code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
def snake_case_ ( lowerCAmelCase_ : int = 100 ): __lowercase : Tuple = n * (n + 1) * (2 * n + 1) / 6 __lowercase : List[Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f'''{solution() = }''')
306
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
306
1
from __future__ import annotations from collections import Counter from random import random class lowerCAmelCase : '''simple docstring''' def __init__( self : Dict ) -> int: """simple docstring""" __lowercase : Optional[Any] = {} def lowerCAmelCase ( self : List[Any] , __a : str ) -> None: """simple docstring""" __lowercase : List[str] = {} def lowerCAmelCase ( self : Dict , __a : str , __a : str , __a : float ) -> None: """simple docstring""" if nodea not in self.connections: self.add_node(__a ) if nodea not in self.connections: self.add_node(__a ) __lowercase : Union[str, Any] = probability def lowerCAmelCase ( self : int ) -> list[str]: """simple docstring""" return list(self.connections ) def lowerCAmelCase ( self : Dict , __a : str ) -> str: """simple docstring""" __lowercase : Optional[int] = 0 __lowercase : List[Any] = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : list[tuple[str, str, float]] , lowerCAmelCase_ : int ): __lowercase : Tuple = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Union[str, Any] = Counter(graph.get_nodes() ) __lowercase : Optional[int] = start for _ in range(lowerCAmelCase_ ): __lowercase : str = graph.transition(lowerCAmelCase_ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
306
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowerCamelCase : str = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex lowerCamelCase : Union[str, Any] = 10 lowerCamelCase : List[str] = 2_56 def snake_case_ ( lowerCAmelCase_ : List[str] ): if len(lowerCAmelCase_ ) < MIN_NUM_TOKENS: return None __lowercase : Dict = MinHash(num_perm=lowerCAmelCase_ ) for token in set(lowerCAmelCase_ ): min_hash.update(token.encode() ) return min_hash def snake_case_ ( lowerCAmelCase_ : str ): return {t for t in NON_ALPHA.split(lowerCAmelCase_ ) if len(t.strip() ) > 0} class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , *, __a : float = 0.85 , ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = duplication_jaccard_threshold __lowercase : Optional[Any] = NUM_PERM __lowercase : List[Any] = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) __lowercase : List[str] = defaultdict(__a ) def lowerCAmelCase ( self : str , __a : Tuple , __a : MinHash ) -> None: """simple docstring""" __lowercase : List[Any] = self._index.query(__a ) if code_key in self._index.keys: print(F"Duplicate key {code_key}" ) return self._index.insert(__a , __a ) if len(__a ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__a ) break else: self._duplicate_clusters[close_duplicates[0]].add(__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[List[Dict]]: """simple docstring""" __lowercase : Dict = [] for base, duplicates in self._duplicate_clusters.items(): __lowercase : List[str] = [base] + list(__a ) # reformat the cluster to be a list of dict __lowercase : Optional[Any] = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(__a ) return duplicate_clusters def lowerCAmelCase ( self : Any , __a : int ) -> None: """simple docstring""" __lowercase : Tuple = self.get_duplicate_clusters() with open(__a , """w""" ) as f: json.dump(__a , __a ) def snake_case_ ( lowerCAmelCase_ : str ): __lowercase , __lowercase : Union[str, Any] = element __lowercase : Optional[Any] = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def snake_case_ ( lowerCAmelCase_ : Type[Dataset] ): with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(lowerCAmelCase_ , max_queue_size=10000 ) , chunksize=100 , ): if data is not None: yield data def snake_case_ ( lowerCAmelCase_ : Type[Dataset] , lowerCAmelCase_ : float ): __lowercase : Dict = DuplicationIndex(duplication_jaccard_threshold=lowerCAmelCase_ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(lowerCAmelCase_ ) ) , max_queue_size=100 ) ): di.add(lowerCAmelCase_ , lowerCAmelCase_ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : List[str] = get_tokens(lowerCAmelCase_ ) __lowercase : Dict = get_tokens(lowerCAmelCase_ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) lowerCamelCase : List[str] = None def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] ): __lowercase : Union[str, Any] = [] for elementa in cluster: __lowercase : Tuple = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: __lowercase : Dict = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(lowerCAmelCase_ , lowerCAmelCase_ ) >= jaccard_threshold: elementa["copies"] += 1 break else: __lowercase : Dict = 1 extremes.append(lowerCAmelCase_ ) return extremes def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple ): global _shared_dataset __lowercase : Tuple = dataset __lowercase : Optional[int] = [] __lowercase : str = partial(_find_cluster_extremes_shared , jaccard_threshold=lowerCAmelCase_ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( lowerCAmelCase_ , lowerCAmelCase_ , ) , total=len(lowerCAmelCase_ ) , ): extremes_list.append(lowerCAmelCase_ ) return extremes_list def snake_case_ ( lowerCAmelCase_ : Type[Dataset] , lowerCAmelCase_ : float = 0.85 ): __lowercase : Optional[int] = make_duplicate_clusters(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Tuple = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} __lowercase : int = {} __lowercase : Dict = find_extremes(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for extremes in extremes_clusters: for element in extremes: __lowercase : Optional[Any] = element __lowercase : int = duplicate_indices - set(extreme_dict.keys() ) __lowercase : int = dataset.filter(lambda lowerCAmelCase_ , lowerCAmelCase_ : idx not in remove_indices , with_indices=lowerCAmelCase_ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: __lowercase : List[str] = element["""base_index"""] in extreme_dict if element["is_extreme"]: __lowercase : str = extreme_dict[element["""base_index"""]]["""copies"""] print(F"Original dataset size: {len(lowerCAmelCase_ )}" ) print(F"Number of duplicate clusters: {len(lowerCAmelCase_ )}" ) print(F"Files in duplicate cluster: {len(lowerCAmelCase_ )}" ) print(F"Unique files in duplicate cluster: {len(lowerCAmelCase_ )}" ) print(F"Filtered dataset size: {len(lowerCAmelCase_ )}" ) return ds_filter, duplicate_clusters
306
1
import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : str = MvpTokenizer _A : str = MvpTokenizerFast _A : Union[str, Any] = True _A : Optional[int] = filter_roberta_detectors def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" super().setUp() __lowercase : Tuple = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __lowercase : Optional[Any] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : List[str] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __lowercase : List[str] = {"""unk_token""": """<unk>"""} __lowercase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__a ) ) def lowerCAmelCase ( self : Dict , **__a : Tuple ) -> Union[str, Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Optional[int] , **__a : Optional[Any] ) -> List[str]: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Tuple , __a : str ) -> List[str]: """simple docstring""" return "lower newer", "lower newer" @cached_property def lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" return MvpTokenizer.from_pretrained("""RUCAIBox/mvp""" ) @cached_property def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" return MvpTokenizerFast.from_pretrained("""RUCAIBox/mvp""" ) @require_torch def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase : Union[str, Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __lowercase : str = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowercase : List[Any] = tokenizer(__a , max_length=len(__a ) , padding=__a , return_tensors="""pt""" ) self.assertIsInstance(__a , __a ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) __lowercase : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(__a , __a ) # Test that special tokens are reset @require_torch def lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase : Dict = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowercase : str = tokenizer(__a , padding=__a , return_tensors="""pt""" ) # check if input_ids are returned and no labels self.assertIn("""input_ids""" , __a ) self.assertIn("""attention_mask""" , __a ) self.assertNotIn("""labels""" , __a ) self.assertNotIn("""decoder_attention_mask""" , __a ) @require_torch def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase : Dict = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowercase : Tuple = tokenizer(text_target=__a , max_length=32 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) @require_torch def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowercase : Tuple = tokenizer( ["""I am a small frog""" * 1024, """I am a small frog"""] , padding=__a , truncation=__a , return_tensors="""pt""" ) self.assertIsInstance(__a , __a ) self.assertEqual(batch.input_ids.shape , (2, 1024) ) @require_torch def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : int = ["""A long paragraph for summarization."""] __lowercase : List[str] = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowercase : List[str] = tokenizer(__a , text_target=__a , return_tensors="""pt""" ) __lowercase : int = inputs["""input_ids"""] __lowercase : List[str] = inputs["""labels"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" pass def lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowercase : Tuple = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __lowercase : Union[str, Any] = self.tokenizer_class.from_pretrained(__a , **__a ) __lowercase : str = """A, <mask> AllenNLP sentence.""" __lowercase : List[Any] = tokenizer_r.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) __lowercase : Any = tokenizer_p.encode_plus(__a , add_special_tokens=__a , return_token_type_ids=__a ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __lowercase : Optional[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __lowercase : int = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __a , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
306
from ...processing_utils import ProcessorMixin class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = ['''image_processor''', '''feature_extractor'''] _A : List[Any] = '''TvltImageProcessor''' _A : Optional[int] = '''TvltFeatureExtractor''' def __init__( self : str , __a : List[Any] , __a : Tuple ) -> Optional[Any]: """simple docstring""" super().__init__(image_processor=__a , feature_extractor=__a ) __lowercase : Union[str, Any] = image_processor __lowercase : Tuple = feature_extractor def __call__( self : Tuple , __a : Optional[int]=None , __a : Dict=None , __a : Union[str, Any]=None , __a : Tuple=None , __a : Optional[Any]=False , __a : List[Any]=False , *__a : List[str] , **__a : List[Any] , ) -> Dict: """simple docstring""" if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) __lowercase : Tuple = None if images is not None: __lowercase : Any = self.image_processor(__a , mask_pixel=__a , *__a , **__a ) if images_mixed is not None: __lowercase : Union[str, Any] = self.image_processor(__a , is_mixed=__a , *__a , **__a ) if audio is not None: __lowercase : Optional[Any] = self.feature_extractor( __a , *__a , sampling_rate=__a , mask_audio=__a , **__a ) __lowercase : Tuple = {} if audio is not None: output_dict.update(__a ) if images is not None: output_dict.update(__a ) if images_mixed_dict is not None: output_dict.update(__a ) return output_dict @property def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = self.image_processor.model_input_names __lowercase : Union[str, Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
306
1
def snake_case_ ( lowerCAmelCase_ : list ): def merge(lowerCAmelCase_ : list , lowerCAmelCase_ : list ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(lowerCAmelCase_ ) <= 1: return collection __lowercase : Optional[int] = len(lowerCAmelCase_ ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Dict = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase : Union[str, Any] = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
306
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Any , __a : Tuple , __a : Optional[int]=13 , __a : int=7 , __a : List[str]=False , __a : Optional[int]=True , __a : Optional[int]=False , __a : Dict=True , __a : Optional[int]=33 , __a : Dict=32 , __a : Optional[int]=5 , __a : Union[str, Any]=4 , __a : List[str]=37 , __a : Tuple="gelu" , __a : List[str]=0.1 , __a : Dict=0.1 , __a : List[Any]=512 , __a : Any=16 , __a : Optional[Any]=2 , __a : List[Any]=0.02 , __a : int=3 , __a : Union[str, Any]=4 , __a : Optional[int]=None , ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = parent __lowercase : int = batch_size __lowercase : Any = seq_length __lowercase : str = is_training __lowercase : str = use_input_mask __lowercase : Optional[int] = use_token_type_ids __lowercase : List[Any] = use_labels __lowercase : Optional[Any] = vocab_size __lowercase : int = hidden_size __lowercase : List[Any] = num_hidden_layers __lowercase : Dict = num_attention_heads __lowercase : Any = intermediate_size __lowercase : Dict = hidden_act __lowercase : Union[str, Any] = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : List[str] = max_position_embeddings __lowercase : Union[str, Any] = type_vocab_size __lowercase : Dict = type_sequence_label_size __lowercase : Union[str, Any] = initializer_range __lowercase : List[Any] = num_labels __lowercase : str = num_choices __lowercase : Tuple = scope def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : int = None if self.use_input_mask: __lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : str = None __lowercase : Optional[Any] = None __lowercase : Tuple = None if self.use_labels: __lowercase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : List[Any] , __a : int , __a : int , __a : Dict , __a : Union[str, Any] , __a : List[str] , __a : str ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = EsmModel(config=__a ) model.to(__a ) model.eval() __lowercase : str = model(__a , attention_mask=__a ) __lowercase : List[Any] = model(__a ) __lowercase : Optional[int] = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : Union[str, Any] , __a : Dict , __a : List[Any] , __a : Tuple , __a : Union[str, Any] , __a : str , __a : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase : List[str] = EsmForMaskedLM(config=__a ) model.to(__a ) model.eval() __lowercase : int = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[int] , __a : Union[str, Any] , __a : List[Any] , __a : Tuple , __a : Tuple , __a : Optional[int] , __a : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = self.num_labels __lowercase : Any = EsmForTokenClassification(config=__a ) model.to(__a ) model.eval() __lowercase : Optional[Any] = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase : Any = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : List[str] = config_and_inputs __lowercase : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Optional[Any] = False _A : Any = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) _A : Optional[Any] = () _A : List[Any] = ( { '''feature-extraction''': EsmModel, '''fill-mask''': EsmForMaskedLM, '''text-classification''': EsmForSequenceClassification, '''token-classification''': EsmForTokenClassification, '''zero-shot''': EsmForSequenceClassification, } if is_torch_available() else {} ) _A : Optional[Any] = True def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : Optional[int] = EsmModelTester(self ) __lowercase : Tuple = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase : Union[str, Any] = type self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : List[str] = EsmModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] __lowercase : List[str] = EsmEmbeddings(config=__a ) __lowercase : Union[str, Any] = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) __lowercase : int = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) __lowercase : str = create_position_ids_from_input_ids(__a , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__a , __a ) ) ) def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] __lowercase : Optional[Any] = EsmEmbeddings(config=__a ) __lowercase : Optional[int] = torch.empty(2 , 4 , 30 ) __lowercase : Tuple = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] __lowercase : List[str] = torch.as_tensor([expected_single_positions, expected_single_positions] ) __lowercase : Any = embeddings.create_position_ids_from_inputs_embeds(__a ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__a , __a ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" pass @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" pass @require_torch class lowerCAmelCase ( __a ): '''simple docstring''' @slow def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): __lowercase : Tuple = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() __lowercase : Tuple = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase : List[str] = model(__a )[0] __lowercase : Union[str, Any] = 33 __lowercase : Union[str, Any] = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , __a ) __lowercase : List[Any] = torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): __lowercase : int = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() __lowercase : int = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) __lowercase : Any = model(__a )[0] # compare the actual values for a slice. __lowercase : int = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) )
306
1
from manim import * class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase : str = Rectangle(height=0.5 , width=0.5 ) __lowercase : Dict = Rectangle(height=0.25 , width=0.25 ) __lowercase : Optional[int] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) __lowercase : Optional[Any] = [mem.copy() for i in range(6 )] __lowercase : Optional[Any] = [mem.copy() for i in range(6 )] __lowercase : List[Any] = VGroup(*__a ).arrange(__a , buff=0 ) __lowercase : Optional[int] = VGroup(*__a ).arrange(__a , buff=0 ) __lowercase : int = VGroup(__a , __a ).arrange(__a , buff=0 ) __lowercase : List[Any] = Text("""CPU""" , font_size=24 ) __lowercase : List[str] = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__a ) __lowercase : List[Any] = [mem.copy() for i in range(4 )] __lowercase : List[Any] = VGroup(*__a ).arrange(__a , buff=0 ) __lowercase : Any = Text("""GPU""" , font_size=24 ) __lowercase : int = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) gpu.move_to([-1, -1, 0] ) self.add(__a ) __lowercase : Optional[Any] = [mem.copy() for i in range(6 )] __lowercase : Union[str, Any] = VGroup(*__a ).arrange(__a , buff=0 ) __lowercase : Any = Text("""Model""" , font_size=24 ) __lowercase : Any = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) model.move_to([3, -1.0, 0] ) self.add(__a ) __lowercase : Dict = [] __lowercase : str = [] __lowercase : Tuple = [] for i, rect in enumerate(__a ): rect.set_stroke(__a ) __lowercase : Optional[Any] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__a , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__a ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=__a , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=__a , buff=0.0 ) self.add(__a ) model_cpu_arr.append(__a ) self.add(*__a , *__a , *__a ) __lowercase : Dict = [mem.copy() for i in range(6 )] __lowercase : List[Any] = VGroup(*__a ).arrange(__a , buff=0 ) __lowercase : List[str] = Text("""Loaded Checkpoint""" , font_size=24 ) __lowercase : Union[str, Any] = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) checkpoint.move_to([3, 0.5, 0] ) self.add(__a ) __lowercase : List[str] = [] __lowercase : Tuple = [] for i, rect in enumerate(__a ): __lowercase : List[Any] = fill.copy().set_fill(__a , opacity=0.7 ) target.move_to(__a ) ckpt_arr.append(__a ) __lowercase : Union[str, Any] = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(__a ) self.add(*__a , *__a ) __lowercase : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __lowercase : Dict = MarkupText( F"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__a , __a ) __lowercase : Union[str, Any] = MarkupText( F"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(__a , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(__a ) __lowercase : Optional[Any] = MarkupText( F"Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device." , font_size=24 , ) step_a.move_to([2, 2, 0] ) __lowercase : Union[str, Any] = [meta_mem.copy() for i in range(6 )] __lowercase : Optional[int] = [meta_mem.copy() for i in range(6 )] __lowercase : Any = VGroup(*__a ).arrange(__a , buff=0 ) __lowercase : List[Any] = VGroup(*__a ).arrange(__a , buff=0 ) __lowercase : Dict = VGroup(__a , __a ).arrange(__a , buff=0 ) __lowercase : Optional[Any] = Text("""Disk""" , font_size=24 ) __lowercase : List[str] = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(__a , run_time=3 ) , Write(__a , run_time=1 ) , Create(__a , run_time=1 ) ) __lowercase : Optional[Any] = [] for i, rect in enumerate(__a ): __lowercase : Union[str, Any] = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(__a , run_time=1.5 ) ) self.play(*__a ) self.play(FadeOut(__a ) ) __lowercase : Dict = MarkupText(F"Then, the checkpoint is removed from memory\nthrough garbage collection." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(__a , run_time=3 ) ) self.play( FadeOut(__a , __a , *__a , *__a ) , ) self.wait()
306
def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def snake_case_ ( lowerCAmelCase_ : int = 5000 ): __lowercase : Optional[int] = [(i * (3 * i - 1)) // 2 for i in range(1 , lowerCAmelCase_ )] for i, pentagonal_i in enumerate(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ , len(lowerCAmelCase_ ) ): __lowercase : int = pentagonal_nums[j] __lowercase : Optional[int] = pentagonal_i + pentagonal_j __lowercase : Union[str, Any] = pentagonal_j - pentagonal_i if is_pentagonal(lowerCAmelCase_ ) and is_pentagonal(lowerCAmelCase_ ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
306
1
from __future__ import annotations import math def snake_case_ ( lowerCAmelCase_ : list , lowerCAmelCase_ : list ): if len(lowerCAmelCase_ ) != 2 or len(a[0] ) != 2 or len(lowerCAmelCase_ ) != 2 or len(b[0] ) != 2: raise Exception("""Matrices are not 2x2""" ) __lowercase : Optional[int] = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def snake_case_ ( lowerCAmelCase_ : list , lowerCAmelCase_ : list ): return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowerCAmelCase_ ) ) ] def snake_case_ ( lowerCAmelCase_ : list , lowerCAmelCase_ : list ): return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(lowerCAmelCase_ ) ) ] def snake_case_ ( lowerCAmelCase_ : list ): if len(lowerCAmelCase_ ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("""Odd matrices are not supported!""" ) __lowercase : Dict = len(lowerCAmelCase_ ) __lowercase : Optional[Any] = matrix_length // 2 __lowercase : int = [[a[i][j] for j in range(lowerCAmelCase_ , lowerCAmelCase_ )] for i in range(lowerCAmelCase_ )] __lowercase : List[Any] = [ [a[i][j] for j in range(lowerCAmelCase_ , lowerCAmelCase_ )] for i in range(lowerCAmelCase_ , lowerCAmelCase_ ) ] __lowercase : str = [[a[i][j] for j in range(lowerCAmelCase_ )] for i in range(lowerCAmelCase_ )] __lowercase : int = [[a[i][j] for j in range(lowerCAmelCase_ )] for i in range(lowerCAmelCase_ , lowerCAmelCase_ )] return top_left, top_right, bot_left, bot_right def snake_case_ ( lowerCAmelCase_ : list ): return len(lowerCAmelCase_ ), len(matrix[0] ) def snake_case_ ( lowerCAmelCase_ : list ): print("""\n""".join(str(lowerCAmelCase_ ) for line in matrix ) ) def snake_case_ ( lowerCAmelCase_ : list , lowerCAmelCase_ : list ): if matrix_dimensions(lowerCAmelCase_ ) == (2, 2): return default_matrix_multiplication(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase , __lowercase , __lowercase , __lowercase : Optional[int] = split_matrix(lowerCAmelCase_ ) __lowercase , __lowercase , __lowercase , __lowercase : Optional[int] = split_matrix(lowerCAmelCase_ ) __lowercase : Tuple = actual_strassen(lowerCAmelCase_ , matrix_subtraction(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowercase : List[str] = actual_strassen(matrix_addition(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ ) __lowercase : List[Any] = actual_strassen(matrix_addition(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ ) __lowercase : int = actual_strassen(lowerCAmelCase_ , matrix_subtraction(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowercase : List[Any] = actual_strassen(matrix_addition(lowerCAmelCase_ , lowerCAmelCase_ ) , matrix_addition(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowercase : Any = actual_strassen(matrix_subtraction(lowerCAmelCase_ , lowerCAmelCase_ ) , matrix_addition(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowercase : str = actual_strassen(matrix_subtraction(lowerCAmelCase_ , lowerCAmelCase_ ) , matrix_addition(lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowercase : Union[str, Any] = matrix_addition(matrix_subtraction(matrix_addition(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ ) , lowerCAmelCase_ ) __lowercase : List[str] = matrix_addition(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Tuple = matrix_addition(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : List[str] = matrix_subtraction(matrix_subtraction(matrix_addition(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ ) , lowerCAmelCase_ ) # construct the new matrix from our 4 quadrants __lowercase : int = [] for i in range(len(lowerCAmelCase_ ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(lowerCAmelCase_ ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def snake_case_ ( lowerCAmelCase_ : list , lowerCAmelCase_ : list ): if matrix_dimensions(lowerCAmelCase_ )[1] != matrix_dimensions(lowerCAmelCase_ )[0]: __lowercase : Optional[Any] = ( """Unable to multiply these matrices, please check the dimensions.\n""" F"Matrix A: {matrixa}\n" F"Matrix B: {matrixa}" ) raise Exception(lowerCAmelCase_ ) __lowercase : Union[str, Any] = matrix_dimensions(lowerCAmelCase_ ) __lowercase : str = matrix_dimensions(lowerCAmelCase_ ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] __lowercase : str = max(*lowerCAmelCase_ , *lowerCAmelCase_ ) __lowercase : List[Any] = int(math.pow(2 , math.ceil(math.loga(lowerCAmelCase_ ) ) ) ) __lowercase : List[str] = matrixa __lowercase : str = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , lowerCAmelCase_ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , lowerCAmelCase_ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , lowerCAmelCase_ ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) __lowercase : str = actual_strassen(lowerCAmelCase_ , lowerCAmelCase_ ) # Removing the additional zeros for i in range(0 , lowerCAmelCase_ ): if i < dimensiona[0]: for _ in range(dimensiona[1] , lowerCAmelCase_ ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": lowerCamelCase : Tuple = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] lowerCamelCase : Optional[Any] = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
306
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowerCAmelCase ( __a ): '''simple docstring''' _A : Optional[Any] = (DPMSolverSDEScheduler,) _A : Dict = 10 def lowerCAmelCase ( self : Optional[int] , **__a : Dict ) -> Optional[int]: """simple docstring""" __lowercase : Any = { """num_train_timesteps""": 1100, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**__a ) return config def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=__a ) def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__a ) def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = self.scheduler_classes[0] __lowercase : List[str] = self.get_scheduler_config() __lowercase : Any = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase : Optional[Any] = self.dummy_model() __lowercase : str = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase : Optional[Any] = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): __lowercase : Union[str, Any] = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[Any] = model(__a , __a ) __lowercase : Optional[Any] = scheduler.step(__a , __a , __a ) __lowercase : str = output.prev_sample __lowercase : Optional[Any] = torch.sum(torch.abs(__a ) ) __lowercase : Union[str, Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47821044921875 ) < 1E-2 assert abs(result_mean.item() - 0.2178705964565277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59352111816406 ) < 1E-2 assert abs(result_mean.item() - 0.22342906892299652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase : Tuple = self.scheduler_classes[0] __lowercase : Dict = self.get_scheduler_config(prediction_type="""v_prediction""" ) __lowercase : int = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase : Optional[int] = self.dummy_model() __lowercase : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase : Dict = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): __lowercase : Dict = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[int] = model(__a , __a ) __lowercase : Optional[int] = scheduler.step(__a , __a , __a ) __lowercase : int = output.prev_sample __lowercase : Optional[Any] = torch.sum(torch.abs(__a ) ) __lowercase : List[str] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77149200439453 ) < 1E-2 assert abs(result_mean.item() - 0.16226289014816284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1663360595703 ) < 1E-2 assert abs(result_mean.item() - 0.16688326001167297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8487548828125 ) < 1E-2 assert abs(result_mean.item() - 0.1560530662536621 ) < 1E-3 def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = self.scheduler_classes[0] __lowercase : Dict = self.get_scheduler_config() __lowercase : Optional[int] = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps , device=__a ) __lowercase : int = self.dummy_model() __lowercase : Optional[Any] = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __lowercase : int = scheduler.scale_model_input(__a , __a ) __lowercase : List[str] = model(__a , __a ) __lowercase : List[str] = scheduler.step(__a , __a , __a ) __lowercase : int = output.prev_sample __lowercase : List[Any] = torch.sum(torch.abs(__a ) ) __lowercase : Optional[Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46957397460938 ) < 1E-2 assert abs(result_mean.item() - 0.21805934607982635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59353637695312 ) < 1E-2 assert abs(result_mean.item() - 0.22342908382415771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : str = self.scheduler_classes[0] __lowercase : List[Any] = self.get_scheduler_config() __lowercase : Tuple = scheduler_class(**__a , use_karras_sigmas=__a ) scheduler.set_timesteps(self.num_inference_steps , device=__a ) __lowercase : List[str] = self.dummy_model() __lowercase : Optional[int] = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma __lowercase : str = sample.to(__a ) for t in scheduler.timesteps: __lowercase : List[Any] = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[Any] = model(__a , __a ) __lowercase : Any = scheduler.step(__a , __a , __a ) __lowercase : Optional[Any] = output.prev_sample __lowercase : Any = torch.sum(torch.abs(__a ) ) __lowercase : Optional[Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66974135742188 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63653564453125 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3135223388672 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2
306
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : List[str] = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json''' ), } class lowerCAmelCase ( __a ): '''simple docstring''' _A : Any = '''dpr''' def __init__( self : int , __a : List[str]=30522 , __a : int=768 , __a : Dict=12 , __a : List[Any]=12 , __a : Any=3072 , __a : Tuple="gelu" , __a : Optional[Any]=0.1 , __a : Any=0.1 , __a : Optional[int]=512 , __a : Any=2 , __a : Optional[Any]=0.02 , __a : int=1E-12 , __a : Optional[Any]=0 , __a : Optional[Any]="absolute" , __a : int = 0 , **__a : List[str] , ) -> Optional[int]: """simple docstring""" super().__init__(pad_token_id=__a , **__a ) __lowercase : Optional[Any] = vocab_size __lowercase : List[str] = hidden_size __lowercase : Optional[Any] = num_hidden_layers __lowercase : Optional[Any] = num_attention_heads __lowercase : int = hidden_act __lowercase : List[Any] = intermediate_size __lowercase : Dict = hidden_dropout_prob __lowercase : Tuple = attention_probs_dropout_prob __lowercase : Any = max_position_embeddings __lowercase : Dict = type_vocab_size __lowercase : Tuple = initializer_range __lowercase : Tuple = layer_norm_eps __lowercase : Tuple = projection_dim __lowercase : Tuple = position_embedding_type
306
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate lowerCamelCase : str = trt.Logger(trt.Logger.WARNING) lowerCamelCase : Any = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) lowerCamelCase : Optional[Any] = logging.getLogger(__name__) lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=3_84, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=1_28, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) lowerCamelCase : Dict = parser.parse_args() if args.tokenizer_name: lowerCamelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) lowerCamelCase : List[str] = args.per_device_eval_batch_size lowerCamelCase : Any = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties lowerCamelCase : List[str] = True lowerCamelCase : List[Any] = '''temp_engine/bert-fp32.engine''' if args.fpaa: lowerCamelCase : Optional[Any] = '''temp_engine/bert-fp16.engine''' if args.inta: lowerCamelCase : int = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') lowerCamelCase : int = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network lowerCamelCase : Union[str, Any] = [network.get_input(i) for i in range(network.num_inputs)] lowerCamelCase : Dict = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: lowerCamelCase : List[str] = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) lowerCamelCase : Optional[int] = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) lowerCamelCase : Optional[Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ): __lowercase : List[str] = np.asarray(inputs["""input_ids"""] , dtype=np.intaa ) __lowercase : Union[str, Any] = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa ) __lowercase : int = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowerCAmelCase_ ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowerCAmelCase_ ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowerCAmelCase_ ) # start time __lowercase : Optional[Any] = time.time() # Run inference context.execute_async( bindings=[int(lowerCAmelCase_ ) for d_inp in d_inputs] + [int(lowerCAmelCase_ ), int(lowerCAmelCase_ )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) cuda.memcpy_dtoh_async(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Synchronize the stream and take time stream.synchronize() # end time __lowercase : int = time.time() __lowercase : Union[str, Any] = end_time - start_time __lowercase : Any = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. lowerCamelCase : Tuple = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase : List[Any] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. lowerCamelCase : Optional[Any] = raw_datasets['''validation'''].column_names lowerCamelCase : Union[str, Any] = '''question''' if '''question''' in column_names else column_names[0] lowerCamelCase : str = '''context''' if '''context''' in column_names else column_names[1] lowerCamelCase : Dict = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). lowerCamelCase : Dict = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) lowerCamelCase : Tuple = min(args.max_seq_length, tokenizer.model_max_length) def snake_case_ ( lowerCAmelCase_ : int ): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace __lowercase : str = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. __lowercase : List[str] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=lowerCAmelCase_ , stride=args.doc_stride , return_overflowing_tokens=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. __lowercase : List[str] = tokenized_examples.pop("""overflow_to_sample_mapping""" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. __lowercase : Any = [] for i in range(len(tokenized_examples["""input_ids"""] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). __lowercase : Dict = tokenized_examples.sequence_ids(lowerCAmelCase_ ) __lowercase : List[Any] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. __lowercase : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. __lowercase : Dict = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i] ) ] return tokenized_examples lowerCamelCase : Tuple = raw_datasets['''validation'''] # Validation Feature Creation lowerCamelCase : Optional[int] = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) lowerCamelCase : Union[str, Any] = default_data_collator lowerCamelCase : Optional[Any] = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) lowerCamelCase : List[str] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict="eval" ): # Post-processing: we match the start logits and end logits to answers in the original context. __lowercase : int = postprocess_qa_predictions( examples=lowerCAmelCase_ , features=lowerCAmelCase_ , predictions=lowerCAmelCase_ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowerCAmelCase_ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: __lowercase : Optional[int] = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: __lowercase : List[Any] = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] __lowercase : Optional[int] = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=lowerCAmelCase_ , label_ids=lowerCAmelCase_ ) lowerCamelCase : Dict = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def snake_case_ ( lowerCAmelCase_ : str ): return trt.volume(engine.get_binding_shape(lowerCAmelCase_ ) ) * engine.get_binding_dtype(lowerCAmelCase_ ).itemsize # Allocate device memory for inputs and outputs. lowerCamelCase : int = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer lowerCamelCase : Dict = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) lowerCamelCase : str = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) lowerCamelCase : Dict = cuda.mem_alloc(h_outputa.nbytes) lowerCamelCase : Optional[Any] = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. lowerCamelCase : Optional[int] = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(f''' Num examples = {len(eval_dataset)}''') logger.info(f''' Batch size = {args.per_device_eval_batch_size}''') lowerCamelCase : int = 0.0 lowerCamelCase : List[str] = 0 lowerCamelCase : List[str] = timeit.default_timer() lowerCamelCase : List[Any] = None for step, batch in enumerate(eval_dataloader): lowerCamelCase ,lowerCamelCase : str = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 lowerCamelCase ,lowerCamelCase : Union[str, Any] = outputs lowerCamelCase : Optional[Any] = torch.tensor(start_logits) lowerCamelCase : List[str] = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered lowerCamelCase : Optional[int] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-1_00) lowerCamelCase : Dict = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-1_00) lowerCamelCase : List[Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) lowerCamelCase : Dict = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-1_00) if all_preds is not None: lowerCamelCase : Tuple = nested_truncate(all_preds, len(eval_dataset)) lowerCamelCase : Dict = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 10_00 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 10_00)) logger.info('''Total Number of Inference = %d''', niter) lowerCamelCase : str = post_processing_function(eval_examples, eval_dataset, all_preds) lowerCamelCase : Optional[Any] = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'''Evaluation metrics: {eval_metric}''')
306
1
from math import factorial, pi def snake_case_ ( lowerCAmelCase_ : float , lowerCAmelCase_ : int = 30 ): if not isinstance(lowerCAmelCase_ , (int, float) ): raise ValueError("""maclaurin_sin() requires either an int or float for theta""" ) if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or accuracy <= 0: raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" ) __lowercase : Optional[int] = float(lowerCAmelCase_ ) __lowercase : Any = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(lowerCAmelCase_ ) ) def snake_case_ ( lowerCAmelCase_ : float , lowerCAmelCase_ : int = 30 ): if not isinstance(lowerCAmelCase_ , (int, float) ): raise ValueError("""maclaurin_cos() requires either an int or float for theta""" ) if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or accuracy <= 0: raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" ) __lowercase : int = float(lowerCAmelCase_ ) __lowercase : Tuple = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(lowerCAmelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
306
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : str = { '''facebook/nllb-moe-54B''': '''https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''nllb-moe''' _A : List[str] = ['''past_key_values'''] _A : Optional[Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Dict , __a : List[str]=128112 , __a : List[Any]=1024 , __a : List[Any]=12 , __a : Union[str, Any]=4096 , __a : List[str]=16 , __a : int=12 , __a : Optional[int]=4096 , __a : str=16 , __a : List[Any]=0.05 , __a : Any=0.05 , __a : Dict=True , __a : Optional[Any]=True , __a : List[Any]="relu" , __a : Tuple=1024 , __a : Optional[Any]=0.1 , __a : Tuple=0.1 , __a : Any=0.0 , __a : Optional[Any]=0.02 , __a : List[str]=2 , __a : Union[str, Any]=True , __a : List[Any]=False , __a : Tuple="float32" , __a : Optional[int]=False , __a : Optional[int]=128 , __a : str=64 , __a : Dict=4 , __a : str=4 , __a : List[str]=0.001 , __a : List[Any]=0.001 , __a : Optional[Any]="all" , __a : Optional[int]=False , __a : int=False , __a : int=1.0 , __a : Dict=0.2 , __a : Tuple=1 , __a : Optional[Any]=0 , __a : List[Any]=2 , __a : Any=False , **__a : Any , ) -> Any: """simple docstring""" __lowercase : int = vocab_size __lowercase : List[Any] = max_position_embeddings __lowercase : Tuple = d_model __lowercase : str = encoder_ffn_dim __lowercase : List[str] = encoder_layers __lowercase : int = encoder_attention_heads __lowercase : List[Any] = decoder_ffn_dim __lowercase : int = decoder_layers __lowercase : Optional[int] = decoder_attention_heads __lowercase : Union[str, Any] = dropout __lowercase : str = attention_dropout __lowercase : Any = activation_dropout __lowercase : List[Any] = activation_function __lowercase : List[str] = init_std __lowercase : Optional[int] = encoder_layerdrop __lowercase : str = decoder_layerdrop __lowercase : Dict = use_cache __lowercase : Optional[Any] = encoder_layers __lowercase : str = scale_embedding # scale factor will be sqrt(d_model) if True __lowercase : List[Any] = router_z_loss_coef __lowercase : Tuple = router_aux_loss_coef __lowercase : str = decoder_sparse_step __lowercase : Any = encoder_sparse_step __lowercase : str = num_experts __lowercase : List[Any] = expert_capacity __lowercase : int = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) __lowercase : Optional[int] = router_dtype __lowercase : Any = router_ignore_padding_tokens __lowercase : Optional[Any] = batch_prioritized_routing __lowercase : str = second_expert_policy __lowercase : List[str] = normalize_router_prob_before_dropping __lowercase : List[Any] = moe_eval_capacity_token_fraction __lowercase : List[str] = moe_token_dropout __lowercase : Optional[Any] = output_router_logits super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , decoder_start_token_id=__a , **__a , )
306
1
import flax.linen as nn import jax import jax.numpy as jnp class lowerCAmelCase ( nn.Module ): '''simple docstring''' _A : int _A : jnp.dtype = jnp.floataa def lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" __lowercase : Union[str, Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : List[Any] , __a : Tuple ) -> int: """simple docstring""" __lowercase , __lowercase , __lowercase , __lowercase : int = hidden_states.shape __lowercase : Tuple = jax.image.resize( __a , shape=(batch, height * 2, width * 2, channels) , method="""nearest""" , ) __lowercase : Dict = self.conv(__a ) return hidden_states class lowerCAmelCase ( nn.Module ): '''simple docstring''' _A : int _A : jnp.dtype = jnp.floataa def lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase : List[str] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Union[str, Any] , __a : List[Any] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = self.conv(__a ) return hidden_states class lowerCAmelCase ( nn.Module ): '''simple docstring''' _A : int _A : int = None _A : float = 0.0 _A : bool = None _A : jnp.dtype = jnp.floataa def lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" __lowercase : Optional[int] = self.in_channels if self.out_channels is None else self.out_channels __lowercase : Optional[int] = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) __lowercase : int = nn.Conv( __a , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __lowercase : List[Any] = nn.Dense(__a , dtype=self.dtype ) __lowercase : List[Any] = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) __lowercase : Dict = nn.Dropout(self.dropout_prob ) __lowercase : Dict = nn.Conv( __a , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __lowercase : str = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __lowercase : str = None if use_nin_shortcut: __lowercase : Optional[Any] = nn.Conv( __a , kernel_size=(1, 1) , strides=(1, 1) , padding="""VALID""" , dtype=self.dtype , ) def __call__( self : int , __a : Optional[Any] , __a : str , __a : Tuple=True ) -> Union[str, Any]: """simple docstring""" __lowercase : Dict = hidden_states __lowercase : int = self.norma(__a ) __lowercase : Tuple = nn.swish(__a ) __lowercase : Any = self.conva(__a ) __lowercase : int = self.time_emb_proj(nn.swish(__a ) ) __lowercase : Optional[int] = jnp.expand_dims(jnp.expand_dims(__a , 1 ) , 1 ) __lowercase : Any = hidden_states + temb __lowercase : Union[str, Any] = self.norma(__a ) __lowercase : List[str] = nn.swish(__a ) __lowercase : Union[str, Any] = self.dropout(__a , __a ) __lowercase : Optional[int] = self.conva(__a ) if self.conv_shortcut is not None: __lowercase : Tuple = self.conv_shortcut(__a ) return hidden_states + residual
306
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase : Optional[Any] = { '''configuration_poolformer''': [ '''POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PoolFormerConfig''', '''PoolFormerOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = ['''PoolFormerFeatureExtractor'''] lowerCamelCase : Union[str, Any] = ['''PoolFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = [ '''POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PoolFormerForImageClassification''', '''PoolFormerModel''', '''PoolFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
306
1
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowerCAmelCase ( __a , __a , __a ): '''simple docstring''' _A : Tuple = [r'''h\.\d+\.attn\.bias''', r'''h\.\d+\.attn\.masked_bias'''] @register_to_config def __init__( self : Union[str, Any] , __a : int , __a : int , __a : Optional[int] = None , __a : int = 50257 , __a : int = 1024 , __a : int = 768 , __a : int = 12 , __a : int = 12 , __a : Optional[int] = None , __a : str = "gelu_new" , __a : float = 0.1 , __a : float = 0.1 , __a : float = 0.1 , __a : float = 1E-5 , __a : float = 0.02 , __a : bool = True , __a : bool = True , __a : bool = False , __a : bool = False , ) -> Any: """simple docstring""" super().__init__() __lowercase : Union[str, Any] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F"`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and" F" `n_embd`: {n_embd} are not equal." ) __lowercase : List[Any] = prefix_inner_dim __lowercase : int = prefix_hidden_dim __lowercase : List[str] = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) __lowercase : List[str] = ( nn.Linear(self.prefix_hidden_dim , __a ) if self.prefix_hidden_dim is not None else nn.Identity() ) __lowercase : Tuple = GPTaConfig( vocab_size=__a , n_positions=__a , n_embd=__a , n_layer=__a , n_head=__a , n_inner=__a , activation_function=__a , resid_pdrop=__a , embd_pdrop=__a , attn_pdrop=__a , layer_norm_epsilon=__a , initializer_range=__a , scale_attn_weights=__a , use_cache=__a , scale_attn_by_inverse_layer_idx=__a , reorder_and_upcast_attn=__a , ) __lowercase : Any = GPTaLMHeadModel(__a ) def lowerCAmelCase ( self : List[str] , __a : torch.Tensor , __a : torch.Tensor , __a : Optional[torch.Tensor] = None , __a : Optional[torch.Tensor] = None , ) -> List[Any]: """simple docstring""" __lowercase : List[str] = self.transformer.transformer.wte(__a ) __lowercase : int = self.encode_prefix(__a ) __lowercase : int = self.decode_prefix(__a ) __lowercase : str = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: __lowercase : Any = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) __lowercase : Optional[Any] = torch.cat((dummy_token, input_ids) , dim=1 ) __lowercase : Any = self.transformer(inputs_embeds=__a , labels=__a , attention_mask=__a ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def lowerCAmelCase ( self : Any , __a : int , __a : torch.device ) -> torch.Tensor: """simple docstring""" return torch.zeros(__a , self.prefix_length , dtype=torch.intaa , device=__a ) def lowerCAmelCase ( self : Any , __a : Union[str, Any] ) -> str: """simple docstring""" return self.encode_prefix(__a ) @torch.no_grad() def lowerCAmelCase ( self : Optional[int] , __a : Tuple , __a : Tuple , __a : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase : str = torch.split(__a , 1 , dim=0 ) __lowercase : List[Any] = [] __lowercase : int = [] for feature in features: __lowercase : Optional[Any] = self.decode_prefix(feature.to(__a ) ) # back to the clip feature # Only support beam search for now __lowercase , __lowercase : int = self.generate_beam( input_embeds=__a , device=__a , eos_token_id=__a ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) __lowercase : Any = torch.stack(__a ) __lowercase : Union[str, Any] = torch.stack(__a ) return generated_tokens, generated_seq_lengths @torch.no_grad() def lowerCAmelCase ( self : Any , __a : Optional[Any]=None , __a : List[Any]=None , __a : Any=None , __a : int = 5 , __a : int = 67 , __a : float = 1.0 , __a : Optional[int] = None , ) -> Optional[Any]: """simple docstring""" __lowercase : List[str] = eos_token_id __lowercase : Dict = None __lowercase : Dict = None __lowercase : int = torch.ones(__a , device=__a , dtype=torch.int ) __lowercase : List[str] = torch.zeros(__a , device=__a , dtype=torch.bool ) if input_embeds is not None: __lowercase : Optional[Any] = input_embeds else: __lowercase : List[str] = self.transformer.transformer.wte(__a ) for i in range(__a ): __lowercase : Union[str, Any] = self.transformer(inputs_embeds=__a ) __lowercase : int = outputs.logits __lowercase : List[str] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) __lowercase : List[str] = logits.softmax(-1 ).log() if scores is None: __lowercase , __lowercase : int = logits.topk(__a , -1 ) __lowercase : Dict = generated.expand(__a , *generated.shape[1:] ) __lowercase , __lowercase : int = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: __lowercase : List[Any] = next_tokens else: __lowercase : Union[str, Any] = tokens.expand(__a , *tokens.shape[1:] ) __lowercase : Tuple = torch.cat((tokens, next_tokens) , dim=1 ) else: __lowercase : Any = -float(np.inf ) __lowercase : Tuple = 0 __lowercase : List[Any] = scores[:, None] + logits seq_lengths[~is_stopped] += 1 __lowercase : Dict = scores_sum / seq_lengths[:, None] __lowercase , __lowercase : Optional[int] = scores_sum_average.view(-1 ).topk(__a , -1 ) __lowercase : Tuple = next_tokens // scores_sum.shape[1] __lowercase : Tuple = seq_lengths[next_tokens_source] __lowercase : str = next_tokens % scores_sum.shape[1] __lowercase : str = next_tokens.unsqueeze(1 ) __lowercase : Optional[int] = tokens[next_tokens_source] __lowercase : str = torch.cat((tokens, next_tokens) , dim=1 ) __lowercase : int = generated[next_tokens_source] __lowercase : Optional[Any] = scores_sum_average * seq_lengths __lowercase : List[str] = is_stopped[next_tokens_source] __lowercase : Dict = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) __lowercase : List[Any] = torch.cat((generated, next_token_embed) , dim=1 ) __lowercase : List[str] = is_stopped + next_tokens.eq(__a ).squeeze() if is_stopped.all(): break __lowercase : str = scores / seq_lengths __lowercase : Any = scores.argsort(descending=__a ) # tokens tensors are already padded to max_seq_length __lowercase : Any = [tokens[i] for i in order] __lowercase : Any = torch.stack(__a , dim=0 ) __lowercase : List[Any] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
306
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : List[str] = 2 __lowercase : Union[str, Any] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(lowerCAmelCase_ ) if n > 1: factors.append(lowerCAmelCase_ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
306
1
from PIL import Image def snake_case_ ( lowerCAmelCase_ : Image , lowerCAmelCase_ : float ): def brightness(lowerCAmelCase_ : int ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(lowerCAmelCase_ ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 lowerCamelCase : List[str] = change_brightness(img, 1_00) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
306
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Dict = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) __lowercase : List[str] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __lowercase : Optional[Any] = model(__a )["""last_hidden_state"""] __lowercase : Any = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , __a ) # compare the actual values for a slice. __lowercase : Dict = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
306
1
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : int , __a : List[str] , __a : Dict=13 , __a : Union[str, Any]=7 , __a : Tuple=True , __a : List[Any]=True , __a : Dict=True , __a : List[str]=True , __a : Optional[int]=99 , __a : int=32 , __a : int=2 , __a : Optional[int]=4 , __a : Union[str, Any]=37 , __a : Optional[int]="gelu" , __a : Tuple=0.1 , __a : Dict=0.1 , __a : Union[str, Any]=512 , __a : List[str]=16 , __a : Any=2 , __a : Dict=0.02 , __a : Any=False , __a : Dict=True , __a : Tuple="None" , __a : List[str]=3 , __a : List[Any]=4 , __a : Optional[int]=None , ) -> str: """simple docstring""" __lowercase : str = parent __lowercase : Union[str, Any] = batch_size __lowercase : List[Any] = seq_length __lowercase : Optional[int] = is_training __lowercase : str = use_input_mask __lowercase : Optional[int] = use_token_type_ids __lowercase : List[Any] = use_labels __lowercase : Any = vocab_size __lowercase : int = hidden_size __lowercase : Optional[Any] = num_hidden_layers __lowercase : Optional[Any] = num_attention_heads __lowercase : Dict = intermediate_size __lowercase : Any = hidden_act __lowercase : Tuple = hidden_dropout_prob __lowercase : Optional[Any] = attention_probs_dropout_prob __lowercase : Union[str, Any] = max_position_embeddings __lowercase : str = type_vocab_size __lowercase : int = type_sequence_label_size __lowercase : Union[str, Any] = initializer_range __lowercase : List[str] = num_labels __lowercase : Any = num_choices __lowercase : Optional[Any] = relative_attention __lowercase : List[str] = position_biased_input __lowercase : List[str] = pos_att_type __lowercase : Dict = scope def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : str = None if self.use_input_mask: __lowercase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Tuple = None if self.use_token_type_ids: __lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : Optional[Any] = None __lowercase : Any = None __lowercase : Any = None if self.use_labels: __lowercase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : str = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=__a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Tuple , __a : List[Any] , __a : Union[str, Any] , __a : Union[str, Any] , __a : Union[str, Any] , __a : Any , __a : Optional[Any] , __a : Optional[Any] ) -> str: """simple docstring""" __lowercase : int = TFDebertaVaModel(config=__a ) __lowercase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __lowercase : Optional[int] = [input_ids, input_mask] __lowercase : str = model(__a ) __lowercase : List[Any] = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Union[str, Any] , __a : Tuple , __a : Union[str, Any] , __a : List[str] , __a : Any , __a : Optional[int] , __a : Tuple , __a : Dict ) -> str: """simple docstring""" __lowercase : Optional[Any] = TFDebertaVaForMaskedLM(config=__a ) __lowercase : int = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : str = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Dict , __a : Tuple , __a : Optional[Any] , __a : Tuple , __a : Dict , __a : Dict , __a : Optional[int] , __a : int ) -> Any: """simple docstring""" __lowercase : List[Any] = self.num_labels __lowercase : Tuple = TFDebertaVaForSequenceClassification(config=__a ) __lowercase : str = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : Any = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : int , __a : Optional[Any] , __a : Union[str, Any] , __a : Optional[Any] , __a : Dict , __a : str , __a : Tuple , __a : int ) -> List[str]: """simple docstring""" __lowercase : List[Any] = self.num_labels __lowercase : List[str] = TFDebertaVaForTokenClassification(config=__a ) __lowercase : str = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : List[Any] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : List[Any] , __a : Optional[Any] , __a : Optional[Any] , __a : Tuple , __a : List[Any] , __a : Optional[Any] , __a : Optional[int] , __a : Any ) -> List[Any]: """simple docstring""" __lowercase : Dict = TFDebertaVaForQuestionAnswering(config=__a ) __lowercase : List[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } __lowercase : int = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : Optional[Any] = config_and_inputs __lowercase : Any = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[str] = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) _A : Optional[Any] = ( { '''feature-extraction''': TFDebertaVaModel, '''fill-mask''': TFDebertaVaForMaskedLM, '''question-answering''': TFDebertaVaForQuestionAnswering, '''text-classification''': TFDebertaVaForSequenceClassification, '''token-classification''': TFDebertaVaForTokenClassification, '''zero-shot''': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) _A : List[Any] = False _A : Optional[int] = False def lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" __lowercase : Optional[int] = TFDebertaVaModelTester(self ) __lowercase : List[Any] = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" __lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Any = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) self.assertIsNotNone(__a ) @require_tf class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason="""Model not available yet""" ) def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" pass @slow def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" __lowercase : Union[str, Any] = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) __lowercase : List[str] = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) __lowercase : str = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __lowercase : Tuple = model(__a , attention_mask=__a )[0] __lowercase : int = tf.constant( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , __a , atol=1E-4 )
306
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Optional[Any] = len(lowerCAmelCase_ ) __lowercase : str = len(lowerCAmelCase_ ) __lowercase : Optional[int] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __lowercase : Tuple = True for i in range(lowerCAmelCase_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __lowercase : Optional[Any] = True if a[i].islower(): __lowercase : Dict = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
306
1
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : list[int | float] , lowerCAmelCase_ : int , lowerCAmelCase_ : int ): if len(lowerCAmelCase_ ) == 0: raise ValueError("""find_max() arg is an empty sequence""" ) if ( left >= len(lowerCAmelCase_ ) or left < -len(lowerCAmelCase_ ) or right >= len(lowerCAmelCase_ ) or right < -len(lowerCAmelCase_ ) ): raise IndexError("""list index out of range""" ) if left == right: return nums[left] __lowercase : Any = (left + right) >> 1 # the middle __lowercase : Tuple = find_max(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # find max in range[left, mid] __lowercase : Optional[Any] = find_max(lowerCAmelCase_ , mid + 1 , lowerCAmelCase_ ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
306
from scipy.stats import spearmanr import datasets lowerCamelCase : List[str] = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' lowerCamelCase : List[str] = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' lowerCamelCase : Union[str, Any] = r'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def lowerCAmelCase ( self : List[Any] , __a : str , __a : Any , __a : Optional[int]=False ) -> List[str]: """simple docstring""" __lowercase : Optional[Any] = spearmanr(__a , __a ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
306
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase : Optional[int] = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Dict = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Any = get_failure_array(lowerCAmelCase_ ) # 2) Step through text searching for pattern __lowercase , __lowercase : Optional[int] = 0, 0 # index into text, pattern while i < len(lowerCAmelCase_ ): if pattern[j] == text[i]: if j == (len(lowerCAmelCase_ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: __lowercase : Optional[Any] = failure[j - 1] continue i += 1 return False def snake_case_ ( lowerCAmelCase_ : str ): __lowercase : List[Any] = [0] __lowercase : Optional[Any] = 0 __lowercase : List[Any] = 1 while j < len(lowerCAmelCase_ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: __lowercase : List[str] = failure[i - 1] continue j += 1 failure.append(lowerCAmelCase_ ) return failure if __name__ == "__main__": # Test 1) lowerCamelCase : Dict = '''abc1abc12''' lowerCamelCase : Union[str, Any] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' lowerCamelCase : Any = '''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) lowerCamelCase : List[Any] = '''ABABX''' lowerCamelCase : List[Any] = '''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) lowerCamelCase : int = '''AAAB''' lowerCamelCase : Optional[int] = '''ABAAAAAB''' assert kmp(pattern, text) # Test 4) lowerCamelCase : Optional[Any] = '''abcdabcy''' lowerCamelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) lowerCamelCase : Dict = '''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
306
1
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int ): __lowercase : Optional[Any] = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def snake_case_ ( ): print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
306
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = ['''pixel_values'''] def __init__( self : Any , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : bool = True , __a : Dict[str, int] = None , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = True , **__a : str , ) -> None: """simple docstring""" super().__init__(**__a ) __lowercase : Dict = size if size is not None else {"""shortest_edge""": 224} __lowercase : Union[str, Any] = get_size_dict(__a , default_to_square=__a ) __lowercase : int = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __lowercase : Any = get_size_dict(__a , default_to_square=__a , param_name="""crop_size""" ) __lowercase : Optional[int] = do_resize __lowercase : Union[str, Any] = size __lowercase : List[Any] = resample __lowercase : Any = do_center_crop __lowercase : Dict = crop_size __lowercase : int = do_rescale __lowercase : Tuple = rescale_factor __lowercase : List[Any] = do_normalize __lowercase : Union[str, Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowercase : int = image_std if image_std is not None else OPENAI_CLIP_STD __lowercase : Union[str, Any] = do_convert_rgb def lowerCAmelCase ( self : Union[str, Any] , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[Any] , ) -> np.ndarray: """simple docstring""" __lowercase : Dict = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) __lowercase : str = get_resize_output_image_size(__a , size=size["""shortest_edge"""] , default_to_square=__a ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Any , ) -> np.ndarray: """simple docstring""" __lowercase : Tuple = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(__a , size=(size["""height"""], size["""width"""]) , data_format=__a , **__a ) def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : Union[int, float] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[Any] , ) -> List[str]: """simple docstring""" return rescale(__a , scale=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Optional[int] , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] , ) -> np.ndarray: """simple docstring""" return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Optional[int] , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : int = None , __a : bool = None , __a : float = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = None , __a : Optional[Union[str, TensorType]] = None , __a : Optional[ChannelDimension] = ChannelDimension.FIRST , **__a : List[Any] , ) -> PIL.Image.Image: """simple docstring""" __lowercase : List[Any] = do_resize if do_resize is not None else self.do_resize __lowercase : Dict = size if size is not None else self.size __lowercase : Tuple = get_size_dict(__a , param_name="""size""" , default_to_square=__a ) __lowercase : int = resample if resample is not None else self.resample __lowercase : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase : List[Any] = crop_size if crop_size is not None else self.crop_size __lowercase : List[str] = get_size_dict(__a , param_name="""crop_size""" , default_to_square=__a ) __lowercase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __lowercase : str = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase : Dict = do_normalize if do_normalize is not None else self.do_normalize __lowercase : Tuple = image_mean if image_mean is not None else self.image_mean __lowercase : str = image_std if image_std is not None else self.image_std __lowercase : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase : Union[str, Any] = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase : Union[str, Any] = [convert_to_rgb(__a ) for image in images] # All transformations expect numpy arrays. __lowercase : Any = [to_numpy_array(__a ) for image in images] if do_resize: __lowercase : str = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: __lowercase : str = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: __lowercase : Dict = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: __lowercase : Optional[Any] = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] __lowercase : Any = [to_channel_dimension_format(__a , __a ) for image in images] __lowercase : Optional[int] = {"""pixel_values""": images} return BatchFeature(data=__a , tensor_type=__a )
306
1
def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : Tuple = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def snake_case_ ( lowerCAmelCase_ : int = 100 ): __lowercase : List[Any] = 1 __lowercase : str = 2 for i in range(2 , max_n + 1 ): __lowercase : Dict = pre_numerator __lowercase : Optional[int] = 2 * i // 3 if i % 3 == 0 else 1 __lowercase : Any = cur_numerator __lowercase : Tuple = e_cont * pre_numerator + temp return sum_digits(lowerCAmelCase_ ) if __name__ == "__main__": print(f'''{solution() = }''')
306
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str ): __lowercase : Tuple = s.rsplit(lowerCAmelCase_ , lowerCAmelCase_ ) return new.join(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : List[Any] ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : List[str] = {} __lowercase : Tuple = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __lowercase : List[str] = key.replace(F"{group_key}." , F"{group_key}.group." ) if "res_path" in key: __lowercase : List[Any] = key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): __lowercase : Union[str, Any] = rreplace(lowerCAmelCase_ , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): __lowercase : Tuple = rreplace(lowerCAmelCase_ , """.b""" , """.bias""" , 1 ) __lowercase : Dict = value.float() return upgrade @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=True ): from dall_e import Encoder __lowercase : Any = Encoder() if os.path.exists(lowerCAmelCase_ ): __lowercase : List[Any] = torch.load(lowerCAmelCase_ ) else: __lowercase : List[Any] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : int = ckpt.state_dict() encoder.load_state_dict(lowerCAmelCase_ ) if config_path is not None: __lowercase : Optional[int] = FlavaImageCodebookConfig.from_pretrained(lowerCAmelCase_ ) else: __lowercase : List[str] = FlavaImageCodebookConfig() __lowercase : Optional[Any] = FlavaImageCodebook(lowerCAmelCase_ ).eval() __lowercase : List[Any] = encoder.state_dict() __lowercase : Union[str, Any] = upgrade_state_dict(lowerCAmelCase_ ) hf_model.load_state_dict(lowerCAmelCase_ ) __lowercase : Dict = hf_model.state_dict() __lowercase : Tuple = count_parameters(lowerCAmelCase_ ) __lowercase : Tuple = count_parameters(lowerCAmelCase_ ) assert torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(lowerCAmelCase_ ) else: return hf_state_dict if __name__ == "__main__": lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowerCamelCase : Union[str, Any] = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
306
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: lowerCamelCase : List[Any] = None lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : List[str] = '''▁''' lowerCamelCase : Tuple = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase : Union[str, Any] = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''}, '''tokenizer_file''': { '''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json''' }, } lowerCamelCase : Any = { '''google/pegasus-xsum''': 5_12, } class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = VOCAB_FILES_NAMES _A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _A : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Tuple = PegasusTokenizer _A : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[int] , __a : List[Any]=None , __a : Optional[Any]=None , __a : Optional[int]="<pad>" , __a : List[Any]="</s>" , __a : int="<unk>" , __a : Dict="<mask_2>" , __a : Tuple="<mask_1>" , __a : str=None , __a : int=103 , **__a : List[Any] , ) -> int: """simple docstring""" __lowercase : Optional[int] = offset if additional_special_tokens is not None: if not isinstance(__a , __a ): raise TypeError( F"additional_special_tokens should be of type {type(__a )}, but is" F" {type(__a )}" ) __lowercase : int = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"<unk_{i}>" for i in range(len(__a ) , self.offset - 1 ) ] if len(set(__a ) ) != len(__a ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" F" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}." ) __lowercase : Optional[Any] = additional_special_tokens_extended else: __lowercase : Optional[Any] = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"<unk_{i}>" for i in range(2 , self.offset )] super().__init__( __a , tokenizer_file=__a , pad_token=__a , eos_token=__a , unk_token=__a , mask_token=__a , mask_token_sent=__a , offset=__a , additional_special_tokens=__a , **__a , ) __lowercase : str = vocab_file __lowercase : str = False if not self.vocab_file else True def lowerCAmelCase ( self : List[Any] , __a : List[str] ) -> str: """simple docstring""" __lowercase : Optional[Any] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( """There should be 3 special tokens: mask_token, pad_token, and eos_token +""" F" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}" ) return [1 if x in all_special_ids else 0 for x in seq] def lowerCAmelCase ( self : Optional[Any] , __a : List , __a : Optional[List] = None , __a : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(__a ) elif token_ids_a is None: return self._special_token_mask(__a ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowerCAmelCase ( self : Any , __a : List[Any] , __a : str=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowerCAmelCase ( self : List[Any] , __a : str , __a : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__a ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __lowercase : Union[str, Any] = os.path.join( __a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ): copyfile(self.vocab_file , __a ) return (out_vocab_file,)
306
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging lowerCamelCase : Tuple = logging.get_logger(__name__) logging.set_verbosity_info() def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): if "xprophetnet" in prophetnet_checkpoint_path: __lowercase : List[str] = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) __lowercase , __lowercase : int = XLMProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) else: __lowercase : List[Any] = ProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) __lowercase , __lowercase : Optional[Any] = ProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) __lowercase : List[str] = ["""key_proj""", """value_proj""", """query_proj"""] __lowercase : Optional[int] = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: __lowercase : Tuple = key.split(""".""" ) if attributes[0] == "lm_head": __lowercase : str = prophet __lowercase : List[str] = prophet_old else: __lowercase : Tuple = prophet.prophetnet __lowercase : Union[str, Any] = prophet_old.model __lowercase : Optional[Any] = False for attribute in attributes: if attribute in mapping: __lowercase : Optional[int] = mapping[attribute] if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) > 0: __lowercase : str = attribute elif hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : List[Any] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" __lowercase : Any = old_model.weight logger.info(F"{attribute} is initialized." ) __lowercase : Any = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" __lowercase : Dict = old_model.bias logger.info(F"{attribute} is initialized" ) __lowercase : int = True break elif attribute in special_keys and hasattr(lowerCAmelCase_ , """in_proj_weight""" ): __lowercase : Dict = old_model.in_proj_weight.shape[0] // 3 __lowercase : Tuple = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": __lowercase : Union[str, Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) __lowercase : int = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": __lowercase : Any = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) __lowercase : List[Any] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": __lowercase : Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) __lowercase : int = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) __lowercase : int = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." __lowercase : Optional[Any] = nn.Parameter(old_model.embed_positions.weight[:512, :] ) __lowercase : int = True break if attribute.isdigit(): __lowercase : Tuple = model[int(lowerCAmelCase_ )] __lowercase : int = old_model[int(lowerCAmelCase_ )] else: __lowercase : Union[str, Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if old_attribute == "": __lowercase : int = old_model else: if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError(F"{old_model} does not have {old_attribute}" ) __lowercase : List[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if not is_key_init: raise ValueError(F"{key} was not correctly initialized!" ) print(F"Saving model to {pytorch_dump_folder_path}" ) prophet.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCamelCase : Any = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
306
1
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='''%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s''', datefmt='''%Y-%m-%d %H:%M:%S''', level=os.environ.get('''LOGLEVEL''', '''INFO''').upper(), stream=sys.stdout, ) lowerCamelCase : List[str] = logging.getLogger(__name__) lowerCamelCase : str = {'''facebook/bart-base''': BartForConditionalGeneration} lowerCamelCase : Optional[Any] = {'''facebook/bart-base''': BartTokenizer} def snake_case_ ( ): __lowercase : List[Any] = argparse.ArgumentParser(description="""Export Bart model + Beam Search to ONNX graph.""" ) parser.add_argument( """--validation_file""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , help="""A csv or a json file containing the validation data.""" ) parser.add_argument( """--max_length""" , type=lowerCAmelCase_ , default=5 , help="""The maximum total input sequence length after tokenization.""" , ) parser.add_argument( """--num_beams""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , help=( """Number of beams to use for evaluation. This argument will be """ """passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.""" ) , ) parser.add_argument( """--model_name_or_path""" , type=lowerCAmelCase_ , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowerCAmelCase_ , ) parser.add_argument( """--config_name""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , help="""Pretrained config name or path if not the same as model_name""" , ) parser.add_argument( """--device""" , type=lowerCAmelCase_ , default="""cpu""" , help="""Device where the model will be run""" , ) parser.add_argument("""--output_file_path""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , help="""Where to store the final ONNX file.""" ) __lowercase : Optional[int] = parser.parse_args() return args def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any]="cpu" ): __lowercase : List[Any] = model_dict[model_name].from_pretrained(lowerCAmelCase_ ).to(lowerCAmelCase_ ) __lowercase : List[Any] = tokenizer_dict[model_name].from_pretrained(lowerCAmelCase_ ) if model_name in ["facebook/bart-base"]: __lowercase : str = 0 __lowercase : Dict = None __lowercase : List[str] = 0 return huggingface_model, tokenizer def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] ): model.eval() __lowercase : Dict = None __lowercase : List[str] = torch.jit.script(BARTBeamSearchGenerator(lowerCAmelCase_ ) ) with torch.no_grad(): __lowercase : Optional[Any] = """My friends are cool but they eat too many carbs.""" __lowercase : Tuple = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors="""pt""" ).to(model.device ) __lowercase : Tuple = model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , num_beams=lowerCAmelCase_ , max_length=lowerCAmelCase_ , early_stopping=lowerCAmelCase_ , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( lowerCAmelCase_ , ( inputs["""input_ids"""], inputs["""attention_mask"""], num_beams, max_length, model.config.decoder_start_token_id, ) , lowerCAmelCase_ , opset_version=14 , input_names=["""input_ids""", """attention_mask""", """num_beams""", """max_length""", """decoder_start_token_id"""] , output_names=["""output_ids"""] , dynamic_axes={ """input_ids""": {0: """batch""", 1: """seq"""}, """output_ids""": {0: """batch""", 1: """seq_out"""}, } , example_outputs=lowerCAmelCase_ , ) logger.info("""Model exported to {}""".format(lowerCAmelCase_ ) ) __lowercase : Tuple = remove_dup_initializers(os.path.abspath(lowerCAmelCase_ ) ) logger.info("""Deduplicated and optimized model written to {}""".format(lowerCAmelCase_ ) ) __lowercase : int = onnxruntime.InferenceSession(lowerCAmelCase_ ) __lowercase : str = ort_sess.run( lowerCAmelCase_ , { """input_ids""": inputs["""input_ids"""].cpu().numpy(), """attention_mask""": inputs["""attention_mask"""].cpu().numpy(), """num_beams""": np.array(lowerCAmelCase_ ), """max_length""": np.array(lowerCAmelCase_ ), """decoder_start_token_id""": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 ) logger.info("""Model outputs from torch and ONNX Runtime are similar.""" ) logger.info("""Success.""" ) def snake_case_ ( ): __lowercase : int = parse_args() __lowercase : int = 5 __lowercase : List[str] = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() __lowercase : Any = torch.device(args.device ) __lowercase , __lowercase : Tuple = load_model_tokenizer(args.model_name_or_path , lowerCAmelCase_ ) if model.config.decoder_start_token_id is None: raise ValueError("""Make sure that `config.decoder_start_token_id` is correctly defined""" ) model.to(lowerCAmelCase_ ) if args.max_length: __lowercase : Optional[Any] = args.max_length if args.num_beams: __lowercase : Optional[Any] = args.num_beams if args.output_file_path: __lowercase : List[Any] = args.output_file_path else: __lowercase : str = """BART.onnx""" logger.info("""Exporting model to ONNX""" ) export_and_validate_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
306
def snake_case_ ( lowerCAmelCase_ : int = 200 ): __lowercase : List[str] = [1, 2, 5, 10, 20, 50, 100, 200] __lowercase : List[str] = [0] * (pence + 1) __lowercase : Optional[Any] = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowerCAmelCase_ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
306
1
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar lowerCamelCase : Optional[Any] = TypeVar('''T''') def snake_case_ ( lowerCAmelCase_ : int ): return (position - 1) // 2 def snake_case_ ( lowerCAmelCase_ : int ): return (2 * position) + 1 def snake_case_ ( lowerCAmelCase_ : int ): return (2 * position) + 2 class lowerCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self : Optional[int] ) -> None: """simple docstring""" __lowercase : list[tuple[T, int]] = [] __lowercase : dict[T, int] = {} __lowercase : int = 0 def __len__( self : Union[str, Any] ) -> int: """simple docstring""" return self.elements def __repr__( self : Tuple ) -> str: """simple docstring""" return str(self.heap ) def lowerCAmelCase ( self : Tuple ) -> bool: """simple docstring""" return self.elements == 0 def lowerCAmelCase ( self : Tuple , __a : T , __a : int ) -> None: """simple docstring""" self.heap.append((elem, weight) ) __lowercase : Union[str, Any] = self.elements self.elements += 1 self._bubble_up(__a ) def lowerCAmelCase ( self : int ) -> T: """simple docstring""" if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) __lowercase , __lowercase : Optional[Any] = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: __lowercase , __lowercase : List[Any] = self.heap[0] self._bubble_down(__a ) return elem def lowerCAmelCase ( self : Any , __a : T , __a : int ) -> None: """simple docstring""" __lowercase : Union[str, Any] = self.position_map[elem] __lowercase : List[Any] = (elem, weight) if position > 0: __lowercase : Any = get_parent_position(__a ) __lowercase , __lowercase : List[Any] = self.heap[parent_position] if parent_weight > weight: self._bubble_up(__a ) else: self._bubble_down(__a ) else: self._bubble_down(__a ) def lowerCAmelCase ( self : List[str] , __a : T ) -> None: """simple docstring""" __lowercase : Optional[Any] = self.position_map[elem] if curr_pos == 0: return None __lowercase : Tuple = get_parent_position(__a ) __lowercase , __lowercase : str = self.heap[curr_pos] __lowercase , __lowercase : Tuple = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(__a , __a ) return self._bubble_up(__a ) return None def lowerCAmelCase ( self : str , __a : T ) -> None: """simple docstring""" __lowercase : List[Any] = self.position_map[elem] __lowercase , __lowercase : List[str] = self.heap[curr_pos] __lowercase : Optional[Any] = get_child_left_position(__a ) __lowercase : str = get_child_right_position(__a ) if child_left_position < self.elements and child_right_position < self.elements: __lowercase , __lowercase : Optional[int] = self.heap[child_left_position] __lowercase , __lowercase : Tuple = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(__a , __a ) return self._bubble_down(__a ) if child_left_position < self.elements: __lowercase , __lowercase : Any = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(__a , __a ) return self._bubble_down(__a ) else: return None if child_right_position < self.elements: __lowercase , __lowercase : List[Any] = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(__a , __a ) return self._bubble_down(__a ) return None def lowerCAmelCase ( self : int , __a : int , __a : int ) -> None: """simple docstring""" __lowercase : int = self.heap[nodea_pos][0] __lowercase : List[str] = self.heap[nodea_pos][0] __lowercase , __lowercase : Optional[int] = ( self.heap[nodea_pos], self.heap[nodea_pos], ) __lowercase : str = nodea_pos __lowercase : Tuple = nodea_pos class lowerCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self : Optional[int] ) -> None: """simple docstring""" __lowercase : dict[T, dict[T, int]] = {} __lowercase : int = 0 def __repr__( self : Optional[Any] ) -> str: """simple docstring""" return str(self.connections ) def __len__( self : Tuple ) -> int: """simple docstring""" return self.nodes def lowerCAmelCase ( self : Union[str, Any] , __a : T ) -> None: """simple docstring""" if node not in self.connections: __lowercase : Optional[int] = {} self.nodes += 1 def lowerCAmelCase ( self : int , __a : T , __a : T , __a : int ) -> None: """simple docstring""" self.add_node(__a ) self.add_node(__a ) __lowercase : Optional[int] = weight __lowercase : Any = weight def snake_case_ ( lowerCAmelCase_ : GraphUndirectedWeighted[T] , ): __lowercase : dict[T, int] = {node: maxsize for node in graph.connections} __lowercase : dict[T, T | None] = {node: None for node in graph.connections} __lowercase : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(lowerCAmelCase_ , lowerCAmelCase_ ) if priority_queue.is_empty(): return dist, parent # initialization __lowercase : Dict = priority_queue.extract_min() __lowercase : int = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __lowercase : Union[str, Any] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowerCAmelCase_ , dist[neighbour] ) __lowercase : List[Any] = node # running prim's algorithm while not priority_queue.is_empty(): __lowercase : List[Any] = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __lowercase : int = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowerCAmelCase_ , dist[neighbour] ) __lowercase : List[str] = node return dist, parent
306
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , __a : Dict , __a : List[str]=None , __a : Optional[Any]=None , __a : Union[str, Any]=None , __a : int="resnet50" , __a : List[str]=3 , __a : Tuple=32 , __a : Dict=3 , __a : List[str]=True , __a : Union[str, Any]=True , ) -> Any: """simple docstring""" __lowercase : Optional[int] = parent __lowercase : List[str] = out_indices if out_indices is not None else [4] __lowercase : Optional[int] = stage_names __lowercase : Any = out_features __lowercase : Optional[Any] = backbone __lowercase : Optional[Any] = batch_size __lowercase : Union[str, Any] = image_size __lowercase : List[str] = num_channels __lowercase : str = use_pretrained_backbone __lowercase : str = is_training def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : str = self.get_config() return config, pixel_values def lowerCAmelCase ( self : int ) -> str: """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowerCAmelCase ( self : Optional[int] , __a : Dict , __a : Any ) -> Dict: """simple docstring""" __lowercase : Dict = TimmBackbone(config=__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Optional[Any] = model(__a ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.prepare_config_and_inputs() __lowercase , __lowercase : str = config_and_inputs __lowercase : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch @require_timm class lowerCAmelCase ( __a , __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[Any] = (TimmBackbone,) if is_torch_available() else () _A : Dict = {'''feature-extraction''': TimmBackbone} if is_torch_available() else {} _A : List[Any] = False _A : List[str] = False _A : Any = False _A : Optional[Any] = False def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : str = TimmBackboneModelTester(self ) __lowercase : Any = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" __lowercase : Tuple = """resnet18""" __lowercase : Optional[int] = """microsoft/resnet-18""" __lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a ) __lowercase : Dict = AutoBackbone.from_pretrained(__a ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a , out_indices=[1, 2, 3] ) __lowercase : Optional[Any] = AutoBackbone.from_pretrained(__a , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("""TimmBackbone doesn't support feed forward chunking""" ) def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""" ) def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""" ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't support output_attentions.""" ) def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Safetensors is not supported by timm.""" ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Optional[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : List[str] = [*signature.parameters.keys()] __lowercase : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Optional[Any] = True __lowercase : Union[str, Any] = self.has_attentions # no need to test all models as different heads yield the same functionality __lowercase : Union[str, Any] = self.all_model_classes[0] __lowercase : List[Any] = model_class(__a ) model.to(__a ) __lowercase : Optional[Any] = self._prepare_for_class(__a , __a ) __lowercase : Union[str, Any] = model(**__a ) __lowercase : Optional[int] = outputs[0][-1] # Encoder-/Decoder-only models __lowercase : Any = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowercase : Optional[int] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__a ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() __lowercase : int = model(**__a ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowercase : Any = copy.deepcopy(__a ) __lowercase : Dict = None __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() __lowercase : Optional[int] = model(**__a ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowercase : List[str] = copy.deepcopy(__a ) __lowercase : Optional[Any] = False __lowercase : str = model_class(__a ) model.to(__a ) model.eval() __lowercase : List[Any] = model(**__a )
306
1
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel lowerCamelCase : Union[str, Any] = '''0.12''' # assumed parallelism: 8 @require_flax @is_staging_test class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def lowerCAmelCase ( cls : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase : str = TOKEN HfFolder.save_token(__a ) @classmethod def lowerCAmelCase ( cls : Any ) -> List[Any]: """simple docstring""" try: delete_repo(token=cls._token , repo_id="""test-model-flax""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-model-flax-org""" ) except HTTPError: pass def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __lowercase : str = FlaxBertModel(__a ) model.push_to_hub("""test-model-flax""" , use_auth_token=self._token ) __lowercase : Union[str, Any] = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) __lowercase : str = flatten_dict(unfreeze(model.params ) ) __lowercase : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __lowercase : List[str] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__a , 1E-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id="""test-model-flax""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__a , repo_id="""test-model-flax""" , push_to_hub=__a , use_auth_token=self._token ) __lowercase : Dict = FlaxBertModel.from_pretrained(F"{USER}/test-model-flax" ) __lowercase : Dict = flatten_dict(unfreeze(model.params ) ) __lowercase : List[str] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __lowercase : List[Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__a , 1E-3 , msg=F"{key} not identical" ) def lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" __lowercase : List[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __lowercase : Tuple = FlaxBertModel(__a ) model.push_to_hub("""valid_org/test-model-flax-org""" , use_auth_token=self._token ) __lowercase : Optional[int] = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) __lowercase : Optional[Any] = flatten_dict(unfreeze(model.params ) ) __lowercase : Dict = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __lowercase : Dict = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__a , 1E-3 , msg=F"{key} not identical" ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-model-flax-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( __a , repo_id="""valid_org/test-model-flax-org""" , push_to_hub=__a , use_auth_token=self._token ) __lowercase : Dict = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) __lowercase : Any = flatten_dict(unfreeze(model.params ) ) __lowercase : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __lowercase : str = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__a , 1E-3 , msg=F"{key} not identical" ) def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] ): __lowercase : Dict = True __lowercase : Optional[Any] = flatten_dict(modela.params ) __lowercase : Union[str, Any] = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: __lowercase : Dict = False return models_are_equal @require_flax class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase : Union[str, Any] = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) __lowercase : List[Any] = FlaxBertModel(__a ) __lowercase : List[str] = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__a , __a ) ) with self.assertRaises(__a ): __lowercase : List[Any] = FlaxBertModel.from_pretrained(__a ) __lowercase : Any = FlaxBertModel.from_pretrained(__a , subfolder=__a ) self.assertTrue(check_models_equal(__a , __a ) ) def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" __lowercase : str = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) __lowercase : Optional[int] = FlaxBertModel(__a ) __lowercase : Optional[Any] = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__a , __a ) , max_shard_size="""10KB""" ) with self.assertRaises(__a ): __lowercase : List[str] = FlaxBertModel.from_pretrained(__a ) __lowercase : str = FlaxBertModel.from_pretrained(__a , subfolder=__a ) self.assertTrue(check_models_equal(__a , __a ) ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase : str = """bert""" __lowercase : Union[str, Any] = """hf-internal-testing/tiny-random-bert-subfolder""" with self.assertRaises(__a ): __lowercase : List[str] = FlaxBertModel.from_pretrained(__a ) __lowercase : List[Any] = FlaxBertModel.from_pretrained(__a , subfolder=__a ) self.assertIsNotNone(__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = """bert""" __lowercase : str = """hf-internal-testing/tiny-random-bert-sharded-subfolder""" with self.assertRaises(__a ): __lowercase : Tuple = FlaxBertModel.from_pretrained(__a ) __lowercase : Union[str, Any] = FlaxBertModel.from_pretrained(__a , subfolder=__a ) self.assertIsNotNone(__a )
306
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : str = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } lowerCamelCase : Optional[Any] = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): for attribute in key.split(""".""" ): __lowercase : List[str] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if weight_type is not None: __lowercase : Union[str, Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ).shape else: __lowercase : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": __lowercase : Dict = value elif weight_type == "weight_g": __lowercase : Union[str, Any] = value elif weight_type == "weight_v": __lowercase : List[Any] = value elif weight_type == "bias": __lowercase : int = value elif weight_type == "running_mean": __lowercase : List[Any] = value elif weight_type == "running_var": __lowercase : int = value elif weight_type == "num_batches_tracked": __lowercase : int = value elif weight_type == "inv_freq": __lowercase : Optional[Any] = value else: __lowercase : Any = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] ): __lowercase : str = [] __lowercase : Any = fairseq_model.state_dict() __lowercase : List[str] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): __lowercase : Optional[Any] = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , hf_model.config.feat_extract_norm == """group""" , ) __lowercase : List[str] = True else: for key, mapped_key in MAPPING.items(): __lowercase : Any = """wav2vec2_conformer.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __lowercase : Tuple = True if "*" in mapped_key: __lowercase : List[Any] = name.split(lowerCAmelCase_ )[0].split(""".""" )[-2] __lowercase : Any = mapped_key.replace("""*""" , lowerCAmelCase_ ) if "pos_bias_u" in name: __lowercase : Any = None elif "pos_bias_v" in name: __lowercase : Tuple = None elif "weight_g" in name: __lowercase : Union[str, Any] = """weight_g""" elif "weight_v" in name: __lowercase : Dict = """weight_v""" elif "bias" in name: __lowercase : Union[str, Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowercase : str = """weight""" elif "running_mean" in name: __lowercase : str = """running_mean""" elif "inv_freq" in name: __lowercase : List[Any] = """inv_freq""" elif "running_var" in name: __lowercase : Any = """running_var""" elif "num_batches_tracked" in name: __lowercase : Any = """num_batches_tracked""" else: __lowercase : Optional[int] = None set_recursively(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) continue if not is_used: unused_weights.append(lowerCAmelCase_ ) logger.warning(F"Unused weights: {unused_weights}" ) def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] ): __lowercase : List[Any] = full_name.split("""conv_layers.""" )[-1] __lowercase : int = name.split(""".""" ) __lowercase : Optional[Any] = int(items[0] ) __lowercase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __lowercase : Union[str, Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __lowercase : List[str] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) __lowercase : Union[str, Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) __lowercase : Dict = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(lowerCAmelCase_ ) @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Dict=True ): if config_path is not None: __lowercase : List[Any] = WavaVecaConformerConfig.from_pretrained(lowerCAmelCase_ , hidden_act="""swish""" ) else: __lowercase : List[Any] = WavaVecaConformerConfig() if "rope" in checkpoint_path: __lowercase : Tuple = """rotary""" if is_finetuned: if dict_path: __lowercase : Any = Dictionary.load(lowerCAmelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __lowercase : List[Any] = target_dict.pad_index __lowercase : Optional[int] = target_dict.bos_index __lowercase : List[Any] = target_dict.eos_index __lowercase : List[str] = len(target_dict.symbols ) __lowercase : Union[str, Any] = os.path.join(lowerCAmelCase_ , """vocab.json""" ) if not os.path.isdir(lowerCAmelCase_ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowerCAmelCase_ ) ) return os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowercase : Tuple = target_dict.indices # fairseq has the <pad> and <s> switched __lowercase : int = 0 __lowercase : Any = 1 with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Dict = WavaVecaCTCTokenizer( lowerCAmelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowerCAmelCase_ , ) __lowercase : List[Any] = True if config.feat_extract_norm == """layer""" else False __lowercase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) __lowercase : Optional[int] = WavaVecaProcessor(feature_extractor=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) __lowercase : Union[str, Any] = WavaVecaConformerForCTC(lowerCAmelCase_ ) else: __lowercase : Optional[Any] = WavaVecaConformerForPreTraining(lowerCAmelCase_ ) if is_finetuned: __lowercase , __lowercase , __lowercase : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __lowercase : List[Any] = argparse.Namespace(task="""audio_pretraining""" ) __lowercase : Optional[Any] = fairseq.tasks.setup_task(lowerCAmelCase_ ) __lowercase , __lowercase , __lowercase : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase_ ) __lowercase : Dict = model[0].eval() recursively_load_weights(lowerCAmelCase_ , lowerCAmelCase_ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) lowerCamelCase : Any = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
306
1
from ...processing_utils import ProcessorMixin class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = ['''image_processor''', '''feature_extractor'''] _A : List[Any] = '''TvltImageProcessor''' _A : Optional[int] = '''TvltFeatureExtractor''' def __init__( self : str , __a : List[Any] , __a : Tuple ) -> Optional[Any]: """simple docstring""" super().__init__(image_processor=__a , feature_extractor=__a ) __lowercase : Union[str, Any] = image_processor __lowercase : Tuple = feature_extractor def __call__( self : Tuple , __a : Optional[int]=None , __a : Dict=None , __a : Union[str, Any]=None , __a : Tuple=None , __a : Optional[Any]=False , __a : List[Any]=False , *__a : List[str] , **__a : List[Any] , ) -> Dict: """simple docstring""" if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) __lowercase : Tuple = None if images is not None: __lowercase : Any = self.image_processor(__a , mask_pixel=__a , *__a , **__a ) if images_mixed is not None: __lowercase : Union[str, Any] = self.image_processor(__a , is_mixed=__a , *__a , **__a ) if audio is not None: __lowercase : Optional[Any] = self.feature_extractor( __a , *__a , sampling_rate=__a , mask_audio=__a , **__a ) __lowercase : Tuple = {} if audio is not None: output_dict.update(__a ) if images is not None: output_dict.update(__a ) if images_mixed_dict is not None: output_dict.update(__a ) return output_dict @property def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = self.image_processor.model_input_names __lowercase : Union[str, Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
306
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError("""String lengths must match!""" ) __lowercase : str = 0 for chara, chara in zip(lowerCAmelCase_ , lowerCAmelCase_ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
306
1
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
306
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def snake_case_ ( lowerCAmelCase_ : Tuple ): if isinstance(lowerCAmelCase_ , collections.abc.Iterable ): return x return (x, x) @require_flax class lowerCAmelCase : '''simple docstring''' def lowerCAmelCase ( self : Any , __a : Any , __a : List[Any] ) -> Optional[Any]: """simple docstring""" pass def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" pass def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : np.ndarray , __a : float ) -> List[Any]: """simple docstring""" __lowercase : List[str] = np.abs((a - b) ).max() self.assertLessEqual(__a , __a , F"Difference between torch and flax is {diff} (>= {tol})." ) def lowerCAmelCase ( self : Tuple , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[Any] , __a : Optional[Any]=None , **__a : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : str = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : str = FlaxVisionTextDualEncoderModel(__a ) __lowercase : Optional[Any] = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def lowerCAmelCase ( self : Optional[int] , __a : Optional[int] , __a : Dict , __a : Dict , __a : List[str] , __a : Optional[Any]=None , **__a : str ) -> str: """simple docstring""" __lowercase , __lowercase : List[str] = self.get_vision_text_model(__a , __a ) __lowercase : Union[str, Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : Any = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : Union[str, Any] , __a : Union[str, Any] , __a : Dict , __a : int=None , **__a : int ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Tuple = self.get_vision_text_model(__a , __a ) __lowercase : Union[str, Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : List[str] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : List[Any] = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) __lowercase : int = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowercase : int = FlaxVisionTextDualEncoderModel.from_pretrained(__a ) __lowercase : Tuple = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) __lowercase : int = after_output[0] __lowercase : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__a , 1E-3 ) def lowerCAmelCase ( self : List[Any] , __a : Any , __a : Tuple , __a : Optional[int] , __a : str , __a : Optional[Any]=None , **__a : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : str = self.get_vision_text_model(__a , __a ) __lowercase : Optional[Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : Union[str, Any] = model( input_ids=__a , pixel_values=__a , attention_mask=__a , output_attentions=__a ) __lowercase : Optional[int] = output.vision_model_output.attentions self.assertEqual(len(__a ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase : Optional[int] = to_atuple(vision_model.config.image_size ) __lowercase : List[str] = to_atuple(vision_model.config.patch_size ) __lowercase : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase : int = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase : Dict = output.text_model_output.attentions self.assertEqual(len(__a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowerCAmelCase ( self : Optional[int] , __a : List[str] , __a : List[Any] , __a : Optional[Any] ) -> Optional[int]: """simple docstring""" pt_model.to(__a ) pt_model.eval() # prepare inputs __lowercase : Union[str, Any] = inputs_dict __lowercase : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): __lowercase : Union[str, Any] = pt_model(**__a ).to_tuple() __lowercase : Tuple = fx_model(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(__a , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__a ) __lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained(__a , from_pt=__a ) __lowercase : Dict = fx_model_loaded(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(__a , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__a ) __lowercase : str = VisionTextDualEncoderModel.from_pretrained(__a , from_flax=__a ) pt_model_loaded.to(__a ) pt_model_loaded.eval() with torch.no_grad(): __lowercase : List[Any] = pt_model_loaded(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(__a , pt_output_loaded.numpy() , 4E-2 ) def lowerCAmelCase ( self : Optional[int] , __a : List[Any] , __a : int , __a : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : str = VisionTextDualEncoderModel(__a ) __lowercase : Union[str, Any] = FlaxVisionTextDualEncoderModel(__a ) __lowercase : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __a ) __lowercase : Any = fx_state self.check_pt_flax_equivalence(__a , __a , __a ) def lowerCAmelCase ( self : Any , __a : Any , __a : Dict , __a : Tuple ) -> str: """simple docstring""" __lowercase : int = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : Union[str, Any] = VisionTextDualEncoderModel(__a ) __lowercase : Dict = FlaxVisionTextDualEncoderModel(__a ) __lowercase : Tuple = load_flax_weights_in_pytorch_model(__a , fx_model.params ) self.check_pt_flax_equivalence(__a , __a , __a ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase : int = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__a ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() self.check_save_load(**__a ) def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" __lowercase : str = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__a ) @is_pt_flax_cross_test def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.prepare_config_and_inputs() __lowercase : Optional[int] = config_inputs_dict.pop("""vision_config""" ) __lowercase : Optional[int] = config_inputs_dict.pop("""text_config""" ) __lowercase : Dict = config_inputs_dict self.check_equivalence_pt_to_flax(__a , __a , __a ) self.check_equivalence_flax_to_pt(__a , __a , __a ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase , __lowercase : List[Any] = self.get_pretrained_model_and_inputs() __lowercase : Dict = model_a(**__a ) __lowercase : Any = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__a ) __lowercase : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(__a ) __lowercase : Optional[int] = model_a(**__a ) __lowercase : Tuple = after_outputs[0] __lowercase : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__a , 1E-5 ) @require_flax class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" __lowercase : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=__a , text_from_pt=__a , ) __lowercase : int = 13 __lowercase : Union[str, Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowercase : Dict = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __lowercase : Tuple = random_attention_mask([batch_size, 4] ) __lowercase : str = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCAmelCase ( self : Optional[Any] , __a : Union[str, Any] , __a : int ) -> Dict: """simple docstring""" __lowercase : int = FlaxViTModel(__a ) __lowercase : List[Any] = FlaxBertModel(__a ) return vision_model, text_model def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = FlaxViTModelTester(self ) __lowercase : str = FlaxBertModelTester(self ) __lowercase : List[str] = vit_model_tester.prepare_config_and_inputs() __lowercase : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase : Optional[int] = vision_config_and_inputs __lowercase , __lowercase , __lowercase , __lowercase : Any = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=__a , text_from_pt=__a , ) __lowercase : Tuple = 13 __lowercase : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowercase : Tuple = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __lowercase : List[Any] = random_attention_mask([batch_size, 4] ) __lowercase : int = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCAmelCase ( self : str , __a : str , __a : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Dict = FlaxCLIPVisionModel(__a ) __lowercase : Optional[Any] = FlaxBertModel(__a ) return vision_model, text_model def lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase : List[Any] = FlaxCLIPVisionModelTester(self ) __lowercase : Optional[Any] = FlaxBertModelTester(self ) __lowercase : Any = clip_model_tester.prepare_config_and_inputs() __lowercase : Optional[Any] = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase : Dict = vision_config_and_inputs __lowercase , __lowercase , __lowercase , __lowercase : Optional[int] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 ) __lowercase : int = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) __lowercase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowercase : Tuple = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=__a , padding=__a , return_tensors="""np""" ) __lowercase : Optional[int] = model(**__a ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowercase : Optional[Any] = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , __a , atol=1E-3 ) )
306
1
def snake_case_ ( lowerCAmelCase_ : list[int] ): __lowercase : Any = len(lowerCAmelCase_ ) for i in range(lowerCAmelCase_ ): for j in range(i + 1 , lowerCAmelCase_ ): if numbers[j] < numbers[i]: __lowercase , __lowercase : Tuple = numbers[j], numbers[i] return numbers if __name__ == "__main__": lowerCamelCase : List[Any] = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase : Any = [int(item) for item in user_input.split(''',''')] print(exchange_sort(unsorted))
306
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
306
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Any = tempfile.mkdtemp() __lowercase : Union[str, Any] = BlipImageProcessor() __lowercase : Optional[int] = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) __lowercase : str = BlipaProcessor(__a , __a ) processor.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : int , **__a : int ) -> List[Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__a ).tokenizer def lowerCAmelCase ( self : List[str] , **__a : Optional[Any] ) -> List[str]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__a ).image_processor def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" __lowercase : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __lowercase : int = [Image.fromarray(np.moveaxis(__a , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" __lowercase : Optional[Any] = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowercase : List[str] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __lowercase : str = self.get_image_processor(do_normalize=__a , padding_value=1.0 ) __lowercase : List[str] = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __a ) def lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" __lowercase : Optional[int] = self.get_image_processor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : Optional[Any] = BlipaProcessor(tokenizer=__a , image_processor=__a ) __lowercase : int = self.prepare_image_inputs() __lowercase : Dict = image_processor(__a , return_tensors="""np""" ) __lowercase : List[Any] = processor(images=__a , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" __lowercase : List[str] = self.get_image_processor() __lowercase : str = self.get_tokenizer() __lowercase : Optional[int] = BlipaProcessor(tokenizer=__a , image_processor=__a ) __lowercase : List[Any] = """lower newer""" __lowercase : Union[str, Any] = processor(text=__a ) __lowercase : Any = tokenizer(__a , return_token_type_ids=__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = self.get_image_processor() __lowercase : List[str] = self.get_tokenizer() __lowercase : Union[str, Any] = BlipaProcessor(tokenizer=__a , image_processor=__a ) __lowercase : Tuple = """lower newer""" __lowercase : Tuple = self.prepare_image_inputs() __lowercase : Tuple = processor(text=__a , images=__a ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(__a ): processor() def lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = self.get_image_processor() __lowercase : Any = self.get_tokenizer() __lowercase : int = BlipaProcessor(tokenizer=__a , image_processor=__a ) __lowercase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowercase : str = processor.batch_decode(__a ) __lowercase : Optional[Any] = tokenizer.batch_decode(__a ) self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Dict = self.get_image_processor() __lowercase : str = self.get_tokenizer() __lowercase : List[Any] = BlipaProcessor(tokenizer=__a , image_processor=__a ) __lowercase : List[Any] = """lower newer""" __lowercase : List[str] = self.prepare_image_inputs() __lowercase : List[Any] = processor(text=__a , images=__a ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
306
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowerCamelCase : str = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex lowerCamelCase : Union[str, Any] = 10 lowerCamelCase : List[str] = 2_56 def snake_case_ ( lowerCAmelCase_ : List[str] ): if len(lowerCAmelCase_ ) < MIN_NUM_TOKENS: return None __lowercase : Dict = MinHash(num_perm=lowerCAmelCase_ ) for token in set(lowerCAmelCase_ ): min_hash.update(token.encode() ) return min_hash def snake_case_ ( lowerCAmelCase_ : str ): return {t for t in NON_ALPHA.split(lowerCAmelCase_ ) if len(t.strip() ) > 0} class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , *, __a : float = 0.85 , ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = duplication_jaccard_threshold __lowercase : Optional[Any] = NUM_PERM __lowercase : List[Any] = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) __lowercase : List[str] = defaultdict(__a ) def lowerCAmelCase ( self : str , __a : Tuple , __a : MinHash ) -> None: """simple docstring""" __lowercase : List[Any] = self._index.query(__a ) if code_key in self._index.keys: print(F"Duplicate key {code_key}" ) return self._index.insert(__a , __a ) if len(__a ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__a ) break else: self._duplicate_clusters[close_duplicates[0]].add(__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[List[Dict]]: """simple docstring""" __lowercase : Dict = [] for base, duplicates in self._duplicate_clusters.items(): __lowercase : List[str] = [base] + list(__a ) # reformat the cluster to be a list of dict __lowercase : Optional[Any] = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(__a ) return duplicate_clusters def lowerCAmelCase ( self : Any , __a : int ) -> None: """simple docstring""" __lowercase : Tuple = self.get_duplicate_clusters() with open(__a , """w""" ) as f: json.dump(__a , __a ) def snake_case_ ( lowerCAmelCase_ : str ): __lowercase , __lowercase : Union[str, Any] = element __lowercase : Optional[Any] = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def snake_case_ ( lowerCAmelCase_ : Type[Dataset] ): with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(lowerCAmelCase_ , max_queue_size=10000 ) , chunksize=100 , ): if data is not None: yield data def snake_case_ ( lowerCAmelCase_ : Type[Dataset] , lowerCAmelCase_ : float ): __lowercase : Dict = DuplicationIndex(duplication_jaccard_threshold=lowerCAmelCase_ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(lowerCAmelCase_ ) ) , max_queue_size=100 ) ): di.add(lowerCAmelCase_ , lowerCAmelCase_ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : List[str] = get_tokens(lowerCAmelCase_ ) __lowercase : Dict = get_tokens(lowerCAmelCase_ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) lowerCamelCase : List[str] = None def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] ): __lowercase : Union[str, Any] = [] for elementa in cluster: __lowercase : Tuple = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: __lowercase : Dict = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(lowerCAmelCase_ , lowerCAmelCase_ ) >= jaccard_threshold: elementa["copies"] += 1 break else: __lowercase : Dict = 1 extremes.append(lowerCAmelCase_ ) return extremes def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple ): global _shared_dataset __lowercase : Tuple = dataset __lowercase : Optional[int] = [] __lowercase : str = partial(_find_cluster_extremes_shared , jaccard_threshold=lowerCAmelCase_ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( lowerCAmelCase_ , lowerCAmelCase_ , ) , total=len(lowerCAmelCase_ ) , ): extremes_list.append(lowerCAmelCase_ ) return extremes_list def snake_case_ ( lowerCAmelCase_ : Type[Dataset] , lowerCAmelCase_ : float = 0.85 ): __lowercase : Optional[int] = make_duplicate_clusters(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Tuple = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} __lowercase : int = {} __lowercase : Dict = find_extremes(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for extremes in extremes_clusters: for element in extremes: __lowercase : Optional[Any] = element __lowercase : int = duplicate_indices - set(extreme_dict.keys() ) __lowercase : int = dataset.filter(lambda lowerCAmelCase_ , lowerCAmelCase_ : idx not in remove_indices , with_indices=lowerCAmelCase_ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: __lowercase : List[str] = element["""base_index"""] in extreme_dict if element["is_extreme"]: __lowercase : str = extreme_dict[element["""base_index"""]]["""copies"""] print(F"Original dataset size: {len(lowerCAmelCase_ )}" ) print(F"Number of duplicate clusters: {len(lowerCAmelCase_ )}" ) print(F"Files in duplicate cluster: {len(lowerCAmelCase_ )}" ) print(F"Unique files in duplicate cluster: {len(lowerCAmelCase_ )}" ) print(F"Filtered dataset size: {len(lowerCAmelCase_ )}" ) return ds_filter, duplicate_clusters
306
1
def snake_case_ ( lowerCAmelCase_ : int = 600851475143 ): try: __lowercase : Any = int(lowerCAmelCase_ ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) __lowercase : Dict = 1 __lowercase : Any = 2 while i * i <= n: while n % i == 0: __lowercase : Tuple = i n //= i i += 1 if n > 1: __lowercase : List[Any] = n return int(lowerCAmelCase_ ) if __name__ == "__main__": print(f'''{solution() = }''')
306
from ...processing_utils import ProcessorMixin class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = ['''image_processor''', '''feature_extractor'''] _A : List[Any] = '''TvltImageProcessor''' _A : Optional[int] = '''TvltFeatureExtractor''' def __init__( self : str , __a : List[Any] , __a : Tuple ) -> Optional[Any]: """simple docstring""" super().__init__(image_processor=__a , feature_extractor=__a ) __lowercase : Union[str, Any] = image_processor __lowercase : Tuple = feature_extractor def __call__( self : Tuple , __a : Optional[int]=None , __a : Dict=None , __a : Union[str, Any]=None , __a : Tuple=None , __a : Optional[Any]=False , __a : List[Any]=False , *__a : List[str] , **__a : List[Any] , ) -> Dict: """simple docstring""" if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) __lowercase : Tuple = None if images is not None: __lowercase : Any = self.image_processor(__a , mask_pixel=__a , *__a , **__a ) if images_mixed is not None: __lowercase : Union[str, Any] = self.image_processor(__a , is_mixed=__a , *__a , **__a ) if audio is not None: __lowercase : Optional[Any] = self.feature_extractor( __a , *__a , sampling_rate=__a , mask_audio=__a , **__a ) __lowercase : Tuple = {} if audio is not None: output_dict.update(__a ) if images is not None: output_dict.update(__a ) if images_mixed_dict is not None: output_dict.update(__a ) return output_dict @property def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = self.image_processor.model_input_names __lowercase : Union[str, Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
306
1
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : List[Any] = TextToVideoSDPipeline _A : Optional[Any] = TEXT_TO_IMAGE_PARAMS _A : int = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. _A : Any = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def lowerCAmelCase ( self : int ) -> str: """simple docstring""" torch.manual_seed(0 ) __lowercase : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) __lowercase : Optional[Any] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__a , set_alpha_to_one=__a , ) torch.manual_seed(0 ) __lowercase : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __lowercase : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) __lowercase : Union[str, Any] = CLIPTextModel(__a ) __lowercase : Any = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowercase : Tuple = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def lowerCAmelCase ( self : Dict , __a : List[Any] , __a : int=0 ) -> Tuple: """simple docstring""" if str(__a ).startswith("""mps""" ): __lowercase : Optional[int] = torch.manual_seed(__a ) else: __lowercase : int = torch.Generator(device=__a ).manual_seed(__a ) __lowercase : List[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase : int = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowercase : List[str] = self.get_dummy_components() __lowercase : Tuple = TextToVideoSDPipeline(**__a ) __lowercase : Union[str, Any] = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) __lowercase : Optional[int] = self.get_dummy_inputs(__a ) __lowercase : Dict = """np""" __lowercase : List[Any] = sd_pipe(**__a ).frames __lowercase : List[str] = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) __lowercase : int = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__a , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__a , expected_max_diff=1E-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" pass def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" return super().test_progress_bar() @slow @skip_mps class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) __lowercase : Optional[Any] = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) __lowercase : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowercase : Dict = pipe.to("""cuda""" ) __lowercase : Optional[Any] = """Spiderman is surfing""" __lowercase : str = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase : Any = pipe(__a , generator=__a , num_inference_steps=25 , output_type="""pt""" ).frames __lowercase : List[str] = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) __lowercase : Tuple = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) __lowercase : Dict = pipe.to("""cuda""" ) __lowercase : Any = """Spiderman is surfing""" __lowercase : Union[str, Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase : str = pipe(__a , generator=__a , num_inference_steps=2 , output_type="""pt""" ).frames __lowercase : Tuple = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
306
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Any , __a : Tuple , __a : Optional[int]=13 , __a : int=7 , __a : List[str]=False , __a : Optional[int]=True , __a : Optional[int]=False , __a : Dict=True , __a : Optional[int]=33 , __a : Dict=32 , __a : Optional[int]=5 , __a : Union[str, Any]=4 , __a : List[str]=37 , __a : Tuple="gelu" , __a : List[str]=0.1 , __a : Dict=0.1 , __a : List[Any]=512 , __a : Any=16 , __a : Optional[Any]=2 , __a : List[Any]=0.02 , __a : int=3 , __a : Union[str, Any]=4 , __a : Optional[int]=None , ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = parent __lowercase : int = batch_size __lowercase : Any = seq_length __lowercase : str = is_training __lowercase : str = use_input_mask __lowercase : Optional[int] = use_token_type_ids __lowercase : List[Any] = use_labels __lowercase : Optional[Any] = vocab_size __lowercase : int = hidden_size __lowercase : List[Any] = num_hidden_layers __lowercase : Dict = num_attention_heads __lowercase : Any = intermediate_size __lowercase : Dict = hidden_act __lowercase : Union[str, Any] = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : List[str] = max_position_embeddings __lowercase : Union[str, Any] = type_vocab_size __lowercase : Dict = type_sequence_label_size __lowercase : Union[str, Any] = initializer_range __lowercase : List[Any] = num_labels __lowercase : str = num_choices __lowercase : Tuple = scope def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : int = None if self.use_input_mask: __lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : str = None __lowercase : Optional[Any] = None __lowercase : Tuple = None if self.use_labels: __lowercase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : List[Any] , __a : int , __a : int , __a : Dict , __a : Union[str, Any] , __a : List[str] , __a : str ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = EsmModel(config=__a ) model.to(__a ) model.eval() __lowercase : str = model(__a , attention_mask=__a ) __lowercase : List[Any] = model(__a ) __lowercase : Optional[int] = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : Union[str, Any] , __a : Dict , __a : List[Any] , __a : Tuple , __a : Union[str, Any] , __a : str , __a : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase : List[str] = EsmForMaskedLM(config=__a ) model.to(__a ) model.eval() __lowercase : int = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[int] , __a : Union[str, Any] , __a : List[Any] , __a : Tuple , __a : Tuple , __a : Optional[int] , __a : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = self.num_labels __lowercase : Any = EsmForTokenClassification(config=__a ) model.to(__a ) model.eval() __lowercase : Optional[Any] = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase : Any = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : List[str] = config_and_inputs __lowercase : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Optional[Any] = False _A : Any = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) _A : Optional[Any] = () _A : List[Any] = ( { '''feature-extraction''': EsmModel, '''fill-mask''': EsmForMaskedLM, '''text-classification''': EsmForSequenceClassification, '''token-classification''': EsmForTokenClassification, '''zero-shot''': EsmForSequenceClassification, } if is_torch_available() else {} ) _A : Optional[Any] = True def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : Optional[int] = EsmModelTester(self ) __lowercase : Tuple = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase : Union[str, Any] = type self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : List[str] = EsmModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] __lowercase : List[str] = EsmEmbeddings(config=__a ) __lowercase : Union[str, Any] = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) __lowercase : int = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) __lowercase : str = create_position_ids_from_input_ids(__a , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__a , __a ) ) ) def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] __lowercase : Optional[Any] = EsmEmbeddings(config=__a ) __lowercase : Optional[int] = torch.empty(2 , 4 , 30 ) __lowercase : Tuple = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] __lowercase : List[str] = torch.as_tensor([expected_single_positions, expected_single_positions] ) __lowercase : Any = embeddings.create_position_ids_from_inputs_embeds(__a ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__a , __a ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" pass @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" pass @require_torch class lowerCAmelCase ( __a ): '''simple docstring''' @slow def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): __lowercase : Tuple = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() __lowercase : Tuple = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase : List[str] = model(__a )[0] __lowercase : Union[str, Any] = 33 __lowercase : Union[str, Any] = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , __a ) __lowercase : List[Any] = torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): __lowercase : int = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() __lowercase : int = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) __lowercase : Any = model(__a )[0] # compare the actual values for a slice. __lowercase : int = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) )
306
1
def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : str = generate_pascal_triangle(lowerCAmelCase_ ) for row_idx in range(lowerCAmelCase_ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=""" """ ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=""" """ ) else: print(triangle[row_idx][col_idx] , end="""""" ) print() def snake_case_ ( lowerCAmelCase_ : int ): if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) __lowercase : list[list[int]] = [] for current_row_idx in range(lowerCAmelCase_ ): __lowercase : Optional[Any] = populate_current_row(lowerCAmelCase_ , lowerCAmelCase_ ) triangle.append(lowerCAmelCase_ ) return triangle def snake_case_ ( lowerCAmelCase_ : list[list[int]] , lowerCAmelCase_ : int ): __lowercase : List[Any] = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 __lowercase , __lowercase : int = 1, 1 for current_col_idx in range(1 , lowerCAmelCase_ ): calculate_current_element( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return current_row def snake_case_ ( lowerCAmelCase_ : list[list[int]] , lowerCAmelCase_ : list[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , ): __lowercase : Tuple = triangle[current_row_idx - 1][current_col_idx - 1] __lowercase : Optional[Any] = triangle[current_row_idx - 1][current_col_idx] __lowercase : Tuple = above_to_left_elt + above_to_right_elt def snake_case_ ( lowerCAmelCase_ : int ): if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) __lowercase : list[list[int]] = [[1]] for row_index in range(1 , lowerCAmelCase_ ): __lowercase : Optional[int] = [0] + result[-1] + [0] __lowercase : Any = row_index + 1 # Calculate the number of distinct elements in a row __lowercase : List[str] = sum(divmod(lowerCAmelCase_ , 2 ) ) __lowercase : List[Any] = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] __lowercase : int = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() __lowercase : str = row_first_half + row_second_half result.append(lowerCAmelCase_ ) return result def snake_case_ ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowerCAmelCase_ : Callable , lowerCAmelCase_ : int ) -> None: __lowercase : Union[str, Any] = F"{func.__name__}({value})" __lowercase : Any = timeit(F"__main__.{call}" , setup="""import __main__""" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(lowerCAmelCase_ , lowerCAmelCase_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
306
def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def snake_case_ ( lowerCAmelCase_ : int = 5000 ): __lowercase : Optional[int] = [(i * (3 * i - 1)) // 2 for i in range(1 , lowerCAmelCase_ )] for i, pentagonal_i in enumerate(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ , len(lowerCAmelCase_ ) ): __lowercase : int = pentagonal_nums[j] __lowercase : Optional[int] = pentagonal_i + pentagonal_j __lowercase : Union[str, Any] = pentagonal_j - pentagonal_i if is_pentagonal(lowerCAmelCase_ ) and is_pentagonal(lowerCAmelCase_ ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
306
1
from ..utils import DummyObject, requires_backends class lowerCAmelCase ( metaclass=__a ): '''simple docstring''' _A : List[Any] = ['''speech'''] def __init__( self : str , *__a : Dict , **__a : int ) -> Optional[int]: """simple docstring""" requires_backends(self , ["""speech"""] ) class lowerCAmelCase ( metaclass=__a ): '''simple docstring''' _A : Union[str, Any] = ['''speech'''] def __init__( self : Tuple , *__a : List[str] , **__a : Dict ) -> List[Any]: """simple docstring""" requires_backends(self , ["""speech"""] )
306
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowerCAmelCase ( __a ): '''simple docstring''' _A : Optional[Any] = (DPMSolverSDEScheduler,) _A : Dict = 10 def lowerCAmelCase ( self : Optional[int] , **__a : Dict ) -> Optional[int]: """simple docstring""" __lowercase : Any = { """num_train_timesteps""": 1100, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**__a ) return config def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=__a ) def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__a ) def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = self.scheduler_classes[0] __lowercase : List[str] = self.get_scheduler_config() __lowercase : Any = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase : Optional[Any] = self.dummy_model() __lowercase : str = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase : Optional[Any] = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): __lowercase : Union[str, Any] = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[Any] = model(__a , __a ) __lowercase : Optional[Any] = scheduler.step(__a , __a , __a ) __lowercase : str = output.prev_sample __lowercase : Optional[Any] = torch.sum(torch.abs(__a ) ) __lowercase : Union[str, Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47821044921875 ) < 1E-2 assert abs(result_mean.item() - 0.2178705964565277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59352111816406 ) < 1E-2 assert abs(result_mean.item() - 0.22342906892299652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase : Tuple = self.scheduler_classes[0] __lowercase : Dict = self.get_scheduler_config(prediction_type="""v_prediction""" ) __lowercase : int = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase : Optional[int] = self.dummy_model() __lowercase : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase : Dict = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): __lowercase : Dict = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[int] = model(__a , __a ) __lowercase : Optional[int] = scheduler.step(__a , __a , __a ) __lowercase : int = output.prev_sample __lowercase : Optional[Any] = torch.sum(torch.abs(__a ) ) __lowercase : List[str] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77149200439453 ) < 1E-2 assert abs(result_mean.item() - 0.16226289014816284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1663360595703 ) < 1E-2 assert abs(result_mean.item() - 0.16688326001167297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8487548828125 ) < 1E-2 assert abs(result_mean.item() - 0.1560530662536621 ) < 1E-3 def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = self.scheduler_classes[0] __lowercase : Dict = self.get_scheduler_config() __lowercase : Optional[int] = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps , device=__a ) __lowercase : int = self.dummy_model() __lowercase : Optional[Any] = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __lowercase : int = scheduler.scale_model_input(__a , __a ) __lowercase : List[str] = model(__a , __a ) __lowercase : List[str] = scheduler.step(__a , __a , __a ) __lowercase : int = output.prev_sample __lowercase : List[Any] = torch.sum(torch.abs(__a ) ) __lowercase : Optional[Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46957397460938 ) < 1E-2 assert abs(result_mean.item() - 0.21805934607982635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59353637695312 ) < 1E-2 assert abs(result_mean.item() - 0.22342908382415771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : str = self.scheduler_classes[0] __lowercase : List[Any] = self.get_scheduler_config() __lowercase : Tuple = scheduler_class(**__a , use_karras_sigmas=__a ) scheduler.set_timesteps(self.num_inference_steps , device=__a ) __lowercase : List[str] = self.dummy_model() __lowercase : Optional[int] = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma __lowercase : str = sample.to(__a ) for t in scheduler.timesteps: __lowercase : List[Any] = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[Any] = model(__a , __a ) __lowercase : Any = scheduler.step(__a , __a , __a ) __lowercase : Optional[Any] = output.prev_sample __lowercase : Any = torch.sum(torch.abs(__a ) ) __lowercase : Optional[Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66974135742188 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63653564453125 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3135223388672 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2
306
1
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase : '''simple docstring''' def __init__( self : Tuple , __a : List[str] , __a : str=2 , __a : Tuple=3 , __a : Optional[Any]=4 , __a : Optional[Any]=2 , __a : List[str]=7 , __a : Any=True , __a : str=True , __a : str=True , __a : Optional[int]=True , __a : Optional[int]=99 , __a : Optional[int]=36 , __a : List[Any]=3 , __a : List[Any]=4 , __a : int=37 , __a : str="gelu" , __a : Optional[Any]=0.1 , __a : List[str]=0.1 , __a : Tuple=512 , __a : Tuple=16 , __a : Dict=2 , __a : Tuple=0.02 , __a : Optional[Any]=6 , __a : int=6 , __a : Optional[Any]=3 , __a : Optional[Any]=4 , __a : List[str]=None , __a : str=1000 , ) -> Tuple: """simple docstring""" __lowercase : Tuple = parent __lowercase : int = batch_size __lowercase : Dict = num_channels __lowercase : List[Any] = image_size __lowercase : Tuple = patch_size __lowercase : Optional[int] = text_seq_length __lowercase : Optional[Any] = is_training __lowercase : str = use_input_mask __lowercase : List[Any] = use_token_type_ids __lowercase : List[str] = use_labels __lowercase : int = vocab_size __lowercase : Dict = hidden_size __lowercase : Tuple = num_hidden_layers __lowercase : int = num_attention_heads __lowercase : Tuple = intermediate_size __lowercase : List[str] = hidden_act __lowercase : int = hidden_dropout_prob __lowercase : List[str] = attention_probs_dropout_prob __lowercase : int = max_position_embeddings __lowercase : Tuple = type_vocab_size __lowercase : Any = type_sequence_label_size __lowercase : List[Any] = initializer_range __lowercase : List[Any] = coordinate_size __lowercase : Any = shape_size __lowercase : Optional[Any] = num_labels __lowercase : Optional[Any] = num_choices __lowercase : str = scope __lowercase : Union[str, Any] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __lowercase : str = text_seq_length __lowercase : List[Any] = (image_size // patch_size) ** 2 + 1 __lowercase : Union[str, Any] = self.text_seq_length + self.image_seq_length def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" __lowercase : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __lowercase : List[Any] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __lowercase : Optional[int] = bbox[i, j, 3] __lowercase : Union[str, Any] = bbox[i, j, 1] __lowercase : Dict = t if bbox[i, j, 2] < bbox[i, j, 0]: __lowercase : Dict = bbox[i, j, 2] __lowercase : List[str] = bbox[i, j, 0] __lowercase : Optional[Any] = t __lowercase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : Optional[int] = None if self.use_input_mask: __lowercase : List[str] = random_attention_mask([self.batch_size, self.text_seq_length] ) __lowercase : Any = None if self.use_token_type_ids: __lowercase : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __lowercase : List[Any] = None __lowercase : Dict = None if self.use_labels: __lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __lowercase : Optional[Any] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def lowerCAmelCase ( self : Dict , __a : int , __a : Optional[Any] , __a : Any , __a : List[Any] , __a : Optional[Any] , __a : Union[str, Any] , __a : int , __a : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Dict = LayoutLMvaModel(config=__a ) model.to(__a ) model.eval() # text + image __lowercase : Tuple = model(__a , pixel_values=__a ) __lowercase : List[Any] = model( __a , bbox=__a , pixel_values=__a , attention_mask=__a , token_type_ids=__a ) __lowercase : Any = model(__a , bbox=__a , pixel_values=__a , token_type_ids=__a ) __lowercase : Tuple = model(__a , bbox=__a , pixel_values=__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __lowercase : int = model(__a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __lowercase : Tuple = model(pixel_values=__a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Optional[Any] , __a : Union[str, Any] , __a : Dict , __a : Optional[int] , __a : int , __a : List[str] , __a : Dict , __a : int , __a : Dict ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = self.num_labels __lowercase : List[Any] = LayoutLMvaForSequenceClassification(__a ) model.to(__a ) model.eval() __lowercase : Dict = model( __a , bbox=__a , pixel_values=__a , attention_mask=__a , token_type_ids=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : int , __a : str , __a : Union[str, Any] , __a : Tuple , __a : Tuple , __a : Dict , __a : Optional[int] , __a : Optional[Any] , __a : Any ) -> Dict: """simple docstring""" __lowercase : List[str] = self.num_labels __lowercase : int = LayoutLMvaForTokenClassification(config=__a ) model.to(__a ) model.eval() __lowercase : Union[str, Any] = model( __a , bbox=__a , pixel_values=__a , attention_mask=__a , token_type_ids=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def lowerCAmelCase ( self : str , __a : int , __a : List[str] , __a : Dict , __a : Any , __a : Any , __a : List[str] , __a : Tuple , __a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = LayoutLMvaForQuestionAnswering(config=__a ) model.to(__a ) model.eval() __lowercase : Optional[int] = model( __a , bbox=__a , pixel_values=__a , attention_mask=__a , token_type_ids=__a , start_positions=__a , end_positions=__a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Dict = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : Any = config_and_inputs __lowercase : Union[str, Any] = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Optional[int] = False _A : List[str] = False _A : Optional[Any] = False _A : Union[str, Any] = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) _A : Any = ( {'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel} if is_torch_available() else {} ) def lowerCAmelCase ( self : Optional[Any] , __a : Optional[Any] , __a : Optional[int] , __a : List[Any] , __a : int , __a : List[str] ) -> Union[str, Any]: """simple docstring""" return True def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : int = LayoutLMvaModelTester(self ) __lowercase : List[str] = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : List[Any] , __a : List[str]=False ) -> List[str]: """simple docstring""" __lowercase : Tuple = copy.deepcopy(__a ) if model_class in get_values(__a ): __lowercase : Optional[int] = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(__a , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__a ): __lowercase : List[str] = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=__a ) elif model_class in get_values(__a ): __lowercase : Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a ) __lowercase : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a ) elif model_class in [ *get_values(__a ), ]: __lowercase : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a ) elif model_class in [ *get_values(__a ), ]: __lowercase : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=__a , ) return inputs_dict def lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase : Tuple = type self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) @slow def lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Union[str, Any] = LayoutLMvaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def snake_case_ ( ): __lowercase : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=__a ) if is_vision_available() else None @slow def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase : Dict = LayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ).to(__a ) __lowercase : int = self.default_image_processor __lowercase : Dict = prepare_img() __lowercase : List[str] = image_processor(images=__a , return_tensors="""pt""" ).pixel_values.to(__a ) __lowercase : Any = torch.tensor([[1, 2]] ) __lowercase : Any = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass __lowercase : Union[str, Any] = model( input_ids=input_ids.to(__a ) , bbox=bbox.to(__a ) , pixel_values=pixel_values.to(__a ) , ) # verify the logits __lowercase : Any = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , __a ) __lowercase : Optional[Any] = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(__a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __a , atol=1E-4 ) )
306
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate lowerCamelCase : str = trt.Logger(trt.Logger.WARNING) lowerCamelCase : Any = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) lowerCamelCase : Optional[Any] = logging.getLogger(__name__) lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=3_84, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=1_28, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) lowerCamelCase : Dict = parser.parse_args() if args.tokenizer_name: lowerCamelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) lowerCamelCase : List[str] = args.per_device_eval_batch_size lowerCamelCase : Any = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties lowerCamelCase : List[str] = True lowerCamelCase : List[Any] = '''temp_engine/bert-fp32.engine''' if args.fpaa: lowerCamelCase : Optional[Any] = '''temp_engine/bert-fp16.engine''' if args.inta: lowerCamelCase : int = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') lowerCamelCase : int = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network lowerCamelCase : Union[str, Any] = [network.get_input(i) for i in range(network.num_inputs)] lowerCamelCase : Dict = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: lowerCamelCase : List[str] = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) lowerCamelCase : Optional[int] = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) lowerCamelCase : Optional[Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ): __lowercase : List[str] = np.asarray(inputs["""input_ids"""] , dtype=np.intaa ) __lowercase : Union[str, Any] = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa ) __lowercase : int = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowerCAmelCase_ ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowerCAmelCase_ ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowerCAmelCase_ ) # start time __lowercase : Optional[Any] = time.time() # Run inference context.execute_async( bindings=[int(lowerCAmelCase_ ) for d_inp in d_inputs] + [int(lowerCAmelCase_ ), int(lowerCAmelCase_ )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) cuda.memcpy_dtoh_async(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Synchronize the stream and take time stream.synchronize() # end time __lowercase : int = time.time() __lowercase : Union[str, Any] = end_time - start_time __lowercase : Any = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. lowerCamelCase : Tuple = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase : List[Any] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. lowerCamelCase : Optional[Any] = raw_datasets['''validation'''].column_names lowerCamelCase : Union[str, Any] = '''question''' if '''question''' in column_names else column_names[0] lowerCamelCase : str = '''context''' if '''context''' in column_names else column_names[1] lowerCamelCase : Dict = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). lowerCamelCase : Dict = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) lowerCamelCase : Tuple = min(args.max_seq_length, tokenizer.model_max_length) def snake_case_ ( lowerCAmelCase_ : int ): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace __lowercase : str = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. __lowercase : List[str] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=lowerCAmelCase_ , stride=args.doc_stride , return_overflowing_tokens=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. __lowercase : List[str] = tokenized_examples.pop("""overflow_to_sample_mapping""" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. __lowercase : Any = [] for i in range(len(tokenized_examples["""input_ids"""] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). __lowercase : Dict = tokenized_examples.sequence_ids(lowerCAmelCase_ ) __lowercase : List[Any] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. __lowercase : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. __lowercase : Dict = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i] ) ] return tokenized_examples lowerCamelCase : Tuple = raw_datasets['''validation'''] # Validation Feature Creation lowerCamelCase : Optional[int] = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) lowerCamelCase : Union[str, Any] = default_data_collator lowerCamelCase : Optional[Any] = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) lowerCamelCase : List[str] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict="eval" ): # Post-processing: we match the start logits and end logits to answers in the original context. __lowercase : int = postprocess_qa_predictions( examples=lowerCAmelCase_ , features=lowerCAmelCase_ , predictions=lowerCAmelCase_ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowerCAmelCase_ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: __lowercase : Optional[int] = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: __lowercase : List[Any] = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] __lowercase : Optional[int] = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=lowerCAmelCase_ , label_ids=lowerCAmelCase_ ) lowerCamelCase : Dict = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def snake_case_ ( lowerCAmelCase_ : str ): return trt.volume(engine.get_binding_shape(lowerCAmelCase_ ) ) * engine.get_binding_dtype(lowerCAmelCase_ ).itemsize # Allocate device memory for inputs and outputs. lowerCamelCase : int = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer lowerCamelCase : Dict = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) lowerCamelCase : str = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) lowerCamelCase : Dict = cuda.mem_alloc(h_outputa.nbytes) lowerCamelCase : Optional[Any] = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. lowerCamelCase : Optional[int] = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(f''' Num examples = {len(eval_dataset)}''') logger.info(f''' Batch size = {args.per_device_eval_batch_size}''') lowerCamelCase : int = 0.0 lowerCamelCase : List[str] = 0 lowerCamelCase : List[str] = timeit.default_timer() lowerCamelCase : List[Any] = None for step, batch in enumerate(eval_dataloader): lowerCamelCase ,lowerCamelCase : str = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 lowerCamelCase ,lowerCamelCase : Union[str, Any] = outputs lowerCamelCase : Optional[Any] = torch.tensor(start_logits) lowerCamelCase : List[str] = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered lowerCamelCase : Optional[int] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-1_00) lowerCamelCase : Dict = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-1_00) lowerCamelCase : List[Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) lowerCamelCase : Dict = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-1_00) if all_preds is not None: lowerCamelCase : Tuple = nested_truncate(all_preds, len(eval_dataset)) lowerCamelCase : Dict = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 10_00 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 10_00)) logger.info('''Total Number of Inference = %d''', niter) lowerCamelCase : str = post_processing_function(eval_examples, eval_dataset, all_preds) lowerCamelCase : Optional[Any] = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'''Evaluation metrics: {eval_metric}''')
306
1
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : str , __a : List[Any] , __a : Union[str, Any]=13 , __a : Optional[int]=7 , __a : int=True , __a : Tuple=True , __a : int=True , __a : str=True , __a : Union[str, Any]=99 , __a : Union[str, Any]=32 , __a : Tuple=5 , __a : Dict=4 , __a : Optional[int]=37 , __a : Tuple="gelu" , __a : Optional[int]=0.1 , __a : Tuple=0.1 , __a : List[str]=512 , __a : Union[str, Any]=16 , __a : Union[str, Any]=2 , __a : Union[str, Any]=0.02 , __a : Dict=4 , ) -> Union[str, Any]: """simple docstring""" __lowercase : str = parent __lowercase : Tuple = batch_size __lowercase : int = seq_length __lowercase : int = is_training __lowercase : Optional[int] = use_attention_mask __lowercase : Dict = use_token_type_ids __lowercase : Any = use_labels __lowercase : List[Any] = vocab_size __lowercase : List[str] = hidden_size __lowercase : Tuple = num_hidden_layers __lowercase : List[str] = num_attention_heads __lowercase : Optional[int] = intermediate_size __lowercase : int = hidden_act __lowercase : Union[str, Any] = hidden_dropout_prob __lowercase : List[str] = attention_probs_dropout_prob __lowercase : str = max_position_embeddings __lowercase : List[str] = type_vocab_size __lowercase : Optional[Any] = type_sequence_label_size __lowercase : str = initializer_range __lowercase : Tuple = num_choices def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : List[Any] = None if self.use_attention_mask: __lowercase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : List[Any] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__a , ) return config, input_ids, attention_mask def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase : str = config_and_inputs __lowercase : int = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : List[str] = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase : List[str] = FlaxDistilBertModelTester(self ) @slow def lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" for model_class_name in self.all_model_classes: __lowercase : Optional[Any] = model_class_name.from_pretrained("""distilbert-base-uncased""" ) __lowercase : Any = model(np.ones((1, 1) ) ) self.assertIsNotNone(__a ) @require_flax class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" __lowercase : str = FlaxDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) __lowercase : Union[str, Any] = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) __lowercase : Optional[Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __lowercase : List[Any] = model(__a , attention_mask=__a )[0] __lowercase : Union[str, Any] = (1, 11, 768) self.assertEqual(output.shape , __a ) __lowercase : List[str] = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __a , atol=1E-4 ) )
306
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : str = { '''facebook/nllb-moe-54B''': '''https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''nllb-moe''' _A : List[str] = ['''past_key_values'''] _A : Optional[Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Dict , __a : List[str]=128112 , __a : List[Any]=1024 , __a : List[Any]=12 , __a : Union[str, Any]=4096 , __a : List[str]=16 , __a : int=12 , __a : Optional[int]=4096 , __a : str=16 , __a : List[Any]=0.05 , __a : Any=0.05 , __a : Dict=True , __a : Optional[Any]=True , __a : List[Any]="relu" , __a : Tuple=1024 , __a : Optional[Any]=0.1 , __a : Tuple=0.1 , __a : Any=0.0 , __a : Optional[Any]=0.02 , __a : List[str]=2 , __a : Union[str, Any]=True , __a : List[Any]=False , __a : Tuple="float32" , __a : Optional[int]=False , __a : Optional[int]=128 , __a : str=64 , __a : Dict=4 , __a : str=4 , __a : List[str]=0.001 , __a : List[Any]=0.001 , __a : Optional[Any]="all" , __a : Optional[int]=False , __a : int=False , __a : int=1.0 , __a : Dict=0.2 , __a : Tuple=1 , __a : Optional[Any]=0 , __a : List[Any]=2 , __a : Any=False , **__a : Any , ) -> Any: """simple docstring""" __lowercase : int = vocab_size __lowercase : List[Any] = max_position_embeddings __lowercase : Tuple = d_model __lowercase : str = encoder_ffn_dim __lowercase : List[str] = encoder_layers __lowercase : int = encoder_attention_heads __lowercase : List[Any] = decoder_ffn_dim __lowercase : int = decoder_layers __lowercase : Optional[int] = decoder_attention_heads __lowercase : Union[str, Any] = dropout __lowercase : str = attention_dropout __lowercase : Any = activation_dropout __lowercase : List[Any] = activation_function __lowercase : List[str] = init_std __lowercase : Optional[int] = encoder_layerdrop __lowercase : str = decoder_layerdrop __lowercase : Dict = use_cache __lowercase : Optional[Any] = encoder_layers __lowercase : str = scale_embedding # scale factor will be sqrt(d_model) if True __lowercase : List[Any] = router_z_loss_coef __lowercase : Tuple = router_aux_loss_coef __lowercase : str = decoder_sparse_step __lowercase : Any = encoder_sparse_step __lowercase : str = num_experts __lowercase : List[Any] = expert_capacity __lowercase : int = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) __lowercase : Optional[int] = router_dtype __lowercase : Any = router_ignore_padding_tokens __lowercase : Optional[Any] = batch_prioritized_routing __lowercase : str = second_expert_policy __lowercase : List[str] = normalize_router_prob_before_dropping __lowercase : List[Any] = moe_eval_capacity_token_fraction __lowercase : List[str] = moe_token_dropout __lowercase : Optional[Any] = output_router_logits super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , decoder_start_token_id=__a , **__a , )
306
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = ['''pixel_values'''] def __init__( self : Any , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : bool = True , __a : Dict[str, int] = None , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = True , **__a : str , ) -> None: """simple docstring""" super().__init__(**__a ) __lowercase : Dict = size if size is not None else {"""shortest_edge""": 224} __lowercase : Union[str, Any] = get_size_dict(__a , default_to_square=__a ) __lowercase : int = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __lowercase : Any = get_size_dict(__a , default_to_square=__a , param_name="""crop_size""" ) __lowercase : Optional[int] = do_resize __lowercase : Union[str, Any] = size __lowercase : List[Any] = resample __lowercase : Any = do_center_crop __lowercase : Dict = crop_size __lowercase : int = do_rescale __lowercase : Tuple = rescale_factor __lowercase : List[Any] = do_normalize __lowercase : Union[str, Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowercase : int = image_std if image_std is not None else OPENAI_CLIP_STD __lowercase : Union[str, Any] = do_convert_rgb def lowerCAmelCase ( self : Union[str, Any] , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[Any] , ) -> np.ndarray: """simple docstring""" __lowercase : Dict = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) __lowercase : str = get_resize_output_image_size(__a , size=size["""shortest_edge"""] , default_to_square=__a ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Any , ) -> np.ndarray: """simple docstring""" __lowercase : Tuple = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(__a , size=(size["""height"""], size["""width"""]) , data_format=__a , **__a ) def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : Union[int, float] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[Any] , ) -> List[str]: """simple docstring""" return rescale(__a , scale=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Optional[int] , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] , ) -> np.ndarray: """simple docstring""" return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Optional[int] , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : int = None , __a : bool = None , __a : float = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = None , __a : Optional[Union[str, TensorType]] = None , __a : Optional[ChannelDimension] = ChannelDimension.FIRST , **__a : List[Any] , ) -> PIL.Image.Image: """simple docstring""" __lowercase : List[Any] = do_resize if do_resize is not None else self.do_resize __lowercase : Dict = size if size is not None else self.size __lowercase : Tuple = get_size_dict(__a , param_name="""size""" , default_to_square=__a ) __lowercase : int = resample if resample is not None else self.resample __lowercase : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase : List[Any] = crop_size if crop_size is not None else self.crop_size __lowercase : List[str] = get_size_dict(__a , param_name="""crop_size""" , default_to_square=__a ) __lowercase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __lowercase : str = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase : Dict = do_normalize if do_normalize is not None else self.do_normalize __lowercase : Tuple = image_mean if image_mean is not None else self.image_mean __lowercase : str = image_std if image_std is not None else self.image_std __lowercase : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase : Union[str, Any] = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase : Union[str, Any] = [convert_to_rgb(__a ) for image in images] # All transformations expect numpy arrays. __lowercase : Any = [to_numpy_array(__a ) for image in images] if do_resize: __lowercase : str = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: __lowercase : str = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: __lowercase : Dict = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: __lowercase : Optional[Any] = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] __lowercase : Any = [to_channel_dimension_format(__a , __a ) for image in images] __lowercase : Optional[int] = {"""pixel_values""": images} return BatchFeature(data=__a , tensor_type=__a )
306
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase : Optional[Any] = { '''configuration_poolformer''': [ '''POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PoolFormerConfig''', '''PoolFormerOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = ['''PoolFormerFeatureExtractor'''] lowerCamelCase : Union[str, Any] = ['''PoolFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = [ '''POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PoolFormerForImageClassification''', '''PoolFormerModel''', '''PoolFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
306
1
from __future__ import annotations from collections.abc import Sequence from typing import Literal def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Optional[Any] = list(lowerCAmelCase_ ) __lowercase : str = list(lowerCAmelCase_ ) __lowercase : Union[str, Any] = 0 for i in range(len(lowerCAmelCase_ ) ): if lista[i] != lista[i]: count += 1 __lowercase : Dict = """_""" if count > 1: return False else: return "".join(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : list[str] ): __lowercase : Tuple = [] while True: __lowercase : Union[str, Any] = ["""$"""] * len(lowerCAmelCase_ ) __lowercase : int = [] for i in range(len(lowerCAmelCase_ ) ): for j in range(i + 1 , len(lowerCAmelCase_ ) ): __lowercase : int = compare_string(binary[i] , binary[j] ) if k is False: __lowercase : Union[str, Any] = """*""" __lowercase : Tuple = """*""" temp.append("""X""" ) for i in range(len(lowerCAmelCase_ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(lowerCAmelCase_ ) == 0: return pi __lowercase : Union[str, Any] = list(set(lowerCAmelCase_ ) ) def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : Sequence[float] ): __lowercase : List[Any] = [] for minterm in minterms: __lowercase : Any = """""" for _ in range(lowerCAmelCase_ ): __lowercase : int = str(minterm % 2 ) + string minterm //= 2 temp.append(lowerCAmelCase_ ) return temp def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): __lowercase : Tuple = list(lowerCAmelCase_ ) __lowercase : List[str] = list(lowerCAmelCase_ ) __lowercase : Dict = 0 for i in range(len(lowerCAmelCase_ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def snake_case_ ( lowerCAmelCase_ : list[list[int]] , lowerCAmelCase_ : list[str] ): __lowercase : Dict = [] __lowercase : List[str] = [0] * len(lowerCAmelCase_ ) for i in range(len(chart[0] ) ): __lowercase : Optional[int] = 0 __lowercase : Union[str, Any] = -1 for j in range(len(lowerCAmelCase_ ) ): if chart[j][i] == 1: count += 1 __lowercase : Optional[Any] = j if count == 1: __lowercase : Optional[int] = 1 for i in range(len(lowerCAmelCase_ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(lowerCAmelCase_ ) ): __lowercase : Tuple = 0 temp.append(prime_implicants[i] ) while True: __lowercase : Dict = 0 __lowercase : List[str] = -1 __lowercase : Any = 0 for i in range(len(lowerCAmelCase_ ) ): __lowercase : Optional[Any] = chart[i].count(1 ) if count_n > max_n: __lowercase : List[Any] = count_n __lowercase : Tuple = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(lowerCAmelCase_ ) ): __lowercase : List[str] = 0 def snake_case_ ( lowerCAmelCase_ : list[str] , lowerCAmelCase_ : list[str] ): __lowercase : Optional[Any] = [[0 for x in range(len(lowerCAmelCase_ ) )] for x in range(len(lowerCAmelCase_ ) )] for i in range(len(lowerCAmelCase_ ) ): __lowercase : Dict = prime_implicants[i].count("""_""" ) for j in range(len(lowerCAmelCase_ ) ): if is_for_table(prime_implicants[i] , binary[j] , lowerCAmelCase_ ): __lowercase : Union[str, Any] = 1 return chart def snake_case_ ( ): __lowercase : List[str] = int(input("""Enter the no. of variables\n""" ) ) __lowercase : Any = [ float(lowerCAmelCase_ ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] __lowercase : Dict = decimal_to_binary(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Union[str, Any] = check(lowerCAmelCase_ ) print("""Prime Implicants are:""" ) print(lowerCAmelCase_ ) __lowercase : Any = prime_implicant_chart(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Dict = selection(lowerCAmelCase_ , lowerCAmelCase_ ) print("""Essential Prime Implicants are:""" ) print(lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
306
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : List[str] = 2 __lowercase : Union[str, Any] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(lowerCAmelCase_ ) if n > 1: factors.append(lowerCAmelCase_ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
306
1
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = { '''artists_file''': '''artists.json''', '''lyrics_file''': '''lyrics.json''', '''genres_file''': '''genres.json''', } lowerCamelCase : List[str] = { '''artists_file''': { '''jukebox''': '''https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json''', }, '''genres_file''': { '''jukebox''': '''https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json''', }, '''lyrics_file''': { '''jukebox''': '''https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json''', }, } lowerCamelCase : Optional[Any] = { '''jukebox''': 5_12, } class lowerCAmelCase ( __a ): '''simple docstring''' _A : Dict = VOCAB_FILES_NAMES _A : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _A : Union[str, Any] = PRETRAINED_LYRIC_TOKENS_SIZES _A : List[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : List[str] , __a : Union[str, Any] , __a : Any , __a : str , __a : int=["v3", "v2", "v2"] , __a : int=512 , __a : str=5 , __a : Optional[Any]="<|endoftext|>" , **__a : List[Any] , ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else unk_token super().__init__( unk_token=__a , n_genres=__a , version=__a , max_n_lyric_tokens=__a , **__a , ) __lowercase : Optional[Any] = version __lowercase : int = max_n_lyric_tokens __lowercase : List[str] = n_genres with open(__a , encoding="""utf-8""" ) as vocab_handle: __lowercase : Optional[int] = json.load(__a ) with open(__a , encoding="""utf-8""" ) as vocab_handle: __lowercase : Union[str, Any] = json.load(__a ) with open(__a , encoding="""utf-8""" ) as vocab_handle: __lowercase : List[Any] = json.load(__a ) __lowercase : Tuple = r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: __lowercase : Any = oov.replace(r"""\-'""" , r"""\-+'""" ) __lowercase : Optional[int] = regex.compile(__a ) __lowercase : Any = {v: k for k, v in self.artists_encoder.items()} __lowercase : Optional[int] = {v: k for k, v in self.genres_encoder.items()} __lowercase : Optional[int] = {v: k for k, v in self.lyrics_encoder.items()} @property def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def lowerCAmelCase ( self : str , __a : List[str] , __a : Any , __a : Tuple ) -> List[str]: """simple docstring""" __lowercase : Optional[Any] = [self.artists_encoder.get(__a , 0 ) for artist in list_artists] for genres in range(len(__a ) ): __lowercase : int = [self.genres_encoder.get(__a , 0 ) for genre in list_genres[genres]] __lowercase : Optional[Any] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) __lowercase : Tuple = [[self.lyrics_encoder.get(__a , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def lowerCAmelCase ( self : List[Any] , __a : str ) -> Any: """simple docstring""" return list(__a ) def lowerCAmelCase ( self : Dict , __a : Tuple , __a : Optional[Any] , __a : List[Any] , **__a : Dict ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase , __lowercase : List[str] = self.prepare_for_tokenization(__a , __a , __a ) __lowercase : Optional[Any] = self._tokenize(__a ) return artist, genre, lyrics def lowerCAmelCase ( self : Dict , __a : str , __a : str , __a : str , __a : bool = False ) -> Tuple[str, str, str, Dict[str, Any]]: """simple docstring""" for idx in range(len(self.version ) ): if self.version[idx] == "v3": __lowercase : Tuple = artists[idx].lower() __lowercase : List[str] = [genres[idx].lower()] else: __lowercase : Optional[int] = self._normalize(artists[idx] ) + """.v2""" __lowercase : int = [ self._normalize(__a ) + """.v2""" for genre in genres[idx].split("""_""" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": __lowercase : Any = regex.compile(r"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" ) __lowercase : Optional[int] = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n""" __lowercase : Any = {vocab[index]: index + 1 for index in range(len(__a ) )} __lowercase : Union[str, Any] = 0 __lowercase : Dict = len(__a ) + 1 __lowercase : Optional[Any] = self.vocab __lowercase : Any = {v: k for k, v in self.vocab.items()} __lowercase : int = """""" else: __lowercase : List[str] = regex.compile(r"""[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+""" ) __lowercase : List[Any] = self._run_strip_accents(__a ) __lowercase : str = lyrics.replace("""\\""" , """\n""" ) __lowercase : Optional[int] = self.out_of_vocab.sub("""""" , __a ), [], [] return artists, genres, lyrics def lowerCAmelCase ( self : Dict , __a : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : Any = unicodedata.normalize("""NFD""" , __a ) __lowercase : List[str] = [] for char in text: __lowercase : List[str] = unicodedata.category(__a ) if cat == "Mn": continue output.append(__a ) return "".join(__a ) def lowerCAmelCase ( self : Dict , __a : str ) -> str: """simple docstring""" __lowercase : Any = ( [chr(__a ) for i in range(ord("""a""" ) , ord("""z""" ) + 1 )] + [chr(__a ) for i in range(ord("""A""" ) , ord("""Z""" ) + 1 )] + [chr(__a ) for i in range(ord("""0""" ) , ord("""9""" ) + 1 )] + ["""."""] ) __lowercase : Optional[Any] = frozenset(__a ) __lowercase : Union[str, Any] = re.compile(r"""_+""" ) __lowercase : Any = """""".join([c if c in accepted else """_""" for c in text.lower()] ) __lowercase : List[str] = pattern.sub("""_""" , __a ).strip("""_""" ) return text def lowerCAmelCase ( self : Union[str, Any] , __a : List[str] ) -> str: """simple docstring""" return " ".join(__a ) def lowerCAmelCase ( self : Optional[int] , __a : Optional[Any] , __a : Optional[Union[str, TensorType]] = None , __a : bool = False ) -> List[Any]: """simple docstring""" if not isinstance(__a , __a ): __lowercase : List[str] = TensorType(__a ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( """Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""" ) import tensorflow as tf __lowercase : Dict = tf.constant __lowercase : List[str] = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""" ) import torch __lowercase : Optional[int] = torch.tensor __lowercase : Any = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""" ) import jax.numpy as jnp # noqa: F811 __lowercase : Dict = jnp.array __lowercase : Optional[Any] = _is_jax else: __lowercase : Union[str, Any] = np.asarray __lowercase : List[str] = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: __lowercase : Any = [inputs] if not is_tensor(__a ): __lowercase : Optional[int] = as_tensor(__a ) except: # noqa E722 raise ValueError( """Unable to create tensor, you should probably activate truncation and/or padding """ """with 'padding=True' 'truncation=True' to have batched tensors with the same length.""" ) return inputs def __call__( self : str , __a : str , __a : Tuple , __a : Dict="" , __a : Optional[int]="pt" ) -> BatchEncoding: """simple docstring""" __lowercase : Any = [0, 0, 0] __lowercase : Tuple = [artist] * len(self.version ) __lowercase : Tuple = [genres] * len(self.version ) __lowercase , __lowercase , __lowercase : Dict = self.tokenize(__a , __a , __a ) __lowercase , __lowercase , __lowercase : Optional[int] = self._convert_token_to_id(__a , __a , __a ) __lowercase : Optional[Any] = [-INFINITY] * len(full_tokens[-1] ) __lowercase : str = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=__a ) for i in range(len(self.version ) ) ] return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks} ) def lowerCAmelCase ( self : Optional[int] , __a : str , __a : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__a ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __lowercase : List[Any] = os.path.join( __a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""] ) with open(__a , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=__a ) ) __lowercase : Dict = os.path.join( __a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""] ) with open(__a , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=__a ) ) __lowercase : Dict = os.path.join( __a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""] ) with open(__a , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=__a ) ) return (artists_file, genres_file, lyrics_file) def lowerCAmelCase ( self : Tuple , __a : List[Any] , __a : List[str] , __a : List[Any] ) -> str: """simple docstring""" __lowercase : Any = self.artists_decoder.get(__a ) __lowercase : Dict = [self.genres_decoder.get(__a ) for genre in genres_index] __lowercase : List[Any] = [self.lyrics_decoder.get(__a ) for character in lyric_index] return artist, genres, lyrics
306
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Dict = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) __lowercase : List[str] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __lowercase : Optional[Any] = model(__a )["""last_hidden_state"""] __lowercase : Any = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , __a ) # compare the actual values for a slice. __lowercase : Dict = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
306
1
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) lowerCamelCase : List[str] = logging.getLogger(__name__) def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] ): __lowercase : Tuple = np.argmax(lowerCAmelCase_ , axis=1 ) return np.sum(outputs == labels ) def snake_case_ ( lowerCAmelCase_ : List[str] ): with open(lowerCAmelCase_ , encoding="""utf_8""" ) as f: __lowercase : Union[str, Any] = csv.reader(lowerCAmelCase_ ) __lowercase : Optional[int] = [] next(lowerCAmelCase_ ) # skip the first line for line in tqdm(lowerCAmelCase_ ): output.append((""" """.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] ): __lowercase : Union[str, Any] = [] for dataset in encoded_datasets: __lowercase : Any = len(lowerCAmelCase_ ) __lowercase : str = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) __lowercase : Dict = np.zeros((n_batch, 2) , dtype=np.intaa ) __lowercase : Optional[int] = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) __lowercase : Any = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(lowerCAmelCase_ ): __lowercase : List[Any] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __lowercase : Dict = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __lowercase : Any = with_conta __lowercase : List[Any] = with_conta __lowercase : Optional[int] = len(lowerCAmelCase_ ) - 1 __lowercase : int = len(lowerCAmelCase_ ) - 1 __lowercase : Dict = with_conta __lowercase : Any = with_conta __lowercase : Optional[Any] = mc_label __lowercase : Any = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(lowerCAmelCase_ ) for t in all_inputs ) ) return tensor_datasets def snake_case_ ( ): __lowercase : Optional[int] = argparse.ArgumentParser() parser.add_argument("""--model_name""" , type=lowerCAmelCase_ , default="""openai-gpt""" , help="""pretrained model name""" ) parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" ) parser.add_argument("""--do_eval""" , action="""store_true""" , help="""Whether to run eval on the dev set.""" ) parser.add_argument( """--output_dir""" , default=lowerCAmelCase_ , type=lowerCAmelCase_ , required=lowerCAmelCase_ , help="""The output directory where the model predictions and checkpoints will be written.""" , ) parser.add_argument("""--train_dataset""" , type=lowerCAmelCase_ , default="""""" ) parser.add_argument("""--eval_dataset""" , type=lowerCAmelCase_ , default="""""" ) parser.add_argument("""--seed""" , type=lowerCAmelCase_ , default=42 ) parser.add_argument("""--num_train_epochs""" , type=lowerCAmelCase_ , default=3 ) parser.add_argument("""--train_batch_size""" , type=lowerCAmelCase_ , default=8 ) parser.add_argument("""--eval_batch_size""" , type=lowerCAmelCase_ , default=16 ) parser.add_argument("""--adam_epsilon""" , default=1e-8 , type=lowerCAmelCase_ , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""" , type=lowerCAmelCase_ , default=1 ) parser.add_argument( """--max_steps""" , default=-1 , type=lowerCAmelCase_ , help=( """If > 0: set total number of training steps to perform. Override num_train_epochs.""" ) , ) parser.add_argument( """--gradient_accumulation_steps""" , type=lowerCAmelCase_ , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , ) parser.add_argument("""--learning_rate""" , type=lowerCAmelCase_ , default=6.2_5e-5 ) parser.add_argument("""--warmup_steps""" , default=0 , type=lowerCAmelCase_ , help="""Linear warmup over warmup_steps.""" ) parser.add_argument("""--lr_schedule""" , type=lowerCAmelCase_ , default="""warmup_linear""" ) parser.add_argument("""--weight_decay""" , type=lowerCAmelCase_ , default=0.01 ) parser.add_argument("""--lm_coef""" , type=lowerCAmelCase_ , default=0.9 ) parser.add_argument("""--n_valid""" , type=lowerCAmelCase_ , default=374 ) parser.add_argument("""--server_ip""" , type=lowerCAmelCase_ , default="""""" , help="""Can be used for distant debugging.""" ) parser.add_argument("""--server_port""" , type=lowerCAmelCase_ , default="""""" , help="""Can be used for distant debugging.""" ) __lowercase : Dict = parser.parse_args() print(lowerCAmelCase_ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("""Waiting for debugger attach""" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCAmelCase_ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) __lowercase : int = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) __lowercase : Any = torch.cuda.device_count() logger.info("""device: {}, n_gpu {}""".format(lowerCAmelCase_ , lowerCAmelCase_ ) ) if not args.do_train and not args.do_eval: raise ValueError("""At least one of `do_train` or `do_eval` must be True.""" ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset __lowercase : List[str] = ["""_start_""", """_delimiter_""", """_classify_"""] __lowercase : Optional[int] = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(lowerCAmelCase_ ) __lowercase : Dict = tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) __lowercase : str = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(lowerCAmelCase_ ) ) model.to(lowerCAmelCase_ ) # Load and encode the datasets def tokenize_and_encode(lowerCAmelCase_ : Optional[int] ): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(lowerCAmelCase_ ) ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return obj return [tokenize_and_encode(lowerCAmelCase_ ) for o in obj] logger.info("""Encoding dataset...""" ) __lowercase : Any = load_rocstories_dataset(args.train_dataset ) __lowercase : Union[str, Any] = load_rocstories_dataset(args.eval_dataset ) __lowercase : List[Any] = (train_dataset, eval_dataset) __lowercase : Union[str, Any] = tokenize_and_encode(lowerCAmelCase_ ) # Compute the max input length for the Transformer __lowercase : List[Any] = model.config.n_positions // 2 - 2 __lowercase : int = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) __lowercase : Any = min(lowerCAmelCase_ , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders __lowercase : int = pre_process_datasets(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ ) __lowercase , __lowercase : Dict = tensor_datasets[0], tensor_datasets[1] __lowercase : Optional[int] = TensorDataset(*lowerCAmelCase_ ) __lowercase : Optional[int] = RandomSampler(lowerCAmelCase_ ) __lowercase : Optional[Any] = DataLoader(lowerCAmelCase_ , sampler=lowerCAmelCase_ , batch_size=args.train_batch_size ) __lowercase : Optional[int] = TensorDataset(*lowerCAmelCase_ ) __lowercase : List[str] = SequentialSampler(lowerCAmelCase_ ) __lowercase : str = DataLoader(lowerCAmelCase_ , sampler=lowerCAmelCase_ , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: __lowercase : List[Any] = args.max_steps __lowercase : Union[str, Any] = args.max_steps // (len(lowerCAmelCase_ ) // args.gradient_accumulation_steps) + 1 else: __lowercase : List[str] = len(lowerCAmelCase_ ) // args.gradient_accumulation_steps * args.num_train_epochs __lowercase : List[Any] = list(model.named_parameters() ) __lowercase : int = ["""bias""", """LayerNorm.bias""", """LayerNorm.weight"""] __lowercase : List[str] = [ { """params""": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], """weight_decay""": args.weight_decay, }, {"""params""": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], """weight_decay""": 0.0}, ] __lowercase : str = AdamW(lowerCAmelCase_ , lr=args.learning_rate , eps=args.adam_epsilon ) __lowercase : Tuple = get_linear_schedule_with_warmup( lowerCAmelCase_ , num_warmup_steps=args.warmup_steps , num_training_steps=lowerCAmelCase_ ) if args.do_train: __lowercase , __lowercase , __lowercase : str = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc="""Epoch""" ): __lowercase : Optional[int] = 0 __lowercase : str = 0 __lowercase : List[str] = tqdm(lowerCAmelCase_ , desc="""Training""" ) for step, batch in enumerate(lowerCAmelCase_ ): __lowercase : Optional[int] = tuple(t.to(lowerCAmelCase_ ) for t in batch ) __lowercase , __lowercase , __lowercase , __lowercase : List[str] = batch __lowercase : Optional[Any] = model(lowerCAmelCase_ , mc_token_ids=lowerCAmelCase_ , lm_labels=lowerCAmelCase_ , mc_labels=lowerCAmelCase_ ) __lowercase : Union[str, Any] = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() __lowercase : Tuple = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 __lowercase : List[Any] = """Training loss: {:.2e} lr: {:.2e}""".format(lowerCAmelCase_ , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer __lowercase : Dict = model.module if hasattr(lowerCAmelCase_ , """module""" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` __lowercase : Union[str, Any] = os.path.join(args.output_dir , lowerCAmelCase_ ) __lowercase : str = os.path.join(args.output_dir , lowerCAmelCase_ ) torch.save(model_to_save.state_dict() , lowerCAmelCase_ ) model_to_save.config.to_json_file(lowerCAmelCase_ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned __lowercase : Any = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) __lowercase : List[Any] = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(lowerCAmelCase_ ) if args.do_eval: model.eval() __lowercase , __lowercase : Tuple = 0, 0 __lowercase , __lowercase : str = 0, 0 for batch in tqdm(lowerCAmelCase_ , desc="""Evaluating""" ): __lowercase : Tuple = tuple(t.to(lowerCAmelCase_ ) for t in batch ) __lowercase , __lowercase , __lowercase , __lowercase : str = batch with torch.no_grad(): __lowercase , __lowercase , __lowercase , __lowercase : Any = model( lowerCAmelCase_ , mc_token_ids=lowerCAmelCase_ , lm_labels=lowerCAmelCase_ , mc_labels=lowerCAmelCase_ ) __lowercase : List[Any] = mc_logits.detach().cpu().numpy() __lowercase : Dict = mc_labels.to("""cpu""" ).numpy() __lowercase : Optional[Any] = accuracy(lowerCAmelCase_ , lowerCAmelCase_ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 __lowercase : Any = eval_loss / nb_eval_steps __lowercase : Any = eval_accuracy / nb_eval_examples __lowercase : List[Any] = tr_loss / nb_tr_steps if args.do_train else None __lowercase : Any = {"""eval_loss""": eval_loss, """eval_accuracy""": eval_accuracy, """train_loss""": train_loss} __lowercase : List[Any] = os.path.join(args.output_dir , """eval_results.txt""" ) with open(lowerCAmelCase_ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , lowerCAmelCase_ , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) if __name__ == "__main__": main()
306
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Optional[Any] = len(lowerCAmelCase_ ) __lowercase : str = len(lowerCAmelCase_ ) __lowercase : Optional[int] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __lowercase : Tuple = True for i in range(lowerCAmelCase_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __lowercase : Optional[Any] = True if a[i].islower(): __lowercase : Dict = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
306
1
def snake_case_ ( lowerCAmelCase_ : int = 1000 ): __lowercase : int = 3 __lowercase : str = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f'''{solution() = }''')
306
from scipy.stats import spearmanr import datasets lowerCamelCase : List[str] = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' lowerCamelCase : List[str] = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' lowerCamelCase : Union[str, Any] = r'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def lowerCAmelCase ( self : List[Any] , __a : str , __a : Any , __a : Optional[int]=False ) -> List[str]: """simple docstring""" __lowercase : Optional[Any] = spearmanr(__a , __a ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
306
1
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def snake_case_ ( *lowerCAmelCase_ : List[str] ): if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : Optional[Any] = list(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) ): __lowercase : Dict = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def snake_case_ ( lowerCAmelCase_ : Exception ): __lowercase : int = [ """CUDA out of memory.""", # CUDA OOM """cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.""", # CUDNN SNAFU """DefaultCPUAllocator: can't allocate memory""", # CPU OOM ] if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def snake_case_ ( lowerCAmelCase_ : callable = None , lowerCAmelCase_ : int = 128 ): if function is None: return functools.partial(lowerCAmelCase_ , starting_batch_size=lowerCAmelCase_ ) __lowercase : Dict = starting_batch_size def decorator(*lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : Optional[Any] ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() __lowercase : List[str] = list(inspect.signature(lowerCAmelCase_ ).parameters.keys() ) # Guard against user error if len(lowerCAmelCase_ ) < (len(lowerCAmelCase_ ) + 1): __lowercase : int = """, """.join([F"{arg}={value}" for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( F"Batch size was passed into `{function.__name__}` as the first argument when called." F"Remove this as the decorator already does so: `{function.__name__}({arg_str})`" ) while True: if batch_size == 0: raise RuntimeError("""No executable batch size found, reached zero.""" ) try: return function(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) except Exception as e: if should_reduce_batch_size(lowerCAmelCase_ ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
306
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Any = get_failure_array(lowerCAmelCase_ ) # 2) Step through text searching for pattern __lowercase , __lowercase : Optional[int] = 0, 0 # index into text, pattern while i < len(lowerCAmelCase_ ): if pattern[j] == text[i]: if j == (len(lowerCAmelCase_ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: __lowercase : Optional[Any] = failure[j - 1] continue i += 1 return False def snake_case_ ( lowerCAmelCase_ : str ): __lowercase : List[Any] = [0] __lowercase : Optional[Any] = 0 __lowercase : List[Any] = 1 while j < len(lowerCAmelCase_ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: __lowercase : List[str] = failure[i - 1] continue j += 1 failure.append(lowerCAmelCase_ ) return failure if __name__ == "__main__": # Test 1) lowerCamelCase : Dict = '''abc1abc12''' lowerCamelCase : Union[str, Any] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' lowerCamelCase : Any = '''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) lowerCamelCase : List[Any] = '''ABABX''' lowerCamelCase : List[Any] = '''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) lowerCamelCase : int = '''AAAB''' lowerCamelCase : Optional[int] = '''ABAAAAAB''' assert kmp(pattern, text) # Test 4) lowerCamelCase : Optional[Any] = '''abcdabcy''' lowerCamelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) lowerCamelCase : Dict = '''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
306
1
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING lowerCamelCase : List[str] = logging.get_logger(__name__) @add_end_docstrings(__a ) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Optional[int] , *__a : int , **__a : List[str] ) -> Dict: """simple docstring""" super().__init__(*__a , **__a ) self.check_model_type(__a ) def lowerCAmelCase ( self : Any , __a : Optional[Any]=None , __a : Dict=None , __a : Optional[int]=None , **__a : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase , __lowercase : Union[str, Any] = {}, {} if padding is not None: __lowercase : Tuple = padding if truncation is not None: __lowercase : Tuple = truncation if top_k is not None: __lowercase : Any = top_k return preprocess_params, {}, postprocess_params def __call__( self : Optional[int] , __a : Union["Image.Image", str] , __a : str = None , **__a : Dict ) -> Optional[Any]: """simple docstring""" if isinstance(__a , (Image.Image, str) ) and isinstance(__a , __a ): __lowercase : Optional[Any] = {"""image""": image, """question""": question} else: __lowercase : Optional[Any] = image __lowercase : Optional[Any] = super().__call__(__a , **__a ) return results def lowerCAmelCase ( self : Dict , __a : Any , __a : Optional[int]=False , __a : Union[str, Any]=False ) -> Dict: """simple docstring""" __lowercase : Tuple = load_image(inputs["""image"""] ) __lowercase : Dict = self.tokenizer( inputs["""question"""] , return_tensors=self.framework , padding=__a , truncation=__a ) __lowercase : int = self.image_processor(images=__a , return_tensors=self.framework ) model_inputs.update(__a ) return model_inputs def lowerCAmelCase ( self : Dict , __a : int ) -> Tuple: """simple docstring""" __lowercase : int = self.model(**__a ) return model_outputs def lowerCAmelCase ( self : int , __a : Any , __a : Optional[Any]=5 ) -> List[Any]: """simple docstring""" if top_k > self.model.config.num_labels: __lowercase : Dict = self.model.config.num_labels if self.framework == "pt": __lowercase : Dict = model_outputs.logits.sigmoid()[0] __lowercase , __lowercase : Any = probs.topk(__a ) else: raise ValueError(F"Unsupported framework: {self.framework}" ) __lowercase : List[Any] = scores.tolist() __lowercase : str = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(__a , __a )]
306
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = ['''pixel_values'''] def __init__( self : Any , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : bool = True , __a : Dict[str, int] = None , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = True , **__a : str , ) -> None: """simple docstring""" super().__init__(**__a ) __lowercase : Dict = size if size is not None else {"""shortest_edge""": 224} __lowercase : Union[str, Any] = get_size_dict(__a , default_to_square=__a ) __lowercase : int = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __lowercase : Any = get_size_dict(__a , default_to_square=__a , param_name="""crop_size""" ) __lowercase : Optional[int] = do_resize __lowercase : Union[str, Any] = size __lowercase : List[Any] = resample __lowercase : Any = do_center_crop __lowercase : Dict = crop_size __lowercase : int = do_rescale __lowercase : Tuple = rescale_factor __lowercase : List[Any] = do_normalize __lowercase : Union[str, Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowercase : int = image_std if image_std is not None else OPENAI_CLIP_STD __lowercase : Union[str, Any] = do_convert_rgb def lowerCAmelCase ( self : Union[str, Any] , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[Any] , ) -> np.ndarray: """simple docstring""" __lowercase : Dict = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) __lowercase : str = get_resize_output_image_size(__a , size=size["""shortest_edge"""] , default_to_square=__a ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Any , ) -> np.ndarray: """simple docstring""" __lowercase : Tuple = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(__a , size=(size["""height"""], size["""width"""]) , data_format=__a , **__a ) def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : Union[int, float] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[Any] , ) -> List[str]: """simple docstring""" return rescale(__a , scale=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Optional[int] , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] , ) -> np.ndarray: """simple docstring""" return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Optional[int] , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : int = None , __a : bool = None , __a : float = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = None , __a : Optional[Union[str, TensorType]] = None , __a : Optional[ChannelDimension] = ChannelDimension.FIRST , **__a : List[Any] , ) -> PIL.Image.Image: """simple docstring""" __lowercase : List[Any] = do_resize if do_resize is not None else self.do_resize __lowercase : Dict = size if size is not None else self.size __lowercase : Tuple = get_size_dict(__a , param_name="""size""" , default_to_square=__a ) __lowercase : int = resample if resample is not None else self.resample __lowercase : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase : List[Any] = crop_size if crop_size is not None else self.crop_size __lowercase : List[str] = get_size_dict(__a , param_name="""crop_size""" , default_to_square=__a ) __lowercase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __lowercase : str = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase : Dict = do_normalize if do_normalize is not None else self.do_normalize __lowercase : Tuple = image_mean if image_mean is not None else self.image_mean __lowercase : str = image_std if image_std is not None else self.image_std __lowercase : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase : Union[str, Any] = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase : Union[str, Any] = [convert_to_rgb(__a ) for image in images] # All transformations expect numpy arrays. __lowercase : Any = [to_numpy_array(__a ) for image in images] if do_resize: __lowercase : str = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: __lowercase : str = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: __lowercase : Dict = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: __lowercase : Optional[Any] = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] __lowercase : Any = [to_channel_dimension_format(__a , __a ) for image in images] __lowercase : Optional[int] = {"""pixel_values""": images} return BatchFeature(data=__a , tensor_type=__a )
306
1
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , __a : Union[str, Any] , __a : Dict=7 , __a : List[str]=3 , __a : int=18 , __a : List[str]=30 , __a : Tuple=400 , __a : List[str]=True , __a : Optional[Any]=None , __a : Tuple=True , ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = size if size is not None else {"""height""": 18, """width""": 18} __lowercase : Tuple = parent __lowercase : Dict = batch_size __lowercase : Dict = num_channels __lowercase : Optional[Any] = image_size __lowercase : Any = min_resolution __lowercase : str = max_resolution __lowercase : int = do_resize __lowercase : Optional[Any] = size __lowercase : Optional[Any] = apply_ocr def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : Dict = LayoutLMvaImageProcessor if is_pytesseract_available() else None def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" __lowercase : Any = LayoutLMvaImageProcessingTester(self ) @property def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" __lowercase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__a , """do_resize""" ) ) self.assertTrue(hasattr(__a , """size""" ) ) self.assertTrue(hasattr(__a , """apply_ocr""" ) ) def lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" __lowercase : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) __lowercase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" pass def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a ) for image in image_inputs: self.assertIsInstance(__a , Image.Image ) # Test not batched input __lowercase : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , __a ) self.assertIsInstance(encoding.boxes , __a ) # Test batched __lowercase : Tuple = image_processing(__a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" __lowercase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a ) for image in image_inputs: self.assertIsInstance(__a , np.ndarray ) # Test not batched input __lowercase : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __lowercase : Union[str, Any] = image_processing(__a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a ) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor ) # Test not batched input __lowercase : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __lowercase : str = image_processing(__a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" __lowercase : int = LayoutLMvaImageProcessor() from datasets import load_dataset __lowercase : Tuple = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) __lowercase : List[Any] = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) __lowercase : Any = image_processing(__a , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __lowercase : Optional[Any] = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 __lowercase : Dict = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __a ) self.assertListEqual(encoding.boxes , __a ) # with apply_OCR = False __lowercase : int = LayoutLMvaImageProcessor(apply_ocr=__a ) __lowercase : Any = image_processing(__a , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
306
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str ): __lowercase : Tuple = s.rsplit(lowerCAmelCase_ , lowerCAmelCase_ ) return new.join(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : List[Any] ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : List[str] = {} __lowercase : Tuple = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __lowercase : List[str] = key.replace(F"{group_key}." , F"{group_key}.group." ) if "res_path" in key: __lowercase : List[Any] = key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): __lowercase : Union[str, Any] = rreplace(lowerCAmelCase_ , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): __lowercase : Tuple = rreplace(lowerCAmelCase_ , """.b""" , """.bias""" , 1 ) __lowercase : Dict = value.float() return upgrade @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=True ): from dall_e import Encoder __lowercase : Any = Encoder() if os.path.exists(lowerCAmelCase_ ): __lowercase : List[Any] = torch.load(lowerCAmelCase_ ) else: __lowercase : List[Any] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : int = ckpt.state_dict() encoder.load_state_dict(lowerCAmelCase_ ) if config_path is not None: __lowercase : Optional[int] = FlavaImageCodebookConfig.from_pretrained(lowerCAmelCase_ ) else: __lowercase : List[str] = FlavaImageCodebookConfig() __lowercase : Optional[Any] = FlavaImageCodebook(lowerCAmelCase_ ).eval() __lowercase : List[Any] = encoder.state_dict() __lowercase : Union[str, Any] = upgrade_state_dict(lowerCAmelCase_ ) hf_model.load_state_dict(lowerCAmelCase_ ) __lowercase : Dict = hf_model.state_dict() __lowercase : Tuple = count_parameters(lowerCAmelCase_ ) __lowercase : Tuple = count_parameters(lowerCAmelCase_ ) assert torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(lowerCAmelCase_ ) else: return hf_state_dict if __name__ == "__main__": lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowerCamelCase : Union[str, Any] = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
306
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
306
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging lowerCamelCase : Tuple = logging.get_logger(__name__) logging.set_verbosity_info() def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): if "xprophetnet" in prophetnet_checkpoint_path: __lowercase : List[str] = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) __lowercase , __lowercase : int = XLMProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) else: __lowercase : List[Any] = ProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) __lowercase , __lowercase : Optional[Any] = ProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) __lowercase : List[str] = ["""key_proj""", """value_proj""", """query_proj"""] __lowercase : Optional[int] = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: __lowercase : Tuple = key.split(""".""" ) if attributes[0] == "lm_head": __lowercase : str = prophet __lowercase : List[str] = prophet_old else: __lowercase : Tuple = prophet.prophetnet __lowercase : Union[str, Any] = prophet_old.model __lowercase : Optional[Any] = False for attribute in attributes: if attribute in mapping: __lowercase : Optional[int] = mapping[attribute] if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) > 0: __lowercase : str = attribute elif hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : List[Any] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" __lowercase : Any = old_model.weight logger.info(F"{attribute} is initialized." ) __lowercase : Any = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" __lowercase : Dict = old_model.bias logger.info(F"{attribute} is initialized" ) __lowercase : int = True break elif attribute in special_keys and hasattr(lowerCAmelCase_ , """in_proj_weight""" ): __lowercase : Dict = old_model.in_proj_weight.shape[0] // 3 __lowercase : Tuple = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": __lowercase : Union[str, Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) __lowercase : int = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": __lowercase : Any = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) __lowercase : List[Any] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": __lowercase : Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) __lowercase : int = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) __lowercase : int = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." __lowercase : Optional[Any] = nn.Parameter(old_model.embed_positions.weight[:512, :] ) __lowercase : int = True break if attribute.isdigit(): __lowercase : Tuple = model[int(lowerCAmelCase_ )] __lowercase : int = old_model[int(lowerCAmelCase_ )] else: __lowercase : Union[str, Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if old_attribute == "": __lowercase : int = old_model else: if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError(F"{old_model} does not have {old_attribute}" ) __lowercase : List[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if not is_key_init: raise ValueError(F"{key} was not correctly initialized!" ) print(F"Saving model to {pytorch_dump_folder_path}" ) prophet.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCamelCase : Any = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
306
1
import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging lowerCamelCase : Optional[int] = logging.get_logger(__name__) class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = CLIPConfig _A : List[str] = ['''CLIPEncoderLayer'''] def __init__( self : Optional[int] , __a : CLIPConfig ) -> int: """simple docstring""" super().__init__(__a ) __lowercase : str = CLIPVisionModelWithProjection(config.vision_config ) __lowercase : Dict = nn.Linear(config.vision_config.projection_dim , 1 ) __lowercase : List[str] = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def lowerCAmelCase ( self : Optional[int] , __a : Optional[int] , __a : Any , __a : Dict=0.5 , __a : str=0.5 ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.vision_model(__a )[0] __lowercase : Union[str, Any] = self.p_head(__a ) __lowercase : Tuple = nsfw_detected.flatten() __lowercase : Union[str, Any] = nsfw_detected > p_threshold __lowercase : int = nsfw_detected.tolist() if any(__a ): logger.warning( """Potential NSFW content was detected in one or more images. A black image will be returned instead.""" """ Try again with a different prompt and/or seed.""" ) for idx, nsfw_detected_ in enumerate(__a ): if nsfw_detected_: __lowercase : List[str] = np.zeros(images[idx].shape ) __lowercase : int = self.w_head(__a ) __lowercase : List[str] = watermark_detected.flatten() __lowercase : Dict = watermark_detected > w_threshold __lowercase : List[Any] = watermark_detected.tolist() if any(__a ): logger.warning( """Potential watermarked content was detected in one or more images. A black image will be returned instead.""" """ Try again with a different prompt and/or seed.""" ) for idx, watermark_detected_ in enumerate(__a ): if watermark_detected_: __lowercase : Tuple = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
306
def snake_case_ ( lowerCAmelCase_ : int = 200 ): __lowercase : List[str] = [1, 2, 5, 10, 20, 50, 100, 200] __lowercase : List[str] = [0] * (pence + 1) __lowercase : Optional[Any] = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowerCAmelCase_ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
306
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 650, '''eval_accuracy''': 0.6, '''eval_loss''': 0.9}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 600, '''eval_accuracy''': 0.3, '''eval_loss''': 0.9}, }, ] ) class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : str ) -> int: """simple docstring""" if self.framework == "pytorch": subprocess.run( F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding="""utf-8""" , check=__a , ) assert hasattr(self , """env""" ) def lowerCAmelCase ( self : Dict , __a : List[str]=1 ) -> int: """simple docstring""" return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"{self.env.base_job_name}-single" , instance_count=__a , instance_type=self.instance_type , debugger_hook_config=__a , hyperparameters={**self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version="""py36""" , ) def lowerCAmelCase ( self : List[str] , __a : Optional[Any] ) -> str: """simple docstring""" TrainingJobAnalytics(__a ).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv" ) def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase : Dict = self.create_estimator() # run training estimator.fit() # result dataframe __lowercase : int = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __lowercase : List[Any] = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) __lowercase : int = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __lowercase : Optional[Any] = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"{estimator.latest_training_job.name}.json" , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , __a )
306
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , __a : Dict , __a : List[str]=None , __a : Optional[Any]=None , __a : Union[str, Any]=None , __a : int="resnet50" , __a : List[str]=3 , __a : Tuple=32 , __a : Dict=3 , __a : List[str]=True , __a : Union[str, Any]=True , ) -> Any: """simple docstring""" __lowercase : Optional[int] = parent __lowercase : List[str] = out_indices if out_indices is not None else [4] __lowercase : Optional[int] = stage_names __lowercase : Any = out_features __lowercase : Optional[Any] = backbone __lowercase : Optional[Any] = batch_size __lowercase : Union[str, Any] = image_size __lowercase : List[str] = num_channels __lowercase : str = use_pretrained_backbone __lowercase : str = is_training def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : str = self.get_config() return config, pixel_values def lowerCAmelCase ( self : int ) -> str: """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowerCAmelCase ( self : Optional[int] , __a : Dict , __a : Any ) -> Dict: """simple docstring""" __lowercase : Dict = TimmBackbone(config=__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Optional[Any] = model(__a ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.prepare_config_and_inputs() __lowercase , __lowercase : str = config_and_inputs __lowercase : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch @require_timm class lowerCAmelCase ( __a , __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[Any] = (TimmBackbone,) if is_torch_available() else () _A : Dict = {'''feature-extraction''': TimmBackbone} if is_torch_available() else {} _A : List[Any] = False _A : List[str] = False _A : Any = False _A : Optional[Any] = False def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : str = TimmBackboneModelTester(self ) __lowercase : Any = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" __lowercase : Tuple = """resnet18""" __lowercase : Optional[int] = """microsoft/resnet-18""" __lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a ) __lowercase : Dict = AutoBackbone.from_pretrained(__a ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a , out_indices=[1, 2, 3] ) __lowercase : Optional[Any] = AutoBackbone.from_pretrained(__a , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("""TimmBackbone doesn't support feed forward chunking""" ) def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""" ) def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""" ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't support output_attentions.""" ) def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Safetensors is not supported by timm.""" ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Optional[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : List[str] = [*signature.parameters.keys()] __lowercase : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Optional[Any] = True __lowercase : Union[str, Any] = self.has_attentions # no need to test all models as different heads yield the same functionality __lowercase : Union[str, Any] = self.all_model_classes[0] __lowercase : List[Any] = model_class(__a ) model.to(__a ) __lowercase : Optional[Any] = self._prepare_for_class(__a , __a ) __lowercase : Union[str, Any] = model(**__a ) __lowercase : Optional[int] = outputs[0][-1] # Encoder-/Decoder-only models __lowercase : Any = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowercase : Optional[int] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__a ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() __lowercase : int = model(**__a ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowercase : Any = copy.deepcopy(__a ) __lowercase : Dict = None __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() __lowercase : Optional[int] = model(**__a ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowercase : List[str] = copy.deepcopy(__a ) __lowercase : Optional[Any] = False __lowercase : str = model_class(__a ) model.to(__a ) model.eval() __lowercase : List[Any] = model(**__a )
306
1
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def snake_case_ ( lowerCAmelCase_ : str = "" ): __lowercase : Union[str, Any] = url or """https://www.imdb.com/chart/top/?ref_=nv_mv_250""" __lowercase : Dict = BeautifulSoup(requests.get(lowerCAmelCase_ ).text , """html.parser""" ) __lowercase : Tuple = soup.find_all("""td""" , attrs="""titleColumn""" ) __lowercase : int = soup.find_all("""td""" , class_="""ratingColumn imdbRating""" ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(lowerCAmelCase_ , lowerCAmelCase_ ) } def snake_case_ ( lowerCAmelCase_ : str = "IMDb_Top_250_Movies.csv" ): __lowercase : Tuple = get_imdb_top_aaa_movies() with open(lowerCAmelCase_ , """w""" , newline="""""" ) as out_file: __lowercase : List[str] = csv.writer(lowerCAmelCase_ ) writer.writerow(["""Movie title""", """IMDb rating"""] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
306
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : str = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } lowerCamelCase : Optional[Any] = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): for attribute in key.split(""".""" ): __lowercase : List[str] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if weight_type is not None: __lowercase : Union[str, Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ).shape else: __lowercase : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": __lowercase : Dict = value elif weight_type == "weight_g": __lowercase : Union[str, Any] = value elif weight_type == "weight_v": __lowercase : List[Any] = value elif weight_type == "bias": __lowercase : int = value elif weight_type == "running_mean": __lowercase : List[Any] = value elif weight_type == "running_var": __lowercase : int = value elif weight_type == "num_batches_tracked": __lowercase : int = value elif weight_type == "inv_freq": __lowercase : Optional[Any] = value else: __lowercase : Any = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] ): __lowercase : str = [] __lowercase : Any = fairseq_model.state_dict() __lowercase : List[str] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): __lowercase : Optional[Any] = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , hf_model.config.feat_extract_norm == """group""" , ) __lowercase : List[str] = True else: for key, mapped_key in MAPPING.items(): __lowercase : Any = """wav2vec2_conformer.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __lowercase : Tuple = True if "*" in mapped_key: __lowercase : List[Any] = name.split(lowerCAmelCase_ )[0].split(""".""" )[-2] __lowercase : Any = mapped_key.replace("""*""" , lowerCAmelCase_ ) if "pos_bias_u" in name: __lowercase : Any = None elif "pos_bias_v" in name: __lowercase : Tuple = None elif "weight_g" in name: __lowercase : Union[str, Any] = """weight_g""" elif "weight_v" in name: __lowercase : Dict = """weight_v""" elif "bias" in name: __lowercase : Union[str, Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowercase : str = """weight""" elif "running_mean" in name: __lowercase : str = """running_mean""" elif "inv_freq" in name: __lowercase : List[Any] = """inv_freq""" elif "running_var" in name: __lowercase : Any = """running_var""" elif "num_batches_tracked" in name: __lowercase : Any = """num_batches_tracked""" else: __lowercase : Optional[int] = None set_recursively(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) continue if not is_used: unused_weights.append(lowerCAmelCase_ ) logger.warning(F"Unused weights: {unused_weights}" ) def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] ): __lowercase : List[Any] = full_name.split("""conv_layers.""" )[-1] __lowercase : int = name.split(""".""" ) __lowercase : Optional[Any] = int(items[0] ) __lowercase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __lowercase : Union[str, Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __lowercase : List[str] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) __lowercase : Union[str, Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) __lowercase : Dict = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(lowerCAmelCase_ ) @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Dict=True ): if config_path is not None: __lowercase : List[Any] = WavaVecaConformerConfig.from_pretrained(lowerCAmelCase_ , hidden_act="""swish""" ) else: __lowercase : List[Any] = WavaVecaConformerConfig() if "rope" in checkpoint_path: __lowercase : Tuple = """rotary""" if is_finetuned: if dict_path: __lowercase : Any = Dictionary.load(lowerCAmelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __lowercase : List[Any] = target_dict.pad_index __lowercase : Optional[int] = target_dict.bos_index __lowercase : List[Any] = target_dict.eos_index __lowercase : List[str] = len(target_dict.symbols ) __lowercase : Union[str, Any] = os.path.join(lowerCAmelCase_ , """vocab.json""" ) if not os.path.isdir(lowerCAmelCase_ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowerCAmelCase_ ) ) return os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowercase : Tuple = target_dict.indices # fairseq has the <pad> and <s> switched __lowercase : int = 0 __lowercase : Any = 1 with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Dict = WavaVecaCTCTokenizer( lowerCAmelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowerCAmelCase_ , ) __lowercase : List[Any] = True if config.feat_extract_norm == """layer""" else False __lowercase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) __lowercase : Optional[int] = WavaVecaProcessor(feature_extractor=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) __lowercase : Union[str, Any] = WavaVecaConformerForCTC(lowerCAmelCase_ ) else: __lowercase : Optional[Any] = WavaVecaConformerForPreTraining(lowerCAmelCase_ ) if is_finetuned: __lowercase , __lowercase , __lowercase : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __lowercase : List[Any] = argparse.Namespace(task="""audio_pretraining""" ) __lowercase : Optional[Any] = fairseq.tasks.setup_task(lowerCAmelCase_ ) __lowercase , __lowercase , __lowercase : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase_ ) __lowercase : Dict = model[0].eval() recursively_load_weights(lowerCAmelCase_ , lowerCAmelCase_ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) lowerCamelCase : Any = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
306
1
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def snake_case_ ( lowerCAmelCase_ : int = 3 ): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise TypeError("""number of qubits must be a integer.""" ) if number_of_qubits <= 0: raise ValueError("""number of qubits must be > 0.""" ) if math.floor(lowerCAmelCase_ ) != number_of_qubits: raise ValueError("""number of qubits must be exact integer.""" ) if number_of_qubits > 10: raise ValueError("""number of qubits too large to simulate(>10).""" ) __lowercase : Union[str, Any] = QuantumRegister(lowerCAmelCase_ , """qr""" ) __lowercase : Dict = ClassicalRegister(lowerCAmelCase_ , """cr""" ) __lowercase : Dict = QuantumCircuit(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : int = number_of_qubits for i in range(lowerCAmelCase_ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(lowerCAmelCase_ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , lowerCAmelCase_ , lowerCAmelCase_ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(lowerCAmelCase_ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(lowerCAmelCase_ , lowerCAmelCase_ ) # simulate with 10000 shots __lowercase : List[Any] = Aer.get_backend("""qasm_simulator""" ) __lowercase : List[str] = execute(lowerCAmelCase_ , lowerCAmelCase_ , shots=10000 ) return job.result().get_counts(lowerCAmelCase_ ) if __name__ == "__main__": print( f'''Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}''' )
306
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError("""String lengths must match!""" ) __lowercase : str = 0 for chara, chara in zip(lowerCAmelCase_ , lowerCAmelCase_ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
306
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : Any = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : str=False ): __lowercase : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __lowercase : Tuple = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=False ): for i in range(config.num_hidden_layers ): if base_model: __lowercase : str = """""" else: __lowercase : List[Any] = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowercase : int = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) __lowercase : Union[str, Any] = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict __lowercase : int = in_proj_weight[ : config.hidden_size, : ] __lowercase : Tuple = in_proj_bias[: config.hidden_size] __lowercase : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowercase : List[Any] = in_proj_weight[ -config.hidden_size :, : ] __lowercase : Any = in_proj_bias[-config.hidden_size :] def snake_case_ ( lowerCAmelCase_ : Optional[Any] ): __lowercase : List[str] = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple ): __lowercase : str = dct.pop(lowerCAmelCase_ ) __lowercase : Any = val def snake_case_ ( ): __lowercase : Any = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase : int = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any ): __lowercase : Any = ViTConfig() __lowercase : Optional[int] = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": __lowercase : Any = True __lowercase : Union[str, Any] = int(vit_name[-12:-10] ) __lowercase : List[Any] = int(vit_name[-9:-6] ) else: __lowercase : Optional[int] = 1000 __lowercase : str = """huggingface/label-files""" __lowercase : int = """imagenet-1k-id2label.json""" __lowercase : Union[str, Any] = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) __lowercase : Any = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowercase : List[Any] = idalabel __lowercase : List[str] = {v: k for k, v in idalabel.items()} __lowercase : List[Any] = int(vit_name[-6:-4] ) __lowercase : Optional[int] = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("""tiny""" ): __lowercase : str = 192 __lowercase : Union[str, Any] = 768 __lowercase : Any = 12 __lowercase : List[Any] = 3 elif vit_name[9:].startswith("""small""" ): __lowercase : Optional[int] = 384 __lowercase : Any = 1536 __lowercase : List[Any] = 12 __lowercase : Union[str, Any] = 6 else: pass else: if vit_name[4:].startswith("""small""" ): __lowercase : Tuple = 768 __lowercase : Any = 2304 __lowercase : List[str] = 8 __lowercase : List[Any] = 8 elif vit_name[4:].startswith("""base""" ): pass elif vit_name[4:].startswith("""large""" ): __lowercase : Optional[Any] = 1024 __lowercase : Tuple = 4096 __lowercase : Union[str, Any] = 24 __lowercase : Union[str, Any] = 16 elif vit_name[4:].startswith("""huge""" ): __lowercase : Tuple = 1280 __lowercase : Tuple = 5120 __lowercase : Optional[Any] = 32 __lowercase : List[Any] = 16 # load original model from timm __lowercase : int = timm.create_model(lowerCAmelCase_ , pretrained=lowerCAmelCase_ ) timm_model.eval() # load state_dict of original model, remove and rename some keys __lowercase : int = timm_model.state_dict() if base_model: remove_classification_head_(lowerCAmelCase_ ) __lowercase : Union[str, Any] = create_rename_keys(lowerCAmelCase_ , lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # load HuggingFace model if vit_name[-5:] == "in21k": __lowercase : int = ViTModel(lowerCAmelCase_ ).eval() else: __lowercase : Union[str, Any] = ViTForImageClassification(lowerCAmelCase_ ).eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: __lowercase : str = DeiTImageProcessor(size=config.image_size ) else: __lowercase : List[Any] = ViTImageProcessor(size=config.image_size ) __lowercase : Any = image_processor(images=prepare_img() , return_tensors="""pt""" ) __lowercase : Tuple = encoding["""pixel_values"""] __lowercase : Optional[Any] = model(lowerCAmelCase_ ) if base_model: __lowercase : List[str] = timm_model.forward_features(lowerCAmelCase_ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(lowerCAmelCase_ , outputs.pooler_output , atol=1e-3 ) else: __lowercase : List[str] = timm_model(lowerCAmelCase_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase_ , outputs.logits , atol=1e-3 ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--vit_name''', default='''vit_base_patch16_224''', type=str, help='''Name of the ViT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCamelCase : Dict = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
306
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def snake_case_ ( lowerCAmelCase_ : Tuple ): if isinstance(lowerCAmelCase_ , collections.abc.Iterable ): return x return (x, x) @require_flax class lowerCAmelCase : '''simple docstring''' def lowerCAmelCase ( self : Any , __a : Any , __a : List[Any] ) -> Optional[Any]: """simple docstring""" pass def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" pass def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : np.ndarray , __a : float ) -> List[Any]: """simple docstring""" __lowercase : List[str] = np.abs((a - b) ).max() self.assertLessEqual(__a , __a , F"Difference between torch and flax is {diff} (>= {tol})." ) def lowerCAmelCase ( self : Tuple , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[Any] , __a : Optional[Any]=None , **__a : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : str = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : str = FlaxVisionTextDualEncoderModel(__a ) __lowercase : Optional[Any] = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def lowerCAmelCase ( self : Optional[int] , __a : Optional[int] , __a : Dict , __a : Dict , __a : List[str] , __a : Optional[Any]=None , **__a : str ) -> str: """simple docstring""" __lowercase , __lowercase : List[str] = self.get_vision_text_model(__a , __a ) __lowercase : Union[str, Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : Any = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : Union[str, Any] , __a : Union[str, Any] , __a : Dict , __a : int=None , **__a : int ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Tuple = self.get_vision_text_model(__a , __a ) __lowercase : Union[str, Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : List[str] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : List[Any] = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) __lowercase : int = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowercase : int = FlaxVisionTextDualEncoderModel.from_pretrained(__a ) __lowercase : Tuple = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) __lowercase : int = after_output[0] __lowercase : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__a , 1E-3 ) def lowerCAmelCase ( self : List[Any] , __a : Any , __a : Tuple , __a : Optional[int] , __a : str , __a : Optional[Any]=None , **__a : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : str = self.get_vision_text_model(__a , __a ) __lowercase : Optional[Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : Union[str, Any] = model( input_ids=__a , pixel_values=__a , attention_mask=__a , output_attentions=__a ) __lowercase : Optional[int] = output.vision_model_output.attentions self.assertEqual(len(__a ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase : Optional[int] = to_atuple(vision_model.config.image_size ) __lowercase : List[str] = to_atuple(vision_model.config.patch_size ) __lowercase : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase : int = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase : Dict = output.text_model_output.attentions self.assertEqual(len(__a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowerCAmelCase ( self : Optional[int] , __a : List[str] , __a : List[Any] , __a : Optional[Any] ) -> Optional[int]: """simple docstring""" pt_model.to(__a ) pt_model.eval() # prepare inputs __lowercase : Union[str, Any] = inputs_dict __lowercase : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): __lowercase : Union[str, Any] = pt_model(**__a ).to_tuple() __lowercase : Tuple = fx_model(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(__a , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__a ) __lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained(__a , from_pt=__a ) __lowercase : Dict = fx_model_loaded(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(__a , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__a ) __lowercase : str = VisionTextDualEncoderModel.from_pretrained(__a , from_flax=__a ) pt_model_loaded.to(__a ) pt_model_loaded.eval() with torch.no_grad(): __lowercase : List[Any] = pt_model_loaded(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(__a , pt_output_loaded.numpy() , 4E-2 ) def lowerCAmelCase ( self : Optional[int] , __a : List[Any] , __a : int , __a : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : str = VisionTextDualEncoderModel(__a ) __lowercase : Union[str, Any] = FlaxVisionTextDualEncoderModel(__a ) __lowercase : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __a ) __lowercase : Any = fx_state self.check_pt_flax_equivalence(__a , __a , __a ) def lowerCAmelCase ( self : Any , __a : Any , __a : Dict , __a : Tuple ) -> str: """simple docstring""" __lowercase : int = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : Union[str, Any] = VisionTextDualEncoderModel(__a ) __lowercase : Dict = FlaxVisionTextDualEncoderModel(__a ) __lowercase : Tuple = load_flax_weights_in_pytorch_model(__a , fx_model.params ) self.check_pt_flax_equivalence(__a , __a , __a ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase : int = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__a ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() self.check_save_load(**__a ) def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" __lowercase : str = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__a ) @is_pt_flax_cross_test def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.prepare_config_and_inputs() __lowercase : Optional[int] = config_inputs_dict.pop("""vision_config""" ) __lowercase : Optional[int] = config_inputs_dict.pop("""text_config""" ) __lowercase : Dict = config_inputs_dict self.check_equivalence_pt_to_flax(__a , __a , __a ) self.check_equivalence_flax_to_pt(__a , __a , __a ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase , __lowercase : List[Any] = self.get_pretrained_model_and_inputs() __lowercase : Dict = model_a(**__a ) __lowercase : Any = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__a ) __lowercase : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(__a ) __lowercase : Optional[int] = model_a(**__a ) __lowercase : Tuple = after_outputs[0] __lowercase : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__a , 1E-5 ) @require_flax class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" __lowercase : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=__a , text_from_pt=__a , ) __lowercase : int = 13 __lowercase : Union[str, Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowercase : Dict = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __lowercase : Tuple = random_attention_mask([batch_size, 4] ) __lowercase : str = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCAmelCase ( self : Optional[Any] , __a : Union[str, Any] , __a : int ) -> Dict: """simple docstring""" __lowercase : int = FlaxViTModel(__a ) __lowercase : List[Any] = FlaxBertModel(__a ) return vision_model, text_model def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = FlaxViTModelTester(self ) __lowercase : str = FlaxBertModelTester(self ) __lowercase : List[str] = vit_model_tester.prepare_config_and_inputs() __lowercase : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase : Optional[int] = vision_config_and_inputs __lowercase , __lowercase , __lowercase , __lowercase : Any = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=__a , text_from_pt=__a , ) __lowercase : Tuple = 13 __lowercase : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowercase : Tuple = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __lowercase : List[Any] = random_attention_mask([batch_size, 4] ) __lowercase : int = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCAmelCase ( self : str , __a : str , __a : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Dict = FlaxCLIPVisionModel(__a ) __lowercase : Optional[Any] = FlaxBertModel(__a ) return vision_model, text_model def lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase : List[Any] = FlaxCLIPVisionModelTester(self ) __lowercase : Optional[Any] = FlaxBertModelTester(self ) __lowercase : Any = clip_model_tester.prepare_config_and_inputs() __lowercase : Optional[Any] = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase : Dict = vision_config_and_inputs __lowercase , __lowercase , __lowercase , __lowercase : Optional[int] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 ) __lowercase : int = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) __lowercase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowercase : Tuple = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=__a , padding=__a , return_tensors="""np""" ) __lowercase : Optional[int] = model(**__a ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowercase : Optional[Any] = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , __a , atol=1E-3 ) )
306
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : Tuple = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int]=False , lowerCAmelCase_ : Any=False ): __lowercase : List[str] = """backbone.""" if is_semantic else """""" __lowercase : Tuple = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"{prefix}blocks.{i}.norm1.weight", F"beit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm1.bias", F"beit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.weight", F"beit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.bias", F"beit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.weight", F"beit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.bias", F"beit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.weight", F"beit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.bias", F"beit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.weight", F"beit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.bias", F"beit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ (F"{prefix}cls_token", """beit.embeddings.cls_token"""), (F"{prefix}patch_embed.proj.weight", """beit.embeddings.patch_embeddings.projection.weight"""), (F"{prefix}patch_embed.proj.bias", """beit.embeddings.patch_embeddings.projection.bias"""), (F"{prefix}pos_embed", """beit.embeddings.position_embeddings"""), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("""mask_token""", """beit.embeddings.mask_token"""), ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) else: # layernorm + classification head rename_keys.extend( [ ("""fc_norm.weight""", """beit.pooler.layernorm.weight"""), ("""fc_norm.bias""", """beit.pooler.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Tuple=False ): for i in range(config.num_hidden_layers ): __lowercase : Optional[Any] = """backbone.""" if is_semantic else """""" # queries, keys and values __lowercase : List[str] = state_dict.pop(F"{prefix}blocks.{i}.attn.qkv.weight" ) __lowercase : Optional[int] = state_dict.pop(F"{prefix}blocks.{i}.attn.q_bias" ) __lowercase : Dict = state_dict.pop(F"{prefix}blocks.{i}.attn.v_bias" ) __lowercase : List[Any] = in_proj_weight[ : config.hidden_size, : ] __lowercase : int = q_bias __lowercase : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase : Tuple = in_proj_weight[ -config.hidden_size :, : ] __lowercase : Union[str, Any] = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained __lowercase : Union[str, Any] = state_dict.pop(F"{prefix}blocks.{i}.gamma_1" ) __lowercase : Dict = state_dict.pop(F"{prefix}blocks.{i}.gamma_2" ) __lowercase : Dict = gamma_a __lowercase : Any = gamma_a def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : int , lowerCAmelCase_ : int ): __lowercase : Optional[int] = dct.pop(lowerCAmelCase_ ) __lowercase : Optional[int] = val def snake_case_ ( ): __lowercase : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase : Optional[int] = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any=False ): __lowercase : int = False if """rvlcdip""" in checkpoint_url else True __lowercase : Optional[Any] = BeitConfig(use_absolute_position_embeddings=lowerCAmelCase_ , use_mask_token=lowerCAmelCase_ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: __lowercase : Tuple = 1024 __lowercase : str = 4096 __lowercase : List[Any] = 24 __lowercase : Union[str, Any] = 16 # labels if "rvlcdip" in checkpoint_url: __lowercase : int = 16 __lowercase : Dict = """huggingface/label-files""" __lowercase : List[str] = """rvlcdip-id2label.json""" __lowercase : Union[str, Any] = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) __lowercase : List[Any] = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowercase : Tuple = idalabel __lowercase : Optional[int] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys __lowercase : Dict = torch.hub.load_state_dict_from_url(lowerCAmelCase_ , map_location="""cpu""" )["""model"""] __lowercase : Tuple = create_rename_keys(lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) # load HuggingFace model __lowercase : List[Any] = BeitForMaskedImageModeling(lowerCAmelCase_ ) if has_lm_head else BeitForImageClassification(lowerCAmelCase_ ) model.eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image __lowercase : int = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=lowerCAmelCase_ ) __lowercase : Optional[int] = prepare_img() __lowercase : str = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""" ) __lowercase : Optional[Any] = encoding["""pixel_values"""] __lowercase : int = model(lowerCAmelCase_ ) __lowercase : Tuple = outputs.logits # verify logits __lowercase : List[str] = [1, 16] if """rvlcdip""" in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(lowerCAmelCase_ ), "Shape of logits not as expected" Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: if has_lm_head: __lowercase : Optional[int] = """dit-base""" if """base""" in checkpoint_url else """dit-large""" else: __lowercase : str = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip""" image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=lowerCAmelCase_ , ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=lowerCAmelCase_ , ) if __name__ == "__main__": lowerCamelCase : str = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) lowerCamelCase : List[str] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
306
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
306
1
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCAmelCase : '''simple docstring''' @staticmethod def lowerCAmelCase ( *__a : Any , **__a : Optional[Any] ) -> Any: """simple docstring""" pass @is_pipeline_test @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' _A : Dict = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def lowerCAmelCase ( self : int , __a : List[Any] , __a : str , __a : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" ) __lowercase : int = [ { """image""": Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """question""": """How many cats are there?""", }, { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """question""": """How many cats are there?""", }, ] return vqa_pipeline, examples def lowerCAmelCase ( self : List[str] , __a : Optional[int] , __a : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = vqa_pipeline(__a , top_k=1 ) self.assertEqual( __a , [ [{"""score""": ANY(__a ), """answer""": ANY(__a )}], [{"""score""": ANY(__a ), """answer""": ANY(__a )}], ] , ) @require_torch def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase : Any = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" ) __lowercase : int = """./tests/fixtures/tests_samples/COCO/000000039769.png""" __lowercase : Optional[Any] = """How many cats are there?""" __lowercase : Optional[Any] = vqa_pipeline(image=__a , question="""How many cats are there?""" , top_k=2 ) self.assertEqual( __a , [{"""score""": ANY(__a ), """answer""": ANY(__a )}, {"""score""": ANY(__a ), """answer""": ANY(__a )}] ) __lowercase : Optional[int] = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( __a , [{"""score""": ANY(__a ), """answer""": ANY(__a )}, {"""score""": ANY(__a ), """answer""": ANY(__a )}] ) @slow @require_torch def lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" __lowercase : str = pipeline("""visual-question-answering""" , model="""dandelin/vilt-b32-finetuned-vqa""" ) __lowercase : Tuple = """./tests/fixtures/tests_samples/COCO/000000039769.png""" __lowercase : Any = """How many cats are there?""" __lowercase : Dict = vqa_pipeline(image=__a , question=__a , top_k=2 ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [{"""score""": 0.8799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}] ) __lowercase : int = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [{"""score""": 0.8799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}] ) __lowercase : int = vqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [[{"""score""": 0.8799, """answer""": """2"""}, {"""score""": 0.296, """answer""": """1"""}]] * 2 , ) @require_tf @unittest.skip("""Visual question answering not implemented in TF""" ) def lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" pass
306
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowerCamelCase : str = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex lowerCamelCase : Union[str, Any] = 10 lowerCamelCase : List[str] = 2_56 def snake_case_ ( lowerCAmelCase_ : List[str] ): if len(lowerCAmelCase_ ) < MIN_NUM_TOKENS: return None __lowercase : Dict = MinHash(num_perm=lowerCAmelCase_ ) for token in set(lowerCAmelCase_ ): min_hash.update(token.encode() ) return min_hash def snake_case_ ( lowerCAmelCase_ : str ): return {t for t in NON_ALPHA.split(lowerCAmelCase_ ) if len(t.strip() ) > 0} class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , *, __a : float = 0.85 , ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = duplication_jaccard_threshold __lowercase : Optional[Any] = NUM_PERM __lowercase : List[Any] = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) __lowercase : List[str] = defaultdict(__a ) def lowerCAmelCase ( self : str , __a : Tuple , __a : MinHash ) -> None: """simple docstring""" __lowercase : List[Any] = self._index.query(__a ) if code_key in self._index.keys: print(F"Duplicate key {code_key}" ) return self._index.insert(__a , __a ) if len(__a ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__a ) break else: self._duplicate_clusters[close_duplicates[0]].add(__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[List[Dict]]: """simple docstring""" __lowercase : Dict = [] for base, duplicates in self._duplicate_clusters.items(): __lowercase : List[str] = [base] + list(__a ) # reformat the cluster to be a list of dict __lowercase : Optional[Any] = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(__a ) return duplicate_clusters def lowerCAmelCase ( self : Any , __a : int ) -> None: """simple docstring""" __lowercase : Tuple = self.get_duplicate_clusters() with open(__a , """w""" ) as f: json.dump(__a , __a ) def snake_case_ ( lowerCAmelCase_ : str ): __lowercase , __lowercase : Union[str, Any] = element __lowercase : Optional[Any] = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def snake_case_ ( lowerCAmelCase_ : Type[Dataset] ): with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(lowerCAmelCase_ , max_queue_size=10000 ) , chunksize=100 , ): if data is not None: yield data def snake_case_ ( lowerCAmelCase_ : Type[Dataset] , lowerCAmelCase_ : float ): __lowercase : Dict = DuplicationIndex(duplication_jaccard_threshold=lowerCAmelCase_ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(lowerCAmelCase_ ) ) , max_queue_size=100 ) ): di.add(lowerCAmelCase_ , lowerCAmelCase_ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : List[str] = get_tokens(lowerCAmelCase_ ) __lowercase : Dict = get_tokens(lowerCAmelCase_ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) lowerCamelCase : List[str] = None def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] ): __lowercase : Union[str, Any] = [] for elementa in cluster: __lowercase : Tuple = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: __lowercase : Dict = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(lowerCAmelCase_ , lowerCAmelCase_ ) >= jaccard_threshold: elementa["copies"] += 1 break else: __lowercase : Dict = 1 extremes.append(lowerCAmelCase_ ) return extremes def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple ): global _shared_dataset __lowercase : Tuple = dataset __lowercase : Optional[int] = [] __lowercase : str = partial(_find_cluster_extremes_shared , jaccard_threshold=lowerCAmelCase_ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( lowerCAmelCase_ , lowerCAmelCase_ , ) , total=len(lowerCAmelCase_ ) , ): extremes_list.append(lowerCAmelCase_ ) return extremes_list def snake_case_ ( lowerCAmelCase_ : Type[Dataset] , lowerCAmelCase_ : float = 0.85 ): __lowercase : Optional[int] = make_duplicate_clusters(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Tuple = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} __lowercase : int = {} __lowercase : Dict = find_extremes(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for extremes in extremes_clusters: for element in extremes: __lowercase : Optional[Any] = element __lowercase : int = duplicate_indices - set(extreme_dict.keys() ) __lowercase : int = dataset.filter(lambda lowerCAmelCase_ , lowerCAmelCase_ : idx not in remove_indices , with_indices=lowerCAmelCase_ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: __lowercase : List[str] = element["""base_index"""] in extreme_dict if element["is_extreme"]: __lowercase : str = extreme_dict[element["""base_index"""]]["""copies"""] print(F"Original dataset size: {len(lowerCAmelCase_ )}" ) print(F"Number of duplicate clusters: {len(lowerCAmelCase_ )}" ) print(F"Files in duplicate cluster: {len(lowerCAmelCase_ )}" ) print(F"Unique files in duplicate cluster: {len(lowerCAmelCase_ )}" ) print(F"Filtered dataset size: {len(lowerCAmelCase_ )}" ) return ds_filter, duplicate_clusters
306
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase : Optional[int] = { '''configuration_altclip''': [ '''ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AltCLIPConfig''', '''AltCLIPTextConfig''', '''AltCLIPVisionConfig''', ], '''processing_altclip''': ['''AltCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ '''ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AltCLIPPreTrainedModel''', '''AltCLIPModel''', '''AltCLIPTextModel''', '''AltCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys lowerCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
from ...processing_utils import ProcessorMixin class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = ['''image_processor''', '''feature_extractor'''] _A : List[Any] = '''TvltImageProcessor''' _A : Optional[int] = '''TvltFeatureExtractor''' def __init__( self : str , __a : List[Any] , __a : Tuple ) -> Optional[Any]: """simple docstring""" super().__init__(image_processor=__a , feature_extractor=__a ) __lowercase : Union[str, Any] = image_processor __lowercase : Tuple = feature_extractor def __call__( self : Tuple , __a : Optional[int]=None , __a : Dict=None , __a : Union[str, Any]=None , __a : Tuple=None , __a : Optional[Any]=False , __a : List[Any]=False , *__a : List[str] , **__a : List[Any] , ) -> Dict: """simple docstring""" if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) __lowercase : Tuple = None if images is not None: __lowercase : Any = self.image_processor(__a , mask_pixel=__a , *__a , **__a ) if images_mixed is not None: __lowercase : Union[str, Any] = self.image_processor(__a , is_mixed=__a , *__a , **__a ) if audio is not None: __lowercase : Optional[Any] = self.feature_extractor( __a , *__a , sampling_rate=__a , mask_audio=__a , **__a ) __lowercase : Tuple = {} if audio is not None: output_dict.update(__a ) if images is not None: output_dict.update(__a ) if images_mixed_dict is not None: output_dict.update(__a ) return output_dict @property def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = self.image_processor.model_input_names __lowercase : Union[str, Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
306
1
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__a ) , '''Tatoeba directory does not exist.''' ) class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" __lowercase : Union[str, Any] = tempfile.mkdtemp() return TatoebaConverter(save_dir=__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" self.resolver.convert_models(["""heb-eng"""] ) @slow def lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" __lowercase , __lowercase : Tuple = self.resolver.write_model_card("""opus-mt-he-en""" , dry_run=__a ) assert mmeta["long_pair"] == "heb-eng"
306
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Any , __a : Tuple , __a : Optional[int]=13 , __a : int=7 , __a : List[str]=False , __a : Optional[int]=True , __a : Optional[int]=False , __a : Dict=True , __a : Optional[int]=33 , __a : Dict=32 , __a : Optional[int]=5 , __a : Union[str, Any]=4 , __a : List[str]=37 , __a : Tuple="gelu" , __a : List[str]=0.1 , __a : Dict=0.1 , __a : List[Any]=512 , __a : Any=16 , __a : Optional[Any]=2 , __a : List[Any]=0.02 , __a : int=3 , __a : Union[str, Any]=4 , __a : Optional[int]=None , ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = parent __lowercase : int = batch_size __lowercase : Any = seq_length __lowercase : str = is_training __lowercase : str = use_input_mask __lowercase : Optional[int] = use_token_type_ids __lowercase : List[Any] = use_labels __lowercase : Optional[Any] = vocab_size __lowercase : int = hidden_size __lowercase : List[Any] = num_hidden_layers __lowercase : Dict = num_attention_heads __lowercase : Any = intermediate_size __lowercase : Dict = hidden_act __lowercase : Union[str, Any] = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : List[str] = max_position_embeddings __lowercase : Union[str, Any] = type_vocab_size __lowercase : Dict = type_sequence_label_size __lowercase : Union[str, Any] = initializer_range __lowercase : List[Any] = num_labels __lowercase : str = num_choices __lowercase : Tuple = scope def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : int = None if self.use_input_mask: __lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : str = None __lowercase : Optional[Any] = None __lowercase : Tuple = None if self.use_labels: __lowercase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : List[Any] , __a : int , __a : int , __a : Dict , __a : Union[str, Any] , __a : List[str] , __a : str ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = EsmModel(config=__a ) model.to(__a ) model.eval() __lowercase : str = model(__a , attention_mask=__a ) __lowercase : List[Any] = model(__a ) __lowercase : Optional[int] = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : Union[str, Any] , __a : Dict , __a : List[Any] , __a : Tuple , __a : Union[str, Any] , __a : str , __a : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase : List[str] = EsmForMaskedLM(config=__a ) model.to(__a ) model.eval() __lowercase : int = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[int] , __a : Union[str, Any] , __a : List[Any] , __a : Tuple , __a : Tuple , __a : Optional[int] , __a : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = self.num_labels __lowercase : Any = EsmForTokenClassification(config=__a ) model.to(__a ) model.eval() __lowercase : Optional[Any] = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase : Any = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : List[str] = config_and_inputs __lowercase : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Optional[Any] = False _A : Any = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) _A : Optional[Any] = () _A : List[Any] = ( { '''feature-extraction''': EsmModel, '''fill-mask''': EsmForMaskedLM, '''text-classification''': EsmForSequenceClassification, '''token-classification''': EsmForTokenClassification, '''zero-shot''': EsmForSequenceClassification, } if is_torch_available() else {} ) _A : Optional[Any] = True def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : Optional[int] = EsmModelTester(self ) __lowercase : Tuple = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase : Union[str, Any] = type self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : List[str] = EsmModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] __lowercase : List[str] = EsmEmbeddings(config=__a ) __lowercase : Union[str, Any] = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) __lowercase : int = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) __lowercase : str = create_position_ids_from_input_ids(__a , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__a , __a ) ) ) def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] __lowercase : Optional[Any] = EsmEmbeddings(config=__a ) __lowercase : Optional[int] = torch.empty(2 , 4 , 30 ) __lowercase : Tuple = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] __lowercase : List[str] = torch.as_tensor([expected_single_positions, expected_single_positions] ) __lowercase : Any = embeddings.create_position_ids_from_inputs_embeds(__a ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__a , __a ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" pass @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" pass @require_torch class lowerCAmelCase ( __a ): '''simple docstring''' @slow def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): __lowercase : Tuple = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() __lowercase : Tuple = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase : List[str] = model(__a )[0] __lowercase : Union[str, Any] = 33 __lowercase : Union[str, Any] = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , __a ) __lowercase : List[Any] = torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): __lowercase : int = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() __lowercase : int = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) __lowercase : Any = model(__a )[0] # compare the actual values for a slice. __lowercase : int = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) )
306
1
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Any , __a : Tuple , __a : Optional[int]=13 , __a : int=7 , __a : List[str]=False , __a : Optional[int]=True , __a : Optional[int]=False , __a : Dict=True , __a : Optional[int]=33 , __a : Dict=32 , __a : Optional[int]=5 , __a : Union[str, Any]=4 , __a : List[str]=37 , __a : Tuple="gelu" , __a : List[str]=0.1 , __a : Dict=0.1 , __a : List[Any]=512 , __a : Any=16 , __a : Optional[Any]=2 , __a : List[Any]=0.02 , __a : int=3 , __a : Union[str, Any]=4 , __a : Optional[int]=None , ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = parent __lowercase : int = batch_size __lowercase : Any = seq_length __lowercase : str = is_training __lowercase : str = use_input_mask __lowercase : Optional[int] = use_token_type_ids __lowercase : List[Any] = use_labels __lowercase : Optional[Any] = vocab_size __lowercase : int = hidden_size __lowercase : List[Any] = num_hidden_layers __lowercase : Dict = num_attention_heads __lowercase : Any = intermediate_size __lowercase : Dict = hidden_act __lowercase : Union[str, Any] = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : List[str] = max_position_embeddings __lowercase : Union[str, Any] = type_vocab_size __lowercase : Dict = type_sequence_label_size __lowercase : Union[str, Any] = initializer_range __lowercase : List[Any] = num_labels __lowercase : str = num_choices __lowercase : Tuple = scope def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : int = None if self.use_input_mask: __lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : str = None __lowercase : Optional[Any] = None __lowercase : Tuple = None if self.use_labels: __lowercase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : List[Any] , __a : int , __a : int , __a : Dict , __a : Union[str, Any] , __a : List[str] , __a : str ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = EsmModel(config=__a ) model.to(__a ) model.eval() __lowercase : str = model(__a , attention_mask=__a ) __lowercase : List[Any] = model(__a ) __lowercase : Optional[int] = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : Union[str, Any] , __a : Dict , __a : List[Any] , __a : Tuple , __a : Union[str, Any] , __a : str , __a : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase : List[str] = EsmForMaskedLM(config=__a ) model.to(__a ) model.eval() __lowercase : int = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[int] , __a : Union[str, Any] , __a : List[Any] , __a : Tuple , __a : Tuple , __a : Optional[int] , __a : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = self.num_labels __lowercase : Any = EsmForTokenClassification(config=__a ) model.to(__a ) model.eval() __lowercase : Optional[Any] = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase : Any = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : List[str] = config_and_inputs __lowercase : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Optional[Any] = False _A : Any = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) _A : Optional[Any] = () _A : List[Any] = ( { '''feature-extraction''': EsmModel, '''fill-mask''': EsmForMaskedLM, '''text-classification''': EsmForSequenceClassification, '''token-classification''': EsmForTokenClassification, '''zero-shot''': EsmForSequenceClassification, } if is_torch_available() else {} ) _A : Optional[Any] = True def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : Optional[int] = EsmModelTester(self ) __lowercase : Tuple = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase : Union[str, Any] = type self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : List[str] = EsmModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] __lowercase : List[str] = EsmEmbeddings(config=__a ) __lowercase : Union[str, Any] = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) __lowercase : int = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) __lowercase : str = create_position_ids_from_input_ids(__a , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__a , __a ) ) ) def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] __lowercase : Optional[Any] = EsmEmbeddings(config=__a ) __lowercase : Optional[int] = torch.empty(2 , 4 , 30 ) __lowercase : Tuple = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] __lowercase : List[str] = torch.as_tensor([expected_single_positions, expected_single_positions] ) __lowercase : Any = embeddings.create_position_ids_from_inputs_embeds(__a ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__a , __a ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" pass @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" pass @require_torch class lowerCAmelCase ( __a ): '''simple docstring''' @slow def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): __lowercase : Tuple = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() __lowercase : Tuple = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase : List[str] = model(__a )[0] __lowercase : Union[str, Any] = 33 __lowercase : Union[str, Any] = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , __a ) __lowercase : List[Any] = torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): __lowercase : int = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() __lowercase : int = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) __lowercase : Any = model(__a )[0] # compare the actual values for a slice. __lowercase : int = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) )
306
def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def snake_case_ ( lowerCAmelCase_ : int = 5000 ): __lowercase : Optional[int] = [(i * (3 * i - 1)) // 2 for i in range(1 , lowerCAmelCase_ )] for i, pentagonal_i in enumerate(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ , len(lowerCAmelCase_ ) ): __lowercase : int = pentagonal_nums[j] __lowercase : Optional[int] = pentagonal_i + pentagonal_j __lowercase : Union[str, Any] = pentagonal_j - pentagonal_i if is_pentagonal(lowerCAmelCase_ ) and is_pentagonal(lowerCAmelCase_ ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
306
1
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[int] , __a : str , __a : Optional[Any]=13 , __a : str=30 , __a : Optional[int]=2 , __a : List[Any]=3 , __a : List[str]=True , __a : Optional[int]=True , __a : List[str]=32 , __a : str=5 , __a : Any=4 , __a : List[str]=37 , __a : Tuple="gelu" , __a : Any=0.1 , __a : Optional[Any]=0.1 , __a : Any=10 , __a : int=0.02 , __a : Optional[Any]=None , __a : List[str]=2 , ) -> Optional[int]: """simple docstring""" __lowercase : List[Any] = parent __lowercase : Any = batch_size __lowercase : Optional[int] = image_size __lowercase : str = patch_size __lowercase : str = num_channels __lowercase : str = is_training __lowercase : List[Any] = use_labels __lowercase : int = hidden_size __lowercase : List[Any] = num_hidden_layers __lowercase : Optional[int] = num_attention_heads __lowercase : Any = intermediate_size __lowercase : Dict = hidden_act __lowercase : Tuple = hidden_dropout_prob __lowercase : Dict = attention_probs_dropout_prob __lowercase : List[str] = type_sequence_label_size __lowercase : str = initializer_range __lowercase : Union[str, Any] = scope __lowercase : Any = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase : str = (image_size // patch_size) ** 2 __lowercase : int = num_patches + 1 def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : Union[str, Any] = None if self.use_labels: __lowercase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : Union[str, Any] = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowerCAmelCase ( self : List[str] , __a : List[Any] , __a : List[str] , __a : Union[str, Any] ) -> str: """simple docstring""" __lowercase : List[str] = ViTModel(config=__a ) model.to(__a ) model.eval() __lowercase : Optional[Any] = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Optional[int] , __a : Tuple , __a : Dict , __a : Dict ) -> Any: """simple docstring""" __lowercase : str = ViTForMaskedImageModeling(config=__a ) model.to(__a ) model.eval() __lowercase : Dict = model(__a ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __lowercase : Dict = 1 __lowercase : str = ViTForMaskedImageModeling(__a ) model.to(__a ) model.eval() __lowercase : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase : int = model(__a ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowerCAmelCase ( self : Optional[int] , __a : Dict , __a : Optional[Any] , __a : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : str = self.type_sequence_label_size __lowercase : Optional[int] = ViTForImageClassification(__a ) model.to(__a ) model.eval() __lowercase : List[str] = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase : Optional[Any] = 1 __lowercase : Optional[Any] = ViTForImageClassification(__a ) model.to(__a ) model.eval() __lowercase : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase : List[Any] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" __lowercase : str = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : int = config_and_inputs __lowercase : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Optional[Any] = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) _A : Optional[Any] = ( {'''feature-extraction''': ViTModel, '''image-classification''': ViTForImageClassification} if is_torch_available() else {} ) _A : Tuple = True _A : Optional[int] = False _A : Optional[int] = False _A : Union[str, Any] = False def lowerCAmelCase ( self : str ) -> int: """simple docstring""" __lowercase : str = ViTModelTester(self ) __lowercase : Tuple = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase , __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Tuple = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowercase : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" __lowercase , __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : int = model_class(__a ) __lowercase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : Tuple = [*signature.parameters.keys()] __lowercase : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__a ) def lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Optional[int] = ViTModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def snake_case_ ( ): __lowercase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None @slow def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase : int = ViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ).to(__a ) __lowercase : Optional[Any] = self.default_image_processor __lowercase : Dict = prepare_img() __lowercase : Dict = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : Any = model(**__a ) # verify the logits __lowercase : str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) __lowercase : Union[str, Any] = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" __lowercase : Optional[Any] = ViTModel.from_pretrained("""facebook/dino-vits8""" ).to(__a ) __lowercase : Any = ViTImageProcessor.from_pretrained("""facebook/dino-vits8""" , size=480 ) __lowercase : int = prepare_img() __lowercase : Tuple = image_processor(images=__a , return_tensors="""pt""" ) __lowercase : str = inputs.pixel_values.to(__a ) # forward pass with torch.no_grad(): __lowercase : Optional[Any] = model(__a , interpolate_pos_encoding=__a ) # verify the logits __lowercase : Dict = torch.Size((1, 3601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , __a ) __lowercase : Tuple = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(__a ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __a , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = ViTModel.from_pretrained("""facebook/dino-vits8""" , torch_dtype=torch.floataa , device_map="""auto""" ) __lowercase : int = self.default_image_processor __lowercase : Dict = prepare_img() __lowercase : List[Any] = image_processor(images=__a , return_tensors="""pt""" ) __lowercase : Optional[Any] = inputs.pixel_values.to(__a ) # forward pass to make sure inference works in fp16 with torch.no_grad(): __lowercase : Optional[Any] = model(__a )
306
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowerCAmelCase ( __a ): '''simple docstring''' _A : Optional[Any] = (DPMSolverSDEScheduler,) _A : Dict = 10 def lowerCAmelCase ( self : Optional[int] , **__a : Dict ) -> Optional[int]: """simple docstring""" __lowercase : Any = { """num_train_timesteps""": 1100, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**__a ) return config def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=__a ) def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__a ) def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = self.scheduler_classes[0] __lowercase : List[str] = self.get_scheduler_config() __lowercase : Any = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase : Optional[Any] = self.dummy_model() __lowercase : str = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase : Optional[Any] = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): __lowercase : Union[str, Any] = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[Any] = model(__a , __a ) __lowercase : Optional[Any] = scheduler.step(__a , __a , __a ) __lowercase : str = output.prev_sample __lowercase : Optional[Any] = torch.sum(torch.abs(__a ) ) __lowercase : Union[str, Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47821044921875 ) < 1E-2 assert abs(result_mean.item() - 0.2178705964565277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59352111816406 ) < 1E-2 assert abs(result_mean.item() - 0.22342906892299652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase : Tuple = self.scheduler_classes[0] __lowercase : Dict = self.get_scheduler_config(prediction_type="""v_prediction""" ) __lowercase : int = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase : Optional[int] = self.dummy_model() __lowercase : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase : Dict = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): __lowercase : Dict = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[int] = model(__a , __a ) __lowercase : Optional[int] = scheduler.step(__a , __a , __a ) __lowercase : int = output.prev_sample __lowercase : Optional[Any] = torch.sum(torch.abs(__a ) ) __lowercase : List[str] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77149200439453 ) < 1E-2 assert abs(result_mean.item() - 0.16226289014816284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1663360595703 ) < 1E-2 assert abs(result_mean.item() - 0.16688326001167297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8487548828125 ) < 1E-2 assert abs(result_mean.item() - 0.1560530662536621 ) < 1E-3 def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = self.scheduler_classes[0] __lowercase : Dict = self.get_scheduler_config() __lowercase : Optional[int] = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps , device=__a ) __lowercase : int = self.dummy_model() __lowercase : Optional[Any] = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __lowercase : int = scheduler.scale_model_input(__a , __a ) __lowercase : List[str] = model(__a , __a ) __lowercase : List[str] = scheduler.step(__a , __a , __a ) __lowercase : int = output.prev_sample __lowercase : List[Any] = torch.sum(torch.abs(__a ) ) __lowercase : Optional[Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46957397460938 ) < 1E-2 assert abs(result_mean.item() - 0.21805934607982635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59353637695312 ) < 1E-2 assert abs(result_mean.item() - 0.22342908382415771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : str = self.scheduler_classes[0] __lowercase : List[Any] = self.get_scheduler_config() __lowercase : Tuple = scheduler_class(**__a , use_karras_sigmas=__a ) scheduler.set_timesteps(self.num_inference_steps , device=__a ) __lowercase : List[str] = self.dummy_model() __lowercase : Optional[int] = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma __lowercase : str = sample.to(__a ) for t in scheduler.timesteps: __lowercase : List[Any] = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[Any] = model(__a , __a ) __lowercase : Any = scheduler.step(__a , __a , __a ) __lowercase : Optional[Any] = output.prev_sample __lowercase : Any = torch.sum(torch.abs(__a ) ) __lowercase : Optional[Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66974135742188 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63653564453125 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3135223388672 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2
306
1
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class lowerCAmelCase : '''simple docstring''' _A : List[str] = None def lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) __lowercase : Tuple = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , __a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : int = os.path.join(__a , """feat_extract.json""" ) feat_extract_first.to_json_file(__a ) __lowercase : str = self.feature_extraction_class.from_json_file(__a ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" __lowercase : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowercase : Union[str, Any] = feat_extract_first.save_pretrained(__a )[0] check_json_file_has_correct_format(__a ) __lowercase : List[Any] = self.feature_extraction_class.from_pretrained(__a ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase : List[Any] = self.feature_extraction_class() self.assertIsNotNone(__a )
306
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate lowerCamelCase : str = trt.Logger(trt.Logger.WARNING) lowerCamelCase : Any = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) lowerCamelCase : Optional[Any] = logging.getLogger(__name__) lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=3_84, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=1_28, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) lowerCamelCase : Dict = parser.parse_args() if args.tokenizer_name: lowerCamelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) lowerCamelCase : List[str] = args.per_device_eval_batch_size lowerCamelCase : Any = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties lowerCamelCase : List[str] = True lowerCamelCase : List[Any] = '''temp_engine/bert-fp32.engine''' if args.fpaa: lowerCamelCase : Optional[Any] = '''temp_engine/bert-fp16.engine''' if args.inta: lowerCamelCase : int = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') lowerCamelCase : int = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network lowerCamelCase : Union[str, Any] = [network.get_input(i) for i in range(network.num_inputs)] lowerCamelCase : Dict = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: lowerCamelCase : List[str] = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) lowerCamelCase : Optional[int] = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) lowerCamelCase : Optional[Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ): __lowercase : List[str] = np.asarray(inputs["""input_ids"""] , dtype=np.intaa ) __lowercase : Union[str, Any] = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa ) __lowercase : int = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowerCAmelCase_ ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowerCAmelCase_ ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowerCAmelCase_ ) # start time __lowercase : Optional[Any] = time.time() # Run inference context.execute_async( bindings=[int(lowerCAmelCase_ ) for d_inp in d_inputs] + [int(lowerCAmelCase_ ), int(lowerCAmelCase_ )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) cuda.memcpy_dtoh_async(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Synchronize the stream and take time stream.synchronize() # end time __lowercase : int = time.time() __lowercase : Union[str, Any] = end_time - start_time __lowercase : Any = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. lowerCamelCase : Tuple = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase : List[Any] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. lowerCamelCase : Optional[Any] = raw_datasets['''validation'''].column_names lowerCamelCase : Union[str, Any] = '''question''' if '''question''' in column_names else column_names[0] lowerCamelCase : str = '''context''' if '''context''' in column_names else column_names[1] lowerCamelCase : Dict = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). lowerCamelCase : Dict = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) lowerCamelCase : Tuple = min(args.max_seq_length, tokenizer.model_max_length) def snake_case_ ( lowerCAmelCase_ : int ): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace __lowercase : str = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. __lowercase : List[str] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=lowerCAmelCase_ , stride=args.doc_stride , return_overflowing_tokens=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. __lowercase : List[str] = tokenized_examples.pop("""overflow_to_sample_mapping""" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. __lowercase : Any = [] for i in range(len(tokenized_examples["""input_ids"""] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). __lowercase : Dict = tokenized_examples.sequence_ids(lowerCAmelCase_ ) __lowercase : List[Any] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. __lowercase : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. __lowercase : Dict = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i] ) ] return tokenized_examples lowerCamelCase : Tuple = raw_datasets['''validation'''] # Validation Feature Creation lowerCamelCase : Optional[int] = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) lowerCamelCase : Union[str, Any] = default_data_collator lowerCamelCase : Optional[Any] = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) lowerCamelCase : List[str] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict="eval" ): # Post-processing: we match the start logits and end logits to answers in the original context. __lowercase : int = postprocess_qa_predictions( examples=lowerCAmelCase_ , features=lowerCAmelCase_ , predictions=lowerCAmelCase_ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowerCAmelCase_ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: __lowercase : Optional[int] = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: __lowercase : List[Any] = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] __lowercase : Optional[int] = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=lowerCAmelCase_ , label_ids=lowerCAmelCase_ ) lowerCamelCase : Dict = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def snake_case_ ( lowerCAmelCase_ : str ): return trt.volume(engine.get_binding_shape(lowerCAmelCase_ ) ) * engine.get_binding_dtype(lowerCAmelCase_ ).itemsize # Allocate device memory for inputs and outputs. lowerCamelCase : int = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer lowerCamelCase : Dict = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) lowerCamelCase : str = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) lowerCamelCase : Dict = cuda.mem_alloc(h_outputa.nbytes) lowerCamelCase : Optional[Any] = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. lowerCamelCase : Optional[int] = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(f''' Num examples = {len(eval_dataset)}''') logger.info(f''' Batch size = {args.per_device_eval_batch_size}''') lowerCamelCase : int = 0.0 lowerCamelCase : List[str] = 0 lowerCamelCase : List[str] = timeit.default_timer() lowerCamelCase : List[Any] = None for step, batch in enumerate(eval_dataloader): lowerCamelCase ,lowerCamelCase : str = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 lowerCamelCase ,lowerCamelCase : Union[str, Any] = outputs lowerCamelCase : Optional[Any] = torch.tensor(start_logits) lowerCamelCase : List[str] = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered lowerCamelCase : Optional[int] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-1_00) lowerCamelCase : Dict = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-1_00) lowerCamelCase : List[Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) lowerCamelCase : Dict = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-1_00) if all_preds is not None: lowerCamelCase : Tuple = nested_truncate(all_preds, len(eval_dataset)) lowerCamelCase : Dict = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 10_00 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 10_00)) logger.info('''Total Number of Inference = %d''', niter) lowerCamelCase : str = post_processing_function(eval_examples, eval_dataset, all_preds) lowerCamelCase : Optional[Any] = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'''Evaluation metrics: {eval_metric}''')
306
1
import string def snake_case_ ( lowerCAmelCase_ : str ): for key in range(len(string.ascii_uppercase ) ): __lowercase : Any = """""" for symbol in message: if symbol in string.ascii_uppercase: __lowercase : Union[str, Any] = string.ascii_uppercase.find(lowerCAmelCase_ ) __lowercase : Any = num - key if num < 0: __lowercase : Optional[int] = num + len(string.ascii_uppercase ) __lowercase : List[Any] = translated + string.ascii_uppercase[num] else: __lowercase : Union[str, Any] = translated + symbol print(F"Decryption using Key #{key}: {translated}" ) def snake_case_ ( ): __lowercase : int = input("""Encrypted message: """ ) __lowercase : int = message.upper() decrypt(lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
306
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : str = { '''facebook/nllb-moe-54B''': '''https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''nllb-moe''' _A : List[str] = ['''past_key_values'''] _A : Optional[Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Dict , __a : List[str]=128112 , __a : List[Any]=1024 , __a : List[Any]=12 , __a : Union[str, Any]=4096 , __a : List[str]=16 , __a : int=12 , __a : Optional[int]=4096 , __a : str=16 , __a : List[Any]=0.05 , __a : Any=0.05 , __a : Dict=True , __a : Optional[Any]=True , __a : List[Any]="relu" , __a : Tuple=1024 , __a : Optional[Any]=0.1 , __a : Tuple=0.1 , __a : Any=0.0 , __a : Optional[Any]=0.02 , __a : List[str]=2 , __a : Union[str, Any]=True , __a : List[Any]=False , __a : Tuple="float32" , __a : Optional[int]=False , __a : Optional[int]=128 , __a : str=64 , __a : Dict=4 , __a : str=4 , __a : List[str]=0.001 , __a : List[Any]=0.001 , __a : Optional[Any]="all" , __a : Optional[int]=False , __a : int=False , __a : int=1.0 , __a : Dict=0.2 , __a : Tuple=1 , __a : Optional[Any]=0 , __a : List[Any]=2 , __a : Any=False , **__a : Any , ) -> Any: """simple docstring""" __lowercase : int = vocab_size __lowercase : List[Any] = max_position_embeddings __lowercase : Tuple = d_model __lowercase : str = encoder_ffn_dim __lowercase : List[str] = encoder_layers __lowercase : int = encoder_attention_heads __lowercase : List[Any] = decoder_ffn_dim __lowercase : int = decoder_layers __lowercase : Optional[int] = decoder_attention_heads __lowercase : Union[str, Any] = dropout __lowercase : str = attention_dropout __lowercase : Any = activation_dropout __lowercase : List[Any] = activation_function __lowercase : List[str] = init_std __lowercase : Optional[int] = encoder_layerdrop __lowercase : str = decoder_layerdrop __lowercase : Dict = use_cache __lowercase : Optional[Any] = encoder_layers __lowercase : str = scale_embedding # scale factor will be sqrt(d_model) if True __lowercase : List[Any] = router_z_loss_coef __lowercase : Tuple = router_aux_loss_coef __lowercase : str = decoder_sparse_step __lowercase : Any = encoder_sparse_step __lowercase : str = num_experts __lowercase : List[Any] = expert_capacity __lowercase : int = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) __lowercase : Optional[int] = router_dtype __lowercase : Any = router_ignore_padding_tokens __lowercase : Optional[Any] = batch_prioritized_routing __lowercase : str = second_expert_policy __lowercase : List[str] = normalize_router_prob_before_dropping __lowercase : List[Any] = moe_eval_capacity_token_fraction __lowercase : List[str] = moe_token_dropout __lowercase : Optional[Any] = output_router_logits super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , decoder_start_token_id=__a , **__a , )
306
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCamelCase : Dict = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCamelCase : Optional[Any] = TaTokenizerFast lowerCamelCase : Tuple = {'''configuration_mt5''': ['''MT5Config''', '''MT5OnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = [ '''MT5EncoderModel''', '''MT5ForConditionalGeneration''', '''MT5ForQuestionAnswering''', '''MT5Model''', '''MT5PreTrainedModel''', '''MT5Stack''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[Any] = ['''TFMT5EncoderModel''', '''TFMT5ForConditionalGeneration''', '''TFMT5Model'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[Any] = ['''FlaxMT5EncoderModel''', '''FlaxMT5ForConditionalGeneration''', '''FlaxMT5Model'''] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCamelCase : Tuple = _LazyModule( __name__, globals()['''__file__'''], _import_structure, extra_objects={'''MT5Tokenizer''': MTaTokenizer, '''MT5TokenizerFast''': MTaTokenizerFast}, module_spec=__spec__, )
350
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase : Optional[Any] = { '''configuration_poolformer''': [ '''POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PoolFormerConfig''', '''PoolFormerOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = ['''PoolFormerFeatureExtractor'''] lowerCamelCase : Union[str, Any] = ['''PoolFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = [ '''POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PoolFormerForImageClassification''', '''PoolFormerModel''', '''PoolFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
306
0
from __future__ import annotations lowerCamelCase : List[Any] = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } class lowerCAmelCase : '''simple docstring''' def __init__( self : int , __a : List[str] , __a : List[str] ) -> None: """simple docstring""" __lowercase : Dict = graph # mapping node to its parent in resulting breadth first tree __lowercase : dict[str, str | None] = {} __lowercase : Any = source_vertex def lowerCAmelCase ( self : List[Any] ) -> None: """simple docstring""" __lowercase : Optional[int] = {self.source_vertex} __lowercase : str = None __lowercase : Tuple = [self.source_vertex] # first in first out queue while queue: __lowercase : Optional[int] = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__A ) __lowercase : Any = vertex queue.append(__A ) def lowerCAmelCase ( self : Dict , __a : str ) -> str: """simple docstring""" if target_vertex == self.source_vertex: return self.source_vertex __lowercase : Optional[Any] = self.parent.get(__A ) if target_vertex_parent is None: __lowercase : str = ( F"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(__A ) return self.shortest_path(__A ) + F"->{target_vertex}" if __name__ == "__main__": lowerCamelCase : Dict = Graph(graph, '''G''') g.breath_first_search() print(g.shortest_path('''D''')) print(g.shortest_path('''G''')) print(g.shortest_path('''Foo'''))
351
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : List[str] = 2 __lowercase : Union[str, Any] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(lowerCAmelCase_ ) if n > 1: factors.append(lowerCAmelCase_ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
306
0
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : Optional[int] = [] if isinstance(__UpperCAmelCase , __UpperCAmelCase ): for v in tree.values(): shapes.extend(_fetch_dims(__UpperCAmelCase ) ) elif isinstance(__UpperCAmelCase , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(__UpperCAmelCase ) ) elif isinstance(__UpperCAmelCase , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError("""Not supported""" ) return shapes @torch.jit.ignore def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple ): __lowercase : str = [] for d in reversed(__UpperCAmelCase ): idx.append(flat_idx % d ) __lowercase : Optional[Any] = flat_idx // d return tuple(reversed(__UpperCAmelCase ) ) @torch.jit.ignore def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] = None , lowerCAmelCase_ : Union[str, Any] = None , ): # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(lowerCAmelCase_ : str ) -> None: __lowercase : Tuple = True for i in range(len(__UpperCAmelCase ) ): __lowercase : Optional[Any] = -1 * (i + 1) l[reversed_idx] &= tally __lowercase : Dict = l[reversed_idx] if start_edges is None: __lowercase : Optional[int] = [s == 0 for s in start] reduce_edge_list(__UpperCAmelCase ) if end_edges is None: __lowercase : Optional[int] = [e == (d - 1) for e, d in zip(__UpperCAmelCase , __UpperCAmelCase )] reduce_edge_list(__UpperCAmelCase ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(__UpperCAmelCase ) == 0: return [()] elif len(__UpperCAmelCase ) == 1: return [(slice(start[0] , end[0] + 1 ),)] __lowercase : List[Tuple[slice, ...]] = [] __lowercase : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(__UpperCAmelCase , __UpperCAmelCase ): if s == e: path_list.append(slice(__UpperCAmelCase , s + 1 ) ) else: break __lowercase : Tuple[slice, ...] = tuple(__UpperCAmelCase ) __lowercase : int = len(__UpperCAmelCase ) # start == end, and we're done if divergence_idx == len(__UpperCAmelCase ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __lowercase : int = start[divergence_idx] return tuple( path + (slice(__UpperCAmelCase , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __lowercase : Dict = end[divergence_idx] return tuple( path + (slice(__UpperCAmelCase , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) __lowercase : Optional[int] = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): __lowercase : List[Any] = t.shape[:no_batch_dims] __lowercase : Optional[Any] = list(_flat_idx_to_idx(__UpperCAmelCase , __UpperCAmelCase ) ) # _get_minimal_slice_set is inclusive __lowercase : Dict = list(_flat_idx_to_idx(flat_end - 1 , __UpperCAmelCase ) ) # Get an ordered list of slices to perform __lowercase : int = _get_minimal_slice_set( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) __lowercase : Tuple = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] = False , lowerCAmelCase_ : str = None , lowerCAmelCase_ : Dict = False , ): if not (len(__UpperCAmelCase ) > 0): raise ValueError("""Must provide at least one input""" ) __lowercase : List[Any] = [shape[:no_batch_dims] for shape in _fetch_dims(__UpperCAmelCase )] __lowercase : int = tuple([max(__UpperCAmelCase ) for s in zip(*__UpperCAmelCase )] ) def _prep_inputs(lowerCAmelCase_ : List[Any] ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: __lowercase : Any = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) __lowercase : List[str] = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: __lowercase : Union[str, Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t __lowercase : Dict[str, Any] = tensor_tree_map(_prep_inputs , __UpperCAmelCase ) __lowercase : int = None if _out is not None: __lowercase : str = tensor_tree_map(lambda lowerCAmelCase_ : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) __lowercase : Optional[Any] = 1 for d in orig_batch_dims: flat_batch_dim *= d __lowercase : Any = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(lowerCAmelCase_ : Optional[Any] ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t __lowercase : Optional[Any] = 0 __lowercase : int = prepped_outputs for _ in range(__UpperCAmelCase ): # Chunk the input if not low_mem: __lowercase : int = _select_chunk else: __lowercase : Optional[Any] = partial( _chunk_slice , flat_start=__UpperCAmelCase , flat_end=min(__UpperCAmelCase , i + chunk_size ) , no_batch_dims=len(__UpperCAmelCase ) , ) __lowercase : Dict[str, Any] = tensor_tree_map(__UpperCAmelCase , __UpperCAmelCase ) # Run the layer on the chunk __lowercase : Optional[Any] = layer(**__UpperCAmelCase ) # Allocate space for the output if out is None: __lowercase : Any = tensor_tree_map(lambda lowerCAmelCase_ : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , __UpperCAmelCase ) # Put the chunk in its pre-allocated space if isinstance(__UpperCAmelCase , __UpperCAmelCase ): def assign(lowerCAmelCase_ : str , lowerCAmelCase_ : Any ) -> None: for k, v in da.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): assign(__UpperCAmelCase , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: __lowercase : Optional[int] = da[k] assign(__UpperCAmelCase , __UpperCAmelCase ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): for xa, xa in zip(__UpperCAmelCase , __UpperCAmelCase ): if _add_into_out: xa[i : i + chunk_size] += xa else: __lowercase : Optional[int] = xa elif isinstance(__UpperCAmelCase , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: __lowercase : Union[str, Any] = output_chunk else: raise ValueError("""Not supported""" ) i += chunk_size __lowercase : Any = tensor_tree_map(lambda lowerCAmelCase_ : t.view(orig_batch_dims + t.shape[1:] ) , __UpperCAmelCase ) return out class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , __a : Optional[Any] = 512 , ) -> Optional[int]: """simple docstring""" __lowercase : int = max_chunk_size __lowercase : Optional[int] = None __lowercase : Optional[tuple] = None def lowerCAmelCase ( self : Optional[int] , __a : Optional[int] , __a : Tuple , __a : Tuple ) -> Optional[int]: """simple docstring""" logging.info("""Tuning chunk size...""" ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size __lowercase : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] __lowercase : List[Any] = [c for c in candidates if c > min_chunk_size] __lowercase : str = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(__a : Optional[int] ) -> bool: try: with torch.no_grad(): fn(*_UpperCAmelCase , chunk_size=_UpperCAmelCase ) return True except RuntimeError: return False __lowercase : Any = 0 __lowercase : Any = len(_UpperCAmelCase ) - 1 while i > min_viable_chunk_size_index: __lowercase : List[str] = test_chunk_size(candidates[i] ) if not viable: __lowercase : Optional[int] = (min_viable_chunk_size_index + i) // 2 else: __lowercase : Dict = i __lowercase : Union[str, Any] = (i + len(_UpperCAmelCase ) - 1) // 2 return candidates[min_viable_chunk_size_index] def lowerCAmelCase ( self : Optional[int] , __a : int , __a : List[Any] ) -> int: """simple docstring""" __lowercase : Tuple = True for aa, aa in zip(_UpperCAmelCase , _UpperCAmelCase ): assert type(_UpperCAmelCase ) == type(_UpperCAmelCase ) if isinstance(_UpperCAmelCase , (list, tuple) ): consistent &= self._compare_arg_caches(_UpperCAmelCase , _UpperCAmelCase ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase : Union[str, Any] = [v for _, v in sorted(aa.items() , key=lambda __a : x[0] )] __lowercase : Union[str, Any] = [v for _, v in sorted(aa.items() , key=lambda __a : x[0] )] consistent &= self._compare_arg_caches(_UpperCAmelCase , _UpperCAmelCase ) else: consistent &= aa == aa return consistent def lowerCAmelCase ( self : Dict , __a : Tuple , __a : Any , __a : Any , ) -> Tuple: """simple docstring""" __lowercase : str = True __lowercase : tuple = tree_map(lambda __a : a.shape if isinstance(_UpperCAmelCase , torch.Tensor ) else a , _UpperCAmelCase , _UpperCAmelCase ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(_UpperCAmelCase ) __lowercase : str = self._compare_arg_caches(self.cached_arg_data , _UpperCAmelCase ) else: # Otherwise, we can reuse the precomputed value __lowercase : Optional[int] = False if not consistent: __lowercase : List[Any] = self._determine_favorable_chunk_size( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) __lowercase : str = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
352
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Dict = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) __lowercase : List[str] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __lowercase : Optional[Any] = model(__a )["""last_hidden_state"""] __lowercase : Any = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , __a ) # compare the actual values for a slice. __lowercase : Dict = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
306
0
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Union[str, Any] = { '''EleutherAI/gpt-j-6B''': '''https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json''', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class lowerCAmelCase ( A__ ): '''simple docstring''' _A : Optional[int] = '''gptj''' _A : int = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : List[Any] , __a : Tuple=50400 , __a : List[str]=2048 , __a : Optional[int]=4096 , __a : Union[str, Any]=28 , __a : Optional[Any]=16 , __a : Optional[Any]=64 , __a : Any=None , __a : List[Any]="gelu_new" , __a : Any=0.0 , __a : Union[str, Any]=0.0 , __a : str=0.0 , __a : Any=1E-5 , __a : List[Any]=0.02 , __a : str=True , __a : Union[str, Any]=50256 , __a : Dict=50256 , __a : List[Any]=False , **__a : Tuple , ) -> Any: """simple docstring""" __lowercase : Dict = vocab_size __lowercase : Any = n_positions __lowercase : Union[str, Any] = n_embd __lowercase : List[Any] = n_layer __lowercase : List[str] = n_head __lowercase : List[str] = n_inner __lowercase : str = rotary_dim __lowercase : Dict = activation_function __lowercase : Optional[int] = resid_pdrop __lowercase : str = embd_pdrop __lowercase : Any = attn_pdrop __lowercase : Dict = layer_norm_epsilon __lowercase : str = initializer_range __lowercase : Optional[int] = use_cache __lowercase : Dict = bos_token_id __lowercase : Optional[int] = eos_token_id super().__init__( bos_token_id=__snake_case , eos_token_id=__snake_case , tie_word_embeddings=__snake_case , **__snake_case ) class lowerCAmelCase ( A__ ): '''simple docstring''' def __init__( self : List[Any] , __a : PretrainedConfig , __a : str = "default" , __a : List[PatchingSpec] = None , __a : bool = False , ) -> Optional[Any]: """simple docstring""" super().__init__(__snake_case , task=__snake_case , patching_specs=__snake_case , use_past=__snake_case ) if not getattr(self._config , """pad_token_id""" , __snake_case ): # TODO: how to do that better? __lowercase : Tuple = 0 @property def lowerCAmelCase ( self : str ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __lowercase : Optional[int] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__snake_case , direction="""inputs""" ) __lowercase : Tuple = {0: """batch""", 1: """past_sequence + sequence"""} else: __lowercase : List[Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowerCAmelCase ( self : int ) -> int: """simple docstring""" return self._config.n_layer @property def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" return self._config.n_head def lowerCAmelCase ( self : Any , __a : PreTrainedTokenizer , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" __lowercase : List[Any] = super(__snake_case , self ).generate_dummy_inputs( __snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case ) # We need to order the input in the way they appears in the forward() __lowercase : str = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowercase , __lowercase : Optional[int] = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __lowercase : int = seqlen + 2 __lowercase : int = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowercase : Union[str, Any] = [ (torch.zeros(__snake_case ), torch.zeros(__snake_case )) for _ in range(self.num_layers ) ] __lowercase : Any = common_inputs["""attention_mask"""] if self.use_past: __lowercase : List[str] = ordered_inputs["""attention_mask"""].dtype __lowercase : Tuple = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__snake_case , __snake_case , dtype=__snake_case )] , dim=1 ) return ordered_inputs @property def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" return 13
353
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Optional[Any] = len(lowerCAmelCase_ ) __lowercase : str = len(lowerCAmelCase_ ) __lowercase : Optional[int] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __lowercase : Tuple = True for i in range(lowerCAmelCase_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __lowercase : Optional[Any] = True if a[i].islower(): __lowercase : Dict = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
306
0
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int]=1024 , lowerCAmelCase_ : Union[str, Any]=1024 , lowerCAmelCase_ : Any=False , **lowerCAmelCase_ : List[Any] ): __lowercase : List[str] = AutoTokenizer.from_pretrained(lowerCamelCase__ ) __lowercase : Optional[Any] = SeqaSeqDataset(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , type_path="""train""" , **lowerCamelCase__ ) __lowercase : List[str] = tok.pad_token_id def get_lens(lowerCAmelCase_ : str ): __lowercase : int = tqdm( DataLoader(lowerCamelCase__ , batch_size=512 , num_workers=8 , shuffle=lowerCamelCase__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) __lowercase : str = [] for batch in dl: __lowercase : str = batch['''input_ids'''].ne(lowerCamelCase__ ).sum(1 ).tolist() __lowercase : str = batch['''labels'''].ne(lowerCamelCase__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowerCamelCase__ , lowerCamelCase__ ): max_lens.append(max(lowerCamelCase__ , lowerCamelCase__ ) ) else: max_lens.extend(lowerCamelCase__ ) return max_lens __lowercase : Any = get_lens(lowerCamelCase__ ) __lowercase : Optional[Any] = SeqaSeqDataset(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , type_path="""val""" , **lowerCamelCase__ ) __lowercase : Any = get_lens(lowerCamelCase__ ) pickle_save(lowerCamelCase__ , train_ds.len_file ) pickle_save(lowerCamelCase__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
354
from scipy.stats import spearmanr import datasets lowerCamelCase : List[str] = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' lowerCamelCase : List[str] = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' lowerCamelCase : Union[str, Any] = r'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def lowerCAmelCase ( self : List[Any] , __a : str , __a : Any , __a : Optional[int]=False ) -> List[str]: """simple docstring""" __lowercase : Optional[Any] = spearmanr(__a , __a ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
306
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : List[Any] = logging.get_logger(__name__) lowerCamelCase : Tuple = { '''microsoft/wavlm-base''': '''https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json''', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class lowerCAmelCase ( lowercase__ ): '''simple docstring''' _A : Dict = '''wavlm''' def __init__( self : List[Any] , __a : Any=32 , __a : str=768 , __a : List[str]=12 , __a : Optional[Any]=12 , __a : Union[str, Any]=3072 , __a : Dict="gelu" , __a : Union[str, Any]=0.1 , __a : str=0.1 , __a : List[Any]=0.1 , __a : Optional[Any]=0.0 , __a : Dict=0.1 , __a : Optional[int]=0.1 , __a : List[str]=0.02 , __a : Any=1E-5 , __a : str="group" , __a : int="gelu" , __a : str=(512, 512, 512, 512, 512, 512, 512) , __a : Any=(5, 2, 2, 2, 2, 2, 2) , __a : List[str]=(10, 3, 3, 3, 3, 2, 2) , __a : List[str]=False , __a : int=128 , __a : Optional[Any]=16 , __a : Tuple=320 , __a : Optional[int]=800 , __a : Tuple=False , __a : Any=True , __a : str=0.05 , __a : Optional[Any]=10 , __a : Any=2 , __a : int=0.0 , __a : int=10 , __a : Optional[int]=320 , __a : List[Any]=2 , __a : Any=0.1 , __a : Tuple=100 , __a : Tuple=256 , __a : int=256 , __a : Tuple=0.1 , __a : Optional[int]="mean" , __a : List[str]=False , __a : Union[str, Any]=False , __a : Optional[int]=256 , __a : Any=(512, 512, 512, 512, 1500) , __a : Union[str, Any]=(5, 3, 3, 1, 1) , __a : Union[str, Any]=(1, 2, 3, 1, 1) , __a : Tuple=512 , __a : Union[str, Any]=80 , __a : int=0 , __a : Dict=1 , __a : Tuple=2 , __a : str=False , __a : Any=3 , __a : Any=2 , __a : Union[str, Any]=3 , __a : List[str]=None , **__a : Optional[int] , ) -> Optional[Any]: """simple docstring""" super().__init__(**_a , pad_token_id=_a , bos_token_id=_a , eos_token_id=_a ) __lowercase : Any = hidden_size __lowercase : Union[str, Any] = feat_extract_norm __lowercase : List[str] = feat_extract_activation __lowercase : Optional[int] = list(_a ) __lowercase : str = list(_a ) __lowercase : Dict = list(_a ) __lowercase : int = conv_bias __lowercase : Dict = num_buckets __lowercase : Optional[Any] = max_bucket_distance __lowercase : List[str] = num_conv_pos_embeddings __lowercase : int = num_conv_pos_embedding_groups __lowercase : Union[str, Any] = len(self.conv_dim ) __lowercase : Optional[int] = num_hidden_layers __lowercase : Any = intermediate_size __lowercase : Any = hidden_act __lowercase : Optional[int] = num_attention_heads __lowercase : str = hidden_dropout __lowercase : Tuple = attention_dropout __lowercase : Union[str, Any] = activation_dropout __lowercase : str = feat_proj_dropout __lowercase : str = final_dropout __lowercase : List[str] = layerdrop __lowercase : List[str] = layer_norm_eps __lowercase : str = initializer_range __lowercase : str = num_ctc_classes __lowercase : Union[str, Any] = vocab_size __lowercase : Dict = do_stable_layer_norm __lowercase : Optional[int] = use_weighted_layer_sum __lowercase : List[str] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowercase : List[str] = apply_spec_augment __lowercase : Tuple = mask_time_prob __lowercase : Optional[Any] = mask_time_length __lowercase : List[str] = mask_time_min_masks __lowercase : Tuple = mask_feature_prob __lowercase : List[Any] = mask_feature_length # parameters for pretraining with codevector quantized representations __lowercase : List[Any] = num_codevectors_per_group __lowercase : Any = num_codevector_groups __lowercase : Any = contrastive_logits_temperature __lowercase : Union[str, Any] = num_negatives __lowercase : Tuple = codevector_dim __lowercase : Tuple = proj_codevector_dim __lowercase : List[Any] = diversity_loss_weight # ctc loss __lowercase : int = ctc_loss_reduction __lowercase : List[Any] = ctc_zero_infinity # adapter __lowercase : Optional[Any] = add_adapter __lowercase : int = adapter_kernel_size __lowercase : List[Any] = adapter_stride __lowercase : Tuple = num_adapter_layers __lowercase : Dict = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowercase : Tuple = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowercase : Optional[int] = list(_a ) __lowercase : Dict = list(_a ) __lowercase : str = list(_a ) __lowercase : List[str] = xvector_output_dim @property def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
355
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Any = get_failure_array(lowerCAmelCase_ ) # 2) Step through text searching for pattern __lowercase , __lowercase : Optional[int] = 0, 0 # index into text, pattern while i < len(lowerCAmelCase_ ): if pattern[j] == text[i]: if j == (len(lowerCAmelCase_ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: __lowercase : Optional[Any] = failure[j - 1] continue i += 1 return False def snake_case_ ( lowerCAmelCase_ : str ): __lowercase : List[Any] = [0] __lowercase : Optional[Any] = 0 __lowercase : List[Any] = 1 while j < len(lowerCAmelCase_ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: __lowercase : List[str] = failure[i - 1] continue j += 1 failure.append(lowerCAmelCase_ ) return failure if __name__ == "__main__": # Test 1) lowerCamelCase : Dict = '''abc1abc12''' lowerCamelCase : Union[str, Any] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' lowerCamelCase : Any = '''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) lowerCamelCase : List[Any] = '''ABABX''' lowerCamelCase : List[Any] = '''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) lowerCamelCase : int = '''AAAB''' lowerCamelCase : Optional[int] = '''ABAAAAAB''' assert kmp(pattern, text) # Test 4) lowerCamelCase : Optional[Any] = '''abcdabcy''' lowerCamelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) lowerCamelCase : Dict = '''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
306
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class lowerCAmelCase ( lowerCamelCase__ ): '''simple docstring''' _A : Tuple = 'levit' def __init__( self : Optional[Any] , __a : Dict=224 , __a : Any=3 , __a : str=3 , __a : Optional[Any]=2 , __a : Union[str, Any]=1 , __a : Optional[Any]=16 , __a : List[Any]=[128, 256, 384] , __a : Dict=[4, 8, 12] , __a : Union[str, Any]=[4, 4, 4] , __a : Optional[Any]=[16, 16, 16] , __a : List[Any]=0 , __a : Any=[2, 2, 2] , __a : int=[2, 2, 2] , __a : Union[str, Any]=0.02 , **__a : List[str] , ) -> Optional[int]: """simple docstring""" super().__init__(**__a ) __lowercase : Optional[Any] = image_size __lowercase : Tuple = num_channels __lowercase : Union[str, Any] = kernel_size __lowercase : int = stride __lowercase : Dict = padding __lowercase : List[str] = hidden_sizes __lowercase : str = num_attention_heads __lowercase : Any = depths __lowercase : List[Any] = key_dim __lowercase : Dict = drop_path_rate __lowercase : Optional[Any] = patch_size __lowercase : Tuple = attention_ratio __lowercase : Tuple = mlp_ratio __lowercase : str = initializer_range __lowercase : str = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class lowerCAmelCase ( lowerCamelCase__ ): '''simple docstring''' _A : List[str] = version.parse('''1.11''' ) @property def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" return 1E-4
356
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = ['''pixel_values'''] def __init__( self : Any , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : bool = True , __a : Dict[str, int] = None , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = True , **__a : str , ) -> None: """simple docstring""" super().__init__(**__a ) __lowercase : Dict = size if size is not None else {"""shortest_edge""": 224} __lowercase : Union[str, Any] = get_size_dict(__a , default_to_square=__a ) __lowercase : int = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __lowercase : Any = get_size_dict(__a , default_to_square=__a , param_name="""crop_size""" ) __lowercase : Optional[int] = do_resize __lowercase : Union[str, Any] = size __lowercase : List[Any] = resample __lowercase : Any = do_center_crop __lowercase : Dict = crop_size __lowercase : int = do_rescale __lowercase : Tuple = rescale_factor __lowercase : List[Any] = do_normalize __lowercase : Union[str, Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowercase : int = image_std if image_std is not None else OPENAI_CLIP_STD __lowercase : Union[str, Any] = do_convert_rgb def lowerCAmelCase ( self : Union[str, Any] , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[Any] , ) -> np.ndarray: """simple docstring""" __lowercase : Dict = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) __lowercase : str = get_resize_output_image_size(__a , size=size["""shortest_edge"""] , default_to_square=__a ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Any , ) -> np.ndarray: """simple docstring""" __lowercase : Tuple = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(__a , size=(size["""height"""], size["""width"""]) , data_format=__a , **__a ) def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : Union[int, float] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[Any] , ) -> List[str]: """simple docstring""" return rescale(__a , scale=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Optional[int] , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] , ) -> np.ndarray: """simple docstring""" return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Optional[int] , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : int = None , __a : bool = None , __a : float = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = None , __a : Optional[Union[str, TensorType]] = None , __a : Optional[ChannelDimension] = ChannelDimension.FIRST , **__a : List[Any] , ) -> PIL.Image.Image: """simple docstring""" __lowercase : List[Any] = do_resize if do_resize is not None else self.do_resize __lowercase : Dict = size if size is not None else self.size __lowercase : Tuple = get_size_dict(__a , param_name="""size""" , default_to_square=__a ) __lowercase : int = resample if resample is not None else self.resample __lowercase : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase : List[Any] = crop_size if crop_size is not None else self.crop_size __lowercase : List[str] = get_size_dict(__a , param_name="""crop_size""" , default_to_square=__a ) __lowercase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __lowercase : str = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase : Dict = do_normalize if do_normalize is not None else self.do_normalize __lowercase : Tuple = image_mean if image_mean is not None else self.image_mean __lowercase : str = image_std if image_std is not None else self.image_std __lowercase : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase : Union[str, Any] = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase : Union[str, Any] = [convert_to_rgb(__a ) for image in images] # All transformations expect numpy arrays. __lowercase : Any = [to_numpy_array(__a ) for image in images] if do_resize: __lowercase : str = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: __lowercase : str = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: __lowercase : Dict = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: __lowercase : Optional[Any] = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] __lowercase : Any = [to_channel_dimension_format(__a , __a ) for image in images] __lowercase : Optional[int] = {"""pixel_values""": images} return BatchFeature(data=__a , tensor_type=__a )
306
0
from __future__ import annotations import math def snake_case_ ( lowerCAmelCase_ : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : Dict = str(__A ) __lowercase : int = [n] for i in range(1 , len(__A ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def snake_case_ ( lowerCAmelCase_ : int ): if len(str(__A ) ) > 3: if not is_prime(int(str(__A )[-3:] ) ) or not is_prime(int(str(__A )[:3] ) ): return False return True def snake_case_ ( lowerCAmelCase_ : int = 11 ): __lowercase : int = [] __lowercase : Dict = 13 while len(__A ) != count: if validate(__A ): __lowercase : List[Any] = list_truncated_nums(__A ) if all(is_prime(__A ) for i in list_nums ): list_truncated_primes.append(__A ) num += 2 return list_truncated_primes def snake_case_ ( ): return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(f'''{sum(compute_truncated_primes(11)) = }''')
357
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str ): __lowercase : Tuple = s.rsplit(lowerCAmelCase_ , lowerCAmelCase_ ) return new.join(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : List[Any] ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : List[str] = {} __lowercase : Tuple = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __lowercase : List[str] = key.replace(F"{group_key}." , F"{group_key}.group." ) if "res_path" in key: __lowercase : List[Any] = key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): __lowercase : Union[str, Any] = rreplace(lowerCAmelCase_ , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): __lowercase : Tuple = rreplace(lowerCAmelCase_ , """.b""" , """.bias""" , 1 ) __lowercase : Dict = value.float() return upgrade @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=True ): from dall_e import Encoder __lowercase : Any = Encoder() if os.path.exists(lowerCAmelCase_ ): __lowercase : List[Any] = torch.load(lowerCAmelCase_ ) else: __lowercase : List[Any] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : int = ckpt.state_dict() encoder.load_state_dict(lowerCAmelCase_ ) if config_path is not None: __lowercase : Optional[int] = FlavaImageCodebookConfig.from_pretrained(lowerCAmelCase_ ) else: __lowercase : List[str] = FlavaImageCodebookConfig() __lowercase : Optional[Any] = FlavaImageCodebook(lowerCAmelCase_ ).eval() __lowercase : List[Any] = encoder.state_dict() __lowercase : Union[str, Any] = upgrade_state_dict(lowerCAmelCase_ ) hf_model.load_state_dict(lowerCAmelCase_ ) __lowercase : Dict = hf_model.state_dict() __lowercase : Tuple = count_parameters(lowerCAmelCase_ ) __lowercase : Tuple = count_parameters(lowerCAmelCase_ ) assert torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(lowerCAmelCase_ ) else: return hf_state_dict if __name__ == "__main__": lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowerCamelCase : Union[str, Any] = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
306
0
import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def snake_case_ ( lowerCAmelCase_ : List[str] ): __lowercase : List[Any] = SwinConfig() __lowercase : Union[str, Any] = swin_name.split("""_""" ) __lowercase : Tuple = name_split[1] __lowercase : int = int(name_split[4] ) __lowercase : Optional[Any] = int(name_split[3][-1] ) if model_size == "tiny": __lowercase : Optional[Any] = 96 __lowercase : Tuple = (2, 2, 6, 2) __lowercase : str = (3, 6, 12, 24) elif model_size == "small": __lowercase : Optional[Any] = 96 __lowercase : Optional[Any] = (2, 2, 18, 2) __lowercase : Any = (3, 6, 12, 24) elif model_size == "base": __lowercase : List[Any] = 128 __lowercase : str = (2, 2, 18, 2) __lowercase : List[str] = (4, 8, 16, 32) else: __lowercase : Union[str, Any] = 192 __lowercase : Optional[int] = (2, 2, 18, 2) __lowercase : Optional[Any] = (6, 12, 24, 48) if "in22k" in swin_name: __lowercase : List[str] = 21841 else: __lowercase : Any = 1000 __lowercase : Optional[Any] = """huggingface/label-files""" __lowercase : Optional[Any] = """imagenet-1k-id2label.json""" __lowercase : Tuple = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type="""dataset""" ) , """r""" ) ) __lowercase : str = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} __lowercase : Dict = idalabel __lowercase : int = {v: k for k, v in idalabel.items()} __lowercase : Union[str, Any] = img_size __lowercase : Union[str, Any] = num_classes __lowercase : List[Any] = embed_dim __lowercase : str = depths __lowercase : int = num_heads __lowercase : List[str] = window_size return config def snake_case_ ( lowerCAmelCase_ : Any ): if "patch_embed.proj" in name: __lowercase : Union[str, Any] = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __lowercase : Tuple = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: __lowercase : str = """encoder.""" + name if "attn.proj" in name: __lowercase : List[str] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: __lowercase : Tuple = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: __lowercase : Dict = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __lowercase : Dict = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __lowercase : Optional[int] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __lowercase : int = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "norm.weight": __lowercase : List[str] = """layernorm.weight""" if name == "norm.bias": __lowercase : Any = """layernorm.bias""" if "head" in name: __lowercase : List[Any] = name.replace("""head""" , """classifier""" ) else: __lowercase : str = """swin.""" + name return name def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): for key in orig_state_dict.copy().keys(): __lowercase : Optional[int] = orig_state_dict.pop(lowerCamelCase_ ) if "mask" in key: continue elif "qkv" in key: __lowercase : Union[str, Any] = key.split(""".""" ) __lowercase : str = int(key_split[1] ) __lowercase : Optional[int] = int(key_split[3] ) __lowercase : List[Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __lowercase : List[Any] = val[:dim, :] __lowercase : List[str] = val[ dim : dim * 2, : ] __lowercase : int = val[-dim:, :] else: __lowercase : Dict = val[ :dim ] __lowercase : List[str] = val[ dim : dim * 2 ] __lowercase : str = val[ -dim: ] else: __lowercase : Optional[Any] = val return orig_state_dict def snake_case_ ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] ): __lowercase : int = timm.create_model(lowerCamelCase_ , pretrained=lowerCamelCase_ ) timm_model.eval() __lowercase : Any = get_swin_config(lowerCamelCase_ ) __lowercase : Any = SwinForImageClassification(lowerCamelCase_ ) model.eval() __lowercase : Dict = convert_state_dict(timm_model.state_dict() , lowerCamelCase_ ) model.load_state_dict(lowerCamelCase_ ) __lowercase : List[str] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase : str = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swin_name.replace("""_""" , """-""" ) ) ) __lowercase : int = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) __lowercase : Any = image_processor(images=lowerCamelCase_ , return_tensors="""pt""" ) __lowercase : List[str] = timm_model(inputs["""pixel_values"""] ) __lowercase : List[str] = model(**lowerCamelCase_ ).logits assert torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) print(F"Saving model {swin_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCamelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swin_name''', default='''swin_tiny_patch4_window7_224''', type=str, help='''Name of the Swin timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCamelCase : int = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
358
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging lowerCamelCase : Tuple = logging.get_logger(__name__) logging.set_verbosity_info() def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): if "xprophetnet" in prophetnet_checkpoint_path: __lowercase : List[str] = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) __lowercase , __lowercase : int = XLMProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) else: __lowercase : List[Any] = ProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) __lowercase , __lowercase : Optional[Any] = ProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) __lowercase : List[str] = ["""key_proj""", """value_proj""", """query_proj"""] __lowercase : Optional[int] = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: __lowercase : Tuple = key.split(""".""" ) if attributes[0] == "lm_head": __lowercase : str = prophet __lowercase : List[str] = prophet_old else: __lowercase : Tuple = prophet.prophetnet __lowercase : Union[str, Any] = prophet_old.model __lowercase : Optional[Any] = False for attribute in attributes: if attribute in mapping: __lowercase : Optional[int] = mapping[attribute] if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) > 0: __lowercase : str = attribute elif hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : List[Any] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" __lowercase : Any = old_model.weight logger.info(F"{attribute} is initialized." ) __lowercase : Any = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" __lowercase : Dict = old_model.bias logger.info(F"{attribute} is initialized" ) __lowercase : int = True break elif attribute in special_keys and hasattr(lowerCAmelCase_ , """in_proj_weight""" ): __lowercase : Dict = old_model.in_proj_weight.shape[0] // 3 __lowercase : Tuple = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": __lowercase : Union[str, Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) __lowercase : int = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": __lowercase : Any = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) __lowercase : List[Any] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": __lowercase : Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) __lowercase : int = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) __lowercase : int = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." __lowercase : Optional[Any] = nn.Parameter(old_model.embed_positions.weight[:512, :] ) __lowercase : int = True break if attribute.isdigit(): __lowercase : Tuple = model[int(lowerCAmelCase_ )] __lowercase : int = old_model[int(lowerCAmelCase_ )] else: __lowercase : Union[str, Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if old_attribute == "": __lowercase : int = old_model else: if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError(F"{old_model} does not have {old_attribute}" ) __lowercase : List[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if not is_key_init: raise ValueError(F"{key} was not correctly initialized!" ) print(F"Saving model to {pytorch_dump_folder_path}" ) prophet.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCamelCase : Any = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
306
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class lowerCAmelCase ( __A ): '''simple docstring''' _A : List[str] = 'decision_transformer' _A : List[Any] = ['past_key_values'] _A : str = { 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Dict , __a : Union[str, Any]=17 , __a : Union[str, Any]=4 , __a : Optional[int]=128 , __a : int=4096 , __a : Dict=True , __a : List[Any]=1 , __a : Union[str, Any]=1024 , __a : str=3 , __a : Dict=1 , __a : Dict=None , __a : str="relu" , __a : Optional[int]=0.1 , __a : List[Any]=0.1 , __a : Optional[Any]=0.1 , __a : Dict=1E-5 , __a : Union[str, Any]=0.02 , __a : Any=True , __a : Dict=True , __a : List[Any]=50256 , __a : str=50256 , __a : Union[str, Any]=False , __a : str=False , **__a : int , ) -> List[str]: """simple docstring""" __lowercase : Tuple = state_dim __lowercase : Optional[Any] = act_dim __lowercase : List[Any] = hidden_size __lowercase : str = max_ep_len __lowercase : int = action_tanh __lowercase : Any = vocab_size __lowercase : Optional[Any] = n_positions __lowercase : List[str] = n_layer __lowercase : int = n_head __lowercase : str = n_inner __lowercase : List[str] = activation_function __lowercase : Optional[Any] = resid_pdrop __lowercase : Any = embd_pdrop __lowercase : Optional[int] = attn_pdrop __lowercase : int = layer_norm_epsilon __lowercase : str = initializer_range __lowercase : Tuple = scale_attn_weights __lowercase : List[Any] = use_cache __lowercase : Any = scale_attn_by_inverse_layer_idx __lowercase : Dict = reorder_and_upcast_attn __lowercase : Dict = bos_token_id __lowercase : List[Any] = eos_token_id super().__init__(bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase )
359
def snake_case_ ( lowerCAmelCase_ : int = 200 ): __lowercase : List[str] = [1, 2, 5, 10, 20, 50, 100, 200] __lowercase : List[str] = [0] * (pence + 1) __lowercase : Optional[Any] = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowerCAmelCase_ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
306
0
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase ( A_ ): '''simple docstring''' _A : Optional[int] = (DDPMParallelScheduler,) def lowerCAmelCase ( self : str , **__a : Any ) -> List[Any]: """simple docstring""" __lowercase : List[Any] = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**snake_case__ ) return config def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=snake_case__ ) def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=snake_case__ , beta_end=snake_case__ ) def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=snake_case__ ) def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=snake_case__ ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=snake_case__ ) def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" self.check_over_configs(thresholding=snake_case__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=snake_case__ , prediction_type=snake_case__ , sample_max_value=snake_case__ , ) def lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=snake_case__ ) def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=snake_case__ ) def lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = self.scheduler_classes[0] __lowercase : Any = self.get_scheduler_config() __lowercase : Tuple = scheduler_class(**snake_case__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" __lowercase : Dict = self.scheduler_classes[0] __lowercase : Any = self.get_scheduler_config() __lowercase : Optional[int] = scheduler_class(**snake_case__ ) __lowercase : Any = len(snake_case__ ) __lowercase : Tuple = self.dummy_model() __lowercase : List[Any] = self.dummy_sample_deter __lowercase : Dict = self.dummy_sample_deter + 0.1 __lowercase : List[Any] = self.dummy_sample_deter - 0.1 __lowercase : Union[str, Any] = samplea.shape[0] __lowercase : List[Any] = torch.stack([samplea, samplea, samplea] , dim=0 ) __lowercase : Any = torch.arange(snake_case__ )[0:3, None].repeat(1 , snake_case__ ) __lowercase : Dict = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) __lowercase : Optional[Any] = scheduler.batch_step_no_noise(snake_case__ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) __lowercase : Optional[int] = torch.sum(torch.abs(snake_case__ ) ) __lowercase : Tuple = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_sum.item() - 1153.1833 ) < 1E-2 assert abs(result_mean.item() - 0.5005 ) < 1E-3 def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase : Union[str, Any] = self.scheduler_classes[0] __lowercase : Optional[int] = self.get_scheduler_config() __lowercase : Optional[int] = scheduler_class(**snake_case__ ) __lowercase : Union[str, Any] = len(snake_case__ ) __lowercase : Any = self.dummy_model() __lowercase : Dict = self.dummy_sample_deter __lowercase : Any = torch.manual_seed(0 ) for t in reversed(range(snake_case__ ) ): # 1. predict noise residual __lowercase : List[str] = model(snake_case__ , snake_case__ ) # 2. predict previous mean of sample x_t-1 __lowercase : int = scheduler.step(snake_case__ , snake_case__ , snake_case__ , generator=snake_case__ ).prev_sample __lowercase : str = pred_prev_sample __lowercase : List[Any] = torch.sum(torch.abs(snake_case__ ) ) __lowercase : Any = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" __lowercase : Tuple = self.scheduler_classes[0] __lowercase : str = self.get_scheduler_config(prediction_type="""v_prediction""" ) __lowercase : int = scheduler_class(**snake_case__ ) __lowercase : List[Any] = len(snake_case__ ) __lowercase : Union[str, Any] = self.dummy_model() __lowercase : Dict = self.dummy_sample_deter __lowercase : Dict = torch.manual_seed(0 ) for t in reversed(range(snake_case__ ) ): # 1. predict noise residual __lowercase : Tuple = model(snake_case__ , snake_case__ ) # 2. predict previous mean of sample x_t-1 __lowercase : Any = scheduler.step(snake_case__ , snake_case__ , snake_case__ , generator=snake_case__ ).prev_sample __lowercase : Union[str, Any] = pred_prev_sample __lowercase : Any = torch.sum(torch.abs(snake_case__ ) ) __lowercase : Dict = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = self.scheduler_classes[0] __lowercase : Dict = self.get_scheduler_config() __lowercase : List[Any] = scheduler_class(**snake_case__ ) __lowercase : Union[str, Any] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=snake_case__ ) __lowercase : int = scheduler.timesteps for i, timestep in enumerate(snake_case__ ): if i == len(snake_case__ ) - 1: __lowercase : Any = -1 else: __lowercase : Any = timesteps[i + 1] __lowercase : Optional[int] = scheduler.previous_timestep(snake_case__ ) __lowercase : Dict = prev_t.item() self.assertEqual(snake_case__ , snake_case__ ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : int = self.scheduler_classes[0] __lowercase : Any = self.get_scheduler_config() __lowercase : Optional[int] = scheduler_class(**snake_case__ ) __lowercase : Optional[Any] = [100, 87, 50, 51, 0] with self.assertRaises(snake_case__ , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=snake_case__ ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = self.scheduler_classes[0] __lowercase : Optional[Any] = self.get_scheduler_config() __lowercase : Optional[int] = scheduler_class(**snake_case__ ) __lowercase : Union[str, Any] = [100, 87, 50, 1, 0] __lowercase : int = len(snake_case__ ) with self.assertRaises(snake_case__ , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=snake_case__ , timesteps=snake_case__ ) def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = self.scheduler_classes[0] __lowercase : Union[str, Any] = self.get_scheduler_config() __lowercase : List[Any] = scheduler_class(**snake_case__ ) __lowercase : Dict = [scheduler.config.num_train_timesteps] with self.assertRaises( snake_case__ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=snake_case__ )
360
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , __a : Dict , __a : List[str]=None , __a : Optional[Any]=None , __a : Union[str, Any]=None , __a : int="resnet50" , __a : List[str]=3 , __a : Tuple=32 , __a : Dict=3 , __a : List[str]=True , __a : Union[str, Any]=True , ) -> Any: """simple docstring""" __lowercase : Optional[int] = parent __lowercase : List[str] = out_indices if out_indices is not None else [4] __lowercase : Optional[int] = stage_names __lowercase : Any = out_features __lowercase : Optional[Any] = backbone __lowercase : Optional[Any] = batch_size __lowercase : Union[str, Any] = image_size __lowercase : List[str] = num_channels __lowercase : str = use_pretrained_backbone __lowercase : str = is_training def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : str = self.get_config() return config, pixel_values def lowerCAmelCase ( self : int ) -> str: """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowerCAmelCase ( self : Optional[int] , __a : Dict , __a : Any ) -> Dict: """simple docstring""" __lowercase : Dict = TimmBackbone(config=__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Optional[Any] = model(__a ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.prepare_config_and_inputs() __lowercase , __lowercase : str = config_and_inputs __lowercase : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch @require_timm class lowerCAmelCase ( __a , __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[Any] = (TimmBackbone,) if is_torch_available() else () _A : Dict = {'''feature-extraction''': TimmBackbone} if is_torch_available() else {} _A : List[Any] = False _A : List[str] = False _A : Any = False _A : Optional[Any] = False def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : str = TimmBackboneModelTester(self ) __lowercase : Any = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" __lowercase : Tuple = """resnet18""" __lowercase : Optional[int] = """microsoft/resnet-18""" __lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a ) __lowercase : Dict = AutoBackbone.from_pretrained(__a ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a , out_indices=[1, 2, 3] ) __lowercase : Optional[Any] = AutoBackbone.from_pretrained(__a , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("""TimmBackbone doesn't support feed forward chunking""" ) def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""" ) def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""" ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't support output_attentions.""" ) def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Safetensors is not supported by timm.""" ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Optional[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : List[str] = [*signature.parameters.keys()] __lowercase : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Optional[Any] = True __lowercase : Union[str, Any] = self.has_attentions # no need to test all models as different heads yield the same functionality __lowercase : Union[str, Any] = self.all_model_classes[0] __lowercase : List[Any] = model_class(__a ) model.to(__a ) __lowercase : Optional[Any] = self._prepare_for_class(__a , __a ) __lowercase : Union[str, Any] = model(**__a ) __lowercase : Optional[int] = outputs[0][-1] # Encoder-/Decoder-only models __lowercase : Any = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowercase : Optional[int] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__a ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() __lowercase : int = model(**__a ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowercase : Any = copy.deepcopy(__a ) __lowercase : Dict = None __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() __lowercase : Optional[int] = model(**__a ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowercase : List[str] = copy.deepcopy(__a ) __lowercase : Optional[Any] = False __lowercase : str = model_class(__a ) model.to(__a ) model.eval() __lowercase : List[Any] = model(**__a )
306
0
from __future__ import annotations from typing import Any class lowerCAmelCase : '''simple docstring''' def __init__( self : Any , __a : List[Any] , __a : Any , __a : Optional[Any] = 0 ) -> Tuple: """simple docstring""" __lowercase , __lowercase : Optional[int] = row, column __lowercase : Dict = [[default_value for c in range(_a )] for r in range(_a )] def __str__( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : Dict = F"Matrix consist of {self.row} rows and {self.column} columns\n" # Make string identifier __lowercase : int = 0 for row_vector in self.array: for obj in row_vector: __lowercase : List[str] = max(_a , len(str(_a ) ) ) __lowercase : List[Any] = F"%{max_element_length}s" # Make string and return def single_line(__a : Any ) -> str: nonlocal string_format_identifier __lowercase : Optional[Any] = """[""" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(_a ) for row_vector in self.array ) return s def __repr__( self : Union[str, Any] ) -> str: """simple docstring""" return str(self ) def lowerCAmelCase ( self : List[Any] , __a : List[Any] ) -> str: """simple docstring""" if not (isinstance(_a , (list, tuple) ) and len(_a ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : str , __a : Any ) -> List[str]: """simple docstring""" assert self.validate_indicies(_a ) return self.array[loc[0]][loc[1]] def __setitem__( self : str , __a : Optional[int] , __a : List[str] ) -> Optional[int]: """simple docstring""" assert self.validate_indicies(_a ) __lowercase : int = value def __add__( self : int , __a : Optional[Any] ) -> str: """simple docstring""" assert isinstance(_a , _a ) assert self.row == another.row and self.column == another.column # Add __lowercase : Union[str, Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __lowercase : Tuple = self[r, c] + another[r, c] return result def __neg__( self : int ) -> List[Any]: """simple docstring""" __lowercase : Tuple = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __lowercase : Tuple = -self[r, c] return result def __sub__( self : Union[str, Any] , __a : Dict ) -> str: """simple docstring""" return self + (-another) def __mul__( self : str , __a : int ) -> List[Any]: """simple docstring""" if isinstance(_a , (int, float) ): # Scalar multiplication __lowercase : Union[str, Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __lowercase : str = self[r, c] * another return result elif isinstance(_a , _a ): # Matrix multiplication assert self.column == another.row __lowercase : Optional[Any] = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: __lowercase : Union[str, Any] = F"Unsupported type given for another ({type(_a )})" raise TypeError(_a ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase : List[Any] = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): __lowercase : Union[str, Any] = self[r, c] return result def lowerCAmelCase ( self : Optional[Any] , __a : List[str] , __a : List[str] ) -> Union[str, Any]: """simple docstring""" assert isinstance(_a , _a ) and isinstance(_a , _a ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate __lowercase : Any = v.transpose() __lowercase : List[Any] = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def snake_case_ ( ): # a^(-1) __lowercase : Tuple = Matrix(3 , 3 , 0 ) for i in range(3 ): __lowercase : Tuple = 1 print(F"a^(-1) is {ainv}" ) # u, v __lowercase : List[str] = Matrix(3 , 1 , 0 ) __lowercase , __lowercase , __lowercase : List[str] = 1, 2, -3 __lowercase : Union[str, Any] = Matrix(3 , 1 , 0 ) __lowercase , __lowercase , __lowercase : List[Any] = 4, -2, 5 print(F"u is {u}" ) print(F"v is {v}" ) print(F"uv^T is {u * v.transpose()}" ) # Sherman Morrison print(F"(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCAmelCase__ , lowerCAmelCase__ )}" ) def snake_case_ ( ): import doctest doctest.testmod() testa()
361
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : str = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } lowerCamelCase : Optional[Any] = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): for attribute in key.split(""".""" ): __lowercase : List[str] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if weight_type is not None: __lowercase : Union[str, Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ).shape else: __lowercase : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": __lowercase : Dict = value elif weight_type == "weight_g": __lowercase : Union[str, Any] = value elif weight_type == "weight_v": __lowercase : List[Any] = value elif weight_type == "bias": __lowercase : int = value elif weight_type == "running_mean": __lowercase : List[Any] = value elif weight_type == "running_var": __lowercase : int = value elif weight_type == "num_batches_tracked": __lowercase : int = value elif weight_type == "inv_freq": __lowercase : Optional[Any] = value else: __lowercase : Any = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] ): __lowercase : str = [] __lowercase : Any = fairseq_model.state_dict() __lowercase : List[str] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): __lowercase : Optional[Any] = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , hf_model.config.feat_extract_norm == """group""" , ) __lowercase : List[str] = True else: for key, mapped_key in MAPPING.items(): __lowercase : Any = """wav2vec2_conformer.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __lowercase : Tuple = True if "*" in mapped_key: __lowercase : List[Any] = name.split(lowerCAmelCase_ )[0].split(""".""" )[-2] __lowercase : Any = mapped_key.replace("""*""" , lowerCAmelCase_ ) if "pos_bias_u" in name: __lowercase : Any = None elif "pos_bias_v" in name: __lowercase : Tuple = None elif "weight_g" in name: __lowercase : Union[str, Any] = """weight_g""" elif "weight_v" in name: __lowercase : Dict = """weight_v""" elif "bias" in name: __lowercase : Union[str, Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowercase : str = """weight""" elif "running_mean" in name: __lowercase : str = """running_mean""" elif "inv_freq" in name: __lowercase : List[Any] = """inv_freq""" elif "running_var" in name: __lowercase : Any = """running_var""" elif "num_batches_tracked" in name: __lowercase : Any = """num_batches_tracked""" else: __lowercase : Optional[int] = None set_recursively(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) continue if not is_used: unused_weights.append(lowerCAmelCase_ ) logger.warning(F"Unused weights: {unused_weights}" ) def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] ): __lowercase : List[Any] = full_name.split("""conv_layers.""" )[-1] __lowercase : int = name.split(""".""" ) __lowercase : Optional[Any] = int(items[0] ) __lowercase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __lowercase : Union[str, Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __lowercase : List[str] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) __lowercase : Union[str, Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) __lowercase : Dict = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(lowerCAmelCase_ ) @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Dict=True ): if config_path is not None: __lowercase : List[Any] = WavaVecaConformerConfig.from_pretrained(lowerCAmelCase_ , hidden_act="""swish""" ) else: __lowercase : List[Any] = WavaVecaConformerConfig() if "rope" in checkpoint_path: __lowercase : Tuple = """rotary""" if is_finetuned: if dict_path: __lowercase : Any = Dictionary.load(lowerCAmelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __lowercase : List[Any] = target_dict.pad_index __lowercase : Optional[int] = target_dict.bos_index __lowercase : List[Any] = target_dict.eos_index __lowercase : List[str] = len(target_dict.symbols ) __lowercase : Union[str, Any] = os.path.join(lowerCAmelCase_ , """vocab.json""" ) if not os.path.isdir(lowerCAmelCase_ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowerCAmelCase_ ) ) return os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowercase : Tuple = target_dict.indices # fairseq has the <pad> and <s> switched __lowercase : int = 0 __lowercase : Any = 1 with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Dict = WavaVecaCTCTokenizer( lowerCAmelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowerCAmelCase_ , ) __lowercase : List[Any] = True if config.feat_extract_norm == """layer""" else False __lowercase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) __lowercase : Optional[int] = WavaVecaProcessor(feature_extractor=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) __lowercase : Union[str, Any] = WavaVecaConformerForCTC(lowerCAmelCase_ ) else: __lowercase : Optional[Any] = WavaVecaConformerForPreTraining(lowerCAmelCase_ ) if is_finetuned: __lowercase , __lowercase , __lowercase : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __lowercase : List[Any] = argparse.Namespace(task="""audio_pretraining""" ) __lowercase : Optional[Any] = fairseq.tasks.setup_task(lowerCAmelCase_ ) __lowercase , __lowercase , __lowercase : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase_ ) __lowercase : Dict = model[0].eval() recursively_load_weights(lowerCAmelCase_ , lowerCAmelCase_ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) lowerCamelCase : Any = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
306
0
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def snake_case_ ( ): __lowercase : Optional[Any] = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } __lowercase : Tuple = Dataset.from_dict(lowercase__ ) return dataset class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase : int = get_dataset() __lowercase : List[Any] = make_duplicate_clusters(__a , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase : List[Any] = get_dataset() __lowercase : str = deduplicate_dataset(__a ) self.assertEqual(len(__a ) , 2 ) print(__a ) self.assertEqual(duplicate_clusters[0][0]["""copies"""] , 2 ) self.assertEqual(duplicate_clusters[0][0]["""is_extreme"""] , __a )
362
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError("""String lengths must match!""" ) __lowercase : str = 0 for chara, chara in zip(lowerCAmelCase_ , lowerCAmelCase_ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
306
0
import math def snake_case_ ( lowerCAmelCase_ : Optional[int] ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case_ ( lowerCAmelCase_ : List[str] = 10001 ): try: __lowercase : Optional[Any] = int(_lowerCamelCase ) except (TypeError, ValueError): raise TypeError("""Parameter nth must be int or castable to int.""" ) from None if nth <= 0: raise ValueError("""Parameter nth must be greater than or equal to one.""" ) __lowercase : list[int] = [] __lowercase : Optional[Any] = 2 while len(_lowerCamelCase ) < nth: if is_prime(_lowerCamelCase ): primes.append(_lowerCamelCase ) num += 1 else: num += 1 return primes[len(_lowerCamelCase ) - 1] if __name__ == "__main__": print(f'''{solution() = }''')
363
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def snake_case_ ( lowerCAmelCase_ : Tuple ): if isinstance(lowerCAmelCase_ , collections.abc.Iterable ): return x return (x, x) @require_flax class lowerCAmelCase : '''simple docstring''' def lowerCAmelCase ( self : Any , __a : Any , __a : List[Any] ) -> Optional[Any]: """simple docstring""" pass def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" pass def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : np.ndarray , __a : float ) -> List[Any]: """simple docstring""" __lowercase : List[str] = np.abs((a - b) ).max() self.assertLessEqual(__a , __a , F"Difference between torch and flax is {diff} (>= {tol})." ) def lowerCAmelCase ( self : Tuple , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[Any] , __a : Optional[Any]=None , **__a : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : str = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : str = FlaxVisionTextDualEncoderModel(__a ) __lowercase : Optional[Any] = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def lowerCAmelCase ( self : Optional[int] , __a : Optional[int] , __a : Dict , __a : Dict , __a : List[str] , __a : Optional[Any]=None , **__a : str ) -> str: """simple docstring""" __lowercase , __lowercase : List[str] = self.get_vision_text_model(__a , __a ) __lowercase : Union[str, Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : Any = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : Union[str, Any] , __a : Union[str, Any] , __a : Dict , __a : int=None , **__a : int ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Tuple = self.get_vision_text_model(__a , __a ) __lowercase : Union[str, Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : List[str] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : List[Any] = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) __lowercase : int = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowercase : int = FlaxVisionTextDualEncoderModel.from_pretrained(__a ) __lowercase : Tuple = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) __lowercase : int = after_output[0] __lowercase : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__a , 1E-3 ) def lowerCAmelCase ( self : List[Any] , __a : Any , __a : Tuple , __a : Optional[int] , __a : str , __a : Optional[Any]=None , **__a : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : str = self.get_vision_text_model(__a , __a ) __lowercase : Optional[Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : Union[str, Any] = model( input_ids=__a , pixel_values=__a , attention_mask=__a , output_attentions=__a ) __lowercase : Optional[int] = output.vision_model_output.attentions self.assertEqual(len(__a ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase : Optional[int] = to_atuple(vision_model.config.image_size ) __lowercase : List[str] = to_atuple(vision_model.config.patch_size ) __lowercase : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase : int = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase : Dict = output.text_model_output.attentions self.assertEqual(len(__a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowerCAmelCase ( self : Optional[int] , __a : List[str] , __a : List[Any] , __a : Optional[Any] ) -> Optional[int]: """simple docstring""" pt_model.to(__a ) pt_model.eval() # prepare inputs __lowercase : Union[str, Any] = inputs_dict __lowercase : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): __lowercase : Union[str, Any] = pt_model(**__a ).to_tuple() __lowercase : Tuple = fx_model(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(__a , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__a ) __lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained(__a , from_pt=__a ) __lowercase : Dict = fx_model_loaded(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(__a , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__a ) __lowercase : str = VisionTextDualEncoderModel.from_pretrained(__a , from_flax=__a ) pt_model_loaded.to(__a ) pt_model_loaded.eval() with torch.no_grad(): __lowercase : List[Any] = pt_model_loaded(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(__a , pt_output_loaded.numpy() , 4E-2 ) def lowerCAmelCase ( self : Optional[int] , __a : List[Any] , __a : int , __a : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : str = VisionTextDualEncoderModel(__a ) __lowercase : Union[str, Any] = FlaxVisionTextDualEncoderModel(__a ) __lowercase : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __a ) __lowercase : Any = fx_state self.check_pt_flax_equivalence(__a , __a , __a ) def lowerCAmelCase ( self : Any , __a : Any , __a : Dict , __a : Tuple ) -> str: """simple docstring""" __lowercase : int = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : Union[str, Any] = VisionTextDualEncoderModel(__a ) __lowercase : Dict = FlaxVisionTextDualEncoderModel(__a ) __lowercase : Tuple = load_flax_weights_in_pytorch_model(__a , fx_model.params ) self.check_pt_flax_equivalence(__a , __a , __a ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase : int = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__a ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() self.check_save_load(**__a ) def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" __lowercase : str = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__a ) @is_pt_flax_cross_test def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.prepare_config_and_inputs() __lowercase : Optional[int] = config_inputs_dict.pop("""vision_config""" ) __lowercase : Optional[int] = config_inputs_dict.pop("""text_config""" ) __lowercase : Dict = config_inputs_dict self.check_equivalence_pt_to_flax(__a , __a , __a ) self.check_equivalence_flax_to_pt(__a , __a , __a ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase , __lowercase : List[Any] = self.get_pretrained_model_and_inputs() __lowercase : Dict = model_a(**__a ) __lowercase : Any = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__a ) __lowercase : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(__a ) __lowercase : Optional[int] = model_a(**__a ) __lowercase : Tuple = after_outputs[0] __lowercase : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__a , 1E-5 ) @require_flax class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" __lowercase : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=__a , text_from_pt=__a , ) __lowercase : int = 13 __lowercase : Union[str, Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowercase : Dict = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __lowercase : Tuple = random_attention_mask([batch_size, 4] ) __lowercase : str = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCAmelCase ( self : Optional[Any] , __a : Union[str, Any] , __a : int ) -> Dict: """simple docstring""" __lowercase : int = FlaxViTModel(__a ) __lowercase : List[Any] = FlaxBertModel(__a ) return vision_model, text_model def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = FlaxViTModelTester(self ) __lowercase : str = FlaxBertModelTester(self ) __lowercase : List[str] = vit_model_tester.prepare_config_and_inputs() __lowercase : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase : Optional[int] = vision_config_and_inputs __lowercase , __lowercase , __lowercase , __lowercase : Any = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=__a , text_from_pt=__a , ) __lowercase : Tuple = 13 __lowercase : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowercase : Tuple = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __lowercase : List[Any] = random_attention_mask([batch_size, 4] ) __lowercase : int = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCAmelCase ( self : str , __a : str , __a : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Dict = FlaxCLIPVisionModel(__a ) __lowercase : Optional[Any] = FlaxBertModel(__a ) return vision_model, text_model def lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase : List[Any] = FlaxCLIPVisionModelTester(self ) __lowercase : Optional[Any] = FlaxBertModelTester(self ) __lowercase : Any = clip_model_tester.prepare_config_and_inputs() __lowercase : Optional[Any] = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase : Dict = vision_config_and_inputs __lowercase , __lowercase , __lowercase , __lowercase : Optional[int] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 ) __lowercase : int = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) __lowercase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowercase : Tuple = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=__a , padding=__a , return_tensors="""np""" ) __lowercase : Optional[int] = model(**__a ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowercase : Optional[Any] = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , __a , atol=1E-3 ) )
306
0
from __future__ import annotations from typing import Any def snake_case_ ( lowerCAmelCase_ : int ): create_state_space_tree(a_ , [] , 0 ) def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str ): if index == len(a_ ): print(a_ ) return create_state_space_tree(a_ , a_ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(a_ , a_ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": lowerCamelCase : str = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['''A''', '''B''', '''C''']) generate_all_subsequences(seq)
364
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
306
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : Any = {'''vocab_file''': '''sentencepiece.bpe.model'''} lowerCamelCase : Optional[Any] = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', } } lowerCamelCase : Dict = { '''camembert-base''': 512, } lowerCamelCase : Optional[Any] = '''▁''' class lowerCAmelCase ( __lowercase ): '''simple docstring''' _A : str = VOCAB_FILES_NAMES _A : Any = PRETRAINED_VOCAB_FILES_MAP _A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : str = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , __a : List[Any] , __a : List[str]="<s>" , __a : List[str]="</s>" , __a : Union[str, Any]="</s>" , __a : Union[str, Any]="<s>" , __a : Tuple="<unk>" , __a : Optional[int]="<pad>" , __a : Optional[Any]="<mask>" , __a : List[Any]=["<s>NOTUSED", "</s>NOTUSED"] , __a : Optional[Any] = None , **__a : List[str] , ) -> None: """simple docstring""" __lowercase : str = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token __lowercase : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , cls_token=_a , pad_token=_a , mask_token=_a , additional_special_tokens=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) __lowercase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_a ) ) __lowercase : str = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> __lowercase : Tuple = {'''<s>NOTUSED''': 0, '''<pad>''': 1, '''</s>NOTUSED''': 2, '''<unk>''': 3} __lowercase : Union[str, Any] = len(self.fairseq_tokens_to_ids ) __lowercase : str = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) __lowercase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def lowerCAmelCase ( self : List[str] , __a : Optional[int] , __a : Any = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase : Dict = [self.cls_token_id] __lowercase : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase ( self : Tuple , __a : Any , __a : List[Any] = None , __a : Any = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is None: return [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1, 1] + ([0] * len(_a )) + [1] def lowerCAmelCase ( self : int , __a : str , __a : List[Any] = None ) -> List[int]: """simple docstring""" __lowercase : Any = [self.sep_token_id] __lowercase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : List[Any] = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase ( self : Any , __a : List[str] ) -> List[str]: """simple docstring""" return self.sp_model.encode(_a , out_type=_a ) def lowerCAmelCase ( self : Union[str, Any] , __a : Any ) -> List[Any]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(_a ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(_a ) def lowerCAmelCase ( self : List[str] , __a : Optional[int] ) -> Optional[Any]: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCAmelCase ( self : str , __a : int ) -> Tuple: """simple docstring""" __lowercase : Dict = [] __lowercase : int = '''''' __lowercase : int = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_a ) + token __lowercase : Optional[int] = True __lowercase : Any = [] else: current_sub_tokens.append(_a ) __lowercase : str = False out_string += self.sp_model.decode(_a ) return out_string.strip() def __getstate__( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = self.__dict__.copy() __lowercase : int = None return state def __setstate__( self : List[Any] , __a : Any ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __lowercase : List[str] = {} __lowercase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase ( self : int , __a : List[Any] , __a : Dict = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_a ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __lowercase : int = os.path.join( _a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , """wb""" ) as fi: __lowercase : Tuple = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,)
365
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowerCamelCase : str = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex lowerCamelCase : Union[str, Any] = 10 lowerCamelCase : List[str] = 2_56 def snake_case_ ( lowerCAmelCase_ : List[str] ): if len(lowerCAmelCase_ ) < MIN_NUM_TOKENS: return None __lowercase : Dict = MinHash(num_perm=lowerCAmelCase_ ) for token in set(lowerCAmelCase_ ): min_hash.update(token.encode() ) return min_hash def snake_case_ ( lowerCAmelCase_ : str ): return {t for t in NON_ALPHA.split(lowerCAmelCase_ ) if len(t.strip() ) > 0} class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , *, __a : float = 0.85 , ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = duplication_jaccard_threshold __lowercase : Optional[Any] = NUM_PERM __lowercase : List[Any] = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) __lowercase : List[str] = defaultdict(__a ) def lowerCAmelCase ( self : str , __a : Tuple , __a : MinHash ) -> None: """simple docstring""" __lowercase : List[Any] = self._index.query(__a ) if code_key in self._index.keys: print(F"Duplicate key {code_key}" ) return self._index.insert(__a , __a ) if len(__a ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__a ) break else: self._duplicate_clusters[close_duplicates[0]].add(__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[List[Dict]]: """simple docstring""" __lowercase : Dict = [] for base, duplicates in self._duplicate_clusters.items(): __lowercase : List[str] = [base] + list(__a ) # reformat the cluster to be a list of dict __lowercase : Optional[Any] = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(__a ) return duplicate_clusters def lowerCAmelCase ( self : Any , __a : int ) -> None: """simple docstring""" __lowercase : Tuple = self.get_duplicate_clusters() with open(__a , """w""" ) as f: json.dump(__a , __a ) def snake_case_ ( lowerCAmelCase_ : str ): __lowercase , __lowercase : Union[str, Any] = element __lowercase : Optional[Any] = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def snake_case_ ( lowerCAmelCase_ : Type[Dataset] ): with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(lowerCAmelCase_ , max_queue_size=10000 ) , chunksize=100 , ): if data is not None: yield data def snake_case_ ( lowerCAmelCase_ : Type[Dataset] , lowerCAmelCase_ : float ): __lowercase : Dict = DuplicationIndex(duplication_jaccard_threshold=lowerCAmelCase_ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(lowerCAmelCase_ ) ) , max_queue_size=100 ) ): di.add(lowerCAmelCase_ , lowerCAmelCase_ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : List[str] = get_tokens(lowerCAmelCase_ ) __lowercase : Dict = get_tokens(lowerCAmelCase_ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) lowerCamelCase : List[str] = None def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] ): __lowercase : Union[str, Any] = [] for elementa in cluster: __lowercase : Tuple = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: __lowercase : Dict = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(lowerCAmelCase_ , lowerCAmelCase_ ) >= jaccard_threshold: elementa["copies"] += 1 break else: __lowercase : Dict = 1 extremes.append(lowerCAmelCase_ ) return extremes def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple ): global _shared_dataset __lowercase : Tuple = dataset __lowercase : Optional[int] = [] __lowercase : str = partial(_find_cluster_extremes_shared , jaccard_threshold=lowerCAmelCase_ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( lowerCAmelCase_ , lowerCAmelCase_ , ) , total=len(lowerCAmelCase_ ) , ): extremes_list.append(lowerCAmelCase_ ) return extremes_list def snake_case_ ( lowerCAmelCase_ : Type[Dataset] , lowerCAmelCase_ : float = 0.85 ): __lowercase : Optional[int] = make_duplicate_clusters(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Tuple = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} __lowercase : int = {} __lowercase : Dict = find_extremes(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for extremes in extremes_clusters: for element in extremes: __lowercase : Optional[Any] = element __lowercase : int = duplicate_indices - set(extreme_dict.keys() ) __lowercase : int = dataset.filter(lambda lowerCAmelCase_ , lowerCAmelCase_ : idx not in remove_indices , with_indices=lowerCAmelCase_ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: __lowercase : List[str] = element["""base_index"""] in extreme_dict if element["is_extreme"]: __lowercase : str = extreme_dict[element["""base_index"""]]["""copies"""] print(F"Original dataset size: {len(lowerCAmelCase_ )}" ) print(F"Number of duplicate clusters: {len(lowerCAmelCase_ )}" ) print(F"Files in duplicate cluster: {len(lowerCAmelCase_ )}" ) print(F"Unique files in duplicate cluster: {len(lowerCAmelCase_ )}" ) print(F"Filtered dataset size: {len(lowerCAmelCase_ )}" ) return ds_filter, duplicate_clusters
306
0
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(0 ) != 0 ) def snake_case_ ( ): assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
366
from ...processing_utils import ProcessorMixin class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = ['''image_processor''', '''feature_extractor'''] _A : List[Any] = '''TvltImageProcessor''' _A : Optional[int] = '''TvltFeatureExtractor''' def __init__( self : str , __a : List[Any] , __a : Tuple ) -> Optional[Any]: """simple docstring""" super().__init__(image_processor=__a , feature_extractor=__a ) __lowercase : Union[str, Any] = image_processor __lowercase : Tuple = feature_extractor def __call__( self : Tuple , __a : Optional[int]=None , __a : Dict=None , __a : Union[str, Any]=None , __a : Tuple=None , __a : Optional[Any]=False , __a : List[Any]=False , *__a : List[str] , **__a : List[Any] , ) -> Dict: """simple docstring""" if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) __lowercase : Tuple = None if images is not None: __lowercase : Any = self.image_processor(__a , mask_pixel=__a , *__a , **__a ) if images_mixed is not None: __lowercase : Union[str, Any] = self.image_processor(__a , is_mixed=__a , *__a , **__a ) if audio is not None: __lowercase : Optional[Any] = self.feature_extractor( __a , *__a , sampling_rate=__a , mask_audio=__a , **__a ) __lowercase : Tuple = {} if audio is not None: output_dict.update(__a ) if images is not None: output_dict.update(__a ) if images_mixed_dict is not None: output_dict.update(__a ) return output_dict @property def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = self.image_processor.model_input_names __lowercase : Union[str, Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
306
0
import os import sys import unittest lowerCamelCase : Tuple = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path lowerCamelCase : Tuple = os.path.join(git_repo_path, '''src''', '''transformers''') lowerCamelCase : str = '''\n{0} = None\n''' lowerCamelCase : Optional[Any] = '''\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n''' lowerCamelCase : Dict = '''\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n''' class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" __lowercase : Optional[int] = find_backend(""" _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")""" ) self.assertIsNone(lowerCAmelCase__ ) __lowercase : int = find_backend(""" if not is_tokenizers_available():""" ) self.assertEqual(lowerCAmelCase__ , """tokenizers""" ) __lowercase : Any = find_backend(""" if not is_tensorflow_text_available():""" ) self.assertEqual(lowerCAmelCase__ , """tensorflow_text""" ) __lowercase : int = find_backend(""" if not (is_sentencepiece_available() and is_tokenizers_available()):""" ) self.assertEqual(lowerCAmelCase__ , """sentencepiece_and_tokenizers""" ) __lowercase : Optional[Any] = find_backend( """ if not (is_sentencepiece_available() and is_tensorflow_text_available()):""" ) self.assertEqual(lowerCAmelCase__ , """sentencepiece_and_tensorflow_text""" ) __lowercase : List[str] = find_backend( """ if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):""" ) self.assertEqual(lowerCAmelCase__ , """sentencepiece_and_tokenizers_and_vision""" ) def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""" , lowerCAmelCase__ ) self.assertIn("""tensorflow_text""" , lowerCAmelCase__ ) self.assertIn("""sentencepiece_and_tokenizers""" , lowerCAmelCase__ ) # Likewise, we can't assert on the exact content of a key self.assertIn("""BertModel""" , objects["""torch"""] ) self.assertIn("""TFBertModel""" , objects["""tf"""] ) self.assertIn("""FlaxBertModel""" , objects["""flax"""] ) self.assertIn("""BertModel""" , objects["""torch"""] ) self.assertIn("""TFBertTokenizer""" , objects["""tensorflow_text"""] ) self.assertIn("""convert_slow_tokenizer""" , objects["""sentencepiece_and_tokenizers"""] ) def lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" __lowercase : List[Any] = create_dummy_object("""CONSTANT""" , """'torch'""" ) self.assertEqual(lowerCAmelCase__ , """\nCONSTANT = None\n""" ) __lowercase : Optional[Any] = create_dummy_object("""function""" , """'torch'""" ) self.assertEqual( lowerCAmelCase__ , """\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) __lowercase : Union[str, Any] = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n" __lowercase : Union[str, Any] = create_dummy_object("""FakeClass""" , """'torch'""" ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" __lowercase : Tuple = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n" __lowercase : Any = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""] , lowerCAmelCase__ )
367
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Any , __a : Tuple , __a : Optional[int]=13 , __a : int=7 , __a : List[str]=False , __a : Optional[int]=True , __a : Optional[int]=False , __a : Dict=True , __a : Optional[int]=33 , __a : Dict=32 , __a : Optional[int]=5 , __a : Union[str, Any]=4 , __a : List[str]=37 , __a : Tuple="gelu" , __a : List[str]=0.1 , __a : Dict=0.1 , __a : List[Any]=512 , __a : Any=16 , __a : Optional[Any]=2 , __a : List[Any]=0.02 , __a : int=3 , __a : Union[str, Any]=4 , __a : Optional[int]=None , ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = parent __lowercase : int = batch_size __lowercase : Any = seq_length __lowercase : str = is_training __lowercase : str = use_input_mask __lowercase : Optional[int] = use_token_type_ids __lowercase : List[Any] = use_labels __lowercase : Optional[Any] = vocab_size __lowercase : int = hidden_size __lowercase : List[Any] = num_hidden_layers __lowercase : Dict = num_attention_heads __lowercase : Any = intermediate_size __lowercase : Dict = hidden_act __lowercase : Union[str, Any] = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : List[str] = max_position_embeddings __lowercase : Union[str, Any] = type_vocab_size __lowercase : Dict = type_sequence_label_size __lowercase : Union[str, Any] = initializer_range __lowercase : List[Any] = num_labels __lowercase : str = num_choices __lowercase : Tuple = scope def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : int = None if self.use_input_mask: __lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : str = None __lowercase : Optional[Any] = None __lowercase : Tuple = None if self.use_labels: __lowercase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : List[Any] , __a : int , __a : int , __a : Dict , __a : Union[str, Any] , __a : List[str] , __a : str ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = EsmModel(config=__a ) model.to(__a ) model.eval() __lowercase : str = model(__a , attention_mask=__a ) __lowercase : List[Any] = model(__a ) __lowercase : Optional[int] = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : Union[str, Any] , __a : Dict , __a : List[Any] , __a : Tuple , __a : Union[str, Any] , __a : str , __a : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase : List[str] = EsmForMaskedLM(config=__a ) model.to(__a ) model.eval() __lowercase : int = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[int] , __a : Union[str, Any] , __a : List[Any] , __a : Tuple , __a : Tuple , __a : Optional[int] , __a : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = self.num_labels __lowercase : Any = EsmForTokenClassification(config=__a ) model.to(__a ) model.eval() __lowercase : Optional[Any] = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase : Any = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : List[str] = config_and_inputs __lowercase : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Optional[Any] = False _A : Any = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) _A : Optional[Any] = () _A : List[Any] = ( { '''feature-extraction''': EsmModel, '''fill-mask''': EsmForMaskedLM, '''text-classification''': EsmForSequenceClassification, '''token-classification''': EsmForTokenClassification, '''zero-shot''': EsmForSequenceClassification, } if is_torch_available() else {} ) _A : Optional[Any] = True def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : Optional[int] = EsmModelTester(self ) __lowercase : Tuple = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase : Union[str, Any] = type self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : List[str] = EsmModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] __lowercase : List[str] = EsmEmbeddings(config=__a ) __lowercase : Union[str, Any] = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) __lowercase : int = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) __lowercase : str = create_position_ids_from_input_ids(__a , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__a , __a ) ) ) def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] __lowercase : Optional[Any] = EsmEmbeddings(config=__a ) __lowercase : Optional[int] = torch.empty(2 , 4 , 30 ) __lowercase : Tuple = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] __lowercase : List[str] = torch.as_tensor([expected_single_positions, expected_single_positions] ) __lowercase : Any = embeddings.create_position_ids_from_inputs_embeds(__a ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__a , __a ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" pass @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" pass @require_torch class lowerCAmelCase ( __a ): '''simple docstring''' @slow def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): __lowercase : Tuple = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() __lowercase : Tuple = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase : List[str] = model(__a )[0] __lowercase : Union[str, Any] = 33 __lowercase : Union[str, Any] = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , __a ) __lowercase : List[Any] = torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): __lowercase : int = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() __lowercase : int = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) __lowercase : Any = model(__a )[0] # compare the actual values for a slice. __lowercase : int = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) )
306
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : Any = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : Optional[Any] ): __lowercase : str = DPTConfig(embedding_type="""hybrid""" ) if "large" in checkpoint_url: __lowercase : Any = 1024 __lowercase : List[str] = 4096 __lowercase : List[str] = 24 __lowercase : Union[str, Any] = 16 __lowercase : Dict = [5, 11, 17, 23] __lowercase : Optional[int] = [256, 512, 1024, 1024] __lowercase : Union[str, Any] = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: __lowercase : Optional[Any] = 768 __lowercase : Tuple = [1, 1, 1, 0.5] __lowercase : Dict = [256, 512, 768, 768] __lowercase : str = 150 __lowercase : Any = 16 __lowercase : Tuple = (1, 384, 384) __lowercase : List[Any] = False __lowercase : Optional[Any] = """project""" if "ade" in checkpoint_url: __lowercase : List[str] = True __lowercase : int = 768 __lowercase : Tuple = [1, 1, 1, 0.5] __lowercase : Optional[Any] = 150 __lowercase : Optional[Any] = 16 __lowercase : int = """huggingface/label-files""" __lowercase : Any = """ade20k-id2label.json""" __lowercase : Dict = json.load(open(cached_download(hf_hub_url(_UpperCamelCase , _UpperCamelCase , repo_type="""dataset""" ) ) , """r""" ) ) __lowercase : int = {int(_UpperCamelCase ): v for k, v in idalabel.items()} __lowercase : List[Any] = idalabel __lowercase : Any = {v: k for k, v in idalabel.items()} __lowercase : List[Any] = [1, 150, 480, 480] return config, expected_shape def snake_case_ ( lowerCAmelCase_ : Tuple ): __lowercase : Union[str, Any] = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(_UpperCamelCase , _UpperCamelCase ) def snake_case_ ( lowerCAmelCase_ : List[Any] ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): __lowercase : List[str] = name.replace("""pretrained.model""" , """dpt.encoder""" ) if "pretrained.model" in name: __lowercase : int = name.replace("""pretrained.model""" , """dpt.embeddings""" ) if "patch_embed" in name: __lowercase : Optional[int] = name.replace("""patch_embed""" , """""" ) if "pos_embed" in name: __lowercase : Optional[int] = name.replace("""pos_embed""" , """position_embeddings""" ) if "attn.proj" in name: __lowercase : str = name.replace("""attn.proj""" , """attention.output.dense""" ) if "proj" in name and "project" not in name: __lowercase : str = name.replace("""proj""" , """projection""" ) if "blocks" in name: __lowercase : List[str] = name.replace("""blocks""" , """layer""" ) if "mlp.fc1" in name: __lowercase : Any = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __lowercase : Optional[int] = name.replace("""mlp.fc2""" , """output.dense""" ) if "norm1" in name and "backbone" not in name: __lowercase : Dict = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name and "backbone" not in name: __lowercase : str = name.replace("""norm2""" , """layernorm_after""" ) if "scratch.output_conv" in name: __lowercase : int = name.replace("""scratch.output_conv""" , """head""" ) if "scratch" in name: __lowercase : Dict = name.replace("""scratch""" , """neck""" ) if "layer1_rn" in name: __lowercase : Tuple = name.replace("""layer1_rn""" , """convs.0""" ) if "layer2_rn" in name: __lowercase : int = name.replace("""layer2_rn""" , """convs.1""" ) if "layer3_rn" in name: __lowercase : Dict = name.replace("""layer3_rn""" , """convs.2""" ) if "layer4_rn" in name: __lowercase : Dict = name.replace("""layer4_rn""" , """convs.3""" ) if "refinenet" in name: __lowercase : Union[str, Any] = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 __lowercase : str = name.replace(F"refinenet{layer_idx}" , F"fusion_stage.layers.{abs(layer_idx-4 )}" ) if "out_conv" in name: __lowercase : Tuple = name.replace("""out_conv""" , """projection""" ) if "resConfUnit1" in name: __lowercase : Tuple = name.replace("""resConfUnit1""" , """residual_layer1""" ) if "resConfUnit2" in name: __lowercase : int = name.replace("""resConfUnit2""" , """residual_layer2""" ) if "conv1" in name: __lowercase : List[str] = name.replace("""conv1""" , """convolution1""" ) if "conv2" in name: __lowercase : str = name.replace("""conv2""" , """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: __lowercase : Union[str, Any] = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: __lowercase : Optional[int] = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: __lowercase : List[Any] = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: __lowercase : Tuple = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: __lowercase : int = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: __lowercase : int = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: __lowercase : Optional[int] = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: __lowercase : Any = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: __lowercase : Optional[Any] = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: __lowercase : Optional[int] = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: __lowercase : Optional[Any] = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: __lowercase : Optional[int] = name.replace("""pretrained""" , """dpt""" ) if "bn" in name: __lowercase : str = name.replace("""bn""" , """batch_norm""" ) if "head" in name: __lowercase : List[Any] = name.replace("""head""" , """head.head""" ) if "encoder.norm" in name: __lowercase : str = name.replace("""encoder.norm""" , """layernorm""" ) if "auxlayer" in name: __lowercase : Optional[Any] = name.replace("""auxlayer""" , """auxiliary_head.head""" ) if "backbone" in name: __lowercase : Tuple = name.replace("""backbone""" , """backbone.bit.encoder""" ) if ".." in name: __lowercase : Dict = name.replace("""..""" , """.""" ) if "stem.conv" in name: __lowercase : List[str] = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: __lowercase : int = name.replace("""blocks""" , """layers""" ) if "convolution" in name and "backbone" in name: __lowercase : Optional[Any] = name.replace("""convolution""" , """conv""" ) if "layer" in name and "backbone" in name: __lowercase : Dict = name.replace("""layer""" , """layers""" ) if "backbone.bit.encoder.bit" in name: __lowercase : Dict = name.replace("""backbone.bit.encoder.bit""" , """backbone.bit""" ) if "embedder.conv" in name: __lowercase : List[Any] = name.replace("""embedder.conv""" , """embedder.convolution""" ) if "backbone.bit.encoder.stem.norm" in name: __lowercase : List[Any] = name.replace("""backbone.bit.encoder.stem.norm""" , """backbone.bit.embedder.norm""" ) return name def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowercase : str = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.weight" ) __lowercase : str = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict __lowercase : Optional[Any] = in_proj_weight[: config.hidden_size, :] __lowercase : Any = in_proj_bias[: config.hidden_size] __lowercase : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowercase : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] __lowercase : List[str] = in_proj_bias[-config.hidden_size :] def snake_case_ ( ): __lowercase : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase : str = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return im @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] ): __lowercase , __lowercase : Any = get_dpt_config(_UpperCamelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") __lowercase : Dict = torch.load(_UpperCamelCase , map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(_UpperCamelCase ) # rename keys for key in state_dict.copy().keys(): __lowercase : List[str] = state_dict.pop(_UpperCamelCase ) __lowercase : Optional[Any] = val # read in qkv matrices read_in_q_k_v(_UpperCamelCase , _UpperCamelCase ) # load HuggingFace model __lowercase : Optional[int] = DPTForSemanticSegmentation(_UpperCamelCase ) if """ade""" in checkpoint_url else DPTForDepthEstimation(_UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) model.eval() # Check outputs on an image __lowercase : List[Any] = 480 if """ade""" in checkpoint_url else 384 __lowercase : List[str] = DPTImageProcessor(size=_UpperCamelCase ) __lowercase : str = prepare_img() __lowercase : Optional[int] = image_processor(_UpperCamelCase , return_tensors="""pt""" ) # forward pass __lowercase : Optional[Any] = model(**_UpperCamelCase ).logits if """ade""" in checkpoint_url else model(**_UpperCamelCase ).predicted_depth if show_prediction: __lowercase : int = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="""bicubic""" , align_corners=_UpperCamelCase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCamelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_UpperCamelCase ) if push_to_hub: model.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) image_processor.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) if __name__ == "__main__": lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) parser.add_argument( '''--show_prediction''', action='''store_true''', ) lowerCamelCase : str = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
368
def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def snake_case_ ( lowerCAmelCase_ : int = 5000 ): __lowercase : Optional[int] = [(i * (3 * i - 1)) // 2 for i in range(1 , lowerCAmelCase_ )] for i, pentagonal_i in enumerate(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ , len(lowerCAmelCase_ ) ): __lowercase : int = pentagonal_nums[j] __lowercase : Optional[int] = pentagonal_i + pentagonal_j __lowercase : Union[str, Any] = pentagonal_j - pentagonal_i if is_pentagonal(lowerCAmelCase_ ) and is_pentagonal(lowerCAmelCase_ ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
306
0
from functools import reduce lowerCamelCase : List[Any] = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def snake_case_ ( lowerCAmelCase_ : Optional[int] = N ): return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCAmelCase_ , lowerCAmelCase_ : str(int(a__ ) * int(a__ ) ) , n[i : i + 13] ) ) for i in range(len(a__ ) - 12 ) ) if __name__ == "__main__": print(f'''{solution() = }''')
369
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowerCAmelCase ( __a ): '''simple docstring''' _A : Optional[Any] = (DPMSolverSDEScheduler,) _A : Dict = 10 def lowerCAmelCase ( self : Optional[int] , **__a : Dict ) -> Optional[int]: """simple docstring""" __lowercase : Any = { """num_train_timesteps""": 1100, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**__a ) return config def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=__a ) def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__a ) def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = self.scheduler_classes[0] __lowercase : List[str] = self.get_scheduler_config() __lowercase : Any = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase : Optional[Any] = self.dummy_model() __lowercase : str = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase : Optional[Any] = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): __lowercase : Union[str, Any] = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[Any] = model(__a , __a ) __lowercase : Optional[Any] = scheduler.step(__a , __a , __a ) __lowercase : str = output.prev_sample __lowercase : Optional[Any] = torch.sum(torch.abs(__a ) ) __lowercase : Union[str, Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47821044921875 ) < 1E-2 assert abs(result_mean.item() - 0.2178705964565277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59352111816406 ) < 1E-2 assert abs(result_mean.item() - 0.22342906892299652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase : Tuple = self.scheduler_classes[0] __lowercase : Dict = self.get_scheduler_config(prediction_type="""v_prediction""" ) __lowercase : int = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase : Optional[int] = self.dummy_model() __lowercase : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase : Dict = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): __lowercase : Dict = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[int] = model(__a , __a ) __lowercase : Optional[int] = scheduler.step(__a , __a , __a ) __lowercase : int = output.prev_sample __lowercase : Optional[Any] = torch.sum(torch.abs(__a ) ) __lowercase : List[str] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77149200439453 ) < 1E-2 assert abs(result_mean.item() - 0.16226289014816284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1663360595703 ) < 1E-2 assert abs(result_mean.item() - 0.16688326001167297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8487548828125 ) < 1E-2 assert abs(result_mean.item() - 0.1560530662536621 ) < 1E-3 def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = self.scheduler_classes[0] __lowercase : Dict = self.get_scheduler_config() __lowercase : Optional[int] = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps , device=__a ) __lowercase : int = self.dummy_model() __lowercase : Optional[Any] = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __lowercase : int = scheduler.scale_model_input(__a , __a ) __lowercase : List[str] = model(__a , __a ) __lowercase : List[str] = scheduler.step(__a , __a , __a ) __lowercase : int = output.prev_sample __lowercase : List[Any] = torch.sum(torch.abs(__a ) ) __lowercase : Optional[Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46957397460938 ) < 1E-2 assert abs(result_mean.item() - 0.21805934607982635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59353637695312 ) < 1E-2 assert abs(result_mean.item() - 0.22342908382415771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : str = self.scheduler_classes[0] __lowercase : List[Any] = self.get_scheduler_config() __lowercase : Tuple = scheduler_class(**__a , use_karras_sigmas=__a ) scheduler.set_timesteps(self.num_inference_steps , device=__a ) __lowercase : List[str] = self.dummy_model() __lowercase : Optional[int] = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma __lowercase : str = sample.to(__a ) for t in scheduler.timesteps: __lowercase : List[Any] = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[Any] = model(__a , __a ) __lowercase : Any = scheduler.step(__a , __a , __a ) __lowercase : Optional[Any] = output.prev_sample __lowercase : Any = torch.sum(torch.abs(__a ) ) __lowercase : Optional[Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66974135742188 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63653564453125 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3135223388672 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2
306
0
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" super().tearDown() gc.collect() def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" __lowercase : str = FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase : Union[str, Any] = """A painting of a squirrel eating a burger""" __lowercase : Dict = jax.device_count() __lowercase : int = num_samples * [prompt] __lowercase : List[str] = sd_pipe.prepare_inputs(_lowerCAmelCase ) __lowercase : Union[str, Any] = replicate(_lowerCAmelCase ) __lowercase : Optional[Any] = shard(_lowerCAmelCase ) __lowercase : List[str] = jax.random.PRNGKey(0 ) __lowercase : int = jax.random.split(_lowerCAmelCase , jax.device_count() ) __lowercase : Optional[Any] = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase : List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase : Optional[int] = images[0, 253:256, 253:256, -1] __lowercase : Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase : Optional[Any] = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.45508, 0.4512] ) print(F"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" __lowercase : Tuple = """stabilityai/stable-diffusion-2""" __lowercase : Optional[int] = FlaxDPMSolverMultistepScheduler.from_pretrained(_lowerCAmelCase , subfolder="""scheduler""" ) __lowercase : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( _lowerCAmelCase , scheduler=_lowerCAmelCase , revision="""bf16""" , dtype=jnp.bfloataa , ) __lowercase : Optional[Any] = scheduler_params __lowercase : List[str] = """A painting of a squirrel eating a burger""" __lowercase : Dict = jax.device_count() __lowercase : Union[str, Any] = num_samples * [prompt] __lowercase : Any = sd_pipe.prepare_inputs(_lowerCAmelCase ) __lowercase : List[str] = replicate(_lowerCAmelCase ) __lowercase : Dict = shard(_lowerCAmelCase ) __lowercase : Optional[int] = jax.random.PRNGKey(0 ) __lowercase : List[str] = jax.random.split(_lowerCAmelCase , jax.device_count() ) __lowercase : Tuple = sd_pipe(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , num_inference_steps=25 , jit=_lowerCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) __lowercase : List[Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __lowercase : Optional[Any] = images[0, 253:256, 253:256, -1] __lowercase : Any = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase : Dict = jnp.array([0.4336, 0.42969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] ) print(F"output_slice: {output_slice}" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
370
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate lowerCamelCase : str = trt.Logger(trt.Logger.WARNING) lowerCamelCase : Any = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) lowerCamelCase : Optional[Any] = logging.getLogger(__name__) lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=3_84, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=1_28, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) lowerCamelCase : Dict = parser.parse_args() if args.tokenizer_name: lowerCamelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) lowerCamelCase : List[str] = args.per_device_eval_batch_size lowerCamelCase : Any = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties lowerCamelCase : List[str] = True lowerCamelCase : List[Any] = '''temp_engine/bert-fp32.engine''' if args.fpaa: lowerCamelCase : Optional[Any] = '''temp_engine/bert-fp16.engine''' if args.inta: lowerCamelCase : int = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') lowerCamelCase : int = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network lowerCamelCase : Union[str, Any] = [network.get_input(i) for i in range(network.num_inputs)] lowerCamelCase : Dict = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: lowerCamelCase : List[str] = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) lowerCamelCase : Optional[int] = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) lowerCamelCase : Optional[Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ): __lowercase : List[str] = np.asarray(inputs["""input_ids"""] , dtype=np.intaa ) __lowercase : Union[str, Any] = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa ) __lowercase : int = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowerCAmelCase_ ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowerCAmelCase_ ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowerCAmelCase_ ) # start time __lowercase : Optional[Any] = time.time() # Run inference context.execute_async( bindings=[int(lowerCAmelCase_ ) for d_inp in d_inputs] + [int(lowerCAmelCase_ ), int(lowerCAmelCase_ )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) cuda.memcpy_dtoh_async(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Synchronize the stream and take time stream.synchronize() # end time __lowercase : int = time.time() __lowercase : Union[str, Any] = end_time - start_time __lowercase : Any = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. lowerCamelCase : Tuple = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase : List[Any] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. lowerCamelCase : Optional[Any] = raw_datasets['''validation'''].column_names lowerCamelCase : Union[str, Any] = '''question''' if '''question''' in column_names else column_names[0] lowerCamelCase : str = '''context''' if '''context''' in column_names else column_names[1] lowerCamelCase : Dict = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). lowerCamelCase : Dict = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) lowerCamelCase : Tuple = min(args.max_seq_length, tokenizer.model_max_length) def snake_case_ ( lowerCAmelCase_ : int ): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace __lowercase : str = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. __lowercase : List[str] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=lowerCAmelCase_ , stride=args.doc_stride , return_overflowing_tokens=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. __lowercase : List[str] = tokenized_examples.pop("""overflow_to_sample_mapping""" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. __lowercase : Any = [] for i in range(len(tokenized_examples["""input_ids"""] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). __lowercase : Dict = tokenized_examples.sequence_ids(lowerCAmelCase_ ) __lowercase : List[Any] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. __lowercase : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. __lowercase : Dict = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i] ) ] return tokenized_examples lowerCamelCase : Tuple = raw_datasets['''validation'''] # Validation Feature Creation lowerCamelCase : Optional[int] = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) lowerCamelCase : Union[str, Any] = default_data_collator lowerCamelCase : Optional[Any] = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) lowerCamelCase : List[str] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict="eval" ): # Post-processing: we match the start logits and end logits to answers in the original context. __lowercase : int = postprocess_qa_predictions( examples=lowerCAmelCase_ , features=lowerCAmelCase_ , predictions=lowerCAmelCase_ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowerCAmelCase_ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: __lowercase : Optional[int] = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: __lowercase : List[Any] = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] __lowercase : Optional[int] = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=lowerCAmelCase_ , label_ids=lowerCAmelCase_ ) lowerCamelCase : Dict = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def snake_case_ ( lowerCAmelCase_ : str ): return trt.volume(engine.get_binding_shape(lowerCAmelCase_ ) ) * engine.get_binding_dtype(lowerCAmelCase_ ).itemsize # Allocate device memory for inputs and outputs. lowerCamelCase : int = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer lowerCamelCase : Dict = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) lowerCamelCase : str = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) lowerCamelCase : Dict = cuda.mem_alloc(h_outputa.nbytes) lowerCamelCase : Optional[Any] = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. lowerCamelCase : Optional[int] = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(f''' Num examples = {len(eval_dataset)}''') logger.info(f''' Batch size = {args.per_device_eval_batch_size}''') lowerCamelCase : int = 0.0 lowerCamelCase : List[str] = 0 lowerCamelCase : List[str] = timeit.default_timer() lowerCamelCase : List[Any] = None for step, batch in enumerate(eval_dataloader): lowerCamelCase ,lowerCamelCase : str = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 lowerCamelCase ,lowerCamelCase : Union[str, Any] = outputs lowerCamelCase : Optional[Any] = torch.tensor(start_logits) lowerCamelCase : List[str] = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered lowerCamelCase : Optional[int] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-1_00) lowerCamelCase : Dict = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-1_00) lowerCamelCase : List[Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) lowerCamelCase : Dict = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-1_00) if all_preds is not None: lowerCamelCase : Tuple = nested_truncate(all_preds, len(eval_dataset)) lowerCamelCase : Dict = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 10_00 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 10_00)) logger.info('''Total Number of Inference = %d''', niter) lowerCamelCase : str = post_processing_function(eval_examples, eval_dataset, all_preds) lowerCamelCase : Optional[Any] = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'''Evaluation metrics: {eval_metric}''')
306
0
"""simple docstring""" from collections import deque class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , __a : str , __a : int , __a : int ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = process_name # process name __lowercase : Any = arrival_time # arrival time of the process # completion time of finished process or last interrupted time __lowercase : List[Any] = arrival_time __lowercase : Any = burst_time # remaining burst time __lowercase : Tuple = 0 # total time of the process wait in ready queue __lowercase : Any = 0 # time from arrival time to completion time class lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , __a : int , __a : list[int] , __a : deque[Process] , __a : int , ) -> Any: """simple docstring""" __lowercase : Tuple = number_of_queues # time slice of queues that round robin algorithm applied __lowercase : List[str] = time_slices # unfinished process is in this ready_queue __lowercase : Dict = queue # current time __lowercase : Optional[Any] = current_time # finished process is in this sequence queue __lowercase : deque[Process] = deque() def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase : str = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def lowerCAmelCase ( self : str , __a : list[Process] ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = [] for i in range(len(lowercase_ ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def lowerCAmelCase ( self : List[str] , __a : list[Process] ) -> Union[str, Any]: """simple docstring""" __lowercase : Union[str, Any] = [] for i in range(len(lowercase_ ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def lowerCAmelCase ( self : Union[str, Any] , __a : list[Process] ) -> Optional[int]: """simple docstring""" __lowercase : str = [] for i in range(len(lowercase_ ) ): completion_times.append(queue[i].stop_time ) return completion_times def lowerCAmelCase ( self : str , __a : deque[Process] ) -> Optional[Any]: """simple docstring""" return [q.burst_time for q in queue] def lowerCAmelCase ( self : Optional[Any] , __a : Process ) -> str: """simple docstring""" process.waiting_time += self.current_time - process.stop_time return process.waiting_time def lowerCAmelCase ( self : Optional[int] , __a : deque[Process] ) -> List[str]: """simple docstring""" __lowercase : deque[Process] = deque() # sequence deque of finished process while len(lowercase_ ) != 0: __lowercase : Union[str, Any] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(lowercase_ ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 __lowercase : int = 0 # set the process's turnaround time because it is finished __lowercase : Optional[Any] = self.current_time - cp.arrival_time # set the completion time __lowercase : Optional[Any] = self.current_time # add the process to queue that has finished queue finished.append(lowercase_ ) self.finish_queue.extend(lowercase_ ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def lowerCAmelCase ( self : Optional[Any] , __a : deque[Process] , __a : int ) -> Dict: """simple docstring""" __lowercase : deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(lowercase_ ) ): __lowercase : List[str] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(lowercase_ ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time __lowercase : List[Any] = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(lowercase_ ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished __lowercase : str = 0 # set the finish time __lowercase : List[str] = self.current_time # update the process' turnaround time because it is finished __lowercase : Dict = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(lowercase_ ) self.finish_queue.extend(lowercase_ ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" for i in range(self.number_of_queues - 1 ): __lowercase : Dict = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest lowerCamelCase : Optional[int] = Process('''P1''', 0, 53) lowerCamelCase : Any = Process('''P2''', 0, 17) lowerCamelCase : Optional[Any] = Process('''P3''', 0, 68) lowerCamelCase : Optional[Any] = Process('''P4''', 0, 24) lowerCamelCase : Optional[Any] = 3 lowerCamelCase : List[str] = [17, 25] lowerCamelCase : int = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])}) lowerCamelCase : Dict = Process('''P1''', 0, 53) lowerCamelCase : List[str] = Process('''P2''', 0, 17) lowerCamelCase : Any = Process('''P3''', 0, 68) lowerCamelCase : List[Any] = Process('''P4''', 0, 24) lowerCamelCase : str = 3 lowerCamelCase : List[str] = [17, 25] lowerCamelCase : Optional[Any] = deque([Pa, Pa, Pa, Pa]) lowerCamelCase : Dict = MLFQ(number_of_queues, time_slices, queue, 0) lowerCamelCase : Union[str, Any] = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f'''waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print completion times of processes(P1, P2, P3, P4) print( f'''completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print total turnaround times of processes(P1, P2, P3, P4) print( f'''turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print sequence of finished processes print( f'''sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}''' )
371
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : str = { '''facebook/nllb-moe-54B''': '''https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''nllb-moe''' _A : List[str] = ['''past_key_values'''] _A : Optional[Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Dict , __a : List[str]=128112 , __a : List[Any]=1024 , __a : List[Any]=12 , __a : Union[str, Any]=4096 , __a : List[str]=16 , __a : int=12 , __a : Optional[int]=4096 , __a : str=16 , __a : List[Any]=0.05 , __a : Any=0.05 , __a : Dict=True , __a : Optional[Any]=True , __a : List[Any]="relu" , __a : Tuple=1024 , __a : Optional[Any]=0.1 , __a : Tuple=0.1 , __a : Any=0.0 , __a : Optional[Any]=0.02 , __a : List[str]=2 , __a : Union[str, Any]=True , __a : List[Any]=False , __a : Tuple="float32" , __a : Optional[int]=False , __a : Optional[int]=128 , __a : str=64 , __a : Dict=4 , __a : str=4 , __a : List[str]=0.001 , __a : List[Any]=0.001 , __a : Optional[Any]="all" , __a : Optional[int]=False , __a : int=False , __a : int=1.0 , __a : Dict=0.2 , __a : Tuple=1 , __a : Optional[Any]=0 , __a : List[Any]=2 , __a : Any=False , **__a : Any , ) -> Any: """simple docstring""" __lowercase : int = vocab_size __lowercase : List[Any] = max_position_embeddings __lowercase : Tuple = d_model __lowercase : str = encoder_ffn_dim __lowercase : List[str] = encoder_layers __lowercase : int = encoder_attention_heads __lowercase : List[Any] = decoder_ffn_dim __lowercase : int = decoder_layers __lowercase : Optional[int] = decoder_attention_heads __lowercase : Union[str, Any] = dropout __lowercase : str = attention_dropout __lowercase : Any = activation_dropout __lowercase : List[Any] = activation_function __lowercase : List[str] = init_std __lowercase : Optional[int] = encoder_layerdrop __lowercase : str = decoder_layerdrop __lowercase : Dict = use_cache __lowercase : Optional[Any] = encoder_layers __lowercase : str = scale_embedding # scale factor will be sqrt(d_model) if True __lowercase : List[Any] = router_z_loss_coef __lowercase : Tuple = router_aux_loss_coef __lowercase : str = decoder_sparse_step __lowercase : Any = encoder_sparse_step __lowercase : str = num_experts __lowercase : List[Any] = expert_capacity __lowercase : int = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) __lowercase : Optional[int] = router_dtype __lowercase : Any = router_ignore_padding_tokens __lowercase : Optional[Any] = batch_prioritized_routing __lowercase : str = second_expert_policy __lowercase : List[str] = normalize_router_prob_before_dropping __lowercase : List[Any] = moe_eval_capacity_token_fraction __lowercase : List[str] = moe_token_dropout __lowercase : Optional[Any] = output_router_logits super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , decoder_start_token_id=__a , **__a , )
306
0
"""simple docstring""" from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class lowerCAmelCase ( __lowercase ): '''simple docstring''' _A : int = DistilBertTokenizer _A : Optional[int] = DistilBertTokenizerFast _A : Optional[int] = True @slow def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) __lowercase : Optional[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=_a ) __lowercase : List[str] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_a ) __lowercase : str = tokenizer.build_inputs_with_special_tokens(_a ) __lowercase : int = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
350
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase : Optional[Any] = { '''configuration_poolformer''': [ '''POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PoolFormerConfig''', '''PoolFormerOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = ['''PoolFormerFeatureExtractor'''] lowerCamelCase : Union[str, Any] = ['''PoolFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = [ '''POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PoolFormerForImageClassification''', '''PoolFormerModel''', '''PoolFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
306
0
from pathlib import Path import fire from tqdm import tqdm def snake_case_ ( lowerCAmelCase_ : List[str]="ro" , lowerCAmelCase_ : int="en" , lowerCAmelCase_ : int="wmt16" , lowerCAmelCase_ : int=None ): try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("""run pip install datasets""" ) __lowercase : List[Any] = F"{src_lang}-{tgt_lang}" print(F"Converting {dataset}-{pair}" ) __lowercase : str = datasets.load_dataset(__lowerCamelCase , __lowerCamelCase ) if save_dir is None: __lowercase : Dict = F"{dataset}-{pair}" __lowercase : Dict = Path(__lowerCamelCase ) save_dir.mkdir(exist_ok=__lowerCamelCase ) for split in ds.keys(): print(F"Splitting {split} with {ds[split].num_rows} records" ) # to save to val.source, val.target like summary datasets __lowercase : Tuple = "val" if split == "validation" else split __lowercase : List[str] = save_dir.joinpath(F"{fn}.source" ) __lowercase : List[Any] = save_dir.joinpath(F"{fn}.target" ) __lowercase : int = src_path.open("""w+""" ) __lowercase : Union[str, Any] = tgt_path.open("""w+""" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __lowercase : int = x["translation"] src_fp.write(ex[src_lang] + """\n""" ) tgt_fp.write(ex[tgt_lang] + """\n""" ) print(F"Saved {dataset} dataset to {save_dir}" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
351
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : List[str] = 2 __lowercase : Union[str, Any] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(lowerCAmelCase_ ) if n > 1: factors.append(lowerCAmelCase_ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
306
0
from __future__ import annotations import os from typing import Any import requests lowerCamelCase : Any = """https://api.github.com""" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user lowerCamelCase : Tuple = BASE_URL + """/user""" # https://github.com/settings/tokens lowerCamelCase : Optional[Any] = os.environ.get('''USER_TOKEN''', '''''') def snake_case_ ( lowerCAmelCase_ : str ): __lowercase : Dict = { '''Authorization''': F"token {auth_token}", '''Accept''': '''application/vnd.github.v3+json''', } return requests.get(_snake_case , headers=_snake_case ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'''{key}: {value}''') else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
352
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Dict = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) __lowercase : List[str] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __lowercase : Optional[Any] = model(__a )["""last_hidden_state"""] __lowercase : Any = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , __a ) # compare the actual values for a slice. __lowercase : Dict = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
306
0
from __future__ import annotations from math import pi, sqrt def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ): if inductance <= 0: raise ValueError("""Inductance cannot be 0 or negative""" ) elif capacitance <= 0: raise ValueError("""Capacitance cannot be 0 or negative""" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
353
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Optional[Any] = len(lowerCAmelCase_ ) __lowercase : str = len(lowerCAmelCase_ ) __lowercase : Optional[int] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __lowercase : Tuple = True for i in range(lowerCAmelCase_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __lowercase : Optional[Any] = True if a[i].islower(): __lowercase : Dict = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
306
0
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = (UnCLIPScheduler,) def lowerCAmelCase ( self : Optional[int] , **__a : Union[str, Any] ) -> str: """simple docstring""" __lowercase : Optional[Any] = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**__UpperCAmelCase ) return config def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=__UpperCAmelCase ) def lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=__UpperCAmelCase ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=__UpperCAmelCase ) def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=__UpperCAmelCase ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=__UpperCAmelCase ) def lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=__UpperCAmelCase , prev_timestep=__UpperCAmelCase ) def lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" __lowercase : Tuple = self.scheduler_classes[0] __lowercase : List[str] = self.get_scheduler_config(variance_type="""fixed_small_log""" ) __lowercase : int = scheduler_class(**__UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0549625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9994987 ) ) < 1E-5 def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" __lowercase : Optional[int] = self.scheduler_classes[0] __lowercase : Union[str, Any] = self.get_scheduler_config(variance_type="""learned_range""" ) __lowercase : Union[str, Any] = scheduler_class(**__UpperCAmelCase ) __lowercase : Dict = 0.5 assert scheduler._get_variance(1 , predicted_variance=__UpperCAmelCase ) - -10.1712790 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=__UpperCAmelCase ) - -5.7998052 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=__UpperCAmelCase ) - -0.0010011 < 1E-5 def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : List[Any] = self.scheduler_classes[0] __lowercase : Dict = self.get_scheduler_config() __lowercase : Tuple = scheduler_class(**__UpperCAmelCase ) __lowercase : Optional[Any] = scheduler.timesteps __lowercase : Any = self.dummy_model() __lowercase : List[str] = self.dummy_sample_deter __lowercase : Dict = torch.manual_seed(0 ) for i, t in enumerate(__UpperCAmelCase ): # 1. predict noise residual __lowercase : str = model(__UpperCAmelCase , __UpperCAmelCase ) # 2. predict previous mean of sample x_t-1 __lowercase : Union[str, Any] = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample __lowercase : List[Any] = pred_prev_sample __lowercase : Any = torch.sum(torch.abs(__UpperCAmelCase ) ) __lowercase : Optional[Any] = torch.mean(torch.abs(__UpperCAmelCase ) ) assert abs(result_sum.item() - 252.2682495 ) < 1E-2 assert abs(result_mean.item() - 0.3284743 ) < 1E-3 def lowerCAmelCase ( self : int ) -> str: """simple docstring""" __lowercase : str = self.scheduler_classes[0] __lowercase : Tuple = self.get_scheduler_config() __lowercase : Optional[int] = scheduler_class(**__UpperCAmelCase ) scheduler.set_timesteps(25 ) __lowercase : List[Any] = scheduler.timesteps __lowercase : Union[str, Any] = self.dummy_model() __lowercase : int = self.dummy_sample_deter __lowercase : List[str] = torch.manual_seed(0 ) for i, t in enumerate(__UpperCAmelCase ): # 1. predict noise residual __lowercase : Dict = model(__UpperCAmelCase , __UpperCAmelCase ) if i + 1 == timesteps.shape[0]: __lowercase : List[str] = None else: __lowercase : Any = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __lowercase : Any = scheduler.step( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , prev_timestep=__UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample __lowercase : Dict = pred_prev_sample __lowercase : Tuple = torch.sum(torch.abs(__UpperCAmelCase ) ) __lowercase : List[str] = torch.mean(torch.abs(__UpperCAmelCase ) ) assert abs(result_sum.item() - 258.2044983 ) < 1E-2 assert abs(result_mean.item() - 0.3362038 ) < 1E-3 def lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" pass def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" pass
354
from scipy.stats import spearmanr import datasets lowerCamelCase : List[str] = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' lowerCamelCase : List[str] = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' lowerCamelCase : Union[str, Any] = r'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def lowerCAmelCase ( self : List[Any] , __a : str , __a : Any , __a : Optional[int]=False ) -> List[str]: """simple docstring""" __lowercase : Optional[Any] = spearmanr(__a , __a ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
306
0
from collections.abc import Callable def snake_case_ ( lowerCAmelCase_ : Callable[[float], float] , lowerCAmelCase_ : float , lowerCAmelCase_ : float ): __lowercase : float = a __lowercase : float = b if function(snake_case_ ) == 0: # one of the a or b is a root for the function return a elif function(snake_case_ ) == 0: return b elif ( function(snake_case_ ) * function(snake_case_ ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("""could not find root in given interval.""" ) else: __lowercase : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(snake_case_ ) == 0: return mid elif function(snake_case_ ) * function(snake_case_ ) < 0: __lowercase : Dict = mid else: __lowercase : List[str] = mid __lowercase : Tuple = start + (end - start) / 2.0 return mid def snake_case_ ( lowerCAmelCase_ : float ): return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 10_00)) import doctest doctest.testmod()
355
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Any = get_failure_array(lowerCAmelCase_ ) # 2) Step through text searching for pattern __lowercase , __lowercase : Optional[int] = 0, 0 # index into text, pattern while i < len(lowerCAmelCase_ ): if pattern[j] == text[i]: if j == (len(lowerCAmelCase_ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: __lowercase : Optional[Any] = failure[j - 1] continue i += 1 return False def snake_case_ ( lowerCAmelCase_ : str ): __lowercase : List[Any] = [0] __lowercase : Optional[Any] = 0 __lowercase : List[Any] = 1 while j < len(lowerCAmelCase_ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: __lowercase : List[str] = failure[i - 1] continue j += 1 failure.append(lowerCAmelCase_ ) return failure if __name__ == "__main__": # Test 1) lowerCamelCase : Dict = '''abc1abc12''' lowerCamelCase : Union[str, Any] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' lowerCamelCase : Any = '''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) lowerCamelCase : List[Any] = '''ABABX''' lowerCamelCase : List[Any] = '''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) lowerCamelCase : int = '''AAAB''' lowerCamelCase : Optional[int] = '''ABAAAAAB''' assert kmp(pattern, text) # Test 4) lowerCamelCase : Optional[Any] = '''abcdabcy''' lowerCamelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) lowerCamelCase : Dict = '''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
306
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig lowerCamelCase : List[Any] = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' _A : Any = """albert""" def __init__( self : List[str] , __a : List[str]=30000 , __a : Optional[int]=128 , __a : Optional[int]=4096 , __a : List[Any]=12 , __a : int=1 , __a : List[str]=64 , __a : Dict=16384 , __a : List[Any]=1 , __a : Optional[int]="gelu_new" , __a : Optional[int]=0 , __a : List[str]=0 , __a : Union[str, Any]=512 , __a : Any=2 , __a : str=0.02 , __a : Dict=1E-12 , __a : List[str]=0.1 , __a : int="absolute" , __a : List[Any]=0 , __a : int=2 , __a : Tuple=3 , **__a : Optional[Any] , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) __lowercase : Tuple = vocab_size __lowercase : Optional[int] = embedding_size __lowercase : str = hidden_size __lowercase : Any = num_hidden_layers __lowercase : List[str] = num_hidden_groups __lowercase : Tuple = num_attention_heads __lowercase : str = inner_group_num __lowercase : int = hidden_act __lowercase : List[str] = intermediate_size __lowercase : Optional[int] = hidden_dropout_prob __lowercase : Dict = attention_probs_dropout_prob __lowercase : Optional[Any] = max_position_embeddings __lowercase : List[Any] = type_vocab_size __lowercase : List[str] = initializer_range __lowercase : List[Any] = layer_norm_eps __lowercase : Any = classifier_dropout_prob __lowercase : Any = position_embedding_type class lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' @property def lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" if self.task == "multiple-choice": __lowercase : int = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __lowercase : List[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
356
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = ['''pixel_values'''] def __init__( self : Any , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : bool = True , __a : Dict[str, int] = None , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = True , **__a : str , ) -> None: """simple docstring""" super().__init__(**__a ) __lowercase : Dict = size if size is not None else {"""shortest_edge""": 224} __lowercase : Union[str, Any] = get_size_dict(__a , default_to_square=__a ) __lowercase : int = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __lowercase : Any = get_size_dict(__a , default_to_square=__a , param_name="""crop_size""" ) __lowercase : Optional[int] = do_resize __lowercase : Union[str, Any] = size __lowercase : List[Any] = resample __lowercase : Any = do_center_crop __lowercase : Dict = crop_size __lowercase : int = do_rescale __lowercase : Tuple = rescale_factor __lowercase : List[Any] = do_normalize __lowercase : Union[str, Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowercase : int = image_std if image_std is not None else OPENAI_CLIP_STD __lowercase : Union[str, Any] = do_convert_rgb def lowerCAmelCase ( self : Union[str, Any] , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[Any] , ) -> np.ndarray: """simple docstring""" __lowercase : Dict = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) __lowercase : str = get_resize_output_image_size(__a , size=size["""shortest_edge"""] , default_to_square=__a ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Any , ) -> np.ndarray: """simple docstring""" __lowercase : Tuple = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(__a , size=(size["""height"""], size["""width"""]) , data_format=__a , **__a ) def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : Union[int, float] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[Any] , ) -> List[str]: """simple docstring""" return rescale(__a , scale=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Optional[int] , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] , ) -> np.ndarray: """simple docstring""" return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Optional[int] , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : int = None , __a : bool = None , __a : float = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = None , __a : Optional[Union[str, TensorType]] = None , __a : Optional[ChannelDimension] = ChannelDimension.FIRST , **__a : List[Any] , ) -> PIL.Image.Image: """simple docstring""" __lowercase : List[Any] = do_resize if do_resize is not None else self.do_resize __lowercase : Dict = size if size is not None else self.size __lowercase : Tuple = get_size_dict(__a , param_name="""size""" , default_to_square=__a ) __lowercase : int = resample if resample is not None else self.resample __lowercase : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase : List[Any] = crop_size if crop_size is not None else self.crop_size __lowercase : List[str] = get_size_dict(__a , param_name="""crop_size""" , default_to_square=__a ) __lowercase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __lowercase : str = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase : Dict = do_normalize if do_normalize is not None else self.do_normalize __lowercase : Tuple = image_mean if image_mean is not None else self.image_mean __lowercase : str = image_std if image_std is not None else self.image_std __lowercase : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase : Union[str, Any] = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase : Union[str, Any] = [convert_to_rgb(__a ) for image in images] # All transformations expect numpy arrays. __lowercase : Any = [to_numpy_array(__a ) for image in images] if do_resize: __lowercase : str = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: __lowercase : str = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: __lowercase : Dict = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: __lowercase : Optional[Any] = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] __lowercase : Any = [to_channel_dimension_format(__a , __a ) for image in images] __lowercase : Optional[int] = {"""pixel_values""": images} return BatchFeature(data=__a , tensor_type=__a )
306
0
def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str ): if index == r: for j in range(A__ ): print(data[j] , end=""" """ ) print(""" """ ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location __lowercase : Dict = arr[i] combination_util(A__ , A__ , A__ , index + 1 , A__ , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(A__ , A__ , A__ , A__ , A__ , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] ): __lowercase : Tuple = [0] * r # Print all combination using temporary array 'data[]' combination_util(A__ , A__ , A__ , 0 , A__ , 0 ) if __name__ == "__main__": # Driver code to check the function above lowerCamelCase : List[str] = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
357
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str ): __lowercase : Tuple = s.rsplit(lowerCAmelCase_ , lowerCAmelCase_ ) return new.join(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : List[Any] ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : List[str] = {} __lowercase : Tuple = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __lowercase : List[str] = key.replace(F"{group_key}." , F"{group_key}.group." ) if "res_path" in key: __lowercase : List[Any] = key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): __lowercase : Union[str, Any] = rreplace(lowerCAmelCase_ , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): __lowercase : Tuple = rreplace(lowerCAmelCase_ , """.b""" , """.bias""" , 1 ) __lowercase : Dict = value.float() return upgrade @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=True ): from dall_e import Encoder __lowercase : Any = Encoder() if os.path.exists(lowerCAmelCase_ ): __lowercase : List[Any] = torch.load(lowerCAmelCase_ ) else: __lowercase : List[Any] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : int = ckpt.state_dict() encoder.load_state_dict(lowerCAmelCase_ ) if config_path is not None: __lowercase : Optional[int] = FlavaImageCodebookConfig.from_pretrained(lowerCAmelCase_ ) else: __lowercase : List[str] = FlavaImageCodebookConfig() __lowercase : Optional[Any] = FlavaImageCodebook(lowerCAmelCase_ ).eval() __lowercase : List[Any] = encoder.state_dict() __lowercase : Union[str, Any] = upgrade_state_dict(lowerCAmelCase_ ) hf_model.load_state_dict(lowerCAmelCase_ ) __lowercase : Dict = hf_model.state_dict() __lowercase : Tuple = count_parameters(lowerCAmelCase_ ) __lowercase : Tuple = count_parameters(lowerCAmelCase_ ) assert torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(lowerCAmelCase_ ) else: return hf_state_dict if __name__ == "__main__": lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowerCamelCase : Union[str, Any] = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
306
0
def snake_case_ ( lowerCAmelCase_ : Union[str, Any] ): if len(lowerCAmelCase_ ) <= 1: return [tuple(lowerCAmelCase_ )] __lowercase : List[str] = [] def generate(lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , lowerCAmelCase_ ) for i in range(k - 1 ): if k % 2 == 0: # k is even __lowercase , __lowercase : Optional[Any] = arr[k - 1], arr[i] else: # k is odd __lowercase , __lowercase : Tuple = arr[k - 1], arr[0] generate(k - 1 , lowerCAmelCase_ ) generate(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) return res if __name__ == "__main__": lowerCamelCase : Optional[int] = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase : Optional[Any] = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
358
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging lowerCamelCase : Tuple = logging.get_logger(__name__) logging.set_verbosity_info() def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): if "xprophetnet" in prophetnet_checkpoint_path: __lowercase : List[str] = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) __lowercase , __lowercase : int = XLMProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) else: __lowercase : List[Any] = ProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) __lowercase , __lowercase : Optional[Any] = ProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) __lowercase : List[str] = ["""key_proj""", """value_proj""", """query_proj"""] __lowercase : Optional[int] = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: __lowercase : Tuple = key.split(""".""" ) if attributes[0] == "lm_head": __lowercase : str = prophet __lowercase : List[str] = prophet_old else: __lowercase : Tuple = prophet.prophetnet __lowercase : Union[str, Any] = prophet_old.model __lowercase : Optional[Any] = False for attribute in attributes: if attribute in mapping: __lowercase : Optional[int] = mapping[attribute] if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) > 0: __lowercase : str = attribute elif hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : List[Any] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" __lowercase : Any = old_model.weight logger.info(F"{attribute} is initialized." ) __lowercase : Any = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" __lowercase : Dict = old_model.bias logger.info(F"{attribute} is initialized" ) __lowercase : int = True break elif attribute in special_keys and hasattr(lowerCAmelCase_ , """in_proj_weight""" ): __lowercase : Dict = old_model.in_proj_weight.shape[0] // 3 __lowercase : Tuple = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": __lowercase : Union[str, Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) __lowercase : int = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": __lowercase : Any = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) __lowercase : List[Any] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": __lowercase : Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) __lowercase : int = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) __lowercase : int = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." __lowercase : Optional[Any] = nn.Parameter(old_model.embed_positions.weight[:512, :] ) __lowercase : int = True break if attribute.isdigit(): __lowercase : Tuple = model[int(lowerCAmelCase_ )] __lowercase : int = old_model[int(lowerCAmelCase_ )] else: __lowercase : Union[str, Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if old_attribute == "": __lowercase : int = old_model else: if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError(F"{old_model} does not have {old_attribute}" ) __lowercase : List[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if not is_key_init: raise ValueError(F"{key} was not correctly initialized!" ) print(F"Saving model to {pytorch_dump_folder_path}" ) prophet.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCamelCase : Any = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
306
0
"""simple docstring""" import math def snake_case_ ( lowerCAmelCase_ : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case_ ( lowerCAmelCase_ : float = 0.1 ): __lowercase : Union[str, Any] = 3 __lowercase : List[str] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(_UpperCamelCase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
359
def snake_case_ ( lowerCAmelCase_ : int = 200 ): __lowercase : List[str] = [1, 2, 5, 10, 20, 50, 100, 200] __lowercase : List[str] = [0] * (pence + 1) __lowercase : Optional[Any] = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowerCAmelCase_ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
306
0
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(__a ) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : List[str] , *__a : Any , **__a : Any ) -> Any: """simple docstring""" super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def lowerCAmelCase ( self : Optional[int] , __a : Any=None ) -> Dict: """simple docstring""" __lowercase : Dict = {} if top_k is not None: __lowercase : Dict = top_k return {}, {}, postprocess_params def __call__( self : int , __a : Tuple , **__a : Any ) -> Tuple: """simple docstring""" return super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) def lowerCAmelCase ( self : List[str] , __a : List[Any] ) -> List[str]: """simple docstring""" __lowercase : int = load_image(__lowerCAmelCase ) __lowercase : List[Any] = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework ) return model_inputs def lowerCAmelCase ( self : int , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : List[str] = self.model(**__lowerCAmelCase ) return model_outputs def lowerCAmelCase ( self : List[Any] , __a : Any , __a : Union[str, Any]=5 ) -> Any: """simple docstring""" if top_k > self.model.config.num_labels: __lowercase : Optional[int] = self.model.config.num_labels if self.framework == "pt": __lowercase : List[str] = model_outputs.logits.softmax(-1 )[0] __lowercase , __lowercase : Union[str, Any] = probs.topk(__lowerCAmelCase ) elif self.framework == "tf": __lowercase : int = stable_softmax(model_outputs.logits , axis=-1 )[0] __lowercase : str = tf.math.top_k(__lowerCAmelCase , k=__lowerCAmelCase ) __lowercase , __lowercase : int = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F"Unsupported framework: {self.framework}" ) __lowercase : int = scores.tolist() __lowercase : List[str] = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(__lowerCAmelCase , __lowerCAmelCase )]
360
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , __a : Dict , __a : List[str]=None , __a : Optional[Any]=None , __a : Union[str, Any]=None , __a : int="resnet50" , __a : List[str]=3 , __a : Tuple=32 , __a : Dict=3 , __a : List[str]=True , __a : Union[str, Any]=True , ) -> Any: """simple docstring""" __lowercase : Optional[int] = parent __lowercase : List[str] = out_indices if out_indices is not None else [4] __lowercase : Optional[int] = stage_names __lowercase : Any = out_features __lowercase : Optional[Any] = backbone __lowercase : Optional[Any] = batch_size __lowercase : Union[str, Any] = image_size __lowercase : List[str] = num_channels __lowercase : str = use_pretrained_backbone __lowercase : str = is_training def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : str = self.get_config() return config, pixel_values def lowerCAmelCase ( self : int ) -> str: """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowerCAmelCase ( self : Optional[int] , __a : Dict , __a : Any ) -> Dict: """simple docstring""" __lowercase : Dict = TimmBackbone(config=__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Optional[Any] = model(__a ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.prepare_config_and_inputs() __lowercase , __lowercase : str = config_and_inputs __lowercase : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch @require_timm class lowerCAmelCase ( __a , __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[Any] = (TimmBackbone,) if is_torch_available() else () _A : Dict = {'''feature-extraction''': TimmBackbone} if is_torch_available() else {} _A : List[Any] = False _A : List[str] = False _A : Any = False _A : Optional[Any] = False def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : str = TimmBackboneModelTester(self ) __lowercase : Any = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" __lowercase : Tuple = """resnet18""" __lowercase : Optional[int] = """microsoft/resnet-18""" __lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a ) __lowercase : Dict = AutoBackbone.from_pretrained(__a ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a , out_indices=[1, 2, 3] ) __lowercase : Optional[Any] = AutoBackbone.from_pretrained(__a , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("""TimmBackbone doesn't support feed forward chunking""" ) def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""" ) def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""" ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't support output_attentions.""" ) def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Safetensors is not supported by timm.""" ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Optional[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : List[str] = [*signature.parameters.keys()] __lowercase : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Optional[Any] = True __lowercase : Union[str, Any] = self.has_attentions # no need to test all models as different heads yield the same functionality __lowercase : Union[str, Any] = self.all_model_classes[0] __lowercase : List[Any] = model_class(__a ) model.to(__a ) __lowercase : Optional[Any] = self._prepare_for_class(__a , __a ) __lowercase : Union[str, Any] = model(**__a ) __lowercase : Optional[int] = outputs[0][-1] # Encoder-/Decoder-only models __lowercase : Any = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowercase : Optional[int] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__a ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() __lowercase : int = model(**__a ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowercase : Any = copy.deepcopy(__a ) __lowercase : Dict = None __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() __lowercase : Optional[int] = model(**__a ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowercase : List[str] = copy.deepcopy(__a ) __lowercase : Optional[Any] = False __lowercase : str = model_class(__a ) model.to(__a ) model.eval() __lowercase : List[Any] = model(**__a )
306
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : int , __a : List[str] , __a : str=7 , __a : Tuple=3 , __a : List[str]=18 , __a : int=30 , __a : str=400 , __a : List[Any]=True , __a : Dict=32 , __a : List[Any]=True , ) -> List[str]: """simple docstring""" __lowercase : str = parent __lowercase : List[str] = batch_size __lowercase : Any = num_channels __lowercase : Tuple = image_size __lowercase : Union[str, Any] = min_resolution __lowercase : Any = max_resolution __lowercase : Optional[Any] = do_resize __lowercase : Optional[int] = size_divisor __lowercase : Any = do_rescale def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : Tuple = GLPNImageProcessor if is_vision_available() else None def lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase : List[Any] = GLPNImageProcessingTester(self ) @property def lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_snake_case , """do_resize""" ) ) self.assertTrue(hasattr(_snake_case , """size_divisor""" ) ) self.assertTrue(hasattr(_snake_case , """resample""" ) ) self.assertTrue(hasattr(_snake_case , """do_rescale""" ) ) def lowerCAmelCase ( self : int ) -> str: """simple docstring""" pass def lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" __lowercase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) __lowercase : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , numpify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) __lowercase : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" __lowercase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , torchify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) __lowercase : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
361
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : str = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } lowerCamelCase : Optional[Any] = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): for attribute in key.split(""".""" ): __lowercase : List[str] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if weight_type is not None: __lowercase : Union[str, Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ).shape else: __lowercase : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": __lowercase : Dict = value elif weight_type == "weight_g": __lowercase : Union[str, Any] = value elif weight_type == "weight_v": __lowercase : List[Any] = value elif weight_type == "bias": __lowercase : int = value elif weight_type == "running_mean": __lowercase : List[Any] = value elif weight_type == "running_var": __lowercase : int = value elif weight_type == "num_batches_tracked": __lowercase : int = value elif weight_type == "inv_freq": __lowercase : Optional[Any] = value else: __lowercase : Any = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] ): __lowercase : str = [] __lowercase : Any = fairseq_model.state_dict() __lowercase : List[str] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): __lowercase : Optional[Any] = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , hf_model.config.feat_extract_norm == """group""" , ) __lowercase : List[str] = True else: for key, mapped_key in MAPPING.items(): __lowercase : Any = """wav2vec2_conformer.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __lowercase : Tuple = True if "*" in mapped_key: __lowercase : List[Any] = name.split(lowerCAmelCase_ )[0].split(""".""" )[-2] __lowercase : Any = mapped_key.replace("""*""" , lowerCAmelCase_ ) if "pos_bias_u" in name: __lowercase : Any = None elif "pos_bias_v" in name: __lowercase : Tuple = None elif "weight_g" in name: __lowercase : Union[str, Any] = """weight_g""" elif "weight_v" in name: __lowercase : Dict = """weight_v""" elif "bias" in name: __lowercase : Union[str, Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowercase : str = """weight""" elif "running_mean" in name: __lowercase : str = """running_mean""" elif "inv_freq" in name: __lowercase : List[Any] = """inv_freq""" elif "running_var" in name: __lowercase : Any = """running_var""" elif "num_batches_tracked" in name: __lowercase : Any = """num_batches_tracked""" else: __lowercase : Optional[int] = None set_recursively(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) continue if not is_used: unused_weights.append(lowerCAmelCase_ ) logger.warning(F"Unused weights: {unused_weights}" ) def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] ): __lowercase : List[Any] = full_name.split("""conv_layers.""" )[-1] __lowercase : int = name.split(""".""" ) __lowercase : Optional[Any] = int(items[0] ) __lowercase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __lowercase : Union[str, Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __lowercase : List[str] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) __lowercase : Union[str, Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) __lowercase : Dict = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(lowerCAmelCase_ ) @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Dict=True ): if config_path is not None: __lowercase : List[Any] = WavaVecaConformerConfig.from_pretrained(lowerCAmelCase_ , hidden_act="""swish""" ) else: __lowercase : List[Any] = WavaVecaConformerConfig() if "rope" in checkpoint_path: __lowercase : Tuple = """rotary""" if is_finetuned: if dict_path: __lowercase : Any = Dictionary.load(lowerCAmelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __lowercase : List[Any] = target_dict.pad_index __lowercase : Optional[int] = target_dict.bos_index __lowercase : List[Any] = target_dict.eos_index __lowercase : List[str] = len(target_dict.symbols ) __lowercase : Union[str, Any] = os.path.join(lowerCAmelCase_ , """vocab.json""" ) if not os.path.isdir(lowerCAmelCase_ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowerCAmelCase_ ) ) return os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowercase : Tuple = target_dict.indices # fairseq has the <pad> and <s> switched __lowercase : int = 0 __lowercase : Any = 1 with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Dict = WavaVecaCTCTokenizer( lowerCAmelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowerCAmelCase_ , ) __lowercase : List[Any] = True if config.feat_extract_norm == """layer""" else False __lowercase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) __lowercase : Optional[int] = WavaVecaProcessor(feature_extractor=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) __lowercase : Union[str, Any] = WavaVecaConformerForCTC(lowerCAmelCase_ ) else: __lowercase : Optional[Any] = WavaVecaConformerForPreTraining(lowerCAmelCase_ ) if is_finetuned: __lowercase , __lowercase , __lowercase : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __lowercase : List[Any] = argparse.Namespace(task="""audio_pretraining""" ) __lowercase : Optional[Any] = fairseq.tasks.setup_task(lowerCAmelCase_ ) __lowercase , __lowercase , __lowercase : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase_ ) __lowercase : Dict = model[0].eval() recursively_load_weights(lowerCAmelCase_ , lowerCAmelCase_ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) lowerCamelCase : Any = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
306
0
def snake_case_ ( lowerCAmelCase_ : Dict ): __lowercase : Optional[Any] = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def snake_case_ ( lowerCAmelCase_ : Any = 5000 ): __lowercase : Optional[int] = [(i * (3 * i - 1)) // 2 for i in range(1 , lowercase_ )] for i, pentagonal_i in enumerate(lowercase_ ): for j in range(lowercase_ , len(lowercase_ ) ): __lowercase : Union[str, Any] = pentagonal_nums[j] __lowercase : Dict = pentagonal_i + pentagonal_j __lowercase : List[str] = pentagonal_j - pentagonal_i if is_pentagonal(lowercase_ ) and is_pentagonal(lowercase_ ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
362
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError("""String lengths must match!""" ) __lowercase : str = 0 for chara, chara in zip(lowerCAmelCase_ , lowerCAmelCase_ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
306
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase : str = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys lowerCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
363
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def snake_case_ ( lowerCAmelCase_ : Tuple ): if isinstance(lowerCAmelCase_ , collections.abc.Iterable ): return x return (x, x) @require_flax class lowerCAmelCase : '''simple docstring''' def lowerCAmelCase ( self : Any , __a : Any , __a : List[Any] ) -> Optional[Any]: """simple docstring""" pass def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" pass def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : np.ndarray , __a : float ) -> List[Any]: """simple docstring""" __lowercase : List[str] = np.abs((a - b) ).max() self.assertLessEqual(__a , __a , F"Difference between torch and flax is {diff} (>= {tol})." ) def lowerCAmelCase ( self : Tuple , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[Any] , __a : Optional[Any]=None , **__a : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : str = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : str = FlaxVisionTextDualEncoderModel(__a ) __lowercase : Optional[Any] = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def lowerCAmelCase ( self : Optional[int] , __a : Optional[int] , __a : Dict , __a : Dict , __a : List[str] , __a : Optional[Any]=None , **__a : str ) -> str: """simple docstring""" __lowercase , __lowercase : List[str] = self.get_vision_text_model(__a , __a ) __lowercase : Union[str, Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : Any = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : Union[str, Any] , __a : Union[str, Any] , __a : Dict , __a : int=None , **__a : int ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Tuple = self.get_vision_text_model(__a , __a ) __lowercase : Union[str, Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : List[str] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : List[Any] = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) __lowercase : int = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowercase : int = FlaxVisionTextDualEncoderModel.from_pretrained(__a ) __lowercase : Tuple = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) __lowercase : int = after_output[0] __lowercase : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__a , 1E-3 ) def lowerCAmelCase ( self : List[Any] , __a : Any , __a : Tuple , __a : Optional[int] , __a : str , __a : Optional[Any]=None , **__a : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : str = self.get_vision_text_model(__a , __a ) __lowercase : Optional[Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : Union[str, Any] = model( input_ids=__a , pixel_values=__a , attention_mask=__a , output_attentions=__a ) __lowercase : Optional[int] = output.vision_model_output.attentions self.assertEqual(len(__a ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase : Optional[int] = to_atuple(vision_model.config.image_size ) __lowercase : List[str] = to_atuple(vision_model.config.patch_size ) __lowercase : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase : int = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase : Dict = output.text_model_output.attentions self.assertEqual(len(__a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowerCAmelCase ( self : Optional[int] , __a : List[str] , __a : List[Any] , __a : Optional[Any] ) -> Optional[int]: """simple docstring""" pt_model.to(__a ) pt_model.eval() # prepare inputs __lowercase : Union[str, Any] = inputs_dict __lowercase : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): __lowercase : Union[str, Any] = pt_model(**__a ).to_tuple() __lowercase : Tuple = fx_model(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(__a , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__a ) __lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained(__a , from_pt=__a ) __lowercase : Dict = fx_model_loaded(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(__a , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__a ) __lowercase : str = VisionTextDualEncoderModel.from_pretrained(__a , from_flax=__a ) pt_model_loaded.to(__a ) pt_model_loaded.eval() with torch.no_grad(): __lowercase : List[Any] = pt_model_loaded(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(__a , pt_output_loaded.numpy() , 4E-2 ) def lowerCAmelCase ( self : Optional[int] , __a : List[Any] , __a : int , __a : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : str = VisionTextDualEncoderModel(__a ) __lowercase : Union[str, Any] = FlaxVisionTextDualEncoderModel(__a ) __lowercase : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __a ) __lowercase : Any = fx_state self.check_pt_flax_equivalence(__a , __a , __a ) def lowerCAmelCase ( self : Any , __a : Any , __a : Dict , __a : Tuple ) -> str: """simple docstring""" __lowercase : int = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : Union[str, Any] = VisionTextDualEncoderModel(__a ) __lowercase : Dict = FlaxVisionTextDualEncoderModel(__a ) __lowercase : Tuple = load_flax_weights_in_pytorch_model(__a , fx_model.params ) self.check_pt_flax_equivalence(__a , __a , __a ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase : int = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__a ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() self.check_save_load(**__a ) def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" __lowercase : str = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__a ) @is_pt_flax_cross_test def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.prepare_config_and_inputs() __lowercase : Optional[int] = config_inputs_dict.pop("""vision_config""" ) __lowercase : Optional[int] = config_inputs_dict.pop("""text_config""" ) __lowercase : Dict = config_inputs_dict self.check_equivalence_pt_to_flax(__a , __a , __a ) self.check_equivalence_flax_to_pt(__a , __a , __a ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase , __lowercase : List[Any] = self.get_pretrained_model_and_inputs() __lowercase : Dict = model_a(**__a ) __lowercase : Any = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__a ) __lowercase : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(__a ) __lowercase : Optional[int] = model_a(**__a ) __lowercase : Tuple = after_outputs[0] __lowercase : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__a , 1E-5 ) @require_flax class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" __lowercase : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=__a , text_from_pt=__a , ) __lowercase : int = 13 __lowercase : Union[str, Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowercase : Dict = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __lowercase : Tuple = random_attention_mask([batch_size, 4] ) __lowercase : str = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCAmelCase ( self : Optional[Any] , __a : Union[str, Any] , __a : int ) -> Dict: """simple docstring""" __lowercase : int = FlaxViTModel(__a ) __lowercase : List[Any] = FlaxBertModel(__a ) return vision_model, text_model def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = FlaxViTModelTester(self ) __lowercase : str = FlaxBertModelTester(self ) __lowercase : List[str] = vit_model_tester.prepare_config_and_inputs() __lowercase : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase : Optional[int] = vision_config_and_inputs __lowercase , __lowercase , __lowercase , __lowercase : Any = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=__a , text_from_pt=__a , ) __lowercase : Tuple = 13 __lowercase : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowercase : Tuple = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __lowercase : List[Any] = random_attention_mask([batch_size, 4] ) __lowercase : int = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCAmelCase ( self : str , __a : str , __a : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Dict = FlaxCLIPVisionModel(__a ) __lowercase : Optional[Any] = FlaxBertModel(__a ) return vision_model, text_model def lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase : List[Any] = FlaxCLIPVisionModelTester(self ) __lowercase : Optional[Any] = FlaxBertModelTester(self ) __lowercase : Any = clip_model_tester.prepare_config_and_inputs() __lowercase : Optional[Any] = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase : Dict = vision_config_and_inputs __lowercase , __lowercase , __lowercase , __lowercase : Optional[int] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 ) __lowercase : int = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) __lowercase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowercase : Tuple = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=__a , padding=__a , return_tensors="""np""" ) __lowercase : Optional[int] = model(**__a ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowercase : Optional[Any] = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , __a , atol=1E-3 ) )
306
0
def snake_case_ ( lowerCAmelCase_ : list , lowerCAmelCase_ : int = 0 ): __lowercase : Optional[Any] = length or len(_a ) __lowercase : Any = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: __lowercase : Any = list_data[i + 1], list_data[i] __lowercase : Dict = True return list_data if not swapped else bubble_sort(_a , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
364
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
306
0
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration lowerCamelCase : str = 50_0000 lowerCamelCase : Optional[int] = os.path.split(__file__) lowerCamelCase : Union[str, Any] = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def snake_case_ ( lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : Tuple ): __lowercase : List[str] = dataset.map(**_UpperCAmelCase ) @get_duration def snake_case_ ( lowerCAmelCase_ : Any , **lowerCAmelCase_ : Optional[int] ): __lowercase : Any = dataset.filter(**_UpperCAmelCase ) def snake_case_ ( ): __lowercase : Tuple = {"num examples": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: __lowercase : Dict = datasets.Features({"""text""": datasets.Value("""string""" ), """numbers""": datasets.Value("""float32""" )} ) __lowercase : List[str] = generate_example_dataset( os.path.join(_UpperCAmelCase , """dataset.arrow""" ) , _UpperCAmelCase , num_examples=_UpperCAmelCase ) __lowercase : Tuple = transformers.AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=_UpperCAmelCase ) def tokenize(lowerCAmelCase_ : Optional[Any] ): return tokenizer(examples["""text"""] ) __lowercase : Any = map(_UpperCAmelCase ) __lowercase : Optional[int] = map(_UpperCAmelCase , batched=_UpperCAmelCase ) __lowercase : Optional[Any] = map(_UpperCAmelCase , function=lambda lowerCAmelCase_ : None , batched=_UpperCAmelCase ) with dataset.formatted_as(type="""numpy""" ): __lowercase : Optional[Any] = map(_UpperCAmelCase , function=lambda lowerCAmelCase_ : None , batched=_UpperCAmelCase ) with dataset.formatted_as(type="""pandas""" ): __lowercase : int = map(_UpperCAmelCase , function=lambda lowerCAmelCase_ : None , batched=_UpperCAmelCase ) with dataset.formatted_as(type="""torch""" , columns="""numbers""" ): __lowercase : int = map(_UpperCAmelCase , function=lambda lowerCAmelCase_ : None , batched=_UpperCAmelCase ) with dataset.formatted_as(type="""tensorflow""" , columns="""numbers""" ): __lowercase : List[str] = map(_UpperCAmelCase , function=lambda lowerCAmelCase_ : None , batched=_UpperCAmelCase ) __lowercase : int = map(_UpperCAmelCase , function=_UpperCAmelCase , batched=_UpperCAmelCase ) __lowercase : List[Any] = filter(_UpperCAmelCase ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(_UpperCAmelCase , """wb""" ) as f: f.write(json.dumps(_UpperCAmelCase ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
365
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowerCamelCase : str = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex lowerCamelCase : Union[str, Any] = 10 lowerCamelCase : List[str] = 2_56 def snake_case_ ( lowerCAmelCase_ : List[str] ): if len(lowerCAmelCase_ ) < MIN_NUM_TOKENS: return None __lowercase : Dict = MinHash(num_perm=lowerCAmelCase_ ) for token in set(lowerCAmelCase_ ): min_hash.update(token.encode() ) return min_hash def snake_case_ ( lowerCAmelCase_ : str ): return {t for t in NON_ALPHA.split(lowerCAmelCase_ ) if len(t.strip() ) > 0} class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , *, __a : float = 0.85 , ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = duplication_jaccard_threshold __lowercase : Optional[Any] = NUM_PERM __lowercase : List[Any] = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) __lowercase : List[str] = defaultdict(__a ) def lowerCAmelCase ( self : str , __a : Tuple , __a : MinHash ) -> None: """simple docstring""" __lowercase : List[Any] = self._index.query(__a ) if code_key in self._index.keys: print(F"Duplicate key {code_key}" ) return self._index.insert(__a , __a ) if len(__a ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__a ) break else: self._duplicate_clusters[close_duplicates[0]].add(__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[List[Dict]]: """simple docstring""" __lowercase : Dict = [] for base, duplicates in self._duplicate_clusters.items(): __lowercase : List[str] = [base] + list(__a ) # reformat the cluster to be a list of dict __lowercase : Optional[Any] = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(__a ) return duplicate_clusters def lowerCAmelCase ( self : Any , __a : int ) -> None: """simple docstring""" __lowercase : Tuple = self.get_duplicate_clusters() with open(__a , """w""" ) as f: json.dump(__a , __a ) def snake_case_ ( lowerCAmelCase_ : str ): __lowercase , __lowercase : Union[str, Any] = element __lowercase : Optional[Any] = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def snake_case_ ( lowerCAmelCase_ : Type[Dataset] ): with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(lowerCAmelCase_ , max_queue_size=10000 ) , chunksize=100 , ): if data is not None: yield data def snake_case_ ( lowerCAmelCase_ : Type[Dataset] , lowerCAmelCase_ : float ): __lowercase : Dict = DuplicationIndex(duplication_jaccard_threshold=lowerCAmelCase_ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(lowerCAmelCase_ ) ) , max_queue_size=100 ) ): di.add(lowerCAmelCase_ , lowerCAmelCase_ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : List[str] = get_tokens(lowerCAmelCase_ ) __lowercase : Dict = get_tokens(lowerCAmelCase_ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) lowerCamelCase : List[str] = None def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] ): __lowercase : Union[str, Any] = [] for elementa in cluster: __lowercase : Tuple = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: __lowercase : Dict = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(lowerCAmelCase_ , lowerCAmelCase_ ) >= jaccard_threshold: elementa["copies"] += 1 break else: __lowercase : Dict = 1 extremes.append(lowerCAmelCase_ ) return extremes def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple ): global _shared_dataset __lowercase : Tuple = dataset __lowercase : Optional[int] = [] __lowercase : str = partial(_find_cluster_extremes_shared , jaccard_threshold=lowerCAmelCase_ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( lowerCAmelCase_ , lowerCAmelCase_ , ) , total=len(lowerCAmelCase_ ) , ): extremes_list.append(lowerCAmelCase_ ) return extremes_list def snake_case_ ( lowerCAmelCase_ : Type[Dataset] , lowerCAmelCase_ : float = 0.85 ): __lowercase : Optional[int] = make_duplicate_clusters(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Tuple = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} __lowercase : int = {} __lowercase : Dict = find_extremes(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for extremes in extremes_clusters: for element in extremes: __lowercase : Optional[Any] = element __lowercase : int = duplicate_indices - set(extreme_dict.keys() ) __lowercase : int = dataset.filter(lambda lowerCAmelCase_ , lowerCAmelCase_ : idx not in remove_indices , with_indices=lowerCAmelCase_ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: __lowercase : List[str] = element["""base_index"""] in extreme_dict if element["is_extreme"]: __lowercase : str = extreme_dict[element["""base_index"""]]["""copies"""] print(F"Original dataset size: {len(lowerCAmelCase_ )}" ) print(F"Number of duplicate clusters: {len(lowerCAmelCase_ )}" ) print(F"Files in duplicate cluster: {len(lowerCAmelCase_ )}" ) print(F"Unique files in duplicate cluster: {len(lowerCAmelCase_ )}" ) print(F"Filtered dataset size: {len(lowerCAmelCase_ )}" ) return ds_filter, duplicate_clusters
306
0
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance lowerCamelCase : List[Any] = 6_37_81_37.0 lowerCamelCase : str = 6_35_67_52.31_42_45 lowerCamelCase : Dict = 6_37_81_37 def snake_case_ ( lowerCAmelCase_ : float , lowerCAmelCase_ : float , lowerCAmelCase_ : float , lowerCAmelCase_ : float ): __lowercase : Optional[int] = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude __lowercase : Union[str, Any] = atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE_ ) ) ) __lowercase : Union[str, Any] = atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE_ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius __lowercase : Tuple = haversine_distance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) / EQUATORIAL_RADIUS # Intermediate P and Q values __lowercase : List[Any] = (b_lata + b_lata) / 2 __lowercase : Optional[Any] = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) __lowercase : Optional[Any] = (sin(SCREAMING_SNAKE_CASE_ ) ** 2) * (cos(SCREAMING_SNAKE_CASE_ ) ** 2) __lowercase : Any = cos(sigma / 2 ) ** 2 __lowercase : int = (sigma - sin(SCREAMING_SNAKE_CASE_ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) __lowercase : Dict = (cos(SCREAMING_SNAKE_CASE_ ) ** 2) * (sin(SCREAMING_SNAKE_CASE_ ) ** 2) __lowercase : Tuple = sin(sigma / 2 ) ** 2 __lowercase : Union[str, Any] = (sigma + sin(SCREAMING_SNAKE_CASE_ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
366
from ...processing_utils import ProcessorMixin class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = ['''image_processor''', '''feature_extractor'''] _A : List[Any] = '''TvltImageProcessor''' _A : Optional[int] = '''TvltFeatureExtractor''' def __init__( self : str , __a : List[Any] , __a : Tuple ) -> Optional[Any]: """simple docstring""" super().__init__(image_processor=__a , feature_extractor=__a ) __lowercase : Union[str, Any] = image_processor __lowercase : Tuple = feature_extractor def __call__( self : Tuple , __a : Optional[int]=None , __a : Dict=None , __a : Union[str, Any]=None , __a : Tuple=None , __a : Optional[Any]=False , __a : List[Any]=False , *__a : List[str] , **__a : List[Any] , ) -> Dict: """simple docstring""" if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) __lowercase : Tuple = None if images is not None: __lowercase : Any = self.image_processor(__a , mask_pixel=__a , *__a , **__a ) if images_mixed is not None: __lowercase : Union[str, Any] = self.image_processor(__a , is_mixed=__a , *__a , **__a ) if audio is not None: __lowercase : Optional[Any] = self.feature_extractor( __a , *__a , sampling_rate=__a , mask_audio=__a , **__a ) __lowercase : Tuple = {} if audio is not None: output_dict.update(__a ) if images is not None: output_dict.update(__a ) if images_mixed_dict is not None: output_dict.update(__a ) return output_dict @property def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = self.image_processor.model_input_names __lowercase : Union[str, Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
306
0
import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer lowerCamelCase : int = logging.get_logger(__name__) class lowerCAmelCase ( UpperCamelCase__ ): '''simple docstring''' _A : str = '''AutoTokenizer''' _A : Optional[Any] = ['''tokenizer'''] _A : Any = { '''semantic_prompt''': 1, '''coarse_prompt''': 2, '''fine_prompt''': 2, } def __init__( self : Any , __a : Union[str, Any] , __a : Union[str, Any]=None ) -> str: """simple docstring""" super().__init__(__lowerCamelCase ) __lowercase : Tuple = speaker_embeddings @classmethod def lowerCAmelCase ( cls : Any , __a : List[str] , __a : str="speaker_embeddings_path.json" , **__a : Union[str, Any] ) -> Optional[int]: """simple docstring""" if speaker_embeddings_dict_path is not None: __lowercase : List[str] = get_file_from_repo( __lowerCamelCase , __lowerCamelCase , subfolder=kwargs.pop("""subfolder""" , __lowerCamelCase ) , cache_dir=kwargs.pop("""cache_dir""" , __lowerCamelCase ) , force_download=kwargs.pop("""force_download""" , __lowerCamelCase ) , proxies=kwargs.pop("""proxies""" , __lowerCamelCase ) , resume_download=kwargs.pop("""resume_download""" , __lowerCamelCase ) , local_files_only=kwargs.pop("""local_files_only""" , __lowerCamelCase ) , use_auth_token=kwargs.pop("""use_auth_token""" , __lowerCamelCase ) , revision=kwargs.pop("""revision""" , __lowerCamelCase ) , ) if speaker_embeddings_path is None: logger.warning( F"`{os.path.join(__lowerCamelCase , __lowerCamelCase )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`." ) __lowercase : List[str] = None else: with open(__lowerCamelCase ) as speaker_embeddings_json: __lowercase : List[str] = json.load(__lowerCamelCase ) else: __lowercase : Tuple = None __lowercase : str = AutoTokenizer.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) return cls(tokenizer=__lowerCamelCase , speaker_embeddings=__lowerCamelCase ) def lowerCAmelCase ( self : Dict , __a : int , __a : Optional[Any]="speaker_embeddings_path.json" , __a : str="speaker_embeddings" , __a : Any = False , **__a : Dict , ) -> Optional[int]: """simple docstring""" if self.speaker_embeddings is not None: os.makedirs(os.path.join(__lowerCamelCase , __lowerCamelCase , """v2""" ) , exist_ok=__lowerCamelCase ) __lowercase : List[str] = {} __lowercase : int = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": __lowercase : int = self._load_voice_preset(__lowerCamelCase ) __lowercase : Optional[Any] = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["""repo_or_path"""] , __lowerCamelCase , F"{prompt_key}_{key}" ) , voice_preset[key] , allow_pickle=__lowerCamelCase , ) __lowercase : Union[str, Any] = os.path.join(__lowerCamelCase , F"{prompt_key}_{key}.npy" ) __lowercase : str = tmp_dict with open(os.path.join(__lowerCamelCase , __lowerCamelCase ) , """w""" ) as fp: json.dump(__lowerCamelCase , __lowerCamelCase ) super().save_pretrained(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) def lowerCAmelCase ( self : Optional[int] , __a : str = None , **__a : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase : str = self.speaker_embeddings[voice_preset] __lowercase : List[str] = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F"Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}]." ) __lowercase : Any = get_file_from_repo( self.speaker_embeddings.get("""repo_or_path""" , """/""" ) , voice_preset_paths[key] , subfolder=kwargs.pop("""subfolder""" , __lowerCamelCase ) , cache_dir=kwargs.pop("""cache_dir""" , __lowerCamelCase ) , force_download=kwargs.pop("""force_download""" , __lowerCamelCase ) , proxies=kwargs.pop("""proxies""" , __lowerCamelCase ) , resume_download=kwargs.pop("""resume_download""" , __lowerCamelCase ) , local_files_only=kwargs.pop("""local_files_only""" , __lowerCamelCase ) , use_auth_token=kwargs.pop("""use_auth_token""" , __lowerCamelCase ) , revision=kwargs.pop("""revision""" , __lowerCamelCase ) , ) if path is None: raise ValueError( F"`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings." ) __lowercase : str = np.load(__lowerCamelCase ) return voice_preset_dict def lowerCAmelCase ( self : Dict , __a : Optional[int] = None ) -> Tuple: """simple docstring""" for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F"Voice preset unrecognized, missing {key} as a key." ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." ) def __call__( self : Optional[int] , __a : str=None , __a : Union[str, Any]=None , __a : str="pt" , __a : str=256 , __a : Optional[Any]=False , __a : Any=True , __a : List[str]=False , **__a : Dict , ) -> List[Any]: """simple docstring""" if voice_preset is not None and not isinstance(__lowerCamelCase , __lowerCamelCase ): if ( isinstance(__lowerCamelCase , __lowerCamelCase ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): __lowercase : str = self._load_voice_preset(__lowerCamelCase ) else: if isinstance(__lowerCamelCase , __lowerCamelCase ) and not voice_preset.endswith(""".npz""" ): __lowercase : Union[str, Any] = voice_preset + """.npz""" __lowercase : Any = np.load(__lowerCamelCase ) if voice_preset is not None: self._validate_voice_preset_dict(__lowerCamelCase , **__lowerCamelCase ) __lowercase : Dict = BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase ) __lowercase : int = self.tokenizer( __lowerCamelCase , return_tensors=__lowerCamelCase , padding="""max_length""" , max_length=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , add_special_tokens=__lowerCamelCase , **__lowerCamelCase , ) if voice_preset is not None: __lowercase : Optional[int] = voice_preset return encoded_text
367
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Any , __a : Tuple , __a : Optional[int]=13 , __a : int=7 , __a : List[str]=False , __a : Optional[int]=True , __a : Optional[int]=False , __a : Dict=True , __a : Optional[int]=33 , __a : Dict=32 , __a : Optional[int]=5 , __a : Union[str, Any]=4 , __a : List[str]=37 , __a : Tuple="gelu" , __a : List[str]=0.1 , __a : Dict=0.1 , __a : List[Any]=512 , __a : Any=16 , __a : Optional[Any]=2 , __a : List[Any]=0.02 , __a : int=3 , __a : Union[str, Any]=4 , __a : Optional[int]=None , ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = parent __lowercase : int = batch_size __lowercase : Any = seq_length __lowercase : str = is_training __lowercase : str = use_input_mask __lowercase : Optional[int] = use_token_type_ids __lowercase : List[Any] = use_labels __lowercase : Optional[Any] = vocab_size __lowercase : int = hidden_size __lowercase : List[Any] = num_hidden_layers __lowercase : Dict = num_attention_heads __lowercase : Any = intermediate_size __lowercase : Dict = hidden_act __lowercase : Union[str, Any] = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : List[str] = max_position_embeddings __lowercase : Union[str, Any] = type_vocab_size __lowercase : Dict = type_sequence_label_size __lowercase : Union[str, Any] = initializer_range __lowercase : List[Any] = num_labels __lowercase : str = num_choices __lowercase : Tuple = scope def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : int = None if self.use_input_mask: __lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : str = None __lowercase : Optional[Any] = None __lowercase : Tuple = None if self.use_labels: __lowercase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : List[Any] , __a : int , __a : int , __a : Dict , __a : Union[str, Any] , __a : List[str] , __a : str ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = EsmModel(config=__a ) model.to(__a ) model.eval() __lowercase : str = model(__a , attention_mask=__a ) __lowercase : List[Any] = model(__a ) __lowercase : Optional[int] = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : Union[str, Any] , __a : Dict , __a : List[Any] , __a : Tuple , __a : Union[str, Any] , __a : str , __a : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase : List[str] = EsmForMaskedLM(config=__a ) model.to(__a ) model.eval() __lowercase : int = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[int] , __a : Union[str, Any] , __a : List[Any] , __a : Tuple , __a : Tuple , __a : Optional[int] , __a : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = self.num_labels __lowercase : Any = EsmForTokenClassification(config=__a ) model.to(__a ) model.eval() __lowercase : Optional[Any] = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase : Any = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : List[str] = config_and_inputs __lowercase : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Optional[Any] = False _A : Any = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) _A : Optional[Any] = () _A : List[Any] = ( { '''feature-extraction''': EsmModel, '''fill-mask''': EsmForMaskedLM, '''text-classification''': EsmForSequenceClassification, '''token-classification''': EsmForTokenClassification, '''zero-shot''': EsmForSequenceClassification, } if is_torch_available() else {} ) _A : Optional[Any] = True def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : Optional[int] = EsmModelTester(self ) __lowercase : Tuple = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase : Union[str, Any] = type self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : List[str] = EsmModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] __lowercase : List[str] = EsmEmbeddings(config=__a ) __lowercase : Union[str, Any] = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) __lowercase : int = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) __lowercase : str = create_position_ids_from_input_ids(__a , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__a , __a ) ) ) def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] __lowercase : Optional[Any] = EsmEmbeddings(config=__a ) __lowercase : Optional[int] = torch.empty(2 , 4 , 30 ) __lowercase : Tuple = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] __lowercase : List[str] = torch.as_tensor([expected_single_positions, expected_single_positions] ) __lowercase : Any = embeddings.create_position_ids_from_inputs_embeds(__a ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__a , __a ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" pass @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" pass @require_torch class lowerCAmelCase ( __a ): '''simple docstring''' @slow def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): __lowercase : Tuple = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() __lowercase : Tuple = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase : List[str] = model(__a )[0] __lowercase : Union[str, Any] = 33 __lowercase : Union[str, Any] = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , __a ) __lowercase : List[Any] = torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): __lowercase : int = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() __lowercase : int = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) __lowercase : Any = model(__a )[0] # compare the actual values for a slice. __lowercase : int = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) )
306
0
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(0 ) == 0 ) def snake_case_ ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
368
def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def snake_case_ ( lowerCAmelCase_ : int = 5000 ): __lowercase : Optional[int] = [(i * (3 * i - 1)) // 2 for i in range(1 , lowerCAmelCase_ )] for i, pentagonal_i in enumerate(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ , len(lowerCAmelCase_ ) ): __lowercase : int = pentagonal_nums[j] __lowercase : Optional[int] = pentagonal_i + pentagonal_j __lowercase : Union[str, Any] = pentagonal_j - pentagonal_i if is_pentagonal(lowerCAmelCase_ ) and is_pentagonal(lowerCAmelCase_ ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
306
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/config.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/config.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json" ), "distilbert-base-uncased-finetuned-sst-2-english": ( "https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json" ), } class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[Any] = '''distilbert''' _A : Union[str, Any] = { '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self : Optional[Any] , __a : List[str]=30522 , __a : str=512 , __a : Optional[int]=False , __a : Union[str, Any]=6 , __a : str=12 , __a : Union[str, Any]=768 , __a : int=4 * 768 , __a : int=0.1 , __a : List[Any]=0.1 , __a : Optional[Any]="gelu" , __a : List[Any]=0.02 , __a : List[str]=0.1 , __a : int=0.2 , __a : Tuple=0 , **__a : int , ) -> Tuple: """simple docstring""" __lowercase : int = vocab_size __lowercase : str = max_position_embeddings __lowercase : Union[str, Any] = sinusoidal_pos_embds __lowercase : str = n_layers __lowercase : Optional[int] = n_heads __lowercase : str = dim __lowercase : List[str] = hidden_dim __lowercase : Dict = dropout __lowercase : Optional[Any] = attention_dropout __lowercase : int = activation __lowercase : Optional[int] = initializer_range __lowercase : List[str] = qa_dropout __lowercase : Tuple = seq_classif_dropout super().__init__(**_a , pad_token_id=_a ) class lowerCAmelCase ( __a ): '''simple docstring''' @property def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" if self.task == "multiple-choice": __lowercase : List[str] = {0: "batch", 1: "choice", 2: "sequence"} else: __lowercase : Dict = {0: "batch", 1: "sequence"} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
369
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowerCAmelCase ( __a ): '''simple docstring''' _A : Optional[Any] = (DPMSolverSDEScheduler,) _A : Dict = 10 def lowerCAmelCase ( self : Optional[int] , **__a : Dict ) -> Optional[int]: """simple docstring""" __lowercase : Any = { """num_train_timesteps""": 1100, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**__a ) return config def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=__a ) def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__a ) def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = self.scheduler_classes[0] __lowercase : List[str] = self.get_scheduler_config() __lowercase : Any = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase : Optional[Any] = self.dummy_model() __lowercase : str = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase : Optional[Any] = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): __lowercase : Union[str, Any] = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[Any] = model(__a , __a ) __lowercase : Optional[Any] = scheduler.step(__a , __a , __a ) __lowercase : str = output.prev_sample __lowercase : Optional[Any] = torch.sum(torch.abs(__a ) ) __lowercase : Union[str, Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47821044921875 ) < 1E-2 assert abs(result_mean.item() - 0.2178705964565277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59352111816406 ) < 1E-2 assert abs(result_mean.item() - 0.22342906892299652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase : Tuple = self.scheduler_classes[0] __lowercase : Dict = self.get_scheduler_config(prediction_type="""v_prediction""" ) __lowercase : int = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase : Optional[int] = self.dummy_model() __lowercase : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase : Dict = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): __lowercase : Dict = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[int] = model(__a , __a ) __lowercase : Optional[int] = scheduler.step(__a , __a , __a ) __lowercase : int = output.prev_sample __lowercase : Optional[Any] = torch.sum(torch.abs(__a ) ) __lowercase : List[str] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77149200439453 ) < 1E-2 assert abs(result_mean.item() - 0.16226289014816284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1663360595703 ) < 1E-2 assert abs(result_mean.item() - 0.16688326001167297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8487548828125 ) < 1E-2 assert abs(result_mean.item() - 0.1560530662536621 ) < 1E-3 def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = self.scheduler_classes[0] __lowercase : Dict = self.get_scheduler_config() __lowercase : Optional[int] = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps , device=__a ) __lowercase : int = self.dummy_model() __lowercase : Optional[Any] = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __lowercase : int = scheduler.scale_model_input(__a , __a ) __lowercase : List[str] = model(__a , __a ) __lowercase : List[str] = scheduler.step(__a , __a , __a ) __lowercase : int = output.prev_sample __lowercase : List[Any] = torch.sum(torch.abs(__a ) ) __lowercase : Optional[Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46957397460938 ) < 1E-2 assert abs(result_mean.item() - 0.21805934607982635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59353637695312 ) < 1E-2 assert abs(result_mean.item() - 0.22342908382415771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : str = self.scheduler_classes[0] __lowercase : List[Any] = self.get_scheduler_config() __lowercase : Tuple = scheduler_class(**__a , use_karras_sigmas=__a ) scheduler.set_timesteps(self.num_inference_steps , device=__a ) __lowercase : List[str] = self.dummy_model() __lowercase : Optional[int] = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma __lowercase : str = sample.to(__a ) for t in scheduler.timesteps: __lowercase : List[Any] = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[Any] = model(__a , __a ) __lowercase : Any = scheduler.step(__a , __a , __a ) __lowercase : Optional[Any] = output.prev_sample __lowercase : Any = torch.sum(torch.abs(__a ) ) __lowercase : Optional[Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66974135742188 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63653564453125 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3135223388672 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2
306
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : str , __a : str , __a : List[str]=7 , __a : str=3 , __a : Tuple=30 , __a : List[str]=400 , __a : Tuple=True , __a : Optional[Any]=None , __a : Tuple=0.9 , __a : Optional[Any]=None , __a : Optional[int]=True , __a : Dict=[0.5, 0.5, 0.5] , __a : Optional[Any]=[0.5, 0.5, 0.5] , ) -> List[Any]: """simple docstring""" __lowercase : Optional[int] = size if size is not None else {"shortest_edge": 30} __lowercase : str = crop_size if crop_size is not None else {"height": 30, "width": 30} __lowercase : List[Any] = parent __lowercase : List[Any] = batch_size __lowercase : str = num_channels __lowercase : List[Any] = min_resolution __lowercase : List[Any] = max_resolution __lowercase : Tuple = do_resize_and_center_crop __lowercase : Any = size __lowercase : List[Any] = crop_pct __lowercase : List[Any] = crop_size __lowercase : Dict = do_normalize __lowercase : Dict = image_mean __lowercase : Tuple = image_std def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowerCAmelCase ( _a , unittest.TestCase ): '''simple docstring''' _A : Union[str, Any] = PoolFormerImageProcessor if is_vision_available() else None def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = PoolFormerImageProcessingTester(self ) @property def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , """do_resize_and_center_crop""" ) ) self.assertTrue(hasattr(_a , """size""" ) ) self.assertTrue(hasattr(_a , """crop_pct""" ) ) self.assertTrue(hasattr(_a , """do_normalize""" ) ) self.assertTrue(hasattr(_a , """image_mean""" ) ) self.assertTrue(hasattr(_a , """image_std""" ) ) def lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" __lowercase : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 30} ) self.assertEqual(image_processor.crop_size , {"""height""": 30, """width""": 30} ) __lowercase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" pass def lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input __lowercase : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowercase : Optional[int] = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input __lowercase : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowercase : Tuple = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input __lowercase : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowercase : Any = image_processing(_a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
370
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate lowerCamelCase : str = trt.Logger(trt.Logger.WARNING) lowerCamelCase : Any = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) lowerCamelCase : Optional[Any] = logging.getLogger(__name__) lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=3_84, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=1_28, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) lowerCamelCase : Dict = parser.parse_args() if args.tokenizer_name: lowerCamelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) lowerCamelCase : List[str] = args.per_device_eval_batch_size lowerCamelCase : Any = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties lowerCamelCase : List[str] = True lowerCamelCase : List[Any] = '''temp_engine/bert-fp32.engine''' if args.fpaa: lowerCamelCase : Optional[Any] = '''temp_engine/bert-fp16.engine''' if args.inta: lowerCamelCase : int = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') lowerCamelCase : int = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network lowerCamelCase : Union[str, Any] = [network.get_input(i) for i in range(network.num_inputs)] lowerCamelCase : Dict = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: lowerCamelCase : List[str] = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) lowerCamelCase : Optional[int] = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) lowerCamelCase : Optional[Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ): __lowercase : List[str] = np.asarray(inputs["""input_ids"""] , dtype=np.intaa ) __lowercase : Union[str, Any] = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa ) __lowercase : int = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowerCAmelCase_ ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowerCAmelCase_ ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowerCAmelCase_ ) # start time __lowercase : Optional[Any] = time.time() # Run inference context.execute_async( bindings=[int(lowerCAmelCase_ ) for d_inp in d_inputs] + [int(lowerCAmelCase_ ), int(lowerCAmelCase_ )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) cuda.memcpy_dtoh_async(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Synchronize the stream and take time stream.synchronize() # end time __lowercase : int = time.time() __lowercase : Union[str, Any] = end_time - start_time __lowercase : Any = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. lowerCamelCase : Tuple = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase : List[Any] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. lowerCamelCase : Optional[Any] = raw_datasets['''validation'''].column_names lowerCamelCase : Union[str, Any] = '''question''' if '''question''' in column_names else column_names[0] lowerCamelCase : str = '''context''' if '''context''' in column_names else column_names[1] lowerCamelCase : Dict = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). lowerCamelCase : Dict = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) lowerCamelCase : Tuple = min(args.max_seq_length, tokenizer.model_max_length) def snake_case_ ( lowerCAmelCase_ : int ): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace __lowercase : str = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. __lowercase : List[str] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=lowerCAmelCase_ , stride=args.doc_stride , return_overflowing_tokens=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. __lowercase : List[str] = tokenized_examples.pop("""overflow_to_sample_mapping""" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. __lowercase : Any = [] for i in range(len(tokenized_examples["""input_ids"""] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). __lowercase : Dict = tokenized_examples.sequence_ids(lowerCAmelCase_ ) __lowercase : List[Any] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. __lowercase : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. __lowercase : Dict = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i] ) ] return tokenized_examples lowerCamelCase : Tuple = raw_datasets['''validation'''] # Validation Feature Creation lowerCamelCase : Optional[int] = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) lowerCamelCase : Union[str, Any] = default_data_collator lowerCamelCase : Optional[Any] = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) lowerCamelCase : List[str] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict="eval" ): # Post-processing: we match the start logits and end logits to answers in the original context. __lowercase : int = postprocess_qa_predictions( examples=lowerCAmelCase_ , features=lowerCAmelCase_ , predictions=lowerCAmelCase_ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowerCAmelCase_ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: __lowercase : Optional[int] = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: __lowercase : List[Any] = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] __lowercase : Optional[int] = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=lowerCAmelCase_ , label_ids=lowerCAmelCase_ ) lowerCamelCase : Dict = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def snake_case_ ( lowerCAmelCase_ : str ): return trt.volume(engine.get_binding_shape(lowerCAmelCase_ ) ) * engine.get_binding_dtype(lowerCAmelCase_ ).itemsize # Allocate device memory for inputs and outputs. lowerCamelCase : int = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer lowerCamelCase : Dict = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) lowerCamelCase : str = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) lowerCamelCase : Dict = cuda.mem_alloc(h_outputa.nbytes) lowerCamelCase : Optional[Any] = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. lowerCamelCase : Optional[int] = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(f''' Num examples = {len(eval_dataset)}''') logger.info(f''' Batch size = {args.per_device_eval_batch_size}''') lowerCamelCase : int = 0.0 lowerCamelCase : List[str] = 0 lowerCamelCase : List[str] = timeit.default_timer() lowerCamelCase : List[Any] = None for step, batch in enumerate(eval_dataloader): lowerCamelCase ,lowerCamelCase : str = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 lowerCamelCase ,lowerCamelCase : Union[str, Any] = outputs lowerCamelCase : Optional[Any] = torch.tensor(start_logits) lowerCamelCase : List[str] = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered lowerCamelCase : Optional[int] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-1_00) lowerCamelCase : Dict = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-1_00) lowerCamelCase : List[Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) lowerCamelCase : Dict = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-1_00) if all_preds is not None: lowerCamelCase : Tuple = nested_truncate(all_preds, len(eval_dataset)) lowerCamelCase : Dict = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 10_00 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 10_00)) logger.info('''Total Number of Inference = %d''', niter) lowerCamelCase : str = post_processing_function(eval_examples, eval_dataset, all_preds) lowerCamelCase : Optional[Any] = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'''Evaluation metrics: {eval_metric}''')
306
0
"""simple docstring""" from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : List[str] ): __lowercase : Optional[Any] = str(_lowerCAmelCase ) return len(_lowerCAmelCase ) == 9 and set(_lowerCAmelCase ) == set("""123456789""" ) def snake_case_ ( ): for base_num in range(9999 , 4999 , -1 ): __lowercase : int = 100002 * base_num if is_9_pandigital(_lowerCAmelCase ): return candidate for base_num in range(333 , 99 , -1 ): __lowercase : List[str] = 1002003 * base_num if is_9_pandigital(_lowerCAmelCase ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
371
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : str = { '''facebook/nllb-moe-54B''': '''https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''nllb-moe''' _A : List[str] = ['''past_key_values'''] _A : Optional[Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Dict , __a : List[str]=128112 , __a : List[Any]=1024 , __a : List[Any]=12 , __a : Union[str, Any]=4096 , __a : List[str]=16 , __a : int=12 , __a : Optional[int]=4096 , __a : str=16 , __a : List[Any]=0.05 , __a : Any=0.05 , __a : Dict=True , __a : Optional[Any]=True , __a : List[Any]="relu" , __a : Tuple=1024 , __a : Optional[Any]=0.1 , __a : Tuple=0.1 , __a : Any=0.0 , __a : Optional[Any]=0.02 , __a : List[str]=2 , __a : Union[str, Any]=True , __a : List[Any]=False , __a : Tuple="float32" , __a : Optional[int]=False , __a : Optional[int]=128 , __a : str=64 , __a : Dict=4 , __a : str=4 , __a : List[str]=0.001 , __a : List[Any]=0.001 , __a : Optional[Any]="all" , __a : Optional[int]=False , __a : int=False , __a : int=1.0 , __a : Dict=0.2 , __a : Tuple=1 , __a : Optional[Any]=0 , __a : List[Any]=2 , __a : Any=False , **__a : Any , ) -> Any: """simple docstring""" __lowercase : int = vocab_size __lowercase : List[Any] = max_position_embeddings __lowercase : Tuple = d_model __lowercase : str = encoder_ffn_dim __lowercase : List[str] = encoder_layers __lowercase : int = encoder_attention_heads __lowercase : List[Any] = decoder_ffn_dim __lowercase : int = decoder_layers __lowercase : Optional[int] = decoder_attention_heads __lowercase : Union[str, Any] = dropout __lowercase : str = attention_dropout __lowercase : Any = activation_dropout __lowercase : List[Any] = activation_function __lowercase : List[str] = init_std __lowercase : Optional[int] = encoder_layerdrop __lowercase : str = decoder_layerdrop __lowercase : Dict = use_cache __lowercase : Optional[Any] = encoder_layers __lowercase : str = scale_embedding # scale factor will be sqrt(d_model) if True __lowercase : List[Any] = router_z_loss_coef __lowercase : Tuple = router_aux_loss_coef __lowercase : str = decoder_sparse_step __lowercase : Any = encoder_sparse_step __lowercase : str = num_experts __lowercase : List[Any] = expert_capacity __lowercase : int = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) __lowercase : Optional[int] = router_dtype __lowercase : Any = router_ignore_padding_tokens __lowercase : Optional[Any] = batch_prioritized_routing __lowercase : str = second_expert_policy __lowercase : List[str] = normalize_router_prob_before_dropping __lowercase : List[Any] = moe_eval_capacity_token_fraction __lowercase : List[str] = moe_token_dropout __lowercase : Optional[Any] = output_router_logits super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , decoder_start_token_id=__a , **__a , )
306
0
"""simple docstring""" import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" __lowercase : Any = 10 def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" __lowercase : List[Any] = [1, 2, 3, 4] __lowercase : List[str] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(__lowercase , self.block_size , 0 ) , __lowercase ) def lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" __lowercase : str = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] __lowercase : Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(__lowercase , self.block_size , 0 ) , __lowercase ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Any = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] __lowercase : List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(__lowercase , self.block_size , 0 ) , __lowercase ) def lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase : str = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' __lowercase : str = process_story(__lowercase ) self.assertEqual(__lowercase , [] ) def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" __lowercase : int = '''''' __lowercase : Dict = process_story(__lowercase ) self.assertEqual(__lowercase , [] ) self.assertEqual(__lowercase , [] ) def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" __lowercase : Dict = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) __lowercase : Tuple = process_story(__lowercase ) __lowercase : Dict = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(__lowercase , __lowercase ) __lowercase : str = ['''It was the best of times.'''] self.assertEqual(__lowercase , __lowercase ) def lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase : Dict = torch.tensor([1, 2, 3, 4] ) __lowercase : str = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(__lowercase , 0 ).numpy() , expected.numpy() ) def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Tuple = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) __lowercase : int = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__lowercase , 23 ).numpy() , expected.numpy() ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : List[Any] = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) __lowercase : Optional[int] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__lowercase , 1 ).numpy() , expected.numpy() ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" __lowercase : Tuple = 101 __lowercase : str = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) __lowercase : Tuple = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) __lowercase : str = compute_token_type_ids(__lowercase , __lowercase ) np.testing.assert_array_equal(__lowercase , __lowercase )
350
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase : Optional[Any] = { '''configuration_poolformer''': [ '''POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PoolFormerConfig''', '''PoolFormerOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = ['''PoolFormerFeatureExtractor'''] lowerCamelCase : Union[str, Any] = ['''PoolFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = [ '''POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PoolFormerForImageClassification''', '''PoolFormerModel''', '''PoolFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
306
0
from __future__ import annotations lowerCamelCase : Union[str, Any] = 1.6021E-19 # units = C def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , ): if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif conductivity < 0: raise ValueError("""Conductivity cannot be negative""" ) elif electron_conc < 0: raise ValueError("""Electron concentration cannot be negative""" ) elif mobility < 0: raise ValueError("""mobility cannot be negative""" ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
351
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : List[str] = 2 __lowercase : Union[str, Any] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(lowerCAmelCase_ ) if n > 1: factors.append(lowerCAmelCase_ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
306
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : int = logging.get_logger(__name__) lowerCamelCase : List[str] = { """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class lowerCAmelCase ( lowerCAmelCase_ ): '''simple docstring''' _A : List[str] = """decision_transformer""" _A : List[Any] = ["""past_key_values"""] _A : Dict = { """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Tuple , __a : List[Any]=17 , __a : List[Any]=4 , __a : str=128 , __a : Any=4096 , __a : Union[str, Any]=True , __a : int=1 , __a : List[Any]=1024 , __a : int=3 , __a : int=1 , __a : Optional[Any]=None , __a : int="relu" , __a : int=0.1 , __a : List[Any]=0.1 , __a : List[Any]=0.1 , __a : Union[str, Any]=1E-5 , __a : Union[str, Any]=0.02 , __a : List[Any]=True , __a : List[str]=True , __a : Optional[int]=50256 , __a : Any=50256 , __a : List[str]=False , __a : List[Any]=False , **__a : Optional[Any] , ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = state_dim __lowercase : Dict = act_dim __lowercase : Optional[Any] = hidden_size __lowercase : List[str] = max_ep_len __lowercase : List[str] = action_tanh __lowercase : str = vocab_size __lowercase : Union[str, Any] = n_positions __lowercase : Tuple = n_layer __lowercase : Any = n_head __lowercase : str = n_inner __lowercase : Tuple = activation_function __lowercase : Any = resid_pdrop __lowercase : int = embd_pdrop __lowercase : str = attn_pdrop __lowercase : Union[str, Any] = layer_norm_epsilon __lowercase : Optional[Any] = initializer_range __lowercase : Dict = scale_attn_weights __lowercase : List[str] = use_cache __lowercase : Optional[Any] = scale_attn_by_inverse_layer_idx __lowercase : Any = reorder_and_upcast_attn __lowercase : Union[str, Any] = bos_token_id __lowercase : int = eos_token_id super().__init__(bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
352
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Dict = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) __lowercase : List[str] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __lowercase : Optional[Any] = model(__a )["""last_hidden_state"""] __lowercase : Any = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , __a ) # compare the actual values for a slice. __lowercase : Dict = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
306
0
import os import time import numpy as np import onnxruntime as ort lowerCamelCase : Tuple = '''1''' lowerCamelCase : Optional[Any] = '''0''' lowerCamelCase : List[Any] = '''1''' lowerCamelCase : Union[str, Any] = ort.SessionOptions() lowerCamelCase : int = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print('''Create inference session...''') lowerCamelCase : Optional[Any] = ['''TensorrtExecutionProvider''', '''CUDAExecutionProvider'''] lowerCamelCase : Union[str, Any] = ort.InferenceSession('''model.onnx''', sess_options=sess_opt, providers=execution_provider) lowerCamelCase : Tuple = ort.RunOptions() lowerCamelCase : Dict = 1_28 lowerCamelCase : Optional[int] = 1 lowerCamelCase : Optional[int] = np.ones((batch, sequence), dtype=np.intaa) lowerCamelCase : Optional[int] = np.ones((batch, sequence), dtype=np.intaa) lowerCamelCase : List[str] = np.ones((batch, sequence), dtype=np.intaa) print('''Warm up phase...''') sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('''Start inference...''') lowerCamelCase : Union[str, Any] = time.time() lowerCamelCase : List[str] = 20_00 lowerCamelCase : List[Any] = {} for iter in range(max_iters): lowerCamelCase : str = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('''Average Inference Time = {:.3f} ms'''.format((time.time() - start_time) * 10_00 / max_iters))
353
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Optional[Any] = len(lowerCAmelCase_ ) __lowercase : str = len(lowerCAmelCase_ ) __lowercase : Optional[int] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __lowercase : Tuple = True for i in range(lowerCAmelCase_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __lowercase : Optional[Any] = True if a[i].islower(): __lowercase : Dict = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
306
0