List[str] = None ) -> Optional[Any]: """simple docstring""" __lowercase : int = num_inference_steps __lowercase : Dict = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) __lowercase : Dict = (np.arange(0 , lowerCamelCase__ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) __lowercase : List[str] = torch.from_numpy(lowerCamelCase__ ).to(lowerCamelCase__ ) def lowerCAmelCase ( self : Union[str, Any] , __a : Dict , __a : List[str]=None , __a : Dict=None , __a : int=None ) -> str: """simple docstring""" if prev_timestep is None: __lowercase : Union[str, Any] = t - 1 __lowercase : Optional[int] = self.alphas_cumprod[t] __lowercase : int = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __lowercase : int = 1 - alpha_prod_t __lowercase : str = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __lowercase : Dict = self.betas[t] else: __lowercase : str = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __lowercase : str = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: __lowercase : Optional[Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": __lowercase : Optional[Any] = torch.log(torch.clamp(lowerCamelCase__ , min=1E-20 ) ) __lowercase : int = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler __lowercase : Dict = variance.log() __lowercase : int = beta.log() __lowercase : Dict = (predicted_variance + 1) / 2 __lowercase : List[str] = frac * max_log + (1 - frac) * min_log return variance def lowerCAmelCase ( self : Tuple , __a : Optional[Any] , __a : List[Any] , __a : str , __a : str = None , __a : Optional[Any]=None , __a : Any = True , ) -> List[str]: """simple docstring""" __lowercase : str = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": __lowercase , __lowercase : Union[str, Any] = torch.split(lowerCamelCase__ , sample.shape[1] , dim=1 ) else: __lowercase : Any = None # 1. compute alphas, betas if prev_timestep is None: __lowercase : str = t - 1 __lowercase : Union[str, Any] = self.alphas_cumprod[t] __lowercase : Optional[int] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __lowercase : List[Any] = 1 - alpha_prod_t __lowercase : Union[str, Any] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __lowercase : List[str] = self.betas[t] __lowercase : List[str] = self.alphas[t] else: __lowercase : Optional[int] = 1 - alpha_prod_t / alpha_prod_t_prev __lowercase : int = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __lowercase : Optional[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __lowercase : Tuple = model_output else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`" """ for the UnCLIPScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: __lowercase : str = torch.clamp( lowerCamelCase__ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowercase : Tuple = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t __lowercase : Optional[Any] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowercase : Tuple = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __lowercase : Tuple = 0 if t > 0: __lowercase : int = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=lowerCamelCase__ , device=model_output.device ) __lowercase : str = self._get_variance( lowerCamelCase__ , predicted_variance=lowerCamelCase__ , prev_timestep=lowerCamelCase__ , ) if self.variance_type == "fixed_small_log": __lowercase : Optional[Any] = variance elif self.variance_type == "learned_range": __lowercase : Optional[int] = (0.5 * variance).exp() else: raise ValueError( F"variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`" """ for the UnCLIPScheduler.""" ) __lowercase : List[Any] = variance * variance_noise __lowercase : Optional[Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=lowerCamelCase__ , pred_original_sample=lowerCamelCase__ ) def lowerCAmelCase ( self : List[Any] , __a : int , __a : Tuple , __a : Optional[Any] , ) -> Union[str, Any]: """simple docstring""" __lowercase : List[Any] = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) __lowercase : Optional[Any] = timesteps.to(original_samples.device ) __lowercase : Any = alphas_cumprod[timesteps] ** 0.5 __lowercase : Union[str, Any] = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): __lowercase : str = sqrt_alpha_prod.unsqueeze(-1 ) __lowercase : str = (1 - alphas_cumprod[timesteps]) ** 0.5 __lowercase : str = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): __lowercase : Optional[int] = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) __lowercase : List[str] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
357
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str ): __lowercase : Tuple = s.rsplit(lowerCAmelCase_ , lowerCAmelCase_ ) return new.join(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : List[Any] ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : List[str] = {} __lowercase : Tuple = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __lowercase : List[str] = key.replace(F"{group_key}." , F"{group_key}.group." ) if "res_path" in key: __lowercase : List[Any] = key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): __lowercase : Union[str, Any] = rreplace(lowerCAmelCase_ , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): __lowercase : Tuple = rreplace(lowerCAmelCase_ , """.b""" , """.bias""" , 1 ) __lowercase : Dict = value.float() return upgrade @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=True ): from dall_e import Encoder __lowercase : Any = Encoder() if os.path.exists(lowerCAmelCase_ ): __lowercase : List[Any] = torch.load(lowerCAmelCase_ ) else: __lowercase : List[Any] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : int = ckpt.state_dict() encoder.load_state_dict(lowerCAmelCase_ ) if config_path is not None: __lowercase : Optional[int] = FlavaImageCodebookConfig.from_pretrained(lowerCAmelCase_ ) else: __lowercase : List[str] = FlavaImageCodebookConfig() __lowercase : Optional[Any] = FlavaImageCodebook(lowerCAmelCase_ ).eval() __lowercase : List[Any] = encoder.state_dict() __lowercase : Union[str, Any] = upgrade_state_dict(lowerCAmelCase_ ) hf_model.load_state_dict(lowerCAmelCase_ ) __lowercase : Dict = hf_model.state_dict() __lowercase : Tuple = count_parameters(lowerCAmelCase_ ) __lowercase : Tuple = count_parameters(lowerCAmelCase_ ) assert torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(lowerCAmelCase_ ) else: return hf_state_dict if __name__ == "__main__": lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowerCamelCase : Union[str, Any] = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
306
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : Tuple = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : List[Any] ): __lowercase : Union[str, Any] = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=["""stage2""", """stage3""", """stage4"""] , ) __lowercase : Union[str, Any] = DetaConfig( backbone_config=A_ , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=A_ , with_box_refine=A_ , two_stage=A_ , ) # set labels __lowercase : List[str] = '''huggingface/label-files''' if "o365" in model_name: __lowercase : Union[str, Any] = 366 __lowercase : Optional[int] = '''object365-id2label.json''' else: __lowercase : List[str] = 91 __lowercase : Dict = '''coco-detection-id2label.json''' __lowercase : List[str] = num_labels __lowercase : Union[str, Any] = json.load(open(cached_download(hf_hub_url(A_ , A_ , repo_type="""dataset""" ) ) , """r""" ) ) __lowercase : Optional[int] = {int(A_ ): v for k, v in idalabel.items()} __lowercase : List[Any] = idalabel __lowercase : List[Any] = {v: k for k, v in idalabel.items()} return config def snake_case_ ( lowerCAmelCase_ : Optional[Any] ): __lowercase : str = [] # stem # fmt: off rename_keys.append(("""backbone.0.body.patch_embed.proj.weight""", """model.backbone.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.0.body.patch_embed.proj.bias""", """model.backbone.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.0.body.patch_embed.norm.weight""", """model.backbone.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.0.body.patch_embed.norm.bias""", """model.backbone.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm1.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm1.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm2.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm2.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((F"backbone.0.body.layers.{i}.downsample.reduction.weight", F"model.backbone.model.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.downsample.norm.weight", F"model.backbone.model.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.downsample.norm.bias", F"model.backbone.model.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append(("""backbone.0.body.norm1.weight""", """model.backbone.model.hidden_states_norms.stage2.weight""") ) rename_keys.append(("""backbone.0.body.norm1.bias""", """model.backbone.model.hidden_states_norms.stage2.bias""") ) rename_keys.append(("""backbone.0.body.norm2.weight""", """model.backbone.model.hidden_states_norms.stage3.weight""") ) rename_keys.append(("""backbone.0.body.norm2.bias""", """model.backbone.model.hidden_states_norms.stage3.bias""") ) rename_keys.append(("""backbone.0.body.norm3.weight""", """model.backbone.model.hidden_states_norms.stage4.weight""") ) rename_keys.append(("""backbone.0.body.norm3.bias""", """model.backbone.model.hidden_states_norms.stage4.bias""") ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight", F"model.encoder.layers.{i}.self_attn.sampling_offsets.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias", F"model.encoder.layers.{i}.self_attn.sampling_offsets.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.attention_weights.weight", F"model.encoder.layers.{i}.self_attn.attention_weights.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.attention_weights.bias", F"model.encoder.layers.{i}.self_attn.attention_weights.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.value_proj.weight", F"model.encoder.layers.{i}.self_attn.value_proj.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.value_proj.bias", F"model.encoder.layers.{i}.self_attn.value_proj.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.output_proj.weight", F"model.encoder.layers.{i}.self_attn.output_proj.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.output_proj.bias", F"model.encoder.layers.{i}.self_attn.output_proj.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm1.weight", F"model.encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm1.bias", F"model.encoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.weight", F"model.encoder.layers.{i}.fc1.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.bias", F"model.encoder.layers.{i}.fc1.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.weight", F"model.encoder.layers.{i}.fc2.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.bias", F"model.encoder.layers.{i}.fc2.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.weight", F"model.encoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.bias", F"model.encoder.layers.{i}.final_layer_norm.bias") ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight", F"model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias", F"model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.attention_weights.weight", F"model.decoder.layers.{i}.encoder_attn.attention_weights.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.attention_weights.bias", F"model.decoder.layers.{i}.encoder_attn.attention_weights.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.value_proj.weight", F"model.decoder.layers.{i}.encoder_attn.value_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.value_proj.bias", F"model.decoder.layers.{i}.encoder_attn.value_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.output_proj.weight", F"model.decoder.layers.{i}.encoder_attn.output_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.output_proj.bias", F"model.decoder.layers.{i}.encoder_attn.output_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm1.weight", F"model.decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm1.bias", F"model.decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.self_attn.out_proj.weight", F"model.decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.self_attn.out_proj.bias", F"model.decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm2.weight", F"model.decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm2.bias", F"model.decoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.weight", F"model.decoder.layers.{i}.fc1.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.bias", F"model.decoder.layers.{i}.fc1.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.weight", F"model.decoder.layers.{i}.fc2.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.bias", F"model.decoder.layers.{i}.fc2.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.weight", F"model.decoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.bias", F"model.decoder.layers.{i}.final_layer_norm.bias") ) # fmt: on return rename_keys def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] ): __lowercase : Tuple = dct.pop(A_ ) __lowercase : Union[str, Any] = val def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict ): __lowercase : List[Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowercase : Tuple = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowercase : List[str] = state_dict.pop(F"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight" ) __lowercase : Tuple = state_dict.pop(F"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict __lowercase : Dict = in_proj_weight[:dim, :] __lowercase : Dict = in_proj_bias[: dim] __lowercase : List[Any] = in_proj_weight[ dim : dim * 2, : ] __lowercase : Optional[Any] = in_proj_bias[ dim : dim * 2 ] __lowercase : str = in_proj_weight[ -dim :, : ] __lowercase : int = in_proj_bias[-dim :] # fmt: on def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple ): # transformer decoder self-attention layers __lowercase : int = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention __lowercase : Dict = state_dict.pop(F"transformer.decoder.layers.{i}.self_attn.in_proj_weight" ) __lowercase : str = state_dict.pop(F"transformer.decoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict __lowercase : int = in_proj_weight[:hidden_size, :] __lowercase : Optional[int] = in_proj_bias[:hidden_size] __lowercase : Union[str, Any] = in_proj_weight[ hidden_size : hidden_size * 2, : ] __lowercase : Optional[int] = in_proj_bias[hidden_size : hidden_size * 2] __lowercase : str = in_proj_weight[-hidden_size:, :] __lowercase : Union[str, Any] = in_proj_bias[-hidden_size:] def snake_case_ ( ): __lowercase : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowercase : Optional[Any] = Image.open(requests.get(A_ , stream=A_ ).raw ) return im @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int ): __lowercase : str = get_deta_config(A_ ) # load original state dict if model_name == "deta-swin-large": __lowercase : Dict = hf_hub_download(repo_id="""nielsr/deta-checkpoints""" , filename="""adet_swin_ft.pth""" ) elif model_name == "deta-swin-large-o365": __lowercase : Dict = hf_hub_download(repo_id="""jozhang97/deta-swin-l-o365""" , filename="""deta_swin_pt_o365.pth""" ) else: raise ValueError(F"Model name {model_name} not supported" ) __lowercase : Dict = torch.load(A_ , map_location="""cpu""" )['''model'''] # original state dict for name, param in state_dict.items(): print(A_ , param.shape ) # rename keys __lowercase : Tuple = create_rename_keys(A_ ) for src, dest in rename_keys: rename_key(A_ , A_ , A_ ) read_in_swin_q_k_v(A_ , config.backbone_config ) read_in_decoder_q_k_v(A_ , A_ ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: __lowercase : List[Any] = state_dict.pop(A_ ) __lowercase : Any = val if "input_proj" in key: __lowercase : Optional[int] = state_dict.pop(A_ ) __lowercase : Any = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: __lowercase : Union[str, Any] = state_dict.pop(A_ ) __lowercase : Tuple = val # finally, create HuggingFace model and load state dict __lowercase : Union[str, Any] = DetaForObjectDetection(A_ ) model.load_state_dict(A_ ) model.eval() __lowercase : Tuple = '''cuda''' if torch.cuda.is_available() else '''cpu''' model.to(A_ ) # load image processor __lowercase : Optional[Any] = DetaImageProcessor(format="""coco_detection""" ) # verify our conversion on image __lowercase : Union[str, Any] = prepare_img() __lowercase : Any = processor(images=A_ , return_tensors="""pt""" ) __lowercase : Any = encoding['''pixel_values'''] __lowercase : Optional[int] = model(pixel_values.to(A_ ) ) # verify logits print("""Logits:""" , outputs.logits[0, :3, :3] ) print("""Boxes:""" , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": __lowercase : str = torch.tensor( [[-7.6_308, -2.8_485, -5.3_737], [-7.2_037, -4.5_505, -4.8_027], [-7.2_943, -4.2_611, -4.6_617]] ) __lowercase : Optional[Any] = torch.tensor([[0.4_987, 0.4_969, 0.9_999], [0.2_549, 0.5_498, 0.4_805], [0.5_498, 0.2_757, 0.0_569]] ) elif model_name == "deta-swin-large-o365": __lowercase : Optional[Any] = torch.tensor( [[-8.0_122, -3.5_720, -4.9_717], [-8.1_547, -3.6_886, -4.6_389], [-7.6_610, -3.6_194, -5.0_134]] ) __lowercase : List[Any] = torch.tensor([[0.2_523, 0.5_549, 0.4_881], [0.7_715, 0.4_149, 0.4_601], [0.5_503, 0.2_753, 0.0_575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(A_ ) , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(A_ ) , atol=1e-4 ) print("""Everything ok!""" ) if pytorch_dump_folder_path: # Save model and processor logger.info(F"Saving PyTorch model and processor to {pytorch_dump_folder_path}..." ) Path(A_ ).mkdir(exist_ok=A_ ) model.save_pretrained(A_ ) processor.save_pretrained(A_ ) # Push to hub if push_to_hub: print("""Pushing model and processor to hub...""" ) model.push_to_hub(F"jozhang97/{model_name}" ) processor.push_to_hub(F"jozhang97/{model_name}" ) if __name__ == "__main__": lowerCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '''--model_name''', type=str, default='''deta-swin-large''', choices=['''deta-swin-large''', '''deta-swin-large-o365'''], help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCamelCase : List[Any] = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
358
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging lowerCamelCase : Tuple = logging.get_logger(__name__) logging.set_verbosity_info() def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): if "xprophetnet" in prophetnet_checkpoint_path: __lowercase : List[str] = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) __lowercase , __lowercase : int = XLMProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) else: __lowercase : List[Any] = ProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) __lowercase , __lowercase : Optional[Any] = ProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) __lowercase : List[str] = ["""key_proj""", """value_proj""", """query_proj"""] __lowercase : Optional[int] = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: __lowercase : Tuple = key.split(""".""" ) if attributes[0] == "lm_head": __lowercase : str = prophet __lowercase : List[str] = prophet_old else: __lowercase : Tuple = prophet.prophetnet __lowercase : Union[str, Any] = prophet_old.model __lowercase : Optional[Any] = False for attribute in attributes: if attribute in mapping: __lowercase : Optional[int] = mapping[attribute] if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) > 0: __lowercase : str = attribute elif hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : List[Any] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" __lowercase : Any = old_model.weight logger.info(F"{attribute} is initialized." ) __lowercase : Any = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" __lowercase : Dict = old_model.bias logger.info(F"{attribute} is initialized" ) __lowercase : int = True break elif attribute in special_keys and hasattr(lowerCAmelCase_ , """in_proj_weight""" ): __lowercase : Dict = old_model.in_proj_weight.shape[0] // 3 __lowercase : Tuple = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": __lowercase : Union[str, Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) __lowercase : int = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": __lowercase : Any = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) __lowercase : List[Any] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": __lowercase : Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) __lowercase : int = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) __lowercase : int = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." __lowercase : Optional[Any] = nn.Parameter(old_model.embed_positions.weight[:512, :] ) __lowercase : int = True break if attribute.isdigit(): __lowercase : Tuple = model[int(lowerCAmelCase_ )] __lowercase : int = old_model[int(lowerCAmelCase_ )] else: __lowercase : Union[str, Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if old_attribute == "": __lowercase : int = old_model else: if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError(F"{old_model} does not have {old_attribute}" ) __lowercase : List[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if not is_key_init: raise ValueError(F"{key} was not correctly initialized!" ) print(F"Saving model to {pytorch_dump_folder_path}" ) prophet.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCamelCase : Any = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
306
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class lowerCAmelCase : '''simple docstring''' _A : str = XGLMConfig _A : Optional[Any] = {} _A : List[str] = '''gelu''' def __init__( self : List[Any] , __a : Optional[int] , __a : Optional[int]=14 , __a : Optional[int]=7 , __a : List[str]=True , __a : Optional[int]=True , __a : Union[str, Any]=True , __a : Optional[int]=99 , __a : Optional[int]=32 , __a : Tuple=2 , __a : int=4 , __a : List[Any]=37 , __a : Any="gelu" , __a : Optional[int]=0.1 , __a : List[str]=0.1 , __a : str=512 , __a : Tuple=0.02 , ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = parent __lowercase : Union[str, Any] = batch_size __lowercase : Optional[int] = seq_length __lowercase : Union[str, Any] = is_training __lowercase : List[Any] = use_input_mask __lowercase : int = use_labels __lowercase : Optional[Any] = vocab_size __lowercase : Union[str, Any] = d_model __lowercase : Any = num_hidden_layers __lowercase : Any = num_attention_heads __lowercase : Optional[int] = ffn_dim __lowercase : int = activation_function __lowercase : int = activation_dropout __lowercase : str = attention_dropout __lowercase : Dict = max_position_embeddings __lowercase : Tuple = initializer_range __lowercase : Optional[Any] = None __lowercase : str = 0 __lowercase : Union[str, Any] = 2 __lowercase : str = 1 def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return XGLMConfig.from_pretrained("""facebook/xglm-564M""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" __lowercase : Union[str, Any] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) __lowercase : List[Any] = None if self.use_input_mask: __lowercase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Tuple = self.get_config() __lowercase : List[Any] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__A , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__A , ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" __lowercase : Tuple = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : int = config_and_inputs __lowercase : Dict = { """input_ids""": input_ids, """head_mask""": head_mask, } return config, inputs_dict @require_tf class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Union[str, Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () _A : Dict = (TFXGLMForCausalLM,) if is_tf_available() else () _A : str = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) _A : List[str] = False _A : Dict = False _A : str = False def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : str = TFXGLMModelTester(self ) __lowercase : Tuple = ConfigTester(self , config_class=__A , n_embd=37 ) def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @slow def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Dict = TFXGLMModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @unittest.skip(reason="""Currently, model embeddings are going to undergo a major refactor.""" ) def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" super().test_resize_token_embeddings() @require_tf class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Any , __a : str=True ) -> Dict: """simple docstring""" __lowercase : List[Any] = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) __lowercase : int = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __lowercase : Dict = [2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581] # fmt: on __lowercase : Tuple = model.generate(__A , do_sample=__A , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , __A ) @slow def lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" __lowercase : List[Any] = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) __lowercase : int = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) tf.random.set_seed(0 ) __lowercase : Union[str, Any] = tokenizer("""Today is a nice day and""" , return_tensors="""tf""" ) __lowercase : Any = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(""":/CPU:0""" ): __lowercase : Any = model.generate(__A , do_sample=__A , seed=[7, 0] ) __lowercase : Union[str, Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=__A ) __lowercase : Optional[int] = ( """Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due""" ) self.assertEqual(__A , __A ) @slow def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) __lowercase : List[str] = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) __lowercase : Union[str, Any] = """left""" # use different length sentences to test batching __lowercase : Any = [ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When""", """Hello, my dog is a little""", ] __lowercase : List[Any] = tokenizer(__A , return_tensors="""tf""" , padding=__A ) __lowercase : Union[str, Any] = inputs["""input_ids"""] __lowercase : List[str] = model.generate(input_ids=__A , attention_mask=inputs["""attention_mask"""] , max_new_tokens=12 ) __lowercase : List[str] = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids __lowercase : Dict = model.generate(input_ids=__A , max_new_tokens=12 ) __lowercase : str = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids __lowercase : Dict = model.generate(input_ids=__A , max_new_tokens=12 ) __lowercase : Tuple = tokenizer.batch_decode(__A , skip_special_tokens=__A ) __lowercase : Dict = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__A ) __lowercase : Tuple = tokenizer.decode(output_padded[0] , skip_special_tokens=__A ) __lowercase : List[Any] = [ """This is an extremelly long sentence that only exists to test the ability of the model to cope with """ """left-padding, such as in batched generation. The output for the sequence below should be the same """ """regardless of whether left padding is applied or not. When left padding is applied, the sequence will be """ """a single""", """Hello, my dog is a little bit of a shy one, but he is very friendly""", ] self.assertListEqual(__A , __A ) self.assertListEqual(__A , [non_padded_sentence, padded_sentence] )
359
def snake_case_ ( lowerCAmelCase_ : int = 200 ): __lowercase : List[str] = [1, 2, 5, 10, 20, 50, 100, 200] __lowercase : List[str] = [0] * (pence + 1) __lowercase : Optional[Any] = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowerCAmelCase_ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
306
0
def _lowerCAmelCase ( lowerCAmelCase_ : list ): __lowercase : Any = len(lowerCAmelCase_ ) for i in range(1 , lowerCAmelCase_ ): __lowercase : Dict = collection[i] __lowercase : Optional[int] = 0 __lowercase : List[Any] = i - 1 while low <= high: __lowercase : List[Any] = (low + high) // 2 if val < collection[mid]: __lowercase : Union[str, Any] = mid - 1 else: __lowercase : Union[str, Any] = mid + 1 for j in range(lowerCAmelCase_ , lowerCAmelCase_ , -1 ): __lowercase : Any = collection[j - 1] __lowercase : Any = val return collection if __name__ == "__main__": lowerCamelCase : Optional[int] = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase : List[str] = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
360
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , __a : Dict , __a : List[str]=None , __a : Optional[Any]=None , __a : Union[str, Any]=None , __a : int="resnet50" , __a : List[str]=3 , __a : Tuple=32 , __a : Dict=3 , __a : List[str]=True , __a : Union[str, Any]=True , ) -> Any: """simple docstring""" __lowercase : Optional[int] = parent __lowercase : List[str] = out_indices if out_indices is not None else [4] __lowercase : Optional[int] = stage_names __lowercase : Any = out_features __lowercase : Optional[Any] = backbone __lowercase : Optional[Any] = batch_size __lowercase : Union[str, Any] = image_size __lowercase : List[str] = num_channels __lowercase : str = use_pretrained_backbone __lowercase : str = is_training def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : str = self.get_config() return config, pixel_values def lowerCAmelCase ( self : int ) -> str: """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowerCAmelCase ( self : Optional[int] , __a : Dict , __a : Any ) -> Dict: """simple docstring""" __lowercase : Dict = TimmBackbone(config=__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Optional[Any] = model(__a ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.prepare_config_and_inputs() __lowercase , __lowercase : str = config_and_inputs __lowercase : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch @require_timm class lowerCAmelCase ( __a , __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[Any] = (TimmBackbone,) if is_torch_available() else () _A : Dict = {'''feature-extraction''': TimmBackbone} if is_torch_available() else {} _A : List[Any] = False _A : List[str] = False _A : Any = False _A : Optional[Any] = False def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : str = TimmBackboneModelTester(self ) __lowercase : Any = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" __lowercase : Tuple = """resnet18""" __lowercase : Optional[int] = """microsoft/resnet-18""" __lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a ) __lowercase : Dict = AutoBackbone.from_pretrained(__a ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a , out_indices=[1, 2, 3] ) __lowercase : Optional[Any] = AutoBackbone.from_pretrained(__a , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("""TimmBackbone doesn't support feed forward chunking""" ) def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""" ) def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""" ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't support output_attentions.""" ) def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Safetensors is not supported by timm.""" ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Optional[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : List[str] = [*signature.parameters.keys()] __lowercase : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Optional[Any] = True __lowercase : Union[str, Any] = self.has_attentions # no need to test all models as different heads yield the same functionality __lowercase : Union[str, Any] = self.all_model_classes[0] __lowercase : List[Any] = model_class(__a ) model.to(__a ) __lowercase : Optional[Any] = self._prepare_for_class(__a , __a ) __lowercase : Union[str, Any] = model(**__a ) __lowercase : Optional[int] = outputs[0][-1] # Encoder-/Decoder-only models __lowercase : Any = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowercase : Optional[int] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__a ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() __lowercase : int = model(**__a ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowercase : Any = copy.deepcopy(__a ) __lowercase : Dict = None __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() __lowercase : Optional[int] = model(**__a ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowercase : List[str] = copy.deepcopy(__a ) __lowercase : Optional[Any] = False __lowercase : str = model_class(__a ) model.to(__a ) model.eval() __lowercase : List[Any] = model(**__a )
306
0
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(__a ) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Union[str, Any] , *__a : str , **__a : Optional[Any] ) -> Any: """simple docstring""" super().__init__(*lowerCamelCase_ , **lowerCamelCase_ ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def lowerCAmelCase ( self : int , __a : int=None , __a : int=None , __a : Any=None ) -> int: """simple docstring""" __lowercase : Tuple = {} __lowercase : Dict = {} if prompt is not None: __lowercase : Dict = prompt if generate_kwargs is not None: __lowercase : Any = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: __lowercase : Any = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) __lowercase : str = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Optional[int] , __a : List[Any] , **__a : Union[str, Any] ) -> Any: """simple docstring""" return super().__call__(lowerCamelCase_ , **lowerCamelCase_ ) def lowerCAmelCase ( self : int , __a : Any , __a : Optional[Any]=None ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = load_image(lowerCamelCase_ ) if prompt is not None: if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError( F"Received an invalid text input, got - {type(lowerCamelCase_ )} - but expected a single string. " """Note also that one single text can be provided for conditional image to text generation.""" ) __lowercase : Optional[int] = self.model.config.model_type if model_type == "git": __lowercase : Dict = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework ) __lowercase : Dict = self.tokenizer(text=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ).input_ids __lowercase : Optional[int] = [self.tokenizer.cls_token_id] + input_ids __lowercase : Tuple = torch.tensor(lowerCamelCase_ ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": __lowercase : Tuple = self.image_processor(images=lowerCamelCase_ , header_text=lowerCamelCase_ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation __lowercase : Any = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework ) __lowercase : Dict = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework ) model_inputs.update(lowerCamelCase_ ) else: raise ValueError(F"Model type {model_type} does not support conditional text generation" ) else: __lowercase : Union[str, Any] = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: __lowercase : Tuple = None return model_inputs def lowerCAmelCase ( self : List[Any] , __a : List[Any] , __a : Tuple=None ) -> Optional[int]: """simple docstring""" if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , lowerCamelCase_ ) and all(x is None for x in model_inputs["""input_ids"""] ) ): __lowercase : Dict = None if generate_kwargs is None: __lowercase : str = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. __lowercase : List[str] = model_inputs.pop(self.model.main_input_name ) __lowercase : str = self.model.generate(lowerCamelCase_ , **lowerCamelCase_ , **lowerCamelCase_ ) return model_outputs def lowerCAmelCase ( self : Tuple , __a : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : List[str] = [] for output_ids in model_outputs: __lowercase : List[Any] = { """generated_text""": self.tokenizer.decode( lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ , ) } records.append(lowerCamelCase_ ) return records
361
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : str = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } lowerCamelCase : Optional[Any] = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): for attribute in key.split(""".""" ): __lowercase : List[str] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if weight_type is not None: __lowercase : Union[str, Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ).shape else: __lowercase : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": __lowercase : Dict = value elif weight_type == "weight_g": __lowercase : Union[str, Any] = value elif weight_type == "weight_v": __lowercase : List[Any] = value elif weight_type == "bias": __lowercase : int = value elif weight_type == "running_mean": __lowercase : List[Any] = value elif weight_type == "running_var": __lowercase : int = value elif weight_type == "num_batches_tracked": __lowercase : int = value elif weight_type == "inv_freq": __lowercase : Optional[Any] = value else: __lowercase : Any = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] ): __lowercase : str = [] __lowercase : Any = fairseq_model.state_dict() __lowercase : List[str] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): __lowercase : Optional[Any] = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , hf_model.config.feat_extract_norm == """group""" , ) __lowercase : List[str] = True else: for key, mapped_key in MAPPING.items(): __lowercase : Any = """wav2vec2_conformer.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __lowercase : Tuple = True if "*" in mapped_key: __lowercase : List[Any] = name.split(lowerCAmelCase_ )[0].split(""".""" )[-2] __lowercase : Any = mapped_key.replace("""*""" , lowerCAmelCase_ ) if "pos_bias_u" in name: __lowercase : Any = None elif "pos_bias_v" in name: __lowercase : Tuple = None elif "weight_g" in name: __lowercase : Union[str, Any] = """weight_g""" elif "weight_v" in name: __lowercase : Dict = """weight_v""" elif "bias" in name: __lowercase : Union[str, Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowercase : str = """weight""" elif "running_mean" in name: __lowercase : str = """running_mean""" elif "inv_freq" in name: __lowercase : List[Any] = """inv_freq""" elif "running_var" in name: __lowercase : Any = """running_var""" elif "num_batches_tracked" in name: __lowercase : Any = """num_batches_tracked""" else: __lowercase : Optional[int] = None set_recursively(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) continue if not is_used: unused_weights.append(lowerCAmelCase_ ) logger.warning(F"Unused weights: {unused_weights}" ) def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] ): __lowercase : List[Any] = full_name.split("""conv_layers.""" )[-1] __lowercase : int = name.split(""".""" ) __lowercase : Optional[Any] = int(items[0] ) __lowercase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __lowercase : Union[str, Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __lowercase : List[str] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) __lowercase : Union[str, Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) __lowercase : Dict = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(lowerCAmelCase_ ) @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Dict=True ): if config_path is not None: __lowercase : List[Any] = WavaVecaConformerConfig.from_pretrained(lowerCAmelCase_ , hidden_act="""swish""" ) else: __lowercase : List[Any] = WavaVecaConformerConfig() if "rope" in checkpoint_path: __lowercase : Tuple = """rotary""" if is_finetuned: if dict_path: __lowercase : Any = Dictionary.load(lowerCAmelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __lowercase : List[Any] = target_dict.pad_index __lowercase : Optional[int] = target_dict.bos_index __lowercase : List[Any] = target_dict.eos_index __lowercase : List[str] = len(target_dict.symbols ) __lowercase : Union[str, Any] = os.path.join(lowerCAmelCase_ , """vocab.json""" ) if not os.path.isdir(lowerCAmelCase_ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowerCAmelCase_ ) ) return os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowercase : Tuple = target_dict.indices # fairseq has the <pad> and <s> switched __lowercase : int = 0 __lowercase : Any = 1 with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Dict = WavaVecaCTCTokenizer( lowerCAmelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowerCAmelCase_ , ) __lowercase : List[Any] = True if config.feat_extract_norm == """layer""" else False __lowercase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) __lowercase : Optional[int] = WavaVecaProcessor(feature_extractor=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) __lowercase : Union[str, Any] = WavaVecaConformerForCTC(lowerCAmelCase_ ) else: __lowercase : Optional[Any] = WavaVecaConformerForPreTraining(lowerCAmelCase_ ) if is_finetuned: __lowercase , __lowercase , __lowercase : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __lowercase : List[Any] = argparse.Namespace(task="""audio_pretraining""" ) __lowercase : Optional[Any] = fairseq.tasks.setup_task(lowerCAmelCase_ ) __lowercase , __lowercase , __lowercase : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase_ ) __lowercase : Dict = model[0].eval() recursively_load_weights(lowerCAmelCase_ , lowerCAmelCase_ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) lowerCamelCase : Any = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
306
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Any = { '''transfo-xl-wt103''': '''https://huggingface.co/transfo-xl-wt103/resolve/main/config.json''', } class lowerCAmelCase ( lowerCamelCase__ ): '''simple docstring''' _A : Any = """transfo-xl""" _A : str = ["""mems"""] _A : int = { """n_token""": """vocab_size""", """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : List[str] , __a : Dict=267735 , __a : Any=[20000, 40000, 200000] , __a : Any=1024 , __a : int=1024 , __a : List[str]=16 , __a : Union[str, Any]=64 , __a : List[Any]=4096 , __a : Optional[Any]=4 , __a : List[Any]=False , __a : str=18 , __a : Dict=1600 , __a : Optional[Any]=1000 , __a : List[str]=True , __a : str=True , __a : List[str]=0 , __a : List[str]=-1 , __a : Optional[int]=True , __a : Dict=0.1 , __a : int=0.0 , __a : str=True , __a : List[str]="normal" , __a : Any=0.01 , __a : Optional[Any]=0.01 , __a : Optional[Any]=0.02 , __a : Union[str, Any]=1E-5 , __a : Dict=0 , **__a : Union[str, Any] , ) -> Dict: """simple docstring""" __lowercase : str = vocab_size __lowercase : List[str] = [] self.cutoffs.extend(snake_case__ ) if proj_share_all_but_first: __lowercase : Optional[int] = [False] + [True] * len(self.cutoffs ) else: __lowercase : Tuple = [False] + [False] * len(self.cutoffs ) __lowercase : Optional[Any] = d_model __lowercase : Optional[int] = d_embed __lowercase : Optional[int] = d_head __lowercase : Any = d_inner __lowercase : int = div_val __lowercase : Dict = pre_lnorm __lowercase : Tuple = n_layer __lowercase : Optional[Any] = n_head __lowercase : Optional[int] = mem_len __lowercase : Any = same_length __lowercase : Any = attn_type __lowercase : int = clamp_len __lowercase : str = sample_softmax __lowercase : List[Any] = adaptive __lowercase : Union[str, Any] = dropout __lowercase : Dict = dropatt __lowercase : int = untie_r __lowercase : Optional[int] = init __lowercase : Dict = init_range __lowercase : Any = proj_init_std __lowercase : int = init_std __lowercase : int = layer_norm_epsilon super().__init__(eos_token_id=snake_case__ , **snake_case__ ) @property def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" logger.info(F"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def lowerCAmelCase ( self : str , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" raise NotImplementedError( F"The model {self.model_type} is one of the few models that has no sequence length limit." )
362
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError("""String lengths must match!""" ) __lowercase : str = 0 for chara, chara in zip(lowerCAmelCase_ , lowerCAmelCase_ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
306
0
import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig lowerCamelCase : List[str] = logging.get_logger(__name__) lowerCamelCase : Optional[int] = '''T5Config''' def snake_case_ ( lowerCAmelCase_ : jnp.array , lowerCAmelCase_ : int , lowerCAmelCase_ : int ): __lowercase : Tuple = jnp.zeros_like(_lowercase ) __lowercase : Tuple = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) __lowercase : Dict = shifted_input_ids.at[:, 0].set(_lowercase ) __lowercase : Optional[Any] = jnp.where(shifted_input_ids == -100 , _lowercase , _lowercase ) return shifted_input_ids class lowerCAmelCase ( a__ ): '''simple docstring''' _A : Any = """mt5""" _A : Dict = MTaConfig class lowerCAmelCase ( a__ ): '''simple docstring''' _A : str = """mt5""" _A : Tuple = MTaConfig class lowerCAmelCase ( a__ ): '''simple docstring''' _A : List[str] = """mt5""" _A : Tuple = MTaConfig
363
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def snake_case_ ( lowerCAmelCase_ : Tuple ): if isinstance(lowerCAmelCase_ , collections.abc.Iterable ): return x return (x, x) @require_flax class lowerCAmelCase : '''simple docstring''' def lowerCAmelCase ( self : Any , __a : Any , __a : List[Any] ) -> Optional[Any]: """simple docstring""" pass def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" pass def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : np.ndarray , __a : float ) -> List[Any]: """simple docstring""" __lowercase : List[str] = np.abs((a - b) ).max() self.assertLessEqual(__a , __a , F"Difference between torch and flax is {diff} (>= {tol})." ) def lowerCAmelCase ( self : Tuple , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[Any] , __a : Optional[Any]=None , **__a : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : str = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : str = FlaxVisionTextDualEncoderModel(__a ) __lowercase : Optional[Any] = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def lowerCAmelCase ( self : Optional[int] , __a : Optional[int] , __a : Dict , __a : Dict , __a : List[str] , __a : Optional[Any]=None , **__a : str ) -> str: """simple docstring""" __lowercase , __lowercase : List[str] = self.get_vision_text_model(__a , __a ) __lowercase : Union[str, Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : Any = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : Union[str, Any] , __a : Union[str, Any] , __a : Dict , __a : int=None , **__a : int ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Tuple = self.get_vision_text_model(__a , __a ) __lowercase : Union[str, Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : List[str] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : List[Any] = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) __lowercase : int = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowercase : int = FlaxVisionTextDualEncoderModel.from_pretrained(__a ) __lowercase : Tuple = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) __lowercase : int = after_output[0] __lowercase : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__a , 1E-3 ) def lowerCAmelCase ( self : List[Any] , __a : Any , __a : Tuple , __a : Optional[int] , __a : str , __a : Optional[Any]=None , **__a : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : str = self.get_vision_text_model(__a , __a ) __lowercase : Optional[Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : Union[str, Any] = model( input_ids=__a , pixel_values=__a , attention_mask=__a , output_attentions=__a ) __lowercase : Optional[int] = output.vision_model_output.attentions self.assertEqual(len(__a ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase : Optional[int] = to_atuple(vision_model.config.image_size ) __lowercase : List[str] = to_atuple(vision_model.config.patch_size ) __lowercase : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase : int = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase : Dict = output.text_model_output.attentions self.assertEqual(len(__a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowerCAmelCase ( self : Optional[int] , __a : List[str] , __a : List[Any] , __a : Optional[Any] ) -> Optional[int]: """simple docstring""" pt_model.to(__a ) pt_model.eval() # prepare inputs __lowercase : Union[str, Any] = inputs_dict __lowercase : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): __lowercase : Union[str, Any] = pt_model(**__a ).to_tuple() __lowercase : Tuple = fx_model(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(__a , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__a ) __lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained(__a , from_pt=__a ) __lowercase : Dict = fx_model_loaded(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(__a , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__a ) __lowercase : str = VisionTextDualEncoderModel.from_pretrained(__a , from_flax=__a ) pt_model_loaded.to(__a ) pt_model_loaded.eval() with torch.no_grad(): __lowercase : List[Any] = pt_model_loaded(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(__a , pt_output_loaded.numpy() , 4E-2 ) def lowerCAmelCase ( self : Optional[int] , __a : List[Any] , __a : int , __a : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : str = VisionTextDualEncoderModel(__a ) __lowercase : Union[str, Any] = FlaxVisionTextDualEncoderModel(__a ) __lowercase : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __a ) __lowercase : Any = fx_state self.check_pt_flax_equivalence(__a , __a , __a ) def lowerCAmelCase ( self : Any , __a : Any , __a : Dict , __a : Tuple ) -> str: """simple docstring""" __lowercase : int = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : Union[str, Any] = VisionTextDualEncoderModel(__a ) __lowercase : Dict = FlaxVisionTextDualEncoderModel(__a ) __lowercase : Tuple = load_flax_weights_in_pytorch_model(__a , fx_model.params ) self.check_pt_flax_equivalence(__a , __a , __a ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase : int = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__a ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() self.check_save_load(**__a ) def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" __lowercase : str = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__a ) @is_pt_flax_cross_test def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.prepare_config_and_inputs() __lowercase : Optional[int] = config_inputs_dict.pop("""vision_config""" ) __lowercase : Optional[int] = config_inputs_dict.pop("""text_config""" ) __lowercase : Dict = config_inputs_dict self.check_equivalence_pt_to_flax(__a , __a , __a ) self.check_equivalence_flax_to_pt(__a , __a , __a ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase , __lowercase : List[Any] = self.get_pretrained_model_and_inputs() __lowercase : Dict = model_a(**__a ) __lowercase : Any = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__a ) __lowercase : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(__a ) __lowercase : Optional[int] = model_a(**__a ) __lowercase : Tuple = after_outputs[0] __lowercase : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__a , 1E-5 ) @require_flax class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" __lowercase : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=__a , text_from_pt=__a , ) __lowercase : int = 13 __lowercase : Union[str, Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowercase : Dict = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __lowercase : Tuple = random_attention_mask([batch_size, 4] ) __lowercase : str = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCAmelCase ( self : Optional[Any] , __a : Union[str, Any] , __a : int ) -> Dict: """simple docstring""" __lowercase : int = FlaxViTModel(__a ) __lowercase : List[Any] = FlaxBertModel(__a ) return vision_model, text_model def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = FlaxViTModelTester(self ) __lowercase : str = FlaxBertModelTester(self ) __lowercase : List[str] = vit_model_tester.prepare_config_and_inputs() __lowercase : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase : Optional[int] = vision_config_and_inputs __lowercase , __lowercase , __lowercase , __lowercase : Any = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=__a , text_from_pt=__a , ) __lowercase : Tuple = 13 __lowercase : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowercase : Tuple = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __lowercase : List[Any] = random_attention_mask([batch_size, 4] ) __lowercase : int = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCAmelCase ( self : str , __a : str , __a : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Dict = FlaxCLIPVisionModel(__a ) __lowercase : Optional[Any] = FlaxBertModel(__a ) return vision_model, text_model def lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase : List[Any] = FlaxCLIPVisionModelTester(self ) __lowercase : Optional[Any] = FlaxBertModelTester(self ) __lowercase : Any = clip_model_tester.prepare_config_and_inputs() __lowercase : Optional[Any] = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase : Dict = vision_config_and_inputs __lowercase , __lowercase , __lowercase , __lowercase : Optional[int] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 ) __lowercase : int = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) __lowercase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowercase : Tuple = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=__a , padding=__a , return_tensors="""np""" ) __lowercase : Optional[int] = model(**__a ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowercase : Optional[Any] = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , __a , atol=1E-3 ) )
306
0
import logging from transformers.configuration_utils import PretrainedConfig lowerCamelCase : Any = logging.getLogger(__name__) class lowerCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' _A : List[Any] = "masked_bert" def __init__( self : Dict , __a : Any=30522 , __a : Dict=768 , __a : List[str]=12 , __a : Dict=12 , __a : Any=3072 , __a : Optional[int]="gelu" , __a : int=0.1 , __a : Optional[Any]=0.1 , __a : Optional[Any]=512 , __a : Optional[Any]=2 , __a : int=0.02 , __a : Dict=1E-12 , __a : Dict=0 , __a : Union[str, Any]="topK" , __a : int="constant" , __a : str=0.0 , **__a : List[Any] , ) -> Tuple: """simple docstring""" super().__init__(pad_token_id=a__ , **a__ ) __lowercase : Any = vocab_size __lowercase : List[Any] = hidden_size __lowercase : str = num_hidden_layers __lowercase : Dict = num_attention_heads __lowercase : Union[str, Any] = hidden_act __lowercase : int = intermediate_size __lowercase : str = hidden_dropout_prob __lowercase : str = attention_probs_dropout_prob __lowercase : List[Any] = max_position_embeddings __lowercase : Optional[Any] = type_vocab_size __lowercase : Optional[int] = initializer_range __lowercase : Dict = layer_norm_eps __lowercase : str = pruning_method __lowercase : str = mask_init __lowercase : Dict = mask_scale
364
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
306
0
from dataclasses import dataclass, field from typing import Optional @dataclass class lowerCAmelCase : '''simple docstring''' _A : Optional[str] = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be trained.'''} ) _A : Optional[str] = field( default='''./''' , metadata={'''help''': '''Save dir where model repo is cloned and models updates are saved to.'''} ) _A : Optional[str] = field( default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path of training dataset.'''} ) _A : Optional[str] = field( default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} ) _A : Optional[int] = field(default=2 , metadata={'''help''': '''Batch size for training.'''} ) _A : Optional[int] = field(default=2 , metadata={'''help''': '''Batch size for evaluation.'''} ) _A : Optional[float] = field(default=0.1 , metadata={'''help''': '''Value of weight decay.'''} ) _A : Optional[int] = field( default=10000 , metadata={'''help''': '''Size of buffer used to shuffle streaming dataset.'''} ) _A : Optional[float] = field(default=2e-4 , metadata={'''help''': '''Learning rate fo training.'''} ) _A : Optional[str] = field(default='''cosine''' , metadata={'''help''': '''Learning rate.'''} ) _A : Optional[int] = field( default=750 , metadata={'''help''': '''Number of warmup steps in the learning rate schedule.'''} ) _A : Optional[int] = field( default=16 , metadata={'''help''': '''Number of gradient accumulation steps.'''} ) _A : Optional[bool] = field( default=__lowerCAmelCase , metadata={'''help''': '''Use gradient checkpointing to reduce memory footprint.'''} ) _A : Optional[int] = field(default=50000 , metadata={'''help''': '''Maximum number of training steps.'''} ) _A : Optional[int] = field( default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} ) _A : Optional[int] = field(default=1024 , metadata={'''help''': '''Sequence lengths used for training.'''} ) _A : Optional[int] = field(default=1 , metadata={'''help''': '''Training seed.'''} ) _A : Optional[int] = field( default=1024 , metadata={'''help''': '''Interval to save checkpoints. Measured as number of forward passes not training steps.'''} , ) _A : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''States path if the training should continue from a checkpoint folder.'''} ) _A : Optional[bool] = field(default=__lowerCAmelCase , metadata={'''help''': '''If True the data is pretokenized.'''} ) @dataclass class lowerCAmelCase : '''simple docstring''' _A : Optional[str] = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} ) _A : Optional[str] = field( default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} ) _A : Optional[int] = field(default=2 , metadata={'''help''': '''Batch size used for evaluation.'''} ) _A : Optional[int] = field( default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} ) _A : Optional[int] = field(default=1024 , metadata={'''help''': '''Length of sequences to be evaluated.'''} ) _A : Optional[int] = field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} ) @dataclass class lowerCAmelCase : '''simple docstring''' _A : Optional[str] = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} ) _A : Optional[int] = field(default=__lowerCAmelCase , metadata={'''help''': '''Number of workers used for code evaluation.'''} ) _A : Optional[int] = field( default=__lowerCAmelCase , metadata={'''help''': '''The number of human-eval tasks to run. If not included all tasks are evaluated.'''} , ) _A : Optional[bool] = field( default=__lowerCAmelCase , metadata={'''help''': '''Sample from the language model\'s output distribution.'''} ) _A : Optional[float] = field(default=0.2 , metadata={'''help''': '''Sampling temperature used for generation.'''} ) _A : Optional[int] = field(default=256 , metadata={'''help''': '''Maximum number of newly generated tokens.'''} ) _A : Optional[int] = field(default=0 , metadata={'''help''': '''Top-k parameter used for generation.'''} ) _A : Optional[float] = field(default=0.9_5 , metadata={'''help''': '''Top-p parameter used for nucleus sampling.'''} ) _A : Optional[int] = field(default=10 , metadata={'''help''': '''Number of generations to run in parallel.'''} ) _A : Optional[int] = field( default=200 , metadata={'''help''': '''Number of completions to generate for each sample.'''} ) _A : Optional[int] = field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} ) _A : Optional[str] = field( default='''eval_results.json''' , metadata={'''help''': '''Random seed used for evaluation.'''} ) _A : Optional[str] = field( default='''0''' , metadata={'''help''': '''Allow `code_eval` to execute Python code on machine'''} ) _A : Optional[int] = field( default=-1 , metadata={ '''help''': ( '''Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive''' ''' number corresponds to which GPU device id to run on.''' ) } , ) @dataclass class lowerCAmelCase : '''simple docstring''' _A : Optional[int] = field( default=__lowerCAmelCase , metadata={ '''help''': '''The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.''' } , ) _A : Optional[str] = field( default='''transformersbook/codeparrot''' , metadata={'''help''': '''Folder or name of dataset to process.'''} ) _A : Optional[str] = field( default='''codeparrot-clean''' , metadata={'''help''': '''Folder to save processed processed dataset.'''} ) _A : Optional[int] = field( default=100000 , metadata={'''help''': '''Number of files to save per JSON output file.'''} ) _A : Optional[str] = field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} ) _A : Optional[float] = field( default=1000 , metadata={'''help''': '''Maximum line length in file, otherwise file is filtered.'''} ) _A : Optional[float] = field( default=100 , metadata={'''help''': '''Maximum mean line length in file, otherwise file is filtered.'''} ) _A : Optional[float] = field( default=0.2_5 , metadata={'''help''': '''Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'''} ) _A : Optional[float] = field( default=1.5 , metadata={'''help''': '''Minimum character token ratio for the file, otherwise file is filtered.'''} ) _A : Optional[float] = field( default=0.7 , metadata={'''help''': '''Probability for filtering config, test and uncommon files.'''} ) _A : Optional[str] = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} , ) _A : Optional[bool] = field( default=__lowerCAmelCase , metadata={'''help''': '''If True, near-duplicate samples are removed.'''} ) _A : Optional[float] = field( default=0.8_5 , metadata={'''help''': '''Jaccard threshold for near-duplicate samples.'''} ) @dataclass class lowerCAmelCase : '''simple docstring''' _A : Optional[str] = field( default='''gpt2''' , metadata={'''help''': '''Base tokenizer to build new tokenizer from.'''} ) _A : Optional[str] = field( default='''transformersbook/codeparrot-train''' , metadata={'''help''': '''Dataset to train tokenizer on.'''} ) _A : Optional[str] = field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} ) _A : Optional[int] = field(default=200000 , metadata={'''help''': '''Number of examples to train tokenizer on.'''} ) _A : Optional[int] = field( default=32768 , metadata={'''help''': '''Number of examples to train the tokenizer on.'''} ) _A : Optional[str] = field(default='''codeparrot''' , metadata={'''help''': '''Name of new tokenizer.'''} ) _A : Optional[bool] = field(default=__lowerCAmelCase , metadata={'''help''': '''Push saved tokenizer to the hub.'''} ) @dataclass class lowerCAmelCase : '''simple docstring''' _A : Optional[str] = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} ) _A : Optional[str] = field( default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path to the dataset to pretokenize.'''} ) _A : Optional[str] = field( default='''tokenized-codeparrot-train''' , metadata={'''help''': '''Repo name of the pretokenized data.'''} ) _A : Optional[int] = field(default=__lowerCAmelCase , metadata={'''help''': '''Number of workers used for code evaluation.'''} ) @dataclass class lowerCAmelCase : '''simple docstring''' _A : Optional[str] = field( default='''gpt2-large''' , metadata={'''help''': '''Configuration to use for model initialization.'''} ) _A : Optional[str] = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Tokenizer attached to model.'''} ) _A : Optional[str] = field(default='''codeparrot''' , metadata={'''help''': '''Name of the created model.'''} ) _A : Optional[bool] = field(default=__lowerCAmelCase , metadata={'''help''': '''Push saved tokenizer to the hub.'''} )
365
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowerCamelCase : str = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex lowerCamelCase : Union[str, Any] = 10 lowerCamelCase : List[str] = 2_56 def snake_case_ ( lowerCAmelCase_ : List[str] ): if len(lowerCAmelCase_ ) < MIN_NUM_TOKENS: return None __lowercase : Dict = MinHash(num_perm=lowerCAmelCase_ ) for token in set(lowerCAmelCase_ ): min_hash.update(token.encode() ) return min_hash def snake_case_ ( lowerCAmelCase_ : str ): return {t for t in NON_ALPHA.split(lowerCAmelCase_ ) if len(t.strip() ) > 0} class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , *, __a : float = 0.85 , ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = duplication_jaccard_threshold __lowercase : Optional[Any] = NUM_PERM __lowercase : List[Any] = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) __lowercase : List[str] = defaultdict(__a ) def lowerCAmelCase ( self : str , __a : Tuple , __a : MinHash ) -> None: """simple docstring""" __lowercase : List[Any] = self._index.query(__a ) if code_key in self._index.keys: print(F"Duplicate key {code_key}" ) return self._index.insert(__a , __a ) if len(__a ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__a ) break else: self._duplicate_clusters[close_duplicates[0]].add(__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[List[Dict]]: """simple docstring""" __lowercase : Dict = [] for base, duplicates in self._duplicate_clusters.items(): __lowercase : List[str] = [base] + list(__a ) # reformat the cluster to be a list of dict __lowercase : Optional[Any] = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(__a ) return duplicate_clusters def lowerCAmelCase ( self : Any , __a : int ) -> None: """simple docstring""" __lowercase : Tuple = self.get_duplicate_clusters() with open(__a , """w""" ) as f: json.dump(__a , __a ) def snake_case_ ( lowerCAmelCase_ : str ): __lowercase , __lowercase : Union[str, Any] = element __lowercase : Optional[Any] = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def snake_case_ ( lowerCAmelCase_ : Type[Dataset] ): with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(lowerCAmelCase_ , max_queue_size=10000 ) , chunksize=100 , ): if data is not None: yield data def snake_case_ ( lowerCAmelCase_ : Type[Dataset] , lowerCAmelCase_ : float ): __lowercase : Dict = DuplicationIndex(duplication_jaccard_threshold=lowerCAmelCase_ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(lowerCAmelCase_ ) ) , max_queue_size=100 ) ): di.add(lowerCAmelCase_ , lowerCAmelCase_ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : List[str] = get_tokens(lowerCAmelCase_ ) __lowercase : Dict = get_tokens(lowerCAmelCase_ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) lowerCamelCase : List[str] = None def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] ): __lowercase : Union[str, Any] = [] for elementa in cluster: __lowercase : Tuple = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: __lowercase : Dict = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(lowerCAmelCase_ , lowerCAmelCase_ ) >= jaccard_threshold: elementa["copies"] += 1 break else: __lowercase : Dict = 1 extremes.append(lowerCAmelCase_ ) return extremes def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple ): global _shared_dataset __lowercase : Tuple = dataset __lowercase : Optional[int] = [] __lowercase : str = partial(_find_cluster_extremes_shared , jaccard_threshold=lowerCAmelCase_ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( lowerCAmelCase_ , lowerCAmelCase_ , ) , total=len(lowerCAmelCase_ ) , ): extremes_list.append(lowerCAmelCase_ ) return extremes_list def snake_case_ ( lowerCAmelCase_ : Type[Dataset] , lowerCAmelCase_ : float = 0.85 ): __lowercase : Optional[int] = make_duplicate_clusters(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Tuple = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} __lowercase : int = {} __lowercase : Dict = find_extremes(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for extremes in extremes_clusters: for element in extremes: __lowercase : Optional[Any] = element __lowercase : int = duplicate_indices - set(extreme_dict.keys() ) __lowercase : int = dataset.filter(lambda lowerCAmelCase_ , lowerCAmelCase_ : idx not in remove_indices , with_indices=lowerCAmelCase_ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: __lowercase : List[str] = element["""base_index"""] in extreme_dict if element["is_extreme"]: __lowercase : str = extreme_dict[element["""base_index"""]]["""copies"""] print(F"Original dataset size: {len(lowerCAmelCase_ )}" ) print(F"Number of duplicate clusters: {len(lowerCAmelCase_ )}" ) print(F"Files in duplicate cluster: {len(lowerCAmelCase_ )}" ) print(F"Unique files in duplicate cluster: {len(lowerCAmelCase_ )}" ) print(F"Filtered dataset size: {len(lowerCAmelCase_ )}" ) return ds_filter, duplicate_clusters
306
0
def snake_case_ ( lowerCAmelCase_ : int = 1000 ): __lowercase : Union[str, Any] = -1 __lowercase : List[Any] = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c __lowercase : Tuple = (n * n - 2 * a * n) // (2 * n - 2 * a) __lowercase : int = n - a - b if c * c == (a * a + b * b): __lowercase : Tuple = a * b * c if candidate >= product: __lowercase : Optional[int] = candidate return product if __name__ == "__main__": print(f'''{solution() = }''')
366
from ...processing_utils import ProcessorMixin class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = ['''image_processor''', '''feature_extractor'''] _A : List[Any] = '''TvltImageProcessor''' _A : Optional[int] = '''TvltFeatureExtractor''' def __init__( self : str , __a : List[Any] , __a : Tuple ) -> Optional[Any]: """simple docstring""" super().__init__(image_processor=__a , feature_extractor=__a ) __lowercase : Union[str, Any] = image_processor __lowercase : Tuple = feature_extractor def __call__( self : Tuple , __a : Optional[int]=None , __a : Dict=None , __a : Union[str, Any]=None , __a : Tuple=None , __a : Optional[Any]=False , __a : List[Any]=False , *__a : List[str] , **__a : List[Any] , ) -> Dict: """simple docstring""" if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) __lowercase : Tuple = None if images is not None: __lowercase : Any = self.image_processor(__a , mask_pixel=__a , *__a , **__a ) if images_mixed is not None: __lowercase : Union[str, Any] = self.image_processor(__a , is_mixed=__a , *__a , **__a ) if audio is not None: __lowercase : Optional[Any] = self.feature_extractor( __a , *__a , sampling_rate=__a , mask_audio=__a , **__a ) __lowercase : Tuple = {} if audio is not None: output_dict.update(__a ) if images is not None: output_dict.update(__a ) if images_mixed_dict is not None: output_dict.update(__a ) return output_dict @property def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = self.image_processor.model_input_names __lowercase : Union[str, Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
306
0
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , __a : Optional[int] , __a : Optional[Any]=13 , __a : Any=7 , __a : Optional[Any]=True , __a : Dict=True , __a : List[Any]=True , __a : Any=True , __a : int=99 , __a : Union[str, Any]=32 , __a : Union[str, Any]=5 , __a : int=4 , __a : str=4 , __a : Any="gelu" , __a : Union[str, Any]=0.0 , __a : Tuple=0.1 , __a : Optional[Any]=True , __a : Union[str, Any]=512 , __a : Tuple=16 , __a : List[Any]=2 , __a : List[Any]=0.02 , __a : Union[str, Any]=3 , __a : List[str]=4 , __a : Union[str, Any]=None , ) -> Optional[int]: """simple docstring""" __lowercase : str = parent __lowercase : List[Any] = batch_size __lowercase : List[Any] = seq_length __lowercase : Optional[Any] = is_training __lowercase : Optional[Any] = use_input_mask __lowercase : Dict = use_token_type_ids __lowercase : List[str] = use_labels __lowercase : Dict = vocab_size __lowercase : Union[str, Any] = hidden_size __lowercase : Any = num_hidden_layers __lowercase : Union[str, Any] = num_attention_heads __lowercase : Optional[Any] = intermediate_multiple_size __lowercase : List[str] = hidden_act __lowercase : Dict = hidden_dropout __lowercase : Union[str, Any] = attention_dropout __lowercase : Any = weight_tying __lowercase : Optional[Any] = max_position_embeddings __lowercase : Optional[Any] = type_vocab_size __lowercase : Tuple = type_sequence_label_size __lowercase : Optional[Any] = initializer_range __lowercase : str = num_labels __lowercase : Optional[Any] = num_choices __lowercase : Tuple = scope def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : int = None if self.use_input_mask: __lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Any = None if self.use_labels: __lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : Optional[Any] = self.get_config() return config, input_ids, input_mask, token_labels def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase : int = self.prepare_config_and_inputs() __lowercase : List[str] = True return config, input_ids, input_mask, token_labels def lowerCAmelCase ( self : List[Any] , __a : Tuple , __a : Union[str, Any] , __a : List[str] ) -> Dict: """simple docstring""" __lowercase : List[str] = GPTNeoXJapaneseModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __lowercase : Any = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) __lowercase : str = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Tuple , __a : Optional[Any] , __a : Union[str, Any] , __a : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase : Any = True __lowercase : Optional[Any] = GPTNeoXJapaneseModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __lowercase : List[str] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Dict , __a : Union[str, Any] , __a : Dict , __a : Optional[Any] , __a : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : int = GPTNeoXJapaneseForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __lowercase : Optional[int] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Union[str, Any] , __a : Union[str, Any] , __a : Union[str, Any] , __a : Tuple ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = True __lowercase : List[str] = GPTNeoXJapaneseForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # first forward pass __lowercase : List[Any] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , use_cache=UpperCamelCase__ ) __lowercase : Union[str, Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __lowercase : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowercase : Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __lowercase : Any = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowercase : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) __lowercase : Dict = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ ) __lowercase : Dict = output_from_no_past['''hidden_states'''][0] __lowercase : Dict = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , past_key_values=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )['''hidden_states'''][0] # select random slice __lowercase : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowercase : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() __lowercase : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1E-3 ) ) def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : List[Any] = self.prepare_config_and_inputs() __lowercase : Optional[Any] = config_and_inputs __lowercase : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _A : List[Any] = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () _A : Dict = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () _A : Tuple = ( {'''feature-extraction''': GPTNeoXJapaneseModel, '''text-generation''': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) _A : Optional[int] = False _A : str = False _A : Dict = False _A : Optional[Any] = False def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase : Union[str, Any] = GPTNeoXJapaneseModelTester(self ) __lowercase : List[Any] = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() __lowercase : Tuple = None self.model_tester.create_and_check_model_as_decoder(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*UpperCamelCase__ ) @slow def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" __lowercase : List[Any] = '''abeja/gpt-neox-japanese-2.7b''' __lowercase : str = ['''データサイエンティストとは、''', '''100年後に必要とされる会社は、''', '''フルリモートの環境で働くために必要なことは、''', '''国境の長いトンネルを抜けると''', '''美味しい日本食といえば、'''] __lowercase : List[str] = [ '''データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。''', '''100年後に必要とされる会社は、「人」が中心の会社です。''', '''フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。''', '''国境の長いトンネルを抜けると、そこは雪国だった。''', '''美味しい日本食といえば、やっぱりお寿司ですよね。''', ] __lowercase : Any = GPTNeoXJapaneseTokenizer.from_pretrained(UpperCamelCase__ ) __lowercase : Union[str, Any] = GPTNeoXJapaneseForCausalLM.from_pretrained(UpperCamelCase__ ) __lowercase : Union[str, Any] = [] for prompt in prompts: __lowercase : int = tokenizer(UpperCamelCase__ , return_tensors="""pt""" ).input_ids __lowercase : List[str] = model.generate(UpperCamelCase__ , max_length=50 ) __lowercase : int = tokenizer.batch_decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) predicted_outputs += generated_string self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
367
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Any , __a : Tuple , __a : Optional[int]=13 , __a : int=7 , __a : List[str]=False , __a : Optional[int]=True , __a : Optional[int]=False , __a : Dict=True , __a : Optional[int]=33 , __a : Dict=32 , __a : Optional[int]=5 , __a : Union[str, Any]=4 , __a : List[str]=37 , __a : Tuple="gelu" , __a : List[str]=0.1 , __a : Dict=0.1 , __a : List[Any]=512 , __a : Any=16 , __a : Optional[Any]=2 , __a : List[Any]=0.02 , __a : int=3 , __a : Union[str, Any]=4 , __a : Optional[int]=None , ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = parent __lowercase : int = batch_size __lowercase : Any = seq_length __lowercase : str = is_training __lowercase : str = use_input_mask __lowercase : Optional[int] = use_token_type_ids __lowercase : List[Any] = use_labels __lowercase : Optional[Any] = vocab_size __lowercase : int = hidden_size __lowercase : List[Any] = num_hidden_layers __lowercase : Dict = num_attention_heads __lowercase : Any = intermediate_size __lowercase : Dict = hidden_act __lowercase : Union[str, Any] = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : List[str] = max_position_embeddings __lowercase : Union[str, Any] = type_vocab_size __lowercase : Dict = type_sequence_label_size __lowercase : Union[str, Any] = initializer_range __lowercase : List[Any] = num_labels __lowercase : str = num_choices __lowercase : Tuple = scope def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : int = None if self.use_input_mask: __lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : str = None __lowercase : Optional[Any] = None __lowercase : Tuple = None if self.use_labels: __lowercase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : List[Any] , __a : int , __a : int , __a : Dict , __a : Union[str, Any] , __a : List[str] , __a : str ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = EsmModel(config=__a ) model.to(__a ) model.eval() __lowercase : str = model(__a , attention_mask=__a ) __lowercase : List[Any] = model(__a ) __lowercase : Optional[int] = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : Union[str, Any] , __a : Dict , __a : List[Any] , __a : Tuple , __a : Union[str, Any] , __a : str , __a : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase : List[str] = EsmForMaskedLM(config=__a ) model.to(__a ) model.eval() __lowercase : int = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[int] , __a : Union[str, Any] , __a : List[Any] , __a : Tuple , __a : Tuple , __a : Optional[int] , __a : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = self.num_labels __lowercase : Any = EsmForTokenClassification(config=__a ) model.to(__a ) model.eval() __lowercase : Optional[Any] = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase : Any = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : List[str] = config_and_inputs __lowercase : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Optional[Any] = False _A : Any = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) _A : Optional[Any] = () _A : List[Any] = ( { '''feature-extraction''': EsmModel, '''fill-mask''': EsmForMaskedLM, '''text-classification''': EsmForSequenceClassification, '''token-classification''': EsmForTokenClassification, '''zero-shot''': EsmForSequenceClassification, } if is_torch_available() else {} ) _A : Optional[Any] = True def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : Optional[int] = EsmModelTester(self ) __lowercase : Tuple = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase : Union[str, Any] = type self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : List[str] = EsmModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] __lowercase : List[str] = EsmEmbeddings(config=__a ) __lowercase : Union[str, Any] = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) __lowercase : int = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) __lowercase : str = create_position_ids_from_input_ids(__a , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__a , __a ) ) ) def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] __lowercase : Optional[Any] = EsmEmbeddings(config=__a ) __lowercase : Optional[int] = torch.empty(2 , 4 , 30 ) __lowercase : Tuple = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] __lowercase : List[str] = torch.as_tensor([expected_single_positions, expected_single_positions] ) __lowercase : Any = embeddings.create_position_ids_from_inputs_embeds(__a ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__a , __a ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" pass @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" pass @require_torch class lowerCAmelCase ( __a ): '''simple docstring''' @slow def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): __lowercase : Tuple = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() __lowercase : Tuple = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase : List[str] = model(__a )[0] __lowercase : Union[str, Any] = 33 __lowercase : Union[str, Any] = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , __a ) __lowercase : List[Any] = torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): __lowercase : int = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() __lowercase : int = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) __lowercase : Any = model(__a )[0] # compare the actual values for a slice. __lowercase : int = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) )
306
0
import torch from diffusers import StableDiffusionPipeline lowerCamelCase : Dict = "path-to-your-trained-model" lowerCamelCase : Tuple = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to('''cuda''') lowerCamelCase : Union[str, Any] = "A photo of sks dog in a bucket" lowerCamelCase : List[Any] = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save('''dog-bucket.png''')
368
def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def snake_case_ ( lowerCAmelCase_ : int = 5000 ): __lowercase : Optional[int] = [(i * (3 * i - 1)) // 2 for i in range(1 , lowerCAmelCase_ )] for i, pentagonal_i in enumerate(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ , len(lowerCAmelCase_ ) ): __lowercase : int = pentagonal_nums[j] __lowercase : Optional[int] = pentagonal_i + pentagonal_j __lowercase : Union[str, Any] = pentagonal_j - pentagonal_i if is_pentagonal(lowerCAmelCase_ ) and is_pentagonal(lowerCAmelCase_ ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
306
0
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' pass @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCAmelCase ( self : int ) -> int: """simple docstring""" __lowercase : Optional[Any] = ort.SessionOptions() __lowercase : List[Any] = False return options def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" __lowercase : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) __lowercase : str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) __lowercase : List[str] = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) __lowercase : Union[str, Any] = """A red cat sitting on a park bench""" __lowercase : str = np.random.RandomState(0 ) __lowercase : str = pipe( prompt=UpperCamelCase__ , image=UpperCamelCase__ , mask_image=UpperCamelCase__ , guidance_scale=7.5 , num_inference_steps=10 , generator=UpperCamelCase__ , output_type="""np""" , ) __lowercase : Dict = output.images __lowercase : str = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) __lowercase : Union[str, Any] = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" __lowercase : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) __lowercase : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) __lowercase : Any = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-inpainting""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase : Any = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , scheduler=UpperCamelCase__ , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) __lowercase : int = """A red cat sitting on a park bench""" __lowercase : List[str] = np.random.RandomState(0 ) __lowercase : Tuple = pipe( prompt=UpperCamelCase__ , image=UpperCamelCase__ , mask_image=UpperCamelCase__ , guidance_scale=7.5 , num_inference_steps=20 , generator=UpperCamelCase__ , output_type="""np""" , ) __lowercase : List[str] = output.images __lowercase : str = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) __lowercase : Union[str, Any] = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
369
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowerCAmelCase ( __a ): '''simple docstring''' _A : Optional[Any] = (DPMSolverSDEScheduler,) _A : Dict = 10 def lowerCAmelCase ( self : Optional[int] , **__a : Dict ) -> Optional[int]: """simple docstring""" __lowercase : Any = { """num_train_timesteps""": 1100, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**__a ) return config def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=__a ) def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__a ) def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = self.scheduler_classes[0] __lowercase : List[str] = self.get_scheduler_config() __lowercase : Any = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase : Optional[Any] = self.dummy_model() __lowercase : str = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase : Optional[Any] = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): __lowercase : Union[str, Any] = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[Any] = model(__a , __a ) __lowercase : Optional[Any] = scheduler.step(__a , __a , __a ) __lowercase : str = output.prev_sample __lowercase : Optional[Any] = torch.sum(torch.abs(__a ) ) __lowercase : Union[str, Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47821044921875 ) < 1E-2 assert abs(result_mean.item() - 0.2178705964565277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59352111816406 ) < 1E-2 assert abs(result_mean.item() - 0.22342906892299652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase : Tuple = self.scheduler_classes[0] __lowercase : Dict = self.get_scheduler_config(prediction_type="""v_prediction""" ) __lowercase : int = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase : Optional[int] = self.dummy_model() __lowercase : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase : Dict = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): __lowercase : Dict = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[int] = model(__a , __a ) __lowercase : Optional[int] = scheduler.step(__a , __a , __a ) __lowercase : int = output.prev_sample __lowercase : Optional[Any] = torch.sum(torch.abs(__a ) ) __lowercase : List[str] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77149200439453 ) < 1E-2 assert abs(result_mean.item() - 0.16226289014816284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1663360595703 ) < 1E-2 assert abs(result_mean.item() - 0.16688326001167297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8487548828125 ) < 1E-2 assert abs(result_mean.item() - 0.1560530662536621 ) < 1E-3 def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = self.scheduler_classes[0] __lowercase : Dict = self.get_scheduler_config() __lowercase : Optional[int] = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps , device=__a ) __lowercase : int = self.dummy_model() __lowercase : Optional[Any] = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __lowercase : int = scheduler.scale_model_input(__a , __a ) __lowercase : List[str] = model(__a , __a ) __lowercase : List[str] = scheduler.step(__a , __a , __a ) __lowercase : int = output.prev_sample __lowercase : List[Any] = torch.sum(torch.abs(__a ) ) __lowercase : Optional[Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46957397460938 ) < 1E-2 assert abs(result_mean.item() - 0.21805934607982635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59353637695312 ) < 1E-2 assert abs(result_mean.item() - 0.22342908382415771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : str = self.scheduler_classes[0] __lowercase : List[Any] = self.get_scheduler_config() __lowercase : Tuple = scheduler_class(**__a , use_karras_sigmas=__a ) scheduler.set_timesteps(self.num_inference_steps , device=__a ) __lowercase : List[str] = self.dummy_model() __lowercase : Optional[int] = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma __lowercase : str = sample.to(__a ) for t in scheduler.timesteps: __lowercase : List[Any] = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[Any] = model(__a , __a ) __lowercase : Any = scheduler.step(__a , __a , __a ) __lowercase : Optional[Any] = output.prev_sample __lowercase : Any = torch.sum(torch.abs(__a ) ) __lowercase : Optional[Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66974135742188 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63653564453125 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3135223388672 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2
306
0
from ..utils import DummyObject, requires_backends class lowerCAmelCase ( metaclass=_lowerCAmelCase ): '''simple docstring''' _A : str = ["keras_nlp"] def __init__( self : Optional[int] , *__a : Optional[Any] , **__a : Tuple ) -> Dict: """simple docstring""" requires_backends(self , ["""keras_nlp"""] )
370
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate lowerCamelCase : str = trt.Logger(trt.Logger.WARNING) lowerCamelCase : Any = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) lowerCamelCase : Optional[Any] = logging.getLogger(__name__) lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=3_84, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=1_28, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) lowerCamelCase : Dict = parser.parse_args() if args.tokenizer_name: lowerCamelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) lowerCamelCase : List[str] = args.per_device_eval_batch_size lowerCamelCase : Any = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties lowerCamelCase : List[str] = True lowerCamelCase : List[Any] = '''temp_engine/bert-fp32.engine''' if args.fpaa: lowerCamelCase : Optional[Any] = '''temp_engine/bert-fp16.engine''' if args.inta: lowerCamelCase : int = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') lowerCamelCase : int = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network lowerCamelCase : Union[str, Any] = [network.get_input(i) for i in range(network.num_inputs)] lowerCamelCase : Dict = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: lowerCamelCase : List[str] = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) lowerCamelCase : Optional[int] = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) lowerCamelCase : Optional[Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ): __lowercase : List[str] = np.asarray(inputs["""input_ids"""] , dtype=np.intaa ) __lowercase : Union[str, Any] = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa ) __lowercase : int = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowerCAmelCase_ ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowerCAmelCase_ ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowerCAmelCase_ ) # start time __lowercase : Optional[Any] = time.time() # Run inference context.execute_async( bindings=[int(lowerCAmelCase_ ) for d_inp in d_inputs] + [int(lowerCAmelCase_ ), int(lowerCAmelCase_ )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) cuda.memcpy_dtoh_async(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Synchronize the stream and take time stream.synchronize() # end time __lowercase : int = time.time() __lowercase : Union[str, Any] = end_time - start_time __lowercase : Any = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. lowerCamelCase : Tuple = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase : List[Any] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. lowerCamelCase : Optional[Any] = raw_datasets['''validation'''].column_names lowerCamelCase : Union[str, Any] = '''question''' if '''question''' in column_names else column_names[0] lowerCamelCase : str = '''context''' if '''context''' in column_names else column_names[1] lowerCamelCase : Dict = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). lowerCamelCase : Dict = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) lowerCamelCase : Tuple = min(args.max_seq_length, tokenizer.model_max_length) def snake_case_ ( lowerCAmelCase_ : int ): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace __lowercase : str = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. __lowercase : List[str] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=lowerCAmelCase_ , stride=args.doc_stride , return_overflowing_tokens=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. __lowercase : List[str] = tokenized_examples.pop("""overflow_to_sample_mapping""" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. __lowercase : Any = [] for i in range(len(tokenized_examples["""input_ids"""] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). __lowercase : Dict = tokenized_examples.sequence_ids(lowerCAmelCase_ ) __lowercase : List[Any] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. __lowercase : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. __lowercase : Dict = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i] ) ] return tokenized_examples lowerCamelCase : Tuple = raw_datasets['''validation'''] # Validation Feature Creation lowerCamelCase : Optional[int] = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) lowerCamelCase : Union[str, Any] = default_data_collator lowerCamelCase : Optional[Any] = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) lowerCamelCase : List[str] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict="eval" ): # Post-processing: we match the start logits and end logits to answers in the original context. __lowercase : int = postprocess_qa_predictions( examples=lowerCAmelCase_ , features=lowerCAmelCase_ , predictions=lowerCAmelCase_ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowerCAmelCase_ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: __lowercase : Optional[int] = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: __lowercase : List[Any] = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] __lowercase : Optional[int] = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=lowerCAmelCase_ , label_ids=lowerCAmelCase_ ) lowerCamelCase : Dict = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def snake_case_ ( lowerCAmelCase_ : str ): return trt.volume(engine.get_binding_shape(lowerCAmelCase_ ) ) * engine.get_binding_dtype(lowerCAmelCase_ ).itemsize # Allocate device memory for inputs and outputs. lowerCamelCase : int = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer lowerCamelCase : Dict = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) lowerCamelCase : str = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) lowerCamelCase : Dict = cuda.mem_alloc(h_outputa.nbytes) lowerCamelCase : Optional[Any] = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. lowerCamelCase : Optional[int] = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(f''' Num examples = {len(eval_dataset)}''') logger.info(f''' Batch size = {args.per_device_eval_batch_size}''') lowerCamelCase : int = 0.0 lowerCamelCase : List[str] = 0 lowerCamelCase : List[str] = timeit.default_timer() lowerCamelCase : List[Any] = None for step, batch in enumerate(eval_dataloader): lowerCamelCase ,lowerCamelCase : str = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 lowerCamelCase ,lowerCamelCase : Union[str, Any] = outputs lowerCamelCase : Optional[Any] = torch.tensor(start_logits) lowerCamelCase : List[str] = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered lowerCamelCase : Optional[int] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-1_00) lowerCamelCase : Dict = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-1_00) lowerCamelCase : List[Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) lowerCamelCase : Dict = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-1_00) if all_preds is not None: lowerCamelCase : Tuple = nested_truncate(all_preds, len(eval_dataset)) lowerCamelCase : Dict = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 10_00 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 10_00)) logger.info('''Total Number of Inference = %d''', niter) lowerCamelCase : str = post_processing_function(eval_examples, eval_dataset, all_preds) lowerCamelCase : Optional[Any] = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'''Evaluation metrics: {eval_metric}''')
306
0
"""simple docstring""" import numpy as np from transformers import Pipeline def snake_case_ ( lowerCAmelCase_ : Tuple ): __lowercase : int = np.max(a__ , axis=-1 , keepdims=a__ ) __lowercase : List[Any] = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=a__ ) class lowerCAmelCase ( _a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] , **__a : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = {} if "second_text" in kwargs: __lowercase : Optional[int] = kwargs["""second_text"""] return preprocess_kwargs, {}, {} def lowerCAmelCase ( self : List[str] , __a : Dict , __a : Any=None ) -> List[str]: """simple docstring""" return self.tokenizer(__lowerCAmelCase , text_pair=__lowerCAmelCase , return_tensors=self.framework ) def lowerCAmelCase ( self : Optional[int] , __a : Union[str, Any] ) -> Tuple: """simple docstring""" return self.model(**__lowerCAmelCase ) def lowerCAmelCase ( self : str , __a : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase : Optional[Any] = model_outputs.logits[0].numpy() __lowercase : Any = softmax(__lowerCAmelCase ) __lowercase : Dict = np.argmax(__lowerCAmelCase ) __lowercase : int = self.model.config.idalabel[best_class] __lowercase : Any = probabilities[best_class].item() __lowercase : str = logits.tolist() return {"label": label, "score": score, "logits": logits}
371
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : str = { '''facebook/nllb-moe-54B''': '''https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''nllb-moe''' _A : List[str] = ['''past_key_values'''] _A : Optional[Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Dict , __a : List[str]=128112 , __a : List[Any]=1024 , __a : List[Any]=12 , __a : Union[str, Any]=4096 , __a : List[str]=16 , __a : int=12 , __a : Optional[int]=4096 , __a : str=16 , __a : List[Any]=0.05 , __a : Any=0.05 , __a : Dict=True , __a : Optional[Any]=True , __a : List[Any]="relu" , __a : Tuple=1024 , __a : Optional[Any]=0.1 , __a : Tuple=0.1 , __a : Any=0.0 , __a : Optional[Any]=0.02 , __a : List[str]=2 , __a : Union[str, Any]=True , __a : List[Any]=False , __a : Tuple="float32" , __a : Optional[int]=False , __a : Optional[int]=128 , __a : str=64 , __a : Dict=4 , __a : str=4 , __a : List[str]=0.001 , __a : List[Any]=0.001 , __a : Optional[Any]="all" , __a : Optional[int]=False , __a : int=False , __a : int=1.0 , __a : Dict=0.2 , __a : Tuple=1 , __a : Optional[Any]=0 , __a : List[Any]=2 , __a : Any=False , **__a : Any , ) -> Any: """simple docstring""" __lowercase : int = vocab_size __lowercase : List[Any] = max_position_embeddings __lowercase : Tuple = d_model __lowercase : str = encoder_ffn_dim __lowercase : List[str] = encoder_layers __lowercase : int = encoder_attention_heads __lowercase : List[Any] = decoder_ffn_dim __lowercase : int = decoder_layers __lowercase : Optional[int] = decoder_attention_heads __lowercase : Union[str, Any] = dropout __lowercase : str = attention_dropout __lowercase : Any = activation_dropout __lowercase : List[Any] = activation_function __lowercase : List[str] = init_std __lowercase : Optional[int] = encoder_layerdrop __lowercase : str = decoder_layerdrop __lowercase : Dict = use_cache __lowercase : Optional[Any] = encoder_layers __lowercase : str = scale_embedding # scale factor will be sqrt(d_model) if True __lowercase : List[Any] = router_z_loss_coef __lowercase : Tuple = router_aux_loss_coef __lowercase : str = decoder_sparse_step __lowercase : Any = encoder_sparse_step __lowercase : str = num_experts __lowercase : List[Any] = expert_capacity __lowercase : int = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) __lowercase : Optional[int] = router_dtype __lowercase : Any = router_ignore_padding_tokens __lowercase : Optional[Any] = batch_prioritized_routing __lowercase : str = second_expert_policy __lowercase : List[str] = normalize_router_prob_before_dropping __lowercase : List[Any] = moe_eval_capacity_token_fraction __lowercase : List[str] = moe_token_dropout __lowercase : Optional[Any] = output_router_logits super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , decoder_start_token_id=__a , **__a , )
306
0
"""simple docstring""" def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] ): return "\n".join( F"{number} * {i} = {number * i}" for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
350
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase : Optional[Any] = { '''configuration_poolformer''': [ '''POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PoolFormerConfig''', '''PoolFormerOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = ['''PoolFormerFeatureExtractor'''] lowerCamelCase : Union[str, Any] = ['''PoolFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = [ '''POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PoolFormerForImageClassification''', '''PoolFormerModel''', '''PoolFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
306
0
import os def snake_case_ ( ): with open(os.path.dirname(A__ ) + """/grid.txt""" ) as f: __lowercase : Union[str, Any] = [] # noqa: E741 for _ in range(20 ): l.append([int(A__ ) for x in f.readline().split()] ) __lowercase : Union[str, Any] = 0 # right for i in range(20 ): for j in range(17 ): __lowercase : Dict = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: __lowercase : Union[str, Any] = temp # down for i in range(17 ): for j in range(20 ): __lowercase : str = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: __lowercase : str = temp # diagonal 1 for i in range(17 ): for j in range(17 ): __lowercase : str = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: __lowercase : str = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): __lowercase : Tuple = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: __lowercase : Union[str, Any] = temp return maximum if __name__ == "__main__": print(solution())
351
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : List[str] = 2 __lowercase : Union[str, Any] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(lowerCAmelCase_ ) if n > 1: factors.append(lowerCAmelCase_ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
306
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase : Dict = { '''configuration_efficientnet''': [ '''EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientNetConfig''', '''EfficientNetOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = ['''EfficientNetImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ '''EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientNetForImageClassification''', '''EfficientNetModel''', '''EfficientNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys lowerCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
352
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Dict = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) __lowercase : List[str] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __lowercase : Optional[Any] = model(__a )["""last_hidden_state"""] __lowercase : Any = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , __a ) # compare the actual values for a slice. __lowercase : Dict = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
306
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
353
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Optional[Any] = len(lowerCAmelCase_ ) __lowercase : str = len(lowerCAmelCase_ ) __lowercase : Optional[int] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __lowercase : Tuple = True for i in range(lowerCAmelCase_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __lowercase : Optional[Any] = True if a[i].islower(): __lowercase : Dict = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
306
0
import fcntl import os import socket import torch import torch.distributed as dist def snake_case_ ( *lowerCAmelCase_ : str ): with open(lowerCAmelCase_ , """r""" ) as fh: fcntl.flock(lowerCAmelCase_ , fcntl.LOCK_EX ) try: print(*lowerCAmelCase_ ) finally: fcntl.flock(lowerCAmelCase_ , fcntl.LOCK_UN ) lowerCamelCase : List[str] = int(os.environ['''LOCAL_RANK''']) torch.cuda.set_device(local_rank) lowerCamelCase : str = torch.device('''cuda''', local_rank) lowerCamelCase : Tuple = socket.gethostname() lowerCamelCase : List[str] = f'''[{hostname}-{local_rank}]''' try: # test distributed dist.init_process_group('''nccl''') dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank lowerCamelCase : Optional[Any] = dist.get_rank() lowerCamelCase : Dict = dist.get_world_size() printflock(f'''{gpu} is OK (global rank: {rank}/{world_size})''') dist.barrier() if rank == 0: printflock(f'''pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}''') except Exception: printflock(f'''{gpu} is broken''') raise
354
from scipy.stats import spearmanr import datasets lowerCamelCase : List[str] = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' lowerCamelCase : List[str] = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' lowerCamelCase : Union[str, Any] = r'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def lowerCAmelCase ( self : List[Any] , __a : str , __a : Any , __a : Optional[int]=False ) -> List[str]: """simple docstring""" __lowercase : Optional[Any] = spearmanr(__a , __a ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
306
0
from math import ceil def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int ): __lowercase : Union[str, Any] = list(range(0 , lowerCAmelCase_ ) ) __lowercase : List[Any] = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check __lowercase : Optional[Any] = [] for i in device_map_blocks: if device_map_blocks.count(lowerCAmelCase_ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(lowerCAmelCase_ ) # Missing blocks __lowercase : Dict = [i for i in blocks if i not in device_map_blocks] __lowercase : Any = [i for i in device_map_blocks if i not in blocks] if len(lowerCAmelCase_ ) != 0: raise ValueError( """Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.""" """ These attention blocks were specified more than once: """ + str(lowerCAmelCase_ ) ) if len(lowerCAmelCase_ ) != 0: raise ValueError( """There are attention blocks for this model that are not specified in the device_map. Add these attention """ """blocks to a device on the device_map: """ + str(lowerCAmelCase_ ) ) if len(lowerCAmelCase_ ) != 0: raise ValueError( """The device_map contains more attention blocks than this model has. Remove these from the device_map:""" + str(lowerCAmelCase_ ) ) def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] ): __lowercase : List[Any] = list(range(lowerCAmelCase_ ) ) __lowercase : str = int(ceil(n_layers / len(lowerCAmelCase_ ) ) ) __lowercase : List[str] = [layers[i : i + n_blocks] for i in range(0 , lowerCAmelCase_ , lowerCAmelCase_ )] return dict(zip(lowerCAmelCase_ , lowerCAmelCase_ ) )
355
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Any = get_failure_array(lowerCAmelCase_ ) # 2) Step through text searching for pattern __lowercase , __lowercase : Optional[int] = 0, 0 # index into text, pattern while i < len(lowerCAmelCase_ ): if pattern[j] == text[i]: if j == (len(lowerCAmelCase_ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: __lowercase : Optional[Any] = failure[j - 1] continue i += 1 return False def snake_case_ ( lowerCAmelCase_ : str ): __lowercase : List[Any] = [0] __lowercase : Optional[Any] = 0 __lowercase : List[Any] = 1 while j < len(lowerCAmelCase_ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: __lowercase : List[str] = failure[i - 1] continue j += 1 failure.append(lowerCAmelCase_ ) return failure if __name__ == "__main__": # Test 1) lowerCamelCase : Dict = '''abc1abc12''' lowerCamelCase : Union[str, Any] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' lowerCamelCase : Any = '''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) lowerCamelCase : List[Any] = '''ABABX''' lowerCamelCase : List[Any] = '''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) lowerCamelCase : int = '''AAAB''' lowerCamelCase : Optional[int] = '''ABAAAAAB''' assert kmp(pattern, text) # Test 4) lowerCamelCase : Optional[Any] = '''abcdabcy''' lowerCamelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) lowerCamelCase : Dict = '''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
306
0
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' _A : str = IFInpaintingSuperResolutionPipeline _A : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} _A : List[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'''original_image'''} ) _A : Dict = PipelineTesterMixin.required_optional_params - {'''latents'''} def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return self._get_superresolution_dummy_components() def lowerCAmelCase ( self : Tuple , __a : Dict , __a : Any=0 ) -> Dict: """simple docstring""" if str(__lowerCamelCase ).startswith("""mps""" ): __lowercase : Union[str, Any] = torch.manual_seed(__lowerCamelCase ) else: __lowercase : int = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) __lowercase : str = floats_tensor((1, 3, 16, 16) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) __lowercase : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) __lowercase : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) __lowercase : Dict = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase ( self : str ) -> int: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowerCAmelCase ( self : int ) -> int: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" self._test_save_load_local() def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
356
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = ['''pixel_values'''] def __init__( self : Any , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : bool = True , __a : Dict[str, int] = None , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = True , **__a : str , ) -> None: """simple docstring""" super().__init__(**__a ) __lowercase : Dict = size if size is not None else {"""shortest_edge""": 224} __lowercase : Union[str, Any] = get_size_dict(__a , default_to_square=__a ) __lowercase : int = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __lowercase : Any = get_size_dict(__a , default_to_square=__a , param_name="""crop_size""" ) __lowercase : Optional[int] = do_resize __lowercase : Union[str, Any] = size __lowercase : List[Any] = resample __lowercase : Any = do_center_crop __lowercase : Dict = crop_size __lowercase : int = do_rescale __lowercase : Tuple = rescale_factor __lowercase : List[Any] = do_normalize __lowercase : Union[str, Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowercase : int = image_std if image_std is not None else OPENAI_CLIP_STD __lowercase : Union[str, Any] = do_convert_rgb def lowerCAmelCase ( self : Union[str, Any] , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[Any] , ) -> np.ndarray: """simple docstring""" __lowercase : Dict = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) __lowercase : str = get_resize_output_image_size(__a , size=size["""shortest_edge"""] , default_to_square=__a ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Any , ) -> np.ndarray: """simple docstring""" __lowercase : Tuple = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(__a , size=(size["""height"""], size["""width"""]) , data_format=__a , **__a ) def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : Union[int, float] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[Any] , ) -> List[str]: """simple docstring""" return rescale(__a , scale=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Optional[int] , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] , ) -> np.ndarray: """simple docstring""" return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Optional[int] , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : int = None , __a : bool = None , __a : float = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = None , __a : Optional[Union[str, TensorType]] = None , __a : Optional[ChannelDimension] = ChannelDimension.FIRST , **__a : List[Any] , ) -> PIL.Image.Image: """simple docstring""" __lowercase : List[Any] = do_resize if do_resize is not None else self.do_resize __lowercase : Dict = size if size is not None else self.size __lowercase : Tuple = get_size_dict(__a , param_name="""size""" , default_to_square=__a ) __lowercase : int = resample if resample is not None else self.resample __lowercase : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase : List[Any] = crop_size if crop_size is not None else self.crop_size __lowercase : List[str] = get_size_dict(__a , param_name="""crop_size""" , default_to_square=__a ) __lowercase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __lowercase : str = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase : Dict = do_normalize if do_normalize is not None else self.do_normalize __lowercase : Tuple = image_mean if image_mean is not None else self.image_mean __lowercase : str = image_std if image_std is not None else self.image_std __lowercase : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase : Union[str, Any] = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase : Union[str, Any] = [convert_to_rgb(__a ) for image in images] # All transformations expect numpy arrays. __lowercase : Any = [to_numpy_array(__a ) for image in images] if do_resize: __lowercase : str = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: __lowercase : str = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: __lowercase : Dict = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: __lowercase : Optional[Any] = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] __lowercase : Any = [to_channel_dimension_format(__a , __a ) for image in images] __lowercase : Optional[int] = {"""pixel_values""": images} return BatchFeature(data=__a , tensor_type=__a )
306
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : List[Any] = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : str ): __lowercase : Optional[int] = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: __lowercase : Optional[Any] = 192 __lowercase : Optional[Any] = 768 __lowercase : int = 12 __lowercase : Dict = 3 __lowercase : Tuple = [800, 1333] __lowercase : Tuple = False elif yolos_name == "yolos_s_dWr": __lowercase : List[Any] = 330 __lowercase : List[str] = 14 __lowercase : Union[str, Any] = 6 __lowercase : Dict = 1320 elif "yolos_s" in yolos_name: __lowercase : Optional[int] = 384 __lowercase : Tuple = 1536 __lowercase : str = 12 __lowercase : int = 6 elif "yolos_b" in yolos_name: __lowercase : Optional[int] = [800, 1344] __lowercase : str = 91 __lowercase : int = 'huggingface/label-files' __lowercase : List[Any] = 'coco-detection-id2label.json' __lowercase : int = json.load(open(hf_hub_download(UpperCAmelCase_ , UpperCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) __lowercase : Optional[Any] = {int(UpperCAmelCase_ ): v for k, v in idalabel.items()} __lowercase : Union[str, Any] = idalabel __lowercase : Union[str, Any] = {v: k for k, v in idalabel.items()} return config def snake_case_ ( lowerCAmelCase_ : dict , lowerCAmelCase_ : YolosConfig , lowerCAmelCase_ : bool = False ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowercase : Any = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) __lowercase : Any = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict __lowercase : Dict = in_proj_weight[: config.hidden_size, :] __lowercase : Any = in_proj_bias[: config.hidden_size] __lowercase : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase : Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowercase : int = in_proj_weight[-config.hidden_size :, :] __lowercase : List[str] = in_proj_bias[-config.hidden_size :] def snake_case_ ( lowerCAmelCase_ : str ): if "backbone" in name: __lowercase : Dict = name.replace("""backbone""" , """vit""" ) if "cls_token" in name: __lowercase : Any = name.replace("""cls_token""" , """embeddings.cls_token""" ) if "det_token" in name: __lowercase : Optional[int] = name.replace("""det_token""" , """embeddings.detection_tokens""" ) if "mid_pos_embed" in name: __lowercase : List[str] = name.replace("""mid_pos_embed""" , """encoder.mid_position_embeddings""" ) if "pos_embed" in name: __lowercase : Any = name.replace("""pos_embed""" , """embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __lowercase : str = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "blocks" in name: __lowercase : List[Any] = name.replace("""blocks""" , """encoder.layer""" ) if "attn.proj" in name: __lowercase : Any = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: __lowercase : Dict = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: __lowercase : Optional[int] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __lowercase : Optional[Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __lowercase : List[str] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __lowercase : Optional[Any] = name.replace("""mlp.fc2""" , """output.dense""" ) if "class_embed" in name: __lowercase : Optional[Any] = name.replace("""class_embed""" , """class_labels_classifier""" ) if "bbox_embed" in name: __lowercase : int = name.replace("""bbox_embed""" , """bbox_predictor""" ) if "vit.norm" in name: __lowercase : Any = name.replace("""vit.norm""" , """vit.layernorm""" ) return name def snake_case_ ( lowerCAmelCase_ : dict , lowerCAmelCase_ : YolosForObjectDetection ): for key in orig_state_dict.copy().keys(): __lowercase : int = orig_state_dict.pop(UpperCAmelCase_ ) if "qkv" in key: __lowercase : str = key.split(""".""" ) __lowercase : int = int(key_split[2] ) __lowercase : Tuple = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: __lowercase : Any = val[:dim, :] __lowercase : Union[str, Any] = val[ dim : dim * 2, : ] __lowercase : Any = val[-dim:, :] else: __lowercase : Optional[int] = val[:dim] __lowercase : List[str] = val[dim : dim * 2] __lowercase : List[Any] = val[-dim:] else: __lowercase : Tuple = val return orig_state_dict def snake_case_ ( ): __lowercase : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowercase : List[Any] = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ) return im @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : bool = False ): __lowercase : Optional[Any] = get_yolos_config(UpperCAmelCase_ ) # load original state_dict __lowercase : Union[str, Any] = torch.load(UpperCAmelCase_ , map_location="""cpu""" )['model'] # load 🤗 model __lowercase : Optional[Any] = YolosForObjectDetection(UpperCAmelCase_ ) model.eval() __lowercase : int = convert_state_dict(UpperCAmelCase_ , UpperCAmelCase_ ) model.load_state_dict(UpperCAmelCase_ ) # Check outputs on an image, prepared by YolosImageProcessor __lowercase : Optional[Any] = 800 if yolos_name != 'yolos_ti' else 512 __lowercase : Dict = YolosImageProcessor(format="""coco_detection""" , size=UpperCAmelCase_ ) __lowercase : int = image_processor(images=prepare_img() , return_tensors="""pt""" ) __lowercase : int = model(**UpperCAmelCase_ ) __lowercase : List[str] = outputs.logits, outputs.pred_boxes __lowercase : Dict = None, None if yolos_name == "yolos_ti": __lowercase : Dict = torch.tensor( [[-39.5_022, -11.9_820, -17.6_888], [-29.9_574, -9.9_769, -17.7_691], [-42.3_281, -20.7_200, -30.6_294]] ) __lowercase : Tuple = torch.tensor( [[0.4_021, 0.0_836, 0.7_979], [0.0_184, 0.2_609, 0.0_364], [0.1_781, 0.2_004, 0.2_095]] ) elif yolos_name == "yolos_s_200_pre": __lowercase : Tuple = torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] ) __lowercase : Tuple = torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] ) elif yolos_name == "yolos_s_300_pre": __lowercase : Optional[Any] = torch.tensor( [[-36.2_220, -14.4_385, -23.5_457], [-35.6_970, -14.7_583, -21.3_935], [-31.5_939, -13.6_042, -16.8_049]] ) __lowercase : Tuple = torch.tensor( [[0.7_614, 0.2_316, 0.4_728], [0.7_168, 0.4_495, 0.3_855], [0.4_996, 0.1_466, 0.9_996]] ) elif yolos_name == "yolos_s_dWr": __lowercase : str = torch.tensor( [[-42.8_668, -24.1_049, -41.1_690], [-34.7_456, -14.1_274, -24.9_194], [-33.7_898, -12.1_946, -25.6_495]] ) __lowercase : Tuple = torch.tensor( [[0.5_587, 0.2_773, 0.0_605], [0.5_004, 0.3_014, 0.9_994], [0.4_999, 0.1_548, 0.9_994]] ) elif yolos_name == "yolos_base": __lowercase : str = torch.tensor( [[-40.6_064, -24.3_084, -32.6_447], [-55.1_990, -30.7_719, -35.5_877], [-51.4_311, -33.3_507, -35.6_462]] ) __lowercase : Dict = torch.tensor( [[0.5_555, 0.2_794, 0.0_655], [0.9_049, 0.2_664, 0.1_894], [0.9_183, 0.1_984, 0.1_635]] ) else: raise ValueError(F"Unknown yolos_name: {yolos_name}" ) assert torch.allclose(logits[0, :3, :3] , UpperCAmelCase_ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , UpperCAmelCase_ , atol=1e-4 ) Path(UpperCAmelCase_ ).mkdir(exist_ok=UpperCAmelCase_ ) print(F"Saving model {yolos_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCAmelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(UpperCAmelCase_ ) if push_to_hub: __lowercase : Any = { 'yolos_ti': 'yolos-tiny', 'yolos_s_200_pre': 'yolos-small', 'yolos_s_300_pre': 'yolos-small-300', 'yolos_s_dWr': 'yolos-small-dwr', 'yolos_base': 'yolos-base', } print("""Pushing to the hub...""" ) __lowercase : Optional[int] = model_mapping[yolos_name] image_processor.push_to_hub(UpperCAmelCase_ , organization="""hustvl""" ) model.push_to_hub(UpperCAmelCase_ , organization="""hustvl""" ) if __name__ == "__main__": lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--yolos_name''', default='''yolos_s_200_pre''', type=str, help=( '''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',''' ''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.''' ), ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCamelCase : str = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
357
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str ): __lowercase : Tuple = s.rsplit(lowerCAmelCase_ , lowerCAmelCase_ ) return new.join(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : List[Any] ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : List[str] = {} __lowercase : Tuple = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __lowercase : List[str] = key.replace(F"{group_key}." , F"{group_key}.group." ) if "res_path" in key: __lowercase : List[Any] = key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): __lowercase : Union[str, Any] = rreplace(lowerCAmelCase_ , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): __lowercase : Tuple = rreplace(lowerCAmelCase_ , """.b""" , """.bias""" , 1 ) __lowercase : Dict = value.float() return upgrade @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=True ): from dall_e import Encoder __lowercase : Any = Encoder() if os.path.exists(lowerCAmelCase_ ): __lowercase : List[Any] = torch.load(lowerCAmelCase_ ) else: __lowercase : List[Any] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : int = ckpt.state_dict() encoder.load_state_dict(lowerCAmelCase_ ) if config_path is not None: __lowercase : Optional[int] = FlavaImageCodebookConfig.from_pretrained(lowerCAmelCase_ ) else: __lowercase : List[str] = FlavaImageCodebookConfig() __lowercase : Optional[Any] = FlavaImageCodebook(lowerCAmelCase_ ).eval() __lowercase : List[Any] = encoder.state_dict() __lowercase : Union[str, Any] = upgrade_state_dict(lowerCAmelCase_ ) hf_model.load_state_dict(lowerCAmelCase_ ) __lowercase : Dict = hf_model.state_dict() __lowercase : Tuple = count_parameters(lowerCAmelCase_ ) __lowercase : Tuple = count_parameters(lowerCAmelCase_ ) assert torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(lowerCAmelCase_ ) else: return hf_state_dict if __name__ == "__main__": lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowerCamelCase : Union[str, Any] = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
306
0
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def snake_case_ ( lowerCAmelCase_ : Union[str, Any] ): # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def snake_case_ ( ): with parallel_backend("""spark""" ): assert ParallelBackendConfig.backend_name == "spark" __lowercase : Dict = [1, 2, 3] with pytest.raises(_A ): with parallel_backend("""unsupported backend""" ): map_nested(_A , _A , num_proc=2 ) with pytest.raises(_A ): with parallel_backend("""unsupported backend""" ): map_nested(_A , _A , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("""num_proc""" , [2, -1] ) def snake_case_ ( lowerCAmelCase_ : Optional[Any] ): __lowercase : Optional[int] = [1, 2] __lowercase : str = {'a': 1, 'b': 2} __lowercase : Dict = {'a': [1, 2], 'b': [3, 4]} __lowercase : Optional[Any] = {'a': {'1': 1}, 'b': 2} __lowercase : str = {'a': 1, 'b': 2, 'c': 3, 'd': 4} __lowercase : str = [2, 3] __lowercase : str = {'a': 2, 'b': 3} __lowercase : int = {'a': [2, 3], 'b': [4, 5]} __lowercase : List[Any] = {'a': {'1': 2}, 'b': 3} __lowercase : Tuple = {'a': 2, 'b': 3, 'c': 4, 'd': 5} with parallel_backend("""spark""" ): assert map_nested(_A , _A , num_proc=_A ) == expected_map_nested_sa assert map_nested(_A , _A , num_proc=_A ) == expected_map_nested_sa assert map_nested(_A , _A , num_proc=_A ) == expected_map_nested_sa assert map_nested(_A , _A , num_proc=_A ) == expected_map_nested_sa assert map_nested(_A , _A , num_proc=_A ) == expected_map_nested_sa
358
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging lowerCamelCase : Tuple = logging.get_logger(__name__) logging.set_verbosity_info() def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): if "xprophetnet" in prophetnet_checkpoint_path: __lowercase : List[str] = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) __lowercase , __lowercase : int = XLMProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) else: __lowercase : List[Any] = ProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) __lowercase , __lowercase : Optional[Any] = ProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) __lowercase : List[str] = ["""key_proj""", """value_proj""", """query_proj"""] __lowercase : Optional[int] = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: __lowercase : Tuple = key.split(""".""" ) if attributes[0] == "lm_head": __lowercase : str = prophet __lowercase : List[str] = prophet_old else: __lowercase : Tuple = prophet.prophetnet __lowercase : Union[str, Any] = prophet_old.model __lowercase : Optional[Any] = False for attribute in attributes: if attribute in mapping: __lowercase : Optional[int] = mapping[attribute] if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) > 0: __lowercase : str = attribute elif hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : List[Any] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" __lowercase : Any = old_model.weight logger.info(F"{attribute} is initialized." ) __lowercase : Any = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" __lowercase : Dict = old_model.bias logger.info(F"{attribute} is initialized" ) __lowercase : int = True break elif attribute in special_keys and hasattr(lowerCAmelCase_ , """in_proj_weight""" ): __lowercase : Dict = old_model.in_proj_weight.shape[0] // 3 __lowercase : Tuple = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": __lowercase : Union[str, Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) __lowercase : int = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": __lowercase : Any = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) __lowercase : List[Any] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": __lowercase : Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) __lowercase : int = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) __lowercase : int = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." __lowercase : Optional[Any] = nn.Parameter(old_model.embed_positions.weight[:512, :] ) __lowercase : int = True break if attribute.isdigit(): __lowercase : Tuple = model[int(lowerCAmelCase_ )] __lowercase : int = old_model[int(lowerCAmelCase_ )] else: __lowercase : Union[str, Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if old_attribute == "": __lowercase : int = old_model else: if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError(F"{old_model} does not have {old_attribute}" ) __lowercase : List[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if not is_key_init: raise ValueError(F"{key} was not correctly initialized!" ) print(F"Saving model to {pytorch_dump_folder_path}" ) prophet.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCamelCase : Any = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
306
0
"""simple docstring""" import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' _A : Optional[Any] = CLIPTokenizer _A : int = CLIPTokenizerFast _A : str = True _A : Dict = {} _A : Any = False def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" super().setUp() # fmt: off __lowercase : str = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on __lowercase : List[str] = dict(zip(A__ , range(len(A__ ) ) ) ) __lowercase : Tuple = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>"""] __lowercase : str = {"""unk_token""": """<unk>"""} __lowercase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(A__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(A__ ) ) def lowerCAmelCase ( self : Any , **__a : Any ) -> int: """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **A__ ) def lowerCAmelCase ( self : Any , **__a : Union[str, Any] ) -> List[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **A__ ) def lowerCAmelCase ( self : List[Any] , __a : Dict ) -> int: """simple docstring""" __lowercase : Optional[int] = """lower newer""" __lowercase : List[Any] = """lower newer""" return input_text, output_text def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : str = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowercase : Tuple = """lower newer""" __lowercase : Optional[int] = ["""lo""", """w""", """er</w>""", """n""", """e""", """w""", """er</w>"""] __lowercase : Any = tokenizer.tokenize(A__ ) self.assertListEqual(A__ , A__ ) __lowercase : str = tokens + [tokenizer.unk_token] __lowercase : str = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , A__ ) @require_ftfy def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : List[Any] = self.tokenizer_class.from_pretrained(A__ , **A__ ) __lowercase : Optional[int] = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) __lowercase : str = """A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.""" __lowercase : Dict = tokenizer_s.tokenize(A__ ) __lowercase : Tuple = tokenizer_r.tokenize(A__ ) self.assertListEqual(A__ , A__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways __lowercase : Union[str, Any] = """xa\u0303y""" + """ """ + """x\xe3y""" __lowercase : Union[str, Any] = tokenizer_s.tokenize(A__ ) __lowercase : int = tokenizer_r.tokenize(A__ ) self.assertListEqual(A__ , A__ ) # Test that the tokenization is identical on unicode of space type __lowercase : Tuple = [ """\u0009""", # (horizontal tab, '\t') """\u000B""", # (vertical tab) """\u000C""", # (form feed) """\u0020""", # (space, ' ') """\u200E""", # (left-to-right mark):w """\u200F""", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: __lowercase : Optional[Any] = tokenizer_s.tokenize(A__ ) __lowercase : List[str] = tokenizer_r.tokenize(A__ ) self.assertListEqual(A__ , A__ ) # Test that the tokenization is identical on unicode of line break type __lowercase : Union[str, Any] = [ """\u000A""", # (line feed, '\n') """\r\n""", # (carriage return and line feed, '\r\n') """\u000D""", # (carriage return, '\r') """\r""", # (carriage return, '\r') """\u000D""", # (carriage return, '\r') """\u2028""", # (line separator) """\u2029""", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: __lowercase : Dict = tokenizer_s.tokenize(A__ ) __lowercase : Optional[int] = tokenizer_r.tokenize(A__ ) self.assertListEqual(A__ , A__ ) def lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : Optional[int] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` __lowercase : str = F"{text_of_1_token} {text_of_1_token}" __lowercase : List[str] = self.rust_tokenizer_class.from_pretrained( A__ , use_fast=A__ , ) __lowercase : Dict = tokenizer_r(A__ , return_offsets_mapping=A__ , add_special_tokens=A__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A__ ) + 1, len(A__ ) + 1 + len(A__ )) , ) __lowercase : Tuple = F" {text}" __lowercase : Dict = self.rust_tokenizer_class.from_pretrained( A__ , use_fast=A__ , ) __lowercase : Any = tokenizer_r(A__ , return_offsets_mapping=A__ , add_special_tokens=A__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(A__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A__ ) + 1, 1 + len(A__ ) + 1 + len(A__ )) , ) def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" with self.assertRaises(A__ ) as context: self.rust_tokenizer_class.from_pretrained("""robot-test/old-clip-tokenizer""" ) self.assertTrue( context.exception.args[0].startswith( """The `backend_tokenizer` provided does not match the expected format.""" ) ) @require_ftfy def lowerCAmelCase ( self : int ) -> int: """simple docstring""" super().test_tokenization_python_rust_equals() def lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" pass
359
def snake_case_ ( lowerCAmelCase_ : int = 200 ): __lowercase : List[str] = [1, 2, 5, 10, 20, 50, 100, 200] __lowercase : List[str] = [0] * (pence + 1) __lowercase : Optional[Any] = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowerCAmelCase_ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
306
0
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowerCamelCase : List[str] = get_tests_dir('''fixtures''') lowerCamelCase : Union[str, Any] = get_tests_dir('''fixtures/dummy_feature_extractor_config.json''') lowerCamelCase : int = get_tests_dir('''fixtures/dummy-config.json''') class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase : str = 0 def lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" __lowercase : List[str] = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(a__ , a__ ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase : str = AutoFeatureExtractor.from_pretrained(a__ ) self.assertIsInstance(a__ , a__ ) def lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : List[Any] = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally __lowercase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(a__ ).to_dict() config_dict.pop("""feature_extractor_type""" ) __lowercase : List[str] = WavaVecaFeatureExtractor(**a__ ) # save in new folder model_config.save_pretrained(a__ ) config.save_pretrained(a__ ) __lowercase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(a__ ) # make sure private variable is not incorrectly saved __lowercase : str = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(a__ , a__ ) def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Optional[int] = AutoFeatureExtractor.from_pretrained(a__ ) self.assertIsInstance(a__ , a__ ) def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" with self.assertRaisesRegex( a__ , """bert-base is not a local folder and is not a valid model identifier""" ): __lowercase : List[Any] = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def lowerCAmelCase ( self : str ) -> int: """simple docstring""" with self.assertRaisesRegex( a__ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): __lowercase : List[Any] = AutoFeatureExtractor.from_pretrained(a__ , revision="""aaaaaa""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" with self.assertRaisesRegex( a__ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): __lowercase : Optional[int] = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" with self.assertRaises(a__ ): __lowercase : Optional[int] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(a__ ): __lowercase : Optional[int] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=a__ ) __lowercase : List[str] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=a__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(a__ ) __lowercase : int = AutoFeatureExtractor.from_pretrained(a__ , trust_remote_code=a__ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" try: AutoConfig.register("""custom""" , a__ ) AutoFeatureExtractor.register(a__ , a__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(a__ ): AutoFeatureExtractor.register(a__ , a__ ) # Now that the config is registered, it can be used as any other config with the auto-API __lowercase : str = CustomFeatureExtractor.from_pretrained(a__ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(a__ ) __lowercase : int = AutoFeatureExtractor.from_pretrained(a__ ) self.assertIsInstance(a__ , a__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" class lowerCAmelCase ( __a ): '''simple docstring''' _A : Optional[int] = True try: AutoConfig.register("""custom""" , a__ ) AutoFeatureExtractor.register(a__ , a__ ) # If remote code is not set, the default is to use local __lowercase : str = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. __lowercase : Optional[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=a__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub __lowercase : Optional[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=a__ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(a__ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
360
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , __a : Dict , __a : List[str]=None , __a : Optional[Any]=None , __a : Union[str, Any]=None , __a : int="resnet50" , __a : List[str]=3 , __a : Tuple=32 , __a : Dict=3 , __a : List[str]=True , __a : Union[str, Any]=True , ) -> Any: """simple docstring""" __lowercase : Optional[int] = parent __lowercase : List[str] = out_indices if out_indices is not None else [4] __lowercase : Optional[int] = stage_names __lowercase : Any = out_features __lowercase : Optional[Any] = backbone __lowercase : Optional[Any] = batch_size __lowercase : Union[str, Any] = image_size __lowercase : List[str] = num_channels __lowercase : str = use_pretrained_backbone __lowercase : str = is_training def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : str = self.get_config() return config, pixel_values def lowerCAmelCase ( self : int ) -> str: """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowerCAmelCase ( self : Optional[int] , __a : Dict , __a : Any ) -> Dict: """simple docstring""" __lowercase : Dict = TimmBackbone(config=__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Optional[Any] = model(__a ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.prepare_config_and_inputs() __lowercase , __lowercase : str = config_and_inputs __lowercase : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch @require_timm class lowerCAmelCase ( __a , __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[Any] = (TimmBackbone,) if is_torch_available() else () _A : Dict = {'''feature-extraction''': TimmBackbone} if is_torch_available() else {} _A : List[Any] = False _A : List[str] = False _A : Any = False _A : Optional[Any] = False def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : str = TimmBackboneModelTester(self ) __lowercase : Any = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" __lowercase : Tuple = """resnet18""" __lowercase : Optional[int] = """microsoft/resnet-18""" __lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a ) __lowercase : Dict = AutoBackbone.from_pretrained(__a ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a , out_indices=[1, 2, 3] ) __lowercase : Optional[Any] = AutoBackbone.from_pretrained(__a , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("""TimmBackbone doesn't support feed forward chunking""" ) def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""" ) def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""" ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't support output_attentions.""" ) def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Safetensors is not supported by timm.""" ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Optional[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : List[str] = [*signature.parameters.keys()] __lowercase : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Optional[Any] = True __lowercase : Union[str, Any] = self.has_attentions # no need to test all models as different heads yield the same functionality __lowercase : Union[str, Any] = self.all_model_classes[0] __lowercase : List[Any] = model_class(__a ) model.to(__a ) __lowercase : Optional[Any] = self._prepare_for_class(__a , __a ) __lowercase : Union[str, Any] = model(**__a ) __lowercase : Optional[int] = outputs[0][-1] # Encoder-/Decoder-only models __lowercase : Any = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowercase : Optional[int] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__a ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() __lowercase : int = model(**__a ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowercase : Any = copy.deepcopy(__a ) __lowercase : Dict = None __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() __lowercase : Optional[int] = model(**__a ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowercase : List[str] = copy.deepcopy(__a ) __lowercase : Optional[Any] = False __lowercase : str = model_class(__a ) model.to(__a ) model.eval() __lowercase : List[Any] = model(**__a )
306
0
# Imports import numpy as np class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[int] , __a : Dict=None , __a : Union[str, Any]=None , __a : Union[str, Any]=None , __a : Optional[Any]=None , __a : Optional[int]=None ) -> Optional[Any]: """simple docstring""" self.set_matricies(red=__A , green=__A , blue=__A , red_edge=__A , nir=__A ) def lowerCAmelCase ( self : Any , __a : Optional[int]=None , __a : Union[str, Any]=None , __a : List[Any]=None , __a : Any=None , __a : str=None ) -> Optional[Any]: """simple docstring""" if red is not None: __lowercase : Tuple = red if green is not None: __lowercase : List[str] = green if blue is not None: __lowercase : List[Any] = blue if red_edge is not None: __lowercase : int = red_edge if nir is not None: __lowercase : Optional[int] = nir return True def lowerCAmelCase ( self : Tuple , __a : Union[str, Any]="" , __a : List[Any]=None , __a : List[Any]=None , __a : Optional[Any]=None , __a : int=None , __a : List[Any]=None ) -> str: """simple docstring""" self.set_matricies(red=__A , green=__A , blue=__A , red_edge=__A , nir=__A ) __lowercase : List[Any] = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print("""Index not in the list!""" ) return False def lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" return self.nir * (self.red / (self.green**2)) def lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return (self.nir - self.red) / (self.nir + self.red) def lowerCAmelCase ( self : int ) -> str: """simple docstring""" return (self.nir - self.blue) / (self.nir + self.blue) def lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" return (self.redEdge - self.red) / (self.redEdge + self.red) def lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" return (self.nir - self.green) / (self.nir + self.green) def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def lowerCAmelCase ( self : Tuple , __a : Tuple=0.08 , __a : Optional[int]=1.22 , __a : Any=0.03 ) -> Union[str, Any]: """simple docstring""" return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" return (self.nir / self.green) - 1 def lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" return (self.nir / self.redEdge) - 1 def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" return (self.red - self.blue) / self.red def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : str = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" return self.nir - self.green def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase : str = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def lowerCAmelCase ( self : Dict , __a : List[Any]=0.16 ) -> str: """simple docstring""" return (self.nir - self.green) / (self.nir + self.green + y) def lowerCAmelCase ( self : Tuple , __a : Dict=0.5 ) -> Tuple: """simple docstring""" return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def lowerCAmelCase ( self : List[str] , __a : Optional[int]=None , __a : Any=None ) -> Tuple: """simple docstring""" return (self.nir - b) / (a * self.red) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return (self.red + self.green + self.blue) / 30.5 def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return self.nir / self.red def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" return (self.rvi() - 1) / (self.rvi() + 1) def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" return self.green / (self.nir + self.red + self.green) def lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" return self.nir / (self.nir + self.red + self.green) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return self.red / (self.nir + self.red + self.green) def lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" return (self.green - self.red) / (self.green + self.red) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" return (self.red - self.green) / (self.red + self.green) def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" __lowercase : int = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) __lowercase : Optional[Any] = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" return self.nir / self.red def lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" return (self.ndvi() + 0.5) ** (1 / 2) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" return (self.nir - self.redEdge) / (self.nir + self.redEdge)
361
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : str = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } lowerCamelCase : Optional[Any] = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): for attribute in key.split(""".""" ): __lowercase : List[str] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if weight_type is not None: __lowercase : Union[str, Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ).shape else: __lowercase : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": __lowercase : Dict = value elif weight_type == "weight_g": __lowercase : Union[str, Any] = value elif weight_type == "weight_v": __lowercase : List[Any] = value elif weight_type == "bias": __lowercase : int = value elif weight_type == "running_mean": __lowercase : List[Any] = value elif weight_type == "running_var": __lowercase : int = value elif weight_type == "num_batches_tracked": __lowercase : int = value elif weight_type == "inv_freq": __lowercase : Optional[Any] = value else: __lowercase : Any = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] ): __lowercase : str = [] __lowercase : Any = fairseq_model.state_dict() __lowercase : List[str] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): __lowercase : Optional[Any] = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , hf_model.config.feat_extract_norm == """group""" , ) __lowercase : List[str] = True else: for key, mapped_key in MAPPING.items(): __lowercase : Any = """wav2vec2_conformer.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __lowercase : Tuple = True if "*" in mapped_key: __lowercase : List[Any] = name.split(lowerCAmelCase_ )[0].split(""".""" )[-2] __lowercase : Any = mapped_key.replace("""*""" , lowerCAmelCase_ ) if "pos_bias_u" in name: __lowercase : Any = None elif "pos_bias_v" in name: __lowercase : Tuple = None elif "weight_g" in name: __lowercase : Union[str, Any] = """weight_g""" elif "weight_v" in name: __lowercase : Dict = """weight_v""" elif "bias" in name: __lowercase : Union[str, Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowercase : str = """weight""" elif "running_mean" in name: __lowercase : str = """running_mean""" elif "inv_freq" in name: __lowercase : List[Any] = """inv_freq""" elif "running_var" in name: __lowercase : Any = """running_var""" elif "num_batches_tracked" in name: __lowercase : Any = """num_batches_tracked""" else: __lowercase : Optional[int] = None set_recursively(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) continue if not is_used: unused_weights.append(lowerCAmelCase_ ) logger.warning(F"Unused weights: {unused_weights}" ) def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] ): __lowercase : List[Any] = full_name.split("""conv_layers.""" )[-1] __lowercase : int = name.split(""".""" ) __lowercase : Optional[Any] = int(items[0] ) __lowercase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __lowercase : Union[str, Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __lowercase : List[str] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) __lowercase : Union[str, Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) __lowercase : Dict = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(lowerCAmelCase_ ) @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Dict=True ): if config_path is not None: __lowercase : List[Any] = WavaVecaConformerConfig.from_pretrained(lowerCAmelCase_ , hidden_act="""swish""" ) else: __lowercase : List[Any] = WavaVecaConformerConfig() if "rope" in checkpoint_path: __lowercase : Tuple = """rotary""" if is_finetuned: if dict_path: __lowercase : Any = Dictionary.load(lowerCAmelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __lowercase : List[Any] = target_dict.pad_index __lowercase : Optional[int] = target_dict.bos_index __lowercase : List[Any] = target_dict.eos_index __lowercase : List[str] = len(target_dict.symbols ) __lowercase : Union[str, Any] = os.path.join(lowerCAmelCase_ , """vocab.json""" ) if not os.path.isdir(lowerCAmelCase_ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowerCAmelCase_ ) ) return os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowercase : Tuple = target_dict.indices # fairseq has the <pad> and <s> switched __lowercase : int = 0 __lowercase : Any = 1 with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Dict = WavaVecaCTCTokenizer( lowerCAmelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowerCAmelCase_ , ) __lowercase : List[Any] = True if config.feat_extract_norm == """layer""" else False __lowercase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) __lowercase : Optional[int] = WavaVecaProcessor(feature_extractor=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) __lowercase : Union[str, Any] = WavaVecaConformerForCTC(lowerCAmelCase_ ) else: __lowercase : Optional[Any] = WavaVecaConformerForPreTraining(lowerCAmelCase_ ) if is_finetuned: __lowercase , __lowercase , __lowercase : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __lowercase : List[Any] = argparse.Namespace(task="""audio_pretraining""" ) __lowercase : Optional[Any] = fairseq.tasks.setup_task(lowerCAmelCase_ ) __lowercase , __lowercase , __lowercase : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase_ ) __lowercase : Dict = model[0].eval() recursively_load_weights(lowerCAmelCase_ , lowerCAmelCase_ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) lowerCamelCase : Any = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
306
0
import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def snake_case_ ( lowerCAmelCase_ : str=None , lowerCAmelCase_ : int=None ): return field(default_factory=lambda: default , metadata=__snake_case ) @dataclass class lowerCAmelCase : '''simple docstring''' _A : List[Any] = field( metadata={'''help''': '''The csv file to plot.'''} , ) _A : Optional[int] = field( default=__a , metadata={'''help''': '''Whether to plot along batch size or sequence length. Defaults to sequence length.'''} , ) _A : Tuple = field( default=__a , metadata={'''help''': '''Whether the csv file has time results or memory results. Defaults to memory results.'''} , ) _A : Union[str, Any] = field( default=__a , metadata={'''help''': '''Disable logarithmic scale when plotting'''} , ) _A : Dict = field( default=__a , metadata={ '''help''': '''Whether the csv file has training results or inference results. Defaults to inference results.''' } , ) _A : str = field( default=__a , metadata={'''help''': '''Filename under which the plot will be saved. If unused no plot is saved.'''} , ) _A : List[Any] = list_field( default=__a , metadata={'''help''': '''List of model names that are used instead of the ones in the csv file.'''} ) def snake_case_ ( lowerCAmelCase_ : Optional[int] ): try: int(__snake_case ) return True except ValueError: return False def snake_case_ ( lowerCAmelCase_ : List[str] ): try: float(__snake_case ) return True except ValueError: return False class lowerCAmelCase : '''simple docstring''' def __init__( self : Dict , __a : Optional[Any] ) -> Dict: """simple docstring""" __lowercase : Dict = args __lowercase : Any = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline="""""" ) as csv_file: __lowercase : Dict = csv.DictReader(__a ) for row in reader: __lowercase : List[Any] = row["""model"""] self.result_dict[model_name]["bsz"].append(int(row["""batch_size"""] ) ) self.result_dict[model_name]["seq_len"].append(int(row["""sequence_length"""] ) ) if can_convert_to_int(row["""result"""] ): # value is not None __lowercase : List[Any] = int(row["""result"""] ) elif can_convert_to_float(row["""result"""] ): # value is not None __lowercase : Dict = float(row["""result"""] ) def lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" __lowercase , __lowercase : Tuple = plt.subplots() __lowercase : Union[str, Any] = """Time usage""" if self.args.is_time else """Memory usage""" __lowercase : Any = title_str + """ for training""" if self.args.is_train else title_str + """ for inference""" if not self.args.no_log_scale: # set logarithm scales ax.set_xscale("""log""" ) ax.set_yscale("""log""" ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): __lowercase : str = sorted(set(self.result_dict[model_name]["""bsz"""] ) ) __lowercase : Any = sorted(set(self.result_dict[model_name]["""seq_len"""] ) ) __lowercase : Any = self.result_dict[model_name]["""result"""] ((__lowercase) , (__lowercase)) : Tuple = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) __lowercase : Optional[int] = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: __lowercase : List[str] = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=__a , ) else: __lowercase : List[Any] = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((__lowercase) , (__lowercase)) : Any = ( ("""batch_size""", """len""") if self.args.plot_along_batch else ("""in #tokens""", """bsz""") ) __lowercase : Optional[Any] = np.asarray(__a , __a )[: len(__a )] plt.scatter( __a , __a , label=F"{label_model_name} - {inner_loop_label}: {inner_loop_value}" ) plt.plot(__a , __a , """--""" ) title_str += F" {label_model_name} vs." __lowercase : List[str] = title_str[:-4] __lowercase : Optional[int] = """Time in s""" if self.args.is_time else """Memory in MB""" # plot plt.title(__a ) plt.xlabel(__a ) plt.ylabel(__a ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def snake_case_ ( ): __lowercase : int = HfArgumentParser(__snake_case ) __lowercase : int = parser.parse_args_into_dataclasses()[0] __lowercase : Union[str, Any] = Plot(args=__snake_case ) plot.plot() if __name__ == "__main__": main()
362
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError("""String lengths must match!""" ) __lowercase : str = 0 for chara, chara in zip(lowerCAmelCase_ , lowerCAmelCase_ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
306
0
from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
363
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def snake_case_ ( lowerCAmelCase_ : Tuple ): if isinstance(lowerCAmelCase_ , collections.abc.Iterable ): return x return (x, x) @require_flax class lowerCAmelCase : '''simple docstring''' def lowerCAmelCase ( self : Any , __a : Any , __a : List[Any] ) -> Optional[Any]: """simple docstring""" pass def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" pass def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : np.ndarray , __a : float ) -> List[Any]: """simple docstring""" __lowercase : List[str] = np.abs((a - b) ).max() self.assertLessEqual(__a , __a , F"Difference between torch and flax is {diff} (>= {tol})." ) def lowerCAmelCase ( self : Tuple , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[Any] , __a : Optional[Any]=None , **__a : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : str = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : str = FlaxVisionTextDualEncoderModel(__a ) __lowercase : Optional[Any] = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def lowerCAmelCase ( self : Optional[int] , __a : Optional[int] , __a : Dict , __a : Dict , __a : List[str] , __a : Optional[Any]=None , **__a : str ) -> str: """simple docstring""" __lowercase , __lowercase : List[str] = self.get_vision_text_model(__a , __a ) __lowercase : Union[str, Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : Any = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : Union[str, Any] , __a : Union[str, Any] , __a : Dict , __a : int=None , **__a : int ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Tuple = self.get_vision_text_model(__a , __a ) __lowercase : Union[str, Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : List[str] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : List[Any] = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) __lowercase : int = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowercase : int = FlaxVisionTextDualEncoderModel.from_pretrained(__a ) __lowercase : Tuple = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) __lowercase : int = after_output[0] __lowercase : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__a , 1E-3 ) def lowerCAmelCase ( self : List[Any] , __a : Any , __a : Tuple , __a : Optional[int] , __a : str , __a : Optional[Any]=None , **__a : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : str = self.get_vision_text_model(__a , __a ) __lowercase : Optional[Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : Union[str, Any] = model( input_ids=__a , pixel_values=__a , attention_mask=__a , output_attentions=__a ) __lowercase : Optional[int] = output.vision_model_output.attentions self.assertEqual(len(__a ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase : Optional[int] = to_atuple(vision_model.config.image_size ) __lowercase : List[str] = to_atuple(vision_model.config.patch_size ) __lowercase : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase : int = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase : Dict = output.text_model_output.attentions self.assertEqual(len(__a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowerCAmelCase ( self : Optional[int] , __a : List[str] , __a : List[Any] , __a : Optional[Any] ) -> Optional[int]: """simple docstring""" pt_model.to(__a ) pt_model.eval() # prepare inputs __lowercase : Union[str, Any] = inputs_dict __lowercase : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): __lowercase : Union[str, Any] = pt_model(**__a ).to_tuple() __lowercase : Tuple = fx_model(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(__a , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__a ) __lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained(__a , from_pt=__a ) __lowercase : Dict = fx_model_loaded(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(__a , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__a ) __lowercase : str = VisionTextDualEncoderModel.from_pretrained(__a , from_flax=__a ) pt_model_loaded.to(__a ) pt_model_loaded.eval() with torch.no_grad(): __lowercase : List[Any] = pt_model_loaded(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(__a , pt_output_loaded.numpy() , 4E-2 ) def lowerCAmelCase ( self : Optional[int] , __a : List[Any] , __a : int , __a : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : str = VisionTextDualEncoderModel(__a ) __lowercase : Union[str, Any] = FlaxVisionTextDualEncoderModel(__a ) __lowercase : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __a ) __lowercase : Any = fx_state self.check_pt_flax_equivalence(__a , __a , __a ) def lowerCAmelCase ( self : Any , __a : Any , __a : Dict , __a : Tuple ) -> str: """simple docstring""" __lowercase : int = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : Union[str, Any] = VisionTextDualEncoderModel(__a ) __lowercase : Dict = FlaxVisionTextDualEncoderModel(__a ) __lowercase : Tuple = load_flax_weights_in_pytorch_model(__a , fx_model.params ) self.check_pt_flax_equivalence(__a , __a , __a ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase : int = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__a ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() self.check_save_load(**__a ) def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" __lowercase : str = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__a ) @is_pt_flax_cross_test def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.prepare_config_and_inputs() __lowercase : Optional[int] = config_inputs_dict.pop("""vision_config""" ) __lowercase : Optional[int] = config_inputs_dict.pop("""text_config""" ) __lowercase : Dict = config_inputs_dict self.check_equivalence_pt_to_flax(__a , __a , __a ) self.check_equivalence_flax_to_pt(__a , __a , __a ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase , __lowercase : List[Any] = self.get_pretrained_model_and_inputs() __lowercase : Dict = model_a(**__a ) __lowercase : Any = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__a ) __lowercase : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(__a ) __lowercase : Optional[int] = model_a(**__a ) __lowercase : Tuple = after_outputs[0] __lowercase : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__a , 1E-5 ) @require_flax class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" __lowercase : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=__a , text_from_pt=__a , ) __lowercase : int = 13 __lowercase : Union[str, Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowercase : Dict = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __lowercase : Tuple = random_attention_mask([batch_size, 4] ) __lowercase : str = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCAmelCase ( self : Optional[Any] , __a : Union[str, Any] , __a : int ) -> Dict: """simple docstring""" __lowercase : int = FlaxViTModel(__a ) __lowercase : List[Any] = FlaxBertModel(__a ) return vision_model, text_model def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = FlaxViTModelTester(self ) __lowercase : str = FlaxBertModelTester(self ) __lowercase : List[str] = vit_model_tester.prepare_config_and_inputs() __lowercase : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase : Optional[int] = vision_config_and_inputs __lowercase , __lowercase , __lowercase , __lowercase : Any = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=__a , text_from_pt=__a , ) __lowercase : Tuple = 13 __lowercase : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowercase : Tuple = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __lowercase : List[Any] = random_attention_mask([batch_size, 4] ) __lowercase : int = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCAmelCase ( self : str , __a : str , __a : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Dict = FlaxCLIPVisionModel(__a ) __lowercase : Optional[Any] = FlaxBertModel(__a ) return vision_model, text_model def lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase : List[Any] = FlaxCLIPVisionModelTester(self ) __lowercase : Optional[Any] = FlaxBertModelTester(self ) __lowercase : Any = clip_model_tester.prepare_config_and_inputs() __lowercase : Optional[Any] = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase : Dict = vision_config_and_inputs __lowercase , __lowercase , __lowercase , __lowercase : Optional[int] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 ) __lowercase : int = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) __lowercase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowercase : Tuple = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=__a , padding=__a , return_tensors="""np""" ) __lowercase : Optional[int] = model(**__a ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowercase : Optional[Any] = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , __a , atol=1E-3 ) )
306
0
import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase ( snake_case__ , unittest.TestCase ): '''simple docstring''' _A : List[str] = """hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline""" def lowerCAmelCase ( self : Optional[Any] , __a : Optional[int]=0 ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = np.random.RandomState(_A ) __lowercase : Union[str, Any] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : int = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_A ) __lowercase : List[str] = self.get_dummy_inputs() __lowercase : Optional[Any] = pipe(**_A ).images __lowercase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase : Any = np.array([0.65072, 0.58492, 0.48219, 0.55521, 0.53180, 0.55939, 0.50697, 0.39800, 0.46455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase : Any = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_A ) pipe.set_progress_bar_config(disable=_A ) __lowercase : Any = self.get_dummy_inputs() __lowercase : Any = pipe(**_A ).images __lowercase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase : Any = np.array([0.65863, 0.59425, 0.49326, 0.56313, 0.53875, 0.56627, 0.51065, 0.39777, 0.46330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase : Any = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_A ) __lowercase : str = self.get_dummy_inputs() __lowercase : str = pipe(**_A ).images __lowercase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase : int = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase : Union[str, Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_A ) __lowercase : str = self.get_dummy_inputs() __lowercase : Any = pipe(**_A ).images __lowercase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase : List[Any] = np.array([0.53755, 0.60786, 0.47402, 0.49488, 0.51869, 0.49819, 0.47985, 0.38957, 0.44279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" __lowercase : Tuple = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase : Any = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_A ) __lowercase : Optional[Any] = self.get_dummy_inputs() __lowercase : Tuple = pipe(**_A ).images __lowercase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase : Any = np.array([0.53817, 0.60812, 0.47384, 0.49530, 0.51894, 0.49814, 0.47984, 0.38958, 0.44271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __lowercase : str = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_A ) __lowercase : Optional[Any] = self.get_dummy_inputs() __lowercase : List[Any] = pipe(**_A ).images __lowercase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __lowercase : int = np.array([0.53895, 0.60808, 0.47933, 0.49608, 0.51886, 0.49950, 0.48053, 0.38957, 0.44200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : List[str] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_A ) __lowercase : Tuple = self.get_dummy_inputs() __lowercase : Optional[Any] = 3 * [inputs["""prompt"""]] # forward __lowercase : Union[str, Any] = pipe(**_A ) __lowercase : Optional[int] = output.images[0, -3:, -3:, -1] __lowercase : Union[str, Any] = self.get_dummy_inputs() __lowercase : Optional[Any] = 3 * [inputs.pop("""prompt""" )] __lowercase : str = pipe.tokenizer( _A , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_A , return_tensors="""np""" , ) __lowercase : int = text_inputs["""input_ids"""] __lowercase : Optional[int] = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] __lowercase : List[Any] = prompt_embeds # forward __lowercase : int = pipe(**_A ) __lowercase : List[Any] = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" __lowercase : List[str] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_A ) __lowercase : Tuple = self.get_dummy_inputs() __lowercase : Dict = 3 * ["""this is a negative prompt"""] __lowercase : str = negative_prompt __lowercase : Optional[int] = 3 * [inputs["""prompt"""]] # forward __lowercase : Any = pipe(**_A ) __lowercase : Union[str, Any] = output.images[0, -3:, -3:, -1] __lowercase : str = self.get_dummy_inputs() __lowercase : Union[str, Any] = 3 * [inputs.pop("""prompt""" )] __lowercase : str = [] for p in [prompt, negative_prompt]: __lowercase : int = pipe.tokenizer( _A , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_A , return_tensors="""np""" , ) __lowercase : Any = text_inputs["""input_ids"""] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) __lowercase , __lowercase : int = embeds # forward __lowercase : List[str] = pipe(**_A ) __lowercase : Optional[int] = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase : str = ort.SessionOptions() __lowercase : List[str] = False return options def lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" __lowercase : List[Any] = OnnxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_A , feature_extractor=_A , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_A ) __lowercase : Union[str, Any] = """A painting of a squirrel eating a burger""" np.random.seed(0 ) __lowercase : List[str] = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="""np""" ) __lowercase : Dict = output.images __lowercase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase : List[str] = np.array([0.0452, 0.0390, 0.0087, 0.0350, 0.0617, 0.0364, 0.0544, 0.0523, 0.0720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" __lowercase : List[str] = DDIMScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase : str = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_A , safety_checker=_A , feature_extractor=_A , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_A ) __lowercase : Tuple = """open neural network exchange""" __lowercase : List[str] = np.random.RandomState(0 ) __lowercase : Union[str, Any] = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_A , output_type="""np""" ) __lowercase : Union[str, Any] = output.images __lowercase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase : Optional[int] = np.array([0.2867, 0.1974, 0.1481, 0.7294, 0.7251, 0.6667, 0.4194, 0.5642, 0.6486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" __lowercase : List[str] = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __lowercase : str = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_A , safety_checker=_A , feature_extractor=_A , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_A ) __lowercase : Union[str, Any] = """open neural network exchange""" __lowercase : Optional[Any] = np.random.RandomState(0 ) __lowercase : Optional[int] = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_A , output_type="""np""" ) __lowercase : Tuple = output.images __lowercase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase : str = np.array([0.2306, 0.1959, 0.1593, 0.6549, 0.6394, 0.5408, 0.5065, 0.6010, 0.6161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : List[Any] = 0 def test_callback_fn(__a : Dict , __a : Dict , __a : Dict ) -> None: __lowercase : str = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) __lowercase : List[str] = latents[0, -3:, -3:, -1] __lowercase : Any = np.array( [-0.6772, -0.3835, -1.2456, 0.1905, -1.0974, 0.6967, -1.9353, 0.0178, 1.0167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) __lowercase : Dict = latents[0, -3:, -3:, -1] __lowercase : Union[str, Any] = np.array( [-0.3351, 0.2241, -0.1837, -0.2325, -0.6577, 0.3393, -0.0241, 0.5899, 1.3875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 __lowercase : Dict = False __lowercase : List[Any] = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_A , feature_extractor=_A , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_A ) __lowercase : Any = """Andromeda galaxy in a bottle""" __lowercase : str = np.random.RandomState(0 ) pipe( prompt=_A , num_inference_steps=5 , guidance_scale=7.5 , generator=_A , callback=_A , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_A , feature_extractor=_A , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(_A , _A ) assert pipe.safety_checker is None __lowercase : List[Any] = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_A ) __lowercase : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained(_A ) # sanity check that the pipeline still works assert pipe.safety_checker is None __lowercase : Dict = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None
364
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
306
0
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split lowerCamelCase : str = datasets.load_iris() lowerCamelCase : str = np.array(data['''data''']) lowerCamelCase : int = np.array(data['''target''']) lowerCamelCase : List[Any] = data['''target_names'''] lowerCamelCase ,lowerCamelCase ,lowerCamelCase ,lowerCamelCase : Tuple = train_test_split(X, y) def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] ): return np.linalg.norm(np.array(snake_case__ ) - np.array(snake_case__ ) ) def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any=5 ): __lowercase : List[Any] = zip(snake_case__ , snake_case__ ) # List of distances of all points from the point to be classified __lowercase : Optional[Any] = [] for data_point in data: __lowercase : Optional[Any] = euclidean_distance(data_point[0] , snake_case__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. __lowercase : Optional[int] = [i[1] for i in sorted(snake_case__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified __lowercase : List[Any] = Counter(snake_case__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
365
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowerCamelCase : str = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex lowerCamelCase : Union[str, Any] = 10 lowerCamelCase : List[str] = 2_56 def snake_case_ ( lowerCAmelCase_ : List[str] ): if len(lowerCAmelCase_ ) < MIN_NUM_TOKENS: return None __lowercase : Dict = MinHash(num_perm=lowerCAmelCase_ ) for token in set(lowerCAmelCase_ ): min_hash.update(token.encode() ) return min_hash def snake_case_ ( lowerCAmelCase_ : str ): return {t for t in NON_ALPHA.split(lowerCAmelCase_ ) if len(t.strip() ) > 0} class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , *, __a : float = 0.85 , ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = duplication_jaccard_threshold __lowercase : Optional[Any] = NUM_PERM __lowercase : List[Any] = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) __lowercase : List[str] = defaultdict(__a ) def lowerCAmelCase ( self : str , __a : Tuple , __a : MinHash ) -> None: """simple docstring""" __lowercase : List[Any] = self._index.query(__a ) if code_key in self._index.keys: print(F"Duplicate key {code_key}" ) return self._index.insert(__a , __a ) if len(__a ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__a ) break else: self._duplicate_clusters[close_duplicates[0]].add(__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[List[Dict]]: """simple docstring""" __lowercase : Dict = [] for base, duplicates in self._duplicate_clusters.items(): __lowercase : List[str] = [base] + list(__a ) # reformat the cluster to be a list of dict __lowercase : Optional[Any] = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(__a ) return duplicate_clusters def lowerCAmelCase ( self : Any , __a : int ) -> None: """simple docstring""" __lowercase : Tuple = self.get_duplicate_clusters() with open(__a , """w""" ) as f: json.dump(__a , __a ) def snake_case_ ( lowerCAmelCase_ : str ): __lowercase , __lowercase : Union[str, Any] = element __lowercase : Optional[Any] = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def snake_case_ ( lowerCAmelCase_ : Type[Dataset] ): with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(lowerCAmelCase_ , max_queue_size=10000 ) , chunksize=100 , ): if data is not None: yield data def snake_case_ ( lowerCAmelCase_ : Type[Dataset] , lowerCAmelCase_ : float ): __lowercase : Dict = DuplicationIndex(duplication_jaccard_threshold=lowerCAmelCase_ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(lowerCAmelCase_ ) ) , max_queue_size=100 ) ): di.add(lowerCAmelCase_ , lowerCAmelCase_ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : List[str] = get_tokens(lowerCAmelCase_ ) __lowercase : Dict = get_tokens(lowerCAmelCase_ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) lowerCamelCase : List[str] = None def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] ): __lowercase : Union[str, Any] = [] for elementa in cluster: __lowercase : Tuple = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: __lowercase : Dict = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(lowerCAmelCase_ , lowerCAmelCase_ ) >= jaccard_threshold: elementa["copies"] += 1 break else: __lowercase : Dict = 1 extremes.append(lowerCAmelCase_ ) return extremes def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple ): global _shared_dataset __lowercase : Tuple = dataset __lowercase : Optional[int] = [] __lowercase : str = partial(_find_cluster_extremes_shared , jaccard_threshold=lowerCAmelCase_ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( lowerCAmelCase_ , lowerCAmelCase_ , ) , total=len(lowerCAmelCase_ ) , ): extremes_list.append(lowerCAmelCase_ ) return extremes_list def snake_case_ ( lowerCAmelCase_ : Type[Dataset] , lowerCAmelCase_ : float = 0.85 ): __lowercase : Optional[int] = make_duplicate_clusters(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Tuple = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} __lowercase : int = {} __lowercase : Dict = find_extremes(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for extremes in extremes_clusters: for element in extremes: __lowercase : Optional[Any] = element __lowercase : int = duplicate_indices - set(extreme_dict.keys() ) __lowercase : int = dataset.filter(lambda lowerCAmelCase_ , lowerCAmelCase_ : idx not in remove_indices , with_indices=lowerCAmelCase_ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: __lowercase : List[str] = element["""base_index"""] in extreme_dict if element["is_extreme"]: __lowercase : str = extreme_dict[element["""base_index"""]]["""copies"""] print(F"Original dataset size: {len(lowerCAmelCase_ )}" ) print(F"Number of duplicate clusters: {len(lowerCAmelCase_ )}" ) print(F"Files in duplicate cluster: {len(lowerCAmelCase_ )}" ) print(F"Unique files in duplicate cluster: {len(lowerCAmelCase_ )}" ) print(F"Filtered dataset size: {len(lowerCAmelCase_ )}" ) return ds_filter, duplicate_clusters
306
0
from __future__ import annotations import time import numpy as np lowerCamelCase : Tuple = [8, 5, 9, 7] lowerCamelCase : Optional[int] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] lowerCamelCase : Optional[Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class lowerCAmelCase : '''simple docstring''' def __init__( self : Tuple , __a : Optional[int] , __a : List[str] , __a : Optional[int] , ) -> None: """simple docstring""" __lowercase : int = claim_vector __lowercase : List[Any] = allocated_resources_table __lowercase : List[str] = maximum_claim_table def lowerCAmelCase ( self : str ) -> list[int]: """simple docstring""" return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def lowerCAmelCase ( self : List[Any] ) -> list[int]: """simple docstring""" return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def lowerCAmelCase ( self : Optional[int] ) -> list[list[int]]: """simple docstring""" return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__a ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def lowerCAmelCase ( self : Any ) -> dict[int, list[int]]: """simple docstring""" return {self.__need().index(__a ): i for i in self.__need()} def lowerCAmelCase ( self : List[Any] , **__a : List[Any] ) -> None: """simple docstring""" __lowercase : Tuple = self.__need() __lowercase : List[str] = self.__allocated_resources_table __lowercase : Any = self.__available_resources() __lowercase : Optional[int] = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("""_""" * 50 + """\n""" ) while need_list: __lowercase : List[str] = False for each_need in need_list: __lowercase : int = True for index, need in enumerate(__a ): if need > available_resources[index]: __lowercase : Any = False break if execution: __lowercase : int = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __lowercase : Any = original_need_index print(F"Process {process_number + 1} is executing." ) # remove the process run from stack need_list.remove(__a ) # update available/freed resources stack __lowercase : List[str] = np.array(__a ) + np.array( alloc_resources_table[process_number] ) print( """Updated available resource stack for processes: """ + """ """.join([str(__a ) for x in available_resources] ) ) break if safe: print("""The process is in a safe state.\n""" ) else: print("""System in unsafe state. Aborting...\n""" ) break def lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" print(""" """ * 9 + """Allocated Resource Table""" ) for item in self.__allocated_resources_table: print( F"P{self.__allocated_resources_table.index(__a ) + 1}" + """ """.join(F"{it:>8}" for it in item ) + """\n""" ) print(""" """ * 9 + """System Resource Table""" ) for item in self.__maximum_claim_table: print( F"P{self.__maximum_claim_table.index(__a ) + 1}" + """ """.join(F"{it:>8}" for it in item ) + """\n""" ) print( """Current Usage by Active Processes: """ + """ """.join(str(__a ) for x in self.__claim_vector ) ) print( """Initial Available Resources: """ + """ """.join(str(__a ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
366
from ...processing_utils import ProcessorMixin class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = ['''image_processor''', '''feature_extractor'''] _A : List[Any] = '''TvltImageProcessor''' _A : Optional[int] = '''TvltFeatureExtractor''' def __init__( self : str , __a : List[Any] , __a : Tuple ) -> Optional[Any]: """simple docstring""" super().__init__(image_processor=__a , feature_extractor=__a ) __lowercase : Union[str, Any] = image_processor __lowercase : Tuple = feature_extractor def __call__( self : Tuple , __a : Optional[int]=None , __a : Dict=None , __a : Union[str, Any]=None , __a : Tuple=None , __a : Optional[Any]=False , __a : List[Any]=False , *__a : List[str] , **__a : List[Any] , ) -> Dict: """simple docstring""" if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) __lowercase : Tuple = None if images is not None: __lowercase : Any = self.image_processor(__a , mask_pixel=__a , *__a , **__a ) if images_mixed is not None: __lowercase : Union[str, Any] = self.image_processor(__a , is_mixed=__a , *__a , **__a ) if audio is not None: __lowercase : Optional[Any] = self.feature_extractor( __a , *__a , sampling_rate=__a , mask_audio=__a , **__a ) __lowercase : Tuple = {} if audio is not None: output_dict.update(__a ) if images is not None: output_dict.update(__a ) if images_mixed_dict is not None: output_dict.update(__a ) return output_dict @property def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = self.image_processor.model_input_names __lowercase : Union[str, Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
306
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : int = { '''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' _A : Optional[int] = """sew-d""" def __init__( self : List[str] , __a : List[Any]=32 , __a : Dict=768 , __a : int=12 , __a : Union[str, Any]=12 , __a : Optional[int]=3072 , __a : Optional[Any]=2 , __a : List[Any]=512 , __a : Any=256 , __a : List[str]=True , __a : str=True , __a : Union[str, Any]=("p2c", "c2p") , __a : Dict="layer_norm" , __a : List[Any]="gelu_python" , __a : Any=0.1 , __a : Any=0.1 , __a : int=0.1 , __a : str=0.0 , __a : int=0.1 , __a : Union[str, Any]=0.02 , __a : List[str]=1E-7 , __a : Optional[int]=1E-5 , __a : Union[str, Any]="group" , __a : Optional[Any]="gelu" , __a : Tuple=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __a : str=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __a : int=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __a : List[str]=False , __a : Optional[Any]=128 , __a : List[str]=16 , __a : Optional[Any]=True , __a : List[Any]=0.05 , __a : Any=10 , __a : int=2 , __a : Optional[int]=0.0 , __a : str=10 , __a : Optional[Any]=0 , __a : List[str]="mean" , __a : str=False , __a : Optional[int]=False , __a : str=256 , __a : Dict=0 , __a : Optional[Any]=1 , __a : int=2 , **__a : str , ) -> Dict: """simple docstring""" super().__init__(**__lowercase , pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase ) __lowercase : List[Any] = hidden_size __lowercase : Optional[int] = feat_extract_norm __lowercase : List[Any] = feat_extract_activation __lowercase : Tuple = list(__lowercase ) __lowercase : Optional[int] = list(__lowercase ) __lowercase : Optional[Any] = list(__lowercase ) __lowercase : Optional[Any] = conv_bias __lowercase : Optional[int] = num_conv_pos_embeddings __lowercase : List[str] = num_conv_pos_embedding_groups __lowercase : Dict = len(self.conv_dim ) __lowercase : Optional[int] = num_hidden_layers __lowercase : int = intermediate_size __lowercase : Union[str, Any] = squeeze_factor __lowercase : List[Any] = max_position_embeddings __lowercase : str = position_buckets __lowercase : Union[str, Any] = share_att_key __lowercase : List[str] = relative_attention __lowercase : Any = norm_rel_ebd __lowercase : int = list(__lowercase ) __lowercase : List[str] = hidden_act __lowercase : int = num_attention_heads __lowercase : Dict = hidden_dropout __lowercase : List[str] = attention_dropout __lowercase : Any = activation_dropout __lowercase : int = feat_proj_dropout __lowercase : Optional[int] = final_dropout __lowercase : List[Any] = layer_norm_eps __lowercase : Optional[int] = feature_layer_norm_eps __lowercase : List[Any] = initializer_range __lowercase : str = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" F"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)" F"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowercase : Dict = apply_spec_augment __lowercase : Optional[Any] = mask_time_prob __lowercase : Optional[Any] = mask_time_length __lowercase : int = mask_time_min_masks __lowercase : str = mask_feature_prob __lowercase : Any = mask_feature_length __lowercase : Optional[Any] = mask_feature_min_masks # ctc loss __lowercase : Optional[Any] = ctc_loss_reduction __lowercase : List[str] = ctc_zero_infinity # sequence classification __lowercase : Optional[Any] = use_weighted_layer_sum __lowercase : Union[str, Any] = classifier_proj_size @property def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
367
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Any , __a : Tuple , __a : Optional[int]=13 , __a : int=7 , __a : List[str]=False , __a : Optional[int]=True , __a : Optional[int]=False , __a : Dict=True , __a : Optional[int]=33 , __a : Dict=32 , __a : Optional[int]=5 , __a : Union[str, Any]=4 , __a : List[str]=37 , __a : Tuple="gelu" , __a : List[str]=0.1 , __a : Dict=0.1 , __a : List[Any]=512 , __a : Any=16 , __a : Optional[Any]=2 , __a : List[Any]=0.02 , __a : int=3 , __a : Union[str, Any]=4 , __a : Optional[int]=None , ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = parent __lowercase : int = batch_size __lowercase : Any = seq_length __lowercase : str = is_training __lowercase : str = use_input_mask __lowercase : Optional[int] = use_token_type_ids __lowercase : List[Any] = use_labels __lowercase : Optional[Any] = vocab_size __lowercase : int = hidden_size __lowercase : List[Any] = num_hidden_layers __lowercase : Dict = num_attention_heads __lowercase : Any = intermediate_size __lowercase : Dict = hidden_act __lowercase : Union[str, Any] = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : List[str] = max_position_embeddings __lowercase : Union[str, Any] = type_vocab_size __lowercase : Dict = type_sequence_label_size __lowercase : Union[str, Any] = initializer_range __lowercase : List[Any] = num_labels __lowercase : str = num_choices __lowercase : Tuple = scope def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : int = None if self.use_input_mask: __lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : str = None __lowercase : Optional[Any] = None __lowercase : Tuple = None if self.use_labels: __lowercase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : List[Any] , __a : int , __a : int , __a : Dict , __a : Union[str, Any] , __a : List[str] , __a : str ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = EsmModel(config=__a ) model.to(__a ) model.eval() __lowercase : str = model(__a , attention_mask=__a ) __lowercase : List[Any] = model(__a ) __lowercase : Optional[int] = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : Union[str, Any] , __a : Dict , __a : List[Any] , __a : Tuple , __a : Union[str, Any] , __a : str , __a : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase : List[str] = EsmForMaskedLM(config=__a ) model.to(__a ) model.eval() __lowercase : int = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[int] , __a : Union[str, Any] , __a : List[Any] , __a : Tuple , __a : Tuple , __a : Optional[int] , __a : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = self.num_labels __lowercase : Any = EsmForTokenClassification(config=__a ) model.to(__a ) model.eval() __lowercase : Optional[Any] = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase : Any = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : List[str] = config_and_inputs __lowercase : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Optional[Any] = False _A : Any = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) _A : Optional[Any] = () _A : List[Any] = ( { '''feature-extraction''': EsmModel, '''fill-mask''': EsmForMaskedLM, '''text-classification''': EsmForSequenceClassification, '''token-classification''': EsmForTokenClassification, '''zero-shot''': EsmForSequenceClassification, } if is_torch_available() else {} ) _A : Optional[Any] = True def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : Optional[int] = EsmModelTester(self ) __lowercase : Tuple = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase : Union[str, Any] = type self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : List[str] = EsmModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] __lowercase : List[str] = EsmEmbeddings(config=__a ) __lowercase : Union[str, Any] = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) __lowercase : int = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) __lowercase : str = create_position_ids_from_input_ids(__a , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__a , __a ) ) ) def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] __lowercase : Optional[Any] = EsmEmbeddings(config=__a ) __lowercase : Optional[int] = torch.empty(2 , 4 , 30 ) __lowercase : Tuple = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] __lowercase : List[str] = torch.as_tensor([expected_single_positions, expected_single_positions] ) __lowercase : Any = embeddings.create_position_ids_from_inputs_embeds(__a ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__a , __a ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" pass @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" pass @require_torch class lowerCAmelCase ( __a ): '''simple docstring''' @slow def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): __lowercase : Tuple = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() __lowercase : Tuple = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase : List[str] = model(__a )[0] __lowercase : Union[str, Any] = 33 __lowercase : Union[str, Any] = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , __a ) __lowercase : List[Any] = torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): __lowercase : int = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() __lowercase : int = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) __lowercase : Any = model(__a )[0] # compare the actual values for a slice. __lowercase : int = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) )
306
0
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class lowerCAmelCase : '''simple docstring''' @property def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" return self.get_dummy_input() @property def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'." ) def lowerCAmelCase ( self : Tuple , __a : List[str]=True , __a : Any=False , __a : List[Any]=False , __a : Any=False , ) -> Optional[int]: """simple docstring""" __lowercase : Optional[Any] = 4 __lowercase : Optional[Any] = 32 __lowercase : int = (32, 32) __lowercase : List[str] = torch.manual_seed(0 ) __lowercase : str = torch.device(__a ) __lowercase : Optional[int] = (batch_size, num_channels) + sizes __lowercase : Tuple = randn_tensor(__a , generator=__a , device=__a ) __lowercase : Dict = {"""hidden_states""": hidden_states} if include_temb: __lowercase : Union[str, Any] = 128 __lowercase : Optional[Any] = randn_tensor((batch_size, temb_channels) , generator=__a , device=__a ) if include_res_hidden_states_tuple: __lowercase : List[str] = torch.manual_seed(1 ) __lowercase : Optional[int] = (randn_tensor(__a , generator=__a , device=__a ),) if include_encoder_hidden_states: __lowercase : Any = floats_tensor((batch_size, 32, 32) ).to(__a ) if include_skip_sample: __lowercase : int = randn_tensor(((batch_size, 3) + sizes) , generator=__a , device=__a ) return dummy_input def lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" __lowercase : List[Any] = { """in_channels""": 32, """out_channels""": 32, """temb_channels""": 128, } if self.block_type == "up": __lowercase : Optional[int] = 32 if self.block_type == "mid": init_dict.pop("""out_channels""" ) __lowercase : str = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase ( self : Tuple , __a : Any ) -> int: """simple docstring""" __lowercase , __lowercase : Union[str, Any] = self.prepare_init_args_and_inputs_for_common() __lowercase : Tuple = self.block_class(**__a ) unet_block.to(__a ) unet_block.eval() with torch.no_grad(): __lowercase : Dict = unet_block(**__a ) if isinstance(__a , __a ): __lowercase : Union[str, Any] = output[0] self.assertEqual(output.shape , self.output_shape ) __lowercase : Dict = output[0, -1, -3:, -3:] __lowercase : Union[str, Any] = torch.tensor(__a ).to(__a ) assert torch_all_close(output_slice.flatten() , __a , atol=5E-3 ) @unittest.skipIf(torch_device == """mps""" , """Training is not supported in mps""" ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" __lowercase , __lowercase : str = self.prepare_init_args_and_inputs_for_common() __lowercase : List[Any] = self.block_class(**__a ) model.to(__a ) model.train() __lowercase : List[Any] = model(**__a ) if isinstance(__a , __a ): __lowercase : int = output[0] __lowercase : Dict = torch.device(__a ) __lowercase : Union[str, Any] = randn_tensor(output.shape , device=__a ) __lowercase : Tuple = torch.nn.functional.mse_loss(__a , __a ) loss.backward()
368
def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def snake_case_ ( lowerCAmelCase_ : int = 5000 ): __lowercase : Optional[int] = [(i * (3 * i - 1)) // 2 for i in range(1 , lowerCAmelCase_ )] for i, pentagonal_i in enumerate(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ , len(lowerCAmelCase_ ) ): __lowercase : int = pentagonal_nums[j] __lowercase : Optional[int] = pentagonal_i + pentagonal_j __lowercase : Union[str, Any] = pentagonal_j - pentagonal_i if is_pentagonal(lowerCAmelCase_ ) and is_pentagonal(lowerCAmelCase_ ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
306
0
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : int , __a : int , __a : str , __a : Optional[Any] ) -> Dict: """simple docstring""" self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) for a, b in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertAlmostEqual(_UpperCAmelCase , _UpperCAmelCase , delta=_UpperCAmelCase ) def lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" __lowercase : int = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(_UpperCAmelCase ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" __lowercase : int = None ops.enable_eager_execution_internal() __lowercase : Optional[int] = tf.config.list_physical_devices("""CPU""" ) if len(_UpperCAmelCase ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) __lowercase : Tuple = tf.config.list_logical_devices(device_type="""CPU""" ) __lowercase : List[str] = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): __lowercase : Tuple = GradientAccumulator() __lowercase : List[Any] = tf.Variable([4.0, 3.0] ) __lowercase : Dict = create_optimizer(5E-5 , 10 , 5 ) __lowercase : Tuple = tf.Variable([0.0, 0.0] , trainable=_UpperCAmelCase ) def accumulate_on_replica(__a : str ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(__a : Optional[int] , __a : Optional[int] ): with strategy.scope(): __lowercase : Union[str, Any] = strategy.experimental_local_results(_UpperCAmelCase ) local_variables[0].assign(_UpperCAmelCase ) local_variables[1].assign(_UpperCAmelCase ) strategy.run(_UpperCAmelCase , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(_UpperCAmelCase ) def _check_local_values(__a : Tuple , __a : List[str] ): __lowercase : List[Any] = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , _UpperCAmelCase , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , _UpperCAmelCase , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
369
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowerCAmelCase ( __a ): '''simple docstring''' _A : Optional[Any] = (DPMSolverSDEScheduler,) _A : Dict = 10 def lowerCAmelCase ( self : Optional[int] , **__a : Dict ) -> Optional[int]: """simple docstring""" __lowercase : Any = { """num_train_timesteps""": 1100, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**__a ) return config def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=__a ) def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__a ) def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = self.scheduler_classes[0] __lowercase : List[str] = self.get_scheduler_config() __lowercase : Any = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase : Optional[Any] = self.dummy_model() __lowercase : str = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase : Optional[Any] = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): __lowercase : Union[str, Any] = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[Any] = model(__a , __a ) __lowercase : Optional[Any] = scheduler.step(__a , __a , __a ) __lowercase : str = output.prev_sample __lowercase : Optional[Any] = torch.sum(torch.abs(__a ) ) __lowercase : Union[str, Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47821044921875 ) < 1E-2 assert abs(result_mean.item() - 0.2178705964565277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59352111816406 ) < 1E-2 assert abs(result_mean.item() - 0.22342906892299652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase : Tuple = self.scheduler_classes[0] __lowercase : Dict = self.get_scheduler_config(prediction_type="""v_prediction""" ) __lowercase : int = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase : Optional[int] = self.dummy_model() __lowercase : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase : Dict = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): __lowercase : Dict = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[int] = model(__a , __a ) __lowercase : Optional[int] = scheduler.step(__a , __a , __a ) __lowercase : int = output.prev_sample __lowercase : Optional[Any] = torch.sum(torch.abs(__a ) ) __lowercase : List[str] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77149200439453 ) < 1E-2 assert abs(result_mean.item() - 0.16226289014816284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1663360595703 ) < 1E-2 assert abs(result_mean.item() - 0.16688326001167297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8487548828125 ) < 1E-2 assert abs(result_mean.item() - 0.1560530662536621 ) < 1E-3 def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = self.scheduler_classes[0] __lowercase : Dict = self.get_scheduler_config() __lowercase : Optional[int] = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps , device=__a ) __lowercase : int = self.dummy_model() __lowercase : Optional[Any] = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __lowercase : int = scheduler.scale_model_input(__a , __a ) __lowercase : List[str] = model(__a , __a ) __lowercase : List[str] = scheduler.step(__a , __a , __a ) __lowercase : int = output.prev_sample __lowercase : List[Any] = torch.sum(torch.abs(__a ) ) __lowercase : Optional[Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46957397460938 ) < 1E-2 assert abs(result_mean.item() - 0.21805934607982635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59353637695312 ) < 1E-2 assert abs(result_mean.item() - 0.22342908382415771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : str = self.scheduler_classes[0] __lowercase : List[Any] = self.get_scheduler_config() __lowercase : Tuple = scheduler_class(**__a , use_karras_sigmas=__a ) scheduler.set_timesteps(self.num_inference_steps , device=__a ) __lowercase : List[str] = self.dummy_model() __lowercase : Optional[int] = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma __lowercase : str = sample.to(__a ) for t in scheduler.timesteps: __lowercase : List[Any] = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[Any] = model(__a , __a ) __lowercase : Any = scheduler.step(__a , __a , __a ) __lowercase : Optional[Any] = output.prev_sample __lowercase : Any = torch.sum(torch.abs(__a ) ) __lowercase : Optional[Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66974135742188 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63653564453125 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3135223388672 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2
306
0
import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig lowerCamelCase : List[str] = logging.get_logger(__name__) lowerCamelCase : Tuple = '''T5Config''' def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] ): __lowercase : int = jnp.zeros_like(__SCREAMING_SNAKE_CASE ) __lowercase : Tuple = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) __lowercase : Tuple = shifted_input_ids.at[:, 0].set(__SCREAMING_SNAKE_CASE ) __lowercase : Any = jnp.where(shifted_input_ids == -100 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return shifted_input_ids class lowerCAmelCase ( __snake_case ): '''simple docstring''' _A : Tuple = """mt5""" _A : Dict = MTaConfig class lowerCAmelCase ( __snake_case ): '''simple docstring''' _A : str = """mt5""" _A : Tuple = MTaConfig class lowerCAmelCase ( __snake_case ): '''simple docstring''' _A : Tuple = """mt5""" _A : List[str] = MTaConfig
370
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate lowerCamelCase : str = trt.Logger(trt.Logger.WARNING) lowerCamelCase : Any = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) lowerCamelCase : Optional[Any] = logging.getLogger(__name__) lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=3_84, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=1_28, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) lowerCamelCase : Dict = parser.parse_args() if args.tokenizer_name: lowerCamelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) lowerCamelCase : List[str] = args.per_device_eval_batch_size lowerCamelCase : Any = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties lowerCamelCase : List[str] = True lowerCamelCase : List[Any] = '''temp_engine/bert-fp32.engine''' if args.fpaa: lowerCamelCase : Optional[Any] = '''temp_engine/bert-fp16.engine''' if args.inta: lowerCamelCase : int = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') lowerCamelCase : int = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network lowerCamelCase : Union[str, Any] = [network.get_input(i) for i in range(network.num_inputs)] lowerCamelCase : Dict = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: lowerCamelCase : List[str] = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) lowerCamelCase : Optional[int] = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) lowerCamelCase : Optional[Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ): __lowercase : List[str] = np.asarray(inputs["""input_ids"""] , dtype=np.intaa ) __lowercase : Union[str, Any] = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa ) __lowercase : int = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowerCAmelCase_ ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowerCAmelCase_ ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowerCAmelCase_ ) # start time __lowercase : Optional[Any] = time.time() # Run inference context.execute_async( bindings=[int(lowerCAmelCase_ ) for d_inp in d_inputs] + [int(lowerCAmelCase_ ), int(lowerCAmelCase_ )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) cuda.memcpy_dtoh_async(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Synchronize the stream and take time stream.synchronize() # end time __lowercase : int = time.time() __lowercase : Union[str, Any] = end_time - start_time __lowercase : Any = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. lowerCamelCase : Tuple = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase : List[Any] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. lowerCamelCase : Optional[Any] = raw_datasets['''validation'''].column_names lowerCamelCase : Union[str, Any] = '''question''' if '''question''' in column_names else column_names[0] lowerCamelCase : str = '''context''' if '''context''' in column_names else column_names[1] lowerCamelCase : Dict = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). lowerCamelCase : Dict = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) lowerCamelCase : Tuple = min(args.max_seq_length, tokenizer.model_max_length) def snake_case_ ( lowerCAmelCase_ : int ): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace __lowercase : str = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. __lowercase : List[str] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=lowerCAmelCase_ , stride=args.doc_stride , return_overflowing_tokens=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. __lowercase : List[str] = tokenized_examples.pop("""overflow_to_sample_mapping""" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. __lowercase : Any = [] for i in range(len(tokenized_examples["""input_ids"""] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). __lowercase : Dict = tokenized_examples.sequence_ids(lowerCAmelCase_ ) __lowercase : List[Any] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. __lowercase : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. __lowercase : Dict = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i] ) ] return tokenized_examples lowerCamelCase : Tuple = raw_datasets['''validation'''] # Validation Feature Creation lowerCamelCase : Optional[int] = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) lowerCamelCase : Union[str, Any] = default_data_collator lowerCamelCase : Optional[Any] = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) lowerCamelCase : List[str] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict="eval" ): # Post-processing: we match the start logits and end logits to answers in the original context. __lowercase : int = postprocess_qa_predictions( examples=lowerCAmelCase_ , features=lowerCAmelCase_ , predictions=lowerCAmelCase_ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowerCAmelCase_ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: __lowercase : Optional[int] = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: __lowercase : List[Any] = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] __lowercase : Optional[int] = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=lowerCAmelCase_ , label_ids=lowerCAmelCase_ ) lowerCamelCase : Dict = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def snake_case_ ( lowerCAmelCase_ : str ): return trt.volume(engine.get_binding_shape(lowerCAmelCase_ ) ) * engine.get_binding_dtype(lowerCAmelCase_ ).itemsize # Allocate device memory for inputs and outputs. lowerCamelCase : int = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer lowerCamelCase : Dict = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) lowerCamelCase : str = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) lowerCamelCase : Dict = cuda.mem_alloc(h_outputa.nbytes) lowerCamelCase : Optional[Any] = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. lowerCamelCase : Optional[int] = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(f''' Num examples = {len(eval_dataset)}''') logger.info(f''' Batch size = {args.per_device_eval_batch_size}''') lowerCamelCase : int = 0.0 lowerCamelCase : List[str] = 0 lowerCamelCase : List[str] = timeit.default_timer() lowerCamelCase : List[Any] = None for step, batch in enumerate(eval_dataloader): lowerCamelCase ,lowerCamelCase : str = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 lowerCamelCase ,lowerCamelCase : Union[str, Any] = outputs lowerCamelCase : Optional[Any] = torch.tensor(start_logits) lowerCamelCase : List[str] = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered lowerCamelCase : Optional[int] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-1_00) lowerCamelCase : Dict = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-1_00) lowerCamelCase : List[Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) lowerCamelCase : Dict = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-1_00) if all_preds is not None: lowerCamelCase : Tuple = nested_truncate(all_preds, len(eval_dataset)) lowerCamelCase : Dict = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 10_00 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 10_00)) logger.info('''Total Number of Inference = %d''', niter) lowerCamelCase : str = post_processing_function(eval_examples, eval_dataset, all_preds) lowerCamelCase : Optional[Any] = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'''Evaluation metrics: {eval_metric}''')
306
0
"""simple docstring""" from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging lowerCamelCase : int = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' def __init__( self : Optional[int] , __a : CLIPSegForImageSegmentation , __a : CLIPSegProcessor , __a : AutoencoderKL , __a : CLIPTextModel , __a : CLIPTokenizer , __a : UNetaDConditionModel , __a : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __a : StableDiffusionSafetyChecker , __a : CLIPImageProcessor , ) -> Tuple: """simple docstring""" super().__init__() if hasattr(scheduler.config , """steps_offset""" ) and scheduler.config.steps_offset != 1: __lowercase : int = ( F"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" F" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " """to update the config accordingly as leaving `steps_offset` might led to incorrect results""" """ in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,""" """ it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`""" """ file""" ) deprecate("""steps_offset!=1""" , """1.0.0""" , __snake_case , standard_warn=__snake_case ) __lowercase : Union[str, Any] = dict(scheduler.config ) __lowercase : Any = 1 __lowercase : List[str] = FrozenDict(__snake_case ) if hasattr(scheduler.config , """skip_prk_steps""" ) and scheduler.config.skip_prk_steps is False: __lowercase : Optional[Any] = ( F"The configuration file of this scheduler: {scheduler} has not set the configuration" """ `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make""" """ sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to""" """ incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face""" """ Hub, it would be very nice if you could open a Pull request for the""" """ `scheduler/scheduler_config.json` file""" ) deprecate("""skip_prk_steps not set""" , """1.0.0""" , __snake_case , standard_warn=__snake_case ) __lowercase : Optional[Any] = dict(scheduler.config ) __lowercase : Optional[Any] = True __lowercase : Dict = FrozenDict(__snake_case ) if safety_checker is None: logger.warning( F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( segmentation_model=__snake_case , segmentation_processor=__snake_case , vae=__snake_case , text_encoder=__snake_case , tokenizer=__snake_case , unet=__snake_case , scheduler=__snake_case , safety_checker=__snake_case , feature_extractor=__snake_case , ) def lowerCAmelCase ( self : int , __a : Optional[Union[str, int]] = "auto" ) -> Union[str, Any]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowercase : str = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__snake_case ) def lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" self.enable_attention_slicing(__snake_case ) def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) __lowercase : Union[str, Any] = torch.device("""cuda""" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(__snake_case , __snake_case ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase ( self : str ) -> str: """simple docstring""" if self.device != torch.device("""meta""" ) or not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(__snake_case , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : List[Any] , __a : Union[str, List[str]] , __a : Union[torch.FloatTensor, PIL.Image.Image] , __a : str , __a : int = 512 , __a : int = 512 , __a : int = 50 , __a : float = 7.5 , __a : Optional[Union[str, List[str]]] = None , __a : Optional[int] = 1 , __a : float = 0.0 , __a : Optional[torch.Generator] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[str] = "pil" , __a : bool = True , __a : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __a : int = 1 , **__a : Tuple , ) -> List[str]: """simple docstring""" __lowercase : str = self.segmentation_processor( text=[text] , images=[image] , padding="""max_length""" , return_tensors="""pt""" ).to(self.device ) __lowercase : Tuple = self.segmentation_model(**__snake_case ) __lowercase : Dict = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() __lowercase : List[Any] = self.numpy_to_pil(__snake_case )[0].resize(image.size ) # Run inpainting pipeline with the generated mask __lowercase : Optional[Any] = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=__snake_case , image=__snake_case , mask_image=__snake_case , height=__snake_case , width=__snake_case , num_inference_steps=__snake_case , guidance_scale=__snake_case , negative_prompt=__snake_case , num_images_per_prompt=__snake_case , eta=__snake_case , generator=__snake_case , latents=__snake_case , output_type=__snake_case , return_dict=__snake_case , callback=__snake_case , callback_steps=__snake_case , )
371
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : str = { '''facebook/nllb-moe-54B''': '''https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''nllb-moe''' _A : List[str] = ['''past_key_values'''] _A : Optional[Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Dict , __a : List[str]=128112 , __a : List[Any]=1024 , __a : List[Any]=12 , __a : Union[str, Any]=4096 , __a : List[str]=16 , __a : int=12 , __a : Optional[int]=4096 , __a : str=16 , __a : List[Any]=0.05 , __a : Any=0.05 , __a : Dict=True , __a : Optional[Any]=True , __a : List[Any]="relu" , __a : Tuple=1024 , __a : Optional[Any]=0.1 , __a : Tuple=0.1 , __a : Any=0.0 , __a : Optional[Any]=0.02 , __a : List[str]=2 , __a : Union[str, Any]=True , __a : List[Any]=False , __a : Tuple="float32" , __a : Optional[int]=False , __a : Optional[int]=128 , __a : str=64 , __a : Dict=4 , __a : str=4 , __a : List[str]=0.001 , __a : List[Any]=0.001 , __a : Optional[Any]="all" , __a : Optional[int]=False , __a : int=False , __a : int=1.0 , __a : Dict=0.2 , __a : Tuple=1 , __a : Optional[Any]=0 , __a : List[Any]=2 , __a : Any=False , **__a : Any , ) -> Any: """simple docstring""" __lowercase : int = vocab_size __lowercase : List[Any] = max_position_embeddings __lowercase : Tuple = d_model __lowercase : str = encoder_ffn_dim __lowercase : List[str] = encoder_layers __lowercase : int = encoder_attention_heads __lowercase : List[Any] = decoder_ffn_dim __lowercase : int = decoder_layers __lowercase : Optional[int] = decoder_attention_heads __lowercase : Union[str, Any] = dropout __lowercase : str = attention_dropout __lowercase : Any = activation_dropout __lowercase : List[Any] = activation_function __lowercase : List[str] = init_std __lowercase : Optional[int] = encoder_layerdrop __lowercase : str = decoder_layerdrop __lowercase : Dict = use_cache __lowercase : Optional[Any] = encoder_layers __lowercase : str = scale_embedding # scale factor will be sqrt(d_model) if True __lowercase : List[Any] = router_z_loss_coef __lowercase : Tuple = router_aux_loss_coef __lowercase : str = decoder_sparse_step __lowercase : Any = encoder_sparse_step __lowercase : str = num_experts __lowercase : List[Any] = expert_capacity __lowercase : int = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) __lowercase : Optional[int] = router_dtype __lowercase : Any = router_ignore_padding_tokens __lowercase : Optional[Any] = batch_prioritized_routing __lowercase : str = second_expert_policy __lowercase : List[str] = normalize_router_prob_before_dropping __lowercase : List[Any] = moe_eval_capacity_token_fraction __lowercase : List[str] = moe_token_dropout __lowercase : Optional[Any] = output_router_logits super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , decoder_start_token_id=__a , **__a , )
306
0
"""simple docstring""" import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class lowerCAmelCase : '''simple docstring''' _A : List[str] = None def lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) __lowercase : Tuple = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , __a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : int = os.path.join(__a , """feat_extract.json""" ) feat_extract_first.to_json_file(__a ) __lowercase : str = self.feature_extraction_class.from_json_file(__a ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" __lowercase : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : Union[str, Any] = feat_extract_first.save_pretrained(__a )[0] check_json_file_has_correct_format(__a ) __lowercase : List[Any] = self.feature_extraction_class.from_pretrained(__a ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase : List[Any] = self.feature_extraction_class() self.assertIsNotNone(__a )
350
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase : Optional[Any] = { '''configuration_poolformer''': [ '''POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PoolFormerConfig''', '''PoolFormerOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = ['''PoolFormerFeatureExtractor'''] lowerCamelCase : Union[str, Any] = ['''PoolFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = [ '''POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PoolFormerForImageClassification''', '''PoolFormerModel''', '''PoolFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
306
0
import flax.linen as nn import jax import jax.numpy as jnp class lowerCAmelCase ( nn.Module ): '''simple docstring''' _A : int _A : jnp.dtype = jnp.floataa def lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" __lowercase : Union[str, Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : List[Any] , __a : Tuple ) -> int: """simple docstring""" __lowercase : int = hidden_states.shape __lowercase : Tuple = jax.image.resize( __a , shape=(batch, height * 2, width * 2, channels) , method="""nearest""" , ) __lowercase : Dict = self.conv(__a ) return hidden_states class lowerCAmelCase ( nn.Module ): '''simple docstring''' _A : int _A : jnp.dtype = jnp.floataa def lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase : List[str] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Union[str, Any] , __a : List[Any] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = self.conv(__a ) return hidden_states class lowerCAmelCase ( nn.Module ): '''simple docstring''' _A : int _A : int = None _A : float = 0.0 _A : bool = None _A : jnp.dtype = jnp.floataa def lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" __lowercase : Optional[int] = self.in_channels if self.out_channels is None else self.out_channels __lowercase : Optional[int] = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) __lowercase : int = nn.Conv( __a , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __lowercase : List[Any] = nn.Dense(__a , dtype=self.dtype ) __lowercase : List[Any] = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) __lowercase : Dict = nn.Dropout(self.dropout_prob ) __lowercase : Dict = nn.Conv( __a , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __lowercase : str = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __lowercase : str = None if use_nin_shortcut: __lowercase : Optional[Any] = nn.Conv( __a , kernel_size=(1, 1) , strides=(1, 1) , padding="""VALID""" , dtype=self.dtype , ) def __call__( self : int , __a : Optional[Any] , __a : str , __a : Tuple=True ) -> Union[str, Any]: """simple docstring""" __lowercase : Dict = hidden_states __lowercase : int = self.norma(__a ) __lowercase : Tuple = nn.swish(__a ) __lowercase : Any = self.conva(__a ) __lowercase : int = self.time_emb_proj(nn.swish(__a ) ) __lowercase : Optional[int] = jnp.expand_dims(jnp.expand_dims(__a , 1 ) , 1 ) __lowercase : Any = hidden_states + temb __lowercase : Union[str, Any] = self.norma(__a ) __lowercase : List[str] = nn.swish(__a ) __lowercase : Union[str, Any] = self.dropout(__a , __a ) __lowercase : Optional[int] = self.conva(__a ) if self.conv_shortcut is not None: __lowercase : Tuple = self.conv_shortcut(__a ) return hidden_states + residual
351
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : List[str] = 2 __lowercase : Union[str, Any] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(lowerCAmelCase_ ) if n > 1: factors.append(lowerCAmelCase_ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
306
0
from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract lowerCamelCase : Tuple = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int ): return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def snake_case_ ( lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Optional[str] , lowerCAmelCase_ : Optional[str] = None ): __lowercase : List[Any] = tesseract_config if tesseract_config is not None else """""" # apply OCR __lowercase : Dict = to_pil_image(lowerCAmelCase_ ) __lowercase : Dict = pil_image.size __lowercase : Tuple = pytesseract.image_to_data(lowerCAmelCase_ , lang=lowerCAmelCase_ , output_type="""dict""" , config=lowerCAmelCase_ ) __lowercase : int = data["""text"""], data["""left"""], data["""top"""], data["""width"""], data["""height"""] # filter empty words and corresponding coordinates __lowercase : int = [idx for idx, word in enumerate(lowerCAmelCase_ ) if not word.strip()] __lowercase : Optional[int] = [word for idx, word in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] __lowercase : Optional[int] = [coord for idx, coord in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] __lowercase : Dict = [coord for idx, coord in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] __lowercase : Dict = [coord for idx, coord in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] __lowercase : Tuple = [coord for idx, coord in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __lowercase : Optional[Any] = [] for x, y, w, h in zip(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : str = [x, y, x + w, y + h] actual_boxes.append(lowerCAmelCase_ ) # finally, normalize the bounding boxes __lowercase : List[str] = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class lowerCAmelCase ( __a ): '''simple docstring''' _A : Dict = ['''pixel_values'''] def __init__( self : Tuple , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : bool = True , __a : Optional[str] = None , __a : Optional[str] = "" , **__a : Union[str, Any] , ) -> None: """simple docstring""" super().__init__(**__a ) __lowercase : Optional[Any] = size if size is not None else {"""height""": 224, """width""": 224} __lowercase : int = get_size_dict(__a ) __lowercase : Optional[Any] = do_resize __lowercase : Tuple = size __lowercase : List[Any] = resample __lowercase : Any = apply_ocr __lowercase : int = ocr_lang __lowercase : List[str] = tesseract_config def lowerCAmelCase ( self : Optional[int] , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] , ) -> np.ndarray: """simple docstring""" __lowercase : Any = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}" ) __lowercase : Any = (size["""height"""], size["""width"""]) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Dict , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : Optional[str] = None , __a : Optional[str] = None , __a : Optional[Union[str, TensorType]] = None , __a : ChannelDimension = ChannelDimension.FIRST , **__a : int , ) -> PIL.Image.Image: """simple docstring""" __lowercase : Tuple = do_resize if do_resize is not None else self.do_resize __lowercase : Optional[int] = size if size is not None else self.size __lowercase : Optional[int] = get_size_dict(__a ) __lowercase : List[Any] = resample if resample is not None else self.resample __lowercase : Union[str, Any] = apply_ocr if apply_ocr is not None else self.apply_ocr __lowercase : Optional[Any] = ocr_lang if ocr_lang is not None else self.ocr_lang __lowercase : Tuple = tesseract_config if tesseract_config is not None else self.tesseract_config __lowercase : Optional[int] = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) # All transformations expect numpy arrays. __lowercase : Tuple = [to_numpy_array(__a ) for image in images] if apply_ocr: requires_backends(self , """pytesseract""" ) __lowercase : Union[str, Any] = [] __lowercase : Union[str, Any] = [] for image in images: __lowercase : int = apply_tesseract(__a , __a , __a ) words_batch.append(__a ) boxes_batch.append(__a ) if do_resize: __lowercase : Optional[int] = [self.resize(image=__a , size=__a , resample=__a ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) __lowercase : str = [flip_channel_order(__a ) for image in images] __lowercase : Dict = [to_channel_dimension_format(__a , __a ) for image in images] __lowercase : Optional[int] = BatchFeature(data={"""pixel_values""": images} , tensor_type=__a ) if apply_ocr: __lowercase : List[str] = words_batch __lowercase : Optional[Any] = boxes_batch return data
352
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Dict = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) __lowercase : List[str] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __lowercase : Optional[Any] = model(__a )["""last_hidden_state"""] __lowercase : Any = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , __a ) # compare the actual values for a slice. __lowercase : Dict = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
306
0
from ...processing_utils import ProcessorMixin class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = ['''image_processor''', '''feature_extractor'''] _A : List[Any] = '''TvltImageProcessor''' _A : Optional[int] = '''TvltFeatureExtractor''' def __init__( self : str , __a : List[Any] , __a : Tuple ) -> Optional[Any]: """simple docstring""" super().__init__(image_processor=__a , feature_extractor=__a ) __lowercase : Union[str, Any] = image_processor __lowercase : Tuple = feature_extractor def __call__( self : Tuple , __a : Optional[int]=None , __a : Dict=None , __a : Union[str, Any]=None , __a : Tuple=None , __a : Optional[Any]=False , __a : List[Any]=False , *__a : List[str] , **__a : List[Any] , ) -> Dict: """simple docstring""" if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) __lowercase : Tuple = None if images is not None: __lowercase : Any = self.image_processor(__a , mask_pixel=__a , *__a , **__a ) if images_mixed is not None: __lowercase : Union[str, Any] = self.image_processor(__a , is_mixed=__a , *__a , **__a ) if audio is not None: __lowercase : Optional[Any] = self.feature_extractor( __a , *__a , sampling_rate=__a , mask_audio=__a , **__a ) __lowercase : Tuple = {} if audio is not None: output_dict.update(__a ) if images is not None: output_dict.update(__a ) if images_mixed_dict is not None: output_dict.update(__a ) return output_dict @property def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = self.image_processor.model_input_names __lowercase : Union[str, Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
353
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Optional[Any] = len(lowerCAmelCase_ ) __lowercase : str = len(lowerCAmelCase_ ) __lowercase : Optional[int] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __lowercase : Tuple = True for i in range(lowerCAmelCase_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __lowercase : Optional[Any] = True if a[i].islower(): __lowercase : Dict = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
306
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : List[str] = {'''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase : List[Any] = { '''tokenizer_file''': { '''bigscience/tokenizer''': '''https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json''', '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json''', }, } class lowerCAmelCase ( __a ): '''simple docstring''' _A : str = VOCAB_FILES_NAMES _A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _A : List[str] = ['''input_ids''', '''attention_mask'''] _A : Union[str, Any] = None def __init__( self : List[str] , __a : Union[str, Any]=None , __a : Dict=None , __a : Dict=None , __a : Optional[int]="<unk>" , __a : List[Any]="<s>" , __a : Union[str, Any]="</s>" , __a : int="<pad>" , __a : Any=False , __a : int=False , **__a : List[Any] , ) -> int: """simple docstring""" super().__init__( __a , __a , tokenizer_file=__a , unk_token=__a , bos_token=__a , eos_token=__a , pad_token=__a , add_prefix_space=__a , clean_up_tokenization_spaces=__a , **__a , ) __lowercase : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __a ) != add_prefix_space: __lowercase : Tuple = getattr(__a , pre_tok_state.pop("""type""" ) ) __lowercase : Dict = add_prefix_space __lowercase : str = pre_tok_class(**__a ) __lowercase : List[str] = add_prefix_space def lowerCAmelCase ( self : List[str] , *__a : Optional[Any] , **__a : Tuple ) -> BatchEncoding: """simple docstring""" __lowercase : Tuple = kwargs.get("""is_split_into_words""" , __a ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" """ pretokenized inputs.""" ) return super()._batch_encode_plus(*__a , **__a ) def lowerCAmelCase ( self : str , *__a : int , **__a : Dict ) -> BatchEncoding: """simple docstring""" __lowercase : Tuple = kwargs.get("""is_split_into_words""" , __a ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" """ pretokenized inputs.""" ) return super()._encode_plus(*__a , **__a ) def lowerCAmelCase ( self : int , __a : str , __a : Optional[str] = None ) -> Tuple[str]: """simple docstring""" __lowercase : Any = self._tokenizer.model.save(__a , name=__a ) return tuple(__a ) def lowerCAmelCase ( self : List[Any] , __a : "Conversation" ) -> List[int]: """simple docstring""" __lowercase : Optional[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__a , add_special_tokens=__a ) + [self.eos_token_id] ) if len(__a ) > self.model_max_length: __lowercase : List[str] = input_ids[-self.model_max_length :] return input_ids
354
from scipy.stats import spearmanr import datasets lowerCamelCase : List[str] = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' lowerCamelCase : List[str] = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' lowerCamelCase : Union[str, Any] = r'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def lowerCAmelCase ( self : List[Any] , __a : str , __a : Any , __a : Optional[int]=False ) -> List[str]: """simple docstring""" __lowercase : Optional[Any] = spearmanr(__a , __a ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
306
0
import json import sys def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] ): with open(lowerCAmelCase_ , encoding="""utf-8""" ) as f: __lowercase : Optional[Any] = json.load(lowerCAmelCase_ ) __lowercase : Any = ["""<details>""", """<summary>Show updated benchmarks!</summary>""", """ """] for benchmark_name in sorted(lowerCAmelCase_ ): __lowercase : List[Any] = results[benchmark_name] __lowercase : int = benchmark_name.split("""/""" )[-1] output_md.append(F"### Benchmark: {benchmark_file_name}" ) __lowercase : Tuple = """| metric |""" __lowercase : Optional[Any] = """|--------|""" __lowercase : Tuple = """| new / old (diff) |""" for metric_name in sorted(lowerCAmelCase_ ): __lowercase : str = benchmark_res[metric_name] __lowercase : Tuple = metric_vals["""new"""] __lowercase : Union[str, Any] = metric_vals.get("""old""" , lowerCAmelCase_ ) __lowercase : Union[str, Any] = metric_vals.get("""diff""" , lowerCAmelCase_ ) __lowercase : Optional[Any] = F" {new_val:f}" if isinstance(lowerCAmelCase_ , (int, float) ) else """None""" if old_val is not None: val_str += F" / {old_val:f}" if isinstance(lowerCAmelCase_ , (int, float) ) else "None" if dif_val is not None: val_str += F" ({dif_val:f})" if isinstance(lowerCAmelCase_ , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append("""</details>""" ) with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" ) as f: f.writelines("""\n""".join(lowerCAmelCase_ ) ) if __name__ == "__main__": lowerCamelCase : str = sys.argv[1] lowerCamelCase : Union[str, Any] = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
355
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Any = get_failure_array(lowerCAmelCase_ ) # 2) Step through text searching for pattern __lowercase , __lowercase : Optional[int] = 0, 0 # index into text, pattern while i < len(lowerCAmelCase_ ): if pattern[j] == text[i]: if j == (len(lowerCAmelCase_ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: __lowercase : Optional[Any] = failure[j - 1] continue i += 1 return False def snake_case_ ( lowerCAmelCase_ : str ): __lowercase : List[Any] = [0] __lowercase : Optional[Any] = 0 __lowercase : List[Any] = 1 while j < len(lowerCAmelCase_ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: __lowercase : List[str] = failure[i - 1] continue j += 1 failure.append(lowerCAmelCase_ ) return failure if __name__ == "__main__": # Test 1) lowerCamelCase : Dict = '''abc1abc12''' lowerCamelCase : Union[str, Any] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' lowerCamelCase : Any = '''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) lowerCamelCase : List[Any] = '''ABABX''' lowerCamelCase : List[Any] = '''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) lowerCamelCase : int = '''AAAB''' lowerCamelCase : Optional[int] = '''ABAAAAAB''' assert kmp(pattern, text) # Test 4) lowerCamelCase : Optional[Any] = '''abcdabcy''' lowerCamelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) lowerCamelCase : Dict = '''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
306
0
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : Tuple = BlenderbotSmallTokenizer _A : str = False def lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" super().setUp() __lowercase : Dict = ["""__start__""", """adapt""", """act""", """ap@@""", """te""", """__end__""", """__unk__"""] __lowercase : Tuple = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : str = ["""#version: 0.2""", """a p""", """t e</w>""", """ap t</w>""", """a d""", """ad apt</w>""", """a c""", """ac t</w>""", """"""] __lowercase : int = {"""unk_token""": """__unk__""", """bos_token""": """__start__""", """eos_token""": """__end__"""} __lowercase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__a ) ) def lowerCAmelCase ( self : Tuple , **__a : Union[str, Any] ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Union[str, Any] , __a : Optional[Any] ) -> Dict: """simple docstring""" __lowercase : Optional[int] = """adapt act apte""" __lowercase : Any = """adapt act apte""" return input_text, output_text def lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" __lowercase : Dict = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowercase : Dict = """adapt act apte""" __lowercase : int = ["""adapt""", """act""", """ap@@""", """te"""] __lowercase : Any = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) __lowercase : List[str] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] __lowercase : Union[str, Any] = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" __lowercase : Optional[int] = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) assert tok("""sam""" ).input_ids == [1384] __lowercase : int = """I am a small frog.""" __lowercase : int = tok([src_text] , padding=__a , truncation=__a )["""input_ids"""] __lowercase : Optional[Any] = tok.batch_decode(__a , skip_special_tokens=__a , clean_up_tokenization_spaces=__a )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" __lowercase : Tuple = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) __lowercase : Optional[Any] = """I am a small frog .""" __lowercase : Tuple = """.""" __lowercase : List[Any] = tok(__a )["""input_ids"""] __lowercase : List[str] = tok(__a )["""input_ids"""] assert encoded[-1] == encoded_dot[0]
356
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = ['''pixel_values'''] def __init__( self : Any , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : bool = True , __a : Dict[str, int] = None , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = True , **__a : str , ) -> None: """simple docstring""" super().__init__(**__a ) __lowercase : Dict = size if size is not None else {"""shortest_edge""": 224} __lowercase : Union[str, Any] = get_size_dict(__a , default_to_square=__a ) __lowercase : int = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __lowercase : Any = get_size_dict(__a , default_to_square=__a , param_name="""crop_size""" ) __lowercase : Optional[int] = do_resize __lowercase : Union[str, Any] = size __lowercase : List[Any] = resample __lowercase : Any = do_center_crop __lowercase : Dict = crop_size __lowercase : int = do_rescale __lowercase : Tuple = rescale_factor __lowercase : List[Any] = do_normalize __lowercase : Union[str, Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowercase : int = image_std if image_std is not None else OPENAI_CLIP_STD __lowercase : Union[str, Any] = do_convert_rgb def lowerCAmelCase ( self : Union[str, Any] , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[Any] , ) -> np.ndarray: """simple docstring""" __lowercase : Dict = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) __lowercase : str = get_resize_output_image_size(__a , size=size["""shortest_edge"""] , default_to_square=__a ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Any , ) -> np.ndarray: """simple docstring""" __lowercase : Tuple = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(__a , size=(size["""height"""], size["""width"""]) , data_format=__a , **__a ) def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : Union[int, float] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[Any] , ) -> List[str]: """simple docstring""" return rescale(__a , scale=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Optional[int] , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] , ) -> np.ndarray: """simple docstring""" return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Optional[int] , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : int = None , __a : bool = None , __a : float = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = None , __a : Optional[Union[str, TensorType]] = None , __a : Optional[ChannelDimension] = ChannelDimension.FIRST , **__a : List[Any] , ) -> PIL.Image.Image: """simple docstring""" __lowercase : List[Any] = do_resize if do_resize is not None else self.do_resize __lowercase : Dict = size if size is not None else self.size __lowercase : Tuple = get_size_dict(__a , param_name="""size""" , default_to_square=__a ) __lowercase : int = resample if resample is not None else self.resample __lowercase : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase : List[Any] = crop_size if crop_size is not None else self.crop_size __lowercase : List[str] = get_size_dict(__a , param_name="""crop_size""" , default_to_square=__a ) __lowercase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __lowercase : str = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase : Dict = do_normalize if do_normalize is not None else self.do_normalize __lowercase : Tuple = image_mean if image_mean is not None else self.image_mean __lowercase : str = image_std if image_std is not None else self.image_std __lowercase : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase : Union[str, Any] = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase : Union[str, Any] = [convert_to_rgb(__a ) for image in images] # All transformations expect numpy arrays. __lowercase : Any = [to_numpy_array(__a ) for image in images] if do_resize: __lowercase : str = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: __lowercase : str = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: __lowercase : Dict = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: __lowercase : Optional[Any] = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] __lowercase : Any = [to_channel_dimension_format(__a , __a ) for image in images] __lowercase : Optional[int] = {"""pixel_values""": images} return BatchFeature(data=__a , tensor_type=__a )
306
0
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase : Any = 0 @slow def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): __lowercase : List[Any] = AutoTokenizer.from_pretrained(__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(__a ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): __lowercase : Dict = AutoTokenizer.from_pretrained(__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(__a ) , 0 ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : Dict = AutoTokenizer.from_pretrained(__a ) self.assertIsInstance(__a , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" __lowercase : Any = AutoTokenizer.from_pretrained(__a ) self.assertIsInstance(__a , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" __lowercase : Tuple = AutoConfig.from_pretrained(__a ) self.assertIsInstance(__a , __a ) # Check that tokenizer_type ≠ model_type __lowercase : List[str] = AutoTokenizer.from_pretrained(__a , config=__a ) self.assertIsInstance(__a , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(__a , """vocab.txt""" ) ) __lowercase : Optional[int] = AutoTokenizer.from_pretrained(__a , tokenizer_type="""bert""" , use_fast=__a ) self.assertIsInstance(__a , __a ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(__a , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(__a , """merges.txt""" ) ) __lowercase : Tuple = AutoTokenizer.from_pretrained(__a , tokenizer_type="""gpt2""" , use_fast=__a ) self.assertIsInstance(__a , __a ) @require_tokenizers def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(__a , """vocab.txt""" ) ) __lowercase : Any = AutoTokenizer.from_pretrained(__a , tokenizer_type="""bert""" ) self.assertIsInstance(__a , __a ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(__a , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(__a , """merges.txt""" ) ) __lowercase : Tuple = AutoTokenizer.from_pretrained(__a , tokenizer_type="""gpt2""" ) self.assertIsInstance(__a , __a ) def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" with pytest.raises(__a ): AutoTokenizer.from_pretrained("""./""" , tokenizer_type="""xxx""" ) @require_tokenizers def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: __lowercase : Any = tokenizer_class.from_pretrained("""wietsedv/bert-base-dutch-cased""" ) self.assertIsInstance(__a , (BertTokenizer, BertTokenizerFast) ) if isinstance(__a , __a ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , __a ) else: self.assertEqual(tokenizer.do_lower_case , __a ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def lowerCAmelCase ( self : int ) -> int: """simple docstring""" for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( __a , """julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier""" , ): __lowercase : Optional[Any] = tokenizer_class.from_pretrained("""julien-c/herlolip-not-exists""" ) def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" __lowercase : int = TOKENIZER_MAPPING.values() __lowercase : List[str] = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(__a ) @require_tokenizers def lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=__a ) , __a ) self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" ) , __a ) @require_tokenizers def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" __lowercase : str = AutoTokenizer.from_pretrained("""distilbert-base-uncased""" , do_lower_case=__a ) __lowercase : Optional[int] = """Hello, world. How are you?""" __lowercase : List[Any] = tokenizer.tokenize(__a ) self.assertEqual("""[UNK]""" , tokens[0] ) __lowercase : Tuple = AutoTokenizer.from_pretrained("""microsoft/mpnet-base""" , do_lower_case=__a ) __lowercase : str = tokenizer.tokenize(__a ) self.assertEqual("""[UNK]""" , tokens[0] ) @require_tokenizers def lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Any = AutoTokenizer.from_pretrained("""robot-test/dummy-tokenizer-fast-with-model-config""" ) self.assertEqual(type(__a ) , __a ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 30000 ) self.assertEqual(tokenizer.unk_token , """[UNK]""" ) self.assertEqual(tokenizer.padding_side , """right""" ) self.assertEqual(tokenizer.truncation_side , """right""" ) def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[int] = AutoTokenizer.from_pretrained(__a ) self.assertIsInstance(__a , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__a ) __lowercase : Any = AutoTokenizer.from_pretrained(__a ) self.assertIsInstance(__a , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : List[Any] = AutoTokenizer.from_pretrained("""ctrl""" ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(__a , __a ) def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" __lowercase : Union[str, Any] = get_tokenizer_config("""bert-base-cased""" ) __lowercase : List[str] = config.pop("""_commit_hash""" , __a ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(__a , {"""do_lower_case""": False} ) # This model does not have a tokenizer_config so we get back an empty dict. __lowercase : str = get_tokenizer_config(__a ) self.assertDictEqual(__a , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. __lowercase : str = AutoTokenizer.from_pretrained(__a ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__a ) __lowercase : List[Any] = get_tokenizer_config(__a ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config["""tokenizer_class"""] , """BertTokenizer""" ) def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" try: AutoConfig.register("""custom""" , __a ) AutoTokenizer.register(__a , slow_tokenizer_class=__a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__a ): AutoTokenizer.register(__a , slow_tokenizer_class=__a ) __lowercase : List[Any] = CustomTokenizer.from_pretrained(__a ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__a ) __lowercase : Union[str, Any] = AutoTokenizer.from_pretrained(__a ) self.assertIsInstance(__a , __a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowerCAmelCase ( self : int ) -> int: """simple docstring""" try: AutoConfig.register("""custom""" , __a ) # Can register in two steps AutoTokenizer.register(__a , slow_tokenizer_class=__a ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(__a , fast_tokenizer_class=__a ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( __a , slow_tokenizer_class=__a , fast_tokenizer_class=__a ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__a ): AutoTokenizer.register(__a , fast_tokenizer_class=__a ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: __lowercase : int = BertTokenizerFast.from_pretrained(__a ) bert_tokenizer.save_pretrained(__a ) __lowercase : str = CustomTokenizerFast.from_pretrained(__a ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__a ) __lowercase : List[str] = AutoTokenizer.from_pretrained(__a ) self.assertIsInstance(__a , __a ) __lowercase : int = AutoTokenizer.from_pretrained(__a , use_fast=__a ) self.assertIsInstance(__a , __a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" with self.assertRaises(__a ): __lowercase : Optional[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__a ): __lowercase : Tuple = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__a ) __lowercase : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__a ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__a ) __lowercase : Union[str, Any] = AutoTokenizer.from_pretrained(__a , trust_remote_code=__a ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version __lowercase : List[str] = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__a , use_fast=__a ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__a ) __lowercase : Union[str, Any] = AutoTokenizer.from_pretrained(__a , trust_remote_code=__a , use_fast=__a ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) @require_tokenizers def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" class lowerCAmelCase ( __a ): '''simple docstring''' _A : Tuple = False class lowerCAmelCase ( __a ): '''simple docstring''' _A : str = NewTokenizer _A : Union[str, Any] = False try: AutoConfig.register("""custom""" , __a ) AutoTokenizer.register(__a , slow_tokenizer_class=__a ) AutoTokenizer.register(__a , fast_tokenizer_class=__a ) # If remote code is not set, the default is to use local __lowercase : Optional[int] = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) __lowercase : Tuple = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , use_fast=__a ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. __lowercase : List[str] = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__a ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) __lowercase : Optional[Any] = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__a , use_fast=__a ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub __lowercase : Any = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__a ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertTrue(tokenizer.special_attribute_present ) __lowercase : Dict = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__a , use_fast=__a ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" __lowercase : str = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=__a ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version __lowercase : List[Any] = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=__a , use_fast=__a ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" with self.assertRaisesRegex( __a , """bert-base is not a local folder and is not a valid model identifier""" ): __lowercase : List[Any] = AutoTokenizer.from_pretrained("""bert-base""" ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" with self.assertRaisesRegex( __a , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): __lowercase : Union[str, Any] = AutoTokenizer.from_pretrained(__a , revision="""aaaaaa""" ) def lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase : Any = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) with RequestCounter() as counter: __lowercase : Any = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
357
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str ): __lowercase : Tuple = s.rsplit(lowerCAmelCase_ , lowerCAmelCase_ ) return new.join(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : List[Any] ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : List[str] = {} __lowercase : Tuple = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __lowercase : List[str] = key.replace(F"{group_key}." , F"{group_key}.group." ) if "res_path" in key: __lowercase : List[Any] = key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): __lowercase : Union[str, Any] = rreplace(lowerCAmelCase_ , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): __lowercase : Tuple = rreplace(lowerCAmelCase_ , """.b""" , """.bias""" , 1 ) __lowercase : Dict = value.float() return upgrade @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=True ): from dall_e import Encoder __lowercase : Any = Encoder() if os.path.exists(lowerCAmelCase_ ): __lowercase : List[Any] = torch.load(lowerCAmelCase_ ) else: __lowercase : List[Any] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : int = ckpt.state_dict() encoder.load_state_dict(lowerCAmelCase_ ) if config_path is not None: __lowercase : Optional[int] = FlavaImageCodebookConfig.from_pretrained(lowerCAmelCase_ ) else: __lowercase : List[str] = FlavaImageCodebookConfig() __lowercase : Optional[Any] = FlavaImageCodebook(lowerCAmelCase_ ).eval() __lowercase : List[Any] = encoder.state_dict() __lowercase : Union[str, Any] = upgrade_state_dict(lowerCAmelCase_ ) hf_model.load_state_dict(lowerCAmelCase_ ) __lowercase : Dict = hf_model.state_dict() __lowercase : Tuple = count_parameters(lowerCAmelCase_ ) __lowercase : Tuple = count_parameters(lowerCAmelCase_ ) assert torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(lowerCAmelCase_ ) else: return hf_state_dict if __name__ == "__main__": lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowerCamelCase : Union[str, Any] = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
306
0
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Any=None ): # set parameter of one layer assert torch_layer.weight.shape == weight.shape, F"{torch_layer} layer.weight does not match" __lowercase : Any = nn.Parameter(lowerCAmelCase_ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F"{torch_layer} layer.bias does not match" __lowercase : Tuple = nn.Parameter(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any ): # set torch weights for 1-to-1 comparison __lowercase : str = np.asarray(weights[0] ) __lowercase : Optional[Any] = np.asarray(weights[1] ) __lowercase : Tuple = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(lowerCAmelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCAmelCase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCAmelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCAmelCase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCAmelCase_ ).view(-1 , lowerCAmelCase_ ).contiguous().transpose(0 , 1 ) , ) def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str] ): # set torch weights for 1-to-1 comparison __lowercase : Optional[int] = np.asarray(weights[0] ) __lowercase : List[str] = np.asarray(weights[1] ) __lowercase : Dict = np.asarray(weights[2] ) __lowercase : int = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(lowerCAmelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCAmelCase_ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(lowerCAmelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCAmelCase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCAmelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCAmelCase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCAmelCase_ ).view(-1 , lowerCAmelCase_ ).contiguous().transpose(0 , 1 ) , ) def snake_case_ ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] ): # layernorm 1 __lowercase : Union[str, Any] = weights[0][0][0] __lowercase : Optional[int] = np.asarray(layer_norm_a[0] ) __lowercase : List[str] = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(lowerCAmelCase_ ) , torch.tensor(lowerCAmelCase_ ) , ) # lsh weights + output __lowercase : Dict = weights[0][1] if len(lowerCAmelCase_ ) < 4: set_layer_weights_in_torch_lsh(lowerCAmelCase_ , torch_block.attention , lowerCAmelCase_ ) else: set_layer_weights_in_torch_local(lowerCAmelCase_ , torch_block.attention , lowerCAmelCase_ ) # intermediate weighs __lowercase : Optional[Any] = weights[2][0][1][2] # Chunked Feed Forward if len(lowerCAmelCase_ ) == 4: __lowercase : List[Any] = intermediate_weights[2] # layernorm 2 __lowercase : Union[str, Any] = np.asarray(intermediate_weights[0][0] ) __lowercase : Dict = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(lowerCAmelCase_ ) , torch.tensor(lowerCAmelCase_ ) , ) # intermediate dense __lowercase : List[Any] = np.asarray(intermediate_weights[1][0] ) __lowercase : str = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(lowerCAmelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCAmelCase_ ) , ) # intermediate out __lowercase : Dict = np.asarray(intermediate_weights[4][0] ) __lowercase : Dict = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(lowerCAmelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCAmelCase_ ) , ) def snake_case_ ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] ): # reformer model __lowercase : str = torch_model.reformer # word embeds __lowercase : List[str] = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowerCAmelCase_ ) , ) if isinstance(weights[3] , lowerCAmelCase_ ): __lowercase : List[Any] = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): __lowercase : List[str] = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F"{position_embeddings[emb_idx]} emb does not match" __lowercase : Optional[Any] = nn.Parameter(torch.tensor(lowerCAmelCase_ ) ) __lowercase : Union[str, Any] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( lowerCAmelCase_ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): __lowercase : Optional[int] = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # output layer norm __lowercase : Union[str, Any] = np.asarray(weights[7][0] ) __lowercase : Optional[int] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(lowerCAmelCase_ ) , torch.tensor(lowerCAmelCase_ ) , ) # output embeddings __lowercase : Tuple = np.asarray(weights[9][0] ) __lowercase : Tuple = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(lowerCAmelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCAmelCase_ ) , ) def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int ): # Initialise PyTorch model __lowercase : Optional[int] = ReformerConfig.from_json_file(lowerCAmelCase_ ) print(F"Building PyTorch model from configuration: {config}" ) __lowercase : Dict = ReformerModelWithLMHead(lowerCAmelCase_ ) with open(lowerCAmelCase_ , """rb""" ) as f: __lowercase : Tuple = pickle.load(lowerCAmelCase_ )["""weights"""] set_model_weights_in_torch(lowerCAmelCase_ , lowerCAmelCase_ , config.hidden_size ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCamelCase : List[str] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
358
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging lowerCamelCase : Tuple = logging.get_logger(__name__) logging.set_verbosity_info() def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): if "xprophetnet" in prophetnet_checkpoint_path: __lowercase : List[str] = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) __lowercase , __lowercase : int = XLMProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) else: __lowercase : List[Any] = ProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) __lowercase , __lowercase : Optional[Any] = ProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) __lowercase : List[str] = ["""key_proj""", """value_proj""", """query_proj"""] __lowercase : Optional[int] = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: __lowercase : Tuple = key.split(""".""" ) if attributes[0] == "lm_head": __lowercase : str = prophet __lowercase : List[str] = prophet_old else: __lowercase : Tuple = prophet.prophetnet __lowercase : Union[str, Any] = prophet_old.model __lowercase : Optional[Any] = False for attribute in attributes: if attribute in mapping: __lowercase : Optional[int] = mapping[attribute] if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) > 0: __lowercase : str = attribute elif hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : List[Any] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" __lowercase : Any = old_model.weight logger.info(F"{attribute} is initialized." ) __lowercase : Any = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" __lowercase : Dict = old_model.bias logger.info(F"{attribute} is initialized" ) __lowercase : int = True break elif attribute in special_keys and hasattr(lowerCAmelCase_ , """in_proj_weight""" ): __lowercase : Dict = old_model.in_proj_weight.shape[0] // 3 __lowercase : Tuple = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": __lowercase : Union[str, Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) __lowercase : int = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": __lowercase : Any = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) __lowercase : List[Any] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": __lowercase : Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) __lowercase : int = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) __lowercase : int = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." __lowercase : Optional[Any] = nn.Parameter(old_model.embed_positions.weight[:512, :] ) __lowercase : int = True break if attribute.isdigit(): __lowercase : Tuple = model[int(lowerCAmelCase_ )] __lowercase : int = old_model[int(lowerCAmelCase_ )] else: __lowercase : Union[str, Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if old_attribute == "": __lowercase : int = old_model else: if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError(F"{old_model} does not have {old_attribute}" ) __lowercase : List[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if not is_key_init: raise ValueError(F"{key} was not correctly initialized!" ) print(F"Saving model to {pytorch_dump_folder_path}" ) prophet.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCamelCase : Any = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
306
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" __lowercase : Tuple = tempfile.mkdtemp() # fmt: off __lowercase : str = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on __lowercase : str = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : str = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] __lowercase : str = {"""unk_token""": """<unk>"""} __lowercase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__a ) ) __lowercase : Optional[int] = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } __lowercase : List[Any] = os.path.join(self.tmpdirname , __a ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__a , __a ) def lowerCAmelCase ( self : List[str] , **__a : Optional[int] ) -> Any: """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Any , **__a : Any ) -> str: """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Optional[int] , **__a : Any ) -> Tuple: """simple docstring""" return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" __lowercase : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __lowercase : Dict = [Image.fromarray(np.moveaxis(__a , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : List[Any] = self.get_rust_tokenizer() __lowercase : str = self.get_image_processor() __lowercase : Tuple = CLIPProcessor(tokenizer=__a , image_processor=__a ) processor_slow.save_pretrained(self.tmpdirname ) __lowercase : Dict = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__a ) __lowercase : Optional[int] = CLIPProcessor(tokenizer=__a , image_processor=__a ) processor_fast.save_pretrained(self.tmpdirname ) __lowercase : str = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __a ) self.assertIsInstance(processor_fast.tokenizer , __a ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __a ) self.assertIsInstance(processor_fast.image_processor , __a ) def lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" __lowercase : Dict = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowercase : List[str] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __lowercase : str = self.get_image_processor(do_normalize=__a , padding_value=1.0 ) __lowercase : Optional[Any] = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __a ) def lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" __lowercase : Union[str, Any] = self.get_image_processor() __lowercase : Optional[int] = self.get_tokenizer() __lowercase : List[Any] = CLIPProcessor(tokenizer=__a , image_processor=__a ) __lowercase : Optional[int] = self.prepare_image_inputs() __lowercase : Union[str, Any] = image_processor(__a , return_tensors="""np""" ) __lowercase : Union[str, Any] = processor(images=__a , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" __lowercase : str = self.get_image_processor() __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : List[str] = CLIPProcessor(tokenizer=__a , image_processor=__a ) __lowercase : int = """lower newer""" __lowercase : Optional[int] = processor(text=__a ) __lowercase : Dict = tokenizer(__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase : Union[str, Any] = self.get_image_processor() __lowercase : str = self.get_tokenizer() __lowercase : Union[str, Any] = CLIPProcessor(tokenizer=__a , image_processor=__a ) __lowercase : Any = """lower newer""" __lowercase : str = self.prepare_image_inputs() __lowercase : List[Any] = processor(text=__a , images=__a ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(__a ): processor() def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" __lowercase : int = self.get_image_processor() __lowercase : Any = self.get_tokenizer() __lowercase : Union[str, Any] = CLIPProcessor(tokenizer=__a , image_processor=__a ) __lowercase : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowercase : Union[str, Any] = processor.batch_decode(__a ) __lowercase : int = tokenizer.batch_decode(__a ) self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase : Optional[Any] = self.get_image_processor() __lowercase : Any = self.get_tokenizer() __lowercase : int = CLIPProcessor(tokenizer=__a , image_processor=__a ) __lowercase : Optional[int] = """lower newer""" __lowercase : List[Any] = self.prepare_image_inputs() __lowercase : str = processor(text=__a , images=__a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
359
def snake_case_ ( lowerCAmelCase_ : int = 200 ): __lowercase : List[str] = [1, 2, 5, 10, 20, 50, 100, 200] __lowercase : List[str] = [0] * (pence + 1) __lowercase : Optional[Any] = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowerCAmelCase_ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
306
0
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase : Optional[Any] = '''▁''' lowerCamelCase : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : str = BertGenerationTokenizer _A : int = False _A : Dict = True def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" super().setUp() __lowercase : str = BertGenerationTokenizer(__a , keep_accents=__a ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = """<s>""" __lowercase : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(__a ) , 1002 ) def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" __lowercase : str = BertGenerationTokenizer(__a , keep_accents=__a ) __lowercase : Optional[int] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__a , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [285, 46, 10, 170, 382] , ) __lowercase : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __lowercase : Tuple = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual( __a , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __lowercase : List[str] = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" return BertGenerationTokenizer.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) @slow def lowerCAmelCase ( self : str ) -> int: """simple docstring""" __lowercase : Any = """Hello World!""" __lowercase : Tuple = [18536, 2260, 101] self.assertListEqual(__a , self.big_tokenizer.encode(__a ) ) @slow def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : int = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) __lowercase : Any = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, ] self.assertListEqual(__a , self.big_tokenizer.encode(__a ) ) @require_torch @slow def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence __lowercase : int = list(self.big_tokenizer.get_vocab().keys() )[:10] __lowercase : Optional[Any] = """ """.join(__a ) __lowercase : Union[str, Any] = self.big_tokenizer.encode_plus(__a , return_tensors="""pt""" , return_token_type_ids=__a ) __lowercase : List[Any] = self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=__a ) __lowercase : Optional[Any] = BertGenerationConfig() __lowercase : Union[str, Any] = BertGenerationEncoder(__a ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__a ) model(**__a ) @slow def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = {"""input_ids""": [[39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114], [448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a , model_name="""google/bert_for_seq_generation_L-24_bbc_encoder""" , revision="""c817d1fd1be2ffa69431227a1fe320544943d4db""" , )
360
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , __a : Dict , __a : List[str]=None , __a : Optional[Any]=None , __a : Union[str, Any]=None , __a : int="resnet50" , __a : List[str]=3 , __a : Tuple=32 , __a : Dict=3 , __a : List[str]=True , __a : Union[str, Any]=True , ) -> Any: """simple docstring""" __lowercase : Optional[int] = parent __lowercase : List[str] = out_indices if out_indices is not None else [4] __lowercase : Optional[int] = stage_names __lowercase : Any = out_features __lowercase : Optional[Any] = backbone __lowercase : Optional[Any] = batch_size __lowercase : Union[str, Any] = image_size __lowercase : List[str] = num_channels __lowercase : str = use_pretrained_backbone __lowercase : str = is_training def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : str = self.get_config() return config, pixel_values def lowerCAmelCase ( self : int ) -> str: """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowerCAmelCase ( self : Optional[int] , __a : Dict , __a : Any ) -> Dict: """simple docstring""" __lowercase : Dict = TimmBackbone(config=__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Optional[Any] = model(__a ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.prepare_config_and_inputs() __lowercase , __lowercase : str = config_and_inputs __lowercase : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch @require_timm class lowerCAmelCase ( __a , __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[Any] = (TimmBackbone,) if is_torch_available() else () _A : Dict = {'''feature-extraction''': TimmBackbone} if is_torch_available() else {} _A : List[Any] = False _A : List[str] = False _A : Any = False _A : Optional[Any] = False def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : str = TimmBackboneModelTester(self ) __lowercase : Any = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" __lowercase : Tuple = """resnet18""" __lowercase : Optional[int] = """microsoft/resnet-18""" __lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a ) __lowercase : Dict = AutoBackbone.from_pretrained(__a ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a , out_indices=[1, 2, 3] ) __lowercase : Optional[Any] = AutoBackbone.from_pretrained(__a , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("""TimmBackbone doesn't support feed forward chunking""" ) def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""" ) def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""" ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't support output_attentions.""" ) def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Safetensors is not supported by timm.""" ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Optional[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : List[str] = [*signature.parameters.keys()] __lowercase : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Optional[Any] = True __lowercase : Union[str, Any] = self.has_attentions # no need to test all models as different heads yield the same functionality __lowercase : Union[str, Any] = self.all_model_classes[0] __lowercase : List[Any] = model_class(__a ) model.to(__a ) __lowercase : Optional[Any] = self._prepare_for_class(__a , __a ) __lowercase : Union[str, Any] = model(**__a ) __lowercase : Optional[int] = outputs[0][-1] # Encoder-/Decoder-only models __lowercase : Any = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowercase : Optional[int] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__a ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() __lowercase : int = model(**__a ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowercase : Any = copy.deepcopy(__a ) __lowercase : Dict = None __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() __lowercase : Optional[int] = model(**__a ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowercase : List[str] = copy.deepcopy(__a ) __lowercase : Optional[Any] = False __lowercase : str = model_class(__a ) model.to(__a ) model.eval() __lowercase : List[Any] = model(**__a )
306
0
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : Tuple = BertJapaneseTokenizer _A : Optional[Any] = False _A : Optional[int] = True def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" super().setUp() __lowercase : Dict = [ """[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは""", """世界""", """##世界""", """、""", """##、""", """。""", """##。""", ] __lowercase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def lowerCAmelCase ( self : str , __a : str ) -> Optional[int]: """simple docstring""" __lowercase : str = """こんにちは、世界。 \nこんばんは、世界。""" __lowercase : int = """こんにちは 、 世界 。 こんばんは 、 世界 。""" return input_text, output_text def lowerCAmelCase ( self : int , __a : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase : str = self.get_input_output_texts(__a ) __lowercase : Union[str, Any] = tokenizer.encode(__a , add_special_tokens=__a ) __lowercase : int = tokenizer.decode(__a , clean_up_tokenization_spaces=__a ) return text, ids def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" pass # TODO add if relevant def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" pass # TODO add if relevant def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" pass # TODO add if relevant def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" __lowercase : Tuple = self.tokenizer_class(self.vocab_file ) __lowercase : Any = tokenizer.tokenize("""こんにちは、世界。\nこんばんは、世界。""" ) self.assertListEqual(__a , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Dict = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""mecab""" ) self.assertIsNotNone(__a ) __lowercase : Union[str, Any] = """こんにちは、世界。\nこんばんは、世界。""" __lowercase : Dict = tokenizer.tokenize(__a ) self.assertListEqual(__a , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) __lowercase : Dict = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(__a , """wb""" ) as handle: pickle.dump(__a , __a ) with open(__a , """rb""" ) as handle: __lowercase : int = pickle.load(__a ) __lowercase : List[Any] = tokenizer_new.tokenize(__a ) self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" __lowercase : Any = MecabTokenizer(mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" try: __lowercase : List[Any] = MecabTokenizer(mecab_dic="""unidic_lite""" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" try: __lowercase : Any = MecabTokenizer(mecab_dic="""unidic""" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : int = MecabTokenizer(do_lower_case=__a , mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iphone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" try: __lowercase : Union[str, Any] = MecabTokenizer( do_lower_case=__a , normalize_text=__a , mecab_option="""-d /usr/local/lib/mecab/dic/jumandic""" ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" __lowercase : int = MecabTokenizer(normalize_text=__a , mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """ """, """。"""] , ) @require_sudachi def lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase : str = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""sudachi""" ) self.assertIsNotNone(__a ) __lowercase : Union[str, Any] = """こんにちは、世界。\nこんばんは、世界。""" __lowercase : Optional[Any] = tokenizer.tokenize(__a ) self.assertListEqual(__a , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) __lowercase : Optional[Any] = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(__a , """wb""" ) as handle: pickle.dump(__a , __a ) with open(__a , """rb""" ) as handle: __lowercase : Tuple = pickle.load(__a ) __lowercase : Dict = tokenizer_new.tokenize(__a ) self.assertListEqual(__a , __a ) @require_sudachi def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = SudachiTokenizer(sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase : List[str] = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""A""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国""", """人""", """参政""", """権"""] ) @require_sudachi def lowerCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" __lowercase : int = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""B""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国人""", """参政権"""] ) @require_sudachi def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase : Union[str, Any] = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""C""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国人参政権"""] ) @require_sudachi def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = SudachiTokenizer(do_lower_case=__a , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iphone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : List[str] = SudachiTokenizer(normalize_text=__a , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """\u3000""", """。""", """ """, """ """] , ) @require_sudachi def lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase : Optional[int] = SudachiTokenizer(trim_whitespace=__a , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) @require_jumanpp def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : Any = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""jumanpp""" ) self.assertIsNotNone(__a ) __lowercase : Any = """こんにちは、世界。\nこんばんは、世界。""" __lowercase : List[Any] = tokenizer.tokenize(__a ) self.assertListEqual(__a , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) __lowercase : Dict = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(__a , """wb""" ) as handle: pickle.dump(__a , __a ) with open(__a , """rb""" ) as handle: __lowercase : List[Any] = pickle.load(__a ) __lowercase : Any = tokenizer_new.tokenize(__a ) self.assertListEqual(__a , __a ) @require_jumanpp def lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" __lowercase : Optional[Any] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : List[Any] = JumanppTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iphone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" __lowercase : int = JumanppTokenizer(normalize_text=__a ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""ア""", """ッ""", """フ""", """゚""", """ル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase : Optional[Any] = JumanppTokenizer(trim_whitespace=__a ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """。"""] , ) @require_jumanpp def lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase : int = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("""ありがとうございますm(_ _)m見つけるのが大変です。""" ) , ["""ありがとう""", """ございます""", """m(_ _)m""", """見つける""", """の""", """が""", """大変です""", """。"""] , ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase : Optional[Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは"""] __lowercase : int = {} for i, token in enumerate(__a ): __lowercase : Dict = i __lowercase : int = WordpieceTokenizer(vocab=__a , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) , ["""こんにちは"""] ) self.assertListEqual(tokenizer.tokenize("""こんばんは""" ) , ["""こん""", """##ばんは"""] ) self.assertListEqual(tokenizer.tokenize("""こんばんは こんばんにちは こんにちは""" ) , ["""こん""", """##ばんは""", """[UNK]""", """こんにちは"""] ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : str = BertJapaneseTokenizer.from_pretrained("""nlp-waseda/roberta-base-japanese-with-auto-jumanpp""" ) __lowercase : Optional[Any] = tokenizer.subword_tokenizer __lowercase : str = subword_tokenizer.tokenize("""国境 の 長い トンネル を 抜ける と 雪国 であった 。""" ) self.assertListEqual(__a , ["""▁国境""", """▁の""", """▁長い""", """▁トンネル""", """▁を""", """▁抜ける""", """▁と""", """▁雪""", """国""", """▁であった""", """▁。"""] ) __lowercase : Any = subword_tokenizer.tokenize("""こんばんは こんばん にち は こんにちは""" ) self.assertListEqual(__a , ["""▁こん""", """ばん""", """は""", """▁こん""", """ばん""", """▁に""", """ち""", """▁は""", """▁こんにちは"""] ) def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" __lowercase : Optional[Any] = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese""" ) __lowercase : Optional[Any] = tokenizer.encode("""ありがとう。""" , add_special_tokens=__a ) __lowercase : List[Any] = tokenizer.encode("""どういたしまして。""" , add_special_tokens=__a ) __lowercase : Any = tokenizer.build_inputs_with_special_tokens(__a ) __lowercase : Any = tokenizer.build_inputs_with_special_tokens(__a , __a ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : Any = BertJapaneseTokenizer _A : Tuple = False def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" super().setUp() __lowercase : Tuple = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] __lowercase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def lowerCAmelCase ( self : Dict , **__a : str ) -> Optional[int]: """simple docstring""" return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="""character""" , **__a ) def lowerCAmelCase ( self : Dict , __a : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase : Any = """こんにちは、世界。 \nこんばんは、世界。""" __lowercase : Dict = """こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。""" return input_text, output_text def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" pass # TODO add if relevant def lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" pass # TODO add if relevant def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" pass # TODO add if relevant def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase : Any = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="""character""" ) __lowercase : Optional[Any] = tokenizer.tokenize("""こんにちは、世界。 \nこんばんは、世界。""" ) self.assertListEqual( __a , ["""こ""", """ん""", """に""", """ち""", """は""", """、""", """世""", """界""", """。""", """こ""", """ん""", """ば""", """ん""", """は""", """、""", """世""", """界""", """。"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] __lowercase : Dict = {} for i, token in enumerate(__a ): __lowercase : List[str] = i __lowercase : Tuple = CharacterTokenizer(vocab=__a , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) , ["""こ""", """ん""", """に""", """ち""", """は"""] ) self.assertListEqual(tokenizer.tokenize("""こんにちほ""" ) , ["""こ""", """ん""", """に""", """ち""", """[UNK]"""] ) def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : List[Any] = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese-char""" ) __lowercase : Optional[int] = tokenizer.encode("""ありがとう。""" , add_special_tokens=__a ) __lowercase : Optional[Any] = tokenizer.encode("""どういたしまして。""" , add_special_tokens=__a ) __lowercase : Any = tokenizer.build_inputs_with_special_tokens(__a ) __lowercase : Dict = tokenizer.build_inputs_with_special_tokens(__a , __a ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : List[Any] = """cl-tohoku/bert-base-japanese""" __lowercase : Tuple = AutoTokenizer.from_pretrained(__a ) self.assertIsInstance(__a , __a ) class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" __lowercase : Union[str, Any] = """cl-tohoku/bert-base-japanese""" with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm: BertTokenizer.from_pretrained(__a ) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""" ) ) __lowercase : Tuple = """bert-base-cased""" with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm: BertJapaneseTokenizer.from_pretrained(__a ) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""" ) )
361
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : str = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } lowerCamelCase : Optional[Any] = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): for attribute in key.split(""".""" ): __lowercase : List[str] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if weight_type is not None: __lowercase : Union[str, Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ).shape else: __lowercase : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": __lowercase : Dict = value elif weight_type == "weight_g": __lowercase : Union[str, Any] = value elif weight_type == "weight_v": __lowercase : List[Any] = value elif weight_type == "bias": __lowercase : int = value elif weight_type == "running_mean": __lowercase : List[Any] = value elif weight_type == "running_var": __lowercase : int = value elif weight_type == "num_batches_tracked": __lowercase : int = value elif weight_type == "inv_freq": __lowercase : Optional[Any] = value else: __lowercase : Any = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] ): __lowercase : str = [] __lowercase : Any = fairseq_model.state_dict() __lowercase : List[str] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): __lowercase : Optional[Any] = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , hf_model.config.feat_extract_norm == """group""" , ) __lowercase : List[str] = True else: for key, mapped_key in MAPPING.items(): __lowercase : Any = """wav2vec2_conformer.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __lowercase : Tuple = True if "*" in mapped_key: __lowercase : List[Any] = name.split(lowerCAmelCase_ )[0].split(""".""" )[-2] __lowercase : Any = mapped_key.replace("""*""" , lowerCAmelCase_ ) if "pos_bias_u" in name: __lowercase : Any = None elif "pos_bias_v" in name: __lowercase : Tuple = None elif "weight_g" in name: __lowercase : Union[str, Any] = """weight_g""" elif "weight_v" in name: __lowercase : Dict = """weight_v""" elif "bias" in name: __lowercase : Union[str, Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowercase : str = """weight""" elif "running_mean" in name: __lowercase : str = """running_mean""" elif "inv_freq" in name: __lowercase : List[Any] = """inv_freq""" elif "running_var" in name: __lowercase : Any = """running_var""" elif "num_batches_tracked" in name: __lowercase : Any = """num_batches_tracked""" else: __lowercase : Optional[int] = None set_recursively(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) continue if not is_used: unused_weights.append(lowerCAmelCase_ ) logger.warning(F"Unused weights: {unused_weights}" ) def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] ): __lowercase : List[Any] = full_name.split("""conv_layers.""" )[-1] __lowercase : int = name.split(""".""" ) __lowercase : Optional[Any] = int(items[0] ) __lowercase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __lowercase : Union[str, Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __lowercase : List[str] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) __lowercase : Union[str, Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) __lowercase : Dict = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(lowerCAmelCase_ ) @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Dict=True ): if config_path is not None: __lowercase : List[Any] = WavaVecaConformerConfig.from_pretrained(lowerCAmelCase_ , hidden_act="""swish""" ) else: __lowercase : List[Any] = WavaVecaConformerConfig() if "rope" in checkpoint_path: __lowercase : Tuple = """rotary""" if is_finetuned: if dict_path: __lowercase : Any = Dictionary.load(lowerCAmelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __lowercase : List[Any] = target_dict.pad_index __lowercase : Optional[int] = target_dict.bos_index __lowercase : List[Any] = target_dict.eos_index __lowercase : List[str] = len(target_dict.symbols ) __lowercase : Union[str, Any] = os.path.join(lowerCAmelCase_ , """vocab.json""" ) if not os.path.isdir(lowerCAmelCase_ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowerCAmelCase_ ) ) return os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowercase : Tuple = target_dict.indices # fairseq has the <pad> and <s> switched __lowercase : int = 0 __lowercase : Any = 1 with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Dict = WavaVecaCTCTokenizer( lowerCAmelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowerCAmelCase_ , ) __lowercase : List[Any] = True if config.feat_extract_norm == """layer""" else False __lowercase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) __lowercase : Optional[int] = WavaVecaProcessor(feature_extractor=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) __lowercase : Union[str, Any] = WavaVecaConformerForCTC(lowerCAmelCase_ ) else: __lowercase : Optional[Any] = WavaVecaConformerForPreTraining(lowerCAmelCase_ ) if is_finetuned: __lowercase , __lowercase , __lowercase : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __lowercase : List[Any] = argparse.Namespace(task="""audio_pretraining""" ) __lowercase : Optional[Any] = fairseq.tasks.setup_task(lowerCAmelCase_ ) __lowercase , __lowercase , __lowercase : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase_ ) __lowercase : Dict = model[0].eval() recursively_load_weights(lowerCAmelCase_ , lowerCAmelCase_ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) lowerCamelCase : Any = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
306
0
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
362
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError("""String lengths must match!""" ) __lowercase : str = 0 for chara, chara in zip(lowerCAmelCase_ , lowerCAmelCase_ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
306
0
def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def snake_case_ ( lowerCAmelCase_ : int = 5000 ): __lowercase : Optional[int] = [(i * (3 * i - 1)) // 2 for i in range(1 , lowerCAmelCase_ )] for i, pentagonal_i in enumerate(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ , len(lowerCAmelCase_ ) ): __lowercase : int = pentagonal_nums[j] __lowercase : Optional[int] = pentagonal_i + pentagonal_j __lowercase : Union[str, Any] = pentagonal_j - pentagonal_i if is_pentagonal(lowerCAmelCase_ ) and is_pentagonal(lowerCAmelCase_ ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
363
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def snake_case_ ( lowerCAmelCase_ : Tuple ): if isinstance(lowerCAmelCase_ , collections.abc.Iterable ): return x return (x, x) @require_flax class lowerCAmelCase : '''simple docstring''' def lowerCAmelCase ( self : Any , __a : Any , __a : List[Any] ) -> Optional[Any]: """simple docstring""" pass def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" pass def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : np.ndarray , __a : float ) -> List[Any]: """simple docstring""" __lowercase : List[str] = np.abs((a - b) ).max() self.assertLessEqual(__a , __a , F"Difference between torch and flax is {diff} (>= {tol})." ) def lowerCAmelCase ( self : Tuple , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[Any] , __a : Optional[Any]=None , **__a : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : str = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : str = FlaxVisionTextDualEncoderModel(__a ) __lowercase : Optional[Any] = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def lowerCAmelCase ( self : Optional[int] , __a : Optional[int] , __a : Dict , __a : Dict , __a : List[str] , __a : Optional[Any]=None , **__a : str ) -> str: """simple docstring""" __lowercase , __lowercase : List[str] = self.get_vision_text_model(__a , __a ) __lowercase : Union[str, Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : Any = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : Union[str, Any] , __a : Union[str, Any] , __a : Dict , __a : int=None , **__a : int ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Tuple = self.get_vision_text_model(__a , __a ) __lowercase : Union[str, Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : List[str] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : List[Any] = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) __lowercase : int = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowercase : int = FlaxVisionTextDualEncoderModel.from_pretrained(__a ) __lowercase : Tuple = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) __lowercase : int = after_output[0] __lowercase : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__a , 1E-3 ) def lowerCAmelCase ( self : List[Any] , __a : Any , __a : Tuple , __a : Optional[int] , __a : str , __a : Optional[Any]=None , **__a : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : str = self.get_vision_text_model(__a , __a ) __lowercase : Optional[Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : Union[str, Any] = model( input_ids=__a , pixel_values=__a , attention_mask=__a , output_attentions=__a ) __lowercase : Optional[int] = output.vision_model_output.attentions self.assertEqual(len(__a ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase : Optional[int] = to_atuple(vision_model.config.image_size ) __lowercase : List[str] = to_atuple(vision_model.config.patch_size ) __lowercase : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase : int = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase : Dict = output.text_model_output.attentions self.assertEqual(len(__a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowerCAmelCase ( self : Optional[int] , __a : List[str] , __a : List[Any] , __a : Optional[Any] ) -> Optional[int]: """simple docstring""" pt_model.to(__a ) pt_model.eval() # prepare inputs __lowercase : Union[str, Any] = inputs_dict __lowercase : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): __lowercase : Union[str, Any] = pt_model(**__a ).to_tuple() __lowercase : Tuple = fx_model(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(__a , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__a ) __lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained(__a , from_pt=__a ) __lowercase : Dict = fx_model_loaded(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(__a , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__a ) __lowercase : str = VisionTextDualEncoderModel.from_pretrained(__a , from_flax=__a ) pt_model_loaded.to(__a ) pt_model_loaded.eval() with torch.no_grad(): __lowercase : List[Any] = pt_model_loaded(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(__a , pt_output_loaded.numpy() , 4E-2 ) def lowerCAmelCase ( self : Optional[int] , __a : List[Any] , __a : int , __a : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : str = VisionTextDualEncoderModel(__a ) __lowercase : Union[str, Any] = FlaxVisionTextDualEncoderModel(__a ) __lowercase : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __a ) __lowercase : Any = fx_state self.check_pt_flax_equivalence(__a , __a , __a ) def lowerCAmelCase ( self : Any , __a : Any , __a : Dict , __a : Tuple ) -> str: """simple docstring""" __lowercase : int = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : Union[str, Any] = VisionTextDualEncoderModel(__a ) __lowercase : Dict = FlaxVisionTextDualEncoderModel(__a ) __lowercase : Tuple = load_flax_weights_in_pytorch_model(__a , fx_model.params ) self.check_pt_flax_equivalence(__a , __a , __a ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase : int = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__a ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() self.check_save_load(**__a ) def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" __lowercase : str = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__a ) @is_pt_flax_cross_test def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.prepare_config_and_inputs() __lowercase : Optional[int] = config_inputs_dict.pop("""vision_config""" ) __lowercase : Optional[int] = config_inputs_dict.pop("""text_config""" ) __lowercase : Dict = config_inputs_dict self.check_equivalence_pt_to_flax(__a , __a , __a ) self.check_equivalence_flax_to_pt(__a , __a , __a ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase , __lowercase : List[Any] = self.get_pretrained_model_and_inputs() __lowercase : Dict = model_a(**__a ) __lowercase : Any = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__a ) __lowercase : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(__a ) __lowercase : Optional[int] = model_a(**__a ) __lowercase : Tuple = after_outputs[0] __lowercase : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__a , 1E-5 ) @require_flax class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" __lowercase : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=__a , text_from_pt=__a , ) __lowercase : int = 13 __lowercase : Union[str, Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowercase : Dict = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __lowercase : Tuple = random_attention_mask([batch_size, 4] ) __lowercase : str = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCAmelCase ( self : Optional[Any] , __a : Union[str, Any] , __a : int ) -> Dict: """simple docstring""" __lowercase : int = FlaxViTModel(__a ) __lowercase : List[Any] = FlaxBertModel(__a ) return vision_model, text_model def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = FlaxViTModelTester(self ) __lowercase : str = FlaxBertModelTester(self ) __lowercase : List[str] = vit_model_tester.prepare_config_and_inputs() __lowercase : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase : Optional[int] = vision_config_and_inputs __lowercase , __lowercase , __lowercase , __lowercase : Any = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=__a , text_from_pt=__a , ) __lowercase : Tuple = 13 __lowercase : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowercase : Tuple = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __lowercase : List[Any] = random_attention_mask([batch_size, 4] ) __lowercase : int = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCAmelCase ( self : str , __a : str , __a : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Dict = FlaxCLIPVisionModel(__a ) __lowercase : Optional[Any] = FlaxBertModel(__a ) return vision_model, text_model def lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase : List[Any] = FlaxCLIPVisionModelTester(self ) __lowercase : Optional[Any] = FlaxBertModelTester(self ) __lowercase : Any = clip_model_tester.prepare_config_and_inputs() __lowercase : Optional[Any] = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase : Dict = vision_config_and_inputs __lowercase , __lowercase , __lowercase , __lowercase : Optional[int] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 ) __lowercase : int = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) __lowercase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowercase : Tuple = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=__a , padding=__a , return_tensors="""np""" ) __lowercase : Optional[int] = model(**__a ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowercase : Optional[Any] = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , __a , atol=1E-3 ) )
306
0
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Any , __a : Tuple , __a : Optional[int]=13 , __a : int=7 , __a : List[str]=False , __a : Optional[int]=True , __a : Optional[int]=False , __a : Dict=True , __a : Optional[int]=33 , __a : Dict=32 , __a : Optional[int]=5 , __a : Union[str, Any]=4 , __a : List[str]=37 , __a : Tuple="gelu" , __a : List[str]=0.1 , __a : Dict=0.1 , __a : List[Any]=512 , __a : Any=16 , __a : Optional[Any]=2 , __a : List[Any]=0.02 , __a : int=3 , __a : Union[str, Any]=4 , __a : Optional[int]=None , ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = parent __lowercase : int = batch_size __lowercase : Any = seq_length __lowercase : str = is_training __lowercase : str = use_input_mask __lowercase : Optional[int] = use_token_type_ids __lowercase : List[Any] = use_labels __lowercase : Optional[Any] = vocab_size __lowercase : int = hidden_size __lowercase : List[Any] = num_hidden_layers __lowercase : Dict = num_attention_heads __lowercase : Any = intermediate_size __lowercase : Dict = hidden_act __lowercase : Union[str, Any] = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : List[str] = max_position_embeddings __lowercase : Union[str, Any] = type_vocab_size __lowercase : Dict = type_sequence_label_size __lowercase : Union[str, Any] = initializer_range __lowercase : List[Any] = num_labels __lowercase : str = num_choices __lowercase : Tuple = scope def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : int = None if self.use_input_mask: __lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : str = None __lowercase : Optional[Any] = None __lowercase : Tuple = None if self.use_labels: __lowercase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : List[Any] , __a : int , __a : int , __a : Dict , __a : Union[str, Any] , __a : List[str] , __a : str ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = EsmModel(config=__a ) model.to(__a ) model.eval() __lowercase : str = model(__a , attention_mask=__a ) __lowercase : List[Any] = model(__a ) __lowercase : Optional[int] = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : Union[str, Any] , __a : Dict , __a : List[Any] , __a : Tuple , __a : Union[str, Any] , __a : str , __a : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase : List[str] = EsmForMaskedLM(config=__a ) model.to(__a ) model.eval() __lowercase : int = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[int] , __a : Union[str, Any] , __a : List[Any] , __a : Tuple , __a : Tuple , __a : Optional[int] , __a : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = self.num_labels __lowercase : Any = EsmForTokenClassification(config=__a ) model.to(__a ) model.eval() __lowercase : Optional[Any] = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase : Any = self.prepare_config_and_inputs() ( __lowercase ) : List[str] = config_and_inputs __lowercase : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Optional[Any] = False _A : Any = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) _A : Optional[Any] = () _A : List[Any] = ( { '''feature-extraction''': EsmModel, '''fill-mask''': EsmForMaskedLM, '''text-classification''': EsmForSequenceClassification, '''token-classification''': EsmForTokenClassification, '''zero-shot''': EsmForSequenceClassification, } if is_torch_available() else {} ) _A : Optional[Any] = True def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : Optional[int] = EsmModelTester(self ) __lowercase : Tuple = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase : Union[str, Any] = type self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : List[str] = EsmModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] __lowercase : List[str] = EsmEmbeddings(config=__a ) __lowercase : Union[str, Any] = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) __lowercase : int = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) __lowercase : str = create_position_ids_from_input_ids(__a , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__a , __a ) ) ) def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] __lowercase : Optional[Any] = EsmEmbeddings(config=__a ) __lowercase : Optional[int] = torch.empty(2 , 4 , 30 ) __lowercase : Tuple = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] __lowercase : List[str] = torch.as_tensor([expected_single_positions, expected_single_positions] ) __lowercase : Any = embeddings.create_position_ids_from_inputs_embeds(__a ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__a , __a ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" pass @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" pass @require_torch class lowerCAmelCase ( __a ): '''simple docstring''' @slow def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): __lowercase : Tuple = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() __lowercase : Tuple = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase : List[str] = model(__a )[0] __lowercase : Union[str, Any] = 33 __lowercase : Union[str, Any] = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , __a ) __lowercase : List[Any] = torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): __lowercase : int = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() __lowercase : int = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) __lowercase : Any = model(__a )[0] # compare the actual values for a slice. __lowercase : int = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) )
364
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
306
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : List[Any] = logging.get_logger(__name__) lowerCamelCase : Any = { '''BAAI/AltCLIP''': '''https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json''', # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[Any] = '''altclip_text_model''' def __init__( self : Optional[Any] , __a : int=250002 , __a : Dict=1024 , __a : Optional[Any]=24 , __a : Optional[int]=16 , __a : Optional[int]=4096 , __a : Union[str, Any]="gelu" , __a : Optional[int]=0.1 , __a : Tuple=0.1 , __a : Optional[Any]=514 , __a : Optional[int]=1 , __a : Dict=0.02 , __a : Optional[int]=0.02 , __a : int=1E-05 , __a : int=1 , __a : Any=0 , __a : Union[str, Any]=2 , __a : Any="absolute" , __a : Any=True , __a : Tuple=768 , **__a : Union[str, Any] , ) -> Dict: """simple docstring""" super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) __lowercase : Optional[int] = vocab_size __lowercase : List[str] = hidden_size __lowercase : Tuple = num_hidden_layers __lowercase : str = num_attention_heads __lowercase : Any = hidden_act __lowercase : int = intermediate_size __lowercase : Optional[int] = hidden_dropout_prob __lowercase : List[str] = attention_probs_dropout_prob __lowercase : int = max_position_embeddings __lowercase : Optional[Any] = type_vocab_size __lowercase : Any = initializer_range __lowercase : Optional[Any] = initializer_factor __lowercase : int = layer_norm_eps __lowercase : List[str] = position_embedding_type __lowercase : Any = use_cache __lowercase : Optional[Any] = project_dim class lowerCAmelCase ( __a ): '''simple docstring''' _A : Any = '''altclip_vision_model''' def __init__( self : Tuple , __a : List[Any]=768 , __a : Optional[int]=3072 , __a : Optional[Any]=512 , __a : Union[str, Any]=12 , __a : Any=12 , __a : Optional[int]=3 , __a : Any=224 , __a : Dict=32 , __a : int="quick_gelu" , __a : Dict=1E-5 , __a : Dict=0.0 , __a : Optional[Any]=0.02 , __a : Dict=1.0 , **__a : Optional[int] , ) -> Union[str, Any]: """simple docstring""" super().__init__(**__a ) __lowercase : List[Any] = hidden_size __lowercase : Optional[int] = intermediate_size __lowercase : Tuple = projection_dim __lowercase : List[Any] = num_hidden_layers __lowercase : Optional[Any] = num_attention_heads __lowercase : str = num_channels __lowercase : Optional[int] = patch_size __lowercase : Optional[Any] = image_size __lowercase : List[str] = initializer_range __lowercase : Optional[int] = initializer_factor __lowercase : str = attention_dropout __lowercase : str = layer_norm_eps __lowercase : List[Any] = hidden_act @classmethod def lowerCAmelCase ( cls : int , __a : Union[str, os.PathLike] , **__a : List[Any] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(__a ) __lowercase : Optional[Any] = cls.get_config_dict(__a , **__a ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("""model_type""" ) == "altclip": __lowercase : Tuple = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__a , **__a ) class lowerCAmelCase ( __a ): '''simple docstring''' _A : str = '''altclip''' _A : str = True def __init__( self : Optional[Any] , __a : Union[str, Any]=None , __a : str=None , __a : Optional[int]=768 , __a : Optional[int]=2.6592 , **__a : Any ) -> List[Any]: """simple docstring""" __lowercase : Dict = kwargs.pop("""text_config_dict""" , __a ) __lowercase : Optional[int] = kwargs.pop("""vision_config_dict""" , __a ) super().__init__(**__a ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: __lowercase : Optional[Any] = {} # This is the complete result when using `text_config_dict`. __lowercase : Tuple = AltCLIPTextConfig(**__a ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: __lowercase : List[Any] = ( F"`{key}` is found in both `text_config_dict` and `text_config` but with different values. " F"The value `text_config_dict[\"{key}\"]` will be used instead." ) # If inferred from default argument values (just to be super careful) else: __lowercase : Union[str, Any] = ( F"`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The " F"value `text_config[\"{key}\"]` will be overriden." ) logger.warning(__a ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: __lowercase : Tuple = {} # This is the complete result when using `vision_config_dict`. __lowercase : Any = AltCLIPVisionConfig(**__a ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: __lowercase : int = { str(__a ): value for key, value in _vision_config_dict["""id2label"""].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: __lowercase : Optional[int] = ( F"`{key}` is found in both `vision_config_dict` and `vision_config` but with different " F"values. The value `vision_config_dict[\"{key}\"]` will be used instead." ) # If inferred from default argument values (just to be super careful) else: __lowercase : Optional[int] = ( F"`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. " F"The value `vision_config[\"{key}\"]` will be overriden." ) logger.warning(__a ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: __lowercase : List[str] = {} logger.info("""`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.""" ) if vision_config is None: __lowercase : int = {} logger.info("""`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.""" ) __lowercase : int = AltCLIPTextConfig(**__a ) __lowercase : int = AltCLIPVisionConfig(**__a ) __lowercase : Optional[int] = projection_dim __lowercase : Dict = logit_scale_init_value __lowercase : Any = 1.0 @classmethod def lowerCAmelCase ( cls : Optional[int] , __a : AltCLIPTextConfig , __a : AltCLIPVisionConfig , **__a : List[Any] ) -> int: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__a ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" __lowercase : Tuple = copy.deepcopy(self.__dict__ ) __lowercase : Optional[Any] = self.text_config.to_dict() __lowercase : int = self.vision_config.to_dict() __lowercase : Tuple = self.__class__.model_type return output
365
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowerCamelCase : str = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex lowerCamelCase : Union[str, Any] = 10 lowerCamelCase : List[str] = 2_56 def snake_case_ ( lowerCAmelCase_ : List[str] ): if len(lowerCAmelCase_ ) < MIN_NUM_TOKENS: return None __lowercase : Dict = MinHash(num_perm=lowerCAmelCase_ ) for token in set(lowerCAmelCase_ ): min_hash.update(token.encode() ) return min_hash def snake_case_ ( lowerCAmelCase_ : str ): return {t for t in NON_ALPHA.split(lowerCAmelCase_ ) if len(t.strip() ) > 0} class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , *, __a : float = 0.85 , ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = duplication_jaccard_threshold __lowercase : Optional[Any] = NUM_PERM __lowercase : List[Any] = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) __lowercase : List[str] = defaultdict(__a ) def lowerCAmelCase ( self : str , __a : Tuple , __a : MinHash ) -> None: """simple docstring""" __lowercase : List[Any] = self._index.query(__a ) if code_key in self._index.keys: print(F"Duplicate key {code_key}" ) return self._index.insert(__a , __a ) if len(__a ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__a ) break else: self._duplicate_clusters[close_duplicates[0]].add(__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[List[Dict]]: """simple docstring""" __lowercase : Dict = [] for base, duplicates in self._duplicate_clusters.items(): __lowercase : List[str] = [base] + list(__a ) # reformat the cluster to be a list of dict __lowercase : Optional[Any] = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(__a ) return duplicate_clusters def lowerCAmelCase ( self : Any , __a : int ) -> None: """simple docstring""" __lowercase : Tuple = self.get_duplicate_clusters() with open(__a , """w""" ) as f: json.dump(__a , __a ) def snake_case_ ( lowerCAmelCase_ : str ): __lowercase , __lowercase : Union[str, Any] = element __lowercase : Optional[Any] = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def snake_case_ ( lowerCAmelCase_ : Type[Dataset] ): with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(lowerCAmelCase_ , max_queue_size=10000 ) , chunksize=100 , ): if data is not None: yield data def snake_case_ ( lowerCAmelCase_ : Type[Dataset] , lowerCAmelCase_ : float ): __lowercase : Dict = DuplicationIndex(duplication_jaccard_threshold=lowerCAmelCase_ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(lowerCAmelCase_ ) ) , max_queue_size=100 ) ): di.add(lowerCAmelCase_ , lowerCAmelCase_ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : List[str] = get_tokens(lowerCAmelCase_ ) __lowercase : Dict = get_tokens(lowerCAmelCase_ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) lowerCamelCase : List[str] = None def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] ): __lowercase : Union[str, Any] = [] for elementa in cluster: __lowercase : Tuple = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: __lowercase : Dict = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(lowerCAmelCase_ , lowerCAmelCase_ ) >= jaccard_threshold: elementa["copies"] += 1 break else: __lowercase : Dict = 1 extremes.append(lowerCAmelCase_ ) return extremes def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple ): global _shared_dataset __lowercase : Tuple = dataset __lowercase : Optional[int] = [] __lowercase : str = partial(_find_cluster_extremes_shared , jaccard_threshold=lowerCAmelCase_ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( lowerCAmelCase_ , lowerCAmelCase_ , ) , total=len(lowerCAmelCase_ ) , ): extremes_list.append(lowerCAmelCase_ ) return extremes_list def snake_case_ ( lowerCAmelCase_ : Type[Dataset] , lowerCAmelCase_ : float = 0.85 ): __lowercase : Optional[int] = make_duplicate_clusters(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Tuple = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} __lowercase : int = {} __lowercase : Dict = find_extremes(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for extremes in extremes_clusters: for element in extremes: __lowercase : Optional[Any] = element __lowercase : int = duplicate_indices - set(extreme_dict.keys() ) __lowercase : int = dataset.filter(lambda lowerCAmelCase_ , lowerCAmelCase_ : idx not in remove_indices , with_indices=lowerCAmelCase_ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: __lowercase : List[str] = element["""base_index"""] in extreme_dict if element["is_extreme"]: __lowercase : str = extreme_dict[element["""base_index"""]]["""copies"""] print(F"Original dataset size: {len(lowerCAmelCase_ )}" ) print(F"Number of duplicate clusters: {len(lowerCAmelCase_ )}" ) print(F"Files in duplicate cluster: {len(lowerCAmelCase_ )}" ) print(F"Unique files in duplicate cluster: {len(lowerCAmelCase_ )}" ) print(F"Filtered dataset size: {len(lowerCAmelCase_ )}" ) return ds_filter, duplicate_clusters
306
0
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[int] , __a : str , __a : Optional[Any]=13 , __a : str=30 , __a : Optional[int]=2 , __a : List[Any]=3 , __a : List[str]=True , __a : Optional[int]=True , __a : List[str]=32 , __a : str=5 , __a : Any=4 , __a : List[str]=37 , __a : Tuple="gelu" , __a : Any=0.1 , __a : Optional[Any]=0.1 , __a : Any=10 , __a : int=0.02 , __a : Optional[Any]=None , __a : List[str]=2 , ) -> Optional[int]: """simple docstring""" __lowercase : List[Any] = parent __lowercase : Any = batch_size __lowercase : Optional[int] = image_size __lowercase : str = patch_size __lowercase : str = num_channels __lowercase : str = is_training __lowercase : List[Any] = use_labels __lowercase : int = hidden_size __lowercase : List[Any] = num_hidden_layers __lowercase : Optional[int] = num_attention_heads __lowercase : Any = intermediate_size __lowercase : Dict = hidden_act __lowercase : Tuple = hidden_dropout_prob __lowercase : Dict = attention_probs_dropout_prob __lowercase : List[str] = type_sequence_label_size __lowercase : str = initializer_range __lowercase : Union[str, Any] = scope __lowercase : Any = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase : str = (image_size // patch_size) ** 2 __lowercase : int = num_patches + 1 def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : Union[str, Any] = None if self.use_labels: __lowercase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : Union[str, Any] = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowerCAmelCase ( self : List[str] , __a : List[Any] , __a : List[str] , __a : Union[str, Any] ) -> str: """simple docstring""" __lowercase : List[str] = ViTModel(config=__a ) model.to(__a ) model.eval() __lowercase : Optional[Any] = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Optional[int] , __a : Tuple , __a : Dict , __a : Dict ) -> Any: """simple docstring""" __lowercase : str = ViTForMaskedImageModeling(config=__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __lowercase : Dict = 1 __lowercase : str = ViTForMaskedImageModeling(__a ) model.to(__a ) model.eval() __lowercase : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase : int = model(__a ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowerCAmelCase ( self : Optional[int] , __a : Dict , __a : Optional[Any] , __a : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : str = self.type_sequence_label_size __lowercase : Optional[int] = ViTForImageClassification(__a ) model.to(__a ) model.eval() __lowercase : List[str] = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase : Optional[Any] = 1 __lowercase : Optional[Any] = ViTForImageClassification(__a ) model.to(__a ) model.eval() __lowercase : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase : List[Any] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" __lowercase : str = self.prepare_config_and_inputs() ( __lowercase ) : int = config_and_inputs __lowercase : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Optional[Any] = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) _A : Optional[Any] = ( {'''feature-extraction''': ViTModel, '''image-classification''': ViTForImageClassification} if is_torch_available() else {} ) _A : Tuple = True _A : Optional[int] = False _A : Optional[int] = False _A : Union[str, Any] = False def lowerCAmelCase ( self : str ) -> int: """simple docstring""" __lowercase : str = ViTModelTester(self ) __lowercase : Tuple = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Tuple = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowercase : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : int = model_class(__a ) __lowercase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : Tuple = [*signature.parameters.keys()] __lowercase : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__a ) def lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Optional[int] = ViTModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def snake_case_ ( ): __lowercase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None @slow def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase : int = ViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ).to(__a ) __lowercase : Optional[Any] = self.default_image_processor __lowercase : Dict = prepare_img() __lowercase : Dict = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : Any = model(**__a ) # verify the logits __lowercase : str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) __lowercase : Union[str, Any] = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" __lowercase : Optional[Any] = ViTModel.from_pretrained("""facebook/dino-vits8""" ).to(__a ) __lowercase : Any = ViTImageProcessor.from_pretrained("""facebook/dino-vits8""" , size=480 ) __lowercase : int = prepare_img() __lowercase : Tuple = image_processor(images=__a , return_tensors="""pt""" ) __lowercase : str = inputs.pixel_values.to(__a ) # forward pass with torch.no_grad(): __lowercase : Optional[Any] = model(__a , interpolate_pos_encoding=__a ) # verify the logits __lowercase : Dict = torch.Size((1, 3601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , __a ) __lowercase : Tuple = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(__a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __a , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = ViTModel.from_pretrained("""facebook/dino-vits8""" , torch_dtype=torch.floataa , device_map="""auto""" ) __lowercase : int = self.default_image_processor __lowercase : Dict = prepare_img() __lowercase : List[Any] = image_processor(images=__a , return_tensors="""pt""" ) __lowercase : Optional[Any] = inputs.pixel_values.to(__a ) # forward pass to make sure inference works in fp16 with torch.no_grad(): __lowercase : Optional[Any] = model(__a )
366
from ...processing_utils import ProcessorMixin class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = ['''image_processor''', '''feature_extractor'''] _A : List[Any] = '''TvltImageProcessor''' _A : Optional[int] = '''TvltFeatureExtractor''' def __init__( self : str , __a : List[Any] , __a : Tuple ) -> Optional[Any]: """simple docstring""" super().__init__(image_processor=__a , feature_extractor=__a ) __lowercase : Union[str, Any] = image_processor __lowercase : Tuple = feature_extractor def __call__( self : Tuple , __a : Optional[int]=None , __a : Dict=None , __a : Union[str, Any]=None , __a : Tuple=None , __a : Optional[Any]=False , __a : List[Any]=False , *__a : List[str] , **__a : List[Any] , ) -> Dict: """simple docstring""" if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) __lowercase : Tuple = None if images is not None: __lowercase : Any = self.image_processor(__a , mask_pixel=__a , *__a , **__a ) if images_mixed is not None: __lowercase : Union[str, Any] = self.image_processor(__a , is_mixed=__a , *__a , **__a ) if audio is not None: __lowercase : Optional[Any] = self.feature_extractor( __a , *__a , sampling_rate=__a , mask_audio=__a , **__a ) __lowercase : Tuple = {} if audio is not None: output_dict.update(__a ) if images is not None: output_dict.update(__a ) if images_mixed_dict is not None: output_dict.update(__a ) return output_dict @property def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = self.image_processor.model_input_names __lowercase : Union[str, Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
306
0
from collections.abc import Sequence def snake_case_ ( lowerCAmelCase_ : Sequence[int] | None = None ): if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) __lowercase : str = nums[0] for i in range(1 , len(lowerCAmelCase_ ) ): __lowercase : Dict = nums[i] __lowercase : List[Any] = max(lowerCAmelCase_ , ans + num , lowerCAmelCase_ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user lowerCamelCase : Optional[Any] = int(input('''Enter number of elements : ''').strip()) lowerCamelCase : Optional[Any] = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n] print(max_subsequence_sum(array))
367
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Any , __a : Tuple , __a : Optional[int]=13 , __a : int=7 , __a : List[str]=False , __a : Optional[int]=True , __a : Optional[int]=False , __a : Dict=True , __a : Optional[int]=33 , __a : Dict=32 , __a : Optional[int]=5 , __a : Union[str, Any]=4 , __a : List[str]=37 , __a : Tuple="gelu" , __a : List[str]=0.1 , __a : Dict=0.1 , __a : List[Any]=512 , __a : Any=16 , __a : Optional[Any]=2 , __a : List[Any]=0.02 , __a : int=3 , __a : Union[str, Any]=4 , __a : Optional[int]=None , ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = parent __lowercase : int = batch_size __lowercase : Any = seq_length __lowercase : str = is_training __lowercase : str = use_input_mask __lowercase : Optional[int] = use_token_type_ids __lowercase : List[Any] = use_labels __lowercase : Optional[Any] = vocab_size __lowercase : int = hidden_size __lowercase : List[Any] = num_hidden_layers __lowercase : Dict = num_attention_heads __lowercase : Any = intermediate_size __lowercase : Dict = hidden_act __lowercase : Union[str, Any] = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : List[str] = max_position_embeddings __lowercase : Union[str, Any] = type_vocab_size __lowercase : Dict = type_sequence_label_size __lowercase : Union[str, Any] = initializer_range __lowercase : List[Any] = num_labels __lowercase : str = num_choices __lowercase : Tuple = scope def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : int = None if self.use_input_mask: __lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : str = None __lowercase : Optional[Any] = None __lowercase : Tuple = None if self.use_labels: __lowercase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : List[Any] , __a : int , __a : int , __a : Dict , __a : Union[str, Any] , __a : List[str] , __a : str ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = EsmModel(config=__a ) model.to(__a ) model.eval() __lowercase : str = model(__a , attention_mask=__a ) __lowercase : List[Any] = model(__a ) __lowercase : Optional[int] = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : Union[str, Any] , __a : Dict , __a : List[Any] , __a : Tuple , __a : Union[str, Any] , __a : str , __a : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase : List[str] = EsmForMaskedLM(config=__a ) model.to(__a ) model.eval() __lowercase : int = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[int] , __a : Union[str, Any] , __a : List[Any] , __a : Tuple , __a : Tuple , __a : Optional[int] , __a : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = self.num_labels __lowercase : Any = EsmForTokenClassification(config=__a ) model.to(__a ) model.eval() __lowercase : Optional[Any] = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase : Any = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : List[str] = config_and_inputs __lowercase : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Optional[Any] = False _A : Any = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) _A : Optional[Any] = () _A : List[Any] = ( { '''feature-extraction''': EsmModel, '''fill-mask''': EsmForMaskedLM, '''text-classification''': EsmForSequenceClassification, '''token-classification''': EsmForTokenClassification, '''zero-shot''': EsmForSequenceClassification, } if is_torch_available() else {} ) _A : Optional[Any] = True def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : Optional[int] = EsmModelTester(self ) __lowercase : Tuple = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase : Union[str, Any] = type self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : List[str] = EsmModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] __lowercase : List[str] = EsmEmbeddings(config=__a ) __lowercase : Union[str, Any] = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) __lowercase : int = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) __lowercase : str = create_position_ids_from_input_ids(__a , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__a , __a ) ) ) def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] __lowercase : Optional[Any] = EsmEmbeddings(config=__a ) __lowercase : Optional[int] = torch.empty(2 , 4 , 30 ) __lowercase : Tuple = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] __lowercase : List[str] = torch.as_tensor([expected_single_positions, expected_single_positions] ) __lowercase : Any = embeddings.create_position_ids_from_inputs_embeds(__a ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__a , __a ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" pass @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" pass @require_torch class lowerCAmelCase ( __a ): '''simple docstring''' @slow def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): __lowercase : Tuple = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() __lowercase : Tuple = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase : List[str] = model(__a )[0] __lowercase : Union[str, Any] = 33 __lowercase : Union[str, Any] = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , __a ) __lowercase : List[Any] = torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): __lowercase : int = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() __lowercase : int = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) __lowercase : Any = model(__a )[0] # compare the actual values for a slice. __lowercase : int = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) )
306
0
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
368
def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def snake_case_ ( lowerCAmelCase_ : int = 5000 ): __lowercase : Optional[int] = [(i * (3 * i - 1)) // 2 for i in range(1 , lowerCAmelCase_ )] for i, pentagonal_i in enumerate(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ , len(lowerCAmelCase_ ) ): __lowercase : int = pentagonal_nums[j] __lowercase : Optional[int] = pentagonal_i + pentagonal_j __lowercase : Union[str, Any] = pentagonal_j - pentagonal_i if is_pentagonal(lowerCAmelCase_ ) and is_pentagonal(lowerCAmelCase_ ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
306
0
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class lowerCAmelCase ( __a ): '''simple docstring''' @require_torch def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Optional[int] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ __lowercase : int = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ __lowercase : List[Any] = """ import socket def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache __lowercase : Optional[Any] = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(__a ) BertModel.from_pretrained(__a ) BertTokenizer.from_pretrained(__a ) pipeline(task="""fill-mask""" , model=__a ) # baseline - just load from_pretrained with normal network __lowercase : str = [sys.executable, """-c""", """\n""".join([load, run, mock] )] # should succeed __lowercase : Optional[int] = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files __lowercase : Dict = """1""" __lowercase : List[str] = subprocess.run(__a , env=__a , check=__a , capture_output=__a ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase : Any = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ __lowercase : Optional[Any] = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ __lowercase : int = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache __lowercase : List[str] = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(__a ) BertModel.from_pretrained(__a ) BertTokenizer.from_pretrained(__a ) pipeline(task="""fill-mask""" , model=__a ) # baseline - just load from_pretrained with normal network __lowercase : str = [sys.executable, """-c""", """\n""".join([load, run, mock] )] # should succeed __lowercase : Optional[int] = self.get_env() __lowercase : Tuple = subprocess.run(__a , env=__a , check=__a , capture_output=__a ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Tuple = """ from transformers import BertConfig, BertModel, BertTokenizer """ __lowercase : int = """ mname = \"hf-internal-testing/tiny-random-bert-sharded\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print(\"success\") """ __lowercase : str = """ import socket def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\") socket.socket = offline_socket """ # baseline - just load from_pretrained with normal network __lowercase : str = [sys.executable, """-c""", """\n""".join([load, run] )] # should succeed __lowercase : List[str] = self.get_env() __lowercase : Any = subprocess.run(__a , env=__a , check=__a , capture_output=__a ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) # next emulate no network __lowercase : List[str] = [sys.executable, """-c""", """\n""".join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files __lowercase : Dict = """1""" __lowercase : List[str] = subprocess.run(__a , env=__a , check=__a , capture_output=__a ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" __lowercase : str = """ from transformers import pipeline """ __lowercase : List[str] = """ mname = \"hf-internal-testing/tiny-random-bert\" pipe = pipeline(model=mname) """ __lowercase : List[str] = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\") socket.socket = offline_socket """ __lowercase : str = self.get_env() __lowercase : str = """1""" __lowercase : Tuple = [sys.executable, """-c""", """\n""".join([load, mock, run] )] __lowercase : Optional[int] = subprocess.run(__a , env=__a , check=__a , capture_output=__a ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( """You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""" ) , ) @require_torch def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" __lowercase : List[str] = """ from transformers import AutoModel """ __lowercase : Any = """ mname = \"hf-internal-testing/test_dynamic_model\" AutoModel.from_pretrained(mname, trust_remote_code=True) print(\"success\") """ # baseline - just load from_pretrained with normal network __lowercase : Any = [sys.executable, """-c""", """\n""".join([load, run] )] # should succeed __lowercase : Dict = self.get_env() __lowercase : Dict = subprocess.run(__a , env=__a , check=__a , capture_output=__a ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files __lowercase : List[str] = """1""" __lowercase : Any = subprocess.run(__a , env=__a , check=__a , capture_output=__a ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() )
369
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowerCAmelCase ( __a ): '''simple docstring''' _A : Optional[Any] = (DPMSolverSDEScheduler,) _A : Dict = 10 def lowerCAmelCase ( self : Optional[int] , **__a : Dict ) -> Optional[int]: """simple docstring""" __lowercase : Any = { """num_train_timesteps""": 1100, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**__a ) return config def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=__a ) def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__a ) def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = self.scheduler_classes[0] __lowercase : List[str] = self.get_scheduler_config() __lowercase : Any = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase : Optional[Any] = self.dummy_model() __lowercase : str = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase : Optional[Any] = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): __lowercase : Union[str, Any] = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[Any] = model(__a , __a ) __lowercase : Optional[Any] = scheduler.step(__a , __a , __a ) __lowercase : str = output.prev_sample __lowercase : Optional[Any] = torch.sum(torch.abs(__a ) ) __lowercase : Union[str, Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47821044921875 ) < 1E-2 assert abs(result_mean.item() - 0.2178705964565277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59352111816406 ) < 1E-2 assert abs(result_mean.item() - 0.22342906892299652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase : Tuple = self.scheduler_classes[0] __lowercase : Dict = self.get_scheduler_config(prediction_type="""v_prediction""" ) __lowercase : int = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase : Optional[int] = self.dummy_model() __lowercase : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase : Dict = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): __lowercase : Dict = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[int] = model(__a , __a ) __lowercase : Optional[int] = scheduler.step(__a , __a , __a ) __lowercase : int = output.prev_sample __lowercase : Optional[Any] = torch.sum(torch.abs(__a ) ) __lowercase : List[str] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77149200439453 ) < 1E-2 assert abs(result_mean.item() - 0.16226289014816284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1663360595703 ) < 1E-2 assert abs(result_mean.item() - 0.16688326001167297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8487548828125 ) < 1E-2 assert abs(result_mean.item() - 0.1560530662536621 ) < 1E-3 def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = self.scheduler_classes[0] __lowercase : Dict = self.get_scheduler_config() __lowercase : Optional[int] = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps , device=__a ) __lowercase : int = self.dummy_model() __lowercase : Optional[Any] = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __lowercase : int = scheduler.scale_model_input(__a , __a ) __lowercase : List[str] = model(__a , __a ) __lowercase : List[str] = scheduler.step(__a , __a , __a ) __lowercase : int = output.prev_sample __lowercase : List[Any] = torch.sum(torch.abs(__a ) ) __lowercase : Optional[Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46957397460938 ) < 1E-2 assert abs(result_mean.item() - 0.21805934607982635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59353637695312 ) < 1E-2 assert abs(result_mean.item() - 0.22342908382415771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : str = self.scheduler_classes[0] __lowercase : List[Any] = self.get_scheduler_config() __lowercase : Tuple = scheduler_class(**__a , use_karras_sigmas=__a ) scheduler.set_timesteps(self.num_inference_steps , device=__a ) __lowercase : List[str] = self.dummy_model() __lowercase : Optional[int] = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma __lowercase : str = sample.to(__a ) for t in scheduler.timesteps: __lowercase : List[Any] = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[Any] = model(__a , __a ) __lowercase : Any = scheduler.step(__a , __a , __a ) __lowercase : Optional[Any] = output.prev_sample __lowercase : Any = torch.sum(torch.abs(__a ) ) __lowercase : Optional[Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66974135742188 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63653564453125 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3135223388672 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2
306
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowerCamelCase : Dict = False class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" return 12 @property def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" return 12 @property def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" return 32 @property def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" torch.manual_seed(0 ) __lowercase : Union[str, Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" __lowercase : Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) __lowercase : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(__a ) @property def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) __lowercase : Any = 12 __lowercase : Any = 12 __lowercase : Dict = { """attention_bias""": True, """cross_attention_dim""": 32, """attention_head_dim""": height * width, """num_attention_heads""": 1, """num_vector_embeds""": self.num_embed, """num_embeds_ada_norm""": self.num_embeds_ada_norm, """norm_num_groups""": 32, """sample_size""": width, """activation_fn""": """geglu-approximate""", } __lowercase : int = TransformeraDModel(**__a ) return model def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = """cpu""" __lowercase : str = self.dummy_vqvae __lowercase : Dict = self.dummy_text_encoder __lowercase : str = self.dummy_tokenizer __lowercase : Union[str, Any] = self.dummy_transformer __lowercase : Optional[Any] = VQDiffusionScheduler(self.num_embed ) __lowercase : List[Any] = LearnedClassifierFreeSamplingEmbeddings(learnable=__a ) __lowercase : int = VQDiffusionPipeline( vqvae=__a , text_encoder=__a , tokenizer=__a , transformer=__a , scheduler=__a , learned_classifier_free_sampling_embeddings=__a , ) __lowercase : Union[str, Any] = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __lowercase : Dict = """teddy bear playing in the pool""" __lowercase : List[str] = torch.Generator(device=__a ).manual_seed(0 ) __lowercase : Tuple = pipe([prompt] , generator=__a , num_inference_steps=2 , output_type="""np""" ) __lowercase : Optional[Any] = output.images __lowercase : List[Any] = torch.Generator(device=__a ).manual_seed(0 ) __lowercase : int = pipe( [prompt] , generator=__a , output_type="""np""" , return_dict=__a , num_inference_steps=2 )[0] __lowercase : Optional[Any] = image[0, -3:, -3:, -1] __lowercase : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowercase : str = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase : int = """cpu""" __lowercase : Dict = self.dummy_vqvae __lowercase : List[Any] = self.dummy_text_encoder __lowercase : Dict = self.dummy_tokenizer __lowercase : Dict = self.dummy_transformer __lowercase : int = VQDiffusionScheduler(self.num_embed ) __lowercase : int = LearnedClassifierFreeSamplingEmbeddings( learnable=__a , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) __lowercase : List[str] = VQDiffusionPipeline( vqvae=__a , text_encoder=__a , tokenizer=__a , transformer=__a , scheduler=__a , learned_classifier_free_sampling_embeddings=__a , ) __lowercase : Optional[Any] = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __lowercase : Tuple = """teddy bear playing in the pool""" __lowercase : List[Any] = torch.Generator(device=__a ).manual_seed(0 ) __lowercase : int = pipe([prompt] , generator=__a , num_inference_steps=2 , output_type="""np""" ) __lowercase : Any = output.images __lowercase : Optional[int] = torch.Generator(device=__a ).manual_seed(0 ) __lowercase : Any = pipe( [prompt] , generator=__a , output_type="""np""" , return_dict=__a , num_inference_steps=2 )[0] __lowercase : List[str] = image[0, -3:, -3:, -1] __lowercase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __lowercase : int = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase : Optional[int] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy""" ) __lowercase : Dict = VQDiffusionPipeline.from_pretrained("""microsoft/vq-diffusion-ithq""" ) __lowercase : Any = pipeline.to(__a ) pipeline.set_progress_bar_config(disable=__a ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though __lowercase : Optional[Any] = torch.Generator(device=__a ).manual_seed(0 ) __lowercase : Union[str, Any] = pipeline( """teddy bear playing in the pool""" , num_images_per_prompt=1 , generator=__a , output_type="""np""" , ) __lowercase : List[Any] = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
370
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate lowerCamelCase : str = trt.Logger(trt.Logger.WARNING) lowerCamelCase : Any = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) lowerCamelCase : Optional[Any] = logging.getLogger(__name__) lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=3_84, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=1_28, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) lowerCamelCase : Dict = parser.parse_args() if args.tokenizer_name: lowerCamelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) lowerCamelCase : List[str] = args.per_device_eval_batch_size lowerCamelCase : Any = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties lowerCamelCase : List[str] = True lowerCamelCase : List[Any] = '''temp_engine/bert-fp32.engine''' if args.fpaa: lowerCamelCase : Optional[Any] = '''temp_engine/bert-fp16.engine''' if args.inta: lowerCamelCase : int = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') lowerCamelCase : int = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network lowerCamelCase : Union[str, Any] = [network.get_input(i) for i in range(network.num_inputs)] lowerCamelCase : Dict = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: lowerCamelCase : List[str] = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) lowerCamelCase : Optional[int] = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) lowerCamelCase : Optional[Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ): __lowercase : List[str] = np.asarray(inputs["""input_ids"""] , dtype=np.intaa ) __lowercase : Union[str, Any] = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa ) __lowercase : int = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowerCAmelCase_ ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowerCAmelCase_ ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowerCAmelCase_ ) # start time __lowercase : Optional[Any] = time.time() # Run inference context.execute_async( bindings=[int(lowerCAmelCase_ ) for d_inp in d_inputs] + [int(lowerCAmelCase_ ), int(lowerCAmelCase_ )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) cuda.memcpy_dtoh_async(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Synchronize the stream and take time stream.synchronize() # end time __lowercase : int = time.time() __lowercase : Union[str, Any] = end_time - start_time __lowercase : Any = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. lowerCamelCase : Tuple = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase : List[Any] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. lowerCamelCase : Optional[Any] = raw_datasets['''validation'''].column_names lowerCamelCase : Union[str, Any] = '''question''' if '''question''' in column_names else column_names[0] lowerCamelCase : str = '''context''' if '''context''' in column_names else column_names[1] lowerCamelCase : Dict = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). lowerCamelCase : Dict = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) lowerCamelCase : Tuple = min(args.max_seq_length, tokenizer.model_max_length) def snake_case_ ( lowerCAmelCase_ : int ): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace __lowercase : str = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. __lowercase : List[str] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=lowerCAmelCase_ , stride=args.doc_stride , return_overflowing_tokens=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. __lowercase : List[str] = tokenized_examples.pop("""overflow_to_sample_mapping""" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. __lowercase : Any = [] for i in range(len(tokenized_examples["""input_ids"""] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). __lowercase : Dict = tokenized_examples.sequence_ids(lowerCAmelCase_ ) __lowercase : List[Any] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. __lowercase : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. __lowercase : Dict = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i] ) ] return tokenized_examples lowerCamelCase : Tuple = raw_datasets['''validation'''] # Validation Feature Creation lowerCamelCase : Optional[int] = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) lowerCamelCase : Union[str, Any] = default_data_collator lowerCamelCase : Optional[Any] = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) lowerCamelCase : List[str] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict="eval" ): # Post-processing: we match the start logits and end logits to answers in the original context. __lowercase : int = postprocess_qa_predictions( examples=lowerCAmelCase_ , features=lowerCAmelCase_ , predictions=lowerCAmelCase_ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowerCAmelCase_ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: __lowercase : Optional[int] = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: __lowercase : List[Any] = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] __lowercase : Optional[int] = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=lowerCAmelCase_ , label_ids=lowerCAmelCase_ ) lowerCamelCase : Dict = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def snake_case_ ( lowerCAmelCase_ : str ): return trt.volume(engine.get_binding_shape(lowerCAmelCase_ ) ) * engine.get_binding_dtype(lowerCAmelCase_ ).itemsize # Allocate device memory for inputs and outputs. lowerCamelCase : int = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer lowerCamelCase : Dict = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) lowerCamelCase : str = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) lowerCamelCase : Dict = cuda.mem_alloc(h_outputa.nbytes) lowerCamelCase : Optional[Any] = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. lowerCamelCase : Optional[int] = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(f''' Num examples = {len(eval_dataset)}''') logger.info(f''' Batch size = {args.per_device_eval_batch_size}''') lowerCamelCase : int = 0.0 lowerCamelCase : List[str] = 0 lowerCamelCase : List[str] = timeit.default_timer() lowerCamelCase : List[Any] = None for step, batch in enumerate(eval_dataloader): lowerCamelCase ,lowerCamelCase : str = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 lowerCamelCase ,lowerCamelCase : Union[str, Any] = outputs lowerCamelCase : Optional[Any] = torch.tensor(start_logits) lowerCamelCase : List[str] = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered lowerCamelCase : Optional[int] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-1_00) lowerCamelCase : Dict = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-1_00) lowerCamelCase : List[Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) lowerCamelCase : Dict = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-1_00) if all_preds is not None: lowerCamelCase : Tuple = nested_truncate(all_preds, len(eval_dataset)) lowerCamelCase : Dict = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 10_00 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 10_00)) logger.info('''Total Number of Inference = %d''', niter) lowerCamelCase : str = post_processing_function(eval_examples, eval_dataset, all_preds) lowerCamelCase : Optional[Any] = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'''Evaluation metrics: {eval_metric}''')
306
0
"""simple docstring""" import math import sys import cva import numpy as np def snake_case_ ( lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : float ): # For applying gaussian function for each element in matrix. __lowercase : Dict = math.sqrt(lowerCAmelCase_ ) __lowercase : Dict = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def snake_case_ ( lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int ): __lowercase : Any = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : float ): # Creates a gaussian kernel of given dimension. __lowercase : Optional[Any] = np.zeros((kernel_size, kernel_size) ) for i in range(0 , lowerCAmelCase_ ): for j in range(0 , lowerCAmelCase_ ): __lowercase : List[str] = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : float , lowerCAmelCase_ : float , lowerCAmelCase_ : int , ): __lowercase : Dict = np.zeros(img.shape ) __lowercase : Optional[int] = get_gauss_kernel(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : str = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __lowercase : Tuple = get_slice(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Union[str, Any] = img_s - img_s[kernel_size // 2, kernel_size // 2] __lowercase : Dict = vec_gaussian(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : str = np.multiply(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : str = np.multiply(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Dict = np.sum(lowerCAmelCase_ ) / np.sum(lowerCAmelCase_ ) __lowercase : Union[str, Any] = val return imga def snake_case_ ( lowerCAmelCase_ : list ): __lowercase : str = args[1] if args[1:] else """../image_data/lena.jpg""" __lowercase : Dict = float(args[2] ) if args[2:] else 1.0 __lowercase : Union[str, Any] = float(args[3] ) if args[3:] else 1.0 if args[4:]: __lowercase : Optional[Any] = int(args[4] ) __lowercase : List[str] = kernel_size + abs(kernel_size % 2 - 1 ) else: __lowercase : int = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": lowerCamelCase : Optional[Any] = parse_args(sys.argv) lowerCamelCase : Optional[int] = cva.imread(filename, 0) cva.imshow('''input image''', img) lowerCamelCase : Optional[int] = img / 2_55 lowerCamelCase : str = out.astype('''float32''') lowerCamelCase : Optional[Any] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) lowerCamelCase : Any = out * 2_55 lowerCamelCase : int = np.uinta(out) cva.imshow('''output image''', out) cva.waitKey(0) cva.destroyAllWindows()
371
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : str = { '''facebook/nllb-moe-54B''': '''https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''nllb-moe''' _A : List[str] = ['''past_key_values'''] _A : Optional[Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Dict , __a : List[str]=128112 , __a : List[Any]=1024 , __a : List[Any]=12 , __a : Union[str, Any]=4096 , __a : List[str]=16 , __a : int=12 , __a : Optional[int]=4096 , __a : str=16 , __a : List[Any]=0.05 , __a : Any=0.05 , __a : Dict=True , __a : Optional[Any]=True , __a : List[Any]="relu" , __a : Tuple=1024 , __a : Optional[Any]=0.1 , __a : Tuple=0.1 , __a : Any=0.0 , __a : Optional[Any]=0.02 , __a : List[str]=2 , __a : Union[str, Any]=True , __a : List[Any]=False , __a : Tuple="float32" , __a : Optional[int]=False , __a : Optional[int]=128 , __a : str=64 , __a : Dict=4 , __a : str=4 , __a : List[str]=0.001 , __a : List[Any]=0.001 , __a : Optional[Any]="all" , __a : Optional[int]=False , __a : int=False , __a : int=1.0 , __a : Dict=0.2 , __a : Tuple=1 , __a : Optional[Any]=0 , __a : List[Any]=2 , __a : Any=False , **__a : Any , ) -> Any: """simple docstring""" __lowercase : int = vocab_size __lowercase : List[Any] = max_position_embeddings __lowercase : Tuple = d_model __lowercase : str = encoder_ffn_dim __lowercase : List[str] = encoder_layers __lowercase : int = encoder_attention_heads __lowercase : List[Any] = decoder_ffn_dim __lowercase : int = decoder_layers __lowercase : Optional[int] = decoder_attention_heads __lowercase : Union[str, Any] = dropout __lowercase : str = attention_dropout __lowercase : Any = activation_dropout __lowercase : List[Any] = activation_function __lowercase : List[str] = init_std __lowercase : Optional[int] = encoder_layerdrop __lowercase : str = decoder_layerdrop __lowercase : Dict = use_cache __lowercase : Optional[Any] = encoder_layers __lowercase : str = scale_embedding # scale factor will be sqrt(d_model) if True __lowercase : List[Any] = router_z_loss_coef __lowercase : Tuple = router_aux_loss_coef __lowercase : str = decoder_sparse_step __lowercase : Any = encoder_sparse_step __lowercase : str = num_experts __lowercase : List[Any] = expert_capacity __lowercase : int = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) __lowercase : Optional[int] = router_dtype __lowercase : Any = router_ignore_padding_tokens __lowercase : Optional[Any] = batch_prioritized_routing __lowercase : str = second_expert_policy __lowercase : List[str] = normalize_router_prob_before_dropping __lowercase : List[Any] = moe_eval_capacity_token_fraction __lowercase : List[str] = moe_token_dropout __lowercase : Optional[Any] = output_router_logits super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , decoder_start_token_id=__a , **__a , )
306
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor lowerCamelCase : List[str] = logging.get_logger(__name__) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : str , *__a : Optional[Any] , **__a : List[Any] ) -> None: """simple docstring""" warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" , __a , ) super().__init__(*__a , **__a )
350
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase : Optional[Any] = { '''configuration_poolformer''': [ '''POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PoolFormerConfig''', '''PoolFormerOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = ['''PoolFormerFeatureExtractor'''] lowerCamelCase : Union[str, Any] = ['''PoolFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = [ '''POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PoolFormerForImageClassification''', '''PoolFormerModel''', '''PoolFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
306
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 650, '''eval_accuracy''': 0.6, '''eval_loss''': 0.9}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 600, '''eval_accuracy''': 0.3, '''eval_loss''': 0.9}, }, ] ) class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : str ) -> int: """simple docstring""" if self.framework == "pytorch": subprocess.run( F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding="""utf-8""" , check=__a , ) assert hasattr(self , """env""" ) def lowerCAmelCase ( self : Dict , __a : List[str]=1 ) -> int: """simple docstring""" return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"{self.env.base_job_name}-single" , instance_count=__a , instance_type=self.instance_type , debugger_hook_config=__a , hyperparameters={**self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version="""py36""" , ) def lowerCAmelCase ( self : List[str] , __a : Optional[Any] ) -> str: """simple docstring""" TrainingJobAnalytics(__a ).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv" ) def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase : Dict = self.create_estimator() # run training estimator.fit() # result dataframe __lowercase : int = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __lowercase : List[Any] = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) __lowercase : int = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __lowercase : Optional[Any] = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"{estimator.latest_training_job.name}.json" , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , __a )
351
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : List[str] = 2 __lowercase : Union[str, Any] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(lowerCAmelCase_ ) if n > 1: factors.append(lowerCAmelCase_ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
306
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase : List[Any] = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[Any] = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys lowerCamelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
352
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Dict = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) __lowercase : List[str] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __lowercase : Optional[Any] = model(__a )["""last_hidden_state"""] __lowercase : Any = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , __a ) # compare the actual values for a slice. __lowercase : Dict = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
306
0
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Dict = { """task_specific_params""": { """summarization""": {"""length_penalty""": 1.0, """max_length""": 128, """min_length""": 12, """num_beams""": 4}, """summarization_cnn""": {"""length_penalty""": 2.0, """max_length""": 142, """min_length""": 56, """num_beams""": 4}, """summarization_xsum""": {"""length_penalty""": 1.0, """max_length""": 62, """min_length""": 11, """num_beams""": 6}, } } __lowercase : Optional[int] = { """task_specific_params.summarization.length_penalty""": 1.0, """task_specific_params.summarization.max_length""": 128, """task_specific_params.summarization.min_length""": 12, """task_specific_params.summarization.num_beams""": 4, """task_specific_params.summarization_cnn.length_penalty""": 2.0, """task_specific_params.summarization_cnn.max_length""": 142, """task_specific_params.summarization_cnn.min_length""": 56, """task_specific_params.summarization_cnn.num_beams""": 4, """task_specific_params.summarization_xsum.length_penalty""": 1.0, """task_specific_params.summarization_xsum.max_length""": 62, """task_specific_params.summarization_xsum.min_length""": 11, """task_specific_params.summarization_xsum.num_beams""": 6, } self.assertEqual(flatten_dict(__a ) , __a ) def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(__a ) , x.transpose() ) ) __lowercase : Dict = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(__a , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = np.random.randn(3 , 4 ) __lowercase : Dict = torch.tensor(__a ) self.assertTrue(np.allclose(transpose(__a ) , transpose(__a ).numpy() ) ) __lowercase : Optional[int] = np.random.randn(3 , 4 , 5 ) __lowercase : Optional[int] = torch.tensor(__a ) self.assertTrue(np.allclose(transpose(__a , axes=(1, 2, 0) ) , transpose(__a , axes=(1, 2, 0) ).numpy() ) ) @require_tf def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" __lowercase : Union[str, Any] = np.random.randn(3 , 4 ) __lowercase : int = tf.constant(__a ) self.assertTrue(np.allclose(transpose(__a ) , transpose(__a ).numpy() ) ) __lowercase : Optional[Any] = np.random.randn(3 , 4 , 5 ) __lowercase : str = tf.constant(__a ) self.assertTrue(np.allclose(transpose(__a , axes=(1, 2, 0) ) , transpose(__a , axes=(1, 2, 0) ).numpy() ) ) @require_flax def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Any = np.random.randn(3 , 4 ) __lowercase : Any = jnp.array(__a ) self.assertTrue(np.allclose(transpose(__a ) , np.asarray(transpose(__a ) ) ) ) __lowercase : Any = np.random.randn(3 , 4 , 5 ) __lowercase : Dict = jnp.array(__a ) self.assertTrue(np.allclose(transpose(__a , axes=(1, 2, 0) ) , np.asarray(transpose(__a , axes=(1, 2, 0) ) ) ) ) def lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" __lowercase : Optional[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(__a , (4, 3) ) , np.reshape(__a , (4, 3) ) ) ) __lowercase : Optional[int] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(__a , (12, 5) ) , np.reshape(__a , (12, 5) ) ) ) @require_torch def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = np.random.randn(3 , 4 ) __lowercase : str = torch.tensor(__a ) self.assertTrue(np.allclose(reshape(__a , (4, 3) ) , reshape(__a , (4, 3) ).numpy() ) ) __lowercase : int = np.random.randn(3 , 4 , 5 ) __lowercase : Dict = torch.tensor(__a ) self.assertTrue(np.allclose(reshape(__a , (12, 5) ) , reshape(__a , (12, 5) ).numpy() ) ) @require_tf def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : List[Any] = np.random.randn(3 , 4 ) __lowercase : Any = tf.constant(__a ) self.assertTrue(np.allclose(reshape(__a , (4, 3) ) , reshape(__a , (4, 3) ).numpy() ) ) __lowercase : Union[str, Any] = np.random.randn(3 , 4 , 5 ) __lowercase : List[Any] = tf.constant(__a ) self.assertTrue(np.allclose(reshape(__a , (12, 5) ) , reshape(__a , (12, 5) ).numpy() ) ) @require_flax def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase : str = np.random.randn(3 , 4 ) __lowercase : Optional[int] = jnp.array(__a ) self.assertTrue(np.allclose(reshape(__a , (4, 3) ) , np.asarray(reshape(__a , (4, 3) ) ) ) ) __lowercase : Optional[int] = np.random.randn(3 , 4 , 5 ) __lowercase : Dict = jnp.array(__a ) self.assertTrue(np.allclose(reshape(__a , (12, 5) ) , np.asarray(reshape(__a , (12, 5) ) ) ) ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[Any] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(__a ) , np.squeeze(__a ) ) ) __lowercase : Union[str, Any] = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(__a , axis=2 ) , np.squeeze(__a , axis=2 ) ) ) @require_torch def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : List[str] = np.random.randn(1 , 3 , 4 ) __lowercase : int = torch.tensor(__a ) self.assertTrue(np.allclose(squeeze(__a ) , squeeze(__a ).numpy() ) ) __lowercase : List[str] = np.random.randn(1 , 4 , 1 , 5 ) __lowercase : Optional[Any] = torch.tensor(__a ) self.assertTrue(np.allclose(squeeze(__a , axis=2 ) , squeeze(__a , axis=2 ).numpy() ) ) @require_tf def lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" __lowercase : int = np.random.randn(1 , 3 , 4 ) __lowercase : Tuple = tf.constant(__a ) self.assertTrue(np.allclose(squeeze(__a ) , squeeze(__a ).numpy() ) ) __lowercase : Tuple = np.random.randn(1 , 4 , 1 , 5 ) __lowercase : Any = tf.constant(__a ) self.assertTrue(np.allclose(squeeze(__a , axis=2 ) , squeeze(__a , axis=2 ).numpy() ) ) @require_flax def lowerCAmelCase ( self : str ) -> int: """simple docstring""" __lowercase : Union[str, Any] = np.random.randn(1 , 3 , 4 ) __lowercase : int = jnp.array(__a ) self.assertTrue(np.allclose(squeeze(__a ) , np.asarray(squeeze(__a ) ) ) ) __lowercase : Tuple = np.random.randn(1 , 4 , 1 , 5 ) __lowercase : Any = jnp.array(__a ) self.assertTrue(np.allclose(squeeze(__a , axis=2 ) , np.asarray(squeeze(__a , axis=2 ) ) ) ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase : Any = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(__a , axis=1 ) , np.expand_dims(__a , axis=1 ) ) ) @require_torch def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" __lowercase : str = np.random.randn(3 , 4 ) __lowercase : Optional[int] = torch.tensor(__a ) self.assertTrue(np.allclose(expand_dims(__a , axis=1 ) , expand_dims(__a , axis=1 ).numpy() ) ) @require_tf def lowerCAmelCase ( self : str ) -> int: """simple docstring""" __lowercase : str = np.random.randn(3 , 4 ) __lowercase : Tuple = tf.constant(__a ) self.assertTrue(np.allclose(expand_dims(__a , axis=1 ) , expand_dims(__a , axis=1 ).numpy() ) ) @require_flax def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase : Any = np.random.randn(3 , 4 ) __lowercase : Union[str, Any] = jnp.array(__a ) self.assertTrue(np.allclose(expand_dims(__a , axis=1 ) , np.asarray(expand_dims(__a , axis=1 ) ) ) )
353
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Optional[Any] = len(lowerCAmelCase_ ) __lowercase : str = len(lowerCAmelCase_ ) __lowercase : Optional[int] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __lowercase : Tuple = True for i in range(lowerCAmelCase_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __lowercase : Optional[Any] = True if a[i].islower(): __lowercase : Dict = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
306
0
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) lowerCamelCase : List[str] = logging.getLogger(__name__) def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] ): __lowercase : Tuple = np.argmax(lowerCAmelCase_ , axis=1 ) return np.sum(outputs == labels ) def snake_case_ ( lowerCAmelCase_ : List[str] ): with open(lowerCAmelCase_ , encoding="""utf_8""" ) as f: __lowercase : Union[str, Any] = csv.reader(lowerCAmelCase_ ) __lowercase : Optional[int] = [] next(lowerCAmelCase_ ) # skip the first line for line in tqdm(lowerCAmelCase_ ): output.append((""" """.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] ): __lowercase : Union[str, Any] = [] for dataset in encoded_datasets: __lowercase : Any = len(lowerCAmelCase_ ) __lowercase : str = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) __lowercase : Dict = np.zeros((n_batch, 2) , dtype=np.intaa ) __lowercase : Optional[int] = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) __lowercase : Any = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(lowerCAmelCase_ ): __lowercase : List[Any] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __lowercase : Dict = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __lowercase : Any = with_conta __lowercase : List[Any] = with_conta __lowercase : Optional[int] = len(lowerCAmelCase_ ) - 1 __lowercase : int = len(lowerCAmelCase_ ) - 1 __lowercase : Dict = with_conta __lowercase : Any = with_conta __lowercase : Optional[Any] = mc_label __lowercase : Any = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(lowerCAmelCase_ ) for t in all_inputs ) ) return tensor_datasets def snake_case_ ( ): __lowercase : Optional[int] = argparse.ArgumentParser() parser.add_argument("""--model_name""" , type=lowerCAmelCase_ , default="""openai-gpt""" , help="""pretrained model name""" ) parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" ) parser.add_argument("""--do_eval""" , action="""store_true""" , help="""Whether to run eval on the dev set.""" ) parser.add_argument( """--output_dir""" , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help="""The output directory where the model predictions and checkpoints will be written.""" , ) parser.add_argument("""--train_dataset""" , type=lowerCAmelCase_ , default="""""" ) parser.add_argument("""--eval_dataset""" , type=lowerCAmelCase_ , default="""""" ) parser.add_argument("""--seed""" , type=lowerCAmelCase_ , default=42 ) parser.add_argument("""--num_train_epochs""" , type=lowerCAmelCase_ , default=3 ) parser.add_argument("""--train_batch_size""" , type=lowerCAmelCase_ , default=8 ) parser.add_argument("""--eval_batch_size""" , type=lowerCAmelCase_ , default=16 ) parser.add_argument("""--adam_epsilon""" , default=1e-8 , type=lowerCAmelCase_ , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""" , type=lowerCAmelCase_ , default=1 ) parser.add_argument( """--max_steps""" , default=-1 , type=lowerCAmelCase_ , help=( """If > 0: set total number of training steps to perform. Override num_train_epochs.""" ) , ) parser.add_argument( """--gradient_accumulation_steps""" , type=lowerCAmelCase_ , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , ) parser.add_argument("""--learning_rate""" , type=lowerCAmelCase_ , default=6.2_5e-5 ) parser.add_argument("""--warmup_steps""" , default=0 , type=lowerCAmelCase_ , help="""Linear warmup over warmup_steps.""" ) parser.add_argument("""--lr_schedule""" , type=lowerCAmelCase_ , default="""warmup_linear""" ) parser.add_argument("""--weight_decay""" , type=lowerCAmelCase_ , default=0.01 ) parser.add_argument("""--lm_coef""" , type=lowerCAmelCase_ , default=0.9 ) parser.add_argument("""--n_valid""" , type=lowerCAmelCase_ , default=374 ) parser.add_argument("""--server_ip""" , type=lowerCAmelCase_ , default="""""" , help="""Can be used for distant debugging.""" ) parser.add_argument("""--server_port""" , type=lowerCAmelCase_ , default="""""" , help="""Can be used for distant debugging.""" ) __lowercase : Dict = parser.parse_args() print(lowerCAmelCase_ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("""Waiting for debugger attach""" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCAmelCase_ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) __lowercase : int = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) __lowercase : Any = torch.cuda.device_count() logger.info("""device: {}, n_gpu {}""".format(lowerCAmelCase_ , lowerCAmelCase_ ) ) if not args.do_train and not args.do_eval: raise ValueError("""At least one of `do_train` or `do_eval` must be True.""" ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset __lowercase : List[str] = ["""_start_""", """_delimiter_""", """_classify_"""] __lowercase : Optional[int] = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(lowerCAmelCase_ ) __lowercase : Dict = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) __lowercase : str = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(lowerCAmelCase_ ) ) model.to(lowerCAmelCase_ ) # Load and encode the datasets def tokenize_and_encode(lowerCAmelCase_ : Optional[int] ): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(lowerCAmelCase_ ) ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return obj return [tokenize_and_encode(lowerCAmelCase_ ) for o in obj] logger.info("""Encoding dataset...""" ) __lowercase : Any = load_rocstories_dataset(args.train_dataset ) __lowercase : Union[str, Any] = load_rocstories_dataset(args.eval_dataset ) __lowercase : List[Any] = (train_dataset, eval_dataset) __lowercase : Union[str, Any] = tokenize_and_encode(lowerCAmelCase_ ) # Compute the max input length for the Transformer __lowercase : List[Any] = model.config.n_positions // 2 - 2 __lowercase : int = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) __lowercase : Any = min(lowerCAmelCase_ , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders __lowercase : int = pre_process_datasets(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ ) __lowercase : Dict = tensor_datasets[0], tensor_datasets[1] __lowercase : Optional[int] = TensorDataset(*lowerCAmelCase_ ) __lowercase : Optional[int] = RandomSampler(lowerCAmelCase_ ) __lowercase : Optional[Any] = DataLoader(lowerCAmelCase_ , sampler=lowerCAmelCase_ , batch_size=args.train_batch_size ) __lowercase : Optional[int] = TensorDataset(*lowerCAmelCase_ ) __lowercase : List[str] = SequentialSampler(lowerCAmelCase_ ) __lowercase : str = DataLoader(lowerCAmelCase_ , sampler=lowerCAmelCase_ , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: __lowercase : List[Any] = args.max_steps __lowercase : Union[str, Any] = args.max_steps // (len(lowerCAmelCase_ ) // args.gradient_accumulation_steps) + 1 else: __lowercase : List[str] = len(lowerCAmelCase_ ) // args.gradient_accumulation_steps * args.num_train_epochs __lowercase : List[Any] = list(model.named_parameters() ) __lowercase : int = ["""bias""", """LayerNorm.bias""", """LayerNorm.weight"""] __lowercase : List[str] = [ { """params""": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], """weight_decay""": args.weight_decay, }, {"""params""": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], """weight_decay""": 0.0}, ] __lowercase : str = AdamW(lowerCAmelCase_ , lr=args.learning_rate , eps=args.adam_epsilon ) __lowercase : Tuple = get_linear_schedule_with_warmup( lowerCAmelCase_ , num_warmup_steps=args.warmup_steps , num_training_steps=lowerCAmelCase_ ) if args.do_train: __lowercase : str = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc="""Epoch""" ): __lowercase : Optional[int] = 0 __lowercase : str = 0 __lowercase : List[str] = tqdm(lowerCAmelCase_ , desc="""Training""" ) for step, batch in enumerate(lowerCAmelCase_ ): __lowercase : Optional[int] = tuple(t.to(lowerCAmelCase_ ) for t in batch ) __lowercase : List[str] = batch __lowercase : Optional[Any] = model(lowerCAmelCase_ , mc_token_ids=lowerCAmelCase_ , lm_labels=lowerCAmelCase_ , mc_labels=lowerCAmelCase_ ) __lowercase : Union[str, Any] = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() __lowercase : Tuple = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 __lowercase : List[Any] = """Training loss: {:.2e} lr: {:.2e}""".format(lowerCAmelCase_ , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer __lowercase : Dict = model.module if hasattr(lowerCAmelCase_ , """module""" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` __lowercase : Union[str, Any] = os.path.join(args.output_dir , lowerCAmelCase_ ) __lowercase : str = os.path.join(args.output_dir , lowerCAmelCase_ ) torch.save(model_to_save.state_dict() , lowerCAmelCase_ ) model_to_save.config.to_json_file(lowerCAmelCase_ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned __lowercase : Any = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) __lowercase : List[Any] = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(lowerCAmelCase_ ) if args.do_eval: model.eval() __lowercase : Tuple = 0, 0 __lowercase : str = 0, 0 for batch in tqdm(lowerCAmelCase_ , desc="""Evaluating""" ): __lowercase : Tuple = tuple(t.to(lowerCAmelCase_ ) for t in batch ) __lowercase : str = batch with torch.no_grad(): __lowercase : Any = model( lowerCAmelCase_ , mc_token_ids=lowerCAmelCase_ , lm_labels=lowerCAmelCase_ , mc_labels=lowerCAmelCase_ ) __lowercase : List[Any] = mc_logits.detach().cpu().numpy() __lowercase : Dict = mc_labels.to("""cpu""" ).numpy() __lowercase : Optional[Any] = accuracy(lowerCAmelCase_ , lowerCAmelCase_ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 __lowercase : Any = eval_loss / nb_eval_steps __lowercase : Any = eval_accuracy / nb_eval_examples __lowercase : List[Any] = tr_loss / nb_tr_steps if args.do_train else None __lowercase : Any = {"""eval_loss""": eval_loss, """eval_accuracy""": eval_accuracy, """train_loss""": train_loss} __lowercase : List[Any] = os.path.join(args.output_dir , """eval_results.txt""" ) with open(lowerCAmelCase_ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , lowerCAmelCase_ , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) if __name__ == "__main__": main()
354
from scipy.stats import spearmanr import datasets lowerCamelCase : List[str] = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' lowerCamelCase : List[str] = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' lowerCamelCase : Union[str, Any] = r'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def lowerCAmelCase ( self : List[Any] , __a : str , __a : Any , __a : Optional[int]=False ) -> List[str]: """simple docstring""" __lowercase : Optional[Any] = spearmanr(__a , __a ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
306
0
def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int ): __lowercase : Union[str, Any] = 0 __lowercase : Any = len(lowerCAmelCase_ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None __lowercase : Tuple = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowerCAmelCase_ ): return None __lowercase : Any = sorted_collection[point] if current_item == item: return point else: if point < left: __lowercase : Any = left __lowercase : Dict = point elif point > right: __lowercase : List[str] = right __lowercase : Union[str, Any] = point else: if item < current_item: __lowercase : int = point - 1 else: __lowercase : Dict = point + 1 return None def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] ): # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None __lowercase : Any = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowerCAmelCase_ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) elif point > right: return interpolation_search_by_recursion(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , point - 1 ) else: return interpolation_search_by_recursion( lowerCAmelCase_ , lowerCAmelCase_ , point + 1 , lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : Any ): if collection != sorted(lowerCAmelCase_ ): raise ValueError("""Collection must be ascending sorted""" ) return True if __name__ == "__main__": import sys lowerCamelCase : Optional[int] = 0 if debug == 1: lowerCamelCase : int = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit('''Sequence must be ascending sorted to apply interpolation search''') lowerCamelCase : str = 67 lowerCamelCase : Dict = interpolation_search(collection, target) if result is not None: print(f'''{target} found at positions: {result}''') else: print('''Not found''')
355
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Any = get_failure_array(lowerCAmelCase_ ) # 2) Step through text searching for pattern __lowercase , __lowercase : Optional[int] = 0, 0 # index into text, pattern while i < len(lowerCAmelCase_ ): if pattern[j] == text[i]: if j == (len(lowerCAmelCase_ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: __lowercase : Optional[Any] = failure[j - 1] continue i += 1 return False def snake_case_ ( lowerCAmelCase_ : str ): __lowercase : List[Any] = [0] __lowercase : Optional[Any] = 0 __lowercase : List[Any] = 1 while j < len(lowerCAmelCase_ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: __lowercase : List[str] = failure[i - 1] continue j += 1 failure.append(lowerCAmelCase_ ) return failure if __name__ == "__main__": # Test 1) lowerCamelCase : Dict = '''abc1abc12''' lowerCamelCase : Union[str, Any] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' lowerCamelCase : Any = '''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) lowerCamelCase : List[Any] = '''ABABX''' lowerCamelCase : List[Any] = '''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) lowerCamelCase : int = '''AAAB''' lowerCamelCase : Optional[int] = '''ABAAAAAB''' assert kmp(pattern, text) # Test 4) lowerCamelCase : Optional[Any] = '''abcdabcy''' lowerCamelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) lowerCamelCase : Dict = '''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
306
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase : Optional[Any] = { '''configuration_mobilenet_v2''': [ '''MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileNetV2Config''', '''MobileNetV2OnnxConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = ['''MobileNetV2FeatureExtractor'''] lowerCamelCase : Any = ['''MobileNetV2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[Any] = [ '''MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileNetV2ForImageClassification''', '''MobileNetV2ForSemanticSegmentation''', '''MobileNetV2Model''', '''MobileNetV2PreTrainedModel''', '''load_tf_weights_in_mobilenet_v2''', ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys lowerCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
356
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = ['''pixel_values'''] def __init__( self : Any , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : bool = True , __a : Dict[str, int] = None , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = True , **__a : str , ) -> None: """simple docstring""" super().__init__(**__a ) __lowercase : Dict = size if size is not None else {"""shortest_edge""": 224} __lowercase : Union[str, Any] = get_size_dict(__a , default_to_square=__a ) __lowercase : int = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __lowercase : Any = get_size_dict(__a , default_to_square=__a , param_name="""crop_size""" ) __lowercase : Optional[int] = do_resize __lowercase : Union[str, Any] = size __lowercase : List[Any] = resample __lowercase : Any = do_center_crop __lowercase : Dict = crop_size __lowercase : int = do_rescale __lowercase : Tuple = rescale_factor __lowercase : List[Any] = do_normalize __lowercase : Union[str, Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowercase : int = image_std if image_std is not None else OPENAI_CLIP_STD __lowercase : Union[str, Any] = do_convert_rgb def lowerCAmelCase ( self : Union[str, Any] , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[Any] , ) -> np.ndarray: """simple docstring""" __lowercase : Dict = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) __lowercase : str = get_resize_output_image_size(__a , size=size["""shortest_edge"""] , default_to_square=__a ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Any , ) -> np.ndarray: """simple docstring""" __lowercase : Tuple = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(__a , size=(size["""height"""], size["""width"""]) , data_format=__a , **__a ) def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : Union[int, float] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[Any] , ) -> List[str]: """simple docstring""" return rescale(__a , scale=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Optional[int] , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] , ) -> np.ndarray: """simple docstring""" return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Optional[int] , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : int = None , __a : bool = None , __a : float = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = None , __a : Optional[Union[str, TensorType]] = None , __a : Optional[ChannelDimension] = ChannelDimension.FIRST , **__a : List[Any] , ) -> PIL.Image.Image: """simple docstring""" __lowercase : List[Any] = do_resize if do_resize is not None else self.do_resize __lowercase : Dict = size if size is not None else self.size __lowercase : Tuple = get_size_dict(__a , param_name="""size""" , default_to_square=__a ) __lowercase : int = resample if resample is not None else self.resample __lowercase : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase : List[Any] = crop_size if crop_size is not None else self.crop_size __lowercase : List[str] = get_size_dict(__a , param_name="""crop_size""" , default_to_square=__a ) __lowercase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __lowercase : str = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase : Dict = do_normalize if do_normalize is not None else self.do_normalize __lowercase : Tuple = image_mean if image_mean is not None else self.image_mean __lowercase : str = image_std if image_std is not None else self.image_std __lowercase : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase : Union[str, Any] = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase : Union[str, Any] = [convert_to_rgb(__a ) for image in images] # All transformations expect numpy arrays. __lowercase : Any = [to_numpy_array(__a ) for image in images] if do_resize: __lowercase : str = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: __lowercase : str = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: __lowercase : Dict = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: __lowercase : Optional[Any] = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] __lowercase : Any = [to_channel_dimension_format(__a , __a ) for image in images] __lowercase : Optional[int] = {"""pixel_values""": images} return BatchFeature(data=__a , tensor_type=__a )
306
0
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict ): return params[F"{prefix}/{prefix}/relpos_bias/rel_embedding"][:, i, :] def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int="attention" ): __lowercase : Any = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/key/kernel"][:, i, :, :] ) __lowercase : str = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) __lowercase : Optional[Any] = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/out/kernel"][:, i, :, :] ) __lowercase : List[Any] = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) __lowercase : int = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/query/kernel"][:, i, :, :] ) __lowercase : List[Any] = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) __lowercase : int = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/value/kernel"][:, i, :, :] ) __lowercase : str = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int]=False ): if split_mlp_wi: __lowercase : str = params[F"{prefix}/{prefix}/mlp/wi_0/kernel"][:, i, :] __lowercase : int = params[F"{prefix}/{prefix}/mlp/wi_1/kernel"][:, i, :] __lowercase : Optional[Any] = (wi_a, wi_a) else: __lowercase : Any = params[F"{prefix}/{prefix}/mlp/wi/kernel"][:, i, :] __lowercase : Optional[Any] = params[F"{prefix}/{prefix}/mlp/wo/kernel"][:, i, :] return wi, wo def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] ): return params[F"{prefix}/{prefix}/{layer_name}/scale"][:, i] def snake_case_ ( lowerCAmelCase_ : dict , *, lowerCAmelCase_ : int , lowerCAmelCase_ : bool , lowerCAmelCase_ : bool = False ): __lowercase : Any = traverse_util.flatten_dict(variables["""target"""] ) __lowercase : str = {"""/""".join(lowerCAmelCase_ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __lowercase : Optional[int] = """encoder/encoder/mlp/wi_0/kernel""" in old print("""Split MLP:""" , lowerCAmelCase_ ) __lowercase : str = collections.OrderedDict() # Shared embeddings. __lowercase : Optional[int] = old["""token_embedder/embedding"""] # Encoder. for i in range(lowerCAmelCase_ ): # Block i, layer 0 (Self Attention). __lowercase : Optional[int] = tax_layer_norm_lookup(lowerCAmelCase_ , lowerCAmelCase_ , """encoder""" , """pre_attention_layer_norm""" ) __lowercase : str = tax_attention_lookup(lowerCAmelCase_ , lowerCAmelCase_ , """encoder""" , """attention""" ) __lowercase : Any = layer_norm __lowercase : List[Any] = k.T __lowercase : Tuple = o.T __lowercase : Tuple = q.T __lowercase : Optional[Any] = v.T # Block i, layer 1 (MLP). __lowercase : List[str] = tax_layer_norm_lookup(lowerCAmelCase_ , lowerCAmelCase_ , """encoder""" , """pre_mlp_layer_norm""" ) __lowercase : Union[str, Any] = tax_mlp_lookup(lowerCAmelCase_ , lowerCAmelCase_ , """encoder""" , lowerCAmelCase_ ) __lowercase : List[Any] = layer_norm if split_mlp_wi: __lowercase : Any = wi[0].T __lowercase : List[str] = wi[1].T else: __lowercase : str = wi.T __lowercase : Optional[Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer __lowercase : Optional[int] = tax_relpos_bias_lookup( lowerCAmelCase_ , lowerCAmelCase_ , """encoder""" ).T __lowercase : Optional[int] = old["""encoder/encoder_norm/scale"""] if not scalable_attention: __lowercase : Any = tax_relpos_bias_lookup( lowerCAmelCase_ , 0 , """encoder""" ).T __lowercase : List[Any] = tax_relpos_bias_lookup( lowerCAmelCase_ , 0 , """decoder""" ).T if not is_encoder_only: # Decoder. for i in range(lowerCAmelCase_ ): # Block i, layer 0 (Self Attention). __lowercase : Any = tax_layer_norm_lookup(lowerCAmelCase_ , lowerCAmelCase_ , """decoder""" , """pre_self_attention_layer_norm""" ) __lowercase : List[str] = tax_attention_lookup(lowerCAmelCase_ , lowerCAmelCase_ , """decoder""" , """self_attention""" ) __lowercase : Union[str, Any] = layer_norm __lowercase : List[Any] = k.T __lowercase : List[str] = o.T __lowercase : int = q.T __lowercase : Dict = v.T # Block i, layer 1 (Cross Attention). __lowercase : Tuple = tax_layer_norm_lookup(lowerCAmelCase_ , lowerCAmelCase_ , """decoder""" , """pre_cross_attention_layer_norm""" ) __lowercase : str = tax_attention_lookup(lowerCAmelCase_ , lowerCAmelCase_ , """decoder""" , """encoder_decoder_attention""" ) __lowercase : int = layer_norm __lowercase : Optional[Any] = k.T __lowercase : Optional[int] = o.T __lowercase : List[Any] = q.T __lowercase : Optional[Any] = v.T # Block i, layer 2 (MLP). __lowercase : Dict = tax_layer_norm_lookup(lowerCAmelCase_ , lowerCAmelCase_ , """decoder""" , """pre_mlp_layer_norm""" ) __lowercase : Union[str, Any] = tax_mlp_lookup(lowerCAmelCase_ , lowerCAmelCase_ , """decoder""" , lowerCAmelCase_ ) __lowercase : List[str] = layer_norm if split_mlp_wi: __lowercase : Dict = wi[0].T __lowercase : Optional[Any] = wi[1].T else: __lowercase : Dict = wi.T __lowercase : Optional[int] = wo.T if scalable_attention: # convert the rel_embedding of each layer __lowercase : int = tax_relpos_bias_lookup(lowerCAmelCase_ , lowerCAmelCase_ , """decoder""" ).T __lowercase : Optional[Any] = old["""decoder/decoder_norm/scale"""] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __lowercase : Dict = old["""decoder/logits_dense/kernel"""].T return new def snake_case_ ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : bool ): __lowercase : Any = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __lowercase : int = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __lowercase : Optional[Any] = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) __lowercase : Dict = state_dict["""shared.weight"""] return state_dict def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any ): __lowercase : List[Any] = checkpoints.load_tax_checkpoint(lowerCAmelCase_ ) __lowercase : Tuple = convert_tax_to_pytorch( lowerCAmelCase_ , num_layers=config.num_layers , is_encoder_only=lowerCAmelCase_ , scalable_attention=lowerCAmelCase_ ) __lowercase : int = make_state_dict(lowerCAmelCase_ , lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ , strict=lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , ): __lowercase : Union[str, Any] = MTaConfig.from_json_file(lowerCAmelCase_ ) print(F"Building PyTorch model from configuration: {config}" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __lowercase : Tuple = UMTaEncoderModel(lowerCAmelCase_ ) else: __lowercase : Union[str, Any] = UMTaForConditionalGeneration(lowerCAmelCase_ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(lowerCAmelCase_ ) # Verify that we can load the checkpoint. model.from_pretrained(lowerCAmelCase_ ) print("""Done""" ) if __name__ == "__main__": lowerCamelCase : Optional[int] = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) lowerCamelCase : List[str] = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
357
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str ): __lowercase : Tuple = s.rsplit(lowerCAmelCase_ , lowerCAmelCase_ ) return new.join(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : List[Any] ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : List[str] = {} __lowercase : Tuple = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __lowercase : List[str] = key.replace(F"{group_key}." , F"{group_key}.group." ) if "res_path" in key: __lowercase : List[Any] = key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): __lowercase : Union[str, Any] = rreplace(lowerCAmelCase_ , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): __lowercase : Tuple = rreplace(lowerCAmelCase_ , """.b""" , """.bias""" , 1 ) __lowercase : Dict = value.float() return upgrade @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=True ): from dall_e import Encoder __lowercase : Any = Encoder() if os.path.exists(lowerCAmelCase_ ): __lowercase : List[Any] = torch.load(lowerCAmelCase_ ) else: __lowercase : List[Any] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : int = ckpt.state_dict() encoder.load_state_dict(lowerCAmelCase_ ) if config_path is not None: __lowercase : Optional[int] = FlavaImageCodebookConfig.from_pretrained(lowerCAmelCase_ ) else: __lowercase : List[str] = FlavaImageCodebookConfig() __lowercase : Optional[Any] = FlavaImageCodebook(lowerCAmelCase_ ).eval() __lowercase : List[Any] = encoder.state_dict() __lowercase : Union[str, Any] = upgrade_state_dict(lowerCAmelCase_ ) hf_model.load_state_dict(lowerCAmelCase_ ) __lowercase : Dict = hf_model.state_dict() __lowercase : Tuple = count_parameters(lowerCAmelCase_ ) __lowercase : Tuple = count_parameters(lowerCAmelCase_ ) assert torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(lowerCAmelCase_ ) else: return hf_state_dict if __name__ == "__main__": lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowerCamelCase : Union[str, Any] = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
306
0
from PIL import Image def snake_case_ ( lowerCAmelCase_ : Image , lowerCAmelCase_ : float ): def brightness(lowerCAmelCase_ : int ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(lowerCAmelCase_ ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 lowerCamelCase : List[str] = change_brightness(img, 1_00) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
358
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging lowerCamelCase : Tuple = logging.get_logger(__name__) logging.set_verbosity_info() def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): if "xprophetnet" in prophetnet_checkpoint_path: __lowercase : List[str] = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) __lowercase , __lowercase : int = XLMProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) else: __lowercase : List[Any] = ProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) __lowercase , __lowercase : Optional[Any] = ProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) __lowercase : List[str] = ["""key_proj""", """value_proj""", """query_proj"""] __lowercase : Optional[int] = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: __lowercase : Tuple = key.split(""".""" ) if attributes[0] == "lm_head": __lowercase : str = prophet __lowercase : List[str] = prophet_old else: __lowercase : Tuple = prophet.prophetnet __lowercase : Union[str, Any] = prophet_old.model __lowercase : Optional[Any] = False for attribute in attributes: if attribute in mapping: __lowercase : Optional[int] = mapping[attribute] if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) > 0: __lowercase : str = attribute elif hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : List[Any] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" __lowercase : Any = old_model.weight logger.info(F"{attribute} is initialized." ) __lowercase : Any = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" __lowercase : Dict = old_model.bias logger.info(F"{attribute} is initialized" ) __lowercase : int = True break elif attribute in special_keys and hasattr(lowerCAmelCase_ , """in_proj_weight""" ): __lowercase : Dict = old_model.in_proj_weight.shape[0] // 3 __lowercase : Tuple = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": __lowercase : Union[str, Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) __lowercase : int = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": __lowercase : Any = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) __lowercase : List[Any] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": __lowercase : Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) __lowercase : int = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) __lowercase : int = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." __lowercase : Optional[Any] = nn.Parameter(old_model.embed_positions.weight[:512, :] ) __lowercase : int = True break if attribute.isdigit(): __lowercase : Tuple = model[int(lowerCAmelCase_ )] __lowercase : int = old_model[int(lowerCAmelCase_ )] else: __lowercase : Union[str, Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if old_attribute == "": __lowercase : int = old_model else: if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError(F"{old_model} does not have {old_attribute}" ) __lowercase : List[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if not is_key_init: raise ValueError(F"{key} was not correctly initialized!" ) print(F"Saving model to {pytorch_dump_folder_path}" ) prophet.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCamelCase : Any = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
306
0
"""simple docstring""" import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class lowerCAmelCase : '''simple docstring''' def __init__( self : List[Any] , __a : Optional[Any] , __a : List[str]=99 , __a : str=13 , __a : Dict=7 , __a : List[str]=9 , __a : Union[str, Any]=True , __a : Any=True , __a : str=False , __a : str=32 , __a : Dict=5 , __a : str=4 , __a : Optional[Any]=37 , __a : List[str]=8 , __a : int=0.1 , __a : str=0.002 , __a : Optional[int]=1 , __a : Dict=0 , __a : Optional[Any]=0 , __a : List[str]=None , __a : Tuple=None , ) -> Optional[Any]: """simple docstring""" __lowercase : List[str] = parent __lowercase : Dict = batch_size __lowercase : str = encoder_seq_length __lowercase : int = decoder_seq_length # For common tests __lowercase : Dict = self.decoder_seq_length __lowercase : str = is_training __lowercase : Union[str, Any] = use_attention_mask __lowercase : Optional[Any] = use_labels __lowercase : List[Any] = vocab_size __lowercase : int = hidden_size __lowercase : Optional[int] = num_hidden_layers __lowercase : Union[str, Any] = num_attention_heads __lowercase : str = d_ff __lowercase : Tuple = relative_attention_num_buckets __lowercase : Optional[int] = dropout_rate __lowercase : str = initializer_factor __lowercase : str = eos_token_id __lowercase : Dict = pad_token_id __lowercase : Union[str, Any] = decoder_start_token_id __lowercase : Optional[Any] = None __lowercase : str = decoder_layers def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" return TaConfig.from_pretrained("""google/umt5-base""" ) def lowerCAmelCase ( self : Dict , __a : Any , __a : Optional[Any] , __a : Optional[int] , __a : Optional[int]=None , __a : Dict=None , __a : List[Any]=None , __a : int=None , __a : Any=None , ) -> Optional[int]: """simple docstring""" if attention_mask is None: __lowercase : Optional[int] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: __lowercase : List[Any] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: __lowercase : str = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__a ) if decoder_head_mask is None: __lowercase : Any = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__a ) if cross_attn_head_mask is None: __lowercase : str = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=__a ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" __lowercase : str = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) __lowercase : Tuple = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input __lowercase : Any = input_ids.clamp(self.pad_token_id + 1 ) __lowercase : str = decoder_input_ids.clamp(self.pad_token_id + 1 ) __lowercase : Union[str, Any] = self.get_config() __lowercase : Optional[int] = config.num_attention_heads __lowercase : List[Any] = self.prepare_inputs_dict(__a , __a , __a ) return config, input_dict def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase : str = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def lowerCAmelCase ( self : Tuple , __a : List[str] , __a : List[Any] , __a : Any , __a : Any , __a : Tuple , __a : List[str] , ) -> str: """simple docstring""" __lowercase : Dict = UMTaModel(config=__a ) model.to(__a ) model.eval() __lowercase : Any = model( input_ids=__a , decoder_input_ids=__a , attention_mask=__a , decoder_attention_mask=__a , ) __lowercase : Any = model(input_ids=__a , decoder_input_ids=__a ) __lowercase : Optional[int] = result.last_hidden_state __lowercase : Tuple = result.past_key_values __lowercase : str = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(__a ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def lowerCAmelCase ( self : Dict , __a : Tuple , __a : Any , __a : str , __a : List[Any] , __a : str , __a : List[str] , ) -> Dict: """simple docstring""" __lowercase : Union[str, Any] = UMTaModel(config=__a ).get_decoder().to(__a ).eval() # first forward pass __lowercase : List[Any] = model(__a , use_cache=__a ) __lowercase : Dict = model(__a ) __lowercase : List[Any] = model(__a , use_cache=__a ) self.parent.assertTrue(len(__a ) == len(__a ) ) self.parent.assertTrue(len(__a ) == len(__a ) + 1 ) __lowercase : Union[str, Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowercase : Optional[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and __lowercase : int = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowercase : Dict = model(__a )["""last_hidden_state"""] __lowercase : List[str] = model(__a , past_key_values=__a )["""last_hidden_state"""] # select random slice __lowercase : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowercase : Optional[Any] = output_from_no_past[:, -1, random_slice_idx].detach() __lowercase : List[str] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__a , __a , atol=1E-3 ) ) def lowerCAmelCase ( self : Tuple , __a : Dict , __a : Tuple , ) -> List[str]: """simple docstring""" __lowercase : Dict = UMTaModel(config=__a ).to(__a ).half().eval() __lowercase : Tuple = model(**__a )["""last_hidden_state"""] self.parent.assertFalse(torch.isnan(__a ).any().item() ) @require_torch class lowerCAmelCase ( __a , __a , __a , unittest.TestCase ): '''simple docstring''' _A : int = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) _A : Union[str, Any] = (UMTaForConditionalGeneration,) if is_torch_available() else () _A : Tuple = ( { '''conversational''': UMTaForConditionalGeneration, '''feature-extraction''': UMTaModel, '''summarization''': UMTaForConditionalGeneration, '''text2text-generation''': UMTaForConditionalGeneration, '''translation''': UMTaForConditionalGeneration, '''question-answering''': UMTaForQuestionAnswering, } if is_torch_available() else {} ) _A : str = True _A : Tuple = False _A : List[Any] = False _A : List[Any] = True _A : str = True # The small UMT5 model needs higher percentages for CPU/MP tests _A : str = [0.8, 0.9] def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : Optional[Any] = UMTaModelTester(self ) @unittest.skip("""Test has a segmentation fault on torch 1.8.0""" ) def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : str = self.model_tester.prepare_config_and_inputs() __lowercase : List[str] = UMTaModel(config_and_inputs[0] ).to(__a ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( __a , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F"{tmpdirname}/t5_test.onnx" , export_params=__a , opset_version=9 , input_names=["""input_ids""", """decoder_input_ids"""] , ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" __lowercase : List[str] = ["""encoder_attentions""", """decoder_attentions""", """cross_attentions"""] __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() __lowercase : Any = config_and_inputs[0] __lowercase : Tuple = UMTaForConditionalGeneration(__a ).eval() model.to(__a ) __lowercase : Dict = { """head_mask""": torch.zeros(config.num_layers , config.num_heads , device=__a ), """decoder_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=__a ), """cross_attn_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=__a ), } for attn_name, (name, mask) in zip(__a , head_masking.items() ): __lowercase : Dict = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": __lowercase : Tuple = torch.ones( config.num_decoder_layers , config.num_heads , device=__a ) __lowercase : int = model.generate( config_and_inputs[1]["""input_ids"""] , num_beams=1 , max_length=3 , output_attentions=__a , return_dict_in_generate=__a , **__a , ) # We check the state of decoder_attentions and cross_attentions just from the last step __lowercase : Union[str, Any] = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip("""Does not work on the tiny model as we keep hitting edge cases.""" ) def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip( """Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged""" ) def lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase : int = UMTaForConditionalGeneration.from_pretrained("""google/umt5-small""" , return_dict=__a ).to(__a ) __lowercase : List[Any] = AutoTokenizer.from_pretrained("""google/umt5-small""" , use_fast=__a , legacy=__a ) __lowercase : List[str] = [ """Bonjour monsieur <extra_id_0> bien <extra_id_1>.""", """No se como puedo <extra_id_0>.""", """This is the reason why we <extra_id_0> them.""", """The <extra_id_0> walks in <extra_id_1>, seats""", """A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""", ] __lowercase : Dict = tokenizer(__a , return_tensors="""pt""" , padding=__a ).input_ids # fmt: off __lowercase : Tuple = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(__a , __a ) __lowercase : Union[str, Any] = model.generate(input_ids.to(__a ) ) __lowercase : Optional[int] = [ """<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>""", """<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", ] __lowercase : int = tokenizer.batch_decode(__a ) self.assertEqual(__a , __a )
359
def snake_case_ ( lowerCAmelCase_ : int = 200 ): __lowercase : List[str] = [1, 2, 5, 10, 20, 50, 100, 200] __lowercase : List[str] = [0] * (pence + 1) __lowercase : Optional[Any] = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowerCAmelCase_ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
306
0
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCamelCase : Tuple = logging.get_logger(__name__) class lowerCAmelCase ( __a ): '''simple docstring''' _A : Optional[int] = ['''audio_values''', '''audio_mask'''] def __init__( self : List[Any] , __a : Union[str, Any]=2048 , __a : Dict=1 , __a : Any=[16, 16] , __a : Union[str, Any]=128 , __a : Optional[Any]=44100 , __a : int=86 , __a : Any=2048 , __a : int=0.0 , **__a : Any , ) -> Tuple: """simple docstring""" super().__init__( feature_size=__a , sampling_rate=__a , padding_value=__a , **__a , ) __lowercase : Any = spectrogram_length __lowercase : Tuple = num_channels __lowercase : Dict = patch_size __lowercase : Any = feature_size // self.patch_size[1] __lowercase : Optional[int] = n_fft __lowercase : int = sampling_rate // hop_length_to_sampling_rate __lowercase : Optional[Any] = sampling_rate __lowercase : Dict = padding_value __lowercase : int = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__a , min_frequency=0.0 , max_frequency=22050.0 , sampling_rate=__a , norm="""slaney""" , mel_scale="""slaney""" , ).T def lowerCAmelCase ( self : Union[str, Any] , __a : np.array ) -> np.ndarray: """simple docstring""" __lowercase : List[Any] = spectrogram( __a , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="""dB""" , db_range=80.0 , ) __lowercase : Union[str, Any] = log_spec[:, :-1] __lowercase : Optional[int] = log_spec - 20.0 __lowercase : List[Any] = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self : Tuple , __a : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __a : Optional[Union[str, TensorType]] = None , __a : Optional[bool] = True , __a : Optional[int] = None , __a : bool = False , __a : bool = False , **__a : Optional[int] , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( """This feature extractor is set to support sampling rate""" F" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled" F" with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) __lowercase : Dict = isinstance(__a , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) __lowercase : List[str] = is_batched_numpy or ( isinstance(__a , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __lowercase : Dict = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__a , np.ndarray ): __lowercase : int = np.asarray(__a , dtype=np.floataa ) elif isinstance(__a , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __lowercase : List[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __lowercase : str = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis __lowercase : List[str] = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , __a ): __lowercase : Optional[Any] = [np.asarray(__a , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask __lowercase : Dict = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: __lowercase : List[Any] = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] __lowercase : List[Any] = np.array(__a ).astype(np.floataa ) # convert into correct format for padding __lowercase : List[Any] = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch __lowercase : Optional[int] = np.ones([len(__a ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) __lowercase : List[str] = padded_audio_features * self.padding_value for i in range(len(__a ) ): __lowercase : Optional[Any] = audio_features[i] __lowercase : Optional[int] = feature # return as BatchFeature if return_attention_mask: __lowercase : Any = {"""audio_values""": padded_audio_features, """audio_mask""": audio_mask} else: __lowercase : Optional[Any] = {"""audio_values""": padded_audio_features} __lowercase : Dict = BatchFeature(data=__a , tensor_type=__a ) return encoded_inputs
360
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , __a : Dict , __a : List[str]=None , __a : Optional[Any]=None , __a : Union[str, Any]=None , __a : int="resnet50" , __a : List[str]=3 , __a : Tuple=32 , __a : Dict=3 , __a : List[str]=True , __a : Union[str, Any]=True , ) -> Any: """simple docstring""" __lowercase : Optional[int] = parent __lowercase : List[str] = out_indices if out_indices is not None else [4] __lowercase : Optional[int] = stage_names __lowercase : Any = out_features __lowercase : Optional[Any] = backbone __lowercase : Optional[Any] = batch_size __lowercase : Union[str, Any] = image_size __lowercase : List[str] = num_channels __lowercase : str = use_pretrained_backbone __lowercase : str = is_training def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : str = self.get_config() return config, pixel_values def lowerCAmelCase ( self : int ) -> str: """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowerCAmelCase ( self : Optional[int] , __a : Dict , __a : Any ) -> Dict: """simple docstring""" __lowercase : Dict = TimmBackbone(config=__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Optional[Any] = model(__a ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.prepare_config_and_inputs() __lowercase , __lowercase : str = config_and_inputs __lowercase : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch @require_timm class lowerCAmelCase ( __a , __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[Any] = (TimmBackbone,) if is_torch_available() else () _A : Dict = {'''feature-extraction''': TimmBackbone} if is_torch_available() else {} _A : List[Any] = False _A : List[str] = False _A : Any = False _A : Optional[Any] = False def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : str = TimmBackboneModelTester(self ) __lowercase : Any = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" __lowercase : Tuple = """resnet18""" __lowercase : Optional[int] = """microsoft/resnet-18""" __lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a ) __lowercase : Dict = AutoBackbone.from_pretrained(__a ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a , out_indices=[1, 2, 3] ) __lowercase : Optional[Any] = AutoBackbone.from_pretrained(__a , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("""TimmBackbone doesn't support feed forward chunking""" ) def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""" ) def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""" ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't support output_attentions.""" ) def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Safetensors is not supported by timm.""" ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Optional[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : List[str] = [*signature.parameters.keys()] __lowercase : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Optional[Any] = True __lowercase : Union[str, Any] = self.has_attentions # no need to test all models as different heads yield the same functionality __lowercase : Union[str, Any] = self.all_model_classes[0] __lowercase : List[Any] = model_class(__a ) model.to(__a ) __lowercase : Optional[Any] = self._prepare_for_class(__a , __a ) __lowercase : Union[str, Any] = model(**__a ) __lowercase : Optional[int] = outputs[0][-1] # Encoder-/Decoder-only models __lowercase : Any = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowercase : Optional[int] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__a ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() __lowercase : int = model(**__a ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowercase : Any = copy.deepcopy(__a ) __lowercase : Dict = None __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() __lowercase : Optional[int] = model(**__a ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowercase : List[str] = copy.deepcopy(__a ) __lowercase : Optional[Any] = False __lowercase : str = model_class(__a ) model.to(__a ) model.eval() __lowercase : List[Any] = model(**__a )
306
0
from __future__ import annotations from collections.abc import Sequence from typing import Literal def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Optional[Any] = list(lowerCAmelCase_ ) __lowercase : str = list(lowerCAmelCase_ ) __lowercase : Union[str, Any] = 0 for i in range(len(lowerCAmelCase_ ) ): if lista[i] != lista[i]: count += 1 __lowercase : Dict = """_""" if count > 1: return False else: return "".join(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : list[str] ): __lowercase : Tuple = [] while True: __lowercase : Union[str, Any] = ["""$"""] * len(lowerCAmelCase_ ) __lowercase : int = [] for i in range(len(lowerCAmelCase_ ) ): for j in range(i + 1 , len(lowerCAmelCase_ ) ): __lowercase : int = compare_string(binary[i] , binary[j] ) if k is False: __lowercase : Union[str, Any] = """*""" __lowercase : Tuple = """*""" temp.append("""X""" ) for i in range(len(lowerCAmelCase_ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(lowerCAmelCase_ ) == 0: return pi __lowercase : Union[str, Any] = list(set(lowerCAmelCase_ ) ) def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : Sequence[float] ): __lowercase : List[Any] = [] for minterm in minterms: __lowercase : Any = """""" for _ in range(lowerCAmelCase_ ): __lowercase : int = str(minterm % 2 ) + string minterm //= 2 temp.append(lowerCAmelCase_ ) return temp def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): __lowercase : Tuple = list(lowerCAmelCase_ ) __lowercase : List[str] = list(lowerCAmelCase_ ) __lowercase : Dict = 0 for i in range(len(lowerCAmelCase_ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def snake_case_ ( lowerCAmelCase_ : list[list[int]] , lowerCAmelCase_ : list[str] ): __lowercase : Dict = [] __lowercase : List[str] = [0] * len(lowerCAmelCase_ ) for i in range(len(chart[0] ) ): __lowercase : Optional[int] = 0 __lowercase : Union[str, Any] = -1 for j in range(len(lowerCAmelCase_ ) ): if chart[j][i] == 1: count += 1 __lowercase : Optional[Any] = j if count == 1: __lowercase : Optional[int] = 1 for i in range(len(lowerCAmelCase_ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(lowerCAmelCase_ ) ): __lowercase : Tuple = 0 temp.append(prime_implicants[i] ) while True: __lowercase : Dict = 0 __lowercase : List[str] = -1 __lowercase : Any = 0 for i in range(len(lowerCAmelCase_ ) ): __lowercase : Optional[Any] = chart[i].count(1 ) if count_n > max_n: __lowercase : List[Any] = count_n __lowercase : Tuple = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(lowerCAmelCase_ ) ): __lowercase : List[str] = 0 def snake_case_ ( lowerCAmelCase_ : list[str] , lowerCAmelCase_ : list[str] ): __lowercase : Optional[Any] = [[0 for x in range(len(lowerCAmelCase_ ) )] for x in range(len(lowerCAmelCase_ ) )] for i in range(len(lowerCAmelCase_ ) ): __lowercase : Dict = prime_implicants[i].count("""_""" ) for j in range(len(lowerCAmelCase_ ) ): if is_for_table(prime_implicants[i] , binary[j] , lowerCAmelCase_ ): __lowercase : Union[str, Any] = 1 return chart def snake_case_ ( ): __lowercase : List[str] = int(input("""Enter the no. of variables\n""" ) ) __lowercase : Any = [ float(lowerCAmelCase_ ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] __lowercase : Dict = decimal_to_binary(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Union[str, Any] = check(lowerCAmelCase_ ) print("""Prime Implicants are:""" ) print(lowerCAmelCase_ ) __lowercase : Any = prime_implicant_chart(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Dict = selection(lowerCAmelCase_ , lowerCAmelCase_ ) print("""Essential Prime Implicants are:""" ) print(lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
361
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : str = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } lowerCamelCase : Optional[Any] = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): for attribute in key.split(""".""" ): __lowercase : List[str] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if weight_type is not None: __lowercase : Union[str, Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ).shape else: __lowercase : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": __lowercase : Dict = value elif weight_type == "weight_g": __lowercase : Union[str, Any] = value elif weight_type == "weight_v": __lowercase : List[Any] = value elif weight_type == "bias": __lowercase : int = value elif weight_type == "running_mean": __lowercase : List[Any] = value elif weight_type == "running_var": __lowercase : int = value elif weight_type == "num_batches_tracked": __lowercase : int = value elif weight_type == "inv_freq": __lowercase : Optional[Any] = value else: __lowercase : Any = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] ): __lowercase : str = [] __lowercase : Any = fairseq_model.state_dict() __lowercase : List[str] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): __lowercase : Optional[Any] = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , hf_model.config.feat_extract_norm == """group""" , ) __lowercase : List[str] = True else: for key, mapped_key in MAPPING.items(): __lowercase : Any = """wav2vec2_conformer.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __lowercase : Tuple = True if "*" in mapped_key: __lowercase : List[Any] = name.split(lowerCAmelCase_ )[0].split(""".""" )[-2] __lowercase : Any = mapped_key.replace("""*""" , lowerCAmelCase_ ) if "pos_bias_u" in name: __lowercase : Any = None elif "pos_bias_v" in name: __lowercase : Tuple = None elif "weight_g" in name: __lowercase : Union[str, Any] = """weight_g""" elif "weight_v" in name: __lowercase : Dict = """weight_v""" elif "bias" in name: __lowercase : Union[str, Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowercase : str = """weight""" elif "running_mean" in name: __lowercase : str = """running_mean""" elif "inv_freq" in name: __lowercase : List[Any] = """inv_freq""" elif "running_var" in name: __lowercase : Any = """running_var""" elif "num_batches_tracked" in name: __lowercase : Any = """num_batches_tracked""" else: __lowercase : Optional[int] = None set_recursively(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) continue if not is_used: unused_weights.append(lowerCAmelCase_ ) logger.warning(F"Unused weights: {unused_weights}" ) def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] ): __lowercase : List[Any] = full_name.split("""conv_layers.""" )[-1] __lowercase : int = name.split(""".""" ) __lowercase : Optional[Any] = int(items[0] ) __lowercase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __lowercase : Union[str, Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __lowercase : List[str] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) __lowercase : Union[str, Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) __lowercase : Dict = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(lowerCAmelCase_ ) @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Dict=True ): if config_path is not None: __lowercase : List[Any] = WavaVecaConformerConfig.from_pretrained(lowerCAmelCase_ , hidden_act="""swish""" ) else: __lowercase : List[Any] = WavaVecaConformerConfig() if "rope" in checkpoint_path: __lowercase : Tuple = """rotary""" if is_finetuned: if dict_path: __lowercase : Any = Dictionary.load(lowerCAmelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __lowercase : List[Any] = target_dict.pad_index __lowercase : Optional[int] = target_dict.bos_index __lowercase : List[Any] = target_dict.eos_index __lowercase : List[str] = len(target_dict.symbols ) __lowercase : Union[str, Any] = os.path.join(lowerCAmelCase_ , """vocab.json""" ) if not os.path.isdir(lowerCAmelCase_ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowerCAmelCase_ ) ) return os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowercase : Tuple = target_dict.indices # fairseq has the <pad> and <s> switched __lowercase : int = 0 __lowercase : Any = 1 with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Dict = WavaVecaCTCTokenizer( lowerCAmelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowerCAmelCase_ , ) __lowercase : List[Any] = True if config.feat_extract_norm == """layer""" else False __lowercase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) __lowercase : Optional[int] = WavaVecaProcessor(feature_extractor=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) __lowercase : Union[str, Any] = WavaVecaConformerForCTC(lowerCAmelCase_ ) else: __lowercase : Optional[Any] = WavaVecaConformerForPreTraining(lowerCAmelCase_ ) if is_finetuned: __lowercase , __lowercase , __lowercase : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __lowercase : List[Any] = argparse.Namespace(task="""audio_pretraining""" ) __lowercase : Optional[Any] = fairseq.tasks.setup_task(lowerCAmelCase_ ) __lowercase , __lowercase , __lowercase : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase_ ) __lowercase : Dict = model[0].eval() recursively_load_weights(lowerCAmelCase_ , lowerCAmelCase_ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) lowerCamelCase : Any = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
306
0
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowerCamelCase : str = { '''facebook/maskformer-swin-base-ade''': ( '''https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json''' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowerCamelCase : Optional[int] = logging.get_logger(__name__) class lowerCAmelCase ( __a ): '''simple docstring''' _A : Optional[Any] = '''maskformer''' _A : Tuple = {'''hidden_size''': '''mask_feature_size'''} _A : Optional[int] = ['''resnet''', '''swin'''] _A : str = ['''detr'''] def __init__( self : Any , __a : int = 256 , __a : int = 256 , __a : float = 0.1 , __a : bool = False , __a : Optional[Dict] = None , __a : Optional[Dict] = None , __a : float = 0.02 , __a : float = 1.0 , __a : float = 1.0 , __a : float = 1.0 , __a : float = 20.0 , __a : Optional[bool] = None , **__a : Union[str, Any] , ) -> Any: """simple docstring""" if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k __lowercase : List[str] = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(__a , __a ): __lowercase : Any = backbone_config.pop("""model_type""" ) __lowercase : List[str] = CONFIG_MAPPING[backbone_model_type] __lowercase : Optional[int] = config_class.from_dict(__a ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. " F"Supported model types: {','.join(self.backbones_supported )}" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 __lowercase : Optional[Any] = DetrConfig() else: # verify that the decoder is supported __lowercase : Dict = ( decoder_config.pop("""model_type""" ) if isinstance(__a , __a ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F"Transformer Decoder {decoder_type} not supported, please use one of" F" {','.join(self.decoders_supported )}" ) if isinstance(__a , __a ): __lowercase : Dict = CONFIG_MAPPING[decoder_type] __lowercase : Any = config_class.from_dict(__a ) __lowercase : List[str] = backbone_config __lowercase : Optional[int] = decoder_config # main feature dimension for the model __lowercase : Dict = fpn_feature_size __lowercase : Optional[int] = mask_feature_size # initializer __lowercase : str = init_std __lowercase : int = init_xavier_std # Hungarian matcher && loss __lowercase : int = cross_entropy_weight __lowercase : List[str] = dice_weight __lowercase : Dict = mask_weight __lowercase : Any = use_auxiliary_loss __lowercase : str = no_object_weight __lowercase : str = output_auxiliary_logits __lowercase : List[Any] = self.decoder_config.encoder_attention_heads __lowercase : List[Any] = self.decoder_config.num_hidden_layers super().__init__(**__a ) @classmethod def lowerCAmelCase ( cls : int , __a : PretrainedConfig , __a : PretrainedConfig , **__a : Optional[int] ) -> List[str]: """simple docstring""" return cls( backbone_config=__a , decoder_config=__a , **__a , ) def lowerCAmelCase ( self : Union[str, Any] ) -> Dict[str, any]: """simple docstring""" __lowercase : str = copy.deepcopy(self.__dict__ ) __lowercase : Dict = self.backbone_config.to_dict() __lowercase : int = self.decoder_config.to_dict() __lowercase : Optional[int] = self.__class__.model_type return output
362
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError("""String lengths must match!""" ) __lowercase : str = 0 for chara, chara in zip(lowerCAmelCase_ , lowerCAmelCase_ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
306
0
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): assert x is not None assert y is not None __lowercase : Any = len(lowerCAmelCase_ ) __lowercase : Optional[Any] = len(lowerCAmelCase_ ) # declaring the array for storing the dp values __lowercase : Any = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): __lowercase : str = 1 if x[i - 1] == y[j - 1] else 0 __lowercase : Dict = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) __lowercase : List[str] = """""" __lowercase : Dict = m, n while i > 0 and j > 0: __lowercase : List[str] = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: __lowercase : List[Any] = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": lowerCamelCase : Union[str, Any] = '''AGGTAB''' lowerCamelCase : Optional[Any] = '''GXTXAYB''' lowerCamelCase : List[str] = 4 lowerCamelCase : Any = '''GTAB''' lowerCamelCase : List[Any] = longest_common_subsequence(a, b) print('''len =''', ln, ''', sub-sequence =''', subseq) import doctest doctest.testmod()
363
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def snake_case_ ( lowerCAmelCase_ : Tuple ): if isinstance(lowerCAmelCase_ , collections.abc.Iterable ): return x return (x, x) @require_flax class lowerCAmelCase : '''simple docstring''' def lowerCAmelCase ( self : Any , __a : Any , __a : List[Any] ) -> Optional[Any]: """simple docstring""" pass def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" pass def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : np.ndarray , __a : float ) -> List[Any]: """simple docstring""" __lowercase : List[str] = np.abs((a - b) ).max() self.assertLessEqual(__a , __a , F"Difference between torch and flax is {diff} (>= {tol})." ) def lowerCAmelCase ( self : Tuple , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[Any] , __a : Optional[Any]=None , **__a : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : str = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : str = FlaxVisionTextDualEncoderModel(__a ) __lowercase : Optional[Any] = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def lowerCAmelCase ( self : Optional[int] , __a : Optional[int] , __a : Dict , __a : Dict , __a : List[str] , __a : Optional[Any]=None , **__a : str ) -> str: """simple docstring""" __lowercase , __lowercase : List[str] = self.get_vision_text_model(__a , __a ) __lowercase : Union[str, Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : Any = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : Union[str, Any] , __a : Union[str, Any] , __a : Dict , __a : int=None , **__a : int ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Tuple = self.get_vision_text_model(__a , __a ) __lowercase : Union[str, Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : List[str] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : List[Any] = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) __lowercase : int = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowercase : int = FlaxVisionTextDualEncoderModel.from_pretrained(__a ) __lowercase : Tuple = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) __lowercase : int = after_output[0] __lowercase : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__a , 1E-3 ) def lowerCAmelCase ( self : List[Any] , __a : Any , __a : Tuple , __a : Optional[int] , __a : str , __a : Optional[Any]=None , **__a : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : str = self.get_vision_text_model(__a , __a ) __lowercase : Optional[Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : Union[str, Any] = model( input_ids=__a , pixel_values=__a , attention_mask=__a , output_attentions=__a ) __lowercase : Optional[int] = output.vision_model_output.attentions self.assertEqual(len(__a ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase : Optional[int] = to_atuple(vision_model.config.image_size ) __lowercase : List[str] = to_atuple(vision_model.config.patch_size ) __lowercase : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase : int = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase : Dict = output.text_model_output.attentions self.assertEqual(len(__a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowerCAmelCase ( self : Optional[int] , __a : List[str] , __a : List[Any] , __a : Optional[Any] ) -> Optional[int]: """simple docstring""" pt_model.to(__a ) pt_model.eval() # prepare inputs __lowercase : Union[str, Any] = inputs_dict __lowercase : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): __lowercase : Union[str, Any] = pt_model(**__a ).to_tuple() __lowercase : Tuple = fx_model(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(__a , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__a ) __lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained(__a , from_pt=__a ) __lowercase : Dict = fx_model_loaded(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(__a , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__a ) __lowercase : str = VisionTextDualEncoderModel.from_pretrained(__a , from_flax=__a ) pt_model_loaded.to(__a ) pt_model_loaded.eval() with torch.no_grad(): __lowercase : List[Any] = pt_model_loaded(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(__a , pt_output_loaded.numpy() , 4E-2 ) def lowerCAmelCase ( self : Optional[int] , __a : List[Any] , __a : int , __a : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : str = VisionTextDualEncoderModel(__a ) __lowercase : Union[str, Any] = FlaxVisionTextDualEncoderModel(__a ) __lowercase : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __a ) __lowercase : Any = fx_state self.check_pt_flax_equivalence(__a , __a , __a ) def lowerCAmelCase ( self : Any , __a : Any , __a : Dict , __a : Tuple ) -> str: """simple docstring""" __lowercase : int = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : Union[str, Any] = VisionTextDualEncoderModel(__a ) __lowercase : Dict = FlaxVisionTextDualEncoderModel(__a ) __lowercase : Tuple = load_flax_weights_in_pytorch_model(__a , fx_model.params ) self.check_pt_flax_equivalence(__a , __a , __a ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase : int = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__a ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() self.check_save_load(**__a ) def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" __lowercase : str = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__a ) @is_pt_flax_cross_test def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.prepare_config_and_inputs() __lowercase : Optional[int] = config_inputs_dict.pop("""vision_config""" ) __lowercase : Optional[int] = config_inputs_dict.pop("""text_config""" ) __lowercase : Dict = config_inputs_dict self.check_equivalence_pt_to_flax(__a , __a , __a ) self.check_equivalence_flax_to_pt(__a , __a , __a ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase , __lowercase : List[Any] = self.get_pretrained_model_and_inputs() __lowercase : Dict = model_a(**__a ) __lowercase : Any = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__a ) __lowercase : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(__a ) __lowercase : Optional[int] = model_a(**__a ) __lowercase : Tuple = after_outputs[0] __lowercase : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__a , 1E-5 ) @require_flax class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" __lowercase : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=__a , text_from_pt=__a , ) __lowercase : int = 13 __lowercase : Union[str, Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowercase : Dict = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __lowercase : Tuple = random_attention_mask([batch_size, 4] ) __lowercase : str = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCAmelCase ( self : Optional[Any] , __a : Union[str, Any] , __a : int ) -> Dict: """simple docstring""" __lowercase : int = FlaxViTModel(__a ) __lowercase : List[Any] = FlaxBertModel(__a ) return vision_model, text_model def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = FlaxViTModelTester(self ) __lowercase : str = FlaxBertModelTester(self ) __lowercase : List[str] = vit_model_tester.prepare_config_and_inputs() __lowercase : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase : Optional[int] = vision_config_and_inputs __lowercase , __lowercase , __lowercase , __lowercase : Any = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=__a , text_from_pt=__a , ) __lowercase : Tuple = 13 __lowercase : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowercase : Tuple = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __lowercase : List[Any] = random_attention_mask([batch_size, 4] ) __lowercase : int = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCAmelCase ( self : str , __a : str , __a : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Dict = FlaxCLIPVisionModel(__a ) __lowercase : Optional[Any] = FlaxBertModel(__a ) return vision_model, text_model def lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase : List[Any] = FlaxCLIPVisionModelTester(self ) __lowercase : Optional[Any] = FlaxBertModelTester(self ) __lowercase : Any = clip_model_tester.prepare_config_and_inputs() __lowercase : Optional[Any] = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase : Dict = vision_config_and_inputs __lowercase , __lowercase , __lowercase , __lowercase : Optional[int] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 ) __lowercase : int = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) __lowercase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowercase : Tuple = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=__a , padding=__a , return_tensors="""np""" ) __lowercase : Optional[int] = model(**__a ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowercase : Optional[Any] = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , __a , atol=1E-3 ) )
306
0
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__a ) , '''Tatoeba directory does not exist.''' ) class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" __lowercase : Union[str, Any] = tempfile.mkdtemp() return TatoebaConverter(save_dir=__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" self.resolver.convert_models(["""heb-eng"""] ) @slow def lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" __lowercase : Tuple = self.resolver.write_model_card("""opus-mt-he-en""" , dry_run=__a ) assert mmeta["long_pair"] == "heb-eng"
364
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
306
0
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(1 ) != 0 ) def snake_case_ ( ): assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
365
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowerCamelCase : str = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex lowerCamelCase : Union[str, Any] = 10 lowerCamelCase : List[str] = 2_56 def snake_case_ ( lowerCAmelCase_ : List[str] ): if len(lowerCAmelCase_ ) < MIN_NUM_TOKENS: return None __lowercase : Dict = MinHash(num_perm=lowerCAmelCase_ ) for token in set(lowerCAmelCase_ ): min_hash.update(token.encode() ) return min_hash def snake_case_ ( lowerCAmelCase_ : str ): return {t for t in NON_ALPHA.split(lowerCAmelCase_ ) if len(t.strip() ) > 0} class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , *, __a : float = 0.85 , ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = duplication_jaccard_threshold __lowercase : Optional[Any] = NUM_PERM __lowercase : List[Any] = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) __lowercase : List[str] = defaultdict(__a ) def lowerCAmelCase ( self : str , __a : Tuple , __a : MinHash ) -> None: """simple docstring""" __lowercase : List[Any] = self._index.query(__a ) if code_key in self._index.keys: print(F"Duplicate key {code_key}" ) return self._index.insert(__a , __a ) if len(__a ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__a ) break else: self._duplicate_clusters[close_duplicates[0]].add(__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[List[Dict]]: """simple docstring""" __lowercase : Dict = [] for base, duplicates in self._duplicate_clusters.items(): __lowercase : List[str] = [base] + list(__a ) # reformat the cluster to be a list of dict __lowercase : Optional[Any] = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(__a ) return duplicate_clusters def lowerCAmelCase ( self : Any , __a : int ) -> None: """simple docstring""" __lowercase : Tuple = self.get_duplicate_clusters() with open(__a , """w""" ) as f: json.dump(__a , __a ) def snake_case_ ( lowerCAmelCase_ : str ): __lowercase , __lowercase : Union[str, Any] = element __lowercase : Optional[Any] = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def snake_case_ ( lowerCAmelCase_ : Type[Dataset] ): with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(lowerCAmelCase_ , max_queue_size=10000 ) , chunksize=100 , ): if data is not None: yield data def snake_case_ ( lowerCAmelCase_ : Type[Dataset] , lowerCAmelCase_ : float ): __lowercase : Dict = DuplicationIndex(duplication_jaccard_threshold=lowerCAmelCase_ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(lowerCAmelCase_ ) ) , max_queue_size=100 ) ): di.add(lowerCAmelCase_ , lowerCAmelCase_ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : List[str] = get_tokens(lowerCAmelCase_ ) __lowercase : Dict = get_tokens(lowerCAmelCase_ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) lowerCamelCase : List[str] = None def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] ): __lowercase : Union[str, Any] = [] for elementa in cluster: __lowercase : Tuple = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: __lowercase : Dict = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(lowerCAmelCase_ , lowerCAmelCase_ ) >= jaccard_threshold: elementa["copies"] += 1 break else: __lowercase : Dict = 1 extremes.append(lowerCAmelCase_ ) return extremes def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple ): global _shared_dataset __lowercase : Tuple = dataset __lowercase : Optional[int] = [] __lowercase : str = partial(_find_cluster_extremes_shared , jaccard_threshold=lowerCAmelCase_ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( lowerCAmelCase_ , lowerCAmelCase_ , ) , total=len(lowerCAmelCase_ ) , ): extremes_list.append(lowerCAmelCase_ ) return extremes_list def snake_case_ ( lowerCAmelCase_ : Type[Dataset] , lowerCAmelCase_ : float = 0.85 ): __lowercase : Optional[int] = make_duplicate_clusters(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Tuple = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} __lowercase : int = {} __lowercase : Dict = find_extremes(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for extremes in extremes_clusters: for element in extremes: __lowercase : Optional[Any] = element __lowercase : int = duplicate_indices - set(extreme_dict.keys() ) __lowercase : int = dataset.filter(lambda lowerCAmelCase_ , lowerCAmelCase_ : idx not in remove_indices , with_indices=lowerCAmelCase_ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: __lowercase : List[str] = element["""base_index"""] in extreme_dict if element["is_extreme"]: __lowercase : str = extreme_dict[element["""base_index"""]]["""copies"""] print(F"Original dataset size: {len(lowerCAmelCase_ )}" ) print(F"Number of duplicate clusters: {len(lowerCAmelCase_ )}" ) print(F"Files in duplicate cluster: {len(lowerCAmelCase_ )}" ) print(F"Unique files in duplicate cluster: {len(lowerCAmelCase_ )}" ) print(F"Filtered dataset size: {len(lowerCAmelCase_ )}" ) return ds_filter, duplicate_clusters
306
0