code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : List[str] = {'''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase : List[Any] = { '''tokenizer_file''': { '''bigscience/tokenizer''': '''https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json''', '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json''', }, } class lowerCAmelCase ( __a ): '''simple docstring''' _A : str = VOCAB_FILES_NAMES _A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _A : List[str] = ['''input_ids''', '''attention_mask'''] _A : Union[str, Any] = None def __init__( self : List[str] , __a : Union[str, Any]=None , __a : Dict=None , __a : Dict=None , __a : Optional[int]="<unk>" , __a : List[Any]="<s>" , __a : Union[str, Any]="</s>" , __a : int="<pad>" , __a : Any=False , __a : int=False , **__a : List[Any] , ) -> int: """simple docstring""" super().__init__( __a , __a , tokenizer_file=__a , unk_token=__a , bos_token=__a , eos_token=__a , pad_token=__a , add_prefix_space=__a , clean_up_tokenization_spaces=__a , **__a , ) __lowercase : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __a ) != add_prefix_space: __lowercase : Tuple = getattr(__a , pre_tok_state.pop("""type""" ) ) __lowercase : Dict = add_prefix_space __lowercase : str = pre_tok_class(**__a ) __lowercase : List[str] = add_prefix_space def lowerCAmelCase ( self : List[str] , *__a : Optional[Any] , **__a : Tuple ) -> BatchEncoding: """simple docstring""" __lowercase : Tuple = kwargs.get("""is_split_into_words""" , __a ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" """ pretokenized inputs.""" ) return super()._batch_encode_plus(*__a , **__a ) def lowerCAmelCase ( self : str , *__a : int , **__a : Dict ) -> BatchEncoding: """simple docstring""" __lowercase : Tuple = kwargs.get("""is_split_into_words""" , __a ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" """ pretokenized inputs.""" ) return super()._encode_plus(*__a , **__a ) def lowerCAmelCase ( self : int , __a : str , __a : Optional[str] = None ) -> Tuple[str]: """simple docstring""" __lowercase : Any = self._tokenizer.model.save(__a , name=__a ) return tuple(__a ) def lowerCAmelCase ( self : List[Any] , __a : "Conversation" ) -> List[int]: """simple docstring""" __lowercase : Optional[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__a , add_special_tokens=__a ) + [self.eos_token_id] ) if len(__a ) > self.model_max_length: __lowercase : List[str] = input_ids[-self.model_max_length :] return input_ids
306
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Dict = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) __lowercase : List[str] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __lowercase : Optional[Any] = model(__a )["""last_hidden_state"""] __lowercase : Any = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , __a ) # compare the actual values for a slice. __lowercase : Dict = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
306
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase : Optional[Any] = { '''configuration_mobilenet_v2''': [ '''MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileNetV2Config''', '''MobileNetV2OnnxConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = ['''MobileNetV2FeatureExtractor'''] lowerCamelCase : Any = ['''MobileNetV2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[Any] = [ '''MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileNetV2ForImageClassification''', '''MobileNetV2ForSemanticSegmentation''', '''MobileNetV2Model''', '''MobileNetV2PreTrainedModel''', '''load_tf_weights_in_mobilenet_v2''', ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys lowerCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Optional[Any] = len(lowerCAmelCase_ ) __lowercase : str = len(lowerCAmelCase_ ) __lowercase : Optional[int] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __lowercase : Tuple = True for i in range(lowerCAmelCase_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __lowercase : Optional[Any] = True if a[i].islower(): __lowercase : Dict = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
306
1
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar lowerCamelCase : Any = TypeVar('''T''') class lowerCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self : Optional[Any] , __a : T ) -> int: """simple docstring""" __lowercase : Tuple = data __lowercase : Node[T] | None = None def __str__( self : Union[str, Any] ) -> str: """simple docstring""" return F"{self.data}" class lowerCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self : str ) -> None: """simple docstring""" __lowercase : Node[T] | None = None def __iter__( self : str ) -> Iterator[T]: """simple docstring""" __lowercase : Optional[int] = self.top while node: yield node.data __lowercase : Union[str, Any] = node.next def __str__( self : Union[str, Any] ) -> str: """simple docstring""" return "->".join([str(__a ) for item in self] ) def __len__( self : List[str] ) -> int: """simple docstring""" return len(tuple(iter(self ) ) ) def lowerCAmelCase ( self : Dict ) -> bool: """simple docstring""" return self.top is None def lowerCAmelCase ( self : Optional[Any] , __a : T ) -> None: """simple docstring""" __lowercase : Optional[int] = Node(__a ) if not self.is_empty(): __lowercase : Tuple = self.top __lowercase : List[str] = node def lowerCAmelCase ( self : Optional[Any] ) -> T: """simple docstring""" if self.is_empty(): raise IndexError("""pop from empty stack""" ) assert isinstance(self.top , __a ) __lowercase : List[Any] = self.top __lowercase : List[Any] = self.top.next return pop_node.data def lowerCAmelCase ( self : str ) -> T: """simple docstring""" if self.is_empty(): raise IndexError("""peek from empty stack""" ) assert self.top is not None return self.top.data def lowerCAmelCase ( self : str ) -> None: """simple docstring""" __lowercase : int = None if __name__ == "__main__": from doctest import testmod testmod()
306
from scipy.stats import spearmanr import datasets lowerCamelCase : List[str] = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' lowerCamelCase : List[str] = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' lowerCamelCase : Union[str, Any] = r'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def lowerCAmelCase ( self : List[Any] , __a : str , __a : Any , __a : Optional[int]=False ) -> List[str]: """simple docstring""" __lowercase : Optional[Any] = spearmanr(__a , __a ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
306
1
from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract lowerCamelCase : Tuple = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int ): return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def snake_case_ ( lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Optional[str] , lowerCAmelCase_ : Optional[str] = None ): __lowercase : List[Any] = tesseract_config if tesseract_config is not None else """""" # apply OCR __lowercase : Dict = to_pil_image(lowerCAmelCase_ ) __lowercase , __lowercase : Dict = pil_image.size __lowercase : Tuple = pytesseract.image_to_data(lowerCAmelCase_ , lang=lowerCAmelCase_ , output_type="""dict""" , config=lowerCAmelCase_ ) __lowercase , __lowercase , __lowercase , __lowercase , __lowercase : int = data["""text"""], data["""left"""], data["""top"""], data["""width"""], data["""height"""] # filter empty words and corresponding coordinates __lowercase : int = [idx for idx, word in enumerate(lowerCAmelCase_ ) if not word.strip()] __lowercase : Optional[int] = [word for idx, word in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] __lowercase : Optional[int] = [coord for idx, coord in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] __lowercase : Dict = [coord for idx, coord in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] __lowercase : Dict = [coord for idx, coord in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] __lowercase : Tuple = [coord for idx, coord in enumerate(lowerCAmelCase_ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __lowercase : Optional[Any] = [] for x, y, w, h in zip(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : str = [x, y, x + w, y + h] actual_boxes.append(lowerCAmelCase_ ) # finally, normalize the bounding boxes __lowercase : List[str] = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class lowerCAmelCase ( __a ): '''simple docstring''' _A : Dict = ['''pixel_values'''] def __init__( self : Tuple , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : bool = True , __a : Optional[str] = None , __a : Optional[str] = "" , **__a : Union[str, Any] , ) -> None: """simple docstring""" super().__init__(**__a ) __lowercase : Optional[Any] = size if size is not None else {"""height""": 224, """width""": 224} __lowercase : int = get_size_dict(__a ) __lowercase : Optional[Any] = do_resize __lowercase : Tuple = size __lowercase : List[Any] = resample __lowercase : Any = apply_ocr __lowercase : int = ocr_lang __lowercase : List[str] = tesseract_config def lowerCAmelCase ( self : Optional[int] , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] , ) -> np.ndarray: """simple docstring""" __lowercase : Any = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}" ) __lowercase : Any = (size["""height"""], size["""width"""]) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Dict , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : Optional[str] = None , __a : Optional[str] = None , __a : Optional[Union[str, TensorType]] = None , __a : ChannelDimension = ChannelDimension.FIRST , **__a : int , ) -> PIL.Image.Image: """simple docstring""" __lowercase : Tuple = do_resize if do_resize is not None else self.do_resize __lowercase : Optional[int] = size if size is not None else self.size __lowercase : Optional[int] = get_size_dict(__a ) __lowercase : List[Any] = resample if resample is not None else self.resample __lowercase : Union[str, Any] = apply_ocr if apply_ocr is not None else self.apply_ocr __lowercase : Optional[Any] = ocr_lang if ocr_lang is not None else self.ocr_lang __lowercase : Tuple = tesseract_config if tesseract_config is not None else self.tesseract_config __lowercase : Optional[int] = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) # All transformations expect numpy arrays. __lowercase : Tuple = [to_numpy_array(__a ) for image in images] if apply_ocr: requires_backends(self , """pytesseract""" ) __lowercase : Union[str, Any] = [] __lowercase : Union[str, Any] = [] for image in images: __lowercase , __lowercase : int = apply_tesseract(__a , __a , __a ) words_batch.append(__a ) boxes_batch.append(__a ) if do_resize: __lowercase : Optional[int] = [self.resize(image=__a , size=__a , resample=__a ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) __lowercase : str = [flip_channel_order(__a ) for image in images] __lowercase : Dict = [to_channel_dimension_format(__a , __a ) for image in images] __lowercase : Optional[int] = BatchFeature(data={"""pixel_values""": images} , tensor_type=__a ) if apply_ocr: __lowercase : List[str] = words_batch __lowercase : Optional[Any] = boxes_batch return data
306
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Any = get_failure_array(lowerCAmelCase_ ) # 2) Step through text searching for pattern __lowercase , __lowercase : Optional[int] = 0, 0 # index into text, pattern while i < len(lowerCAmelCase_ ): if pattern[j] == text[i]: if j == (len(lowerCAmelCase_ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: __lowercase : Optional[Any] = failure[j - 1] continue i += 1 return False def snake_case_ ( lowerCAmelCase_ : str ): __lowercase : List[Any] = [0] __lowercase : Optional[Any] = 0 __lowercase : List[Any] = 1 while j < len(lowerCAmelCase_ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: __lowercase : List[str] = failure[i - 1] continue j += 1 failure.append(lowerCAmelCase_ ) return failure if __name__ == "__main__": # Test 1) lowerCamelCase : Dict = '''abc1abc12''' lowerCamelCase : Union[str, Any] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' lowerCamelCase : Any = '''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) lowerCamelCase : List[Any] = '''ABABX''' lowerCamelCase : List[Any] = '''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) lowerCamelCase : int = '''AAAB''' lowerCamelCase : Optional[int] = '''ABAAAAAB''' assert kmp(pattern, text) # Test 4) lowerCamelCase : Optional[Any] = '''abcdabcy''' lowerCamelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) lowerCamelCase : Dict = '''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
306
1
from typing import TYPE_CHECKING from ...utils import _LazyModule lowerCamelCase : Tuple = {'''tokenization_wav2vec2_phoneme''': ['''Wav2Vec2PhonemeCTCTokenizer''']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = ['''pixel_values'''] def __init__( self : Any , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : bool = True , __a : Dict[str, int] = None , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = True , **__a : str , ) -> None: """simple docstring""" super().__init__(**__a ) __lowercase : Dict = size if size is not None else {"""shortest_edge""": 224} __lowercase : Union[str, Any] = get_size_dict(__a , default_to_square=__a ) __lowercase : int = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __lowercase : Any = get_size_dict(__a , default_to_square=__a , param_name="""crop_size""" ) __lowercase : Optional[int] = do_resize __lowercase : Union[str, Any] = size __lowercase : List[Any] = resample __lowercase : Any = do_center_crop __lowercase : Dict = crop_size __lowercase : int = do_rescale __lowercase : Tuple = rescale_factor __lowercase : List[Any] = do_normalize __lowercase : Union[str, Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowercase : int = image_std if image_std is not None else OPENAI_CLIP_STD __lowercase : Union[str, Any] = do_convert_rgb def lowerCAmelCase ( self : Union[str, Any] , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[Any] , ) -> np.ndarray: """simple docstring""" __lowercase : Dict = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) __lowercase : str = get_resize_output_image_size(__a , size=size["""shortest_edge"""] , default_to_square=__a ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Any , ) -> np.ndarray: """simple docstring""" __lowercase : Tuple = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(__a , size=(size["""height"""], size["""width"""]) , data_format=__a , **__a ) def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : Union[int, float] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[Any] , ) -> List[str]: """simple docstring""" return rescale(__a , scale=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Optional[int] , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] , ) -> np.ndarray: """simple docstring""" return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Optional[int] , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : int = None , __a : bool = None , __a : float = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = None , __a : Optional[Union[str, TensorType]] = None , __a : Optional[ChannelDimension] = ChannelDimension.FIRST , **__a : List[Any] , ) -> PIL.Image.Image: """simple docstring""" __lowercase : List[Any] = do_resize if do_resize is not None else self.do_resize __lowercase : Dict = size if size is not None else self.size __lowercase : Tuple = get_size_dict(__a , param_name="""size""" , default_to_square=__a ) __lowercase : int = resample if resample is not None else self.resample __lowercase : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase : List[Any] = crop_size if crop_size is not None else self.crop_size __lowercase : List[str] = get_size_dict(__a , param_name="""crop_size""" , default_to_square=__a ) __lowercase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __lowercase : str = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase : Dict = do_normalize if do_normalize is not None else self.do_normalize __lowercase : Tuple = image_mean if image_mean is not None else self.image_mean __lowercase : str = image_std if image_std is not None else self.image_std __lowercase : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase : Union[str, Any] = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase : Union[str, Any] = [convert_to_rgb(__a ) for image in images] # All transformations expect numpy arrays. __lowercase : Any = [to_numpy_array(__a ) for image in images] if do_resize: __lowercase : str = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: __lowercase : str = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: __lowercase : Dict = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: __lowercase : Optional[Any] = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] __lowercase : Any = [to_channel_dimension_format(__a , __a ) for image in images] __lowercase : Optional[int] = {"""pixel_values""": images} return BatchFeature(data=__a , tensor_type=__a )
306
1
from __future__ import annotations import math def snake_case_ ( lowerCAmelCase_ : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True lowerCamelCase : Optional[Any] = [num for num in range(3, 10_00_01, 2) if not is_prime(num)] def snake_case_ ( lowerCAmelCase_ : int ): if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) __lowercase : Optional[int] = [] for num in range(len(lowerCAmelCase_ ) ): __lowercase : List[str] = 0 while 2 * i * i <= odd_composites[num]: __lowercase : Union[str, Any] = odd_composites[num] - 2 * i * i if is_prime(lowerCAmelCase_ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowerCAmelCase_ ) == n: return list_nums return [] def snake_case_ ( ): return compute_nums(1 )[0] if __name__ == "__main__": print(f'''{solution() = }''')
306
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str ): __lowercase : Tuple = s.rsplit(lowerCAmelCase_ , lowerCAmelCase_ ) return new.join(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : List[Any] ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : List[str] = {} __lowercase : Tuple = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __lowercase : List[str] = key.replace(F"{group_key}." , F"{group_key}.group." ) if "res_path" in key: __lowercase : List[Any] = key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): __lowercase : Union[str, Any] = rreplace(lowerCAmelCase_ , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): __lowercase : Tuple = rreplace(lowerCAmelCase_ , """.b""" , """.bias""" , 1 ) __lowercase : Dict = value.float() return upgrade @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=True ): from dall_e import Encoder __lowercase : Any = Encoder() if os.path.exists(lowerCAmelCase_ ): __lowercase : List[Any] = torch.load(lowerCAmelCase_ ) else: __lowercase : List[Any] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : int = ckpt.state_dict() encoder.load_state_dict(lowerCAmelCase_ ) if config_path is not None: __lowercase : Optional[int] = FlavaImageCodebookConfig.from_pretrained(lowerCAmelCase_ ) else: __lowercase : List[str] = FlavaImageCodebookConfig() __lowercase : Optional[Any] = FlavaImageCodebook(lowerCAmelCase_ ).eval() __lowercase : List[Any] = encoder.state_dict() __lowercase : Union[str, Any] = upgrade_state_dict(lowerCAmelCase_ ) hf_model.load_state_dict(lowerCAmelCase_ ) __lowercase : Dict = hf_model.state_dict() __lowercase : Tuple = count_parameters(lowerCAmelCase_ ) __lowercase : Tuple = count_parameters(lowerCAmelCase_ ) assert torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(lowerCAmelCase_ ) else: return hf_state_dict if __name__ == "__main__": lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowerCamelCase : Union[str, Any] = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
306
1
import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) __lowercase : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase : Optional[Any] = self.dummy_uncond_unet __lowercase : Any = PNDMScheduler() __lowercase : Dict = PNDMPipeline(unet=__a , scheduler=__a ) pndm.to(__a ) pndm.set_progress_bar_config(disable=__a ) __lowercase : List[str] = torch.manual_seed(0 ) __lowercase : List[str] = pndm(generator=__a , num_inference_steps=20 , output_type="""numpy""" ).images __lowercase : Tuple = torch.manual_seed(0 ) __lowercase : Union[str, Any] = pndm(generator=__a , num_inference_steps=20 , output_type="""numpy""" , return_dict=__a )[0] __lowercase : Any = image[0, -3:, -3:, -1] __lowercase : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowercase : Optional[int] = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = """google/ddpm-cifar10-32""" __lowercase : str = UNetaDModel.from_pretrained(__a ) __lowercase : int = PNDMScheduler() __lowercase : Optional[int] = PNDMPipeline(unet=__a , scheduler=__a ) pndm.to(__a ) pndm.set_progress_bar_config(disable=__a ) __lowercase : Optional[int] = torch.manual_seed(0 ) __lowercase : List[str] = pndm(generator=__a , output_type="""numpy""" ).images __lowercase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowercase : int = np.array([0.1564, 0.14645, 0.1406, 0.14715, 0.12425, 0.14045, 0.13115, 0.12175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
306
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging lowerCamelCase : Tuple = logging.get_logger(__name__) logging.set_verbosity_info() def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): if "xprophetnet" in prophetnet_checkpoint_path: __lowercase : List[str] = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) __lowercase , __lowercase : int = XLMProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) else: __lowercase : List[Any] = ProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) __lowercase , __lowercase : Optional[Any] = ProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) __lowercase : List[str] = ["""key_proj""", """value_proj""", """query_proj"""] __lowercase : Optional[int] = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: __lowercase : Tuple = key.split(""".""" ) if attributes[0] == "lm_head": __lowercase : str = prophet __lowercase : List[str] = prophet_old else: __lowercase : Tuple = prophet.prophetnet __lowercase : Union[str, Any] = prophet_old.model __lowercase : Optional[Any] = False for attribute in attributes: if attribute in mapping: __lowercase : Optional[int] = mapping[attribute] if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) > 0: __lowercase : str = attribute elif hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : List[Any] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" __lowercase : Any = old_model.weight logger.info(F"{attribute} is initialized." ) __lowercase : Any = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" __lowercase : Dict = old_model.bias logger.info(F"{attribute} is initialized" ) __lowercase : int = True break elif attribute in special_keys and hasattr(lowerCAmelCase_ , """in_proj_weight""" ): __lowercase : Dict = old_model.in_proj_weight.shape[0] // 3 __lowercase : Tuple = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": __lowercase : Union[str, Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) __lowercase : int = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": __lowercase : Any = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) __lowercase : List[Any] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": __lowercase : Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) __lowercase : int = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) __lowercase : int = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." __lowercase : Optional[Any] = nn.Parameter(old_model.embed_positions.weight[:512, :] ) __lowercase : int = True break if attribute.isdigit(): __lowercase : Tuple = model[int(lowerCAmelCase_ )] __lowercase : int = old_model[int(lowerCAmelCase_ )] else: __lowercase : Union[str, Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if old_attribute == "": __lowercase : int = old_model else: if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError(F"{old_model} does not have {old_attribute}" ) __lowercase : List[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if not is_key_init: raise ValueError(F"{key} was not correctly initialized!" ) print(F"Saving model to {pytorch_dump_folder_path}" ) prophet.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCamelCase : Any = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
306
1
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCamelCase : Optional[int] = 16 lowerCamelCase : Any = 32 def snake_case_ ( lowerCAmelCase_ : Accelerator , lowerCAmelCase_ : int = 16 , lowerCAmelCase_ : str = "bert-base-cased" ): __lowercase : int = AutoTokenizer.from_pretrained(lowerCAmelCase_ ) __lowercase : Dict = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowerCAmelCase_ : List[str] ): # max_length=None => use the model max length (it's actually the default) __lowercase : str = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowercase : Any = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=lowerCAmelCase_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowercase : str = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCAmelCase_ : Optional[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase_ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowerCAmelCase_ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. __lowercase : int = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) __lowercase : str = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple ): # Initialize accelerator __lowercase : str = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowercase : List[str] = config["""lr"""] __lowercase : List[str] = int(config["""num_epochs"""] ) __lowercase : List[str] = int(config["""seed"""] ) __lowercase : Union[str, Any] = int(config["""batch_size"""] ) __lowercase : Optional[Any] = args.model_name_or_path set_seed(lowerCAmelCase_ ) __lowercase , __lowercase : Tuple = get_dataloaders(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowercase : int = AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase_ , return_dict=lowerCAmelCase_ ) # Instantiate optimizer __lowercase : Optional[int] = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __lowercase : int = optimizer_cls(params=model.parameters() , lr=lowerCAmelCase_ ) if accelerator.state.deepspeed_plugin is not None: __lowercase : Tuple = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: __lowercase : Optional[int] = 1 __lowercase : int = (len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __lowercase : Dict = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=0 , num_training_steps=lowerCAmelCase_ , ) else: __lowercase : Tuple = DummyScheduler(lowerCAmelCase_ , total_num_steps=lowerCAmelCase_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowercase , __lowercase , __lowercase , __lowercase , __lowercase : List[str] = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # We need to keep track of how many total steps we have iterated over __lowercase : Optional[int] = 0 # We also need to keep track of the stating epoch so files are named properly __lowercase : Dict = 0 # Now we train the model __lowercase : Union[str, Any] = evaluate.load("""glue""" , """mrpc""" ) __lowercase : int = 0 __lowercase : Optional[int] = {} for epoch in range(lowerCAmelCase_ , lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): __lowercase : str = model(**lowerCAmelCase_ ) __lowercase : List[str] = outputs.loss __lowercase : Optional[Any] = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() __lowercase : Optional[int] = 0 for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowercase : Dict = model(**lowerCAmelCase_ ) __lowercase : Union[str, Any] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __lowercase , __lowercase : str = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowerCAmelCase_ ) - 1: __lowercase : Union[str, Any] = predictions[: len(eval_dataloader.dataset ) - samples_seen] __lowercase : List[Any] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , ) __lowercase : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , lowerCAmelCase_ ) __lowercase : Optional[int] = eval_metric["""accuracy"""] if best_performance < eval_metric["accuracy"]: __lowercase : Optional[Any] = eval_metric["""accuracy"""] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F"Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """all_results.json""" ) , """w""" ) as f: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case_ ( ): __lowercase : Optional[Any] = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=lowerCAmelCase_ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowerCAmelCase_ , ) parser.add_argument( """--output_dir""" , type=lowerCAmelCase_ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--performance_lower_bound""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , help="""Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.""" , ) parser.add_argument( """--num_epochs""" , type=lowerCAmelCase_ , default=3 , help="""Number of train epochs.""" , ) __lowercase : List[str] = parser.parse_args() __lowercase : str = {"""lr""": 2e-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
306
def snake_case_ ( lowerCAmelCase_ : int = 200 ): __lowercase : List[str] = [1, 2, 5, 10, 20, 50, 100, 200] __lowercase : List[str] = [0] * (pence + 1) __lowercase : Optional[Any] = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowerCAmelCase_ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
306
1
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any]=False ): try: __lowercase : int = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __lowercase : Tuple = default else: # KEY is set, convert it to True or False. try: __lowercase : Optional[int] = strtobool(lowerCAmelCase_ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"If set, {key} must be yes or no." ) return _value lowerCamelCase : Optional[int] = parse_flag_from_env('''RUN_SLOW''', default=False) def snake_case_ ( lowerCAmelCase_ : Optional[Any] ): return unittest.skip("""Test was skipped""" )(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : Any ): return unittest.skipUnless(_run_slow_tests , """test is slow""" )(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : Dict ): return unittest.skipUnless(not torch.cuda.is_available() , """test requires only a CPU""" )(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : int ): return unittest.skipUnless(torch.cuda.is_available() , """test requires a GPU""" )(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : List[Any] ): return unittest.skipUnless(is_xpu_available() , """test requires a XPU""" )(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : Any ): return unittest.skipUnless(is_mps_available() , """test requires a `mps` backend support in `torch`""" )(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : Any ): return unittest.skipUnless( is_transformers_available() and is_datasets_available() , """test requires the Hugging Face suite""" )(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : Any ): return unittest.skipUnless(is_bnb_available() , """test requires the bitsandbytes library""" )(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : Optional[int] ): return unittest.skipUnless(is_tpu_available() , """test requires TPU""" )(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : Dict ): return unittest.skipUnless(torch.cuda.device_count() == 1 , """test requires a GPU""" )(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : Optional[int] ): return unittest.skipUnless(torch.xpu.device_count() == 1 , """test requires a XPU""" )(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : Tuple ): return unittest.skipUnless(torch.cuda.device_count() > 1 , """test requires multiple GPUs""" )(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : Union[str, Any] ): return unittest.skipUnless(torch.xpu.device_count() > 1 , """test requires multiple XPUs""" )(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : Optional[Any] ): return unittest.skipUnless(is_safetensors_available() , """test requires safetensors""" )(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : int ): return unittest.skipUnless(is_deepspeed_available() , """test requires DeepSpeed""" )(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : Any ): return unittest.skipUnless(is_torch_version(""">=""" , """1.12.0""" ) , """test requires torch version >= 1.12.0""" )(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : int=None , lowerCAmelCase_ : Optional[Any]=None ): if test_case is None: return partial(lowerCAmelCase_ , version=lowerCAmelCase_ ) return unittest.skipUnless(is_torch_version(""">=""" , lowerCAmelCase_ ) , F"test requires torch version >= {version}" )(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : Tuple ): return unittest.skipUnless(is_tensorboard_available() , """test requires Tensorboard""" )(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : str ): return unittest.skipUnless(is_wandb_available() , """test requires wandb""" )(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : List[str] ): return unittest.skipUnless(is_comet_ml_available() , """test requires comet_ml""" )(lowerCAmelCase_ ) lowerCamelCase : Tuple = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def snake_case_ ( lowerCAmelCase_ : Tuple ): return unittest.skipUnless( _atleast_one_tracker_available , """test requires at least one tracker to be available and for `comet_ml` to not be installed""" , )(lowerCAmelCase_ ) class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' _A : Dict = True @classmethod def lowerCAmelCase ( cls : str ) -> Any: """simple docstring""" __lowercase : Tuple = tempfile.mkdtemp() @classmethod def lowerCAmelCase ( cls : int ) -> Optional[Any]: """simple docstring""" if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" if self.clear_on_setup: for path in Path(self.tmpdir ).glob("""**/*""" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(__a ) class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : int , __a : Union[mock.Mock, List[mock.Mock]] ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = mocks if isinstance(__a , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def snake_case_ ( lowerCAmelCase_ : Optional[int] ): __lowercase : Optional[Any] = AcceleratorState() __lowercase : List[str] = tensor[None].clone().to(state.device ) __lowercase : int = gather(lowerCAmelCase_ ).cpu() __lowercase : Optional[int] = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , lowerCAmelCase_ ): return False return True class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , __a : int , __a : Optional[int] , __a : Any ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = returncode __lowercase : List[str] = stdout __lowercase : Optional[Any] = stderr async def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] ): while True: __lowercase : Tuple = await stream.readline() if line: callback(lowerCAmelCase_ ) else: break async def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Optional[int]=False ): if echo: print("""\nRunning: """ , """ """.join(lowerCAmelCase_ ) ) __lowercase : List[Any] = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=lowerCAmelCase_ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=lowerCAmelCase_ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __lowercase : Optional[Any] = [] __lowercase : Any = [] def tee(lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple="" ): __lowercase : Optional[int] = line.decode("""utf-8""" ).rstrip() sink.append(lowerCAmelCase_ ) if not quiet: print(lowerCAmelCase_ , lowerCAmelCase_ , file=lowerCAmelCase_ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda lowerCAmelCase_ : tee(lowerCAmelCase_ , lowerCAmelCase_ , sys.stdout , label="""stdout:""" ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda lowerCAmelCase_ : tee(lowerCAmelCase_ , lowerCAmelCase_ , sys.stderr , label="""stderr:""" ) ) ), ] , timeout=lowerCAmelCase_ , ) return _RunOutput(await p.wait() , lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Dict=180 , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : List[str]=True ): __lowercase : Optional[Any] = asyncio.get_event_loop() __lowercase : Optional[Any] = loop.run_until_complete( _stream_subprocess(lowerCAmelCase_ , env=lowerCAmelCase_ , stdin=lowerCAmelCase_ , timeout=lowerCAmelCase_ , quiet=lowerCAmelCase_ , echo=lowerCAmelCase_ ) ) __lowercase : Optional[Any] = """ """.join(lowerCAmelCase_ ) if result.returncode > 0: __lowercase : Optional[int] = """\n""".join(result.stderr ) raise RuntimeError( F"'{cmd_str}' failed with returncode {result.returncode}\n\n" F"The combined stderr from workers follows:\n{stderr}" ) return result class lowerCAmelCase ( __a ): '''simple docstring''' pass def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict=False ): try: __lowercase : Optional[Any] = subprocess.check_output(lowerCAmelCase_ , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(lowerCAmelCase_ , """decode""" ): __lowercase : List[str] = output.decode("""utf-8""" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"Command `{' '.join(lowerCAmelCase_ )}` failed with the following error:\n\n{e.output.decode()}" ) from e
306
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , __a : Dict , __a : List[str]=None , __a : Optional[Any]=None , __a : Union[str, Any]=None , __a : int="resnet50" , __a : List[str]=3 , __a : Tuple=32 , __a : Dict=3 , __a : List[str]=True , __a : Union[str, Any]=True , ) -> Any: """simple docstring""" __lowercase : Optional[int] = parent __lowercase : List[str] = out_indices if out_indices is not None else [4] __lowercase : Optional[int] = stage_names __lowercase : Any = out_features __lowercase : Optional[Any] = backbone __lowercase : Optional[Any] = batch_size __lowercase : Union[str, Any] = image_size __lowercase : List[str] = num_channels __lowercase : str = use_pretrained_backbone __lowercase : str = is_training def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : str = self.get_config() return config, pixel_values def lowerCAmelCase ( self : int ) -> str: """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowerCAmelCase ( self : Optional[int] , __a : Dict , __a : Any ) -> Dict: """simple docstring""" __lowercase : Dict = TimmBackbone(config=__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Optional[Any] = model(__a ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.prepare_config_and_inputs() __lowercase , __lowercase : str = config_and_inputs __lowercase : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch @require_timm class lowerCAmelCase ( __a , __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[Any] = (TimmBackbone,) if is_torch_available() else () _A : Dict = {'''feature-extraction''': TimmBackbone} if is_torch_available() else {} _A : List[Any] = False _A : List[str] = False _A : Any = False _A : Optional[Any] = False def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : str = TimmBackboneModelTester(self ) __lowercase : Any = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" __lowercase : Tuple = """resnet18""" __lowercase : Optional[int] = """microsoft/resnet-18""" __lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a ) __lowercase : Dict = AutoBackbone.from_pretrained(__a ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a , out_indices=[1, 2, 3] ) __lowercase : Optional[Any] = AutoBackbone.from_pretrained(__a , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("""TimmBackbone doesn't support feed forward chunking""" ) def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""" ) def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""" ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't support output_attentions.""" ) def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Safetensors is not supported by timm.""" ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Optional[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : List[str] = [*signature.parameters.keys()] __lowercase : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Optional[Any] = True __lowercase : Union[str, Any] = self.has_attentions # no need to test all models as different heads yield the same functionality __lowercase : Union[str, Any] = self.all_model_classes[0] __lowercase : List[Any] = model_class(__a ) model.to(__a ) __lowercase : Optional[Any] = self._prepare_for_class(__a , __a ) __lowercase : Union[str, Any] = model(**__a ) __lowercase : Optional[int] = outputs[0][-1] # Encoder-/Decoder-only models __lowercase : Any = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowercase : Optional[int] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__a ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() __lowercase : int = model(**__a ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowercase : Any = copy.deepcopy(__a ) __lowercase : Dict = None __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() __lowercase : Optional[int] = model(**__a ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowercase : List[str] = copy.deepcopy(__a ) __lowercase : Optional[Any] = False __lowercase : str = model_class(__a ) model.to(__a ) model.eval() __lowercase : List[Any] = model(**__a )
306
1
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
306
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : str = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } lowerCamelCase : Optional[Any] = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): for attribute in key.split(""".""" ): __lowercase : List[str] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if weight_type is not None: __lowercase : Union[str, Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ).shape else: __lowercase : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": __lowercase : Dict = value elif weight_type == "weight_g": __lowercase : Union[str, Any] = value elif weight_type == "weight_v": __lowercase : List[Any] = value elif weight_type == "bias": __lowercase : int = value elif weight_type == "running_mean": __lowercase : List[Any] = value elif weight_type == "running_var": __lowercase : int = value elif weight_type == "num_batches_tracked": __lowercase : int = value elif weight_type == "inv_freq": __lowercase : Optional[Any] = value else: __lowercase : Any = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] ): __lowercase : str = [] __lowercase : Any = fairseq_model.state_dict() __lowercase : List[str] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): __lowercase : Optional[Any] = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , hf_model.config.feat_extract_norm == """group""" , ) __lowercase : List[str] = True else: for key, mapped_key in MAPPING.items(): __lowercase : Any = """wav2vec2_conformer.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __lowercase : Tuple = True if "*" in mapped_key: __lowercase : List[Any] = name.split(lowerCAmelCase_ )[0].split(""".""" )[-2] __lowercase : Any = mapped_key.replace("""*""" , lowerCAmelCase_ ) if "pos_bias_u" in name: __lowercase : Any = None elif "pos_bias_v" in name: __lowercase : Tuple = None elif "weight_g" in name: __lowercase : Union[str, Any] = """weight_g""" elif "weight_v" in name: __lowercase : Dict = """weight_v""" elif "bias" in name: __lowercase : Union[str, Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowercase : str = """weight""" elif "running_mean" in name: __lowercase : str = """running_mean""" elif "inv_freq" in name: __lowercase : List[Any] = """inv_freq""" elif "running_var" in name: __lowercase : Any = """running_var""" elif "num_batches_tracked" in name: __lowercase : Any = """num_batches_tracked""" else: __lowercase : Optional[int] = None set_recursively(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) continue if not is_used: unused_weights.append(lowerCAmelCase_ ) logger.warning(F"Unused weights: {unused_weights}" ) def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] ): __lowercase : List[Any] = full_name.split("""conv_layers.""" )[-1] __lowercase : int = name.split(""".""" ) __lowercase : Optional[Any] = int(items[0] ) __lowercase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __lowercase : Union[str, Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __lowercase : List[str] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) __lowercase : Union[str, Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) __lowercase : Dict = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(lowerCAmelCase_ ) @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Dict=True ): if config_path is not None: __lowercase : List[Any] = WavaVecaConformerConfig.from_pretrained(lowerCAmelCase_ , hidden_act="""swish""" ) else: __lowercase : List[Any] = WavaVecaConformerConfig() if "rope" in checkpoint_path: __lowercase : Tuple = """rotary""" if is_finetuned: if dict_path: __lowercase : Any = Dictionary.load(lowerCAmelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __lowercase : List[Any] = target_dict.pad_index __lowercase : Optional[int] = target_dict.bos_index __lowercase : List[Any] = target_dict.eos_index __lowercase : List[str] = len(target_dict.symbols ) __lowercase : Union[str, Any] = os.path.join(lowerCAmelCase_ , """vocab.json""" ) if not os.path.isdir(lowerCAmelCase_ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowerCAmelCase_ ) ) return os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowercase : Tuple = target_dict.indices # fairseq has the <pad> and <s> switched __lowercase : int = 0 __lowercase : Any = 1 with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Dict = WavaVecaCTCTokenizer( lowerCAmelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowerCAmelCase_ , ) __lowercase : List[Any] = True if config.feat_extract_norm == """layer""" else False __lowercase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) __lowercase : Optional[int] = WavaVecaProcessor(feature_extractor=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) __lowercase : Union[str, Any] = WavaVecaConformerForCTC(lowerCAmelCase_ ) else: __lowercase : Optional[Any] = WavaVecaConformerForPreTraining(lowerCAmelCase_ ) if is_finetuned: __lowercase , __lowercase , __lowercase : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __lowercase : List[Any] = argparse.Namespace(task="""audio_pretraining""" ) __lowercase : Optional[Any] = fairseq.tasks.setup_task(lowerCAmelCase_ ) __lowercase , __lowercase , __lowercase : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase_ ) __lowercase : Dict = model[0].eval() recursively_load_weights(lowerCAmelCase_ , lowerCAmelCase_ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) lowerCamelCase : Any = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
306
1
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase : Any = 0 @slow def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): __lowercase : List[Any] = AutoTokenizer.from_pretrained(__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(__a ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): __lowercase : Dict = AutoTokenizer.from_pretrained(__a ) self.assertIsNotNone(__a ) self.assertIsInstance(__a , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(__a ) , 0 ) def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : Dict = AutoTokenizer.from_pretrained(__a ) self.assertIsInstance(__a , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" __lowercase : Any = AutoTokenizer.from_pretrained(__a ) self.assertIsInstance(__a , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" __lowercase : Tuple = AutoConfig.from_pretrained(__a ) self.assertIsInstance(__a , __a ) # Check that tokenizer_type ≠ model_type __lowercase : List[str] = AutoTokenizer.from_pretrained(__a , config=__a ) self.assertIsInstance(__a , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(__a , """vocab.txt""" ) ) __lowercase : Optional[int] = AutoTokenizer.from_pretrained(__a , tokenizer_type="""bert""" , use_fast=__a ) self.assertIsInstance(__a , __a ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(__a , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(__a , """merges.txt""" ) ) __lowercase : Tuple = AutoTokenizer.from_pretrained(__a , tokenizer_type="""gpt2""" , use_fast=__a ) self.assertIsInstance(__a , __a ) @require_tokenizers def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(__a , """vocab.txt""" ) ) __lowercase : Any = AutoTokenizer.from_pretrained(__a , tokenizer_type="""bert""" ) self.assertIsInstance(__a , __a ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(__a , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(__a , """merges.txt""" ) ) __lowercase : Tuple = AutoTokenizer.from_pretrained(__a , tokenizer_type="""gpt2""" ) self.assertIsInstance(__a , __a ) def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" with pytest.raises(__a ): AutoTokenizer.from_pretrained("""./""" , tokenizer_type="""xxx""" ) @require_tokenizers def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: __lowercase : Any = tokenizer_class.from_pretrained("""wietsedv/bert-base-dutch-cased""" ) self.assertIsInstance(__a , (BertTokenizer, BertTokenizerFast) ) if isinstance(__a , __a ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , __a ) else: self.assertEqual(tokenizer.do_lower_case , __a ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def lowerCAmelCase ( self : int ) -> int: """simple docstring""" for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( __a , """julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier""" , ): __lowercase : Optional[Any] = tokenizer_class.from_pretrained("""julien-c/herlolip-not-exists""" ) def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" __lowercase : int = TOKENIZER_MAPPING.values() __lowercase : List[str] = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(__a ) @require_tokenizers def lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=__a ) , __a ) self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" ) , __a ) @require_tokenizers def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" __lowercase : str = AutoTokenizer.from_pretrained("""distilbert-base-uncased""" , do_lower_case=__a ) __lowercase : Optional[int] = """Hello, world. How are you?""" __lowercase : List[Any] = tokenizer.tokenize(__a ) self.assertEqual("""[UNK]""" , tokens[0] ) __lowercase : Tuple = AutoTokenizer.from_pretrained("""microsoft/mpnet-base""" , do_lower_case=__a ) __lowercase : str = tokenizer.tokenize(__a ) self.assertEqual("""[UNK]""" , tokens[0] ) @require_tokenizers def lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Any = AutoTokenizer.from_pretrained("""robot-test/dummy-tokenizer-fast-with-model-config""" ) self.assertEqual(type(__a ) , __a ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 30000 ) self.assertEqual(tokenizer.unk_token , """[UNK]""" ) self.assertEqual(tokenizer.padding_side , """right""" ) self.assertEqual(tokenizer.truncation_side , """right""" ) def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[int] = AutoTokenizer.from_pretrained(__a ) self.assertIsInstance(__a , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__a ) __lowercase : Any = AutoTokenizer.from_pretrained(__a ) self.assertIsInstance(__a , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : List[Any] = AutoTokenizer.from_pretrained("""ctrl""" ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(__a , __a ) def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" __lowercase : Union[str, Any] = get_tokenizer_config("""bert-base-cased""" ) __lowercase : List[str] = config.pop("""_commit_hash""" , __a ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(__a , {"""do_lower_case""": False} ) # This model does not have a tokenizer_config so we get back an empty dict. __lowercase : str = get_tokenizer_config(__a ) self.assertDictEqual(__a , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. __lowercase : str = AutoTokenizer.from_pretrained(__a ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__a ) __lowercase : List[Any] = get_tokenizer_config(__a ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config["""tokenizer_class"""] , """BertTokenizer""" ) def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" try: AutoConfig.register("""custom""" , __a ) AutoTokenizer.register(__a , slow_tokenizer_class=__a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__a ): AutoTokenizer.register(__a , slow_tokenizer_class=__a ) __lowercase : List[Any] = CustomTokenizer.from_pretrained(__a ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__a ) __lowercase : Union[str, Any] = AutoTokenizer.from_pretrained(__a ) self.assertIsInstance(__a , __a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowerCAmelCase ( self : int ) -> int: """simple docstring""" try: AutoConfig.register("""custom""" , __a ) # Can register in two steps AutoTokenizer.register(__a , slow_tokenizer_class=__a ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(__a , fast_tokenizer_class=__a ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( __a , slow_tokenizer_class=__a , fast_tokenizer_class=__a ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__a ): AutoTokenizer.register(__a , fast_tokenizer_class=__a ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: __lowercase : int = BertTokenizerFast.from_pretrained(__a ) bert_tokenizer.save_pretrained(__a ) __lowercase : str = CustomTokenizerFast.from_pretrained(__a ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__a ) __lowercase : List[str] = AutoTokenizer.from_pretrained(__a ) self.assertIsInstance(__a , __a ) __lowercase : int = AutoTokenizer.from_pretrained(__a , use_fast=__a ) self.assertIsInstance(__a , __a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" with self.assertRaises(__a ): __lowercase : Optional[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__a ): __lowercase : Tuple = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__a ) __lowercase : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__a ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__a ) __lowercase : Union[str, Any] = AutoTokenizer.from_pretrained(__a , trust_remote_code=__a ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version __lowercase : List[str] = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__a , use_fast=__a ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__a ) __lowercase : Union[str, Any] = AutoTokenizer.from_pretrained(__a , trust_remote_code=__a , use_fast=__a ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) @require_tokenizers def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" class lowerCAmelCase ( __a ): '''simple docstring''' _A : Tuple = False class lowerCAmelCase ( __a ): '''simple docstring''' _A : str = NewTokenizer _A : Union[str, Any] = False try: AutoConfig.register("""custom""" , __a ) AutoTokenizer.register(__a , slow_tokenizer_class=__a ) AutoTokenizer.register(__a , fast_tokenizer_class=__a ) # If remote code is not set, the default is to use local __lowercase : Optional[int] = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) __lowercase : Tuple = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , use_fast=__a ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. __lowercase : List[str] = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__a ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) __lowercase : Optional[Any] = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__a , use_fast=__a ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub __lowercase : Any = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__a ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertTrue(tokenizer.special_attribute_present ) __lowercase : Dict = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__a , use_fast=__a ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" __lowercase : str = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=__a ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version __lowercase : List[Any] = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=__a , use_fast=__a ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" with self.assertRaisesRegex( __a , """bert-base is not a local folder and is not a valid model identifier""" ): __lowercase : List[Any] = AutoTokenizer.from_pretrained("""bert-base""" ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" with self.assertRaisesRegex( __a , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): __lowercase : Union[str, Any] = AutoTokenizer.from_pretrained(__a , revision="""aaaaaa""" ) def lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase : Any = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) with RequestCounter() as counter: __lowercase : Any = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
306
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError("""String lengths must match!""" ) __lowercase : str = 0 for chara, chara in zip(lowerCAmelCase_ , lowerCAmelCase_ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
306
1
import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[int] , __a : str , __a : int , __a : int ) -> Optional[Any]: """simple docstring""" if dst_width < 0 or dst_height < 0: raise ValueError("""Destination width/height should be > 0""" ) __lowercase : Tuple = img __lowercase : Optional[int] = img.shape[1] __lowercase : Union[str, Any] = img.shape[0] __lowercase : Any = dst_width __lowercase : List[Any] = dst_height __lowercase : Tuple = self.src_w / self.dst_w __lowercase : Optional[Any] = self.src_h / self.dst_h __lowercase : Optional[Any] = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255 ) def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" for i in range(self.dst_h ): for j in range(self.dst_w ): __lowercase : List[Any] = self.img[self.get_y(__a )][self.get_x(__a )] def lowerCAmelCase ( self : Union[str, Any] , __a : int ) -> int: """simple docstring""" return int(self.ratio_x * x ) def lowerCAmelCase ( self : Union[str, Any] , __a : int ) -> int: """simple docstring""" return int(self.ratio_y * y ) if __name__ == "__main__": lowerCamelCase ,lowerCamelCase : List[str] = 8_00, 6_00 lowerCamelCase : Dict = imread('''image_data/lena.jpg''', 1) lowerCamelCase : List[str] = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( f'''Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}''', n.output ) waitKey(0) destroyAllWindows()
306
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def snake_case_ ( lowerCAmelCase_ : Tuple ): if isinstance(lowerCAmelCase_ , collections.abc.Iterable ): return x return (x, x) @require_flax class lowerCAmelCase : '''simple docstring''' def lowerCAmelCase ( self : Any , __a : Any , __a : List[Any] ) -> Optional[Any]: """simple docstring""" pass def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" pass def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : np.ndarray , __a : float ) -> List[Any]: """simple docstring""" __lowercase : List[str] = np.abs((a - b) ).max() self.assertLessEqual(__a , __a , F"Difference between torch and flax is {diff} (>= {tol})." ) def lowerCAmelCase ( self : Tuple , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[Any] , __a : Optional[Any]=None , **__a : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : str = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : str = FlaxVisionTextDualEncoderModel(__a ) __lowercase : Optional[Any] = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def lowerCAmelCase ( self : Optional[int] , __a : Optional[int] , __a : Dict , __a : Dict , __a : List[str] , __a : Optional[Any]=None , **__a : str ) -> str: """simple docstring""" __lowercase , __lowercase : List[str] = self.get_vision_text_model(__a , __a ) __lowercase : Union[str, Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : Any = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : Union[str, Any] , __a : Union[str, Any] , __a : Dict , __a : int=None , **__a : int ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Tuple = self.get_vision_text_model(__a , __a ) __lowercase : Union[str, Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : List[str] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : List[Any] = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) __lowercase : int = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowercase : int = FlaxVisionTextDualEncoderModel.from_pretrained(__a ) __lowercase : Tuple = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) __lowercase : int = after_output[0] __lowercase : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__a , 1E-3 ) def lowerCAmelCase ( self : List[Any] , __a : Any , __a : Tuple , __a : Optional[int] , __a : str , __a : Optional[Any]=None , **__a : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : str = self.get_vision_text_model(__a , __a ) __lowercase : Optional[Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : Union[str, Any] = model( input_ids=__a , pixel_values=__a , attention_mask=__a , output_attentions=__a ) __lowercase : Optional[int] = output.vision_model_output.attentions self.assertEqual(len(__a ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase : Optional[int] = to_atuple(vision_model.config.image_size ) __lowercase : List[str] = to_atuple(vision_model.config.patch_size ) __lowercase : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase : int = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase : Dict = output.text_model_output.attentions self.assertEqual(len(__a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowerCAmelCase ( self : Optional[int] , __a : List[str] , __a : List[Any] , __a : Optional[Any] ) -> Optional[int]: """simple docstring""" pt_model.to(__a ) pt_model.eval() # prepare inputs __lowercase : Union[str, Any] = inputs_dict __lowercase : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): __lowercase : Union[str, Any] = pt_model(**__a ).to_tuple() __lowercase : Tuple = fx_model(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(__a , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__a ) __lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained(__a , from_pt=__a ) __lowercase : Dict = fx_model_loaded(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(__a , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__a ) __lowercase : str = VisionTextDualEncoderModel.from_pretrained(__a , from_flax=__a ) pt_model_loaded.to(__a ) pt_model_loaded.eval() with torch.no_grad(): __lowercase : List[Any] = pt_model_loaded(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(__a , pt_output_loaded.numpy() , 4E-2 ) def lowerCAmelCase ( self : Optional[int] , __a : List[Any] , __a : int , __a : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : str = VisionTextDualEncoderModel(__a ) __lowercase : Union[str, Any] = FlaxVisionTextDualEncoderModel(__a ) __lowercase : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __a ) __lowercase : Any = fx_state self.check_pt_flax_equivalence(__a , __a , __a ) def lowerCAmelCase ( self : Any , __a : Any , __a : Dict , __a : Tuple ) -> str: """simple docstring""" __lowercase : int = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : Union[str, Any] = VisionTextDualEncoderModel(__a ) __lowercase : Dict = FlaxVisionTextDualEncoderModel(__a ) __lowercase : Tuple = load_flax_weights_in_pytorch_model(__a , fx_model.params ) self.check_pt_flax_equivalence(__a , __a , __a ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase : int = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__a ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() self.check_save_load(**__a ) def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" __lowercase : str = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__a ) @is_pt_flax_cross_test def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.prepare_config_and_inputs() __lowercase : Optional[int] = config_inputs_dict.pop("""vision_config""" ) __lowercase : Optional[int] = config_inputs_dict.pop("""text_config""" ) __lowercase : Dict = config_inputs_dict self.check_equivalence_pt_to_flax(__a , __a , __a ) self.check_equivalence_flax_to_pt(__a , __a , __a ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase , __lowercase : List[Any] = self.get_pretrained_model_and_inputs() __lowercase : Dict = model_a(**__a ) __lowercase : Any = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__a ) __lowercase : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(__a ) __lowercase : Optional[int] = model_a(**__a ) __lowercase : Tuple = after_outputs[0] __lowercase : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__a , 1E-5 ) @require_flax class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" __lowercase : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=__a , text_from_pt=__a , ) __lowercase : int = 13 __lowercase : Union[str, Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowercase : Dict = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __lowercase : Tuple = random_attention_mask([batch_size, 4] ) __lowercase : str = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCAmelCase ( self : Optional[Any] , __a : Union[str, Any] , __a : int ) -> Dict: """simple docstring""" __lowercase : int = FlaxViTModel(__a ) __lowercase : List[Any] = FlaxBertModel(__a ) return vision_model, text_model def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = FlaxViTModelTester(self ) __lowercase : str = FlaxBertModelTester(self ) __lowercase : List[str] = vit_model_tester.prepare_config_and_inputs() __lowercase : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase : Optional[int] = vision_config_and_inputs __lowercase , __lowercase , __lowercase , __lowercase : Any = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=__a , text_from_pt=__a , ) __lowercase : Tuple = 13 __lowercase : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowercase : Tuple = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __lowercase : List[Any] = random_attention_mask([batch_size, 4] ) __lowercase : int = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCAmelCase ( self : str , __a : str , __a : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Dict = FlaxCLIPVisionModel(__a ) __lowercase : Optional[Any] = FlaxBertModel(__a ) return vision_model, text_model def lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase : List[Any] = FlaxCLIPVisionModelTester(self ) __lowercase : Optional[Any] = FlaxBertModelTester(self ) __lowercase : Any = clip_model_tester.prepare_config_and_inputs() __lowercase : Optional[Any] = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase : Dict = vision_config_and_inputs __lowercase , __lowercase , __lowercase , __lowercase : Optional[int] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 ) __lowercase : int = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) __lowercase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowercase : Tuple = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=__a , padding=__a , return_tensors="""np""" ) __lowercase : Optional[int] = model(**__a ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowercase : Optional[Any] = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , __a , atol=1E-3 ) )
306
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase : List[str] = logging.get_logger(__name__) class lowerCAmelCase ( __a ): '''simple docstring''' _A : Optional[Any] = ['''pixel_values'''] def __init__( self : Tuple , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PIL.Image.BICUBIC , __a : bool = True , __a : Dict[str, int] = None , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , **__a : Optional[Any] , ) -> None: """simple docstring""" super().__init__(**__a ) __lowercase : Tuple = size if size is not None else {"""height""": 256, """width""": 256} __lowercase : Tuple = get_size_dict(__a ) __lowercase : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __lowercase : Tuple = get_size_dict(__a , param_name="""crop_size""" ) __lowercase : int = do_resize __lowercase : Dict = size __lowercase : int = resample __lowercase : Union[str, Any] = do_center_crop __lowercase : Optional[Any] = crop_size __lowercase : Tuple = do_rescale __lowercase : str = rescale_factor __lowercase : Union[str, Any] = do_normalize __lowercase : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowercase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase ( self : Dict , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PIL.Image.BICUBIC , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Dict , ) -> np.ndarray: """simple docstring""" __lowercase : Any = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must have keys 'height' and 'width'. Got {size.keys()}" ) return resize( __a , size=(size["""height"""], size["""width"""]) , resample=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] , ) -> np.ndarray: """simple docstring""" __lowercase : str = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must have keys 'height' and 'width'. Got {size.keys()}" ) return center_crop(__a , size=(size["""height"""], size["""width"""]) , data_format=__a , **__a ) def lowerCAmelCase ( self : List[str] , __a : np.ndarray , __a : Union[int, float] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Tuple , ) -> Union[str, Any]: """simple docstring""" return rescale(__a , scale=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : List[Any] , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : str , ) -> np.ndarray: """simple docstring""" return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : int , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : Optional[int]=None , __a : bool = None , __a : Dict[str, int] = None , __a : bool = None , __a : float = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[str, TensorType]] = None , __a : ChannelDimension = ChannelDimension.FIRST , **__a : str , ) -> PIL.Image.Image: """simple docstring""" __lowercase : int = do_resize if do_resize is not None else self.do_resize __lowercase : int = resample if resample is not None else self.resample __lowercase : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase : List[str] = do_rescale if do_rescale is not None else self.do_rescale __lowercase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase : Any = do_normalize if do_normalize is not None else self.do_normalize __lowercase : List[str] = image_mean if image_mean is not None else self.image_mean __lowercase : Any = image_std if image_std is not None else self.image_std __lowercase : Optional[int] = size if size is not None else self.size __lowercase : Optional[Any] = get_size_dict(__a ) __lowercase : str = crop_size if crop_size is not None else self.crop_size __lowercase : Any = get_size_dict(__a , param_name="""crop_size""" ) __lowercase : Tuple = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __lowercase : int = [to_numpy_array(__a ) for image in images] if do_resize: __lowercase : str = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: __lowercase : Optional[int] = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: __lowercase : List[Any] = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: __lowercase : List[Any] = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] __lowercase : List[Any] = [to_channel_dimension_format(__a , __a ) for image in images] __lowercase : Optional[int] = {"""pixel_values""": images} return BatchFeature(data=__a , tensor_type=__a )
306
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
306
1
from math import factorial def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError("""Please enter positive integers for n and k where n >= k""" ) return factorial(lowerCAmelCase_ ) // (factorial(lowerCAmelCase_ ) * factorial(n - k )) if __name__ == "__main__": print( '''The number of five-card hands possible from a standard''', f'''fifty-two card deck is: {combinations(52, 5)}\n''', ) print( '''If a class of 40 students must be arranged into groups of''', f'''4 for group projects, there are {combinations(40, 4)} ways''', '''to arrange them.\n''', ) print( '''If 10 teams are competing in a Formula One race, there''', f'''are {combinations(10, 3)} ways that first, second and''', '''third place can be awarded.''', )
306
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowerCamelCase : str = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex lowerCamelCase : Union[str, Any] = 10 lowerCamelCase : List[str] = 2_56 def snake_case_ ( lowerCAmelCase_ : List[str] ): if len(lowerCAmelCase_ ) < MIN_NUM_TOKENS: return None __lowercase : Dict = MinHash(num_perm=lowerCAmelCase_ ) for token in set(lowerCAmelCase_ ): min_hash.update(token.encode() ) return min_hash def snake_case_ ( lowerCAmelCase_ : str ): return {t for t in NON_ALPHA.split(lowerCAmelCase_ ) if len(t.strip() ) > 0} class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , *, __a : float = 0.85 , ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = duplication_jaccard_threshold __lowercase : Optional[Any] = NUM_PERM __lowercase : List[Any] = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) __lowercase : List[str] = defaultdict(__a ) def lowerCAmelCase ( self : str , __a : Tuple , __a : MinHash ) -> None: """simple docstring""" __lowercase : List[Any] = self._index.query(__a ) if code_key in self._index.keys: print(F"Duplicate key {code_key}" ) return self._index.insert(__a , __a ) if len(__a ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__a ) break else: self._duplicate_clusters[close_duplicates[0]].add(__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[List[Dict]]: """simple docstring""" __lowercase : Dict = [] for base, duplicates in self._duplicate_clusters.items(): __lowercase : List[str] = [base] + list(__a ) # reformat the cluster to be a list of dict __lowercase : Optional[Any] = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(__a ) return duplicate_clusters def lowerCAmelCase ( self : Any , __a : int ) -> None: """simple docstring""" __lowercase : Tuple = self.get_duplicate_clusters() with open(__a , """w""" ) as f: json.dump(__a , __a ) def snake_case_ ( lowerCAmelCase_ : str ): __lowercase , __lowercase : Union[str, Any] = element __lowercase : Optional[Any] = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def snake_case_ ( lowerCAmelCase_ : Type[Dataset] ): with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(lowerCAmelCase_ , max_queue_size=10000 ) , chunksize=100 , ): if data is not None: yield data def snake_case_ ( lowerCAmelCase_ : Type[Dataset] , lowerCAmelCase_ : float ): __lowercase : Dict = DuplicationIndex(duplication_jaccard_threshold=lowerCAmelCase_ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(lowerCAmelCase_ ) ) , max_queue_size=100 ) ): di.add(lowerCAmelCase_ , lowerCAmelCase_ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : List[str] = get_tokens(lowerCAmelCase_ ) __lowercase : Dict = get_tokens(lowerCAmelCase_ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) lowerCamelCase : List[str] = None def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] ): __lowercase : Union[str, Any] = [] for elementa in cluster: __lowercase : Tuple = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: __lowercase : Dict = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(lowerCAmelCase_ , lowerCAmelCase_ ) >= jaccard_threshold: elementa["copies"] += 1 break else: __lowercase : Dict = 1 extremes.append(lowerCAmelCase_ ) return extremes def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple ): global _shared_dataset __lowercase : Tuple = dataset __lowercase : Optional[int] = [] __lowercase : str = partial(_find_cluster_extremes_shared , jaccard_threshold=lowerCAmelCase_ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( lowerCAmelCase_ , lowerCAmelCase_ , ) , total=len(lowerCAmelCase_ ) , ): extremes_list.append(lowerCAmelCase_ ) return extremes_list def snake_case_ ( lowerCAmelCase_ : Type[Dataset] , lowerCAmelCase_ : float = 0.85 ): __lowercase : Optional[int] = make_duplicate_clusters(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Tuple = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} __lowercase : int = {} __lowercase : Dict = find_extremes(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for extremes in extremes_clusters: for element in extremes: __lowercase : Optional[Any] = element __lowercase : int = duplicate_indices - set(extreme_dict.keys() ) __lowercase : int = dataset.filter(lambda lowerCAmelCase_ , lowerCAmelCase_ : idx not in remove_indices , with_indices=lowerCAmelCase_ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: __lowercase : List[str] = element["""base_index"""] in extreme_dict if element["is_extreme"]: __lowercase : str = extreme_dict[element["""base_index"""]]["""copies"""] print(F"Original dataset size: {len(lowerCAmelCase_ )}" ) print(F"Number of duplicate clusters: {len(lowerCAmelCase_ )}" ) print(F"Files in duplicate cluster: {len(lowerCAmelCase_ )}" ) print(F"Unique files in duplicate cluster: {len(lowerCAmelCase_ )}" ) print(F"Filtered dataset size: {len(lowerCAmelCase_ )}" ) return ds_filter, duplicate_clusters
306
1
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class lowerCAmelCase ( __a ): '''simple docstring''' def __lt__( self : List[Any] , __a : Optional[Any] ) -> Any: """simple docstring""" return self[-1] < other[-1] def __eq__( self : Any , __a : int ) -> Union[str, Any]: """simple docstring""" return self[-1] == other[-1] def snake_case_ ( lowerCAmelCase_ : list ): __lowercase : list[Stack] = [] # sort into stacks for element in collection: __lowercase : str = Stack([element] ) __lowercase : Dict = bisect_left(lowerCAmelCase_ , lowerCAmelCase_ ) if i != len(lowerCAmelCase_ ): stacks[i].append(lowerCAmelCase_ ) else: stacks.append(lowerCAmelCase_ ) # use a heap-based merge to merge stack efficiently __lowercase : Any = merge(*(reversed(lowerCAmelCase_ ) for stack in stacks) ) return collection if __name__ == "__main__": lowerCamelCase : Dict = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase : Union[str, Any] = [int(item) for item in user_input.split(''',''')] print(patience_sort(unsorted))
306
from ...processing_utils import ProcessorMixin class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = ['''image_processor''', '''feature_extractor'''] _A : List[Any] = '''TvltImageProcessor''' _A : Optional[int] = '''TvltFeatureExtractor''' def __init__( self : str , __a : List[Any] , __a : Tuple ) -> Optional[Any]: """simple docstring""" super().__init__(image_processor=__a , feature_extractor=__a ) __lowercase : Union[str, Any] = image_processor __lowercase : Tuple = feature_extractor def __call__( self : Tuple , __a : Optional[int]=None , __a : Dict=None , __a : Union[str, Any]=None , __a : Tuple=None , __a : Optional[Any]=False , __a : List[Any]=False , *__a : List[str] , **__a : List[Any] , ) -> Dict: """simple docstring""" if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) __lowercase : Tuple = None if images is not None: __lowercase : Any = self.image_processor(__a , mask_pixel=__a , *__a , **__a ) if images_mixed is not None: __lowercase : Union[str, Any] = self.image_processor(__a , is_mixed=__a , *__a , **__a ) if audio is not None: __lowercase : Optional[Any] = self.feature_extractor( __a , *__a , sampling_rate=__a , mask_audio=__a , **__a ) __lowercase : Tuple = {} if audio is not None: output_dict.update(__a ) if images is not None: output_dict.update(__a ) if images_mixed_dict is not None: output_dict.update(__a ) return output_dict @property def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = self.image_processor.model_input_names __lowercase : Union[str, Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
306
1
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase : int = logging.get_logger(__name__) lowerCamelCase : Any = {'''vocab_file''': '''vocab.txt'''} lowerCamelCase : Dict = { '''vocab_file''': { '''openbmb/cpm-ant-10b''': '''https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt''', }, } lowerCamelCase : Tuple = { '''openbmb/cpm-ant-10b''': 10_24, } def snake_case_ ( lowerCAmelCase_ : str ): __lowercase : str = collections.OrderedDict() with open(lowerCAmelCase_ , """r""" , encoding="""utf-8""" ) as reader: __lowercase : Any = reader.readlines() for index, token in enumerate(lowerCAmelCase_ ): __lowercase : List[Any] = token.rstrip("""\n""" ) __lowercase : str = index return vocab class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : str , __a : Union[str, Any] , __a : Dict="<unk>" , __a : Tuple=200 ) -> str: """simple docstring""" __lowercase : Optional[Any] = vocab __lowercase : List[Any] = unk_token __lowercase : List[Any] = max_input_chars_per_word def lowerCAmelCase ( self : Optional[Any] , __a : int ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = list(__a ) if len(__a ) > self.max_input_chars_per_word: return [self.unk_token] __lowercase : Union[str, Any] = 0 __lowercase : str = [] while start < len(__a ): __lowercase : str = len(__a ) __lowercase : List[str] = None while start < end: __lowercase : Dict = """""".join(chars[start:end] ) if substr in self.vocab: __lowercase : int = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(__a ) __lowercase : str = end return sub_tokens class lowerCAmelCase ( __a ): '''simple docstring''' _A : Optional[Any] = VOCAB_FILES_NAMES _A : List[Any] = PRETRAINED_VOCAB_FILES_MAP _A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Dict = ['''input_ids''', '''attention_mask'''] _A : Dict = False def __init__( self : Tuple , __a : List[str] , __a : List[str]="<d>" , __a : List[str]="</d>" , __a : Optional[int]="<s>" , __a : Tuple="</s>" , __a : Optional[int]="<pad>" , __a : Dict="<unk>" , __a : str="</n>" , __a : List[str]="</_>" , __a : Optional[int]="left" , **__a : Any , ) -> List[Any]: """simple docstring""" requires_backends(self , ["""jieba"""] ) super().__init__( bod_token=__a , eod_token=__a , bos_token=__a , eos_token=__a , pad_token=__a , unk_token=__a , line_token=__a , space_token=__a , padding_side=__a , **__a , ) __lowercase : Dict = bod_token __lowercase : List[str] = eod_token __lowercase : Tuple = load_vocab(__a ) __lowercase : Union[str, Any] = self.encoder[space_token] __lowercase : Union[str, Any] = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] __lowercase : Optional[Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __a : x[1] ) ) __lowercase : List[str] = {v: k for k, v in self.encoder.items()} __lowercase : Dict = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" return self.encoder[self.bod_token] @property def lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" return self.encoder[self.eod_token] @property def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" return self.encoder["\n"] @property def lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" return len(self.encoder ) def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase ( self : Optional[Any] , __a : Tuple ) -> Tuple: """simple docstring""" __lowercase : Optional[int] = [] for x in jieba.cut(__a , cut_all=__a ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(__a ) ) return output_tokens def lowerCAmelCase ( self : Tuple , __a : Any , **__a : Tuple ) -> int: """simple docstring""" __lowercase : str = [i for i in token_ids if i >= 0] __lowercase : Union[str, Any] = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(__a , **__a ) def lowerCAmelCase ( self : List[Any] , __a : str ) -> Any: """simple docstring""" return token in self.encoder def lowerCAmelCase ( self : int , __a : List[str] ) -> str: """simple docstring""" return "".join(__a ) def lowerCAmelCase ( self : List[Any] , __a : Dict ) -> Optional[int]: """simple docstring""" return self.encoder.get(__a , self.encoder.get(self.unk_token ) ) def lowerCAmelCase ( self : Union[str, Any] , __a : List[str] ) -> Any: """simple docstring""" return self.decoder.get(__a , self.unk_token ) def lowerCAmelCase ( self : Any , __a : str , __a : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if os.path.isdir(__a ): __lowercase : List[str] = os.path.join( __a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: __lowercase : int = (filename_prefix + """-""" if filename_prefix else """""") + save_directory __lowercase : str = 0 if " " in self.encoder: __lowercase : Tuple = self.encoder[""" """] del self.encoder[" "] if "\n" in self.encoder: __lowercase : Optional[Any] = self.encoder["""\n"""] del self.encoder["\n"] __lowercase : Dict = collections.OrderedDict(sorted(self.encoder.items() , key=lambda __a : x[1] ) ) with open(__a , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." """ Please check that the vocabulary is not corrupted!""" ) __lowercase : Any = token_index writer.write(token + """\n""" ) index += 1 return (vocab_file,) def lowerCAmelCase ( self : int , __a : List[int] , __a : List[int] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def lowerCAmelCase ( self : List[str] , __a : List[int] , __a : Optional[List[int]] = None , __a : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) if token_ids_a is not None: return [1] + ([0] * len(__a )) + [1] + ([0] * len(__a )) return [1] + ([0] * len(__a ))
306
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Any , __a : Tuple , __a : Optional[int]=13 , __a : int=7 , __a : List[str]=False , __a : Optional[int]=True , __a : Optional[int]=False , __a : Dict=True , __a : Optional[int]=33 , __a : Dict=32 , __a : Optional[int]=5 , __a : Union[str, Any]=4 , __a : List[str]=37 , __a : Tuple="gelu" , __a : List[str]=0.1 , __a : Dict=0.1 , __a : List[Any]=512 , __a : Any=16 , __a : Optional[Any]=2 , __a : List[Any]=0.02 , __a : int=3 , __a : Union[str, Any]=4 , __a : Optional[int]=None , ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = parent __lowercase : int = batch_size __lowercase : Any = seq_length __lowercase : str = is_training __lowercase : str = use_input_mask __lowercase : Optional[int] = use_token_type_ids __lowercase : List[Any] = use_labels __lowercase : Optional[Any] = vocab_size __lowercase : int = hidden_size __lowercase : List[Any] = num_hidden_layers __lowercase : Dict = num_attention_heads __lowercase : Any = intermediate_size __lowercase : Dict = hidden_act __lowercase : Union[str, Any] = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : List[str] = max_position_embeddings __lowercase : Union[str, Any] = type_vocab_size __lowercase : Dict = type_sequence_label_size __lowercase : Union[str, Any] = initializer_range __lowercase : List[Any] = num_labels __lowercase : str = num_choices __lowercase : Tuple = scope def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : int = None if self.use_input_mask: __lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : str = None __lowercase : Optional[Any] = None __lowercase : Tuple = None if self.use_labels: __lowercase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : List[Any] , __a : int , __a : int , __a : Dict , __a : Union[str, Any] , __a : List[str] , __a : str ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = EsmModel(config=__a ) model.to(__a ) model.eval() __lowercase : str = model(__a , attention_mask=__a ) __lowercase : List[Any] = model(__a ) __lowercase : Optional[int] = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : Union[str, Any] , __a : Dict , __a : List[Any] , __a : Tuple , __a : Union[str, Any] , __a : str , __a : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase : List[str] = EsmForMaskedLM(config=__a ) model.to(__a ) model.eval() __lowercase : int = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[int] , __a : Union[str, Any] , __a : List[Any] , __a : Tuple , __a : Tuple , __a : Optional[int] , __a : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = self.num_labels __lowercase : Any = EsmForTokenClassification(config=__a ) model.to(__a ) model.eval() __lowercase : Optional[Any] = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase : Any = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : List[str] = config_and_inputs __lowercase : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Optional[Any] = False _A : Any = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) _A : Optional[Any] = () _A : List[Any] = ( { '''feature-extraction''': EsmModel, '''fill-mask''': EsmForMaskedLM, '''text-classification''': EsmForSequenceClassification, '''token-classification''': EsmForTokenClassification, '''zero-shot''': EsmForSequenceClassification, } if is_torch_available() else {} ) _A : Optional[Any] = True def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : Optional[int] = EsmModelTester(self ) __lowercase : Tuple = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase : Union[str, Any] = type self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : List[str] = EsmModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] __lowercase : List[str] = EsmEmbeddings(config=__a ) __lowercase : Union[str, Any] = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) __lowercase : int = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) __lowercase : str = create_position_ids_from_input_ids(__a , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__a , __a ) ) ) def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] __lowercase : Optional[Any] = EsmEmbeddings(config=__a ) __lowercase : Optional[int] = torch.empty(2 , 4 , 30 ) __lowercase : Tuple = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] __lowercase : List[str] = torch.as_tensor([expected_single_positions, expected_single_positions] ) __lowercase : Any = embeddings.create_position_ids_from_inputs_embeds(__a ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__a , __a ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" pass @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" pass @require_torch class lowerCAmelCase ( __a ): '''simple docstring''' @slow def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): __lowercase : Tuple = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() __lowercase : Tuple = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase : List[str] = model(__a )[0] __lowercase : Union[str, Any] = 33 __lowercase : Union[str, Any] = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , __a ) __lowercase : List[Any] = torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): __lowercase : int = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() __lowercase : int = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) __lowercase : Any = model(__a )[0] # compare the actual values for a slice. __lowercase : int = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) )
306
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase : List[str] = logging.get_logger(__name__) lowerCamelCase : str = {'''vocab_file''': '''spm_char.model'''} lowerCamelCase : Any = { '''vocab_file''': { '''microsoft/speecht5_asr''': '''https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model''', '''microsoft/speecht5_tts''': '''https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model''', '''microsoft/speecht5_vc''': '''https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model''', } } lowerCamelCase : str = { '''microsoft/speecht5_asr''': 10_24, '''microsoft/speecht5_tts''': 10_24, '''microsoft/speecht5_vc''': 10_24, } class lowerCAmelCase ( __a ): '''simple docstring''' _A : Optional[Any] = VOCAB_FILES_NAMES _A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _A : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Optional[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : List[Any] , __a : Any , __a : Any="<s>" , __a : Tuple="</s>" , __a : Union[str, Any]="<unk>" , __a : str="<pad>" , __a : Optional[Dict[str, Any]] = None , **__a : int , ) -> None: """simple docstring""" __lowercase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__a , eos_token=__a , unk_token=__a , pad_token=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , ) __lowercase : int = vocab_file __lowercase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__a ) @property def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" return self.sp_model.get_piece_size() def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase : Any = {self.convert_ids_to_tokens(__a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase : List[Any] = self.__dict__.copy() __lowercase : Optional[int] = None return state def __setstate__( self : Optional[Any] , __a : int ) -> List[str]: """simple docstring""" __lowercase : str = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __lowercase : List[Any] = {} __lowercase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase ( self : int , __a : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(__a , out_type=__a ) def lowerCAmelCase ( self : Any , __a : Optional[Any] ) -> List[Any]: """simple docstring""" return self.sp_model.piece_to_id(__a ) def lowerCAmelCase ( self : List[Any] , __a : List[str] ) -> int: """simple docstring""" __lowercase : Tuple = self.sp_model.IdToPiece(__a ) return token def lowerCAmelCase ( self : Union[str, Any] , __a : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase : Any = [] __lowercase : List[Any] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__a ) + token __lowercase : List[Any] = [] else: current_sub_tokens.append(__a ) out_string += self.sp_model.decode(__a ) return out_string.strip() def lowerCAmelCase ( self : List[Any] , __a : str , __a : List[str]=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowerCAmelCase ( self : Optional[Any] , __a : List[int] , __a : Optional[List[int]] = None , __a : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) __lowercase : Dict = [1] if token_ids_a is None: return ([0] * len(__a )) + suffix_ones return ([0] * len(__a )) + ([0] * len(__a )) + suffix_ones def lowerCAmelCase ( self : str , __a : str , __a : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__a ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __lowercase : int = os.path.join( __a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __a ) elif not os.path.isfile(self.vocab_file ): with open(__a , """wb""" ) as fi: __lowercase : int = self.sp_model.serialized_model_proto() fi.write(__a ) return (out_vocab_file,)
306
def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def snake_case_ ( lowerCAmelCase_ : int = 5000 ): __lowercase : Optional[int] = [(i * (3 * i - 1)) // 2 for i in range(1 , lowerCAmelCase_ )] for i, pentagonal_i in enumerate(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ , len(lowerCAmelCase_ ) ): __lowercase : int = pentagonal_nums[j] __lowercase : Optional[int] = pentagonal_i + pentagonal_j __lowercase : Union[str, Any] = pentagonal_j - pentagonal_i if is_pentagonal(lowerCAmelCase_ ) and is_pentagonal(lowerCAmelCase_ ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
306
1
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 lowerCamelCase : Tuple = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 1_28, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 50, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 10, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 10, '''exponential_decay_length_penalty''': (5, 1.01), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def lowerCAmelCase ( cls : List[str] ) -> List[Any]: """simple docstring""" __lowercase : str = TOKEN HfFolder.save_token(__a ) @classmethod def lowerCAmelCase ( cls : str ) -> Optional[Any]: """simple docstring""" try: delete_repo(token=cls._token , repo_id="""test-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-config-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-config""" ) except HTTPError: pass def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" __lowercase : Tuple = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("""test-config""" , use_auth_token=self._token ) __lowercase : str = BertConfig.from_pretrained(F"{USER}/test-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__a , repo_id="""test-config""" , push_to_hub=__a , use_auth_token=self._token ) __lowercase : List[str] = BertConfig.from_pretrained(F"{USER}/test-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("""valid_org/test-config-org""" , use_auth_token=self._token ) __lowercase : Tuple = BertConfig.from_pretrained("""valid_org/test-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __a , repo_id="""valid_org/test-config-org""" , push_to_hub=__a , use_auth_token=self._token ) __lowercase : List[str] = BertConfig.from_pretrained("""valid_org/test-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) ) def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" CustomConfig.register_for_auto_class() __lowercase : int = CustomConfig(attribute=42 ) config.push_to_hub("""test-dynamic-config""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"""AutoConfig""": """custom_configuration.CustomConfig"""} ) __lowercase : Optional[int] = AutoConfig.from_pretrained(F"{USER}/test-dynamic-config" , trust_remote_code=__a ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , """CustomConfig""" ) self.assertEqual(new_config.attribute , 42 ) class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : str ) -> Any: """simple docstring""" __lowercase : Optional[Any] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated __lowercase : List[str] = c.n_embd + 1 # int __lowercase : Union[str, Any] = c.resid_pdrop + 1.0 # float __lowercase : List[str] = not c.scale_attn_weights # bool __lowercase : int = c.summary_type + """foo""" # str c.update_from_string( F"n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}" ) self.assertEqual(__a , c.n_embd , """mismatch for key: n_embd""" ) self.assertEqual(__a , c.resid_pdrop , """mismatch for key: resid_pdrop""" ) self.assertEqual(__a , c.scale_attn_weights , """mismatch for key: scale_attn_weights""" ) self.assertEqual(__a , c.summary_type , """mismatch for key: summary_type""" ) def lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase : int = PretrainedConfig() __lowercase : Any = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( __a , ["""is_encoder_decoder""", """_name_or_path""", """_commit_hash""", """transformers_version"""] ) __lowercase : Dict = [key for key, value in config_common_kwargs.items() if value == getattr(__a , __a )] if len(__a ) > 0: raise ValueError( """The following keys are set with the default values in""" """ `test_configuration_common.config_common_kwargs` pick another value for them:""" F" {', '.join(__a )}." ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" with self.assertRaises(__a ): # config is in subfolder, the following should not work without specifying the subfolder __lowercase : List[str] = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert-subfolder""" ) __lowercase : List[Any] = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert-subfolder""" , subfolder="""bert""" ) self.assertIsNotNone(__a ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase : Dict = mock.Mock() __lowercase : Dict = 500 __lowercase : List[str] = {} __lowercase : List[Any] = HTTPError __lowercase : List[str] = {} # Download this model to make sure it's in the cache. __lowercase : int = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=__a ) as mock_head: __lowercase : Union[str, Any] = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" __lowercase : List[str] = BertConfig.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json""" ) def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" __lowercase : Dict = AutoConfig.from_pretrained("""bert-base-cased""" ) __lowercase : Optional[int] = ["""config.4.0.0.json"""] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(__a ) __lowercase : Dict = 2 json.dump(configuration.to_dict() , open(os.path.join(__a , """config.4.0.0.json""" ) , """w""" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 __lowercase : List[Any] = AutoConfig.from_pretrained(__a ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 __lowercase : Union[str, Any] = ["""config.42.0.0.json"""] __lowercase : List[str] = 768 configuration.save_pretrained(__a ) shutil.move(os.path.join(__a , """config.4.0.0.json""" ) , os.path.join(__a , """config.42.0.0.json""" ) ) __lowercase : List[str] = AutoConfig.from_pretrained(__a ) self.assertEqual(new_configuration.hidden_size , 768 ) def lowerCAmelCase ( self : int ) -> str: """simple docstring""" __lowercase : Union[str, Any] = """hf-internal-testing/test-two-configs""" import transformers as new_transformers __lowercase : int = """v4.0.0""" __lowercase , __lowercase : Optional[int] = new_transformers.models.auto.AutoConfig.from_pretrained( __a , return_unused_kwargs=__a ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(__a , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers __lowercase : str = """v3.0.0""" __lowercase : Tuple = old_transformers.models.auto.AutoConfig.from_pretrained(__a ) self.assertEqual(old_configuration.hidden_size , 768 )
306
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowerCAmelCase ( __a ): '''simple docstring''' _A : Optional[Any] = (DPMSolverSDEScheduler,) _A : Dict = 10 def lowerCAmelCase ( self : Optional[int] , **__a : Dict ) -> Optional[int]: """simple docstring""" __lowercase : Any = { """num_train_timesteps""": 1100, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**__a ) return config def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=__a ) def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__a ) def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = self.scheduler_classes[0] __lowercase : List[str] = self.get_scheduler_config() __lowercase : Any = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase : Optional[Any] = self.dummy_model() __lowercase : str = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase : Optional[Any] = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): __lowercase : Union[str, Any] = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[Any] = model(__a , __a ) __lowercase : Optional[Any] = scheduler.step(__a , __a , __a ) __lowercase : str = output.prev_sample __lowercase : Optional[Any] = torch.sum(torch.abs(__a ) ) __lowercase : Union[str, Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47821044921875 ) < 1E-2 assert abs(result_mean.item() - 0.2178705964565277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59352111816406 ) < 1E-2 assert abs(result_mean.item() - 0.22342906892299652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase : Tuple = self.scheduler_classes[0] __lowercase : Dict = self.get_scheduler_config(prediction_type="""v_prediction""" ) __lowercase : int = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase : Optional[int] = self.dummy_model() __lowercase : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase : Dict = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): __lowercase : Dict = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[int] = model(__a , __a ) __lowercase : Optional[int] = scheduler.step(__a , __a , __a ) __lowercase : int = output.prev_sample __lowercase : Optional[Any] = torch.sum(torch.abs(__a ) ) __lowercase : List[str] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77149200439453 ) < 1E-2 assert abs(result_mean.item() - 0.16226289014816284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1663360595703 ) < 1E-2 assert abs(result_mean.item() - 0.16688326001167297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8487548828125 ) < 1E-2 assert abs(result_mean.item() - 0.1560530662536621 ) < 1E-3 def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = self.scheduler_classes[0] __lowercase : Dict = self.get_scheduler_config() __lowercase : Optional[int] = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps , device=__a ) __lowercase : int = self.dummy_model() __lowercase : Optional[Any] = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __lowercase : int = scheduler.scale_model_input(__a , __a ) __lowercase : List[str] = model(__a , __a ) __lowercase : List[str] = scheduler.step(__a , __a , __a ) __lowercase : int = output.prev_sample __lowercase : List[Any] = torch.sum(torch.abs(__a ) ) __lowercase : Optional[Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46957397460938 ) < 1E-2 assert abs(result_mean.item() - 0.21805934607982635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59353637695312 ) < 1E-2 assert abs(result_mean.item() - 0.22342908382415771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : str = self.scheduler_classes[0] __lowercase : List[Any] = self.get_scheduler_config() __lowercase : Tuple = scheduler_class(**__a , use_karras_sigmas=__a ) scheduler.set_timesteps(self.num_inference_steps , device=__a ) __lowercase : List[str] = self.dummy_model() __lowercase : Optional[int] = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma __lowercase : str = sample.to(__a ) for t in scheduler.timesteps: __lowercase : List[Any] = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[Any] = model(__a , __a ) __lowercase : Any = scheduler.step(__a , __a , __a ) __lowercase : Optional[Any] = output.prev_sample __lowercase : Any = torch.sum(torch.abs(__a ) ) __lowercase : Optional[Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66974135742188 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63653564453125 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3135223388672 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2
306
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = {'''vocab_file''': '''spiece.model'''} lowerCamelCase : List[Any] = { '''vocab_file''': { '''TsinghuaAI/CPM-Generate''': '''https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model''', } } class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : int , __a : List[str] , __a : List[Any]=False , __a : Optional[int]=True , __a : Union[str, Any]=False , __a : Optional[int]="<s>" , __a : str="</s>" , __a : Dict="<unk>" , __a : List[Any]="<sep>" , __a : Tuple="<pad>" , __a : Tuple="<cls>" , __a : Any="<mask>" , __a : List[Any]=["<eop>", "<eod>"] , __a : Optional[Dict[str, Any]] = None , **__a : Tuple , ) -> None: """simple docstring""" __lowercase : str = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token __lowercase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__a , remove_space=__a , keep_accents=__a , bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , additional_special_tokens=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , ) __lowercase : List[Any] = 3 __lowercase : Dict = do_lower_case __lowercase : Any = remove_space __lowercase : List[Any] = keep_accents __lowercase : Any = vocab_file __lowercase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__a ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( """You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """ """See https://pypi.org/project/jieba/ for installation.""" ) __lowercase : str = jieba __lowercase : int = str.maketrans(""" \n""" , """\u2582\u2583""" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return len(self.sp_model ) def lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = {self.convert_ids_to_tokens(__a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ) -> Dict: """simple docstring""" __lowercase : Dict = self.__dict__.copy() __lowercase : List[Any] = None return state def __setstate__( self : Optional[int] , __a : Any ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __lowercase : Optional[int] = {} __lowercase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase ( self : Optional[Any] , __a : int ) -> Optional[Any]: """simple docstring""" if self.remove_space: __lowercase : str = """ """.join(inputs.strip().split() ) else: __lowercase : Union[str, Any] = inputs __lowercase : List[str] = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: __lowercase : str = unicodedata.normalize("""NFKD""" , __a ) __lowercase : Tuple = """""".join([c for c in outputs if not unicodedata.combining(__a )] ) if self.do_lower_case: __lowercase : Optional[Any] = outputs.lower() return outputs def lowerCAmelCase ( self : Tuple , __a : str ) -> List[str]: """simple docstring""" __lowercase : Any = self.preprocess_text(__a ) __lowercase : Optional[Any] = self.sp_model.encode(__a , out_type=__a ) __lowercase : str = [] for piece in pieces: if len(__a ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): __lowercase : Dict = self.sp_model.EncodeAsPieces(piece[:-1].replace(__a , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __lowercase : Any = cur_pieces[1:] else: __lowercase : Any = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__a ) else: new_pieces.append(__a ) return new_pieces def lowerCAmelCase ( self : Optional[Any] , __a : Dict ) -> Optional[Any]: """simple docstring""" return self.sp_model.PieceToId(__a ) def lowerCAmelCase ( self : int , __a : Dict ) -> Tuple: """simple docstring""" return self.sp_model.IdToPiece(__a ) def lowerCAmelCase ( self : Tuple , __a : int ) -> Tuple: """simple docstring""" __lowercase : Tuple = """""".join(__a ).replace(__a , """ """ ).strip() return out_string def lowerCAmelCase ( self : Dict , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __lowercase : List[str] = [self.sep_token_id] __lowercase : Dict = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowerCAmelCase ( self : Any , __a : List[int] , __a : Optional[List[int]] = None , __a : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) if token_ids_a is not None: return ([0] * len(__a )) + [1] + ([0] * len(__a )) + [1, 1] return ([0] * len(__a )) + [1, 1] def lowerCAmelCase ( self : Dict , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __lowercase : Optional[Any] = [self.sep_token_id] __lowercase : List[Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowerCAmelCase ( self : Union[str, Any] , __a : str , __a : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__a ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __lowercase : List[str] = os.path.join( __a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __a ) elif not os.path.isfile(self.vocab_file ): with open(__a , """wb""" ) as fi: __lowercase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(__a ) return (out_vocab_file,) def lowerCAmelCase ( self : Dict , *__a : List[Any] , **__a : int ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = super()._decode(*__a , **__a ) __lowercase : str = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" ) return text
306
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate lowerCamelCase : str = trt.Logger(trt.Logger.WARNING) lowerCamelCase : Any = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) lowerCamelCase : Optional[Any] = logging.getLogger(__name__) lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=3_84, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=1_28, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) lowerCamelCase : Dict = parser.parse_args() if args.tokenizer_name: lowerCamelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) lowerCamelCase : List[str] = args.per_device_eval_batch_size lowerCamelCase : Any = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties lowerCamelCase : List[str] = True lowerCamelCase : List[Any] = '''temp_engine/bert-fp32.engine''' if args.fpaa: lowerCamelCase : Optional[Any] = '''temp_engine/bert-fp16.engine''' if args.inta: lowerCamelCase : int = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') lowerCamelCase : int = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network lowerCamelCase : Union[str, Any] = [network.get_input(i) for i in range(network.num_inputs)] lowerCamelCase : Dict = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: lowerCamelCase : List[str] = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) lowerCamelCase : Optional[int] = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) lowerCamelCase : Optional[Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ): __lowercase : List[str] = np.asarray(inputs["""input_ids"""] , dtype=np.intaa ) __lowercase : Union[str, Any] = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa ) __lowercase : int = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowerCAmelCase_ ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowerCAmelCase_ ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowerCAmelCase_ ) # start time __lowercase : Optional[Any] = time.time() # Run inference context.execute_async( bindings=[int(lowerCAmelCase_ ) for d_inp in d_inputs] + [int(lowerCAmelCase_ ), int(lowerCAmelCase_ )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) cuda.memcpy_dtoh_async(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Synchronize the stream and take time stream.synchronize() # end time __lowercase : int = time.time() __lowercase : Union[str, Any] = end_time - start_time __lowercase : Any = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. lowerCamelCase : Tuple = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase : List[Any] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. lowerCamelCase : Optional[Any] = raw_datasets['''validation'''].column_names lowerCamelCase : Union[str, Any] = '''question''' if '''question''' in column_names else column_names[0] lowerCamelCase : str = '''context''' if '''context''' in column_names else column_names[1] lowerCamelCase : Dict = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). lowerCamelCase : Dict = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) lowerCamelCase : Tuple = min(args.max_seq_length, tokenizer.model_max_length) def snake_case_ ( lowerCAmelCase_ : int ): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace __lowercase : str = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. __lowercase : List[str] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=lowerCAmelCase_ , stride=args.doc_stride , return_overflowing_tokens=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. __lowercase : List[str] = tokenized_examples.pop("""overflow_to_sample_mapping""" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. __lowercase : Any = [] for i in range(len(tokenized_examples["""input_ids"""] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). __lowercase : Dict = tokenized_examples.sequence_ids(lowerCAmelCase_ ) __lowercase : List[Any] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. __lowercase : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. __lowercase : Dict = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i] ) ] return tokenized_examples lowerCamelCase : Tuple = raw_datasets['''validation'''] # Validation Feature Creation lowerCamelCase : Optional[int] = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) lowerCamelCase : Union[str, Any] = default_data_collator lowerCamelCase : Optional[Any] = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) lowerCamelCase : List[str] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict="eval" ): # Post-processing: we match the start logits and end logits to answers in the original context. __lowercase : int = postprocess_qa_predictions( examples=lowerCAmelCase_ , features=lowerCAmelCase_ , predictions=lowerCAmelCase_ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowerCAmelCase_ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: __lowercase : Optional[int] = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: __lowercase : List[Any] = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] __lowercase : Optional[int] = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=lowerCAmelCase_ , label_ids=lowerCAmelCase_ ) lowerCamelCase : Dict = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def snake_case_ ( lowerCAmelCase_ : str ): return trt.volume(engine.get_binding_shape(lowerCAmelCase_ ) ) * engine.get_binding_dtype(lowerCAmelCase_ ).itemsize # Allocate device memory for inputs and outputs. lowerCamelCase : int = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer lowerCamelCase : Dict = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) lowerCamelCase : str = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) lowerCamelCase : Dict = cuda.mem_alloc(h_outputa.nbytes) lowerCamelCase : Optional[Any] = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. lowerCamelCase : Optional[int] = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(f''' Num examples = {len(eval_dataset)}''') logger.info(f''' Batch size = {args.per_device_eval_batch_size}''') lowerCamelCase : int = 0.0 lowerCamelCase : List[str] = 0 lowerCamelCase : List[str] = timeit.default_timer() lowerCamelCase : List[Any] = None for step, batch in enumerate(eval_dataloader): lowerCamelCase ,lowerCamelCase : str = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 lowerCamelCase ,lowerCamelCase : Union[str, Any] = outputs lowerCamelCase : Optional[Any] = torch.tensor(start_logits) lowerCamelCase : List[str] = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered lowerCamelCase : Optional[int] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-1_00) lowerCamelCase : Dict = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-1_00) lowerCamelCase : List[Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) lowerCamelCase : Dict = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-1_00) if all_preds is not None: lowerCamelCase : Tuple = nested_truncate(all_preds, len(eval_dataset)) lowerCamelCase : Dict = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 10_00 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 10_00)) logger.info('''Total Number of Inference = %d''', niter) lowerCamelCase : str = post_processing_function(eval_examples, eval_dataset, all_preds) lowerCamelCase : Optional[Any] = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'''Evaluation metrics: {eval_metric}''')
306
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase : Optional[Any] = { '''configuration_poolformer''': [ '''POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PoolFormerConfig''', '''PoolFormerOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = ['''PoolFormerFeatureExtractor'''] lowerCamelCase : Union[str, Any] = ['''PoolFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = [ '''POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PoolFormerForImageClassification''', '''PoolFormerModel''', '''PoolFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
306
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : str = { '''facebook/nllb-moe-54B''': '''https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''nllb-moe''' _A : List[str] = ['''past_key_values'''] _A : Optional[Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Dict , __a : List[str]=128112 , __a : List[Any]=1024 , __a : List[Any]=12 , __a : Union[str, Any]=4096 , __a : List[str]=16 , __a : int=12 , __a : Optional[int]=4096 , __a : str=16 , __a : List[Any]=0.05 , __a : Any=0.05 , __a : Dict=True , __a : Optional[Any]=True , __a : List[Any]="relu" , __a : Tuple=1024 , __a : Optional[Any]=0.1 , __a : Tuple=0.1 , __a : Any=0.0 , __a : Optional[Any]=0.02 , __a : List[str]=2 , __a : Union[str, Any]=True , __a : List[Any]=False , __a : Tuple="float32" , __a : Optional[int]=False , __a : Optional[int]=128 , __a : str=64 , __a : Dict=4 , __a : str=4 , __a : List[str]=0.001 , __a : List[Any]=0.001 , __a : Optional[Any]="all" , __a : Optional[int]=False , __a : int=False , __a : int=1.0 , __a : Dict=0.2 , __a : Tuple=1 , __a : Optional[Any]=0 , __a : List[Any]=2 , __a : Any=False , **__a : Any , ) -> Any: """simple docstring""" __lowercase : int = vocab_size __lowercase : List[Any] = max_position_embeddings __lowercase : Tuple = d_model __lowercase : str = encoder_ffn_dim __lowercase : List[str] = encoder_layers __lowercase : int = encoder_attention_heads __lowercase : List[Any] = decoder_ffn_dim __lowercase : int = decoder_layers __lowercase : Optional[int] = decoder_attention_heads __lowercase : Union[str, Any] = dropout __lowercase : str = attention_dropout __lowercase : Any = activation_dropout __lowercase : List[Any] = activation_function __lowercase : List[str] = init_std __lowercase : Optional[int] = encoder_layerdrop __lowercase : str = decoder_layerdrop __lowercase : Dict = use_cache __lowercase : Optional[Any] = encoder_layers __lowercase : str = scale_embedding # scale factor will be sqrt(d_model) if True __lowercase : List[Any] = router_z_loss_coef __lowercase : Tuple = router_aux_loss_coef __lowercase : str = decoder_sparse_step __lowercase : Any = encoder_sparse_step __lowercase : str = num_experts __lowercase : List[Any] = expert_capacity __lowercase : int = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) __lowercase : Optional[int] = router_dtype __lowercase : Any = router_ignore_padding_tokens __lowercase : Optional[Any] = batch_prioritized_routing __lowercase : str = second_expert_policy __lowercase : List[str] = normalize_router_prob_before_dropping __lowercase : List[Any] = moe_eval_capacity_token_fraction __lowercase : List[str] = moe_token_dropout __lowercase : Optional[Any] = output_router_logits super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , decoder_start_token_id=__a , **__a , )
306
1
def snake_case_ ( lowerCAmelCase_ : int ): if num <= 0: raise ValueError("""Input must be a positive integer""" ) __lowercase : str = [True] * (num + 1) __lowercase : Optional[int] = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , lowerCAmelCase_ ): __lowercase : Optional[Any] = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Any = int(input('''Enter a positive integer: ''').strip()) print(prime_sieve_eratosthenes(user_num))
306
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase : Optional[Any] = { '''configuration_poolformer''': [ '''POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PoolFormerConfig''', '''PoolFormerOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = ['''PoolFormerFeatureExtractor'''] lowerCamelCase : Union[str, Any] = ['''PoolFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = [ '''POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PoolFormerForImageClassification''', '''PoolFormerModel''', '''PoolFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
306
1
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def snake_case_ ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Any ): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : List[str] = np.full((len(lowerCAmelCase_ ), sequence_length, 2) , lowerCAmelCase_ ) else: __lowercase : Optional[int] = np.full((len(lowerCAmelCase_ ), sequence_length) , lowerCAmelCase_ ) for i, tensor in enumerate(lowerCAmelCase_ ): if padding_side == "right": if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : Optional[Any] = tensor[:sequence_length] else: __lowercase : List[str] = tensor[:sequence_length] else: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : Dict = tensor[:sequence_length] else: __lowercase : str = tensor[:sequence_length] return out_tensor.tolist() def snake_case_ ( lowerCAmelCase_ : List[Any] ): __lowercase : Optional[Any] = ord(lowerCAmelCase_ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True __lowercase : List[str] = unicodedata.category(lowerCAmelCase_ ) if cat.startswith("""P""" ): return True return False @dataclass class lowerCAmelCase ( __a ): '''simple docstring''' _A : PreTrainedTokenizerBase _A : Union[bool, str, PaddingStrategy] = True _A : Optional[int] = None _A : Optional[int] = None _A : int = -100 _A : str = "pt" def lowerCAmelCase ( self : Optional[Any] , __a : Union[str, Any] ) -> List[Any]: """simple docstring""" import torch __lowercase : Dict = """label""" if """label""" in features[0].keys() else """labels""" __lowercase : str = [feature[label_name] for feature in features] if label_name in features[0].keys() else None __lowercase : Any = self.tokenizer.pad( __a , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" if labels is None else None , ) if labels is None: return batch __lowercase : int = torch.tensor(batch["""entity_ids"""] ).shape[1] __lowercase : Any = self.tokenizer.padding_side if padding_side == "right": __lowercase : List[str] = [ list(__a ) + [self.label_pad_token_id] * (sequence_length - len(__a )) for label in labels ] else: __lowercase : Any = [ [self.label_pad_token_id] * (sequence_length - len(__a )) + list(__a ) for label in labels ] __lowercase : Optional[int] = [feature["""ner_tags"""] for feature in features] __lowercase : Dict = padding_tensor(__a , -1 , __a , __a ) __lowercase : int = [feature["""original_entity_spans"""] for feature in features] __lowercase : Optional[int] = padding_tensor(__a , (-1, -1) , __a , __a ) __lowercase : Dict = {k: torch.tensor(__a , dtype=torch.intaa ) for k, v in batch.items()} return batch
306
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : List[str] = 2 __lowercase : Union[str, Any] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(lowerCAmelCase_ ) if n > 1: factors.append(lowerCAmelCase_ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
306
1
from manim import * class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" __lowercase : List[str] = Rectangle(height=0.5 , width=0.5 ) __lowercase : Dict = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) __lowercase : Dict = [mem.copy() for i in range(6 )] __lowercase : List[str] = [mem.copy() for i in range(6 )] __lowercase : str = VGroup(*__a ).arrange(__a , buff=0 ) __lowercase : List[Any] = VGroup(*__a ).arrange(__a , buff=0 ) __lowercase : str = VGroup(__a , __a ).arrange(__a , buff=0 ) __lowercase : Any = Text("""CPU""" , font_size=24 ) __lowercase : Union[str, Any] = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__a ) __lowercase : List[Any] = [mem.copy() for i in range(1 )] __lowercase : Union[str, Any] = VGroup(*__a ).arrange(__a , buff=0 ) __lowercase : str = Text("""GPU""" , font_size=24 ) __lowercase : List[Any] = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) gpu.align_to(__a , __a ) gpu.set_x(gpu.get_x() - 1 ) self.add(__a ) __lowercase : Optional[Any] = [mem.copy() for i in range(6 )] __lowercase : Union[str, Any] = VGroup(*__a ).arrange(__a , buff=0 ) __lowercase : Dict = Text("""Model""" , font_size=24 ) __lowercase : Optional[Any] = Group(__a , __a ).arrange(__a , buff=0.5 , aligned_edge=__a ) model.move_to([3, -1.0, 0] ) self.play( Create(__a , run_time=1 ) , Create(__a , run_time=1 ) , Create(__a , run_time=1 ) , ) __lowercase : Union[str, Any] = MarkupText( F"First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM." , font_size=24 , ) __lowercase : Any = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __lowercase : List[str] = MarkupText( F"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(__a , run_time=2.5 ) , Write(__a ) , Write(__a ) ) self.add(__a ) __lowercase : Optional[int] = [] __lowercase : List[str] = [] __lowercase : Dict = [] for i, rect in enumerate(__a ): __lowercase : Tuple = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(__a , opacity=0.7 ) cpu_target.move_to(__a ) cpu_target.generate_target() __lowercase : Union[str, Any] = 0.46 / 4 __lowercase : Optional[int] = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__a ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=__a , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=__a , buff=0.0 ) cpu_targs.append(__a ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(__a ) ) second_animations.append(MoveToTarget(__a , run_time=1.5 ) ) self.play(*__a ) self.play(*__a ) self.wait()
306
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Dict = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) __lowercase : List[str] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __lowercase : Optional[Any] = model(__a )["""last_hidden_state"""] __lowercase : Any = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , __a ) # compare the actual values for a slice. __lowercase : Dict = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
306
1
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class lowerCAmelCase ( __a ): '''simple docstring''' _A : Dict = ['''vqvae'''] def __init__( self : List[str] , __a : AutoencoderKL , __a : UNetaDConditionModel , __a : Mel , __a : Union[DDIMScheduler, DDPMScheduler] , ) -> str: """simple docstring""" super().__init__() self.register_modules(unet=__a , scheduler=__a , mel=__a , vqvae=__a ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" return 50 if isinstance(self.scheduler , __a ) else 1000 @torch.no_grad() def __call__( self : Union[str, Any] , __a : int = 1 , __a : str = None , __a : np.ndarray = None , __a : int = 0 , __a : int = 0 , __a : int = None , __a : torch.Generator = None , __a : float = 0 , __a : float = 0 , __a : torch.Generator = None , __a : float = 0 , __a : torch.Tensor = None , __a : torch.Tensor = None , __a : Any=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: """simple docstring""" __lowercase : Optional[int] = steps or self.get_default_steps() self.scheduler.set_timesteps(__a ) __lowercase : Any = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: __lowercase : Dict = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: __lowercase : Dict = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=__a , device=self.device , ) __lowercase : List[Any] = noise __lowercase : List[str] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(__a , __a ) __lowercase : Dict = self.mel.audio_slice_to_image(__a ) __lowercase : List[str] = np.frombuffer(input_image.tobytes() , dtype="""uint8""" ).reshape( (input_image.height, input_image.width) ) __lowercase : Optional[Any] = (input_image / 255) * 2 - 1 __lowercase : int = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: __lowercase : List[str] = self.vqvae.encode(torch.unsqueeze(__a , 0 ) ).latent_dist.sample( generator=__a )[0] __lowercase : Any = self.vqvae.config.scaling_factor * input_images if start_step > 0: __lowercase : List[str] = self.scheduler.add_noise(__a , __a , self.scheduler.timesteps[start_step - 1] ) __lowercase : Dict = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) __lowercase : Union[str, Any] = int(mask_start_secs * pixels_per_second ) __lowercase : Optional[int] = int(mask_end_secs * pixels_per_second ) __lowercase : Optional[Any] = self.scheduler.add_noise(__a , __a , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , __a ): __lowercase : List[Any] = self.unet(__a , __a , __a )["""sample"""] else: __lowercase : Any = self.unet(__a , __a )["""sample"""] if isinstance(self.scheduler , __a ): __lowercase : List[str] = self.scheduler.step( model_output=__a , timestep=__a , sample=__a , eta=__a , generator=__a , )["""prev_sample"""] else: __lowercase : str = self.scheduler.step( model_output=__a , timestep=__a , sample=__a , generator=__a , )["""prev_sample"""] if mask is not None: if mask_start > 0: __lowercase : Tuple = mask[:, step, :, :mask_start] if mask_end > 0: __lowercase : Tuple = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance __lowercase : int = 1 / self.vqvae.config.scaling_factor * images __lowercase : List[str] = self.vqvae.decode(__a )["""sample"""] __lowercase : Union[str, Any] = (images / 2 + 0.5).clamp(0 , 1 ) __lowercase : Any = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() __lowercase : Any = (images * 255).round().astype("""uint8""" ) __lowercase : str = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(__a , mode="""RGB""" ).convert("""L""" ) for _ in images) ) __lowercase : str = [self.mel.image_to_audio(__a ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(__a )[:, np.newaxis, :] ) , **ImagePipelineOutput(__a ) ) @torch.no_grad() def lowerCAmelCase ( self : List[Any] , __a : List[Image.Image] , __a : int = 50 ) -> np.ndarray: """simple docstring""" assert isinstance(self.scheduler , __a ) self.scheduler.set_timesteps(__a ) __lowercase : List[Any] = np.array( [np.frombuffer(image.tobytes() , dtype="""uint8""" ).reshape((1, image.height, image.width) ) for image in images] ) __lowercase : List[Any] = (sample / 255) * 2 - 1 __lowercase : Any = torch.Tensor(__a ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): __lowercase : List[Any] = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps __lowercase : List[str] = self.scheduler.alphas_cumprod[t] __lowercase : int = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) __lowercase : Tuple = 1 - alpha_prod_t __lowercase : Union[str, Any] = self.unet(__a , __a )["""sample"""] __lowercase : int = (1 - alpha_prod_t_prev) ** 0.5 * model_output __lowercase : Optional[Any] = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) __lowercase : Dict = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def lowerCAmelCase ( __a : torch.Tensor , __a : torch.Tensor , __a : float ) -> torch.Tensor: """simple docstring""" __lowercase : Optional[Any] = acos(torch.dot(torch.flatten(__a ) , torch.flatten(__a ) ) / torch.norm(__a ) / torch.norm(__a ) ) return sin((1 - alpha) * theta ) * xa / sin(__a ) + sin(alpha * theta ) * xa / sin(__a )
306
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Optional[Any] = len(lowerCAmelCase_ ) __lowercase : str = len(lowerCAmelCase_ ) __lowercase : Optional[int] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __lowercase : Tuple = True for i in range(lowerCAmelCase_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __lowercase : Optional[Any] = True if a[i].islower(): __lowercase : Dict = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
306
1
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): if b == 0: return (1, 0) ((__lowercase) , (__lowercase)) : List[Any] = extended_euclid(lowerCAmelCase_ , a % b ) __lowercase : int = a // b return (y, x - k * y) def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int ): ((__lowercase) , (__lowercase)) : Optional[Any] = extended_euclid(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Optional[Any] = na * na __lowercase : str = ra * x * na + ra * y * na return (n % m + m) % m def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): ((__lowercase) , (__lowercase)) : int = extended_euclid(lowerCAmelCase_ , lowerCAmelCase_ ) if b < 0: __lowercase : Union[str, Any] = (b % n + n) % n return b def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int ): __lowercase , __lowercase : Union[str, Any] = invert_modulo(lowerCAmelCase_ , lowerCAmelCase_ ), invert_modulo(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : str = na * na __lowercase : Dict = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
306
from scipy.stats import spearmanr import datasets lowerCamelCase : List[str] = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' lowerCamelCase : List[str] = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' lowerCamelCase : Union[str, Any] = r'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def lowerCAmelCase ( self : List[Any] , __a : str , __a : Any , __a : Optional[int]=False ) -> List[str]: """simple docstring""" __lowercase : Optional[Any] = spearmanr(__a , __a ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
306
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : str = { '''facebook/nllb-moe-54B''': '''https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''nllb-moe''' _A : List[str] = ['''past_key_values'''] _A : Optional[Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Dict , __a : List[str]=128112 , __a : List[Any]=1024 , __a : List[Any]=12 , __a : Union[str, Any]=4096 , __a : List[str]=16 , __a : int=12 , __a : Optional[int]=4096 , __a : str=16 , __a : List[Any]=0.05 , __a : Any=0.05 , __a : Dict=True , __a : Optional[Any]=True , __a : List[Any]="relu" , __a : Tuple=1024 , __a : Optional[Any]=0.1 , __a : Tuple=0.1 , __a : Any=0.0 , __a : Optional[Any]=0.02 , __a : List[str]=2 , __a : Union[str, Any]=True , __a : List[Any]=False , __a : Tuple="float32" , __a : Optional[int]=False , __a : Optional[int]=128 , __a : str=64 , __a : Dict=4 , __a : str=4 , __a : List[str]=0.001 , __a : List[Any]=0.001 , __a : Optional[Any]="all" , __a : Optional[int]=False , __a : int=False , __a : int=1.0 , __a : Dict=0.2 , __a : Tuple=1 , __a : Optional[Any]=0 , __a : List[Any]=2 , __a : Any=False , **__a : Any , ) -> Any: """simple docstring""" __lowercase : int = vocab_size __lowercase : List[Any] = max_position_embeddings __lowercase : Tuple = d_model __lowercase : str = encoder_ffn_dim __lowercase : List[str] = encoder_layers __lowercase : int = encoder_attention_heads __lowercase : List[Any] = decoder_ffn_dim __lowercase : int = decoder_layers __lowercase : Optional[int] = decoder_attention_heads __lowercase : Union[str, Any] = dropout __lowercase : str = attention_dropout __lowercase : Any = activation_dropout __lowercase : List[Any] = activation_function __lowercase : List[str] = init_std __lowercase : Optional[int] = encoder_layerdrop __lowercase : str = decoder_layerdrop __lowercase : Dict = use_cache __lowercase : Optional[Any] = encoder_layers __lowercase : str = scale_embedding # scale factor will be sqrt(d_model) if True __lowercase : List[Any] = router_z_loss_coef __lowercase : Tuple = router_aux_loss_coef __lowercase : str = decoder_sparse_step __lowercase : Any = encoder_sparse_step __lowercase : str = num_experts __lowercase : List[Any] = expert_capacity __lowercase : int = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) __lowercase : Optional[int] = router_dtype __lowercase : Any = router_ignore_padding_tokens __lowercase : Optional[Any] = batch_prioritized_routing __lowercase : str = second_expert_policy __lowercase : List[str] = normalize_router_prob_before_dropping __lowercase : List[Any] = moe_eval_capacity_token_fraction __lowercase : List[str] = moe_token_dropout __lowercase : Optional[Any] = output_router_logits super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , decoder_start_token_id=__a , **__a , )
306
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Any = get_failure_array(lowerCAmelCase_ ) # 2) Step through text searching for pattern __lowercase , __lowercase : Optional[int] = 0, 0 # index into text, pattern while i < len(lowerCAmelCase_ ): if pattern[j] == text[i]: if j == (len(lowerCAmelCase_ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: __lowercase : Optional[Any] = failure[j - 1] continue i += 1 return False def snake_case_ ( lowerCAmelCase_ : str ): __lowercase : List[Any] = [0] __lowercase : Optional[Any] = 0 __lowercase : List[Any] = 1 while j < len(lowerCAmelCase_ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: __lowercase : List[str] = failure[i - 1] continue j += 1 failure.append(lowerCAmelCase_ ) return failure if __name__ == "__main__": # Test 1) lowerCamelCase : Dict = '''abc1abc12''' lowerCamelCase : Union[str, Any] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' lowerCamelCase : Any = '''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) lowerCamelCase : List[Any] = '''ABABX''' lowerCamelCase : List[Any] = '''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) lowerCamelCase : int = '''AAAB''' lowerCamelCase : Optional[int] = '''ABAAAAAB''' assert kmp(pattern, text) # Test 4) lowerCamelCase : Optional[Any] = '''abcdabcy''' lowerCamelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) lowerCamelCase : Dict = '''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
306
1
def snake_case_ ( lowerCAmelCase_ : int ): if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError("""check_bouncy() accepts only integer arguments""" ) __lowercase : Tuple = str(lowerCAmelCase_ ) __lowercase : Dict = """""".join(sorted(lowerCAmelCase_ ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def snake_case_ ( lowerCAmelCase_ : float = 99 ): if not 0 < percent < 100: raise ValueError("""solution() only accepts values from 0 to 100""" ) __lowercase : Union[str, Any] = 0 __lowercase : Optional[int] = 1 while True: if check_bouncy(lowerCAmelCase_ ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f'''{solution(99)}''')
306
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = ['''pixel_values'''] def __init__( self : Any , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : bool = True , __a : Dict[str, int] = None , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = True , **__a : str , ) -> None: """simple docstring""" super().__init__(**__a ) __lowercase : Dict = size if size is not None else {"""shortest_edge""": 224} __lowercase : Union[str, Any] = get_size_dict(__a , default_to_square=__a ) __lowercase : int = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __lowercase : Any = get_size_dict(__a , default_to_square=__a , param_name="""crop_size""" ) __lowercase : Optional[int] = do_resize __lowercase : Union[str, Any] = size __lowercase : List[Any] = resample __lowercase : Any = do_center_crop __lowercase : Dict = crop_size __lowercase : int = do_rescale __lowercase : Tuple = rescale_factor __lowercase : List[Any] = do_normalize __lowercase : Union[str, Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowercase : int = image_std if image_std is not None else OPENAI_CLIP_STD __lowercase : Union[str, Any] = do_convert_rgb def lowerCAmelCase ( self : Union[str, Any] , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[Any] , ) -> np.ndarray: """simple docstring""" __lowercase : Dict = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) __lowercase : str = get_resize_output_image_size(__a , size=size["""shortest_edge"""] , default_to_square=__a ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Any , ) -> np.ndarray: """simple docstring""" __lowercase : Tuple = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(__a , size=(size["""height"""], size["""width"""]) , data_format=__a , **__a ) def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : Union[int, float] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[Any] , ) -> List[str]: """simple docstring""" return rescale(__a , scale=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Optional[int] , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] , ) -> np.ndarray: """simple docstring""" return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Optional[int] , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : int = None , __a : bool = None , __a : float = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = None , __a : Optional[Union[str, TensorType]] = None , __a : Optional[ChannelDimension] = ChannelDimension.FIRST , **__a : List[Any] , ) -> PIL.Image.Image: """simple docstring""" __lowercase : List[Any] = do_resize if do_resize is not None else self.do_resize __lowercase : Dict = size if size is not None else self.size __lowercase : Tuple = get_size_dict(__a , param_name="""size""" , default_to_square=__a ) __lowercase : int = resample if resample is not None else self.resample __lowercase : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase : List[Any] = crop_size if crop_size is not None else self.crop_size __lowercase : List[str] = get_size_dict(__a , param_name="""crop_size""" , default_to_square=__a ) __lowercase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __lowercase : str = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase : Dict = do_normalize if do_normalize is not None else self.do_normalize __lowercase : Tuple = image_mean if image_mean is not None else self.image_mean __lowercase : str = image_std if image_std is not None else self.image_std __lowercase : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase : Union[str, Any] = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase : Union[str, Any] = [convert_to_rgb(__a ) for image in images] # All transformations expect numpy arrays. __lowercase : Any = [to_numpy_array(__a ) for image in images] if do_resize: __lowercase : str = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: __lowercase : str = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: __lowercase : Dict = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: __lowercase : Optional[Any] = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] __lowercase : Any = [to_channel_dimension_format(__a , __a ) for image in images] __lowercase : Optional[int] = {"""pixel_values""": images} return BatchFeature(data=__a , tensor_type=__a )
306
1
def snake_case_ ( lowerCAmelCase_ : int = 10**9 ): __lowercase : Tuple = 1 __lowercase : Union[str, Any] = 2 __lowercase : Union[str, Any] = 0 __lowercase : Dict = 0 __lowercase : List[Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __lowercase : Optional[Any] = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
306
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str ): __lowercase : Tuple = s.rsplit(lowerCAmelCase_ , lowerCAmelCase_ ) return new.join(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : List[Any] ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : List[str] = {} __lowercase : Tuple = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __lowercase : List[str] = key.replace(F"{group_key}." , F"{group_key}.group." ) if "res_path" in key: __lowercase : List[Any] = key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): __lowercase : Union[str, Any] = rreplace(lowerCAmelCase_ , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): __lowercase : Tuple = rreplace(lowerCAmelCase_ , """.b""" , """.bias""" , 1 ) __lowercase : Dict = value.float() return upgrade @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=True ): from dall_e import Encoder __lowercase : Any = Encoder() if os.path.exists(lowerCAmelCase_ ): __lowercase : List[Any] = torch.load(lowerCAmelCase_ ) else: __lowercase : List[Any] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : int = ckpt.state_dict() encoder.load_state_dict(lowerCAmelCase_ ) if config_path is not None: __lowercase : Optional[int] = FlavaImageCodebookConfig.from_pretrained(lowerCAmelCase_ ) else: __lowercase : List[str] = FlavaImageCodebookConfig() __lowercase : Optional[Any] = FlavaImageCodebook(lowerCAmelCase_ ).eval() __lowercase : List[Any] = encoder.state_dict() __lowercase : Union[str, Any] = upgrade_state_dict(lowerCAmelCase_ ) hf_model.load_state_dict(lowerCAmelCase_ ) __lowercase : Dict = hf_model.state_dict() __lowercase : Tuple = count_parameters(lowerCAmelCase_ ) __lowercase : Tuple = count_parameters(lowerCAmelCase_ ) assert torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(lowerCAmelCase_ ) else: return hf_state_dict if __name__ == "__main__": lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowerCamelCase : Union[str, Any] = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
306
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase : str = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] ): __lowercase : Any = b.T __lowercase : List[Any] = np.sum(np.square(lowerCAmelCase_ ) , axis=1 ) __lowercase : List[Any] = np.sum(np.square(lowerCAmelCase_ ) , axis=0 ) __lowercase : Union[str, Any] = np.matmul(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Dict = aa[:, None] - 2 * ab + ba[None, :] return d def snake_case_ ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] ): __lowercase : Optional[int] = x.reshape(-1 , 3 ) __lowercase : Dict = squared_euclidean_distance(lowerCAmelCase_ , lowerCAmelCase_ ) return np.argmin(lowerCAmelCase_ , axis=1 ) class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = ['''pixel_values'''] def __init__( self : str , __a : Optional[Union[List[List[int]], np.ndarray]] = None , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : bool = True , __a : bool = True , **__a : Dict , ) -> None: """simple docstring""" super().__init__(**__a ) __lowercase : List[str] = size if size is not None else {"""height""": 256, """width""": 256} __lowercase : Optional[Any] = get_size_dict(__a ) __lowercase : List[str] = np.array(__a ) if clusters is not None else None __lowercase : Any = do_resize __lowercase : Union[str, Any] = size __lowercase : List[str] = resample __lowercase : Optional[int] = do_normalize __lowercase : Optional[Any] = do_color_quantize def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Any , ) -> np.ndarray: """simple docstring""" __lowercase : Optional[int] = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F"Size dictionary must contain both height and width keys. Got {size.keys()}" ) return resize( __a , size=(size["""height"""], size["""width"""]) , resample=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Dict , __a : np.ndarray , __a : Optional[Union[str, ChannelDimension]] = None , ) -> np.ndarray: """simple docstring""" __lowercase : str = rescale(image=__a , scale=1 / 127.5 , data_format=__a ) __lowercase : int = image - 1 return image def lowerCAmelCase ( self : Union[str, Any] , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : Optional[bool] = None , __a : Optional[Union[List[List[int]], np.ndarray]] = None , __a : Optional[Union[str, TensorType]] = None , __a : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **__a : Dict , ) -> PIL.Image.Image: """simple docstring""" __lowercase : str = do_resize if do_resize is not None else self.do_resize __lowercase : Tuple = size if size is not None else self.size __lowercase : Union[str, Any] = get_size_dict(__a ) __lowercase : Union[str, Any] = resample if resample is not None else self.resample __lowercase : Tuple = do_normalize if do_normalize is not None else self.do_normalize __lowercase : List[str] = do_color_quantize if do_color_quantize is not None else self.do_color_quantize __lowercase : List[str] = clusters if clusters is not None else self.clusters __lowercase : Union[str, Any] = np.array(__a ) __lowercase : List[Any] = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_color_quantize and clusters is None: raise ValueError("""Clusters must be specified if do_color_quantize is True.""" ) # All transformations expect numpy arrays. __lowercase : Union[str, Any] = [to_numpy_array(__a ) for image in images] if do_resize: __lowercase : str = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_normalize: __lowercase : Tuple = [self.normalize(image=__a ) for image in images] if do_color_quantize: __lowercase : str = [to_channel_dimension_format(__a , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) __lowercase : Optional[Any] = np.array(__a ) __lowercase : Tuple = color_quantize(__a , __a ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) __lowercase : Any = images.shape[0] __lowercase : Tuple = images.reshape(__a , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. __lowercase : Optional[int] = list(__a ) else: __lowercase : Any = [to_channel_dimension_format(__a , __a ) for image in images] __lowercase : List[Any] = {"""input_ids""": images} return BatchFeature(data=__a , tensor_type=__a )
306
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging lowerCamelCase : Tuple = logging.get_logger(__name__) logging.set_verbosity_info() def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): if "xprophetnet" in prophetnet_checkpoint_path: __lowercase : List[str] = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) __lowercase , __lowercase : int = XLMProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) else: __lowercase : List[Any] = ProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) __lowercase , __lowercase : Optional[Any] = ProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) __lowercase : List[str] = ["""key_proj""", """value_proj""", """query_proj"""] __lowercase : Optional[int] = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: __lowercase : Tuple = key.split(""".""" ) if attributes[0] == "lm_head": __lowercase : str = prophet __lowercase : List[str] = prophet_old else: __lowercase : Tuple = prophet.prophetnet __lowercase : Union[str, Any] = prophet_old.model __lowercase : Optional[Any] = False for attribute in attributes: if attribute in mapping: __lowercase : Optional[int] = mapping[attribute] if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) > 0: __lowercase : str = attribute elif hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : List[Any] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" __lowercase : Any = old_model.weight logger.info(F"{attribute} is initialized." ) __lowercase : Any = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" __lowercase : Dict = old_model.bias logger.info(F"{attribute} is initialized" ) __lowercase : int = True break elif attribute in special_keys and hasattr(lowerCAmelCase_ , """in_proj_weight""" ): __lowercase : Dict = old_model.in_proj_weight.shape[0] // 3 __lowercase : Tuple = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": __lowercase : Union[str, Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) __lowercase : int = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": __lowercase : Any = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) __lowercase : List[Any] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": __lowercase : Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) __lowercase : int = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) __lowercase : int = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." __lowercase : Optional[Any] = nn.Parameter(old_model.embed_positions.weight[:512, :] ) __lowercase : int = True break if attribute.isdigit(): __lowercase : Tuple = model[int(lowerCAmelCase_ )] __lowercase : int = old_model[int(lowerCAmelCase_ )] else: __lowercase : Union[str, Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if old_attribute == "": __lowercase : int = old_model else: if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError(F"{old_model} does not have {old_attribute}" ) __lowercase : List[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if not is_key_init: raise ValueError(F"{key} was not correctly initialized!" ) print(F"Saving model to {pytorch_dump_folder_path}" ) prophet.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCamelCase : Any = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
306
1
def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int ): __lowercase : Union[str, Any] = 0 __lowercase : Any = len(lowerCAmelCase_ ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None __lowercase : Tuple = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowerCAmelCase_ ): return None __lowercase : Any = sorted_collection[point] if current_item == item: return point else: if point < left: __lowercase : Any = left __lowercase : Dict = point elif point > right: __lowercase : List[str] = right __lowercase : Union[str, Any] = point else: if item < current_item: __lowercase : int = point - 1 else: __lowercase : Dict = point + 1 return None def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any] ): # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None __lowercase : Any = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(lowerCAmelCase_ ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) elif point > right: return interpolation_search_by_recursion(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , point - 1 ) else: return interpolation_search_by_recursion( lowerCAmelCase_ , lowerCAmelCase_ , point + 1 , lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : Any ): if collection != sorted(lowerCAmelCase_ ): raise ValueError("""Collection must be ascending sorted""" ) return True if __name__ == "__main__": import sys lowerCamelCase : Optional[int] = 0 if debug == 1: lowerCamelCase : int = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit('''Sequence must be ascending sorted to apply interpolation search''') lowerCamelCase : str = 67 lowerCamelCase : Dict = interpolation_search(collection, target) if result is not None: print(f'''{target} found at positions: {result}''') else: print('''Not found''')
306
def snake_case_ ( lowerCAmelCase_ : int = 200 ): __lowercase : List[str] = [1, 2, 5, 10, 20, 50, 100, 200] __lowercase : List[str] = [0] * (pence + 1) __lowercase : Optional[Any] = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowerCAmelCase_ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
306
1
def snake_case_ ( lowerCAmelCase_ : int ): assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), F"The input value of [n={number}] is not an integer" if number == 1: return 2 elif number < 1: __lowercase : Tuple = F"The input value of [n={number}] has to be > 0" raise ValueError(lowerCAmelCase_ ) else: __lowercase : Optional[int] = sylvester(number - 1 ) __lowercase : Optional[Any] = num - 1 __lowercase : Dict = num return lower * upper + 1 if __name__ == "__main__": print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
306
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , __a : Dict , __a : List[str]=None , __a : Optional[Any]=None , __a : Union[str, Any]=None , __a : int="resnet50" , __a : List[str]=3 , __a : Tuple=32 , __a : Dict=3 , __a : List[str]=True , __a : Union[str, Any]=True , ) -> Any: """simple docstring""" __lowercase : Optional[int] = parent __lowercase : List[str] = out_indices if out_indices is not None else [4] __lowercase : Optional[int] = stage_names __lowercase : Any = out_features __lowercase : Optional[Any] = backbone __lowercase : Optional[Any] = batch_size __lowercase : Union[str, Any] = image_size __lowercase : List[str] = num_channels __lowercase : str = use_pretrained_backbone __lowercase : str = is_training def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : str = self.get_config() return config, pixel_values def lowerCAmelCase ( self : int ) -> str: """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowerCAmelCase ( self : Optional[int] , __a : Dict , __a : Any ) -> Dict: """simple docstring""" __lowercase : Dict = TimmBackbone(config=__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Optional[Any] = model(__a ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.prepare_config_and_inputs() __lowercase , __lowercase : str = config_and_inputs __lowercase : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch @require_timm class lowerCAmelCase ( __a , __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[Any] = (TimmBackbone,) if is_torch_available() else () _A : Dict = {'''feature-extraction''': TimmBackbone} if is_torch_available() else {} _A : List[Any] = False _A : List[str] = False _A : Any = False _A : Optional[Any] = False def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : str = TimmBackboneModelTester(self ) __lowercase : Any = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" __lowercase : Tuple = """resnet18""" __lowercase : Optional[int] = """microsoft/resnet-18""" __lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a ) __lowercase : Dict = AutoBackbone.from_pretrained(__a ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a , out_indices=[1, 2, 3] ) __lowercase : Optional[Any] = AutoBackbone.from_pretrained(__a , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("""TimmBackbone doesn't support feed forward chunking""" ) def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""" ) def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""" ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't support output_attentions.""" ) def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Safetensors is not supported by timm.""" ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Optional[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : List[str] = [*signature.parameters.keys()] __lowercase : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Optional[Any] = True __lowercase : Union[str, Any] = self.has_attentions # no need to test all models as different heads yield the same functionality __lowercase : Union[str, Any] = self.all_model_classes[0] __lowercase : List[Any] = model_class(__a ) model.to(__a ) __lowercase : Optional[Any] = self._prepare_for_class(__a , __a ) __lowercase : Union[str, Any] = model(**__a ) __lowercase : Optional[int] = outputs[0][-1] # Encoder-/Decoder-only models __lowercase : Any = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowercase : Optional[int] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__a ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() __lowercase : int = model(**__a ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowercase : Any = copy.deepcopy(__a ) __lowercase : Dict = None __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() __lowercase : Optional[int] = model(**__a ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowercase : List[str] = copy.deepcopy(__a ) __lowercase : Optional[Any] = False __lowercase : str = model_class(__a ) model.to(__a ) model.eval() __lowercase : List[Any] = model(**__a )
306
1
def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] ): __lowercase : Any = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple ): __lowercase : Optional[Any] = 0 while b > 0: if b & 1: __lowercase : List[str] = ((res % c) + (a % c)) % c a += a b >>= 1 return res
306
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : str = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } lowerCamelCase : Optional[Any] = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): for attribute in key.split(""".""" ): __lowercase : List[str] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if weight_type is not None: __lowercase : Union[str, Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ).shape else: __lowercase : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": __lowercase : Dict = value elif weight_type == "weight_g": __lowercase : Union[str, Any] = value elif weight_type == "weight_v": __lowercase : List[Any] = value elif weight_type == "bias": __lowercase : int = value elif weight_type == "running_mean": __lowercase : List[Any] = value elif weight_type == "running_var": __lowercase : int = value elif weight_type == "num_batches_tracked": __lowercase : int = value elif weight_type == "inv_freq": __lowercase : Optional[Any] = value else: __lowercase : Any = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] ): __lowercase : str = [] __lowercase : Any = fairseq_model.state_dict() __lowercase : List[str] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): __lowercase : Optional[Any] = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , hf_model.config.feat_extract_norm == """group""" , ) __lowercase : List[str] = True else: for key, mapped_key in MAPPING.items(): __lowercase : Any = """wav2vec2_conformer.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __lowercase : Tuple = True if "*" in mapped_key: __lowercase : List[Any] = name.split(lowerCAmelCase_ )[0].split(""".""" )[-2] __lowercase : Any = mapped_key.replace("""*""" , lowerCAmelCase_ ) if "pos_bias_u" in name: __lowercase : Any = None elif "pos_bias_v" in name: __lowercase : Tuple = None elif "weight_g" in name: __lowercase : Union[str, Any] = """weight_g""" elif "weight_v" in name: __lowercase : Dict = """weight_v""" elif "bias" in name: __lowercase : Union[str, Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowercase : str = """weight""" elif "running_mean" in name: __lowercase : str = """running_mean""" elif "inv_freq" in name: __lowercase : List[Any] = """inv_freq""" elif "running_var" in name: __lowercase : Any = """running_var""" elif "num_batches_tracked" in name: __lowercase : Any = """num_batches_tracked""" else: __lowercase : Optional[int] = None set_recursively(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) continue if not is_used: unused_weights.append(lowerCAmelCase_ ) logger.warning(F"Unused weights: {unused_weights}" ) def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] ): __lowercase : List[Any] = full_name.split("""conv_layers.""" )[-1] __lowercase : int = name.split(""".""" ) __lowercase : Optional[Any] = int(items[0] ) __lowercase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __lowercase : Union[str, Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __lowercase : List[str] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) __lowercase : Union[str, Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) __lowercase : Dict = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(lowerCAmelCase_ ) @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Dict=True ): if config_path is not None: __lowercase : List[Any] = WavaVecaConformerConfig.from_pretrained(lowerCAmelCase_ , hidden_act="""swish""" ) else: __lowercase : List[Any] = WavaVecaConformerConfig() if "rope" in checkpoint_path: __lowercase : Tuple = """rotary""" if is_finetuned: if dict_path: __lowercase : Any = Dictionary.load(lowerCAmelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __lowercase : List[Any] = target_dict.pad_index __lowercase : Optional[int] = target_dict.bos_index __lowercase : List[Any] = target_dict.eos_index __lowercase : List[str] = len(target_dict.symbols ) __lowercase : Union[str, Any] = os.path.join(lowerCAmelCase_ , """vocab.json""" ) if not os.path.isdir(lowerCAmelCase_ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowerCAmelCase_ ) ) return os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowercase : Tuple = target_dict.indices # fairseq has the <pad> and <s> switched __lowercase : int = 0 __lowercase : Any = 1 with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Dict = WavaVecaCTCTokenizer( lowerCAmelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowerCAmelCase_ , ) __lowercase : List[Any] = True if config.feat_extract_norm == """layer""" else False __lowercase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) __lowercase : Optional[int] = WavaVecaProcessor(feature_extractor=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) __lowercase : Union[str, Any] = WavaVecaConformerForCTC(lowerCAmelCase_ ) else: __lowercase : Optional[Any] = WavaVecaConformerForPreTraining(lowerCAmelCase_ ) if is_finetuned: __lowercase , __lowercase , __lowercase : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __lowercase : List[Any] = argparse.Namespace(task="""audio_pretraining""" ) __lowercase : Optional[Any] = fairseq.tasks.setup_task(lowerCAmelCase_ ) __lowercase , __lowercase , __lowercase : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase_ ) __lowercase : Dict = model[0].eval() recursively_load_weights(lowerCAmelCase_ , lowerCAmelCase_ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) lowerCamelCase : Any = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
306
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase : List[Any] = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[Any] = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys lowerCamelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError("""String lengths must match!""" ) __lowercase : str = 0 for chara, chara in zip(lowerCAmelCase_ , lowerCAmelCase_ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
306
1
lowerCamelCase : Any = {'''a''': ['''c''', '''b'''], '''b''': ['''d''', '''e'''], '''c''': [], '''d''': [], '''e''': []} lowerCamelCase : int = ['''a''', '''b''', '''c''', '''d''', '''e'''] def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] ): __lowercase : int = start # add current to visited visited.append(lowerCAmelCase_ ) __lowercase : List[str] = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __lowercase : Optional[int] = topological_sort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # if all neighbors visited add current to sort sort.append(lowerCAmelCase_ ) # if all vertices haven't been visited select a new one to visit if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): for vertice in vertices: if vertice not in visited: __lowercase : Union[str, Any] = topological_sort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # return sort return sort if __name__ == "__main__": lowerCamelCase : int = topological_sort('''a''', [], []) print(sort)
306
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def snake_case_ ( lowerCAmelCase_ : Tuple ): if isinstance(lowerCAmelCase_ , collections.abc.Iterable ): return x return (x, x) @require_flax class lowerCAmelCase : '''simple docstring''' def lowerCAmelCase ( self : Any , __a : Any , __a : List[Any] ) -> Optional[Any]: """simple docstring""" pass def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" pass def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : np.ndarray , __a : float ) -> List[Any]: """simple docstring""" __lowercase : List[str] = np.abs((a - b) ).max() self.assertLessEqual(__a , __a , F"Difference between torch and flax is {diff} (>= {tol})." ) def lowerCAmelCase ( self : Tuple , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[Any] , __a : Optional[Any]=None , **__a : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : str = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : str = FlaxVisionTextDualEncoderModel(__a ) __lowercase : Optional[Any] = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def lowerCAmelCase ( self : Optional[int] , __a : Optional[int] , __a : Dict , __a : Dict , __a : List[str] , __a : Optional[Any]=None , **__a : str ) -> str: """simple docstring""" __lowercase , __lowercase : List[str] = self.get_vision_text_model(__a , __a ) __lowercase : Union[str, Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : Any = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : Union[str, Any] , __a : Union[str, Any] , __a : Dict , __a : int=None , **__a : int ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Tuple = self.get_vision_text_model(__a , __a ) __lowercase : Union[str, Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : List[str] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : List[Any] = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) __lowercase : int = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowercase : int = FlaxVisionTextDualEncoderModel.from_pretrained(__a ) __lowercase : Tuple = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) __lowercase : int = after_output[0] __lowercase : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__a , 1E-3 ) def lowerCAmelCase ( self : List[Any] , __a : Any , __a : Tuple , __a : Optional[int] , __a : str , __a : Optional[Any]=None , **__a : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : str = self.get_vision_text_model(__a , __a ) __lowercase : Optional[Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : Union[str, Any] = model( input_ids=__a , pixel_values=__a , attention_mask=__a , output_attentions=__a ) __lowercase : Optional[int] = output.vision_model_output.attentions self.assertEqual(len(__a ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase : Optional[int] = to_atuple(vision_model.config.image_size ) __lowercase : List[str] = to_atuple(vision_model.config.patch_size ) __lowercase : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase : int = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase : Dict = output.text_model_output.attentions self.assertEqual(len(__a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowerCAmelCase ( self : Optional[int] , __a : List[str] , __a : List[Any] , __a : Optional[Any] ) -> Optional[int]: """simple docstring""" pt_model.to(__a ) pt_model.eval() # prepare inputs __lowercase : Union[str, Any] = inputs_dict __lowercase : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): __lowercase : Union[str, Any] = pt_model(**__a ).to_tuple() __lowercase : Tuple = fx_model(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(__a , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__a ) __lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained(__a , from_pt=__a ) __lowercase : Dict = fx_model_loaded(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(__a , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__a ) __lowercase : str = VisionTextDualEncoderModel.from_pretrained(__a , from_flax=__a ) pt_model_loaded.to(__a ) pt_model_loaded.eval() with torch.no_grad(): __lowercase : List[Any] = pt_model_loaded(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(__a , pt_output_loaded.numpy() , 4E-2 ) def lowerCAmelCase ( self : Optional[int] , __a : List[Any] , __a : int , __a : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : str = VisionTextDualEncoderModel(__a ) __lowercase : Union[str, Any] = FlaxVisionTextDualEncoderModel(__a ) __lowercase : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __a ) __lowercase : Any = fx_state self.check_pt_flax_equivalence(__a , __a , __a ) def lowerCAmelCase ( self : Any , __a : Any , __a : Dict , __a : Tuple ) -> str: """simple docstring""" __lowercase : int = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : Union[str, Any] = VisionTextDualEncoderModel(__a ) __lowercase : Dict = FlaxVisionTextDualEncoderModel(__a ) __lowercase : Tuple = load_flax_weights_in_pytorch_model(__a , fx_model.params ) self.check_pt_flax_equivalence(__a , __a , __a ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase : int = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__a ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() self.check_save_load(**__a ) def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" __lowercase : str = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__a ) @is_pt_flax_cross_test def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.prepare_config_and_inputs() __lowercase : Optional[int] = config_inputs_dict.pop("""vision_config""" ) __lowercase : Optional[int] = config_inputs_dict.pop("""text_config""" ) __lowercase : Dict = config_inputs_dict self.check_equivalence_pt_to_flax(__a , __a , __a ) self.check_equivalence_flax_to_pt(__a , __a , __a ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase , __lowercase : List[Any] = self.get_pretrained_model_and_inputs() __lowercase : Dict = model_a(**__a ) __lowercase : Any = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__a ) __lowercase : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(__a ) __lowercase : Optional[int] = model_a(**__a ) __lowercase : Tuple = after_outputs[0] __lowercase : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__a , 1E-5 ) @require_flax class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" __lowercase : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=__a , text_from_pt=__a , ) __lowercase : int = 13 __lowercase : Union[str, Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowercase : Dict = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __lowercase : Tuple = random_attention_mask([batch_size, 4] ) __lowercase : str = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCAmelCase ( self : Optional[Any] , __a : Union[str, Any] , __a : int ) -> Dict: """simple docstring""" __lowercase : int = FlaxViTModel(__a ) __lowercase : List[Any] = FlaxBertModel(__a ) return vision_model, text_model def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = FlaxViTModelTester(self ) __lowercase : str = FlaxBertModelTester(self ) __lowercase : List[str] = vit_model_tester.prepare_config_and_inputs() __lowercase : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase : Optional[int] = vision_config_and_inputs __lowercase , __lowercase , __lowercase , __lowercase : Any = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=__a , text_from_pt=__a , ) __lowercase : Tuple = 13 __lowercase : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowercase : Tuple = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __lowercase : List[Any] = random_attention_mask([batch_size, 4] ) __lowercase : int = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCAmelCase ( self : str , __a : str , __a : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Dict = FlaxCLIPVisionModel(__a ) __lowercase : Optional[Any] = FlaxBertModel(__a ) return vision_model, text_model def lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase : List[Any] = FlaxCLIPVisionModelTester(self ) __lowercase : Optional[Any] = FlaxBertModelTester(self ) __lowercase : Any = clip_model_tester.prepare_config_and_inputs() __lowercase : Optional[Any] = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase : Dict = vision_config_and_inputs __lowercase , __lowercase , __lowercase , __lowercase : Optional[int] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 ) __lowercase : int = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) __lowercase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowercase : Tuple = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=__a , padding=__a , return_tensors="""np""" ) __lowercase : Optional[int] = model(**__a ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowercase : Optional[Any] = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , __a , atol=1E-3 ) )
306
1
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowerCamelCase : str = { '''facebook/maskformer-swin-base-ade''': ( '''https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json''' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowerCamelCase : Optional[int] = logging.get_logger(__name__) class lowerCAmelCase ( __a ): '''simple docstring''' _A : Optional[Any] = '''maskformer''' _A : Tuple = {'''hidden_size''': '''mask_feature_size'''} _A : Optional[int] = ['''resnet''', '''swin'''] _A : str = ['''detr'''] def __init__( self : Any , __a : int = 256 , __a : int = 256 , __a : float = 0.1 , __a : bool = False , __a : Optional[Dict] = None , __a : Optional[Dict] = None , __a : float = 0.02 , __a : float = 1.0 , __a : float = 1.0 , __a : float = 1.0 , __a : float = 20.0 , __a : Optional[bool] = None , **__a : Union[str, Any] , ) -> Any: """simple docstring""" if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k __lowercase : List[str] = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(__a , __a ): __lowercase : Any = backbone_config.pop("""model_type""" ) __lowercase : List[str] = CONFIG_MAPPING[backbone_model_type] __lowercase : Optional[int] = config_class.from_dict(__a ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. " F"Supported model types: {','.join(self.backbones_supported )}" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 __lowercase : Optional[Any] = DetrConfig() else: # verify that the decoder is supported __lowercase : Dict = ( decoder_config.pop("""model_type""" ) if isinstance(__a , __a ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F"Transformer Decoder {decoder_type} not supported, please use one of" F" {','.join(self.decoders_supported )}" ) if isinstance(__a , __a ): __lowercase : Dict = CONFIG_MAPPING[decoder_type] __lowercase : Any = config_class.from_dict(__a ) __lowercase : List[str] = backbone_config __lowercase : Optional[int] = decoder_config # main feature dimension for the model __lowercase : Dict = fpn_feature_size __lowercase : Optional[int] = mask_feature_size # initializer __lowercase : str = init_std __lowercase : int = init_xavier_std # Hungarian matcher && loss __lowercase : int = cross_entropy_weight __lowercase : List[str] = dice_weight __lowercase : Dict = mask_weight __lowercase : Any = use_auxiliary_loss __lowercase : str = no_object_weight __lowercase : str = output_auxiliary_logits __lowercase : List[Any] = self.decoder_config.encoder_attention_heads __lowercase : List[Any] = self.decoder_config.num_hidden_layers super().__init__(**__a ) @classmethod def lowerCAmelCase ( cls : int , __a : PretrainedConfig , __a : PretrainedConfig , **__a : Optional[int] ) -> List[str]: """simple docstring""" return cls( backbone_config=__a , decoder_config=__a , **__a , ) def lowerCAmelCase ( self : Union[str, Any] ) -> Dict[str, any]: """simple docstring""" __lowercase : str = copy.deepcopy(self.__dict__ ) __lowercase : Dict = self.backbone_config.to_dict() __lowercase : int = self.decoder_config.to_dict() __lowercase : Optional[int] = self.__class__.model_type return output
306
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
306
1
from __future__ import annotations from math import pi def snake_case_ ( lowerCAmelCase_ : float , lowerCAmelCase_ : float , lowerCAmelCase_ : float ): if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if inductance < 0: raise ValueError("""Inductance cannot be negative""" ) if frequency < 0: raise ValueError("""Frequency cannot be negative""" ) if reactance < 0: raise ValueError("""Inductive reactance cannot be negative""" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
306
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowerCamelCase : str = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex lowerCamelCase : Union[str, Any] = 10 lowerCamelCase : List[str] = 2_56 def snake_case_ ( lowerCAmelCase_ : List[str] ): if len(lowerCAmelCase_ ) < MIN_NUM_TOKENS: return None __lowercase : Dict = MinHash(num_perm=lowerCAmelCase_ ) for token in set(lowerCAmelCase_ ): min_hash.update(token.encode() ) return min_hash def snake_case_ ( lowerCAmelCase_ : str ): return {t for t in NON_ALPHA.split(lowerCAmelCase_ ) if len(t.strip() ) > 0} class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , *, __a : float = 0.85 , ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = duplication_jaccard_threshold __lowercase : Optional[Any] = NUM_PERM __lowercase : List[Any] = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) __lowercase : List[str] = defaultdict(__a ) def lowerCAmelCase ( self : str , __a : Tuple , __a : MinHash ) -> None: """simple docstring""" __lowercase : List[Any] = self._index.query(__a ) if code_key in self._index.keys: print(F"Duplicate key {code_key}" ) return self._index.insert(__a , __a ) if len(__a ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__a ) break else: self._duplicate_clusters[close_duplicates[0]].add(__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[List[Dict]]: """simple docstring""" __lowercase : Dict = [] for base, duplicates in self._duplicate_clusters.items(): __lowercase : List[str] = [base] + list(__a ) # reformat the cluster to be a list of dict __lowercase : Optional[Any] = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(__a ) return duplicate_clusters def lowerCAmelCase ( self : Any , __a : int ) -> None: """simple docstring""" __lowercase : Tuple = self.get_duplicate_clusters() with open(__a , """w""" ) as f: json.dump(__a , __a ) def snake_case_ ( lowerCAmelCase_ : str ): __lowercase , __lowercase : Union[str, Any] = element __lowercase : Optional[Any] = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def snake_case_ ( lowerCAmelCase_ : Type[Dataset] ): with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(lowerCAmelCase_ , max_queue_size=10000 ) , chunksize=100 , ): if data is not None: yield data def snake_case_ ( lowerCAmelCase_ : Type[Dataset] , lowerCAmelCase_ : float ): __lowercase : Dict = DuplicationIndex(duplication_jaccard_threshold=lowerCAmelCase_ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(lowerCAmelCase_ ) ) , max_queue_size=100 ) ): di.add(lowerCAmelCase_ , lowerCAmelCase_ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : List[str] = get_tokens(lowerCAmelCase_ ) __lowercase : Dict = get_tokens(lowerCAmelCase_ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) lowerCamelCase : List[str] = None def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] ): __lowercase : Union[str, Any] = [] for elementa in cluster: __lowercase : Tuple = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: __lowercase : Dict = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(lowerCAmelCase_ , lowerCAmelCase_ ) >= jaccard_threshold: elementa["copies"] += 1 break else: __lowercase : Dict = 1 extremes.append(lowerCAmelCase_ ) return extremes def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple ): global _shared_dataset __lowercase : Tuple = dataset __lowercase : Optional[int] = [] __lowercase : str = partial(_find_cluster_extremes_shared , jaccard_threshold=lowerCAmelCase_ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( lowerCAmelCase_ , lowerCAmelCase_ , ) , total=len(lowerCAmelCase_ ) , ): extremes_list.append(lowerCAmelCase_ ) return extremes_list def snake_case_ ( lowerCAmelCase_ : Type[Dataset] , lowerCAmelCase_ : float = 0.85 ): __lowercase : Optional[int] = make_duplicate_clusters(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Tuple = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} __lowercase : int = {} __lowercase : Dict = find_extremes(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for extremes in extremes_clusters: for element in extremes: __lowercase : Optional[Any] = element __lowercase : int = duplicate_indices - set(extreme_dict.keys() ) __lowercase : int = dataset.filter(lambda lowerCAmelCase_ , lowerCAmelCase_ : idx not in remove_indices , with_indices=lowerCAmelCase_ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: __lowercase : List[str] = element["""base_index"""] in extreme_dict if element["is_extreme"]: __lowercase : str = extreme_dict[element["""base_index"""]]["""copies"""] print(F"Original dataset size: {len(lowerCAmelCase_ )}" ) print(F"Number of duplicate clusters: {len(lowerCAmelCase_ )}" ) print(F"Files in duplicate cluster: {len(lowerCAmelCase_ )}" ) print(F"Unique files in duplicate cluster: {len(lowerCAmelCase_ )}" ) print(F"Filtered dataset size: {len(lowerCAmelCase_ )}" ) return ds_filter, duplicate_clusters
306
1
import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , __a : str , __a : int=13 , __a : Tuple=7 , __a : Optional[Any]=True , __a : str=True , __a : Union[str, Any]=False , __a : Union[str, Any]=True , __a : Tuple=99 , __a : Optional[int]=64 , __a : Dict=5 , __a : str=4 , __a : Tuple=64 , __a : Dict="gelu" , __a : Optional[Any]=0.1 , __a : Any=0.1 , __a : str=512 , __a : Dict=16 , __a : List[str]=2 , __a : List[Any]=0.02 , __a : Union[str, Any]=3 , __a : Optional[Any]=4 , __a : Optional[Any]=None , ) -> str: """simple docstring""" __lowercase : Tuple = parent __lowercase : str = batch_size __lowercase : Union[str, Any] = seq_length __lowercase : Any = is_training __lowercase : List[Any] = use_input_mask __lowercase : Optional[Any] = use_token_type_ids __lowercase : Union[str, Any] = use_labels __lowercase : int = vocab_size __lowercase : Optional[int] = hidden_size __lowercase : str = num_hidden_layers __lowercase : int = num_attention_heads __lowercase : str = intermediate_size __lowercase : str = hidden_act __lowercase : Dict = hidden_dropout_prob __lowercase : int = attention_probs_dropout_prob __lowercase : int = max_position_embeddings __lowercase : Dict = type_vocab_size __lowercase : List[Any] = type_sequence_label_size __lowercase : Optional[Any] = initializer_range __lowercase : Any = num_labels __lowercase : List[Any] = num_choices __lowercase : Union[str, Any] = scope def lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return MPNetConfig.from_pretrained("""microsoft/mpnet-base""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : Tuple = None if self.use_input_mask: __lowercase : str = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : str = None __lowercase : Optional[int] = None __lowercase : str = None if self.use_labels: __lowercase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : Dict = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : List[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : int , __a : Any , __a : Tuple , __a : List[str] , __a : Optional[Any] , __a : List[str] , __a : List[Any] ) -> str: """simple docstring""" __lowercase : Optional[Any] = MPNetModel(config=__a ) model.to(__a ) model.eval() __lowercase : Optional[Any] = model(__a , __a ) __lowercase : List[Any] = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : str , __a : Tuple , __a : List[Any] , __a : List[Any] , __a : Optional[Any] , __a : List[str] , __a : Optional[int] ) -> Tuple: """simple docstring""" __lowercase : Optional[int] = MPNetForQuestionAnswering(config=__a ) model.to(__a ) model.eval() __lowercase : Optional[Any] = model( __a , attention_mask=__a , start_positions=__a , end_positions=__a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : List[Any] , __a : List[Any] , __a : List[Any] , __a : str , __a : Any , __a : Tuple , __a : Tuple ) -> str: """simple docstring""" __lowercase : Optional[int] = self.num_labels __lowercase : Optional[int] = MPNetForSequenceClassification(__a ) model.to(__a ) model.eval() __lowercase : Optional[Any] = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : str , __a : List[str] , __a : Dict , __a : Any , __a : Dict , __a : List[Any] , __a : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : int = self.num_choices __lowercase : str = MPNetForMultipleChoice(config=__a ) model.to(__a ) model.eval() __lowercase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase : List[str] = model( __a , attention_mask=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : Any , __a : Optional[Any] , __a : List[str] , __a : Any , __a : Tuple ) -> Any: """simple docstring""" __lowercase : Any = self.num_labels __lowercase : Any = MPNetForTokenClassification(config=__a ) model.to(__a ) model.eval() __lowercase : Union[str, Any] = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" __lowercase : Any = self.prepare_config_and_inputs() ((__lowercase) , (__lowercase) , (__lowercase) , (__lowercase) , (__lowercase) , (__lowercase)) : Union[str, Any] = config_and_inputs __lowercase : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : str = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) _A : Any = ( { '''feature-extraction''': MPNetModel, '''fill-mask''': MPNetForMaskedLM, '''question-answering''': MPNetForQuestionAnswering, '''text-classification''': MPNetForSequenceClassification, '''token-classification''': MPNetForTokenClassification, '''zero-shot''': MPNetForSequenceClassification, } if is_torch_available() else {} ) _A : str = False _A : Dict = True def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase : List[Any] = MPNetModelTester(self ) __lowercase : List[str] = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*__a ) def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*__a ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*__a ) def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*__a ) @require_torch class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase : int = MPNetModel.from_pretrained("""microsoft/mpnet-base""" ) __lowercase : Optional[Any] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) __lowercase : Union[str, Any] = model(__a )[0] __lowercase : List[str] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __a ) __lowercase : List[str] = torch.tensor( [[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) )
306
from ...processing_utils import ProcessorMixin class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = ['''image_processor''', '''feature_extractor'''] _A : List[Any] = '''TvltImageProcessor''' _A : Optional[int] = '''TvltFeatureExtractor''' def __init__( self : str , __a : List[Any] , __a : Tuple ) -> Optional[Any]: """simple docstring""" super().__init__(image_processor=__a , feature_extractor=__a ) __lowercase : Union[str, Any] = image_processor __lowercase : Tuple = feature_extractor def __call__( self : Tuple , __a : Optional[int]=None , __a : Dict=None , __a : Union[str, Any]=None , __a : Tuple=None , __a : Optional[Any]=False , __a : List[Any]=False , *__a : List[str] , **__a : List[Any] , ) -> Dict: """simple docstring""" if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) __lowercase : Tuple = None if images is not None: __lowercase : Any = self.image_processor(__a , mask_pixel=__a , *__a , **__a ) if images_mixed is not None: __lowercase : Union[str, Any] = self.image_processor(__a , is_mixed=__a , *__a , **__a ) if audio is not None: __lowercase : Optional[Any] = self.feature_extractor( __a , *__a , sampling_rate=__a , mask_audio=__a , **__a ) __lowercase : Tuple = {} if audio is not None: output_dict.update(__a ) if images is not None: output_dict.update(__a ) if images_mixed_dict is not None: output_dict.update(__a ) return output_dict @property def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = self.image_processor.model_input_names __lowercase : Union[str, Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
306
1
from __future__ import annotations import math def snake_case_ ( lowerCAmelCase_ : int ): if num <= 0: __lowercase : List[Any] = F"{num}: Invalid input, please enter a positive integer." raise ValueError(lowerCAmelCase_ ) __lowercase : int = [True] * (num + 1) __lowercase : Dict = [] __lowercase : str = 2 __lowercase : List[str] = int(math.sqrt(lowerCAmelCase_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCAmelCase_ ) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCAmelCase_ ): if sieve[i] is True: __lowercase : Tuple = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowerCAmelCase_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input('''Enter a positive integer: ''').strip())))
306
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Any , __a : Tuple , __a : Optional[int]=13 , __a : int=7 , __a : List[str]=False , __a : Optional[int]=True , __a : Optional[int]=False , __a : Dict=True , __a : Optional[int]=33 , __a : Dict=32 , __a : Optional[int]=5 , __a : Union[str, Any]=4 , __a : List[str]=37 , __a : Tuple="gelu" , __a : List[str]=0.1 , __a : Dict=0.1 , __a : List[Any]=512 , __a : Any=16 , __a : Optional[Any]=2 , __a : List[Any]=0.02 , __a : int=3 , __a : Union[str, Any]=4 , __a : Optional[int]=None , ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = parent __lowercase : int = batch_size __lowercase : Any = seq_length __lowercase : str = is_training __lowercase : str = use_input_mask __lowercase : Optional[int] = use_token_type_ids __lowercase : List[Any] = use_labels __lowercase : Optional[Any] = vocab_size __lowercase : int = hidden_size __lowercase : List[Any] = num_hidden_layers __lowercase : Dict = num_attention_heads __lowercase : Any = intermediate_size __lowercase : Dict = hidden_act __lowercase : Union[str, Any] = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : List[str] = max_position_embeddings __lowercase : Union[str, Any] = type_vocab_size __lowercase : Dict = type_sequence_label_size __lowercase : Union[str, Any] = initializer_range __lowercase : List[Any] = num_labels __lowercase : str = num_choices __lowercase : Tuple = scope def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : int = None if self.use_input_mask: __lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : str = None __lowercase : Optional[Any] = None __lowercase : Tuple = None if self.use_labels: __lowercase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : List[Any] , __a : int , __a : int , __a : Dict , __a : Union[str, Any] , __a : List[str] , __a : str ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = EsmModel(config=__a ) model.to(__a ) model.eval() __lowercase : str = model(__a , attention_mask=__a ) __lowercase : List[Any] = model(__a ) __lowercase : Optional[int] = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : Union[str, Any] , __a : Dict , __a : List[Any] , __a : Tuple , __a : Union[str, Any] , __a : str , __a : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase : List[str] = EsmForMaskedLM(config=__a ) model.to(__a ) model.eval() __lowercase : int = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[int] , __a : Union[str, Any] , __a : List[Any] , __a : Tuple , __a : Tuple , __a : Optional[int] , __a : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = self.num_labels __lowercase : Any = EsmForTokenClassification(config=__a ) model.to(__a ) model.eval() __lowercase : Optional[Any] = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase : Any = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : List[str] = config_and_inputs __lowercase : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Optional[Any] = False _A : Any = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) _A : Optional[Any] = () _A : List[Any] = ( { '''feature-extraction''': EsmModel, '''fill-mask''': EsmForMaskedLM, '''text-classification''': EsmForSequenceClassification, '''token-classification''': EsmForTokenClassification, '''zero-shot''': EsmForSequenceClassification, } if is_torch_available() else {} ) _A : Optional[Any] = True def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : Optional[int] = EsmModelTester(self ) __lowercase : Tuple = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase : Union[str, Any] = type self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : List[str] = EsmModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] __lowercase : List[str] = EsmEmbeddings(config=__a ) __lowercase : Union[str, Any] = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) __lowercase : int = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) __lowercase : str = create_position_ids_from_input_ids(__a , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__a , __a ) ) ) def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] __lowercase : Optional[Any] = EsmEmbeddings(config=__a ) __lowercase : Optional[int] = torch.empty(2 , 4 , 30 ) __lowercase : Tuple = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] __lowercase : List[str] = torch.as_tensor([expected_single_positions, expected_single_positions] ) __lowercase : Any = embeddings.create_position_ids_from_inputs_embeds(__a ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__a , __a ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" pass @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" pass @require_torch class lowerCAmelCase ( __a ): '''simple docstring''' @slow def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): __lowercase : Tuple = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() __lowercase : Tuple = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase : List[str] = model(__a )[0] __lowercase : Union[str, Any] = 33 __lowercase : Union[str, Any] = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , __a ) __lowercase : List[Any] = torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): __lowercase : int = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() __lowercase : int = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) __lowercase : Any = model(__a )[0] # compare the actual values for a slice. __lowercase : int = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) )
306
1
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Tuple = { '''facebook/encodec_24khz''': '''https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json''', '''facebook/encodec_48khz''': '''https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''encodec''' def __init__( self : int , __a : int=[1.5, 3.0, 6.0, 12.0, 24.0] , __a : int=24000 , __a : Any=1 , __a : int=False , __a : Optional[int]=None , __a : Tuple=None , __a : Tuple=128 , __a : Any=32 , __a : Optional[int]=1 , __a : Optional[Any]=[8, 5, 4, 2] , __a : Optional[Any]="weight_norm" , __a : List[str]=7 , __a : int=7 , __a : Optional[Any]=3 , __a : Optional[Any]=2 , __a : int=True , __a : List[str]="reflect" , __a : Any=2 , __a : str=2 , __a : int=1.0 , __a : List[Any]=1024 , __a : Tuple=None , __a : Any=True , **__a : str , ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = target_bandwidths __lowercase : Any = sampling_rate __lowercase : Optional[Any] = audio_channels __lowercase : List[str] = normalize __lowercase : Optional[Any] = chunk_length_s __lowercase : Optional[Any] = overlap __lowercase : str = hidden_size __lowercase : int = num_filters __lowercase : Optional[int] = num_residual_layers __lowercase : Union[str, Any] = upsampling_ratios __lowercase : int = norm_type __lowercase : List[Any] = kernel_size __lowercase : List[Any] = last_kernel_size __lowercase : str = residual_kernel_size __lowercase : List[str] = dilation_growth_rate __lowercase : Union[str, Any] = use_causal_conv __lowercase : List[str] = pad_mode __lowercase : str = compress __lowercase : Tuple = num_lstm_layers __lowercase : Tuple = trim_right_ratio __lowercase : Optional[Any] = codebook_size __lowercase : Optional[Any] = codebook_dim if codebook_dim is not None else hidden_size __lowercase : str = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F"self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}" ) super().__init__(**__a ) @property def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" __lowercase : Union[str, Any] = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
306
def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def snake_case_ ( lowerCAmelCase_ : int = 5000 ): __lowercase : Optional[int] = [(i * (3 * i - 1)) // 2 for i in range(1 , lowerCAmelCase_ )] for i, pentagonal_i in enumerate(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ , len(lowerCAmelCase_ ) ): __lowercase : int = pentagonal_nums[j] __lowercase : Optional[int] = pentagonal_i + pentagonal_j __lowercase : Union[str, Any] = pentagonal_j - pentagonal_i if is_pentagonal(lowerCAmelCase_ ) and is_pentagonal(lowerCAmelCase_ ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
306
1
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home lowerCamelCase : str = HUGGINGFACE_HUB_CACHE lowerCamelCase : Tuple = '''config.json''' lowerCamelCase : List[str] = '''diffusion_pytorch_model.bin''' lowerCamelCase : Optional[int] = '''diffusion_flax_model.msgpack''' lowerCamelCase : int = '''model.onnx''' lowerCamelCase : Any = '''diffusion_pytorch_model.safetensors''' lowerCamelCase : List[str] = '''weights.pb''' lowerCamelCase : Optional[int] = '''https://huggingface.co''' lowerCamelCase : List[Any] = default_cache_path lowerCamelCase : Optional[Any] = '''diffusers_modules''' lowerCamelCase : Tuple = os.getenv('''HF_MODULES_CACHE''', os.path.join(hf_cache_home, '''modules''')) lowerCamelCase : Tuple = ['''fp16''', '''non-ema'''] lowerCamelCase : List[Any] = '''.self_attn'''
306
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowerCAmelCase ( __a ): '''simple docstring''' _A : Optional[Any] = (DPMSolverSDEScheduler,) _A : Dict = 10 def lowerCAmelCase ( self : Optional[int] , **__a : Dict ) -> Optional[int]: """simple docstring""" __lowercase : Any = { """num_train_timesteps""": 1100, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**__a ) return config def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=__a ) def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__a ) def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = self.scheduler_classes[0] __lowercase : List[str] = self.get_scheduler_config() __lowercase : Any = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase : Optional[Any] = self.dummy_model() __lowercase : str = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase : Optional[Any] = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): __lowercase : Union[str, Any] = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[Any] = model(__a , __a ) __lowercase : Optional[Any] = scheduler.step(__a , __a , __a ) __lowercase : str = output.prev_sample __lowercase : Optional[Any] = torch.sum(torch.abs(__a ) ) __lowercase : Union[str, Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47821044921875 ) < 1E-2 assert abs(result_mean.item() - 0.2178705964565277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59352111816406 ) < 1E-2 assert abs(result_mean.item() - 0.22342906892299652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase : Tuple = self.scheduler_classes[0] __lowercase : Dict = self.get_scheduler_config(prediction_type="""v_prediction""" ) __lowercase : int = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase : Optional[int] = self.dummy_model() __lowercase : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase : Dict = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): __lowercase : Dict = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[int] = model(__a , __a ) __lowercase : Optional[int] = scheduler.step(__a , __a , __a ) __lowercase : int = output.prev_sample __lowercase : Optional[Any] = torch.sum(torch.abs(__a ) ) __lowercase : List[str] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77149200439453 ) < 1E-2 assert abs(result_mean.item() - 0.16226289014816284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1663360595703 ) < 1E-2 assert abs(result_mean.item() - 0.16688326001167297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8487548828125 ) < 1E-2 assert abs(result_mean.item() - 0.1560530662536621 ) < 1E-3 def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = self.scheduler_classes[0] __lowercase : Dict = self.get_scheduler_config() __lowercase : Optional[int] = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps , device=__a ) __lowercase : int = self.dummy_model() __lowercase : Optional[Any] = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __lowercase : int = scheduler.scale_model_input(__a , __a ) __lowercase : List[str] = model(__a , __a ) __lowercase : List[str] = scheduler.step(__a , __a , __a ) __lowercase : int = output.prev_sample __lowercase : List[Any] = torch.sum(torch.abs(__a ) ) __lowercase : Optional[Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46957397460938 ) < 1E-2 assert abs(result_mean.item() - 0.21805934607982635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59353637695312 ) < 1E-2 assert abs(result_mean.item() - 0.22342908382415771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : str = self.scheduler_classes[0] __lowercase : List[Any] = self.get_scheduler_config() __lowercase : Tuple = scheduler_class(**__a , use_karras_sigmas=__a ) scheduler.set_timesteps(self.num_inference_steps , device=__a ) __lowercase : List[str] = self.dummy_model() __lowercase : Optional[int] = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma __lowercase : str = sample.to(__a ) for t in scheduler.timesteps: __lowercase : List[Any] = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[Any] = model(__a , __a ) __lowercase : Any = scheduler.step(__a , __a , __a ) __lowercase : Optional[Any] = output.prev_sample __lowercase : Any = torch.sum(torch.abs(__a ) ) __lowercase : Optional[Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66974135742188 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63653564453125 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3135223388672 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2
306
1
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase : Optional[Any] = '''▁''' lowerCamelCase : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : str = BertGenerationTokenizer _A : int = False _A : Dict = True def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" super().setUp() __lowercase : str = BertGenerationTokenizer(__a , keep_accents=__a ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = """<s>""" __lowercase : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(__a ) , 1002 ) def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" __lowercase : str = BertGenerationTokenizer(__a , keep_accents=__a ) __lowercase : Optional[int] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__a , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [285, 46, 10, 170, 382] , ) __lowercase : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __lowercase : Tuple = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual( __a , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __lowercase : List[str] = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" return BertGenerationTokenizer.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) @slow def lowerCAmelCase ( self : str ) -> int: """simple docstring""" __lowercase : Any = """Hello World!""" __lowercase : Tuple = [18536, 2260, 101] self.assertListEqual(__a , self.big_tokenizer.encode(__a ) ) @slow def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : int = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) __lowercase : Any = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, ] self.assertListEqual(__a , self.big_tokenizer.encode(__a ) ) @require_torch @slow def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence __lowercase : int = list(self.big_tokenizer.get_vocab().keys() )[:10] __lowercase : Optional[Any] = """ """.join(__a ) __lowercase : Union[str, Any] = self.big_tokenizer.encode_plus(__a , return_tensors="""pt""" , return_token_type_ids=__a ) __lowercase : List[Any] = self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=__a ) __lowercase : Optional[Any] = BertGenerationConfig() __lowercase : Union[str, Any] = BertGenerationEncoder(__a ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__a ) model(**__a ) @slow def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = {"""input_ids""": [[39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114], [448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a , model_name="""google/bert_for_seq_generation_L-24_bbc_encoder""" , revision="""c817d1fd1be2ffa69431227a1fe320544943d4db""" , )
306
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate lowerCamelCase : str = trt.Logger(trt.Logger.WARNING) lowerCamelCase : Any = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) lowerCamelCase : Optional[Any] = logging.getLogger(__name__) lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=3_84, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=1_28, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) lowerCamelCase : Dict = parser.parse_args() if args.tokenizer_name: lowerCamelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) lowerCamelCase : List[str] = args.per_device_eval_batch_size lowerCamelCase : Any = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties lowerCamelCase : List[str] = True lowerCamelCase : List[Any] = '''temp_engine/bert-fp32.engine''' if args.fpaa: lowerCamelCase : Optional[Any] = '''temp_engine/bert-fp16.engine''' if args.inta: lowerCamelCase : int = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') lowerCamelCase : int = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network lowerCamelCase : Union[str, Any] = [network.get_input(i) for i in range(network.num_inputs)] lowerCamelCase : Dict = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: lowerCamelCase : List[str] = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) lowerCamelCase : Optional[int] = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) lowerCamelCase : Optional[Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ): __lowercase : List[str] = np.asarray(inputs["""input_ids"""] , dtype=np.intaa ) __lowercase : Union[str, Any] = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa ) __lowercase : int = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowerCAmelCase_ ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowerCAmelCase_ ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowerCAmelCase_ ) # start time __lowercase : Optional[Any] = time.time() # Run inference context.execute_async( bindings=[int(lowerCAmelCase_ ) for d_inp in d_inputs] + [int(lowerCAmelCase_ ), int(lowerCAmelCase_ )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) cuda.memcpy_dtoh_async(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Synchronize the stream and take time stream.synchronize() # end time __lowercase : int = time.time() __lowercase : Union[str, Any] = end_time - start_time __lowercase : Any = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. lowerCamelCase : Tuple = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase : List[Any] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. lowerCamelCase : Optional[Any] = raw_datasets['''validation'''].column_names lowerCamelCase : Union[str, Any] = '''question''' if '''question''' in column_names else column_names[0] lowerCamelCase : str = '''context''' if '''context''' in column_names else column_names[1] lowerCamelCase : Dict = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). lowerCamelCase : Dict = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) lowerCamelCase : Tuple = min(args.max_seq_length, tokenizer.model_max_length) def snake_case_ ( lowerCAmelCase_ : int ): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace __lowercase : str = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. __lowercase : List[str] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=lowerCAmelCase_ , stride=args.doc_stride , return_overflowing_tokens=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. __lowercase : List[str] = tokenized_examples.pop("""overflow_to_sample_mapping""" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. __lowercase : Any = [] for i in range(len(tokenized_examples["""input_ids"""] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). __lowercase : Dict = tokenized_examples.sequence_ids(lowerCAmelCase_ ) __lowercase : List[Any] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. __lowercase : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. __lowercase : Dict = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i] ) ] return tokenized_examples lowerCamelCase : Tuple = raw_datasets['''validation'''] # Validation Feature Creation lowerCamelCase : Optional[int] = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) lowerCamelCase : Union[str, Any] = default_data_collator lowerCamelCase : Optional[Any] = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) lowerCamelCase : List[str] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict="eval" ): # Post-processing: we match the start logits and end logits to answers in the original context. __lowercase : int = postprocess_qa_predictions( examples=lowerCAmelCase_ , features=lowerCAmelCase_ , predictions=lowerCAmelCase_ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowerCAmelCase_ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: __lowercase : Optional[int] = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: __lowercase : List[Any] = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] __lowercase : Optional[int] = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=lowerCAmelCase_ , label_ids=lowerCAmelCase_ ) lowerCamelCase : Dict = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def snake_case_ ( lowerCAmelCase_ : str ): return trt.volume(engine.get_binding_shape(lowerCAmelCase_ ) ) * engine.get_binding_dtype(lowerCAmelCase_ ).itemsize # Allocate device memory for inputs and outputs. lowerCamelCase : int = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer lowerCamelCase : Dict = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) lowerCamelCase : str = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) lowerCamelCase : Dict = cuda.mem_alloc(h_outputa.nbytes) lowerCamelCase : Optional[Any] = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. lowerCamelCase : Optional[int] = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(f''' Num examples = {len(eval_dataset)}''') logger.info(f''' Batch size = {args.per_device_eval_batch_size}''') lowerCamelCase : int = 0.0 lowerCamelCase : List[str] = 0 lowerCamelCase : List[str] = timeit.default_timer() lowerCamelCase : List[Any] = None for step, batch in enumerate(eval_dataloader): lowerCamelCase ,lowerCamelCase : str = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 lowerCamelCase ,lowerCamelCase : Union[str, Any] = outputs lowerCamelCase : Optional[Any] = torch.tensor(start_logits) lowerCamelCase : List[str] = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered lowerCamelCase : Optional[int] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-1_00) lowerCamelCase : Dict = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-1_00) lowerCamelCase : List[Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) lowerCamelCase : Dict = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-1_00) if all_preds is not None: lowerCamelCase : Tuple = nested_truncate(all_preds, len(eval_dataset)) lowerCamelCase : Dict = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 10_00 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 10_00)) logger.info('''Total Number of Inference = %d''', niter) lowerCamelCase : str = post_processing_function(eval_examples, eval_dataset, all_preds) lowerCamelCase : Optional[Any] = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'''Evaluation metrics: {eval_metric}''')
306
1
from collections.abc import Callable import numpy as np def snake_case_ ( lowerCAmelCase_ : Callable , lowerCAmelCase_ : float , lowerCAmelCase_ : float , lowerCAmelCase_ : float , lowerCAmelCase_ : float ): __lowercase : Tuple = int(np.ceil((x_end - xa) / step_size ) ) __lowercase : Any = np.zeros((n + 1,) ) __lowercase : Dict = ya __lowercase : Union[str, Any] = xa for k in range(lowerCAmelCase_ ): __lowercase : Dict = y[k] + step_size * ode_func(lowerCAmelCase_ , y[k] ) __lowercase : str = y[k] + ( (step_size / 2) * (ode_func(lowerCAmelCase_ , y[k] ) + ode_func(x + step_size , lowerCAmelCase_ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
306
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : str = { '''facebook/nllb-moe-54B''': '''https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''nllb-moe''' _A : List[str] = ['''past_key_values'''] _A : Optional[Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Dict , __a : List[str]=128112 , __a : List[Any]=1024 , __a : List[Any]=12 , __a : Union[str, Any]=4096 , __a : List[str]=16 , __a : int=12 , __a : Optional[int]=4096 , __a : str=16 , __a : List[Any]=0.05 , __a : Any=0.05 , __a : Dict=True , __a : Optional[Any]=True , __a : List[Any]="relu" , __a : Tuple=1024 , __a : Optional[Any]=0.1 , __a : Tuple=0.1 , __a : Any=0.0 , __a : Optional[Any]=0.02 , __a : List[str]=2 , __a : Union[str, Any]=True , __a : List[Any]=False , __a : Tuple="float32" , __a : Optional[int]=False , __a : Optional[int]=128 , __a : str=64 , __a : Dict=4 , __a : str=4 , __a : List[str]=0.001 , __a : List[Any]=0.001 , __a : Optional[Any]="all" , __a : Optional[int]=False , __a : int=False , __a : int=1.0 , __a : Dict=0.2 , __a : Tuple=1 , __a : Optional[Any]=0 , __a : List[Any]=2 , __a : Any=False , **__a : Any , ) -> Any: """simple docstring""" __lowercase : int = vocab_size __lowercase : List[Any] = max_position_embeddings __lowercase : Tuple = d_model __lowercase : str = encoder_ffn_dim __lowercase : List[str] = encoder_layers __lowercase : int = encoder_attention_heads __lowercase : List[Any] = decoder_ffn_dim __lowercase : int = decoder_layers __lowercase : Optional[int] = decoder_attention_heads __lowercase : Union[str, Any] = dropout __lowercase : str = attention_dropout __lowercase : Any = activation_dropout __lowercase : List[Any] = activation_function __lowercase : List[str] = init_std __lowercase : Optional[int] = encoder_layerdrop __lowercase : str = decoder_layerdrop __lowercase : Dict = use_cache __lowercase : Optional[Any] = encoder_layers __lowercase : str = scale_embedding # scale factor will be sqrt(d_model) if True __lowercase : List[Any] = router_z_loss_coef __lowercase : Tuple = router_aux_loss_coef __lowercase : str = decoder_sparse_step __lowercase : Any = encoder_sparse_step __lowercase : str = num_experts __lowercase : List[Any] = expert_capacity __lowercase : int = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) __lowercase : Optional[int] = router_dtype __lowercase : Any = router_ignore_padding_tokens __lowercase : Optional[Any] = batch_prioritized_routing __lowercase : str = second_expert_policy __lowercase : List[str] = normalize_router_prob_before_dropping __lowercase : List[Any] = moe_eval_capacity_token_fraction __lowercase : List[str] = moe_token_dropout __lowercase : Optional[Any] = output_router_logits super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , decoder_start_token_id=__a , **__a , )
306
1
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Optional[Any] = len(lowerCAmelCase_ ) __lowercase : str = len(lowerCAmelCase_ ) __lowercase : Optional[int] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __lowercase : Tuple = True for i in range(lowerCAmelCase_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __lowercase : Optional[Any] = True if a[i].islower(): __lowercase : Dict = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
306
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase : Optional[Any] = { '''configuration_poolformer''': [ '''POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PoolFormerConfig''', '''PoolFormerOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = ['''PoolFormerFeatureExtractor'''] lowerCamelCase : Union[str, Any] = ['''PoolFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = [ '''POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PoolFormerForImageClassification''', '''PoolFormerModel''', '''PoolFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
306
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def snake_case_ ( lowerCAmelCase_ : Optional[int] ): return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def snake_case_ ( lowerCAmelCase_ : Tuple ): __lowercase : int = create_tensor(lowerCAmelCase_ ) __lowercase : str = gather(lowerCAmelCase_ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def snake_case_ ( lowerCAmelCase_ : Optional[Any] ): __lowercase : List[str] = [state.process_index] __lowercase : int = gather_object(lowerCAmelCase_ ) assert len(lowerCAmelCase_ ) == state.num_processes, F"{gathered_obj}, {len(lowerCAmelCase_ )} != {state.num_processes}" assert gathered_obj == list(range(state.num_processes ) ), F"{gathered_obj} != {list(range(state.num_processes ) )}" def snake_case_ ( lowerCAmelCase_ : Optional[Any] ): __lowercase : List[str] = create_tensor(lowerCAmelCase_ ) __lowercase : str = broadcast(lowerCAmelCase_ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def snake_case_ ( lowerCAmelCase_ : Any ): # We need to pad the tensor with one more element if we are the main process # to ensure that we can pad if state.is_main_process: __lowercase : Tuple = torch.arange(state.num_processes + 1 ).to(state.device ) else: __lowercase : str = torch.arange(state.num_processes ).to(state.device ) __lowercase : List[Any] = pad_across_processes(lowerCAmelCase_ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def snake_case_ ( lowerCAmelCase_ : Optional[Any] ): # For now runs on only two processes if state.num_processes != 2: return __lowercase : Union[str, Any] = create_tensor(lowerCAmelCase_ ) __lowercase : List[Any] = reduce(lowerCAmelCase_ , """sum""" ) __lowercase : Optional[Any] = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ ), F"{reduced_tensor} != {truth_tensor}" def snake_case_ ( lowerCAmelCase_ : Tuple ): # For now runs on only two processes if state.num_processes != 2: return __lowercase : Optional[int] = create_tensor(lowerCAmelCase_ ) __lowercase : Tuple = reduce(lowerCAmelCase_ , """mean""" ) __lowercase : Optional[Any] = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ ), F"{reduced_tensor} != {truth_tensor}" def snake_case_ ( lowerCAmelCase_ : Union[str, Any] ): # For xla_spawn (TPUs) main() def snake_case_ ( ): __lowercase : Optional[int] = PartialState() state.print(F"State: {state}" ) state.print("""testing gather""" ) test_gather(lowerCAmelCase_ ) state.print("""testing gather_object""" ) test_gather_object(lowerCAmelCase_ ) state.print("""testing broadcast""" ) test_broadcast(lowerCAmelCase_ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(lowerCAmelCase_ ) state.print("""testing reduce_sum""" ) test_reduce_sum(lowerCAmelCase_ ) state.print("""testing reduce_mean""" ) test_reduce_mean(lowerCAmelCase_ ) if __name__ == "__main__": main()
306
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : List[str] = 2 __lowercase : Union[str, Any] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(lowerCAmelCase_ ) if n > 1: factors.append(lowerCAmelCase_ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
306
1
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging lowerCamelCase : Tuple = logging.get_logger(__name__) logging.set_verbosity_info() def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): if "xprophetnet" in prophetnet_checkpoint_path: __lowercase : List[str] = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) __lowercase , __lowercase : int = XLMProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) else: __lowercase : List[Any] = ProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) __lowercase , __lowercase : Optional[Any] = ProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) __lowercase : List[str] = ["""key_proj""", """value_proj""", """query_proj"""] __lowercase : Optional[int] = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: __lowercase : Tuple = key.split(""".""" ) if attributes[0] == "lm_head": __lowercase : str = prophet __lowercase : List[str] = prophet_old else: __lowercase : Tuple = prophet.prophetnet __lowercase : Union[str, Any] = prophet_old.model __lowercase : Optional[Any] = False for attribute in attributes: if attribute in mapping: __lowercase : Optional[int] = mapping[attribute] if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) > 0: __lowercase : str = attribute elif hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : List[Any] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" __lowercase : Any = old_model.weight logger.info(F"{attribute} is initialized." ) __lowercase : Any = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" __lowercase : Dict = old_model.bias logger.info(F"{attribute} is initialized" ) __lowercase : int = True break elif attribute in special_keys and hasattr(lowerCAmelCase_ , """in_proj_weight""" ): __lowercase : Dict = old_model.in_proj_weight.shape[0] // 3 __lowercase : Tuple = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": __lowercase : Union[str, Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) __lowercase : int = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": __lowercase : Any = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) __lowercase : List[Any] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": __lowercase : Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) __lowercase : int = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) __lowercase : int = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." __lowercase : Optional[Any] = nn.Parameter(old_model.embed_positions.weight[:512, :] ) __lowercase : int = True break if attribute.isdigit(): __lowercase : Tuple = model[int(lowerCAmelCase_ )] __lowercase : int = old_model[int(lowerCAmelCase_ )] else: __lowercase : Union[str, Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if old_attribute == "": __lowercase : int = old_model else: if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError(F"{old_model} does not have {old_attribute}" ) __lowercase : List[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if not is_key_init: raise ValueError(F"{key} was not correctly initialized!" ) print(F"Saving model to {pytorch_dump_folder_path}" ) prophet.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCamelCase : Any = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
306
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Dict = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) __lowercase : List[str] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __lowercase : Optional[Any] = model(__a )["""last_hidden_state"""] __lowercase : Any = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , __a ) # compare the actual values for a slice. __lowercase : Dict = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
306
1
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" __lowercase : List[Any] = """laion/clap-htsat-unfused""" __lowercase : Union[str, Any] = tempfile.mkdtemp() def lowerCAmelCase ( self : Optional[int] , **__a : int ) -> Optional[Any]: """simple docstring""" return RobertaTokenizer.from_pretrained(self.checkpoint , **__a ) def lowerCAmelCase ( self : Union[str, Any] , **__a : List[str] ) -> Optional[Any]: """simple docstring""" return ClapFeatureExtractor.from_pretrained(self.checkpoint , **__a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase : Any = self.get_tokenizer() __lowercase : str = self.get_feature_extractor() __lowercase : Tuple = ClapProcessor(tokenizer=__a , feature_extractor=__a ) processor.save_pretrained(self.tmpdirname ) __lowercase : Dict = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __a ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) __lowercase : Optional[int] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __lowercase : int = self.get_feature_extractor(do_normalize=__a , padding_value=1.0 ) __lowercase : int = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __a ) def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase : str = self.get_feature_extractor() __lowercase : List[str] = self.get_tokenizer() __lowercase : Optional[Any] = ClapProcessor(tokenizer=__a , feature_extractor=__a ) __lowercase : Optional[int] = floats_list((3, 1000) ) __lowercase : Dict = feature_extractor(__a , return_tensors="""np""" ) __lowercase : List[str] = processor(audios=__a , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = self.get_feature_extractor() __lowercase : List[str] = self.get_tokenizer() __lowercase : Optional[Any] = ClapProcessor(tokenizer=__a , feature_extractor=__a ) __lowercase : Optional[Any] = """This is a test string""" __lowercase : Dict = processor(text=__a ) __lowercase : int = tokenizer(__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" __lowercase : Tuple = self.get_feature_extractor() __lowercase : Any = self.get_tokenizer() __lowercase : List[str] = ClapProcessor(tokenizer=__a , feature_extractor=__a ) __lowercase : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowercase : int = processor.batch_decode(__a ) __lowercase : Union[str, Any] = tokenizer.batch_decode(__a ) self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase : Optional[Any] = self.get_feature_extractor() __lowercase : List[Any] = self.get_tokenizer() __lowercase : Dict = ClapProcessor(tokenizer=__a , feature_extractor=__a ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
306
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Optional[Any] = len(lowerCAmelCase_ ) __lowercase : str = len(lowerCAmelCase_ ) __lowercase : Optional[int] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __lowercase : Tuple = True for i in range(lowerCAmelCase_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __lowercase : Optional[Any] = True if a[i].islower(): __lowercase : Dict = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
306
1
def snake_case_ ( lowerCAmelCase_ : int ): return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
306
from scipy.stats import spearmanr import datasets lowerCamelCase : List[str] = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' lowerCamelCase : List[str] = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' lowerCamelCase : Union[str, Any] = r'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def lowerCAmelCase ( self : List[Any] , __a : str , __a : Any , __a : Optional[int]=False ) -> List[str]: """simple docstring""" __lowercase : Optional[Any] = spearmanr(__a , __a ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
306
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : Optional[int] = '''▁''' lowerCamelCase : Dict = {'''vocab_file''': '''sentencepiece.bpe.model'''} lowerCamelCase : int = { '''vocab_file''': { '''facebook/mbart-large-50-one-to-many-mmt''': ( '''https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model''' ), } } lowerCamelCase : Optional[Any] = { '''facebook/mbart-large-50-one-to-many-mmt''': 10_24, } # fmt: off lowerCamelCase : List[Any] = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''', '''af_ZA''', '''az_AZ''', '''bn_IN''', '''fa_IR''', '''he_IL''', '''hr_HR''', '''id_ID''', '''ka_GE''', '''km_KH''', '''mk_MK''', '''ml_IN''', '''mn_MN''', '''mr_IN''', '''pl_PL''', '''ps_AF''', '''pt_XX''', '''sv_SE''', '''sw_KE''', '''ta_IN''', '''te_IN''', '''th_TH''', '''tl_XX''', '''uk_UA''', '''ur_PK''', '''xh_ZA''', '''gl_ES''', '''sl_SI'''] class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = VOCAB_FILES_NAMES _A : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : List[str] = PRETRAINED_VOCAB_FILES_MAP _A : Tuple = ['''input_ids''', '''attention_mask'''] _A : List[int] = [] _A : List[int] = [] def __init__( self : List[Any] , __a : Dict , __a : List[str]=None , __a : Union[str, Any]=None , __a : List[str]="</s>" , __a : List[Any]="</s>" , __a : str="<s>" , __a : str="<unk>" , __a : Tuple="<pad>" , __a : Optional[int]="<mask>" , __a : Optional[Dict[str, Any]] = None , **__a : Union[str, Any] , ) -> None: """simple docstring""" __lowercase : Any = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token __lowercase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs __lowercase : Any = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__a , tgt_lang=__a , eos_token=__a , unk_token=__a , sep_token=__a , cls_token=__a , pad_token=__a , mask_token=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , ) __lowercase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__a ) ) __lowercase : int = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __lowercase : Union[str, Any] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __lowercase : Optional[Any] = 1 __lowercase : str = len(self.sp_model ) __lowercase : int = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__a ) } __lowercase : Optional[Any] = {v: k for k, v in self.lang_code_to_id.items()} __lowercase : Optional[Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __lowercase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __lowercase : List[Any] = src_lang if src_lang is not None else """en_XX""" __lowercase : str = self.lang_code_to_id[self._src_lang] __lowercase : Optional[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def lowerCAmelCase ( self : str , __a : str ) -> None: """simple docstring""" __lowercase : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : List[str] ) -> Dict: """simple docstring""" __lowercase : str = self.__dict__.copy() __lowercase : Dict = None return state def __setstate__( self : List[str] , __a : Dict ) -> None: """simple docstring""" __lowercase : str = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __lowercase : Any = {} __lowercase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase : int = {self.convert_ids_to_tokens(__a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase ( self : Optional[Any] , __a : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(__a , out_type=__a ) def lowerCAmelCase ( self : Any , __a : str ) -> int: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowercase : Dict = self.sp_model.PieceToId(__a ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCAmelCase ( self : Dict , __a : int ) -> str: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCAmelCase ( self : str , __a : List[str] ) -> Tuple: """simple docstring""" __lowercase : List[str] = [] __lowercase : Tuple = """""" __lowercase : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__a ) + token __lowercase : Optional[int] = True __lowercase : Union[str, Any] = [] else: current_sub_tokens.append(__a ) __lowercase : int = False out_string += self.sp_model.decode(__a ) return out_string.strip() def lowerCAmelCase ( self : str , __a : str , __a : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__a ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __lowercase : List[str] = os.path.join( __a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __a ) elif not os.path.isfile(self.vocab_file ): with open(__a , """wb""" ) as fi: __lowercase : Any = self.sp_model.serialized_model_proto() fi.write(__a ) return (out_vocab_file,) def lowerCAmelCase ( self : List[str] , __a : List[int] , __a : Optional[List[int]] = None , __a : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) __lowercase : Any = [1] * len(self.prefix_tokens ) __lowercase : Optional[int] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__a )) + suffix_ones return prefix_ones + ([0] * len(__a )) + ([0] * len(__a )) + suffix_ones def lowerCAmelCase ( self : int , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCAmelCase ( self : List[Any] , __a : Union[str, Any] , __a : str , __a : Optional[str] , __a : Optional[str] , **__a : Dict ) -> List[str]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) __lowercase : List[str] = src_lang __lowercase : Optional[Any] = self(__a , add_special_tokens=__a , return_tensors=__a , **__a ) __lowercase : Any = self.convert_tokens_to_ids(__a ) __lowercase : Dict = tgt_lang_id return inputs def lowerCAmelCase ( self : Optional[Any] , __a : List[str] , __a : str = "en_XX" , __a : Optional[List[str]] = None , __a : str = "ro_RO" , **__a : Optional[Any] , ) -> BatchEncoding: """simple docstring""" __lowercase : Dict = src_lang __lowercase : Optional[Any] = tgt_lang return super().prepare_seqaseq_batch(__a , __a , **__a ) def lowerCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCAmelCase ( self : Tuple , __a : str ) -> None: """simple docstring""" __lowercase : int = self.lang_code_to_id[src_lang] __lowercase : int = [self.cur_lang_code_id] __lowercase : int = [self.eos_token_id] def lowerCAmelCase ( self : Optional[int] , __a : str ) -> None: """simple docstring""" __lowercase : Union[str, Any] = self.lang_code_to_id[tgt_lang] __lowercase : Tuple = [self.cur_lang_code_id] __lowercase : str = [self.eos_token_id]
306
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Any = get_failure_array(lowerCAmelCase_ ) # 2) Step through text searching for pattern __lowercase , __lowercase : Optional[int] = 0, 0 # index into text, pattern while i < len(lowerCAmelCase_ ): if pattern[j] == text[i]: if j == (len(lowerCAmelCase_ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: __lowercase : Optional[Any] = failure[j - 1] continue i += 1 return False def snake_case_ ( lowerCAmelCase_ : str ): __lowercase : List[Any] = [0] __lowercase : Optional[Any] = 0 __lowercase : List[Any] = 1 while j < len(lowerCAmelCase_ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: __lowercase : List[str] = failure[i - 1] continue j += 1 failure.append(lowerCAmelCase_ ) return failure if __name__ == "__main__": # Test 1) lowerCamelCase : Dict = '''abc1abc12''' lowerCamelCase : Union[str, Any] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' lowerCamelCase : Any = '''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) lowerCamelCase : List[Any] = '''ABABX''' lowerCamelCase : List[Any] = '''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) lowerCamelCase : int = '''AAAB''' lowerCamelCase : Optional[int] = '''ABAAAAAB''' assert kmp(pattern, text) # Test 4) lowerCamelCase : Optional[Any] = '''abcdabcy''' lowerCamelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) lowerCamelCase : Dict = '''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
306
1
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' _A : Optional[int] = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def lowerCAmelCase ( self : int , __a : Optional[Any] , __a : int , __a : Optional[int] ) -> int: """simple docstring""" __lowercase : Tuple = hf_hub_download( repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) __lowercase : List[str] = VideoClassificationPipeline(model=__a , image_processor=__a , top_k=2 ) __lowercase : List[str] = [ example_video_filepath, """https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""", ] return video_classifier, examples def lowerCAmelCase ( self : Optional[int] , __a : Any , __a : List[str] ) -> int: """simple docstring""" for example in examples: __lowercase : List[Any] = video_classifier(__a ) self.assertEqual( __a , [ {"""score""": ANY(__a ), """label""": ANY(__a )}, {"""score""": ANY(__a ), """label""": ANY(__a )}, ] , ) @require_torch def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : Tuple = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification""" __lowercase : Union[str, Any] = VideoMAEFeatureExtractor( size={"""shortest_edge""": 10} , crop_size={"""height""": 10, """width""": 10} ) __lowercase : str = pipeline( """video-classification""" , model=__a , feature_extractor=__a , frame_sampling_rate=4 ) __lowercase : int = hf_hub_download(repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) __lowercase : Optional[int] = video_classifier(__a , top_k=2 ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}] , ) __lowercase : Optional[int] = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}], [{"""score""": 0.5199, """label""": """LABEL_0"""}, {"""score""": 0.4801, """label""": """LABEL_1"""}], ] , ) @require_tf def lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" pass
306
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = ['''pixel_values'''] def __init__( self : Any , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : bool = True , __a : Dict[str, int] = None , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = True , **__a : str , ) -> None: """simple docstring""" super().__init__(**__a ) __lowercase : Dict = size if size is not None else {"""shortest_edge""": 224} __lowercase : Union[str, Any] = get_size_dict(__a , default_to_square=__a ) __lowercase : int = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __lowercase : Any = get_size_dict(__a , default_to_square=__a , param_name="""crop_size""" ) __lowercase : Optional[int] = do_resize __lowercase : Union[str, Any] = size __lowercase : List[Any] = resample __lowercase : Any = do_center_crop __lowercase : Dict = crop_size __lowercase : int = do_rescale __lowercase : Tuple = rescale_factor __lowercase : List[Any] = do_normalize __lowercase : Union[str, Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowercase : int = image_std if image_std is not None else OPENAI_CLIP_STD __lowercase : Union[str, Any] = do_convert_rgb def lowerCAmelCase ( self : Union[str, Any] , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[Any] , ) -> np.ndarray: """simple docstring""" __lowercase : Dict = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) __lowercase : str = get_resize_output_image_size(__a , size=size["""shortest_edge"""] , default_to_square=__a ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Any , ) -> np.ndarray: """simple docstring""" __lowercase : Tuple = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(__a , size=(size["""height"""], size["""width"""]) , data_format=__a , **__a ) def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : Union[int, float] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[Any] , ) -> List[str]: """simple docstring""" return rescale(__a , scale=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Optional[int] , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] , ) -> np.ndarray: """simple docstring""" return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Optional[int] , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : int = None , __a : bool = None , __a : float = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = None , __a : Optional[Union[str, TensorType]] = None , __a : Optional[ChannelDimension] = ChannelDimension.FIRST , **__a : List[Any] , ) -> PIL.Image.Image: """simple docstring""" __lowercase : List[Any] = do_resize if do_resize is not None else self.do_resize __lowercase : Dict = size if size is not None else self.size __lowercase : Tuple = get_size_dict(__a , param_name="""size""" , default_to_square=__a ) __lowercase : int = resample if resample is not None else self.resample __lowercase : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase : List[Any] = crop_size if crop_size is not None else self.crop_size __lowercase : List[str] = get_size_dict(__a , param_name="""crop_size""" , default_to_square=__a ) __lowercase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __lowercase : str = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase : Dict = do_normalize if do_normalize is not None else self.do_normalize __lowercase : Tuple = image_mean if image_mean is not None else self.image_mean __lowercase : str = image_std if image_std is not None else self.image_std __lowercase : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase : Union[str, Any] = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase : Union[str, Any] = [convert_to_rgb(__a ) for image in images] # All transformations expect numpy arrays. __lowercase : Any = [to_numpy_array(__a ) for image in images] if do_resize: __lowercase : str = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: __lowercase : str = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: __lowercase : Dict = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: __lowercase : Optional[Any] = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] __lowercase : Any = [to_channel_dimension_format(__a , __a ) for image in images] __lowercase : Optional[int] = {"""pixel_values""": images} return BatchFeature(data=__a , tensor_type=__a )
306
1
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Any = VQModel _A : int = '''sample''' @property def lowerCAmelCase ( self : Union[str, Any] , __a : List[str]=(32, 32) ) -> str: """simple docstring""" __lowercase : str = 4 __lowercase : List[str] = 3 __lowercase : Union[str, Any] = floats_tensor((batch_size, num_channels) + sizes ).to(__a ) return {"sample": image} @property def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" return (3, 32, 32) @property def lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" return (3, 32, 32) def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 3, } __lowercase : str = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" pass def lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" __lowercase , __lowercase : str = VQModel.from_pretrained("""fusing/vqgan-dummy""" , output_loading_info=__a ) self.assertIsNotNone(__a ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(__a ) __lowercase : int = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Dict = VQModel.from_pretrained("""fusing/vqgan-dummy""" ) model.to(__a ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) __lowercase : str = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) __lowercase : Any = image.to(__a ) with torch.no_grad(): __lowercase : List[Any] = model(__a ).sample __lowercase : Dict = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off __lowercase : Union[str, Any] = torch.tensor([-0.0153, -0.4044, -0.1880, -0.5161, -0.2418, -0.4072, -0.1612, -0.0633, -0.0143] ) # fmt: on self.assertTrue(torch.allclose(__a , __a , atol=1E-3 ) )
306
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str ): __lowercase : Tuple = s.rsplit(lowerCAmelCase_ , lowerCAmelCase_ ) return new.join(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : List[Any] ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : List[str] = {} __lowercase : Tuple = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __lowercase : List[str] = key.replace(F"{group_key}." , F"{group_key}.group." ) if "res_path" in key: __lowercase : List[Any] = key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): __lowercase : Union[str, Any] = rreplace(lowerCAmelCase_ , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): __lowercase : Tuple = rreplace(lowerCAmelCase_ , """.b""" , """.bias""" , 1 ) __lowercase : Dict = value.float() return upgrade @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=True ): from dall_e import Encoder __lowercase : Any = Encoder() if os.path.exists(lowerCAmelCase_ ): __lowercase : List[Any] = torch.load(lowerCAmelCase_ ) else: __lowercase : List[Any] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : int = ckpt.state_dict() encoder.load_state_dict(lowerCAmelCase_ ) if config_path is not None: __lowercase : Optional[int] = FlavaImageCodebookConfig.from_pretrained(lowerCAmelCase_ ) else: __lowercase : List[str] = FlavaImageCodebookConfig() __lowercase : Optional[Any] = FlavaImageCodebook(lowerCAmelCase_ ).eval() __lowercase : List[Any] = encoder.state_dict() __lowercase : Union[str, Any] = upgrade_state_dict(lowerCAmelCase_ ) hf_model.load_state_dict(lowerCAmelCase_ ) __lowercase : Dict = hf_model.state_dict() __lowercase : Tuple = count_parameters(lowerCAmelCase_ ) __lowercase : Tuple = count_parameters(lowerCAmelCase_ ) assert torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(lowerCAmelCase_ ) else: return hf_state_dict if __name__ == "__main__": lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowerCamelCase : Union[str, Any] = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
306
1
def snake_case_ ( lowerCAmelCase_ : list ): if len(lowerCAmelCase_ ) <= 1: return lst __lowercase : Union[str, Any] = 1 while i < len(lowerCAmelCase_ ): if lst[i - 1] <= lst[i]: i += 1 else: __lowercase , __lowercase : Dict = lst[i], lst[i - 1] i -= 1 if i == 0: __lowercase : Optional[int] = 1 return lst if __name__ == "__main__": lowerCamelCase : List[str] = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase : Dict = [int(item) for item in user_input.split(''',''')] print(gnome_sort(unsorted))
306
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging lowerCamelCase : Tuple = logging.get_logger(__name__) logging.set_verbosity_info() def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): if "xprophetnet" in prophetnet_checkpoint_path: __lowercase : List[str] = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) __lowercase , __lowercase : int = XLMProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) else: __lowercase : List[Any] = ProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) __lowercase , __lowercase : Optional[Any] = ProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) __lowercase : List[str] = ["""key_proj""", """value_proj""", """query_proj"""] __lowercase : Optional[int] = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: __lowercase : Tuple = key.split(""".""" ) if attributes[0] == "lm_head": __lowercase : str = prophet __lowercase : List[str] = prophet_old else: __lowercase : Tuple = prophet.prophetnet __lowercase : Union[str, Any] = prophet_old.model __lowercase : Optional[Any] = False for attribute in attributes: if attribute in mapping: __lowercase : Optional[int] = mapping[attribute] if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) > 0: __lowercase : str = attribute elif hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : List[Any] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" __lowercase : Any = old_model.weight logger.info(F"{attribute} is initialized." ) __lowercase : Any = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" __lowercase : Dict = old_model.bias logger.info(F"{attribute} is initialized" ) __lowercase : int = True break elif attribute in special_keys and hasattr(lowerCAmelCase_ , """in_proj_weight""" ): __lowercase : Dict = old_model.in_proj_weight.shape[0] // 3 __lowercase : Tuple = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": __lowercase : Union[str, Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) __lowercase : int = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": __lowercase : Any = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) __lowercase : List[Any] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": __lowercase : Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) __lowercase : int = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) __lowercase : int = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." __lowercase : Optional[Any] = nn.Parameter(old_model.embed_positions.weight[:512, :] ) __lowercase : int = True break if attribute.isdigit(): __lowercase : Tuple = model[int(lowerCAmelCase_ )] __lowercase : int = old_model[int(lowerCAmelCase_ )] else: __lowercase : Union[str, Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if old_attribute == "": __lowercase : int = old_model else: if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError(F"{old_model} does not have {old_attribute}" ) __lowercase : List[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if not is_key_init: raise ValueError(F"{key} was not correctly initialized!" ) print(F"Saving model to {pytorch_dump_folder_path}" ) prophet.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCamelCase : Any = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
306
1
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": lowerCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--original_config_file''', type=str, required=True, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--image_size''', default=5_12, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') def snake_case_ ( lowerCAmelCase_ : List[str] ): if string == "True": return True elif string == "False": return False else: raise ValueError(F"could not parse string as bool {string}" ) parser.add_argument( '''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool ) parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int) lowerCamelCase : Union[str, Any] = parser.parse_args() lowerCamelCase : str = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
306
def snake_case_ ( lowerCAmelCase_ : int = 200 ): __lowercase : List[str] = [1, 2, 5, 10, 20, 50, 100, 200] __lowercase : List[str] = [0] * (pence + 1) __lowercase : Optional[Any] = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowerCAmelCase_ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
306
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Dict = { '''google/vivit-b-16x2-kinetics400''': ( '''https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json''' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class lowerCAmelCase ( __a ): '''simple docstring''' _A : Optional[int] = '''vivit''' def __init__( self : Dict , __a : Dict=224 , __a : List[Any]=32 , __a : List[Any]=[2, 16, 16] , __a : Dict=3 , __a : Optional[Any]=768 , __a : int=12 , __a : Dict=12 , __a : List[Any]=3072 , __a : str="gelu_fast" , __a : List[Any]=0.0 , __a : Optional[Any]=0.0 , __a : Any=0.02 , __a : List[Any]=1E-06 , __a : Union[str, Any]=True , **__a : Dict , ) -> List[str]: """simple docstring""" __lowercase : Optional[int] = hidden_size __lowercase : Optional[Any] = num_hidden_layers __lowercase : Optional[int] = num_attention_heads __lowercase : Optional[Any] = intermediate_size __lowercase : Optional[int] = hidden_act __lowercase : Optional[int] = hidden_dropout_prob __lowercase : Optional[Any] = attention_probs_dropout_prob __lowercase : Dict = initializer_range __lowercase : Optional[int] = layer_norm_eps __lowercase : int = image_size __lowercase : Tuple = num_frames __lowercase : List[Any] = tubelet_size __lowercase : Dict = num_channels __lowercase : str = qkv_bias super().__init__(**__a )
306
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , __a : Dict , __a : List[str]=None , __a : Optional[Any]=None , __a : Union[str, Any]=None , __a : int="resnet50" , __a : List[str]=3 , __a : Tuple=32 , __a : Dict=3 , __a : List[str]=True , __a : Union[str, Any]=True , ) -> Any: """simple docstring""" __lowercase : Optional[int] = parent __lowercase : List[str] = out_indices if out_indices is not None else [4] __lowercase : Optional[int] = stage_names __lowercase : Any = out_features __lowercase : Optional[Any] = backbone __lowercase : Optional[Any] = batch_size __lowercase : Union[str, Any] = image_size __lowercase : List[str] = num_channels __lowercase : str = use_pretrained_backbone __lowercase : str = is_training def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : str = self.get_config() return config, pixel_values def lowerCAmelCase ( self : int ) -> str: """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowerCAmelCase ( self : Optional[int] , __a : Dict , __a : Any ) -> Dict: """simple docstring""" __lowercase : Dict = TimmBackbone(config=__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Optional[Any] = model(__a ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.prepare_config_and_inputs() __lowercase , __lowercase : str = config_and_inputs __lowercase : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch @require_timm class lowerCAmelCase ( __a , __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[Any] = (TimmBackbone,) if is_torch_available() else () _A : Dict = {'''feature-extraction''': TimmBackbone} if is_torch_available() else {} _A : List[Any] = False _A : List[str] = False _A : Any = False _A : Optional[Any] = False def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : str = TimmBackboneModelTester(self ) __lowercase : Any = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" __lowercase : Tuple = """resnet18""" __lowercase : Optional[int] = """microsoft/resnet-18""" __lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a ) __lowercase : Dict = AutoBackbone.from_pretrained(__a ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a , out_indices=[1, 2, 3] ) __lowercase : Optional[Any] = AutoBackbone.from_pretrained(__a , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("""TimmBackbone doesn't support feed forward chunking""" ) def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""" ) def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""" ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't support output_attentions.""" ) def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Safetensors is not supported by timm.""" ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Optional[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : List[str] = [*signature.parameters.keys()] __lowercase : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Optional[Any] = True __lowercase : Union[str, Any] = self.has_attentions # no need to test all models as different heads yield the same functionality __lowercase : Union[str, Any] = self.all_model_classes[0] __lowercase : List[Any] = model_class(__a ) model.to(__a ) __lowercase : Optional[Any] = self._prepare_for_class(__a , __a ) __lowercase : Union[str, Any] = model(**__a ) __lowercase : Optional[int] = outputs[0][-1] # Encoder-/Decoder-only models __lowercase : Any = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowercase : Optional[int] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__a ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() __lowercase : int = model(**__a ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowercase : Any = copy.deepcopy(__a ) __lowercase : Dict = None __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() __lowercase : Optional[int] = model(**__a ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowercase : List[str] = copy.deepcopy(__a ) __lowercase : Optional[Any] = False __lowercase : str = model_class(__a ) model.to(__a ) model.eval() __lowercase : List[Any] = model(**__a )
306
1
def snake_case_ ( lowerCAmelCase_ : list , lowerCAmelCase_ : list , lowerCAmelCase_ : int ): __lowercase : int = len(lowerCAmelCase_ ) __lowercase : Optional[int] = [[0] * n for i in range(lowerCAmelCase_ )] for i in range(lowerCAmelCase_ ): __lowercase : str = y_points[i] for i in range(2 , lowerCAmelCase_ ): for j in range(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : Dict = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
306
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : str = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } lowerCamelCase : Optional[Any] = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): for attribute in key.split(""".""" ): __lowercase : List[str] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if weight_type is not None: __lowercase : Union[str, Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ).shape else: __lowercase : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": __lowercase : Dict = value elif weight_type == "weight_g": __lowercase : Union[str, Any] = value elif weight_type == "weight_v": __lowercase : List[Any] = value elif weight_type == "bias": __lowercase : int = value elif weight_type == "running_mean": __lowercase : List[Any] = value elif weight_type == "running_var": __lowercase : int = value elif weight_type == "num_batches_tracked": __lowercase : int = value elif weight_type == "inv_freq": __lowercase : Optional[Any] = value else: __lowercase : Any = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] ): __lowercase : str = [] __lowercase : Any = fairseq_model.state_dict() __lowercase : List[str] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): __lowercase : Optional[Any] = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , hf_model.config.feat_extract_norm == """group""" , ) __lowercase : List[str] = True else: for key, mapped_key in MAPPING.items(): __lowercase : Any = """wav2vec2_conformer.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __lowercase : Tuple = True if "*" in mapped_key: __lowercase : List[Any] = name.split(lowerCAmelCase_ )[0].split(""".""" )[-2] __lowercase : Any = mapped_key.replace("""*""" , lowerCAmelCase_ ) if "pos_bias_u" in name: __lowercase : Any = None elif "pos_bias_v" in name: __lowercase : Tuple = None elif "weight_g" in name: __lowercase : Union[str, Any] = """weight_g""" elif "weight_v" in name: __lowercase : Dict = """weight_v""" elif "bias" in name: __lowercase : Union[str, Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowercase : str = """weight""" elif "running_mean" in name: __lowercase : str = """running_mean""" elif "inv_freq" in name: __lowercase : List[Any] = """inv_freq""" elif "running_var" in name: __lowercase : Any = """running_var""" elif "num_batches_tracked" in name: __lowercase : Any = """num_batches_tracked""" else: __lowercase : Optional[int] = None set_recursively(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) continue if not is_used: unused_weights.append(lowerCAmelCase_ ) logger.warning(F"Unused weights: {unused_weights}" ) def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] ): __lowercase : List[Any] = full_name.split("""conv_layers.""" )[-1] __lowercase : int = name.split(""".""" ) __lowercase : Optional[Any] = int(items[0] ) __lowercase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __lowercase : Union[str, Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __lowercase : List[str] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) __lowercase : Union[str, Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) __lowercase : Dict = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(lowerCAmelCase_ ) @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Dict=True ): if config_path is not None: __lowercase : List[Any] = WavaVecaConformerConfig.from_pretrained(lowerCAmelCase_ , hidden_act="""swish""" ) else: __lowercase : List[Any] = WavaVecaConformerConfig() if "rope" in checkpoint_path: __lowercase : Tuple = """rotary""" if is_finetuned: if dict_path: __lowercase : Any = Dictionary.load(lowerCAmelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __lowercase : List[Any] = target_dict.pad_index __lowercase : Optional[int] = target_dict.bos_index __lowercase : List[Any] = target_dict.eos_index __lowercase : List[str] = len(target_dict.symbols ) __lowercase : Union[str, Any] = os.path.join(lowerCAmelCase_ , """vocab.json""" ) if not os.path.isdir(lowerCAmelCase_ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowerCAmelCase_ ) ) return os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowercase : Tuple = target_dict.indices # fairseq has the <pad> and <s> switched __lowercase : int = 0 __lowercase : Any = 1 with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Dict = WavaVecaCTCTokenizer( lowerCAmelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowerCAmelCase_ , ) __lowercase : List[Any] = True if config.feat_extract_norm == """layer""" else False __lowercase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) __lowercase : Optional[int] = WavaVecaProcessor(feature_extractor=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) __lowercase : Union[str, Any] = WavaVecaConformerForCTC(lowerCAmelCase_ ) else: __lowercase : Optional[Any] = WavaVecaConformerForPreTraining(lowerCAmelCase_ ) if is_finetuned: __lowercase , __lowercase , __lowercase : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __lowercase : List[Any] = argparse.Namespace(task="""audio_pretraining""" ) __lowercase : Optional[Any] = fairseq.tasks.setup_task(lowerCAmelCase_ ) __lowercase , __lowercase , __lowercase : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase_ ) __lowercase : Dict = model[0].eval() recursively_load_weights(lowerCAmelCase_ , lowerCAmelCase_ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) lowerCamelCase : Any = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
306
1
def snake_case_ ( lowerCAmelCase_ : int ): if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) __lowercase : Tuple = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
306
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError("""String lengths must match!""" ) __lowercase : str = 0 for chara, chara in zip(lowerCAmelCase_ , lowerCAmelCase_ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
306
1
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : Any = 1 __lowercase : Dict = 3 __lowercase : Optional[int] = (32, 32) __lowercase : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__a ) return image @property def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" torch.manual_seed(0 ) __lowercase : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) __lowercase : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) __lowercase : Union[str, Any] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(__a ) @property def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" def extract(*__a : Union[str, Any] , **__a : List[str] ): class lowerCAmelCase : '''simple docstring''' def __init__( self : Tuple ) -> List[str]: """simple docstring""" __lowercase : str = torch.ones([0] ) def lowerCAmelCase ( self : List[str] , __a : List[Any] ) -> Optional[Any]: """simple docstring""" self.pixel_values.to(__a ) return self return Out() return extract def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowercase : int = self.dummy_cond_unet __lowercase : Dict = PNDMScheduler(skip_prk_steps=__a ) __lowercase : List[Any] = self.dummy_vae __lowercase : Optional[Any] = self.dummy_text_encoder __lowercase : Optional[Any] = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) __lowercase : str = 77 __lowercase : int = self.dummy_image.to(__a ) __lowercase : List[str] = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk __lowercase : Optional[int] = AltDiffusionImgaImgPipeline( unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , ) __lowercase : int = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a ) __lowercase : str = alt_pipe.to(__a ) alt_pipe.set_progress_bar_config(disable=__a ) __lowercase : str = """A painting of a squirrel eating a burger""" __lowercase : Optional[int] = torch.Generator(device=__a ).manual_seed(0 ) __lowercase : List[str] = alt_pipe( [prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=__a , ) __lowercase : Dict = output.images __lowercase : Tuple = torch.Generator(device=__a ).manual_seed(0 ) __lowercase : str = alt_pipe( [prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=__a , return_dict=__a , )[0] __lowercase : Dict = image[0, -3:, -3:, -1] __lowercase : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowercase : Any = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : Optional[int] = self.dummy_cond_unet __lowercase : List[Any] = PNDMScheduler(skip_prk_steps=__a ) __lowercase : Union[str, Any] = self.dummy_vae __lowercase : Dict = self.dummy_text_encoder __lowercase : Optional[Any] = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) __lowercase : Union[str, Any] = 77 __lowercase : Any = self.dummy_image.to(__a ) # put models in fp16 __lowercase : Tuple = unet.half() __lowercase : List[Any] = vae.half() __lowercase : Optional[Any] = bert.half() # make sure here that pndm scheduler skips prk __lowercase : Dict = AltDiffusionImgaImgPipeline( unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , ) __lowercase : int = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a ) __lowercase : List[Any] = alt_pipe.to(__a ) alt_pipe.set_progress_bar_config(disable=__a ) __lowercase : Optional[int] = """A painting of a squirrel eating a burger""" __lowercase : Any = torch.manual_seed(0 ) __lowercase : Union[str, Any] = alt_pipe( [prompt] , generator=__a , num_inference_steps=2 , output_type="""np""" , image=__a , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) # resize to resolution that is divisible by 8 but not 16 or 32 __lowercase : Dict = init_image.resize((760, 504) ) __lowercase : Tuple = """BAAI/AltDiffusion""" __lowercase : Optional[int] = AltDiffusionImgaImgPipeline.from_pretrained( __a , safety_checker=__a , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() __lowercase : List[str] = """A fantasy landscape, trending on artstation""" __lowercase : Union[str, Any] = torch.manual_seed(0 ) __lowercase : Any = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="""np""" , ) __lowercase : List[Any] = output.images[0] __lowercase : Tuple = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) __lowercase : Optional[Any] = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" __lowercase : str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) __lowercase : List[Any] = init_image.resize((768, 512) ) __lowercase : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy""" ) __lowercase : Union[str, Any] = """BAAI/AltDiffusion""" __lowercase : Union[str, Any] = AltDiffusionImgaImgPipeline.from_pretrained( __a , safety_checker=__a , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() __lowercase : Dict = """A fantasy landscape, trending on artstation""" __lowercase : Dict = torch.manual_seed(0 ) __lowercase : Any = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="""np""" , ) __lowercase : Union[str, Any] = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
306
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def snake_case_ ( lowerCAmelCase_ : Tuple ): if isinstance(lowerCAmelCase_ , collections.abc.Iterable ): return x return (x, x) @require_flax class lowerCAmelCase : '''simple docstring''' def lowerCAmelCase ( self : Any , __a : Any , __a : List[Any] ) -> Optional[Any]: """simple docstring""" pass def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" pass def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : np.ndarray , __a : float ) -> List[Any]: """simple docstring""" __lowercase : List[str] = np.abs((a - b) ).max() self.assertLessEqual(__a , __a , F"Difference between torch and flax is {diff} (>= {tol})." ) def lowerCAmelCase ( self : Tuple , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[Any] , __a : Optional[Any]=None , **__a : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : str = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : str = FlaxVisionTextDualEncoderModel(__a ) __lowercase : Optional[Any] = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def lowerCAmelCase ( self : Optional[int] , __a : Optional[int] , __a : Dict , __a : Dict , __a : List[str] , __a : Optional[Any]=None , **__a : str ) -> str: """simple docstring""" __lowercase , __lowercase : List[str] = self.get_vision_text_model(__a , __a ) __lowercase : Union[str, Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : Any = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : Union[str, Any] , __a : Union[str, Any] , __a : Dict , __a : int=None , **__a : int ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Tuple = self.get_vision_text_model(__a , __a ) __lowercase : Union[str, Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : List[str] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : List[Any] = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) __lowercase : int = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowercase : int = FlaxVisionTextDualEncoderModel.from_pretrained(__a ) __lowercase : Tuple = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) __lowercase : int = after_output[0] __lowercase : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__a , 1E-3 ) def lowerCAmelCase ( self : List[Any] , __a : Any , __a : Tuple , __a : Optional[int] , __a : str , __a : Optional[Any]=None , **__a : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : str = self.get_vision_text_model(__a , __a ) __lowercase : Optional[Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : Union[str, Any] = model( input_ids=__a , pixel_values=__a , attention_mask=__a , output_attentions=__a ) __lowercase : Optional[int] = output.vision_model_output.attentions self.assertEqual(len(__a ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase : Optional[int] = to_atuple(vision_model.config.image_size ) __lowercase : List[str] = to_atuple(vision_model.config.patch_size ) __lowercase : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase : int = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase : Dict = output.text_model_output.attentions self.assertEqual(len(__a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowerCAmelCase ( self : Optional[int] , __a : List[str] , __a : List[Any] , __a : Optional[Any] ) -> Optional[int]: """simple docstring""" pt_model.to(__a ) pt_model.eval() # prepare inputs __lowercase : Union[str, Any] = inputs_dict __lowercase : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): __lowercase : Union[str, Any] = pt_model(**__a ).to_tuple() __lowercase : Tuple = fx_model(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(__a , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__a ) __lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained(__a , from_pt=__a ) __lowercase : Dict = fx_model_loaded(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(__a , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__a ) __lowercase : str = VisionTextDualEncoderModel.from_pretrained(__a , from_flax=__a ) pt_model_loaded.to(__a ) pt_model_loaded.eval() with torch.no_grad(): __lowercase : List[Any] = pt_model_loaded(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(__a , pt_output_loaded.numpy() , 4E-2 ) def lowerCAmelCase ( self : Optional[int] , __a : List[Any] , __a : int , __a : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : str = VisionTextDualEncoderModel(__a ) __lowercase : Union[str, Any] = FlaxVisionTextDualEncoderModel(__a ) __lowercase : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __a ) __lowercase : Any = fx_state self.check_pt_flax_equivalence(__a , __a , __a ) def lowerCAmelCase ( self : Any , __a : Any , __a : Dict , __a : Tuple ) -> str: """simple docstring""" __lowercase : int = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : Union[str, Any] = VisionTextDualEncoderModel(__a ) __lowercase : Dict = FlaxVisionTextDualEncoderModel(__a ) __lowercase : Tuple = load_flax_weights_in_pytorch_model(__a , fx_model.params ) self.check_pt_flax_equivalence(__a , __a , __a ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase : int = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__a ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() self.check_save_load(**__a ) def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" __lowercase : str = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__a ) @is_pt_flax_cross_test def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.prepare_config_and_inputs() __lowercase : Optional[int] = config_inputs_dict.pop("""vision_config""" ) __lowercase : Optional[int] = config_inputs_dict.pop("""text_config""" ) __lowercase : Dict = config_inputs_dict self.check_equivalence_pt_to_flax(__a , __a , __a ) self.check_equivalence_flax_to_pt(__a , __a , __a ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase , __lowercase : List[Any] = self.get_pretrained_model_and_inputs() __lowercase : Dict = model_a(**__a ) __lowercase : Any = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__a ) __lowercase : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(__a ) __lowercase : Optional[int] = model_a(**__a ) __lowercase : Tuple = after_outputs[0] __lowercase : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__a , 1E-5 ) @require_flax class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" __lowercase : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=__a , text_from_pt=__a , ) __lowercase : int = 13 __lowercase : Union[str, Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowercase : Dict = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __lowercase : Tuple = random_attention_mask([batch_size, 4] ) __lowercase : str = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCAmelCase ( self : Optional[Any] , __a : Union[str, Any] , __a : int ) -> Dict: """simple docstring""" __lowercase : int = FlaxViTModel(__a ) __lowercase : List[Any] = FlaxBertModel(__a ) return vision_model, text_model def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = FlaxViTModelTester(self ) __lowercase : str = FlaxBertModelTester(self ) __lowercase : List[str] = vit_model_tester.prepare_config_and_inputs() __lowercase : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase : Optional[int] = vision_config_and_inputs __lowercase , __lowercase , __lowercase , __lowercase : Any = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=__a , text_from_pt=__a , ) __lowercase : Tuple = 13 __lowercase : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowercase : Tuple = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __lowercase : List[Any] = random_attention_mask([batch_size, 4] ) __lowercase : int = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCAmelCase ( self : str , __a : str , __a : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Dict = FlaxCLIPVisionModel(__a ) __lowercase : Optional[Any] = FlaxBertModel(__a ) return vision_model, text_model def lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase : List[Any] = FlaxCLIPVisionModelTester(self ) __lowercase : Optional[Any] = FlaxBertModelTester(self ) __lowercase : Any = clip_model_tester.prepare_config_and_inputs() __lowercase : Optional[Any] = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase : Dict = vision_config_and_inputs __lowercase , __lowercase , __lowercase , __lowercase : Optional[int] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 ) __lowercase : int = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) __lowercase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowercase : Tuple = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=__a , padding=__a , return_tensors="""np""" ) __lowercase : Optional[int] = model(**__a ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowercase : Optional[Any] = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , __a , atol=1E-3 ) )
306
1
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str ): __lowercase : Tuple = s.rsplit(lowerCAmelCase_ , lowerCAmelCase_ ) return new.join(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : List[Any] ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : List[str] = {} __lowercase : Tuple = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __lowercase : List[str] = key.replace(F"{group_key}." , F"{group_key}.group." ) if "res_path" in key: __lowercase : List[Any] = key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): __lowercase : Union[str, Any] = rreplace(lowerCAmelCase_ , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): __lowercase : Tuple = rreplace(lowerCAmelCase_ , """.b""" , """.bias""" , 1 ) __lowercase : Dict = value.float() return upgrade @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=True ): from dall_e import Encoder __lowercase : Any = Encoder() if os.path.exists(lowerCAmelCase_ ): __lowercase : List[Any] = torch.load(lowerCAmelCase_ ) else: __lowercase : List[Any] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : int = ckpt.state_dict() encoder.load_state_dict(lowerCAmelCase_ ) if config_path is not None: __lowercase : Optional[int] = FlavaImageCodebookConfig.from_pretrained(lowerCAmelCase_ ) else: __lowercase : List[str] = FlavaImageCodebookConfig() __lowercase : Optional[Any] = FlavaImageCodebook(lowerCAmelCase_ ).eval() __lowercase : List[Any] = encoder.state_dict() __lowercase : Union[str, Any] = upgrade_state_dict(lowerCAmelCase_ ) hf_model.load_state_dict(lowerCAmelCase_ ) __lowercase : Dict = hf_model.state_dict() __lowercase : Tuple = count_parameters(lowerCAmelCase_ ) __lowercase : Tuple = count_parameters(lowerCAmelCase_ ) assert torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(lowerCAmelCase_ ) else: return hf_state_dict if __name__ == "__main__": lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowerCamelCase : Union[str, Any] = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
306
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
306
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class lowerCAmelCase ( __a ): '''simple docstring''' _A : Tuple = '''microsoft/speecht5_tts''' _A : List[str] = ( '''This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ''' '''text to read (in English) and returns a waveform object containing the sound.''' ) _A : Optional[int] = '''text_reader''' _A : List[Any] = SpeechTaProcessor _A : List[Any] = SpeechTaForTextToSpeech _A : Union[str, Any] = SpeechTaHifiGan _A : Tuple = ['''text'''] _A : Union[str, Any] = ['''audio'''] def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" if self.post_processor is None: __lowercase : List[str] = """microsoft/speecht5_hifigan""" super().setup() def lowerCAmelCase ( self : Any , __a : Optional[int] , __a : int=None ) -> Any: """simple docstring""" __lowercase : Optional[Any] = self.pre_processor(text=__a , return_tensors="""pt""" , truncation=__a ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) __lowercase : Union[str, Any] = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" ) __lowercase : Any = torch.tensor(embeddings_dataset[7305]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def lowerCAmelCase ( self : Tuple , __a : Any ) -> Any: """simple docstring""" with torch.no_grad(): return self.model.generate_speech(**__a ) def lowerCAmelCase ( self : int , __a : Union[str, Any] ) -> int: """simple docstring""" with torch.no_grad(): return self.post_processor(__a ).cpu().detach()
306
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowerCamelCase : str = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex lowerCamelCase : Union[str, Any] = 10 lowerCamelCase : List[str] = 2_56 def snake_case_ ( lowerCAmelCase_ : List[str] ): if len(lowerCAmelCase_ ) < MIN_NUM_TOKENS: return None __lowercase : Dict = MinHash(num_perm=lowerCAmelCase_ ) for token in set(lowerCAmelCase_ ): min_hash.update(token.encode() ) return min_hash def snake_case_ ( lowerCAmelCase_ : str ): return {t for t in NON_ALPHA.split(lowerCAmelCase_ ) if len(t.strip() ) > 0} class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , *, __a : float = 0.85 , ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = duplication_jaccard_threshold __lowercase : Optional[Any] = NUM_PERM __lowercase : List[Any] = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) __lowercase : List[str] = defaultdict(__a ) def lowerCAmelCase ( self : str , __a : Tuple , __a : MinHash ) -> None: """simple docstring""" __lowercase : List[Any] = self._index.query(__a ) if code_key in self._index.keys: print(F"Duplicate key {code_key}" ) return self._index.insert(__a , __a ) if len(__a ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__a ) break else: self._duplicate_clusters[close_duplicates[0]].add(__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[List[Dict]]: """simple docstring""" __lowercase : Dict = [] for base, duplicates in self._duplicate_clusters.items(): __lowercase : List[str] = [base] + list(__a ) # reformat the cluster to be a list of dict __lowercase : Optional[Any] = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(__a ) return duplicate_clusters def lowerCAmelCase ( self : Any , __a : int ) -> None: """simple docstring""" __lowercase : Tuple = self.get_duplicate_clusters() with open(__a , """w""" ) as f: json.dump(__a , __a ) def snake_case_ ( lowerCAmelCase_ : str ): __lowercase , __lowercase : Union[str, Any] = element __lowercase : Optional[Any] = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def snake_case_ ( lowerCAmelCase_ : Type[Dataset] ): with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(lowerCAmelCase_ , max_queue_size=10000 ) , chunksize=100 , ): if data is not None: yield data def snake_case_ ( lowerCAmelCase_ : Type[Dataset] , lowerCAmelCase_ : float ): __lowercase : Dict = DuplicationIndex(duplication_jaccard_threshold=lowerCAmelCase_ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(lowerCAmelCase_ ) ) , max_queue_size=100 ) ): di.add(lowerCAmelCase_ , lowerCAmelCase_ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : List[str] = get_tokens(lowerCAmelCase_ ) __lowercase : Dict = get_tokens(lowerCAmelCase_ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) lowerCamelCase : List[str] = None def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] ): __lowercase : Union[str, Any] = [] for elementa in cluster: __lowercase : Tuple = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: __lowercase : Dict = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(lowerCAmelCase_ , lowerCAmelCase_ ) >= jaccard_threshold: elementa["copies"] += 1 break else: __lowercase : Dict = 1 extremes.append(lowerCAmelCase_ ) return extremes def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple ): global _shared_dataset __lowercase : Tuple = dataset __lowercase : Optional[int] = [] __lowercase : str = partial(_find_cluster_extremes_shared , jaccard_threshold=lowerCAmelCase_ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( lowerCAmelCase_ , lowerCAmelCase_ , ) , total=len(lowerCAmelCase_ ) , ): extremes_list.append(lowerCAmelCase_ ) return extremes_list def snake_case_ ( lowerCAmelCase_ : Type[Dataset] , lowerCAmelCase_ : float = 0.85 ): __lowercase : Optional[int] = make_duplicate_clusters(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Tuple = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} __lowercase : int = {} __lowercase : Dict = find_extremes(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for extremes in extremes_clusters: for element in extremes: __lowercase : Optional[Any] = element __lowercase : int = duplicate_indices - set(extreme_dict.keys() ) __lowercase : int = dataset.filter(lambda lowerCAmelCase_ , lowerCAmelCase_ : idx not in remove_indices , with_indices=lowerCAmelCase_ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: __lowercase : List[str] = element["""base_index"""] in extreme_dict if element["is_extreme"]: __lowercase : str = extreme_dict[element["""base_index"""]]["""copies"""] print(F"Original dataset size: {len(lowerCAmelCase_ )}" ) print(F"Number of duplicate clusters: {len(lowerCAmelCase_ )}" ) print(F"Files in duplicate cluster: {len(lowerCAmelCase_ )}" ) print(F"Unique files in duplicate cluster: {len(lowerCAmelCase_ )}" ) print(F"Filtered dataset size: {len(lowerCAmelCase_ )}" ) return ds_filter, duplicate_clusters
306
1
import json import os import torch from diffusers import UNetaDModel os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True) def snake_case_ ( lowerCAmelCase_ : str ): if hor == 128: __lowercase : Any = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") __lowercase : List[Any] = (32, 128, 256) __lowercase : Any = ("""UpResnetBlock1D""", """UpResnetBlock1D""") elif hor == 32: __lowercase : str = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") __lowercase : int = (32, 64, 128, 256) __lowercase : int = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""") __lowercase : List[str] = torch.load(F"/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch" ) __lowercase : Any = model.state_dict() __lowercase : Union[str, Any] = { """down_block_types""": down_block_types, """block_out_channels""": block_out_channels, """up_block_types""": up_block_types, """layers_per_block""": 1, """use_timestep_embedding""": True, """out_block_type""": """OutConv1DBlock""", """norm_num_groups""": 8, """downsample_each_block""": False, """in_channels""": 14, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """flip_sin_to_cos""": False, """freq_shift""": 1, """sample_size""": 65536, """mid_block_type""": """MidResTemporalBlock1D""", """act_fn""": """mish""", } __lowercase : Dict = UNetaDModel(**lowerCAmelCase_ ) print(F"length of state dict: {len(state_dict.keys() )}" ) print(F"length of value function dict: {len(hf_value_function.state_dict().keys() )}" ) __lowercase : Any = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): __lowercase : Union[str, Any] = state_dict.pop(lowerCAmelCase_ ) hf_value_function.load_state_dict(lowerCAmelCase_ ) torch.save(hf_value_function.state_dict() , F"hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin" ) with open(F"hub/hopper-medium-v2/unet/hor{hor}/config.json" , """w""" ) as f: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case_ ( ): __lowercase : List[Any] = { """in_channels""": 14, """down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""), """up_block_types""": (), """out_block_type""": """ValueFunction""", """mid_block_type""": """ValueFunctionMidBlock1D""", """block_out_channels""": (32, 64, 128, 256), """layers_per_block""": 1, """downsample_each_block""": True, """sample_size""": 65536, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """use_timestep_embedding""": True, """flip_sin_to_cos""": False, """freq_shift""": 1, """norm_num_groups""": 8, """act_fn""": """mish""", } __lowercase : Optional[Any] = torch.load("""/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch""" ) __lowercase : int = model __lowercase : Union[str, Any] = UNetaDModel(**lowerCAmelCase_ ) print(F"length of state dict: {len(state_dict.keys() )}" ) print(F"length of value function dict: {len(hf_value_function.state_dict().keys() )}" ) __lowercase : str = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): __lowercase : int = state_dict.pop(lowerCAmelCase_ ) hf_value_function.load_state_dict(lowerCAmelCase_ ) torch.save(hf_value_function.state_dict() , """hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin""" ) with open("""hub/hopper-medium-v2/value_function/config.json""" , """w""" ) as f: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": unet(32) # unet(128) value_function()
306
from ...processing_utils import ProcessorMixin class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = ['''image_processor''', '''feature_extractor'''] _A : List[Any] = '''TvltImageProcessor''' _A : Optional[int] = '''TvltFeatureExtractor''' def __init__( self : str , __a : List[Any] , __a : Tuple ) -> Optional[Any]: """simple docstring""" super().__init__(image_processor=__a , feature_extractor=__a ) __lowercase : Union[str, Any] = image_processor __lowercase : Tuple = feature_extractor def __call__( self : Tuple , __a : Optional[int]=None , __a : Dict=None , __a : Union[str, Any]=None , __a : Tuple=None , __a : Optional[Any]=False , __a : List[Any]=False , *__a : List[str] , **__a : List[Any] , ) -> Dict: """simple docstring""" if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) __lowercase : Tuple = None if images is not None: __lowercase : Any = self.image_processor(__a , mask_pixel=__a , *__a , **__a ) if images_mixed is not None: __lowercase : Union[str, Any] = self.image_processor(__a , is_mixed=__a , *__a , **__a ) if audio is not None: __lowercase : Optional[Any] = self.feature_extractor( __a , *__a , sampling_rate=__a , mask_audio=__a , **__a ) __lowercase : Tuple = {} if audio is not None: output_dict.update(__a ) if images is not None: output_dict.update(__a ) if images_mixed_dict is not None: output_dict.update(__a ) return output_dict @property def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = self.image_processor.model_input_names __lowercase : Union[str, Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
306
1
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class lowerCAmelCase ( __a ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] , __a : str ) -> Optional[Any]: """simple docstring""" with open(__a , encoding="""utf-8""" ) as input_file: __lowercase : Union[str, Any] = re.compile(r"""(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)""" ) __lowercase : Tuple = input_file.read() __lowercase : Union[str, Any] = regexp.search(__a ) return match def lowerCAmelCase ( self : int , __a : str ) -> str: """simple docstring""" with open(__a , encoding="""utf-8""" ) as input_file: __lowercase : List[str] = re.compile(r"""#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()""" , re.DOTALL ) __lowercase : int = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` __lowercase : Dict = regexp.finditer(__a ) __lowercase : List[str] = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" __lowercase : List[Any] = Path("""./datasets""" ) __lowercase : List[str] = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__a ) ): raise AssertionError(F"open(...) must use utf-8 encoding in {dataset}" ) def lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = Path("""./datasets""" ) __lowercase : Optional[Any] = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_print_statements(str(__a ) ): raise AssertionError(F"print statement found in {dataset}. Use datasets.logger/logging instead." )
306
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Any , __a : Tuple , __a : Optional[int]=13 , __a : int=7 , __a : List[str]=False , __a : Optional[int]=True , __a : Optional[int]=False , __a : Dict=True , __a : Optional[int]=33 , __a : Dict=32 , __a : Optional[int]=5 , __a : Union[str, Any]=4 , __a : List[str]=37 , __a : Tuple="gelu" , __a : List[str]=0.1 , __a : Dict=0.1 , __a : List[Any]=512 , __a : Any=16 , __a : Optional[Any]=2 , __a : List[Any]=0.02 , __a : int=3 , __a : Union[str, Any]=4 , __a : Optional[int]=None , ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = parent __lowercase : int = batch_size __lowercase : Any = seq_length __lowercase : str = is_training __lowercase : str = use_input_mask __lowercase : Optional[int] = use_token_type_ids __lowercase : List[Any] = use_labels __lowercase : Optional[Any] = vocab_size __lowercase : int = hidden_size __lowercase : List[Any] = num_hidden_layers __lowercase : Dict = num_attention_heads __lowercase : Any = intermediate_size __lowercase : Dict = hidden_act __lowercase : Union[str, Any] = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : List[str] = max_position_embeddings __lowercase : Union[str, Any] = type_vocab_size __lowercase : Dict = type_sequence_label_size __lowercase : Union[str, Any] = initializer_range __lowercase : List[Any] = num_labels __lowercase : str = num_choices __lowercase : Tuple = scope def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : int = None if self.use_input_mask: __lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : str = None __lowercase : Optional[Any] = None __lowercase : Tuple = None if self.use_labels: __lowercase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : List[Any] , __a : int , __a : int , __a : Dict , __a : Union[str, Any] , __a : List[str] , __a : str ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = EsmModel(config=__a ) model.to(__a ) model.eval() __lowercase : str = model(__a , attention_mask=__a ) __lowercase : List[Any] = model(__a ) __lowercase : Optional[int] = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : Union[str, Any] , __a : Dict , __a : List[Any] , __a : Tuple , __a : Union[str, Any] , __a : str , __a : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase : List[str] = EsmForMaskedLM(config=__a ) model.to(__a ) model.eval() __lowercase : int = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[int] , __a : Union[str, Any] , __a : List[Any] , __a : Tuple , __a : Tuple , __a : Optional[int] , __a : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = self.num_labels __lowercase : Any = EsmForTokenClassification(config=__a ) model.to(__a ) model.eval() __lowercase : Optional[Any] = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase : Any = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : List[str] = config_and_inputs __lowercase : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Optional[Any] = False _A : Any = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) _A : Optional[Any] = () _A : List[Any] = ( { '''feature-extraction''': EsmModel, '''fill-mask''': EsmForMaskedLM, '''text-classification''': EsmForSequenceClassification, '''token-classification''': EsmForTokenClassification, '''zero-shot''': EsmForSequenceClassification, } if is_torch_available() else {} ) _A : Optional[Any] = True def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : Optional[int] = EsmModelTester(self ) __lowercase : Tuple = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase : Union[str, Any] = type self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : List[str] = EsmModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] __lowercase : List[str] = EsmEmbeddings(config=__a ) __lowercase : Union[str, Any] = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) __lowercase : int = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) __lowercase : str = create_position_ids_from_input_ids(__a , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__a , __a ) ) ) def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] __lowercase : Optional[Any] = EsmEmbeddings(config=__a ) __lowercase : Optional[int] = torch.empty(2 , 4 , 30 ) __lowercase : Tuple = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] __lowercase : List[str] = torch.as_tensor([expected_single_positions, expected_single_positions] ) __lowercase : Any = embeddings.create_position_ids_from_inputs_embeds(__a ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__a , __a ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" pass @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" pass @require_torch class lowerCAmelCase ( __a ): '''simple docstring''' @slow def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): __lowercase : Tuple = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() __lowercase : Tuple = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase : List[str] = model(__a )[0] __lowercase : Union[str, Any] = 33 __lowercase : Union[str, Any] = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , __a ) __lowercase : List[Any] = torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): __lowercase : int = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() __lowercase : int = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) __lowercase : Any = model(__a )[0] # compare the actual values for a slice. __lowercase : int = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) )
306
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : List[Any] = logging.get_logger(__name__) lowerCamelCase : Any = { '''BAAI/AltCLIP''': '''https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json''', # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[Any] = '''altclip_text_model''' def __init__( self : Optional[Any] , __a : int=250002 , __a : Dict=1024 , __a : Optional[Any]=24 , __a : Optional[int]=16 , __a : Optional[int]=4096 , __a : Union[str, Any]="gelu" , __a : Optional[int]=0.1 , __a : Tuple=0.1 , __a : Optional[Any]=514 , __a : Optional[int]=1 , __a : Dict=0.02 , __a : Optional[int]=0.02 , __a : int=1E-05 , __a : int=1 , __a : Any=0 , __a : Union[str, Any]=2 , __a : Any="absolute" , __a : Any=True , __a : Tuple=768 , **__a : Union[str, Any] , ) -> Dict: """simple docstring""" super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) __lowercase : Optional[int] = vocab_size __lowercase : List[str] = hidden_size __lowercase : Tuple = num_hidden_layers __lowercase : str = num_attention_heads __lowercase : Any = hidden_act __lowercase : int = intermediate_size __lowercase : Optional[int] = hidden_dropout_prob __lowercase : List[str] = attention_probs_dropout_prob __lowercase : int = max_position_embeddings __lowercase : Optional[Any] = type_vocab_size __lowercase : Any = initializer_range __lowercase : Optional[Any] = initializer_factor __lowercase : int = layer_norm_eps __lowercase : List[str] = position_embedding_type __lowercase : Any = use_cache __lowercase : Optional[Any] = project_dim class lowerCAmelCase ( __a ): '''simple docstring''' _A : Any = '''altclip_vision_model''' def __init__( self : Tuple , __a : List[Any]=768 , __a : Optional[int]=3072 , __a : Optional[Any]=512 , __a : Union[str, Any]=12 , __a : Any=12 , __a : Optional[int]=3 , __a : Any=224 , __a : Dict=32 , __a : int="quick_gelu" , __a : Dict=1E-5 , __a : Dict=0.0 , __a : Optional[Any]=0.02 , __a : Dict=1.0 , **__a : Optional[int] , ) -> Union[str, Any]: """simple docstring""" super().__init__(**__a ) __lowercase : List[Any] = hidden_size __lowercase : Optional[int] = intermediate_size __lowercase : Tuple = projection_dim __lowercase : List[Any] = num_hidden_layers __lowercase : Optional[Any] = num_attention_heads __lowercase : str = num_channels __lowercase : Optional[int] = patch_size __lowercase : Optional[Any] = image_size __lowercase : List[str] = initializer_range __lowercase : Optional[int] = initializer_factor __lowercase : str = attention_dropout __lowercase : str = layer_norm_eps __lowercase : List[Any] = hidden_act @classmethod def lowerCAmelCase ( cls : int , __a : Union[str, os.PathLike] , **__a : List[Any] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(__a ) __lowercase , __lowercase : Optional[Any] = cls.get_config_dict(__a , **__a ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("""model_type""" ) == "altclip": __lowercase : Tuple = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__a , **__a ) class lowerCAmelCase ( __a ): '''simple docstring''' _A : str = '''altclip''' _A : str = True def __init__( self : Optional[Any] , __a : Union[str, Any]=None , __a : str=None , __a : Optional[int]=768 , __a : Optional[int]=2.6592 , **__a : Any ) -> List[Any]: """simple docstring""" __lowercase : Dict = kwargs.pop("""text_config_dict""" , __a ) __lowercase : Optional[int] = kwargs.pop("""vision_config_dict""" , __a ) super().__init__(**__a ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: __lowercase : Optional[Any] = {} # This is the complete result when using `text_config_dict`. __lowercase : Tuple = AltCLIPTextConfig(**__a ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: __lowercase : List[Any] = ( F"`{key}` is found in both `text_config_dict` and `text_config` but with different values. " F"The value `text_config_dict[\"{key}\"]` will be used instead." ) # If inferred from default argument values (just to be super careful) else: __lowercase : Union[str, Any] = ( F"`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The " F"value `text_config[\"{key}\"]` will be overriden." ) logger.warning(__a ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: __lowercase : Tuple = {} # This is the complete result when using `vision_config_dict`. __lowercase : Any = AltCLIPVisionConfig(**__a ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: __lowercase : int = { str(__a ): value for key, value in _vision_config_dict["""id2label"""].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: __lowercase : Optional[int] = ( F"`{key}` is found in both `vision_config_dict` and `vision_config` but with different " F"values. The value `vision_config_dict[\"{key}\"]` will be used instead." ) # If inferred from default argument values (just to be super careful) else: __lowercase : Optional[int] = ( F"`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. " F"The value `vision_config[\"{key}\"]` will be overriden." ) logger.warning(__a ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: __lowercase : List[str] = {} logger.info("""`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.""" ) if vision_config is None: __lowercase : int = {} logger.info("""`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.""" ) __lowercase : int = AltCLIPTextConfig(**__a ) __lowercase : int = AltCLIPVisionConfig(**__a ) __lowercase : Optional[int] = projection_dim __lowercase : Dict = logit_scale_init_value __lowercase : Any = 1.0 @classmethod def lowerCAmelCase ( cls : Optional[int] , __a : AltCLIPTextConfig , __a : AltCLIPVisionConfig , **__a : List[Any] ) -> int: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__a ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" __lowercase : Tuple = copy.deepcopy(self.__dict__ ) __lowercase : Optional[Any] = self.text_config.to_dict() __lowercase : int = self.vision_config.to_dict() __lowercase : Tuple = self.__class__.model_type return output
306
def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def snake_case_ ( lowerCAmelCase_ : int = 5000 ): __lowercase : Optional[int] = [(i * (3 * i - 1)) // 2 for i in range(1 , lowerCAmelCase_ )] for i, pentagonal_i in enumerate(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ , len(lowerCAmelCase_ ) ): __lowercase : int = pentagonal_nums[j] __lowercase : Optional[int] = pentagonal_i + pentagonal_j __lowercase : Union[str, Any] = pentagonal_j - pentagonal_i if is_pentagonal(lowerCAmelCase_ ) and is_pentagonal(lowerCAmelCase_ ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
306
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Optional[Any] = { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/config.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/config.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/config.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/config.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json''', '''roberta-large-openai-detector''': '''https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : Union[str, Any] = '''roberta''' def __init__( self : Union[str, Any] , __a : int=50265 , __a : int=768 , __a : Dict=12 , __a : List[Any]=12 , __a : List[str]=3072 , __a : List[str]="gelu" , __a : Optional[Any]=0.1 , __a : List[Any]=0.1 , __a : Dict=512 , __a : Optional[int]=2 , __a : Dict=0.02 , __a : Dict=1E-12 , __a : str=1 , __a : Optional[int]=0 , __a : List[str]=2 , __a : Union[str, Any]="absolute" , __a : List[Any]=True , __a : List[str]=None , **__a : Optional[Any] , ) -> Optional[int]: """simple docstring""" super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) __lowercase : Optional[int] = vocab_size __lowercase : str = hidden_size __lowercase : List[str] = num_hidden_layers __lowercase : List[str] = num_attention_heads __lowercase : str = hidden_act __lowercase : Any = intermediate_size __lowercase : Tuple = hidden_dropout_prob __lowercase : int = attention_probs_dropout_prob __lowercase : Tuple = max_position_embeddings __lowercase : Tuple = type_vocab_size __lowercase : int = initializer_range __lowercase : Dict = layer_norm_eps __lowercase : Tuple = position_embedding_type __lowercase : Union[str, Any] = use_cache __lowercase : Union[str, Any] = classifier_dropout class lowerCAmelCase ( __a ): '''simple docstring''' @property def lowerCAmelCase ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": __lowercase : Optional[int] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __lowercase : List[str] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
306
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowerCAmelCase ( __a ): '''simple docstring''' _A : Optional[Any] = (DPMSolverSDEScheduler,) _A : Dict = 10 def lowerCAmelCase ( self : Optional[int] , **__a : Dict ) -> Optional[int]: """simple docstring""" __lowercase : Any = { """num_train_timesteps""": 1100, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**__a ) return config def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=__a ) def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__a ) def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = self.scheduler_classes[0] __lowercase : List[str] = self.get_scheduler_config() __lowercase : Any = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase : Optional[Any] = self.dummy_model() __lowercase : str = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase : Optional[Any] = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): __lowercase : Union[str, Any] = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[Any] = model(__a , __a ) __lowercase : Optional[Any] = scheduler.step(__a , __a , __a ) __lowercase : str = output.prev_sample __lowercase : Optional[Any] = torch.sum(torch.abs(__a ) ) __lowercase : Union[str, Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47821044921875 ) < 1E-2 assert abs(result_mean.item() - 0.2178705964565277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59352111816406 ) < 1E-2 assert abs(result_mean.item() - 0.22342906892299652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase : Tuple = self.scheduler_classes[0] __lowercase : Dict = self.get_scheduler_config(prediction_type="""v_prediction""" ) __lowercase : int = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase : Optional[int] = self.dummy_model() __lowercase : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase : Dict = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): __lowercase : Dict = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[int] = model(__a , __a ) __lowercase : Optional[int] = scheduler.step(__a , __a , __a ) __lowercase : int = output.prev_sample __lowercase : Optional[Any] = torch.sum(torch.abs(__a ) ) __lowercase : List[str] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77149200439453 ) < 1E-2 assert abs(result_mean.item() - 0.16226289014816284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1663360595703 ) < 1E-2 assert abs(result_mean.item() - 0.16688326001167297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8487548828125 ) < 1E-2 assert abs(result_mean.item() - 0.1560530662536621 ) < 1E-3 def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = self.scheduler_classes[0] __lowercase : Dict = self.get_scheduler_config() __lowercase : Optional[int] = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps , device=__a ) __lowercase : int = self.dummy_model() __lowercase : Optional[Any] = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __lowercase : int = scheduler.scale_model_input(__a , __a ) __lowercase : List[str] = model(__a , __a ) __lowercase : List[str] = scheduler.step(__a , __a , __a ) __lowercase : int = output.prev_sample __lowercase : List[Any] = torch.sum(torch.abs(__a ) ) __lowercase : Optional[Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46957397460938 ) < 1E-2 assert abs(result_mean.item() - 0.21805934607982635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59353637695312 ) < 1E-2 assert abs(result_mean.item() - 0.22342908382415771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : str = self.scheduler_classes[0] __lowercase : List[Any] = self.get_scheduler_config() __lowercase : Tuple = scheduler_class(**__a , use_karras_sigmas=__a ) scheduler.set_timesteps(self.num_inference_steps , device=__a ) __lowercase : List[str] = self.dummy_model() __lowercase : Optional[int] = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma __lowercase : str = sample.to(__a ) for t in scheduler.timesteps: __lowercase : List[Any] = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[Any] = model(__a , __a ) __lowercase : Any = scheduler.step(__a , __a , __a ) __lowercase : Optional[Any] = output.prev_sample __lowercase : Any = torch.sum(torch.abs(__a ) ) __lowercase : Optional[Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66974135742188 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63653564453125 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3135223388672 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2
306
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class lowerCAmelCase ( __a ): '''simple docstring''' _A : Dict = '''dandelin/vilt-b32-finetuned-vqa''' _A : Optional[int] = ( '''This is a tool that answers a question about an image. It takes an input named `image` which should be the ''' '''image containing the information, as well as a `question` which should be the question in English. It ''' '''returns a text that is the answer to the question.''' ) _A : int = '''image_qa''' _A : Union[str, Any] = AutoProcessor _A : Optional[Any] = AutoModelForVisualQuestionAnswering _A : Union[str, Any] = ['''image''', '''text'''] _A : Any = ['''text'''] def __init__( self : List[Any] , *__a : Tuple , **__a : Optional[int] ) -> Optional[int]: """simple docstring""" requires_backends(self , ["""vision"""] ) super().__init__(*__a , **__a ) def lowerCAmelCase ( self : Dict , __a : "Image" , __a : str ) -> int: """simple docstring""" return self.pre_processor(__a , __a , return_tensors="""pt""" ) def lowerCAmelCase ( self : Tuple , __a : List[str] ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): return self.model(**__a ).logits def lowerCAmelCase ( self : Optional[int] , __a : List[str] ) -> Dict: """simple docstring""" __lowercase : Union[str, Any] = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
306
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate lowerCamelCase : str = trt.Logger(trt.Logger.WARNING) lowerCamelCase : Any = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) lowerCamelCase : Optional[Any] = logging.getLogger(__name__) lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=3_84, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=1_28, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) lowerCamelCase : Dict = parser.parse_args() if args.tokenizer_name: lowerCamelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) lowerCamelCase : List[str] = args.per_device_eval_batch_size lowerCamelCase : Any = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties lowerCamelCase : List[str] = True lowerCamelCase : List[Any] = '''temp_engine/bert-fp32.engine''' if args.fpaa: lowerCamelCase : Optional[Any] = '''temp_engine/bert-fp16.engine''' if args.inta: lowerCamelCase : int = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') lowerCamelCase : int = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network lowerCamelCase : Union[str, Any] = [network.get_input(i) for i in range(network.num_inputs)] lowerCamelCase : Dict = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: lowerCamelCase : List[str] = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) lowerCamelCase : Optional[int] = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) lowerCamelCase : Optional[Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ): __lowercase : List[str] = np.asarray(inputs["""input_ids"""] , dtype=np.intaa ) __lowercase : Union[str, Any] = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa ) __lowercase : int = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowerCAmelCase_ ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowerCAmelCase_ ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowerCAmelCase_ ) # start time __lowercase : Optional[Any] = time.time() # Run inference context.execute_async( bindings=[int(lowerCAmelCase_ ) for d_inp in d_inputs] + [int(lowerCAmelCase_ ), int(lowerCAmelCase_ )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) cuda.memcpy_dtoh_async(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Synchronize the stream and take time stream.synchronize() # end time __lowercase : int = time.time() __lowercase : Union[str, Any] = end_time - start_time __lowercase : Any = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. lowerCamelCase : Tuple = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase : List[Any] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. lowerCamelCase : Optional[Any] = raw_datasets['''validation'''].column_names lowerCamelCase : Union[str, Any] = '''question''' if '''question''' in column_names else column_names[0] lowerCamelCase : str = '''context''' if '''context''' in column_names else column_names[1] lowerCamelCase : Dict = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). lowerCamelCase : Dict = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) lowerCamelCase : Tuple = min(args.max_seq_length, tokenizer.model_max_length) def snake_case_ ( lowerCAmelCase_ : int ): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace __lowercase : str = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. __lowercase : List[str] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=lowerCAmelCase_ , stride=args.doc_stride , return_overflowing_tokens=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. __lowercase : List[str] = tokenized_examples.pop("""overflow_to_sample_mapping""" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. __lowercase : Any = [] for i in range(len(tokenized_examples["""input_ids"""] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). __lowercase : Dict = tokenized_examples.sequence_ids(lowerCAmelCase_ ) __lowercase : List[Any] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. __lowercase : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. __lowercase : Dict = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i] ) ] return tokenized_examples lowerCamelCase : Tuple = raw_datasets['''validation'''] # Validation Feature Creation lowerCamelCase : Optional[int] = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) lowerCamelCase : Union[str, Any] = default_data_collator lowerCamelCase : Optional[Any] = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) lowerCamelCase : List[str] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict="eval" ): # Post-processing: we match the start logits and end logits to answers in the original context. __lowercase : int = postprocess_qa_predictions( examples=lowerCAmelCase_ , features=lowerCAmelCase_ , predictions=lowerCAmelCase_ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowerCAmelCase_ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: __lowercase : Optional[int] = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: __lowercase : List[Any] = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] __lowercase : Optional[int] = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=lowerCAmelCase_ , label_ids=lowerCAmelCase_ ) lowerCamelCase : Dict = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def snake_case_ ( lowerCAmelCase_ : str ): return trt.volume(engine.get_binding_shape(lowerCAmelCase_ ) ) * engine.get_binding_dtype(lowerCAmelCase_ ).itemsize # Allocate device memory for inputs and outputs. lowerCamelCase : int = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer lowerCamelCase : Dict = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) lowerCamelCase : str = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) lowerCamelCase : Dict = cuda.mem_alloc(h_outputa.nbytes) lowerCamelCase : Optional[Any] = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. lowerCamelCase : Optional[int] = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(f''' Num examples = {len(eval_dataset)}''') logger.info(f''' Batch size = {args.per_device_eval_batch_size}''') lowerCamelCase : int = 0.0 lowerCamelCase : List[str] = 0 lowerCamelCase : List[str] = timeit.default_timer() lowerCamelCase : List[Any] = None for step, batch in enumerate(eval_dataloader): lowerCamelCase ,lowerCamelCase : str = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 lowerCamelCase ,lowerCamelCase : Union[str, Any] = outputs lowerCamelCase : Optional[Any] = torch.tensor(start_logits) lowerCamelCase : List[str] = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered lowerCamelCase : Optional[int] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-1_00) lowerCamelCase : Dict = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-1_00) lowerCamelCase : List[Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) lowerCamelCase : Dict = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-1_00) if all_preds is not None: lowerCamelCase : Tuple = nested_truncate(all_preds, len(eval_dataset)) lowerCamelCase : Dict = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 10_00 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 10_00)) logger.info('''Total Number of Inference = %d''', niter) lowerCamelCase : str = post_processing_function(eval_examples, eval_dataset, all_preds) lowerCamelCase : Optional[Any] = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'''Evaluation metrics: {eval_metric}''')
306
1
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap lowerCamelCase : Optional[int] = '''Usage of script: script_name <size_of_canvas:int>''' lowerCamelCase : int = [0] * 1_00 + [1] * 10 random.shuffle(choice) def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : str = [[False for i in range(lowerCAmelCase_ )] for j in range(lowerCAmelCase_ )] return canvas def snake_case_ ( lowerCAmelCase_ : list[list[bool]] ): for i, row in enumerate(lowerCAmelCase_ ): for j, _ in enumerate(lowerCAmelCase_ ): __lowercase : Union[str, Any] = bool(random.getrandbits(1 ) ) def snake_case_ ( lowerCAmelCase_ : list[list[bool]] ): __lowercase : int = np.array(lowerCAmelCase_ ) __lowercase : str = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(lowerCAmelCase_ ): for c, pt in enumerate(lowerCAmelCase_ ): __lowercase : Optional[int] = __judge_point( lowerCAmelCase_ , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) __lowercase : str = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. __lowercase : list[list[bool]] = current_canvas.tolist() return return_canvas def snake_case_ ( lowerCAmelCase_ : bool , lowerCAmelCase_ : list[list[bool]] ): __lowercase : Tuple = 0 __lowercase : int = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. __lowercase : int = pt if pt: if alive < 2: __lowercase : Any = False elif alive == 2 or alive == 3: __lowercase : Optional[int] = True elif alive > 3: __lowercase : Any = False else: if alive == 3: __lowercase : List[Any] = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) lowerCamelCase : Dict = int(sys.argv[1]) # main working structure of this module. lowerCamelCase : str = create_canvas(canvas_size) seed(c) lowerCamelCase ,lowerCamelCase : List[str] = plt.subplots() fig.show() lowerCamelCase : Any = ListedColormap(['''w''', '''k''']) try: while True: lowerCamelCase : List[Any] = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
306
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : str = { '''facebook/nllb-moe-54B''': '''https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''nllb-moe''' _A : List[str] = ['''past_key_values'''] _A : Optional[Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Dict , __a : List[str]=128112 , __a : List[Any]=1024 , __a : List[Any]=12 , __a : Union[str, Any]=4096 , __a : List[str]=16 , __a : int=12 , __a : Optional[int]=4096 , __a : str=16 , __a : List[Any]=0.05 , __a : Any=0.05 , __a : Dict=True , __a : Optional[Any]=True , __a : List[Any]="relu" , __a : Tuple=1024 , __a : Optional[Any]=0.1 , __a : Tuple=0.1 , __a : Any=0.0 , __a : Optional[Any]=0.02 , __a : List[str]=2 , __a : Union[str, Any]=True , __a : List[Any]=False , __a : Tuple="float32" , __a : Optional[int]=False , __a : Optional[int]=128 , __a : str=64 , __a : Dict=4 , __a : str=4 , __a : List[str]=0.001 , __a : List[Any]=0.001 , __a : Optional[Any]="all" , __a : Optional[int]=False , __a : int=False , __a : int=1.0 , __a : Dict=0.2 , __a : Tuple=1 , __a : Optional[Any]=0 , __a : List[Any]=2 , __a : Any=False , **__a : Any , ) -> Any: """simple docstring""" __lowercase : int = vocab_size __lowercase : List[Any] = max_position_embeddings __lowercase : Tuple = d_model __lowercase : str = encoder_ffn_dim __lowercase : List[str] = encoder_layers __lowercase : int = encoder_attention_heads __lowercase : List[Any] = decoder_ffn_dim __lowercase : int = decoder_layers __lowercase : Optional[int] = decoder_attention_heads __lowercase : Union[str, Any] = dropout __lowercase : str = attention_dropout __lowercase : Any = activation_dropout __lowercase : List[Any] = activation_function __lowercase : List[str] = init_std __lowercase : Optional[int] = encoder_layerdrop __lowercase : str = decoder_layerdrop __lowercase : Dict = use_cache __lowercase : Optional[Any] = encoder_layers __lowercase : str = scale_embedding # scale factor will be sqrt(d_model) if True __lowercase : List[Any] = router_z_loss_coef __lowercase : Tuple = router_aux_loss_coef __lowercase : str = decoder_sparse_step __lowercase : Any = encoder_sparse_step __lowercase : str = num_experts __lowercase : List[Any] = expert_capacity __lowercase : int = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) __lowercase : Optional[int] = router_dtype __lowercase : Any = router_ignore_padding_tokens __lowercase : Optional[Any] = batch_prioritized_routing __lowercase : str = second_expert_policy __lowercase : List[str] = normalize_router_prob_before_dropping __lowercase : List[Any] = moe_eval_capacity_token_fraction __lowercase : List[str] = moe_token_dropout __lowercase : Optional[Any] = output_router_logits super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , decoder_start_token_id=__a , **__a , )
306
1
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowerCamelCase : str = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex lowerCamelCase : Union[str, Any] = 10 lowerCamelCase : List[str] = 2_56 def snake_case_ ( lowerCAmelCase_ : List[str] ): if len(lowerCAmelCase_ ) < MIN_NUM_TOKENS: return None __lowercase : Dict = MinHash(num_perm=lowerCAmelCase_ ) for token in set(lowerCAmelCase_ ): min_hash.update(token.encode() ) return min_hash def snake_case_ ( lowerCAmelCase_ : str ): return {t for t in NON_ALPHA.split(lowerCAmelCase_ ) if len(t.strip() ) > 0} class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , *, __a : float = 0.85 , ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = duplication_jaccard_threshold __lowercase : Optional[Any] = NUM_PERM __lowercase : List[Any] = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) __lowercase : List[str] = defaultdict(__a ) def lowerCAmelCase ( self : str , __a : Tuple , __a : MinHash ) -> None: """simple docstring""" __lowercase : List[Any] = self._index.query(__a ) if code_key in self._index.keys: print(F"Duplicate key {code_key}" ) return self._index.insert(__a , __a ) if len(__a ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__a ) break else: self._duplicate_clusters[close_duplicates[0]].add(__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[List[Dict]]: """simple docstring""" __lowercase : Dict = [] for base, duplicates in self._duplicate_clusters.items(): __lowercase : List[str] = [base] + list(__a ) # reformat the cluster to be a list of dict __lowercase : Optional[Any] = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(__a ) return duplicate_clusters def lowerCAmelCase ( self : Any , __a : int ) -> None: """simple docstring""" __lowercase : Tuple = self.get_duplicate_clusters() with open(__a , """w""" ) as f: json.dump(__a , __a ) def snake_case_ ( lowerCAmelCase_ : str ): __lowercase , __lowercase : Union[str, Any] = element __lowercase : Optional[Any] = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def snake_case_ ( lowerCAmelCase_ : Type[Dataset] ): with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(lowerCAmelCase_ , max_queue_size=10000 ) , chunksize=100 , ): if data is not None: yield data def snake_case_ ( lowerCAmelCase_ : Type[Dataset] , lowerCAmelCase_ : float ): __lowercase : Dict = DuplicationIndex(duplication_jaccard_threshold=lowerCAmelCase_ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(lowerCAmelCase_ ) ) , max_queue_size=100 ) ): di.add(lowerCAmelCase_ , lowerCAmelCase_ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : List[str] = get_tokens(lowerCAmelCase_ ) __lowercase : Dict = get_tokens(lowerCAmelCase_ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) lowerCamelCase : List[str] = None def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] ): __lowercase : Union[str, Any] = [] for elementa in cluster: __lowercase : Tuple = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: __lowercase : Dict = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(lowerCAmelCase_ , lowerCAmelCase_ ) >= jaccard_threshold: elementa["copies"] += 1 break else: __lowercase : Dict = 1 extremes.append(lowerCAmelCase_ ) return extremes def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple ): global _shared_dataset __lowercase : Tuple = dataset __lowercase : Optional[int] = [] __lowercase : str = partial(_find_cluster_extremes_shared , jaccard_threshold=lowerCAmelCase_ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( lowerCAmelCase_ , lowerCAmelCase_ , ) , total=len(lowerCAmelCase_ ) , ): extremes_list.append(lowerCAmelCase_ ) return extremes_list def snake_case_ ( lowerCAmelCase_ : Type[Dataset] , lowerCAmelCase_ : float = 0.85 ): __lowercase : Optional[int] = make_duplicate_clusters(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Tuple = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} __lowercase : int = {} __lowercase : Dict = find_extremes(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for extremes in extremes_clusters: for element in extremes: __lowercase : Optional[Any] = element __lowercase : int = duplicate_indices - set(extreme_dict.keys() ) __lowercase : int = dataset.filter(lambda lowerCAmelCase_ , lowerCAmelCase_ : idx not in remove_indices , with_indices=lowerCAmelCase_ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: __lowercase : List[str] = element["""base_index"""] in extreme_dict if element["is_extreme"]: __lowercase : str = extreme_dict[element["""base_index"""]]["""copies"""] print(F"Original dataset size: {len(lowerCAmelCase_ )}" ) print(F"Number of duplicate clusters: {len(lowerCAmelCase_ )}" ) print(F"Files in duplicate cluster: {len(lowerCAmelCase_ )}" ) print(F"Unique files in duplicate cluster: {len(lowerCAmelCase_ )}" ) print(F"Filtered dataset size: {len(lowerCAmelCase_ )}" ) return ds_filter, duplicate_clusters
306
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase : Optional[Any] = { '''configuration_poolformer''': [ '''POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PoolFormerConfig''', '''PoolFormerOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = ['''PoolFormerFeatureExtractor'''] lowerCamelCase : Union[str, Any] = ['''PoolFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = [ '''POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PoolFormerForImageClassification''', '''PoolFormerModel''', '''PoolFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
306
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : str , __a : Dict , __a : int=7 , __a : Dict=3 , __a : str=30 , __a : Optional[Any]=400 , __a : Tuple=True , __a : Optional[Any]=None , __a : str=True , __a : Any=1 / 255 , __a : Optional[Any]=True , __a : List[Any]=[0.5, 0.5, 0.5] , __a : Optional[Any]=[0.5, 0.5, 0.5] , __a : List[str]=True , ) -> int: """simple docstring""" __lowercase : int = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} __lowercase : Optional[Any] = parent __lowercase : Optional[int] = batch_size __lowercase : str = num_channels __lowercase : Dict = min_resolution __lowercase : Dict = max_resolution __lowercase : str = do_resize __lowercase : Optional[Any] = size __lowercase : Union[str, Any] = do_rescale __lowercase : Any = rescale_factor __lowercase : Tuple = do_normalize __lowercase : List[Any] = image_mean __lowercase : int = image_std __lowercase : Optional[int] = do_pad def lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def lowerCAmelCase ( self : int , __a : List[Any] , __a : str=False ) -> List[str]: """simple docstring""" if not batched: __lowercase : List[str] = image_inputs[0] if isinstance(__a , Image.Image ): __lowercase , __lowercase : Dict = image.size else: __lowercase , __lowercase : Any = image.shape[1], image.shape[2] if w < h: __lowercase : int = int(self.size["""shortest_edge"""] * h / w ) __lowercase : Any = self.size["""shortest_edge"""] elif w > h: __lowercase : str = self.size["""shortest_edge"""] __lowercase : List[Any] = int(self.size["""shortest_edge"""] * w / h ) else: __lowercase : Tuple = self.size["""shortest_edge"""] __lowercase : Any = self.size["""shortest_edge"""] else: __lowercase : List[Any] = [] for image in image_inputs: __lowercase , __lowercase : str = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowercase : Tuple = max(__a , key=lambda __a : item[0] )[0] __lowercase : Union[str, Any] = max(__a , key=lambda __a : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : Optional[int] = DetrImageProcessor if is_vision_available() else None def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = DetrImageProcessingTester(self ) @property def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__a , """image_mean""" ) ) self.assertTrue(hasattr(__a , """image_std""" ) ) self.assertTrue(hasattr(__a , """do_normalize""" ) ) self.assertTrue(hasattr(__a , """do_rescale""" ) ) self.assertTrue(hasattr(__a , """rescale_factor""" ) ) self.assertTrue(hasattr(__a , """do_resize""" ) ) self.assertTrue(hasattr(__a , """size""" ) ) self.assertTrue(hasattr(__a , """do_pad""" ) ) def lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" __lowercase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , __a ) __lowercase : Union[str, Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__a ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , __a ) def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" pass def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a ) for image in image_inputs: self.assertIsInstance(__a , Image.Image ) # Test not batched input __lowercase : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __lowercase , __lowercase : List[str] = self.image_processor_tester.get_expected_values(__a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowercase , __lowercase : Dict = self.image_processor_tester.get_expected_values(__a , batched=__a ) __lowercase : Tuple = image_processing(__a , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a ) for image in image_inputs: self.assertIsInstance(__a , np.ndarray ) # Test not batched input __lowercase : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __lowercase , __lowercase : Union[str, Any] = self.image_processor_tester.get_expected_values(__a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowercase : Dict = image_processing(__a , return_tensors="""pt""" ).pixel_values __lowercase , __lowercase : List[Any] = self.image_processor_tester.get_expected_values(__a , batched=__a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a ) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor ) # Test not batched input __lowercase : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __lowercase , __lowercase : Optional[Any] = self.image_processor_tester.get_expected_values(__a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowercase : int = image_processing(__a , return_tensors="""pt""" ).pixel_values __lowercase , __lowercase : Optional[Any] = self.image_processor_tester.get_expected_values(__a , batched=__a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: __lowercase : List[str] = json.loads(f.read() ) __lowercase : Dict = {"""image_id""": 39769, """annotations""": target} # encode them __lowercase : List[str] = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50""" ) __lowercase : Optional[int] = image_processing(images=__a , annotations=__a , return_tensors="""pt""" ) # verify pixel values __lowercase : Optional[Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , __a ) __lowercase : int = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __a , atol=1E-4 ) ) # verify area __lowercase : List[Any] = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __a ) ) # verify boxes __lowercase : str = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __a ) __lowercase : Optional[int] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __a , atol=1E-3 ) ) # verify image_id __lowercase : Tuple = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __a ) ) # verify is_crowd __lowercase : str = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __a ) ) # verify class_labels __lowercase : List[Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __a ) ) # verify orig_size __lowercase : List[str] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __a ) ) # verify size __lowercase : str = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __a ) ) @slow def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: __lowercase : Tuple = json.loads(f.read() ) __lowercase : Any = {"""file_name""": """000000039769.png""", """image_id""": 39769, """segments_info""": target} __lowercase : Optional[Any] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them __lowercase : Optional[int] = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50-panoptic""" ) __lowercase : List[Any] = image_processing(images=__a , annotations=__a , masks_path=__a , return_tensors="""pt""" ) # verify pixel values __lowercase : Any = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , __a ) __lowercase : List[str] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __a , atol=1E-4 ) ) # verify area __lowercase : int = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __a ) ) # verify boxes __lowercase : List[str] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __a ) __lowercase : Optional[int] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __a , atol=1E-3 ) ) # verify image_id __lowercase : List[Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __a ) ) # verify is_crowd __lowercase : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __a ) ) # verify class_labels __lowercase : Optional[Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __a ) ) # verify masks __lowercase : Dict = 822873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __a ) # verify orig_size __lowercase : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __a ) ) # verify size __lowercase : Dict = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __a ) )
306
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : List[str] = 2 __lowercase : Union[str, Any] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(lowerCAmelCase_ ) if n > 1: factors.append(lowerCAmelCase_ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
306
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase : List[str] = { '''configuration_mobilevit''': ['''MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileViTConfig''', '''MobileViTOnnxConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[Any] = ['''MobileViTFeatureExtractor'''] lowerCamelCase : Any = ['''MobileViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ '''MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileViTForImageClassification''', '''MobileViTForSemanticSegmentation''', '''MobileViTModel''', '''MobileViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = [ '''TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileViTForImageClassification''', '''TFMobileViTForSemanticSegmentation''', '''TFMobileViTModel''', '''TFMobileViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Dict = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) __lowercase : List[str] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __lowercase : Optional[Any] = model(__a )["""last_hidden_state"""] __lowercase : Any = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , __a ) # compare the actual values for a slice. __lowercase : Dict = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
306
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : int = logging.get_logger(__name__) lowerCamelCase : str = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : Union[str, Any] = '''lxmert''' _A : Tuple = {} def __init__( self : Tuple , __a : Dict=30522 , __a : Union[str, Any]=768 , __a : Optional[int]=12 , __a : Optional[Any]=9500 , __a : Optional[Any]=1600 , __a : int=400 , __a : List[str]=3072 , __a : Union[str, Any]="gelu" , __a : List[str]=0.1 , __a : str=0.1 , __a : Any=512 , __a : List[Any]=2 , __a : Union[str, Any]=0.02 , __a : Dict=1E-12 , __a : Optional[Any]=9 , __a : Any=5 , __a : Any=5 , __a : int=2048 , __a : Dict=4 , __a : List[str]=6.67 , __a : Any=True , __a : List[Any]=True , __a : Union[str, Any]=True , __a : int=True , __a : List[Any]=True , __a : List[Any]=True , __a : int=True , **__a : List[Any] , ) -> Dict: """simple docstring""" __lowercase : List[Any] = vocab_size __lowercase : Tuple = hidden_size __lowercase : List[Any] = num_attention_heads __lowercase : List[str] = hidden_act __lowercase : Optional[int] = intermediate_size __lowercase : List[Any] = hidden_dropout_prob __lowercase : Any = attention_probs_dropout_prob __lowercase : List[str] = max_position_embeddings __lowercase : Optional[int] = type_vocab_size __lowercase : List[Any] = initializer_range __lowercase : Dict = layer_norm_eps __lowercase : List[str] = num_qa_labels __lowercase : List[str] = num_object_labels __lowercase : List[str] = num_attr_labels __lowercase : Tuple = l_layers __lowercase : str = x_layers __lowercase : List[Any] = r_layers __lowercase : List[Any] = visual_feat_dim __lowercase : Optional[int] = visual_pos_dim __lowercase : str = visual_loss_normalizer __lowercase : int = task_matched __lowercase : int = task_mask_lm __lowercase : Optional[Any] = task_obj_predict __lowercase : List[Any] = task_qa __lowercase : Tuple = visual_obj_loss __lowercase : Tuple = visual_attr_loss __lowercase : Optional[Any] = visual_feat_loss __lowercase : Dict = {"""vision""": r_layers, """cross_encoder""": x_layers, """language""": l_layers} super().__init__(**__a )
306
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Optional[Any] = len(lowerCAmelCase_ ) __lowercase : str = len(lowerCAmelCase_ ) __lowercase : Optional[int] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __lowercase : Tuple = True for i in range(lowerCAmelCase_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __lowercase : Optional[Any] = True if a[i].islower(): __lowercase : Dict = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
306
1
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' _A : Tuple = BlenderbotSmallTokenizer _A : str = False def lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" super().setUp() __lowercase : Dict = ["""__start__""", """adapt""", """act""", """ap@@""", """te""", """__end__""", """__unk__"""] __lowercase : Tuple = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : str = ["""#version: 0.2""", """a p""", """t e</w>""", """ap t</w>""", """a d""", """ad apt</w>""", """a c""", """ac t</w>""", """"""] __lowercase : int = {"""unk_token""": """__unk__""", """bos_token""": """__start__""", """eos_token""": """__end__"""} __lowercase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__a ) ) def lowerCAmelCase ( self : Tuple , **__a : Union[str, Any] ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Union[str, Any] , __a : Optional[Any] ) -> Dict: """simple docstring""" __lowercase : Optional[int] = """adapt act apte""" __lowercase : Any = """adapt act apte""" return input_text, output_text def lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" __lowercase : Dict = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowercase : Dict = """adapt act apte""" __lowercase : int = ["""adapt""", """act""", """ap@@""", """te"""] __lowercase : Any = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) __lowercase : List[str] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] __lowercase : Union[str, Any] = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) def lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" __lowercase : Optional[int] = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) assert tok("""sam""" ).input_ids == [1384] __lowercase : int = """I am a small frog.""" __lowercase : int = tok([src_text] , padding=__a , truncation=__a )["""input_ids"""] __lowercase : Optional[Any] = tok.batch_decode(__a , skip_special_tokens=__a , clean_up_tokenization_spaces=__a )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" __lowercase : Tuple = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) __lowercase : Optional[Any] = """I am a small frog .""" __lowercase : Tuple = """.""" __lowercase : List[Any] = tok(__a )["""input_ids"""] __lowercase : List[str] = tok(__a )["""input_ids"""] assert encoded[-1] == encoded_dot[0]
306
from scipy.stats import spearmanr import datasets lowerCamelCase : List[str] = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' lowerCamelCase : List[str] = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' lowerCamelCase : Union[str, Any] = r'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def lowerCAmelCase ( self : List[Any] , __a : str , __a : Any , __a : Optional[int]=False ) -> List[str]: """simple docstring""" __lowercase : Optional[Any] = spearmanr(__a , __a ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
306
1
def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def snake_case_ ( lowerCAmelCase_ : int = 5000 ): __lowercase : Optional[int] = [(i * (3 * i - 1)) // 2 for i in range(1 , lowerCAmelCase_ )] for i, pentagonal_i in enumerate(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ , len(lowerCAmelCase_ ) ): __lowercase : int = pentagonal_nums[j] __lowercase : Optional[int] = pentagonal_i + pentagonal_j __lowercase : Union[str, Any] = pentagonal_j - pentagonal_i if is_pentagonal(lowerCAmelCase_ ) and is_pentagonal(lowerCAmelCase_ ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
306
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Any = get_failure_array(lowerCAmelCase_ ) # 2) Step through text searching for pattern __lowercase , __lowercase : Optional[int] = 0, 0 # index into text, pattern while i < len(lowerCAmelCase_ ): if pattern[j] == text[i]: if j == (len(lowerCAmelCase_ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: __lowercase : Optional[Any] = failure[j - 1] continue i += 1 return False def snake_case_ ( lowerCAmelCase_ : str ): __lowercase : List[Any] = [0] __lowercase : Optional[Any] = 0 __lowercase : List[Any] = 1 while j < len(lowerCAmelCase_ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: __lowercase : List[str] = failure[i - 1] continue j += 1 failure.append(lowerCAmelCase_ ) return failure if __name__ == "__main__": # Test 1) lowerCamelCase : Dict = '''abc1abc12''' lowerCamelCase : Union[str, Any] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' lowerCamelCase : Any = '''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) lowerCamelCase : List[Any] = '''ABABX''' lowerCamelCase : List[Any] = '''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) lowerCamelCase : int = '''AAAB''' lowerCamelCase : Optional[int] = '''ABAAAAAB''' assert kmp(pattern, text) # Test 4) lowerCamelCase : Optional[Any] = '''abcdabcy''' lowerCamelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) lowerCamelCase : Dict = '''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
306
1
import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ) -> List[str]: """simple docstring""" super().__init__() __lowercase : List[str] = nn.Linear(3 , 4 ) __lowercase : Union[str, Any] = nn.BatchNormad(4 ) __lowercase : List[str] = nn.Linear(4 , 5 ) def lowerCAmelCase ( self : Optional[Any] , __a : int ) -> Tuple: """simple docstring""" return self.lineara(self.batchnorm(self.lineara(__a ) ) ) class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" __lowercase : Any = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(__a , model.state_dict() ) __lowercase : List[str] = os.path.join(__a , """index.json""" ) self.assertTrue(os.path.isfile(__a ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: __lowercase : Optional[int] = os.path.join(__a , F"{key}.dat" ) self.assertTrue(os.path.isfile(__a ) ) # TODO: add tests on the fact weights are properly loaded def lowerCAmelCase ( self : str ) -> int: """simple docstring""" __lowercase : str = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: __lowercase : Optional[int] = torch.randn(2 , 3 , dtype=__a ) with TemporaryDirectory() as tmp_dir: __lowercase : Optional[int] = offload_weight(__a , """weight""" , __a , {} ) __lowercase : List[str] = os.path.join(__a , """weight.dat""" ) self.assertTrue(os.path.isfile(__a ) ) self.assertDictEqual(__a , {"""weight""": {"""shape""": [2, 3], """dtype""": str(__a ).split(""".""" )[1]}} ) __lowercase : Optional[int] = load_offloaded_weight(__a , index["""weight"""] ) self.assertTrue(torch.equal(__a , __a ) ) def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" __lowercase : Optional[Any] = ModelForTest() __lowercase : Union[str, Any] = model.state_dict() __lowercase : List[str] = {k: v for k, v in state_dict.items() if """linear2""" not in k} __lowercase : Union[str, Any] = {k: v for k, v in state_dict.items() if """linear2""" in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(__a , __a ) __lowercase : Any = OffloadedWeightsLoader(state_dict=__a , save_folder=__a ) # Every key is there with the right value self.assertEqual(sorted(__a ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(__a , weight_map[key] ) ) __lowercase : List[Any] = {k: v for k, v in state_dict.items() if """weight""" in k} __lowercase : str = {k: v for k, v in state_dict.items() if """weight""" not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(__a , __a ) __lowercase : Tuple = OffloadedWeightsLoader(state_dict=__a , save_folder=__a ) # Every key is there with the right value self.assertEqual(sorted(__a ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(__a , weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(__a , __a ) # Duplicates are removed __lowercase : Tuple = OffloadedWeightsLoader(state_dict=__a , save_folder=__a ) # Every key is there with the right value self.assertEqual(sorted(__a ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(__a , weight_map[key] ) ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = {"""a.1""": 0, """a.10""": 1, """a.2""": 2} __lowercase : str = extract_submodules_state_dict(__a , ["""a.1""", """a.2"""] ) self.assertDictEqual(__a , {"""a.1""": 0, """a.2""": 2} ) __lowercase : Dict = {"""a.1.a""": 0, """a.10.a""": 1, """a.2.a""": 2} __lowercase : Optional[int] = extract_submodules_state_dict(__a , ["""a.1""", """a.2"""] ) self.assertDictEqual(__a , {"""a.1.a""": 0, """a.2.a""": 2} )
306
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = ['''pixel_values'''] def __init__( self : Any , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : bool = True , __a : Dict[str, int] = None , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = True , **__a : str , ) -> None: """simple docstring""" super().__init__(**__a ) __lowercase : Dict = size if size is not None else {"""shortest_edge""": 224} __lowercase : Union[str, Any] = get_size_dict(__a , default_to_square=__a ) __lowercase : int = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __lowercase : Any = get_size_dict(__a , default_to_square=__a , param_name="""crop_size""" ) __lowercase : Optional[int] = do_resize __lowercase : Union[str, Any] = size __lowercase : List[Any] = resample __lowercase : Any = do_center_crop __lowercase : Dict = crop_size __lowercase : int = do_rescale __lowercase : Tuple = rescale_factor __lowercase : List[Any] = do_normalize __lowercase : Union[str, Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowercase : int = image_std if image_std is not None else OPENAI_CLIP_STD __lowercase : Union[str, Any] = do_convert_rgb def lowerCAmelCase ( self : Union[str, Any] , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[Any] , ) -> np.ndarray: """simple docstring""" __lowercase : Dict = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) __lowercase : str = get_resize_output_image_size(__a , size=size["""shortest_edge"""] , default_to_square=__a ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Any , ) -> np.ndarray: """simple docstring""" __lowercase : Tuple = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(__a , size=(size["""height"""], size["""width"""]) , data_format=__a , **__a ) def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : Union[int, float] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[Any] , ) -> List[str]: """simple docstring""" return rescale(__a , scale=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Optional[int] , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] , ) -> np.ndarray: """simple docstring""" return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Optional[int] , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : int = None , __a : bool = None , __a : float = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = None , __a : Optional[Union[str, TensorType]] = None , __a : Optional[ChannelDimension] = ChannelDimension.FIRST , **__a : List[Any] , ) -> PIL.Image.Image: """simple docstring""" __lowercase : List[Any] = do_resize if do_resize is not None else self.do_resize __lowercase : Dict = size if size is not None else self.size __lowercase : Tuple = get_size_dict(__a , param_name="""size""" , default_to_square=__a ) __lowercase : int = resample if resample is not None else self.resample __lowercase : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase : List[Any] = crop_size if crop_size is not None else self.crop_size __lowercase : List[str] = get_size_dict(__a , param_name="""crop_size""" , default_to_square=__a ) __lowercase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __lowercase : str = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase : Dict = do_normalize if do_normalize is not None else self.do_normalize __lowercase : Tuple = image_mean if image_mean is not None else self.image_mean __lowercase : str = image_std if image_std is not None else self.image_std __lowercase : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase : Union[str, Any] = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase : Union[str, Any] = [convert_to_rgb(__a ) for image in images] # All transformations expect numpy arrays. __lowercase : Any = [to_numpy_array(__a ) for image in images] if do_resize: __lowercase : str = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: __lowercase : str = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: __lowercase : Dict = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: __lowercase : Optional[Any] = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] __lowercase : Any = [to_channel_dimension_format(__a , __a ) for image in images] __lowercase : Optional[int] = {"""pixel_values""": images} return BatchFeature(data=__a , tensor_type=__a )
306
1
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex lowerCamelCase : Tuple = logging.getLogger(__name__) class lowerCAmelCase : '''simple docstring''' def __init__( self : Dict ) -> int: """simple docstring""" __lowercase : Tuple = False def lowerCAmelCase ( self : Dict , __a : Tuple , __a : Dict , __a : Optional[int] , __a : Union[str, Any] ) -> List[str]: """simple docstring""" if not self.initialized: __lowercase : Union[str, Any] = RagRetriever( __a , question_encoder_tokenizer=__a , generator_tokenizer=__a , index=__a , init_retrieval=__a , ) __lowercase : int = True def lowerCAmelCase ( self : int ) -> Dict: """simple docstring""" self.retriever.index.init_index() def lowerCAmelCase ( self : str , __a : Union[str, Any] , __a : str ) -> Any: """simple docstring""" __lowercase , __lowercase : Union[str, Any] = self.retriever._main_retrieve(__a , __a ) return doc_ids, retrieved_doc_embeds class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : str , __a : Any , __a : int , __a : Dict , __a : int , __a : Union[str, Any]=None ) -> str: """simple docstring""" if index is not None and index.is_initialized() and len(__a ) > 0: raise ValueError( """When using Ray for distributed fine-tuning, """ """you'll need to provide the paths instead, """ """as the dataset and the index are loaded """ """separately. More info in examples/rag/use_own_knowledge_dataset.py """ ) super().__init__( __a , question_encoder_tokenizer=__a , generator_tokenizer=__a , index=__a , init_retrieval=__a , ) __lowercase : Dict = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(__a , __a , __a , __a ) for worker in self.retrieval_workers ] ) def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" logger.info("""initializing retrieval""" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def lowerCAmelCase ( self : str , __a : Optional[int] , __a : int ) -> Optional[Any]: """simple docstring""" if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. __lowercase : Union[str, Any] = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] __lowercase , __lowercase : Optional[int] = ray.get(random_worker.retrieve.remote(__a , __a ) ) else: __lowercase , __lowercase : List[str] = self._main_retrieve(__a , __a ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__a ) @classmethod def lowerCAmelCase ( cls : Union[str, Any] , __a : str , __a : Tuple=None , **__a : Optional[int] ) -> Tuple: """simple docstring""" return super(__a , cls ).get_tokenizers(__a , __a , **__a ) @classmethod def lowerCAmelCase ( cls : List[Any] , __a : int , __a : Dict , __a : List[str]=None , **__a : List[str] ) -> Any: """simple docstring""" __lowercase : int = kwargs.pop("""config""" , __a ) or RagConfig.from_pretrained(__a , **__a ) __lowercase : Tuple = RagTokenizer.from_pretrained(__a , config=__a ) __lowercase : Union[str, Any] = rag_tokenizer.question_encoder __lowercase : Tuple = rag_tokenizer.generator if indexed_dataset is not None: __lowercase : int = """custom""" __lowercase : Dict = CustomHFIndex(config.retrieval_vector_size , __a ) else: __lowercase : List[Any] = cls._build_index(__a ) return cls( __a , question_encoder_tokenizer=__a , generator_tokenizer=__a , retrieval_workers=__a , index=__a , )
306
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str ): __lowercase : Tuple = s.rsplit(lowerCAmelCase_ , lowerCAmelCase_ ) return new.join(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : List[Any] ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : List[str] = {} __lowercase : Tuple = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __lowercase : List[str] = key.replace(F"{group_key}." , F"{group_key}.group." ) if "res_path" in key: __lowercase : List[Any] = key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): __lowercase : Union[str, Any] = rreplace(lowerCAmelCase_ , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): __lowercase : Tuple = rreplace(lowerCAmelCase_ , """.b""" , """.bias""" , 1 ) __lowercase : Dict = value.float() return upgrade @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=True ): from dall_e import Encoder __lowercase : Any = Encoder() if os.path.exists(lowerCAmelCase_ ): __lowercase : List[Any] = torch.load(lowerCAmelCase_ ) else: __lowercase : List[Any] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : int = ckpt.state_dict() encoder.load_state_dict(lowerCAmelCase_ ) if config_path is not None: __lowercase : Optional[int] = FlavaImageCodebookConfig.from_pretrained(lowerCAmelCase_ ) else: __lowercase : List[str] = FlavaImageCodebookConfig() __lowercase : Optional[Any] = FlavaImageCodebook(lowerCAmelCase_ ).eval() __lowercase : List[Any] = encoder.state_dict() __lowercase : Union[str, Any] = upgrade_state_dict(lowerCAmelCase_ ) hf_model.load_state_dict(lowerCAmelCase_ ) __lowercase : Dict = hf_model.state_dict() __lowercase : Tuple = count_parameters(lowerCAmelCase_ ) __lowercase : Tuple = count_parameters(lowerCAmelCase_ ) assert torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(lowerCAmelCase_ ) else: return hf_state_dict if __name__ == "__main__": lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowerCamelCase : Union[str, Any] = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
306
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : str = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } lowerCamelCase : Optional[Any] = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): for attribute in key.split(""".""" ): __lowercase : List[str] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if weight_type is not None: __lowercase : Union[str, Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ).shape else: __lowercase : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": __lowercase : Dict = value elif weight_type == "weight_g": __lowercase : Union[str, Any] = value elif weight_type == "weight_v": __lowercase : List[Any] = value elif weight_type == "bias": __lowercase : int = value elif weight_type == "running_mean": __lowercase : List[Any] = value elif weight_type == "running_var": __lowercase : int = value elif weight_type == "num_batches_tracked": __lowercase : int = value elif weight_type == "inv_freq": __lowercase : Optional[Any] = value else: __lowercase : Any = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] ): __lowercase : str = [] __lowercase : Any = fairseq_model.state_dict() __lowercase : List[str] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): __lowercase : Optional[Any] = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , hf_model.config.feat_extract_norm == """group""" , ) __lowercase : List[str] = True else: for key, mapped_key in MAPPING.items(): __lowercase : Any = """wav2vec2_conformer.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __lowercase : Tuple = True if "*" in mapped_key: __lowercase : List[Any] = name.split(lowerCAmelCase_ )[0].split(""".""" )[-2] __lowercase : Any = mapped_key.replace("""*""" , lowerCAmelCase_ ) if "pos_bias_u" in name: __lowercase : Any = None elif "pos_bias_v" in name: __lowercase : Tuple = None elif "weight_g" in name: __lowercase : Union[str, Any] = """weight_g""" elif "weight_v" in name: __lowercase : Dict = """weight_v""" elif "bias" in name: __lowercase : Union[str, Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowercase : str = """weight""" elif "running_mean" in name: __lowercase : str = """running_mean""" elif "inv_freq" in name: __lowercase : List[Any] = """inv_freq""" elif "running_var" in name: __lowercase : Any = """running_var""" elif "num_batches_tracked" in name: __lowercase : Any = """num_batches_tracked""" else: __lowercase : Optional[int] = None set_recursively(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) continue if not is_used: unused_weights.append(lowerCAmelCase_ ) logger.warning(F"Unused weights: {unused_weights}" ) def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] ): __lowercase : List[Any] = full_name.split("""conv_layers.""" )[-1] __lowercase : int = name.split(""".""" ) __lowercase : Optional[Any] = int(items[0] ) __lowercase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __lowercase : Union[str, Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __lowercase : List[str] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) __lowercase : Union[str, Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) __lowercase : Dict = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(lowerCAmelCase_ ) @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Dict=True ): if config_path is not None: __lowercase : List[Any] = WavaVecaConformerConfig.from_pretrained(lowerCAmelCase_ , hidden_act="""swish""" ) else: __lowercase : List[Any] = WavaVecaConformerConfig() if "rope" in checkpoint_path: __lowercase : Tuple = """rotary""" if is_finetuned: if dict_path: __lowercase : Any = Dictionary.load(lowerCAmelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __lowercase : List[Any] = target_dict.pad_index __lowercase : Optional[int] = target_dict.bos_index __lowercase : List[Any] = target_dict.eos_index __lowercase : List[str] = len(target_dict.symbols ) __lowercase : Union[str, Any] = os.path.join(lowerCAmelCase_ , """vocab.json""" ) if not os.path.isdir(lowerCAmelCase_ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowerCAmelCase_ ) ) return os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowercase : Tuple = target_dict.indices # fairseq has the <pad> and <s> switched __lowercase : int = 0 __lowercase : Any = 1 with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Dict = WavaVecaCTCTokenizer( lowerCAmelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowerCAmelCase_ , ) __lowercase : List[Any] = True if config.feat_extract_norm == """layer""" else False __lowercase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) __lowercase : Optional[int] = WavaVecaProcessor(feature_extractor=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) __lowercase : Union[str, Any] = WavaVecaConformerForCTC(lowerCAmelCase_ ) else: __lowercase : Optional[Any] = WavaVecaConformerForPreTraining(lowerCAmelCase_ ) if is_finetuned: __lowercase , __lowercase , __lowercase : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __lowercase : List[Any] = argparse.Namespace(task="""audio_pretraining""" ) __lowercase : Optional[Any] = fairseq.tasks.setup_task(lowerCAmelCase_ ) __lowercase , __lowercase , __lowercase : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase_ ) __lowercase : Dict = model[0].eval() recursively_load_weights(lowerCAmelCase_ , lowerCAmelCase_ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) lowerCamelCase : Any = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
306
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging lowerCamelCase : Tuple = logging.get_logger(__name__) logging.set_verbosity_info() def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): if "xprophetnet" in prophetnet_checkpoint_path: __lowercase : List[str] = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) __lowercase , __lowercase : int = XLMProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) else: __lowercase : List[Any] = ProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) __lowercase , __lowercase : Optional[Any] = ProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) __lowercase : List[str] = ["""key_proj""", """value_proj""", """query_proj"""] __lowercase : Optional[int] = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: __lowercase : Tuple = key.split(""".""" ) if attributes[0] == "lm_head": __lowercase : str = prophet __lowercase : List[str] = prophet_old else: __lowercase : Tuple = prophet.prophetnet __lowercase : Union[str, Any] = prophet_old.model __lowercase : Optional[Any] = False for attribute in attributes: if attribute in mapping: __lowercase : Optional[int] = mapping[attribute] if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) > 0: __lowercase : str = attribute elif hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : List[Any] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" __lowercase : Any = old_model.weight logger.info(F"{attribute} is initialized." ) __lowercase : Any = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" __lowercase : Dict = old_model.bias logger.info(F"{attribute} is initialized" ) __lowercase : int = True break elif attribute in special_keys and hasattr(lowerCAmelCase_ , """in_proj_weight""" ): __lowercase : Dict = old_model.in_proj_weight.shape[0] // 3 __lowercase : Tuple = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": __lowercase : Union[str, Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) __lowercase : int = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": __lowercase : Any = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) __lowercase : List[Any] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": __lowercase : Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) __lowercase : int = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) __lowercase : int = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." __lowercase : Optional[Any] = nn.Parameter(old_model.embed_positions.weight[:512, :] ) __lowercase : int = True break if attribute.isdigit(): __lowercase : Tuple = model[int(lowerCAmelCase_ )] __lowercase : int = old_model[int(lowerCAmelCase_ )] else: __lowercase : Union[str, Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if old_attribute == "": __lowercase : int = old_model else: if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError(F"{old_model} does not have {old_attribute}" ) __lowercase : List[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if not is_key_init: raise ValueError(F"{key} was not correctly initialized!" ) print(F"Saving model to {pytorch_dump_folder_path}" ) prophet.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCamelCase : Any = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
306
1
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def snake_case_ ( ): __lowercase : Dict = [randint(-1000 , 1000 ) for i in range(10 )] __lowercase : Tuple = randint(-5000 , 5000 ) return (arr, r) lowerCamelCase : Optional[Any] = make_dataset() def snake_case_ ( lowerCAmelCase_ : list[int] , lowerCAmelCase_ : int ): for triplet in permutations(lowerCAmelCase_ , 3 ): if sum(lowerCAmelCase_ ) == target: return tuple(sorted(lowerCAmelCase_ ) ) return (0, 0, 0) def snake_case_ ( lowerCAmelCase_ : list[int] , lowerCAmelCase_ : int ): arr.sort() __lowercase : Union[str, Any] = len(lowerCAmelCase_ ) for i in range(n - 1 ): __lowercase , __lowercase : int = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def snake_case_ ( ): __lowercase : List[str] = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ __lowercase : Union[str, Any] = """ triplet_sum1(*dataset) """ __lowercase : Dict = """ triplet_sum2(*dataset) """ __lowercase : Optional[Any] = repeat(setup=lowerCAmelCase_ , stmt=lowerCAmelCase_ , repeat=5 , number=10000 ) __lowercase : Optional[int] = repeat(setup=lowerCAmelCase_ , stmt=lowerCAmelCase_ , repeat=5 , number=10000 ) return (min(lowerCAmelCase_ ), min(lowerCAmelCase_ )) if __name__ == "__main__": from doctest import testmod testmod() lowerCamelCase : str = solution_times() print(f'''The time for naive implementation is {times[0]}.''') print(f'''The time for optimized implementation is {times[1]}.''')
306
def snake_case_ ( lowerCAmelCase_ : int = 200 ): __lowercase : List[str] = [1, 2, 5, 10, 20, 50, 100, 200] __lowercase : List[str] = [0] * (pence + 1) __lowercase : Optional[Any] = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowerCAmelCase_ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
306
1
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def snake_case_ ( lowerCAmelCase_ : List[str] ): __lowercase : Dict = FileLock(str(tmpdir / """foo.lock""" ) ) __lowercase : Dict = FileLock(str(tmpdir / """foo.lock""" ) ) __lowercase : List[Any] = 0.01 with locka.acquire(): with pytest.raises(lowerCAmelCase_ ): __lowercase : Union[str, Any] = time.time() locka.acquire(lowerCAmelCase_ ) assert time.time() - _start > timeout def snake_case_ ( lowerCAmelCase_ : Optional[int] ): __lowercase : str = """a""" * 1000 + """.lock""" __lowercase : int = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(lowerCAmelCase_ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 __lowercase : Dict = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(lowerCAmelCase_ ): locka.acquire(0 )
306
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , __a : Dict , __a : List[str]=None , __a : Optional[Any]=None , __a : Union[str, Any]=None , __a : int="resnet50" , __a : List[str]=3 , __a : Tuple=32 , __a : Dict=3 , __a : List[str]=True , __a : Union[str, Any]=True , ) -> Any: """simple docstring""" __lowercase : Optional[int] = parent __lowercase : List[str] = out_indices if out_indices is not None else [4] __lowercase : Optional[int] = stage_names __lowercase : Any = out_features __lowercase : Optional[Any] = backbone __lowercase : Optional[Any] = batch_size __lowercase : Union[str, Any] = image_size __lowercase : List[str] = num_channels __lowercase : str = use_pretrained_backbone __lowercase : str = is_training def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : str = self.get_config() return config, pixel_values def lowerCAmelCase ( self : int ) -> str: """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowerCAmelCase ( self : Optional[int] , __a : Dict , __a : Any ) -> Dict: """simple docstring""" __lowercase : Dict = TimmBackbone(config=__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Optional[Any] = model(__a ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.prepare_config_and_inputs() __lowercase , __lowercase : str = config_and_inputs __lowercase : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch @require_timm class lowerCAmelCase ( __a , __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[Any] = (TimmBackbone,) if is_torch_available() else () _A : Dict = {'''feature-extraction''': TimmBackbone} if is_torch_available() else {} _A : List[Any] = False _A : List[str] = False _A : Any = False _A : Optional[Any] = False def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : str = TimmBackboneModelTester(self ) __lowercase : Any = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" __lowercase : Tuple = """resnet18""" __lowercase : Optional[int] = """microsoft/resnet-18""" __lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a ) __lowercase : Dict = AutoBackbone.from_pretrained(__a ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a , out_indices=[1, 2, 3] ) __lowercase : Optional[Any] = AutoBackbone.from_pretrained(__a , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("""TimmBackbone doesn't support feed forward chunking""" ) def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""" ) def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""" ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't support output_attentions.""" ) def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Safetensors is not supported by timm.""" ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Optional[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : List[str] = [*signature.parameters.keys()] __lowercase : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Optional[Any] = True __lowercase : Union[str, Any] = self.has_attentions # no need to test all models as different heads yield the same functionality __lowercase : Union[str, Any] = self.all_model_classes[0] __lowercase : List[Any] = model_class(__a ) model.to(__a ) __lowercase : Optional[Any] = self._prepare_for_class(__a , __a ) __lowercase : Union[str, Any] = model(**__a ) __lowercase : Optional[int] = outputs[0][-1] # Encoder-/Decoder-only models __lowercase : Any = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowercase : Optional[int] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__a ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() __lowercase : int = model(**__a ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowercase : Any = copy.deepcopy(__a ) __lowercase : Dict = None __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() __lowercase : Optional[int] = model(**__a ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowercase : List[str] = copy.deepcopy(__a ) __lowercase : Optional[Any] = False __lowercase : str = model_class(__a ) model.to(__a ) model.eval() __lowercase : List[Any] = model(**__a )
306
1
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: lowerCamelCase : List[Any] = None lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : str = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase : List[Any] = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } lowerCamelCase : Optional[int] = { '''facebook/nllb-large-en-ro''': 10_24, '''facebook/nllb-200-distilled-600M''': 10_24, } # fmt: off lowerCamelCase : Optional[int] = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class lowerCAmelCase ( __a ): '''simple docstring''' _A : Tuple = VOCAB_FILES_NAMES _A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Tuple = PRETRAINED_VOCAB_FILES_MAP _A : List[str] = ['''input_ids''', '''attention_mask'''] _A : Optional[Any] = NllbTokenizer _A : List[int] = [] _A : List[int] = [] def __init__( self : Union[str, Any] , __a : Tuple=None , __a : Any=None , __a : int="<s>" , __a : str="</s>" , __a : Tuple="</s>" , __a : List[Any]="<s>" , __a : Dict="<unk>" , __a : Any="<pad>" , __a : Optional[Any]="<mask>" , __a : int=None , __a : Union[str, Any]=None , __a : List[Any]=None , __a : int=False , **__a : Dict , ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token __lowercase : Optional[int] = legacy_behaviour super().__init__( vocab_file=__a , tokenizer_file=__a , bos_token=__a , eos_token=__a , sep_token=__a , cls_token=__a , unk_token=__a , pad_token=__a , mask_token=__a , src_lang=__a , tgt_lang=__a , additional_special_tokens=__a , legacy_behaviour=__a , **__a , ) __lowercase : Tuple = vocab_file __lowercase : int = False if not self.vocab_file else True __lowercase : Union[str, Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) __lowercase : Optional[int] = { lang_code: self.convert_tokens_to_ids(__a ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __lowercase : str = src_lang if src_lang is not None else """eng_Latn""" __lowercase : Optional[Any] = self.convert_tokens_to_ids(self._src_lang ) __lowercase : List[str] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowerCAmelCase ( self : int ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def lowerCAmelCase ( self : Any , __a : str ) -> None: """simple docstring""" __lowercase : List[str] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCAmelCase ( self : List[Any] , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCAmelCase ( self : List[Any] , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __lowercase : List[Any] = [self.sep_token_id] __lowercase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase ( self : List[str] , __a : List[str] , __a : str , __a : Optional[str] , __a : Optional[str] , **__a : Union[str, Any] ) -> Optional[int]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) __lowercase : str = src_lang __lowercase : Optional[int] = self(__a , add_special_tokens=__a , return_tensors=__a , **__a ) __lowercase : Any = self.convert_tokens_to_ids(__a ) __lowercase : str = tgt_lang_id return inputs def lowerCAmelCase ( self : List[str] , __a : List[str] , __a : str = "eng_Latn" , __a : Optional[List[str]] = None , __a : str = "fra_Latn" , **__a : List[Any] , ) -> BatchEncoding: """simple docstring""" __lowercase : Union[str, Any] = src_lang __lowercase : int = tgt_lang return super().prepare_seqaseq_batch(__a , __a , **__a ) def lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCAmelCase ( self : Dict , __a : Optional[Any] ) -> None: """simple docstring""" __lowercase : Tuple = self.convert_tokens_to_ids(__a ) if self.legacy_behaviour: __lowercase : Any = [] __lowercase : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: __lowercase : str = [self.cur_lang_code] __lowercase : int = [self.eos_token_id] __lowercase : int = self.convert_ids_to_tokens(self.prefix_tokens ) __lowercase : List[str] = self.convert_ids_to_tokens(self.suffix_tokens ) __lowercase : int = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCAmelCase ( self : int , __a : str ) -> None: """simple docstring""" __lowercase : List[str] = self.convert_tokens_to_ids(__a ) if self.legacy_behaviour: __lowercase : Any = [] __lowercase : str = [self.eos_token_id, self.cur_lang_code] else: __lowercase : List[Any] = [self.cur_lang_code] __lowercase : Union[str, Any] = [self.eos_token_id] __lowercase : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) __lowercase : int = self.convert_ids_to_tokens(self.suffix_tokens ) __lowercase : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCAmelCase ( self : int , __a : str , __a : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__a ): logger.error(F"Vocabulary path ({save_directory}) should be a directory." ) return __lowercase : int = os.path.join( __a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ): copyfile(self.vocab_file , __a ) return (out_vocab_file,)
306
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : str = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } lowerCamelCase : Optional[Any] = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): for attribute in key.split(""".""" ): __lowercase : List[str] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if weight_type is not None: __lowercase : Union[str, Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ).shape else: __lowercase : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": __lowercase : Dict = value elif weight_type == "weight_g": __lowercase : Union[str, Any] = value elif weight_type == "weight_v": __lowercase : List[Any] = value elif weight_type == "bias": __lowercase : int = value elif weight_type == "running_mean": __lowercase : List[Any] = value elif weight_type == "running_var": __lowercase : int = value elif weight_type == "num_batches_tracked": __lowercase : int = value elif weight_type == "inv_freq": __lowercase : Optional[Any] = value else: __lowercase : Any = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] ): __lowercase : str = [] __lowercase : Any = fairseq_model.state_dict() __lowercase : List[str] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): __lowercase : Optional[Any] = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , hf_model.config.feat_extract_norm == """group""" , ) __lowercase : List[str] = True else: for key, mapped_key in MAPPING.items(): __lowercase : Any = """wav2vec2_conformer.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __lowercase : Tuple = True if "*" in mapped_key: __lowercase : List[Any] = name.split(lowerCAmelCase_ )[0].split(""".""" )[-2] __lowercase : Any = mapped_key.replace("""*""" , lowerCAmelCase_ ) if "pos_bias_u" in name: __lowercase : Any = None elif "pos_bias_v" in name: __lowercase : Tuple = None elif "weight_g" in name: __lowercase : Union[str, Any] = """weight_g""" elif "weight_v" in name: __lowercase : Dict = """weight_v""" elif "bias" in name: __lowercase : Union[str, Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowercase : str = """weight""" elif "running_mean" in name: __lowercase : str = """running_mean""" elif "inv_freq" in name: __lowercase : List[Any] = """inv_freq""" elif "running_var" in name: __lowercase : Any = """running_var""" elif "num_batches_tracked" in name: __lowercase : Any = """num_batches_tracked""" else: __lowercase : Optional[int] = None set_recursively(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) continue if not is_used: unused_weights.append(lowerCAmelCase_ ) logger.warning(F"Unused weights: {unused_weights}" ) def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] ): __lowercase : List[Any] = full_name.split("""conv_layers.""" )[-1] __lowercase : int = name.split(""".""" ) __lowercase : Optional[Any] = int(items[0] ) __lowercase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __lowercase : Union[str, Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __lowercase : List[str] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) __lowercase : Union[str, Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) __lowercase : Dict = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(lowerCAmelCase_ ) @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Dict=True ): if config_path is not None: __lowercase : List[Any] = WavaVecaConformerConfig.from_pretrained(lowerCAmelCase_ , hidden_act="""swish""" ) else: __lowercase : List[Any] = WavaVecaConformerConfig() if "rope" in checkpoint_path: __lowercase : Tuple = """rotary""" if is_finetuned: if dict_path: __lowercase : Any = Dictionary.load(lowerCAmelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __lowercase : List[Any] = target_dict.pad_index __lowercase : Optional[int] = target_dict.bos_index __lowercase : List[Any] = target_dict.eos_index __lowercase : List[str] = len(target_dict.symbols ) __lowercase : Union[str, Any] = os.path.join(lowerCAmelCase_ , """vocab.json""" ) if not os.path.isdir(lowerCAmelCase_ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowerCAmelCase_ ) ) return os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowercase : Tuple = target_dict.indices # fairseq has the <pad> and <s> switched __lowercase : int = 0 __lowercase : Any = 1 with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Dict = WavaVecaCTCTokenizer( lowerCAmelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowerCAmelCase_ , ) __lowercase : List[Any] = True if config.feat_extract_norm == """layer""" else False __lowercase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) __lowercase : Optional[int] = WavaVecaProcessor(feature_extractor=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) __lowercase : Union[str, Any] = WavaVecaConformerForCTC(lowerCAmelCase_ ) else: __lowercase : Optional[Any] = WavaVecaConformerForPreTraining(lowerCAmelCase_ ) if is_finetuned: __lowercase , __lowercase , __lowercase : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __lowercase : List[Any] = argparse.Namespace(task="""audio_pretraining""" ) __lowercase : Optional[Any] = fairseq.tasks.setup_task(lowerCAmelCase_ ) __lowercase , __lowercase , __lowercase : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase_ ) __lowercase : Dict = model[0].eval() recursively_load_weights(lowerCAmelCase_ , lowerCAmelCase_ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) lowerCamelCase : Any = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
306
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : Any = { '''naver-clova-ix/donut-base''': '''https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json''', # See all Donut models at https://huggingface.co/models?filter=donut-swin } class lowerCAmelCase ( __a ): '''simple docstring''' _A : Optional[int] = '''donut-swin''' _A : Dict = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Union[str, Any] , __a : Optional[Any]=224 , __a : List[Any]=4 , __a : List[str]=3 , __a : List[Any]=96 , __a : Optional[Any]=[2, 2, 6, 2] , __a : Union[str, Any]=[3, 6, 12, 24] , __a : Any=7 , __a : str=4.0 , __a : Dict=True , __a : List[str]=0.0 , __a : Optional[Any]=0.0 , __a : Any=0.1 , __a : List[str]="gelu" , __a : str=False , __a : Tuple=0.02 , __a : List[str]=1E-5 , **__a : Optional[Any] , ) -> Optional[int]: """simple docstring""" super().__init__(**__a ) __lowercase : Dict = image_size __lowercase : List[str] = patch_size __lowercase : Optional[Any] = num_channels __lowercase : List[str] = embed_dim __lowercase : Dict = depths __lowercase : int = len(__a ) __lowercase : List[Any] = num_heads __lowercase : Tuple = window_size __lowercase : Optional[int] = mlp_ratio __lowercase : Optional[Any] = qkv_bias __lowercase : Union[str, Any] = hidden_dropout_prob __lowercase : Any = attention_probs_dropout_prob __lowercase : Any = drop_path_rate __lowercase : List[str] = hidden_act __lowercase : Tuple = use_absolute_embeddings __lowercase : Optional[Any] = layer_norm_eps __lowercase : Tuple = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __lowercase : str = int(embed_dim * 2 ** (len(__a ) - 1) )
306
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError("""String lengths must match!""" ) __lowercase : str = 0 for chara, chara in zip(lowerCAmelCase_ , lowerCAmelCase_ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
306
1
import random def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : List[str] = num - 1 __lowercase : List[str] = 0 while s % 2 == 0: __lowercase : List[str] = s // 2 t += 1 for _ in range(5 ): __lowercase : List[str] = random.randrange(2 , num - 1 ) __lowercase : Optional[int] = pow(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if v != 1: __lowercase : Any = 0 while v != (num - 1): if i == t - 1: return False else: __lowercase : Union[str, Any] = i + 1 __lowercase : str = (v**2) % num return True def snake_case_ ( lowerCAmelCase_ : int ): if num < 2: return False __lowercase : int = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : int = 1024 ): while True: __lowercase : int = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(lowerCAmelCase_ ): return num if __name__ == "__main__": lowerCamelCase : List[str] = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
306
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def snake_case_ ( lowerCAmelCase_ : Tuple ): if isinstance(lowerCAmelCase_ , collections.abc.Iterable ): return x return (x, x) @require_flax class lowerCAmelCase : '''simple docstring''' def lowerCAmelCase ( self : Any , __a : Any , __a : List[Any] ) -> Optional[Any]: """simple docstring""" pass def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" pass def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : np.ndarray , __a : float ) -> List[Any]: """simple docstring""" __lowercase : List[str] = np.abs((a - b) ).max() self.assertLessEqual(__a , __a , F"Difference between torch and flax is {diff} (>= {tol})." ) def lowerCAmelCase ( self : Tuple , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[Any] , __a : Optional[Any]=None , **__a : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : str = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : str = FlaxVisionTextDualEncoderModel(__a ) __lowercase : Optional[Any] = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def lowerCAmelCase ( self : Optional[int] , __a : Optional[int] , __a : Dict , __a : Dict , __a : List[str] , __a : Optional[Any]=None , **__a : str ) -> str: """simple docstring""" __lowercase , __lowercase : List[str] = self.get_vision_text_model(__a , __a ) __lowercase : Union[str, Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : Any = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : Union[str, Any] , __a : Union[str, Any] , __a : Dict , __a : int=None , **__a : int ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Tuple = self.get_vision_text_model(__a , __a ) __lowercase : Union[str, Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : List[str] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : List[Any] = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) __lowercase : int = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowercase : int = FlaxVisionTextDualEncoderModel.from_pretrained(__a ) __lowercase : Tuple = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) __lowercase : int = after_output[0] __lowercase : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__a , 1E-3 ) def lowerCAmelCase ( self : List[Any] , __a : Any , __a : Tuple , __a : Optional[int] , __a : str , __a : Optional[Any]=None , **__a : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : str = self.get_vision_text_model(__a , __a ) __lowercase : Optional[Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : Union[str, Any] = model( input_ids=__a , pixel_values=__a , attention_mask=__a , output_attentions=__a ) __lowercase : Optional[int] = output.vision_model_output.attentions self.assertEqual(len(__a ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase : Optional[int] = to_atuple(vision_model.config.image_size ) __lowercase : List[str] = to_atuple(vision_model.config.patch_size ) __lowercase : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase : int = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase : Dict = output.text_model_output.attentions self.assertEqual(len(__a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowerCAmelCase ( self : Optional[int] , __a : List[str] , __a : List[Any] , __a : Optional[Any] ) -> Optional[int]: """simple docstring""" pt_model.to(__a ) pt_model.eval() # prepare inputs __lowercase : Union[str, Any] = inputs_dict __lowercase : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): __lowercase : Union[str, Any] = pt_model(**__a ).to_tuple() __lowercase : Tuple = fx_model(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(__a , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__a ) __lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained(__a , from_pt=__a ) __lowercase : Dict = fx_model_loaded(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(__a , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__a ) __lowercase : str = VisionTextDualEncoderModel.from_pretrained(__a , from_flax=__a ) pt_model_loaded.to(__a ) pt_model_loaded.eval() with torch.no_grad(): __lowercase : List[Any] = pt_model_loaded(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(__a , pt_output_loaded.numpy() , 4E-2 ) def lowerCAmelCase ( self : Optional[int] , __a : List[Any] , __a : int , __a : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : str = VisionTextDualEncoderModel(__a ) __lowercase : Union[str, Any] = FlaxVisionTextDualEncoderModel(__a ) __lowercase : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __a ) __lowercase : Any = fx_state self.check_pt_flax_equivalence(__a , __a , __a ) def lowerCAmelCase ( self : Any , __a : Any , __a : Dict , __a : Tuple ) -> str: """simple docstring""" __lowercase : int = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : Union[str, Any] = VisionTextDualEncoderModel(__a ) __lowercase : Dict = FlaxVisionTextDualEncoderModel(__a ) __lowercase : Tuple = load_flax_weights_in_pytorch_model(__a , fx_model.params ) self.check_pt_flax_equivalence(__a , __a , __a ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase : int = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__a ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() self.check_save_load(**__a ) def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" __lowercase : str = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__a ) @is_pt_flax_cross_test def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.prepare_config_and_inputs() __lowercase : Optional[int] = config_inputs_dict.pop("""vision_config""" ) __lowercase : Optional[int] = config_inputs_dict.pop("""text_config""" ) __lowercase : Dict = config_inputs_dict self.check_equivalence_pt_to_flax(__a , __a , __a ) self.check_equivalence_flax_to_pt(__a , __a , __a ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase , __lowercase : List[Any] = self.get_pretrained_model_and_inputs() __lowercase : Dict = model_a(**__a ) __lowercase : Any = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__a ) __lowercase : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(__a ) __lowercase : Optional[int] = model_a(**__a ) __lowercase : Tuple = after_outputs[0] __lowercase : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__a , 1E-5 ) @require_flax class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" __lowercase : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=__a , text_from_pt=__a , ) __lowercase : int = 13 __lowercase : Union[str, Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowercase : Dict = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __lowercase : Tuple = random_attention_mask([batch_size, 4] ) __lowercase : str = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCAmelCase ( self : Optional[Any] , __a : Union[str, Any] , __a : int ) -> Dict: """simple docstring""" __lowercase : int = FlaxViTModel(__a ) __lowercase : List[Any] = FlaxBertModel(__a ) return vision_model, text_model def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = FlaxViTModelTester(self ) __lowercase : str = FlaxBertModelTester(self ) __lowercase : List[str] = vit_model_tester.prepare_config_and_inputs() __lowercase : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase : Optional[int] = vision_config_and_inputs __lowercase , __lowercase , __lowercase , __lowercase : Any = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=__a , text_from_pt=__a , ) __lowercase : Tuple = 13 __lowercase : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowercase : Tuple = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __lowercase : List[Any] = random_attention_mask([batch_size, 4] ) __lowercase : int = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCAmelCase ( self : str , __a : str , __a : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Dict = FlaxCLIPVisionModel(__a ) __lowercase : Optional[Any] = FlaxBertModel(__a ) return vision_model, text_model def lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase : List[Any] = FlaxCLIPVisionModelTester(self ) __lowercase : Optional[Any] = FlaxBertModelTester(self ) __lowercase : Any = clip_model_tester.prepare_config_and_inputs() __lowercase : Optional[Any] = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase : Dict = vision_config_and_inputs __lowercase , __lowercase , __lowercase , __lowercase : Optional[int] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 ) __lowercase : int = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) __lowercase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowercase : Tuple = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=__a , padding=__a , return_tensors="""np""" ) __lowercase : Optional[int] = model(**__a ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowercase : Optional[Any] = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , __a , atol=1E-3 ) )
306
1
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCamelCase : int = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCamelCase : Tuple = ''' Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)["depth"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline("depth-estimation") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to("cuda") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to("cuda") >>> img = load_image( ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" ... "/kandinsky/cat.png" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda") >>> prompt = "A robot, 4k photo" >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature" >>> generator = torch.Generator(device="cuda").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save("robot_cat.png") ``` ''' def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Any=8 ): __lowercase : Tuple = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __lowercase : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Optional[int] , __a : UNetaDConditionModel , __a : DDPMScheduler , __a : VQModel , ) -> Union[str, Any]: """simple docstring""" super().__init__() self.register_modules( unet=__a , scheduler=__a , movq=__a , ) __lowercase : List[str] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase ( self : List[Any] , __a : Tuple , __a : Any , __a : int , __a : Optional[Any] , __a : Optional[int] , __a : Union[str, Any] ) -> str: """simple docstring""" if latents is None: __lowercase : int = randn_tensor(__a , generator=__a , device=__a , dtype=__a ) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}" ) __lowercase : int = latents.to(__a ) __lowercase : Any = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase ( self : Optional[int] , __a : Tuple=0 ) -> Optional[Any]: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) __lowercase : Dict = torch.device(F"cuda:{gpu_id}" ) __lowercase : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__a , __a ) def lowerCAmelCase ( self : Optional[int] , __a : int=0 ) -> Optional[int]: """simple docstring""" if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) __lowercase : str = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=__a ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __lowercase : Optional[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: __lowercase , __lowercase : Union[str, Any] = cpu_offload_with_hook(__a , __a , prev_module_hook=__a ) # We'll offload the last model manually. __lowercase : Optional[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(__a , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__a ) def __call__( self : Dict , __a : Union[torch.FloatTensor, List[torch.FloatTensor]] , __a : Union[torch.FloatTensor, List[torch.FloatTensor]] , __a : torch.FloatTensor , __a : int = 512 , __a : int = 512 , __a : int = 100 , __a : float = 4.0 , __a : int = 1 , __a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[str] = "pil" , __a : bool = True , ) -> Any: """simple docstring""" __lowercase : Any = self._execution_device __lowercase : Union[str, Any] = guidance_scale > 1.0 if isinstance(__a , __a ): __lowercase : Optional[int] = torch.cat(__a , dim=0 ) if isinstance(__a , __a ): __lowercase : Optional[int] = torch.cat(__a , dim=0 ) if isinstance(__a , __a ): __lowercase : str = torch.cat(__a , dim=0 ) __lowercase : Tuple = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: __lowercase : Tuple = image_embeds.repeat_interleave(__a , dim=0 ) __lowercase : Any = negative_image_embeds.repeat_interleave(__a , dim=0 ) __lowercase : Optional[int] = hint.repeat_interleave(__a , dim=0 ) __lowercase : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=__a ) __lowercase : Tuple = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=__a ) self.scheduler.set_timesteps(__a , device=__a ) __lowercase : str = self.scheduler.timesteps __lowercase : Dict = self.movq.config.latent_channels __lowercase , __lowercase : List[Any] = downscale_height_and_width(__a , __a , self.movq_scale_factor ) # create initial latent __lowercase : Union[str, Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , __a , __a , __a , self.scheduler , ) for i, t in enumerate(self.progress_bar(__a ) ): # expand the latents if we are doing classifier free guidance __lowercase : List[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowercase : Union[str, Any] = {"""image_embeds""": image_embeds, """hint""": hint} __lowercase : Optional[Any] = self.unet( sample=__a , timestep=__a , encoder_hidden_states=__a , added_cond_kwargs=__a , return_dict=__a , )[0] if do_classifier_free_guidance: __lowercase , __lowercase : Optional[int] = noise_pred.split(latents.shape[1] , dim=1 ) __lowercase , __lowercase : Tuple = noise_pred.chunk(2 ) __lowercase , __lowercase : List[Any] = variance_pred.chunk(2 ) __lowercase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __lowercase : Union[str, Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __lowercase , __lowercase : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __lowercase : Dict = self.scheduler.step( __a , __a , __a , generator=__a , )[0] # post-processing __lowercase : int = self.movq.decode(__a , force_not_quantize=__a )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: __lowercase : Union[str, Any] = image * 0.5 + 0.5 __lowercase : str = image.clamp(0 , 1 ) __lowercase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __lowercase : int = self.numpy_to_pil(__a ) if not return_dict: return (image,) return ImagePipelineOutput(images=__a )
306
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
306
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCamelCase : List[str] = 16 lowerCamelCase : List[str] = 32 def snake_case_ ( lowerCAmelCase_ : Accelerator , lowerCAmelCase_ : int = 16 ): __lowercase : Optional[int] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __lowercase : Optional[int] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowerCAmelCase_ : int ): # max_length=None => use the model max length (it's actually the default) __lowercase : Optional[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowercase : List[str] = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowercase : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCAmelCase_ : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowercase : Optional[Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowercase : List[Any] = 16 elif accelerator.mixed_precision != "no": __lowercase : Optional[Any] = 8 else: __lowercase : int = None return tokenizer.pad( lowerCAmelCase_ , padding="""longest""" , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_tensors="""pt""" , ) # Instantiate dataloaders. __lowercase : List[str] = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) __lowercase : Optional[Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCamelCase : Optional[Any] = mocked_dataloaders # noqa: F811 def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] ): # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , lowerCAmelCase_ ) == "1": __lowercase : Tuple = 2 # New Code # __lowercase : Any = int(args.gradient_accumulation_steps ) __lowercase : Dict = int(args.local_sgd_steps ) # Initialize accelerator __lowercase : List[str] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowerCAmelCase_ ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("""LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowercase : Dict = config["""lr"""] __lowercase : Union[str, Any] = int(config["""num_epochs"""] ) __lowercase : Union[str, Any] = int(config["""seed"""] ) __lowercase : List[str] = int(config["""batch_size"""] ) __lowercase : Any = evaluate.load("""glue""" , """mrpc""" ) set_seed(lowerCAmelCase_ ) __lowercase , __lowercase : List[str] = get_dataloaders(lowerCAmelCase_ , lowerCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowercase : List[Any] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowercase : Any = model.to(accelerator.device ) # Instantiate optimizer __lowercase : Union[str, Any] = AdamW(params=model.parameters() , lr=lowerCAmelCase_ ) # Instantiate scheduler __lowercase : List[str] = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowercase , __lowercase , __lowercase , __lowercase , __lowercase : Any = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() with LocalSGD( accelerator=lowerCAmelCase_ , model=lowerCAmelCase_ , local_sgd_steps=lowerCAmelCase_ , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(lowerCAmelCase_ ): __lowercase : List[str] = model(**lowerCAmelCase_ ) __lowercase : Optional[int] = output.loss accelerator.backward(lowerCAmelCase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowercase : List[Any] = model(**lowerCAmelCase_ ) __lowercase : Tuple = outputs.logits.argmax(dim=-1 ) __lowercase , __lowercase : List[str] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , ) __lowercase : Optional[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , lowerCAmelCase_ ) def snake_case_ ( ): __lowercase : Dict = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=lowerCAmelCase_ , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument( """--local_sgd_steps""" , type=lowerCAmelCase_ , default=8 , help="""Number of local SGD steps or None to disable local SGD""" ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) __lowercase : int = parser.parse_args() __lowercase : Tuple = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
306
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowerCamelCase : str = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex lowerCamelCase : Union[str, Any] = 10 lowerCamelCase : List[str] = 2_56 def snake_case_ ( lowerCAmelCase_ : List[str] ): if len(lowerCAmelCase_ ) < MIN_NUM_TOKENS: return None __lowercase : Dict = MinHash(num_perm=lowerCAmelCase_ ) for token in set(lowerCAmelCase_ ): min_hash.update(token.encode() ) return min_hash def snake_case_ ( lowerCAmelCase_ : str ): return {t for t in NON_ALPHA.split(lowerCAmelCase_ ) if len(t.strip() ) > 0} class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , *, __a : float = 0.85 , ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[Any] = duplication_jaccard_threshold __lowercase : Optional[Any] = NUM_PERM __lowercase : List[Any] = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) __lowercase : List[str] = defaultdict(__a ) def lowerCAmelCase ( self : str , __a : Tuple , __a : MinHash ) -> None: """simple docstring""" __lowercase : List[Any] = self._index.query(__a ) if code_key in self._index.keys: print(F"Duplicate key {code_key}" ) return self._index.insert(__a , __a ) if len(__a ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__a ) break else: self._duplicate_clusters[close_duplicates[0]].add(__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[List[Dict]]: """simple docstring""" __lowercase : Dict = [] for base, duplicates in self._duplicate_clusters.items(): __lowercase : List[str] = [base] + list(__a ) # reformat the cluster to be a list of dict __lowercase : Optional[Any] = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(__a ) return duplicate_clusters def lowerCAmelCase ( self : Any , __a : int ) -> None: """simple docstring""" __lowercase : Tuple = self.get_duplicate_clusters() with open(__a , """w""" ) as f: json.dump(__a , __a ) def snake_case_ ( lowerCAmelCase_ : str ): __lowercase , __lowercase : Union[str, Any] = element __lowercase : Optional[Any] = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def snake_case_ ( lowerCAmelCase_ : Type[Dataset] ): with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(lowerCAmelCase_ , max_queue_size=10000 ) , chunksize=100 , ): if data is not None: yield data def snake_case_ ( lowerCAmelCase_ : Type[Dataset] , lowerCAmelCase_ : float ): __lowercase : Dict = DuplicationIndex(duplication_jaccard_threshold=lowerCAmelCase_ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(lowerCAmelCase_ ) ) , max_queue_size=100 ) ): di.add(lowerCAmelCase_ , lowerCAmelCase_ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : List[str] = get_tokens(lowerCAmelCase_ ) __lowercase : Dict = get_tokens(lowerCAmelCase_ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) lowerCamelCase : List[str] = None def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] ): __lowercase : Union[str, Any] = [] for elementa in cluster: __lowercase : Tuple = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: __lowercase : Dict = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(lowerCAmelCase_ , lowerCAmelCase_ ) >= jaccard_threshold: elementa["copies"] += 1 break else: __lowercase : Dict = 1 extremes.append(lowerCAmelCase_ ) return extremes def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple ): global _shared_dataset __lowercase : Tuple = dataset __lowercase : Optional[int] = [] __lowercase : str = partial(_find_cluster_extremes_shared , jaccard_threshold=lowerCAmelCase_ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( lowerCAmelCase_ , lowerCAmelCase_ , ) , total=len(lowerCAmelCase_ ) , ): extremes_list.append(lowerCAmelCase_ ) return extremes_list def snake_case_ ( lowerCAmelCase_ : Type[Dataset] , lowerCAmelCase_ : float = 0.85 ): __lowercase : Optional[int] = make_duplicate_clusters(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Tuple = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} __lowercase : int = {} __lowercase : Dict = find_extremes(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for extremes in extremes_clusters: for element in extremes: __lowercase : Optional[Any] = element __lowercase : int = duplicate_indices - set(extreme_dict.keys() ) __lowercase : int = dataset.filter(lambda lowerCAmelCase_ , lowerCAmelCase_ : idx not in remove_indices , with_indices=lowerCAmelCase_ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: __lowercase : List[str] = element["""base_index"""] in extreme_dict if element["is_extreme"]: __lowercase : str = extreme_dict[element["""base_index"""]]["""copies"""] print(F"Original dataset size: {len(lowerCAmelCase_ )}" ) print(F"Number of duplicate clusters: {len(lowerCAmelCase_ )}" ) print(F"Files in duplicate cluster: {len(lowerCAmelCase_ )}" ) print(F"Unique files in duplicate cluster: {len(lowerCAmelCase_ )}" ) print(F"Filtered dataset size: {len(lowerCAmelCase_ )}" ) return ds_filter, duplicate_clusters
306
1
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Any=None ): # set parameter of one layer assert torch_layer.weight.shape == weight.shape, F"{torch_layer} layer.weight does not match" __lowercase : Any = nn.Parameter(lowerCAmelCase_ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F"{torch_layer} layer.bias does not match" __lowercase : Tuple = nn.Parameter(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any ): # set torch weights for 1-to-1 comparison __lowercase : str = np.asarray(weights[0] ) __lowercase : Optional[Any] = np.asarray(weights[1] ) __lowercase : Tuple = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(lowerCAmelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCAmelCase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCAmelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCAmelCase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCAmelCase_ ).view(-1 , lowerCAmelCase_ ).contiguous().transpose(0 , 1 ) , ) def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str] ): # set torch weights for 1-to-1 comparison __lowercase : Optional[int] = np.asarray(weights[0] ) __lowercase : List[str] = np.asarray(weights[1] ) __lowercase : Dict = np.asarray(weights[2] ) __lowercase : int = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(lowerCAmelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCAmelCase_ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(lowerCAmelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCAmelCase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCAmelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCAmelCase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCAmelCase_ ).view(-1 , lowerCAmelCase_ ).contiguous().transpose(0 , 1 ) , ) def snake_case_ ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] ): # layernorm 1 __lowercase : Union[str, Any] = weights[0][0][0] __lowercase : Optional[int] = np.asarray(layer_norm_a[0] ) __lowercase : List[str] = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(lowerCAmelCase_ ) , torch.tensor(lowerCAmelCase_ ) , ) # lsh weights + output __lowercase : Dict = weights[0][1] if len(lowerCAmelCase_ ) < 4: set_layer_weights_in_torch_lsh(lowerCAmelCase_ , torch_block.attention , lowerCAmelCase_ ) else: set_layer_weights_in_torch_local(lowerCAmelCase_ , torch_block.attention , lowerCAmelCase_ ) # intermediate weighs __lowercase : Optional[Any] = weights[2][0][1][2] # Chunked Feed Forward if len(lowerCAmelCase_ ) == 4: __lowercase : List[Any] = intermediate_weights[2] # layernorm 2 __lowercase : Union[str, Any] = np.asarray(intermediate_weights[0][0] ) __lowercase : Dict = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(lowerCAmelCase_ ) , torch.tensor(lowerCAmelCase_ ) , ) # intermediate dense __lowercase : List[Any] = np.asarray(intermediate_weights[1][0] ) __lowercase : str = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(lowerCAmelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCAmelCase_ ) , ) # intermediate out __lowercase : Dict = np.asarray(intermediate_weights[4][0] ) __lowercase : Dict = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(lowerCAmelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCAmelCase_ ) , ) def snake_case_ ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] ): # reformer model __lowercase : str = torch_model.reformer # word embeds __lowercase : List[str] = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowerCAmelCase_ ) , ) if isinstance(weights[3] , lowerCAmelCase_ ): __lowercase : List[Any] = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): __lowercase : List[str] = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F"{position_embeddings[emb_idx]} emb does not match" __lowercase : Optional[Any] = nn.Parameter(torch.tensor(lowerCAmelCase_ ) ) __lowercase : Union[str, Any] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( lowerCAmelCase_ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): __lowercase : Optional[int] = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # output layer norm __lowercase : Union[str, Any] = np.asarray(weights[7][0] ) __lowercase : Optional[int] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(lowerCAmelCase_ ) , torch.tensor(lowerCAmelCase_ ) , ) # output embeddings __lowercase : Tuple = np.asarray(weights[9][0] ) __lowercase : Tuple = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(lowerCAmelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCAmelCase_ ) , ) def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int ): # Initialise PyTorch model __lowercase : Optional[int] = ReformerConfig.from_json_file(lowerCAmelCase_ ) print(F"Building PyTorch model from configuration: {config}" ) __lowercase : Dict = ReformerModelWithLMHead(lowerCAmelCase_ ) with open(lowerCAmelCase_ , """rb""" ) as f: __lowercase : Tuple = pickle.load(lowerCAmelCase_ )["""weights"""] set_model_weights_in_torch(lowerCAmelCase_ , lowerCAmelCase_ , config.hidden_size ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCamelCase : List[str] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
306
from ...processing_utils import ProcessorMixin class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = ['''image_processor''', '''feature_extractor'''] _A : List[Any] = '''TvltImageProcessor''' _A : Optional[int] = '''TvltFeatureExtractor''' def __init__( self : str , __a : List[Any] , __a : Tuple ) -> Optional[Any]: """simple docstring""" super().__init__(image_processor=__a , feature_extractor=__a ) __lowercase : Union[str, Any] = image_processor __lowercase : Tuple = feature_extractor def __call__( self : Tuple , __a : Optional[int]=None , __a : Dict=None , __a : Union[str, Any]=None , __a : Tuple=None , __a : Optional[Any]=False , __a : List[Any]=False , *__a : List[str] , **__a : List[Any] , ) -> Dict: """simple docstring""" if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) __lowercase : Tuple = None if images is not None: __lowercase : Any = self.image_processor(__a , mask_pixel=__a , *__a , **__a ) if images_mixed is not None: __lowercase : Union[str, Any] = self.image_processor(__a , is_mixed=__a , *__a , **__a ) if audio is not None: __lowercase : Optional[Any] = self.feature_extractor( __a , *__a , sampling_rate=__a , mask_audio=__a , **__a ) __lowercase : Tuple = {} if audio is not None: output_dict.update(__a ) if images is not None: output_dict.update(__a ) if images_mixed_dict is not None: output_dict.update(__a ) return output_dict @property def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = self.image_processor.model_input_names __lowercase : Union[str, Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
306
1
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : list[int] , lowerCAmelCase_ : int ): __lowercase : Union[str, Any] = 0 __lowercase : Optional[int] = len(lowerCAmelCase_ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: __lowercase : str = i + 1 else: __lowercase : Optional[Any] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f'''{two_pointer([2, 7, 11, 15], 9) = }''')
306
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : Any , __a : Tuple , __a : Optional[int]=13 , __a : int=7 , __a : List[str]=False , __a : Optional[int]=True , __a : Optional[int]=False , __a : Dict=True , __a : Optional[int]=33 , __a : Dict=32 , __a : Optional[int]=5 , __a : Union[str, Any]=4 , __a : List[str]=37 , __a : Tuple="gelu" , __a : List[str]=0.1 , __a : Dict=0.1 , __a : List[Any]=512 , __a : Any=16 , __a : Optional[Any]=2 , __a : List[Any]=0.02 , __a : int=3 , __a : Union[str, Any]=4 , __a : Optional[int]=None , ) -> Optional[int]: """simple docstring""" __lowercase : Tuple = parent __lowercase : int = batch_size __lowercase : Any = seq_length __lowercase : str = is_training __lowercase : str = use_input_mask __lowercase : Optional[int] = use_token_type_ids __lowercase : List[Any] = use_labels __lowercase : Optional[Any] = vocab_size __lowercase : int = hidden_size __lowercase : List[Any] = num_hidden_layers __lowercase : Dict = num_attention_heads __lowercase : Any = intermediate_size __lowercase : Dict = hidden_act __lowercase : Union[str, Any] = hidden_dropout_prob __lowercase : List[Any] = attention_probs_dropout_prob __lowercase : List[str] = max_position_embeddings __lowercase : Union[str, Any] = type_vocab_size __lowercase : Dict = type_sequence_label_size __lowercase : Union[str, Any] = initializer_range __lowercase : List[Any] = num_labels __lowercase : str = num_choices __lowercase : Tuple = scope def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : int = None if self.use_input_mask: __lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : str = None __lowercase : Optional[Any] = None __lowercase : Tuple = None if self.use_labels: __lowercase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : int = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : List[Any] , __a : int , __a : int , __a : Dict , __a : Union[str, Any] , __a : List[str] , __a : str ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = EsmModel(config=__a ) model.to(__a ) model.eval() __lowercase : str = model(__a , attention_mask=__a ) __lowercase : List[Any] = model(__a ) __lowercase : Optional[int] = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : Union[str, Any] , __a : Dict , __a : List[Any] , __a : Tuple , __a : Union[str, Any] , __a : str , __a : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase : List[str] = EsmForMaskedLM(config=__a ) model.to(__a ) model.eval() __lowercase : int = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[int] , __a : Union[str, Any] , __a : List[Any] , __a : Tuple , __a : Tuple , __a : Optional[int] , __a : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = self.num_labels __lowercase : Any = EsmForTokenClassification(config=__a ) model.to(__a ) model.eval() __lowercase : Optional[Any] = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" __lowercase : Any = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : List[str] = config_and_inputs __lowercase : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Optional[Any] = False _A : Any = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) _A : Optional[Any] = () _A : List[Any] = ( { '''feature-extraction''': EsmModel, '''fill-mask''': EsmForMaskedLM, '''text-classification''': EsmForSequenceClassification, '''token-classification''': EsmForTokenClassification, '''zero-shot''': EsmForSequenceClassification, } if is_torch_available() else {} ) _A : Optional[Any] = True def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" __lowercase : Optional[int] = EsmModelTester(self ) __lowercase : Tuple = ConfigTester(self , config_class=__a , hidden_size=37 ) def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase : Union[str, Any] = type self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : int ) -> Any: """simple docstring""" __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : List[str] = EsmModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] __lowercase : List[str] = EsmEmbeddings(config=__a ) __lowercase : Union[str, Any] = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) __lowercase : int = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) __lowercase : str = create_position_ids_from_input_ids(__a , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__a , __a ) ) ) def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()[0] __lowercase : Optional[Any] = EsmEmbeddings(config=__a ) __lowercase : Optional[int] = torch.empty(2 , 4 , 30 ) __lowercase : Tuple = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] __lowercase : List[str] = torch.as_tensor([expected_single_positions, expected_single_positions] ) __lowercase : Any = embeddings.create_position_ids_from_inputs_embeds(__a ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__a , __a ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" pass @unittest.skip("""Esm does not support embedding resizing""" ) def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" pass @require_torch class lowerCAmelCase ( __a ): '''simple docstring''' @slow def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): __lowercase : Tuple = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() __lowercase : Tuple = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __lowercase : List[str] = model(__a )[0] __lowercase : Union[str, Any] = 33 __lowercase : Union[str, Any] = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , __a ) __lowercase : List[Any] = torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) ) @slow def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): __lowercase : int = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() __lowercase : int = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) __lowercase : Any = model(__a )[0] # compare the actual values for a slice. __lowercase : int = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1E-4 ) )
306
1
def snake_case_ ( lowerCAmelCase_ : float , lowerCAmelCase_ : float ): return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(1_00, 0.25) = }''') print(f'''{price_plus_tax(1_25.50, 0.05) = }''')
306
def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def snake_case_ ( lowerCAmelCase_ : int = 5000 ): __lowercase : Optional[int] = [(i * (3 * i - 1)) // 2 for i in range(1 , lowerCAmelCase_ )] for i, pentagonal_i in enumerate(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ , len(lowerCAmelCase_ ) ): __lowercase : int = pentagonal_nums[j] __lowercase : Optional[int] = pentagonal_i + pentagonal_j __lowercase : Union[str, Any] = pentagonal_j - pentagonal_i if is_pentagonal(lowerCAmelCase_ ) and is_pentagonal(lowerCAmelCase_ ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
306
1
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCAmelCase ( __a , __a , __a , unittest.TestCase ): '''simple docstring''' _A : Dict = StableUnCLIPImgaImgPipeline _A : str = TEXT_GUIDED_IMAGE_VARIATION_PARAMS _A : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _A : Optional[int] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _A : Union[str, Any] = frozenset([] ) def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" __lowercase : Dict = 32 __lowercase : int = embedder_hidden_size # image encoding components __lowercase : Dict = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) __lowercase : Tuple = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=__a , projection_dim=__a , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) __lowercase : Tuple = StableUnCLIPImageNormalizer(embedding_dim=__a ) __lowercase : Union[str, Any] = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) __lowercase : Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) __lowercase : Union[str, Any] = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__a , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) __lowercase : List[str] = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__a , layers_per_block=1 , upcast_attention=__a , use_linear_projection=__a , ) torch.manual_seed(0 ) __lowercase : int = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.00085 , beta_end=0.012 , prediction_type="""v_prediction""" , set_alpha_to_one=__a , steps_offset=1 , ) torch.manual_seed(0 ) __lowercase : Union[str, Any] = AutoencoderKL() __lowercase : Tuple = { # image encoding components """feature_extractor""": feature_extractor, """image_encoder""": image_encoder.eval(), # image noising components """image_normalizer""": image_normalizer.eval(), """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder.eval(), """unet""": unet.eval(), """scheduler""": scheduler, """vae""": vae.eval(), } return components def lowerCAmelCase ( self : List[Any] , __a : int , __a : List[str]=0 , __a : Union[str, Any]=True ) -> Union[str, Any]: """simple docstring""" if str(__a ).startswith("""mps""" ): __lowercase : Optional[int] = torch.manual_seed(__a ) else: __lowercase : List[Any] = torch.Generator(device=__a ).manual_seed(__a ) __lowercase : List[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__a ) ).to(__a ) if pil_image: __lowercase : Optional[Any] = input_image * 0.5 + 0.5 __lowercase : List[str] = input_image.clamp(0 , 1 ) __lowercase : Any = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __lowercase : Optional[Any] = DiffusionPipeline.numpy_to_pil(__a )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def lowerCAmelCase ( self : str ) -> int: """simple docstring""" __lowercase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowercase : int = self.get_dummy_components() __lowercase : int = StableUnCLIPImgaImgPipeline(**__a ) __lowercase : Optional[int] = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) __lowercase : Optional[Any] = self.get_dummy_inputs(__a ) inputs.update({"""image_embeds""": None} ) __lowercase : Union[str, Any] = sd_pipe(**__a ).images __lowercase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowercase : Union[str, Any] = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : str = torch_device in ["""cpu""", """mps"""] self._test_attention_slicing_forward_pass(test_max_difference=__a ) def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Union[str, Any] = torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=__a ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_max_difference=__a ) @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" __lowercase : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) __lowercase : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy""" ) __lowercase : Any = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-l-img2img""" , torch_dtype=torch.floataa ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase : Union[str, Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase : List[Any] = pipe(__a , """anime turle""" , generator=__a , output_type="""np""" ) __lowercase : Union[str, Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__a , __a ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) __lowercase : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy""" ) __lowercase : Dict = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase : str = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase : Union[str, Any] = pipe(__a , """anime turle""" , generator=__a , output_type="""np""" ) __lowercase : Any = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__a , __a ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowercase : List[str] = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa ) __lowercase : List[Any] = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __lowercase : Dict = pipe( __a , """anime turtle""" , num_inference_steps=2 , output_type="""np""" , ) __lowercase : Dict = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
306
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowerCAmelCase ( __a ): '''simple docstring''' _A : Optional[Any] = (DPMSolverSDEScheduler,) _A : Dict = 10 def lowerCAmelCase ( self : Optional[int] , **__a : Dict ) -> Optional[int]: """simple docstring""" __lowercase : Any = { """num_train_timesteps""": 1100, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**__a ) return config def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=__a ) def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__a ) def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = self.scheduler_classes[0] __lowercase : List[str] = self.get_scheduler_config() __lowercase : Any = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase : Optional[Any] = self.dummy_model() __lowercase : str = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase : Optional[Any] = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): __lowercase : Union[str, Any] = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[Any] = model(__a , __a ) __lowercase : Optional[Any] = scheduler.step(__a , __a , __a ) __lowercase : str = output.prev_sample __lowercase : Optional[Any] = torch.sum(torch.abs(__a ) ) __lowercase : Union[str, Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47821044921875 ) < 1E-2 assert abs(result_mean.item() - 0.2178705964565277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59352111816406 ) < 1E-2 assert abs(result_mean.item() - 0.22342906892299652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase : Tuple = self.scheduler_classes[0] __lowercase : Dict = self.get_scheduler_config(prediction_type="""v_prediction""" ) __lowercase : int = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps ) __lowercase : Optional[int] = self.dummy_model() __lowercase : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma __lowercase : Dict = sample.to(__a ) for i, t in enumerate(scheduler.timesteps ): __lowercase : Dict = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[int] = model(__a , __a ) __lowercase : Optional[int] = scheduler.step(__a , __a , __a ) __lowercase : int = output.prev_sample __lowercase : Optional[Any] = torch.sum(torch.abs(__a ) ) __lowercase : List[str] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77149200439453 ) < 1E-2 assert abs(result_mean.item() - 0.16226289014816284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1663360595703 ) < 1E-2 assert abs(result_mean.item() - 0.16688326001167297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8487548828125 ) < 1E-2 assert abs(result_mean.item() - 0.1560530662536621 ) < 1E-3 def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = self.scheduler_classes[0] __lowercase : Dict = self.get_scheduler_config() __lowercase : Optional[int] = scheduler_class(**__a ) scheduler.set_timesteps(self.num_inference_steps , device=__a ) __lowercase : int = self.dummy_model() __lowercase : Optional[Any] = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __lowercase : int = scheduler.scale_model_input(__a , __a ) __lowercase : List[str] = model(__a , __a ) __lowercase : List[str] = scheduler.step(__a , __a , __a ) __lowercase : int = output.prev_sample __lowercase : List[Any] = torch.sum(torch.abs(__a ) ) __lowercase : Optional[Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46957397460938 ) < 1E-2 assert abs(result_mean.item() - 0.21805934607982635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59353637695312 ) < 1E-2 assert abs(result_mean.item() - 0.22342908382415771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1E-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1E-3 def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase : str = self.scheduler_classes[0] __lowercase : List[Any] = self.get_scheduler_config() __lowercase : Tuple = scheduler_class(**__a , use_karras_sigmas=__a ) scheduler.set_timesteps(self.num_inference_steps , device=__a ) __lowercase : List[str] = self.dummy_model() __lowercase : Optional[int] = self.dummy_sample_deter.to(__a ) * scheduler.init_noise_sigma __lowercase : str = sample.to(__a ) for t in scheduler.timesteps: __lowercase : List[Any] = scheduler.scale_model_input(__a , __a ) __lowercase : Optional[Any] = model(__a , __a ) __lowercase : Any = scheduler.step(__a , __a , __a ) __lowercase : Optional[Any] = output.prev_sample __lowercase : Any = torch.sum(torch.abs(__a ) ) __lowercase : Optional[Any] = torch.mean(torch.abs(__a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66974135742188 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63653564453125 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3135223388672 ) < 1E-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1E-2
306
1
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
306
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate lowerCamelCase : str = trt.Logger(trt.Logger.WARNING) lowerCamelCase : Any = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) lowerCamelCase : Optional[Any] = logging.getLogger(__name__) lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=3_84, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=1_28, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) lowerCamelCase : Dict = parser.parse_args() if args.tokenizer_name: lowerCamelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) lowerCamelCase : List[str] = args.per_device_eval_batch_size lowerCamelCase : Any = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties lowerCamelCase : List[str] = True lowerCamelCase : List[Any] = '''temp_engine/bert-fp32.engine''' if args.fpaa: lowerCamelCase : Optional[Any] = '''temp_engine/bert-fp16.engine''' if args.inta: lowerCamelCase : int = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') lowerCamelCase : int = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network lowerCamelCase : Union[str, Any] = [network.get_input(i) for i in range(network.num_inputs)] lowerCamelCase : Dict = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: lowerCamelCase : List[str] = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) lowerCamelCase : Optional[int] = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) lowerCamelCase : Optional[Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ): __lowercase : List[str] = np.asarray(inputs["""input_ids"""] , dtype=np.intaa ) __lowercase : Union[str, Any] = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa ) __lowercase : int = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowerCAmelCase_ ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowerCAmelCase_ ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowerCAmelCase_ ) # start time __lowercase : Optional[Any] = time.time() # Run inference context.execute_async( bindings=[int(lowerCAmelCase_ ) for d_inp in d_inputs] + [int(lowerCAmelCase_ ), int(lowerCAmelCase_ )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) cuda.memcpy_dtoh_async(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Synchronize the stream and take time stream.synchronize() # end time __lowercase : int = time.time() __lowercase : Union[str, Any] = end_time - start_time __lowercase : Any = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. lowerCamelCase : Tuple = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase : List[Any] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. lowerCamelCase : Optional[Any] = raw_datasets['''validation'''].column_names lowerCamelCase : Union[str, Any] = '''question''' if '''question''' in column_names else column_names[0] lowerCamelCase : str = '''context''' if '''context''' in column_names else column_names[1] lowerCamelCase : Dict = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). lowerCamelCase : Dict = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) lowerCamelCase : Tuple = min(args.max_seq_length, tokenizer.model_max_length) def snake_case_ ( lowerCAmelCase_ : int ): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace __lowercase : str = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. __lowercase : List[str] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=lowerCAmelCase_ , stride=args.doc_stride , return_overflowing_tokens=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. __lowercase : List[str] = tokenized_examples.pop("""overflow_to_sample_mapping""" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. __lowercase : Any = [] for i in range(len(tokenized_examples["""input_ids"""] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). __lowercase : Dict = tokenized_examples.sequence_ids(lowerCAmelCase_ ) __lowercase : List[Any] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. __lowercase : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. __lowercase : Dict = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i] ) ] return tokenized_examples lowerCamelCase : Tuple = raw_datasets['''validation'''] # Validation Feature Creation lowerCamelCase : Optional[int] = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) lowerCamelCase : Union[str, Any] = default_data_collator lowerCamelCase : Optional[Any] = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) lowerCamelCase : List[str] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict="eval" ): # Post-processing: we match the start logits and end logits to answers in the original context. __lowercase : int = postprocess_qa_predictions( examples=lowerCAmelCase_ , features=lowerCAmelCase_ , predictions=lowerCAmelCase_ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowerCAmelCase_ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: __lowercase : Optional[int] = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: __lowercase : List[Any] = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] __lowercase : Optional[int] = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=lowerCAmelCase_ , label_ids=lowerCAmelCase_ ) lowerCamelCase : Dict = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def snake_case_ ( lowerCAmelCase_ : str ): return trt.volume(engine.get_binding_shape(lowerCAmelCase_ ) ) * engine.get_binding_dtype(lowerCAmelCase_ ).itemsize # Allocate device memory for inputs and outputs. lowerCamelCase : int = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer lowerCamelCase : Dict = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) lowerCamelCase : str = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) lowerCamelCase : Dict = cuda.mem_alloc(h_outputa.nbytes) lowerCamelCase : Optional[Any] = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. lowerCamelCase : Optional[int] = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(f''' Num examples = {len(eval_dataset)}''') logger.info(f''' Batch size = {args.per_device_eval_batch_size}''') lowerCamelCase : int = 0.0 lowerCamelCase : List[str] = 0 lowerCamelCase : List[str] = timeit.default_timer() lowerCamelCase : List[Any] = None for step, batch in enumerate(eval_dataloader): lowerCamelCase ,lowerCamelCase : str = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 lowerCamelCase ,lowerCamelCase : Union[str, Any] = outputs lowerCamelCase : Optional[Any] = torch.tensor(start_logits) lowerCamelCase : List[str] = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered lowerCamelCase : Optional[int] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-1_00) lowerCamelCase : Dict = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-1_00) lowerCamelCase : List[Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) lowerCamelCase : Dict = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-1_00) if all_preds is not None: lowerCamelCase : Tuple = nested_truncate(all_preds, len(eval_dataset)) lowerCamelCase : Dict = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 10_00 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 10_00)) logger.info('''Total Number of Inference = %d''', niter) lowerCamelCase : str = post_processing_function(eval_examples, eval_dataset, all_preds) lowerCamelCase : Optional[Any] = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'''Evaluation metrics: {eval_metric}''')
306
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" __lowercase : Tuple = tempfile.mkdtemp() # fmt: off __lowercase : str = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on __lowercase : str = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : str = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] __lowercase : str = {"""unk_token""": """<unk>"""} __lowercase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__a ) ) __lowercase : Optional[int] = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } __lowercase : List[Any] = os.path.join(self.tmpdirname , __a ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__a , __a ) def lowerCAmelCase ( self : List[str] , **__a : Optional[int] ) -> Any: """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Any , **__a : Any ) -> str: """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Optional[int] , **__a : Any ) -> Tuple: """simple docstring""" return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" __lowercase : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __lowercase : Dict = [Image.fromarray(np.moveaxis(__a , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : List[Any] = self.get_rust_tokenizer() __lowercase : str = self.get_image_processor() __lowercase : Tuple = CLIPProcessor(tokenizer=__a , image_processor=__a ) processor_slow.save_pretrained(self.tmpdirname ) __lowercase : Dict = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__a ) __lowercase : Optional[int] = CLIPProcessor(tokenizer=__a , image_processor=__a ) processor_fast.save_pretrained(self.tmpdirname ) __lowercase : str = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __a ) self.assertIsInstance(processor_fast.tokenizer , __a ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __a ) self.assertIsInstance(processor_fast.image_processor , __a ) def lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" __lowercase : Dict = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowercase : List[str] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __lowercase : str = self.get_image_processor(do_normalize=__a , padding_value=1.0 ) __lowercase : Optional[Any] = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __a ) def lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" __lowercase : Union[str, Any] = self.get_image_processor() __lowercase : Optional[int] = self.get_tokenizer() __lowercase : List[Any] = CLIPProcessor(tokenizer=__a , image_processor=__a ) __lowercase : Optional[int] = self.prepare_image_inputs() __lowercase : Union[str, Any] = image_processor(__a , return_tensors="""np""" ) __lowercase : Union[str, Any] = processor(images=__a , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" __lowercase : str = self.get_image_processor() __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : List[str] = CLIPProcessor(tokenizer=__a , image_processor=__a ) __lowercase : int = """lower newer""" __lowercase : Optional[int] = processor(text=__a ) __lowercase : Dict = tokenizer(__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase : Union[str, Any] = self.get_image_processor() __lowercase : str = self.get_tokenizer() __lowercase : Union[str, Any] = CLIPProcessor(tokenizer=__a , image_processor=__a ) __lowercase : Any = """lower newer""" __lowercase : str = self.prepare_image_inputs() __lowercase : List[Any] = processor(text=__a , images=__a ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(__a ): processor() def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" __lowercase : int = self.get_image_processor() __lowercase : Any = self.get_tokenizer() __lowercase : Union[str, Any] = CLIPProcessor(tokenizer=__a , image_processor=__a ) __lowercase : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowercase : Union[str, Any] = processor.batch_decode(__a ) __lowercase : int = tokenizer.batch_decode(__a ) self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowercase : Optional[Any] = self.get_image_processor() __lowercase : Any = self.get_tokenizer() __lowercase : int = CLIPProcessor(tokenizer=__a , image_processor=__a ) __lowercase : Optional[int] = """lower newer""" __lowercase : List[Any] = self.prepare_image_inputs() __lowercase : str = processor(text=__a , images=__a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
306
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : str = { '''facebook/nllb-moe-54B''': '''https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''nllb-moe''' _A : List[str] = ['''past_key_values'''] _A : Optional[Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Dict , __a : List[str]=128112 , __a : List[Any]=1024 , __a : List[Any]=12 , __a : Union[str, Any]=4096 , __a : List[str]=16 , __a : int=12 , __a : Optional[int]=4096 , __a : str=16 , __a : List[Any]=0.05 , __a : Any=0.05 , __a : Dict=True , __a : Optional[Any]=True , __a : List[Any]="relu" , __a : Tuple=1024 , __a : Optional[Any]=0.1 , __a : Tuple=0.1 , __a : Any=0.0 , __a : Optional[Any]=0.02 , __a : List[str]=2 , __a : Union[str, Any]=True , __a : List[Any]=False , __a : Tuple="float32" , __a : Optional[int]=False , __a : Optional[int]=128 , __a : str=64 , __a : Dict=4 , __a : str=4 , __a : List[str]=0.001 , __a : List[Any]=0.001 , __a : Optional[Any]="all" , __a : Optional[int]=False , __a : int=False , __a : int=1.0 , __a : Dict=0.2 , __a : Tuple=1 , __a : Optional[Any]=0 , __a : List[Any]=2 , __a : Any=False , **__a : Any , ) -> Any: """simple docstring""" __lowercase : int = vocab_size __lowercase : List[Any] = max_position_embeddings __lowercase : Tuple = d_model __lowercase : str = encoder_ffn_dim __lowercase : List[str] = encoder_layers __lowercase : int = encoder_attention_heads __lowercase : List[Any] = decoder_ffn_dim __lowercase : int = decoder_layers __lowercase : Optional[int] = decoder_attention_heads __lowercase : Union[str, Any] = dropout __lowercase : str = attention_dropout __lowercase : Any = activation_dropout __lowercase : List[Any] = activation_function __lowercase : List[str] = init_std __lowercase : Optional[int] = encoder_layerdrop __lowercase : str = decoder_layerdrop __lowercase : Dict = use_cache __lowercase : Optional[Any] = encoder_layers __lowercase : str = scale_embedding # scale factor will be sqrt(d_model) if True __lowercase : List[Any] = router_z_loss_coef __lowercase : Tuple = router_aux_loss_coef __lowercase : str = decoder_sparse_step __lowercase : Any = encoder_sparse_step __lowercase : str = num_experts __lowercase : List[Any] = expert_capacity __lowercase : int = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) __lowercase : Optional[int] = router_dtype __lowercase : Any = router_ignore_padding_tokens __lowercase : Optional[Any] = batch_prioritized_routing __lowercase : str = second_expert_policy __lowercase : List[str] = normalize_router_prob_before_dropping __lowercase : List[Any] = moe_eval_capacity_token_fraction __lowercase : List[str] = moe_token_dropout __lowercase : Optional[Any] = output_router_logits super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , decoder_start_token_id=__a , **__a , )
306
1
from collections.abc import Sequence def snake_case_ ( lowerCAmelCase_ : Sequence[int] | None = None ): if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) __lowercase : str = nums[0] for i in range(1 , len(lowerCAmelCase_ ) ): __lowercase : Dict = nums[i] __lowercase : List[Any] = max(lowerCAmelCase_ , ans + num , lowerCAmelCase_ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user lowerCamelCase : Optional[Any] = int(input('''Enter number of elements : ''').strip()) lowerCamelCase : Optional[Any] = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n] print(max_subsequence_sum(array))
306
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase : Optional[Any] = { '''configuration_poolformer''': [ '''POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PoolFormerConfig''', '''PoolFormerOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : int = ['''PoolFormerFeatureExtractor'''] lowerCamelCase : Union[str, Any] = ['''PoolFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = [ '''POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PoolFormerForImageClassification''', '''PoolFormerModel''', '''PoolFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
306
1
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : List[Any] , __a : pyspark.sql.DataFrame , __a : Optional[NamedSplit] = None , __a : Optional[Features] = None , __a : bool = True , __a : str = None , __a : bool = False , __a : str = None , __a : bool = True , __a : str = "arrow" , **__a : str , ) -> Dict: """simple docstring""" super().__init__( split=__a , features=__a , cache_dir=__a , keep_in_memory=__a , streaming=__a , **__a , ) __lowercase : int = load_from_cache_file __lowercase : List[Any] = file_format __lowercase : Dict = Spark( df=__a , features=__a , cache_dir=__a , working_dir=__a , **__a , ) def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) __lowercase : List[str] = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=__a , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
306
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : List[str] = 2 __lowercase : Union[str, Any] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(lowerCAmelCase_ ) if n > 1: factors.append(lowerCAmelCase_ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
306
1
def snake_case_ ( lowerCAmelCase_ : float , lowerCAmelCase_ : float ): if density <= 0: raise ValueError("""Impossible fluid density""" ) if bulk_modulus <= 0: raise ValueError("""Impossible bulk modulus""" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
306
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Dict = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) __lowercase : List[str] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __lowercase : Optional[Any] = model(__a )["""last_hidden_state"""] __lowercase : Any = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , __a ) # compare the actual values for a slice. __lowercase : Dict = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
306
1
# Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union lowerCamelCase : Optional[int] = re.compile(r'''^(?P<major>\d+)''' r'''\.(?P<minor>\d+)''' r'''\.(?P<patch>\d+)$''') @total_ordering @dataclass class lowerCAmelCase : '''simple docstring''' _A : str _A : Optional[str] = None _A : Optional[Union[str, int]] = None _A : Optional[Union[str, int]] = None _A : Optional[Union[str, int]] = None def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" __lowercase , __lowercase , __lowercase : str = _str_to_version_tuple(self.version_str ) def __repr__( self : Optional[int] ) -> Tuple: """simple docstring""" return F"{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}" @property def lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" return self.major, self.minor, self.patch def lowerCAmelCase ( self : Optional[Any] , __a : str ) -> Tuple: """simple docstring""" if isinstance(__a , __a ): return Version(__a ) elif isinstance(__a , __a ): return other raise TypeError(F"{other} (type {type(__a )}) cannot be compared to version." ) def __eq__( self : Optional[Any] , __a : int ) -> Any: """simple docstring""" try: __lowercase : List[str] = self._validate_operand(__a ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : int , __a : List[Any] ) -> Any: """simple docstring""" __lowercase : List[str] = self._validate_operand(__a ) return self.tuple < other.tuple def __hash__( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def lowerCAmelCase ( cls : Optional[int] , __a : Union[str, Any] ) -> int: """simple docstring""" __lowercase : Optional[Any] = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" return self.version_str def snake_case_ ( lowerCAmelCase_ : List[Any] ): __lowercase : Optional[Any] = _VERSION_REG.match(lowerCAmelCase_ ) if not res: raise ValueError(F"Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits." ) return tuple(int(lowerCAmelCase_ ) for v in [res.group("""major""" ), res.group("""minor""" ), res.group("""patch""" )] ) def snake_case_ ( lowerCAmelCase_ : List[Any] ): return ".".join(str(lowerCAmelCase_ ) for v in version_tuple )
306
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Optional[Any] = len(lowerCAmelCase_ ) __lowercase : str = len(lowerCAmelCase_ ) __lowercase : Optional[int] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __lowercase : Tuple = True for i in range(lowerCAmelCase_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __lowercase : Optional[Any] = True if a[i].islower(): __lowercase : Dict = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
306
1
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Any = get_failure_array(lowerCAmelCase_ ) # 2) Step through text searching for pattern __lowercase , __lowercase : Optional[int] = 0, 0 # index into text, pattern while i < len(lowerCAmelCase_ ): if pattern[j] == text[i]: if j == (len(lowerCAmelCase_ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: __lowercase : Optional[Any] = failure[j - 1] continue i += 1 return False def snake_case_ ( lowerCAmelCase_ : str ): __lowercase : List[Any] = [0] __lowercase : Optional[Any] = 0 __lowercase : List[Any] = 1 while j < len(lowerCAmelCase_ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: __lowercase : List[str] = failure[i - 1] continue j += 1 failure.append(lowerCAmelCase_ ) return failure if __name__ == "__main__": # Test 1) lowerCamelCase : Dict = '''abc1abc12''' lowerCamelCase : Union[str, Any] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' lowerCamelCase : Any = '''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) lowerCamelCase : List[Any] = '''ABABX''' lowerCamelCase : List[Any] = '''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) lowerCamelCase : int = '''AAAB''' lowerCamelCase : Optional[int] = '''ABAAAAAB''' assert kmp(pattern, text) # Test 4) lowerCamelCase : Optional[Any] = '''abcdabcy''' lowerCamelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) lowerCamelCase : Dict = '''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
306
from scipy.stats import spearmanr import datasets lowerCamelCase : List[str] = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' lowerCamelCase : List[str] = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' lowerCamelCase : Union[str, Any] = r'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def lowerCAmelCase ( self : List[Any] , __a : str , __a : Any , __a : Optional[int]=False ) -> List[str]: """simple docstring""" __lowercase : Optional[Any] = spearmanr(__a , __a ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
306
1
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class lowerCAmelCase ( __a ): '''simple docstring''' _A : jnp.ndarray _A : jnp.ndarray class lowerCAmelCase ( nn.Module ): '''simple docstring''' _A : int _A : Tuple[int] = (16, 32, 96, 256) _A : jnp.dtype = jnp.floataa def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase : Any = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __lowercase : Tuple = [] for i in range(len(self.block_out_channels ) - 1 ): __lowercase : Any = self.block_out_channels[i] __lowercase : Union[str, Any] = self.block_out_channels[i + 1] __lowercase : Union[str, Any] = nn.Conv( __a , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(__a ) __lowercase : int = nn.Conv( __a , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(__a ) __lowercase : str = blocks __lowercase : Dict = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : Union[str, Any] , __a : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Any = self.conv_in(__a ) __lowercase : int = nn.silu(__a ) for block in self.blocks: __lowercase : Optional[int] = block(__a ) __lowercase : List[Any] = nn.silu(__a ) __lowercase : Optional[int] = self.conv_out(__a ) return embedding @flax_register_to_config class lowerCAmelCase ( nn.Module , __a , __a ): '''simple docstring''' _A : int = 32 _A : int = 4 _A : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) _A : Union[bool, Tuple[bool]] = False _A : Tuple[int] = (320, 640, 1280, 1280) _A : int = 2 _A : Union[int, Tuple[int]] = 8 _A : Optional[Union[int, Tuple[int]]] = None _A : int = 1280 _A : float = 0.0 _A : bool = False _A : jnp.dtype = jnp.floataa _A : bool = True _A : int = 0 _A : str = "rgb" _A : Tuple[int] = (16, 32, 96, 256) def lowerCAmelCase ( self : Any , __a : jax.random.KeyArray ) -> FrozenDict: """simple docstring""" __lowercase : List[Any] = (1, self.in_channels, self.sample_size, self.sample_size) __lowercase : int = jnp.zeros(__a , dtype=jnp.floataa ) __lowercase : Tuple = jnp.ones((1,) , dtype=jnp.intaa ) __lowercase : Tuple = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) __lowercase : List[str] = (1, 3, self.sample_size * 8, self.sample_size * 8) __lowercase : Dict = jnp.zeros(__a , dtype=jnp.floataa ) __lowercase , __lowercase : List[Any] = jax.random.split(__a ) __lowercase : Any = {"""params""": params_rng, """dropout""": dropout_rng} return self.init(__a , __a , __a , __a , __a )["params"] def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" __lowercase : Tuple = self.block_out_channels __lowercase : Optional[Any] = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __lowercase : List[Any] = self.num_attention_heads or self.attention_head_dim # input __lowercase : Any = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time __lowercase : Tuple = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) __lowercase : List[Any] = FlaxTimestepEmbedding(__a , dtype=self.dtype ) __lowercase : List[str] = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) __lowercase : Optional[Any] = self.only_cross_attention if isinstance(__a , __a ): __lowercase : Tuple = (only_cross_attention,) * len(self.down_block_types ) if isinstance(__a , __a ): __lowercase : Optional[Any] = (num_attention_heads,) * len(self.down_block_types ) # down __lowercase : Union[str, Any] = [] __lowercase : int = [] __lowercase : List[str] = block_out_channels[0] __lowercase : List[Any] = nn.Conv( __a , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__a ) for i, down_block_type in enumerate(self.down_block_types ): __lowercase : Dict = output_channel __lowercase : Optional[Any] = block_out_channels[i] __lowercase : Union[str, Any] = i == len(__a ) - 1 if down_block_type == "CrossAttnDownBlock2D": __lowercase : List[Any] = FlaxCrossAttnDownBlockaD( in_channels=__a , out_channels=__a , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: __lowercase : Any = FlaxDownBlockaD( in_channels=__a , out_channels=__a , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(__a ) for _ in range(self.layers_per_block ): __lowercase : int = nn.Conv( __a , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__a ) if not is_final_block: __lowercase : List[str] = nn.Conv( __a , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__a ) __lowercase : Optional[Any] = down_blocks __lowercase : Optional[int] = controlnet_down_blocks # mid __lowercase : Tuple = block_out_channels[-1] __lowercase : Tuple = FlaxUNetMidBlockaDCrossAttn( in_channels=__a , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) __lowercase : str = nn.Conv( __a , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : int , __a : Any , __a : Optional[int] , __a : str , __a : Tuple , __a : float = 1.0 , __a : bool = True , __a : bool = False , ) -> Union[FlaxControlNetOutput, Tuple]: """simple docstring""" __lowercase : List[Any] = self.controlnet_conditioning_channel_order if channel_order == "bgr": __lowercase : Union[str, Any] = jnp.flip(__a , axis=1 ) # 1. time if not isinstance(__a , jnp.ndarray ): __lowercase : int = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(__a , jnp.ndarray ) and len(timesteps.shape ) == 0: __lowercase : str = timesteps.astype(dtype=jnp.floataa ) __lowercase : Optional[int] = jnp.expand_dims(__a , 0 ) __lowercase : Union[str, Any] = self.time_proj(__a ) __lowercase : str = self.time_embedding(__a ) # 2. pre-process __lowercase : Any = jnp.transpose(__a , (0, 2, 3, 1) ) __lowercase : Any = self.conv_in(__a ) __lowercase : Optional[int] = jnp.transpose(__a , (0, 2, 3, 1) ) __lowercase : Any = self.controlnet_cond_embedding(__a ) sample += controlnet_cond # 3. down __lowercase : int = (sample,) for down_block in self.down_blocks: if isinstance(__a , __a ): __lowercase , __lowercase : Dict = down_block(__a , __a , __a , deterministic=not train ) else: __lowercase , __lowercase : int = down_block(__a , __a , deterministic=not train ) down_block_res_samples += res_samples # 4. mid __lowercase : Optional[Any] = self.mid_block(__a , __a , __a , deterministic=not train ) # 5. contronet blocks __lowercase : Union[str, Any] = () for down_block_res_sample, controlnet_block in zip(__a , self.controlnet_down_blocks ): __lowercase : int = controlnet_block(__a ) controlnet_down_block_res_samples += (down_block_res_sample,) __lowercase : int = controlnet_down_block_res_samples __lowercase : Optional[int] = self.controlnet_mid_block(__a ) # 6. scaling __lowercase : List[str] = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=__a , mid_block_res_sample=__a )
306
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): __lowercase : Any = get_failure_array(lowerCAmelCase_ ) # 2) Step through text searching for pattern __lowercase , __lowercase : Optional[int] = 0, 0 # index into text, pattern while i < len(lowerCAmelCase_ ): if pattern[j] == text[i]: if j == (len(lowerCAmelCase_ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: __lowercase : Optional[Any] = failure[j - 1] continue i += 1 return False def snake_case_ ( lowerCAmelCase_ : str ): __lowercase : List[Any] = [0] __lowercase : Optional[Any] = 0 __lowercase : List[Any] = 1 while j < len(lowerCAmelCase_ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: __lowercase : List[str] = failure[i - 1] continue j += 1 failure.append(lowerCAmelCase_ ) return failure if __name__ == "__main__": # Test 1) lowerCamelCase : Dict = '''abc1abc12''' lowerCamelCase : Union[str, Any] = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' lowerCamelCase : Any = '''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) lowerCamelCase : List[Any] = '''ABABX''' lowerCamelCase : List[Any] = '''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) lowerCamelCase : int = '''AAAB''' lowerCamelCase : Optional[int] = '''ABAAAAAB''' assert kmp(pattern, text) # Test 4) lowerCamelCase : Optional[Any] = '''abcdabcy''' lowerCamelCase : Any = '''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) lowerCamelCase : Dict = '''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
306
1
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict ): return params[F"{prefix}/{prefix}/relpos_bias/rel_embedding"][:, i, :] def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int="attention" ): __lowercase : Any = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/key/kernel"][:, i, :, :] ) __lowercase : str = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) __lowercase : Optional[Any] = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/out/kernel"][:, i, :, :] ) __lowercase : List[Any] = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) __lowercase : int = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/query/kernel"][:, i, :, :] ) __lowercase : List[Any] = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) __lowercase : int = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/value/kernel"][:, i, :, :] ) __lowercase : str = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int]=False ): if split_mlp_wi: __lowercase : str = params[F"{prefix}/{prefix}/mlp/wi_0/kernel"][:, i, :] __lowercase : int = params[F"{prefix}/{prefix}/mlp/wi_1/kernel"][:, i, :] __lowercase : Optional[Any] = (wi_a, wi_a) else: __lowercase : Any = params[F"{prefix}/{prefix}/mlp/wi/kernel"][:, i, :] __lowercase : Optional[Any] = params[F"{prefix}/{prefix}/mlp/wo/kernel"][:, i, :] return wi, wo def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] ): return params[F"{prefix}/{prefix}/{layer_name}/scale"][:, i] def snake_case_ ( lowerCAmelCase_ : dict , *, lowerCAmelCase_ : int , lowerCAmelCase_ : bool , lowerCAmelCase_ : bool = False ): __lowercase : Any = traverse_util.flatten_dict(variables["""target"""] ) __lowercase : str = {"""/""".join(lowerCAmelCase_ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __lowercase : Optional[int] = """encoder/encoder/mlp/wi_0/kernel""" in old print("""Split MLP:""" , lowerCAmelCase_ ) __lowercase : str = collections.OrderedDict() # Shared embeddings. __lowercase : Optional[int] = old["""token_embedder/embedding"""] # Encoder. for i in range(lowerCAmelCase_ ): # Block i, layer 0 (Self Attention). __lowercase : Optional[int] = tax_layer_norm_lookup(lowerCAmelCase_ , lowerCAmelCase_ , """encoder""" , """pre_attention_layer_norm""" ) __lowercase , __lowercase , __lowercase , __lowercase : str = tax_attention_lookup(lowerCAmelCase_ , lowerCAmelCase_ , """encoder""" , """attention""" ) __lowercase : Any = layer_norm __lowercase : List[Any] = k.T __lowercase : Tuple = o.T __lowercase : Tuple = q.T __lowercase : Optional[Any] = v.T # Block i, layer 1 (MLP). __lowercase : List[str] = tax_layer_norm_lookup(lowerCAmelCase_ , lowerCAmelCase_ , """encoder""" , """pre_mlp_layer_norm""" ) __lowercase , __lowercase : Union[str, Any] = tax_mlp_lookup(lowerCAmelCase_ , lowerCAmelCase_ , """encoder""" , lowerCAmelCase_ ) __lowercase : List[Any] = layer_norm if split_mlp_wi: __lowercase : Any = wi[0].T __lowercase : List[str] = wi[1].T else: __lowercase : str = wi.T __lowercase : Optional[Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer __lowercase : Optional[int] = tax_relpos_bias_lookup( lowerCAmelCase_ , lowerCAmelCase_ , """encoder""" ).T __lowercase : Optional[int] = old["""encoder/encoder_norm/scale"""] if not scalable_attention: __lowercase : Any = tax_relpos_bias_lookup( lowerCAmelCase_ , 0 , """encoder""" ).T __lowercase : List[Any] = tax_relpos_bias_lookup( lowerCAmelCase_ , 0 , """decoder""" ).T if not is_encoder_only: # Decoder. for i in range(lowerCAmelCase_ ): # Block i, layer 0 (Self Attention). __lowercase : Any = tax_layer_norm_lookup(lowerCAmelCase_ , lowerCAmelCase_ , """decoder""" , """pre_self_attention_layer_norm""" ) __lowercase , __lowercase , __lowercase , __lowercase : List[str] = tax_attention_lookup(lowerCAmelCase_ , lowerCAmelCase_ , """decoder""" , """self_attention""" ) __lowercase : Union[str, Any] = layer_norm __lowercase : List[Any] = k.T __lowercase : List[str] = o.T __lowercase : int = q.T __lowercase : Dict = v.T # Block i, layer 1 (Cross Attention). __lowercase : Tuple = tax_layer_norm_lookup(lowerCAmelCase_ , lowerCAmelCase_ , """decoder""" , """pre_cross_attention_layer_norm""" ) __lowercase , __lowercase , __lowercase , __lowercase : str = tax_attention_lookup(lowerCAmelCase_ , lowerCAmelCase_ , """decoder""" , """encoder_decoder_attention""" ) __lowercase : int = layer_norm __lowercase : Optional[Any] = k.T __lowercase : Optional[int] = o.T __lowercase : List[Any] = q.T __lowercase : Optional[Any] = v.T # Block i, layer 2 (MLP). __lowercase : Dict = tax_layer_norm_lookup(lowerCAmelCase_ , lowerCAmelCase_ , """decoder""" , """pre_mlp_layer_norm""" ) __lowercase , __lowercase : Union[str, Any] = tax_mlp_lookup(lowerCAmelCase_ , lowerCAmelCase_ , """decoder""" , lowerCAmelCase_ ) __lowercase : List[str] = layer_norm if split_mlp_wi: __lowercase : Dict = wi[0].T __lowercase : Optional[Any] = wi[1].T else: __lowercase : Dict = wi.T __lowercase : Optional[int] = wo.T if scalable_attention: # convert the rel_embedding of each layer __lowercase : int = tax_relpos_bias_lookup(lowerCAmelCase_ , lowerCAmelCase_ , """decoder""" ).T __lowercase : Optional[Any] = old["""decoder/decoder_norm/scale"""] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __lowercase : Dict = old["""decoder/logits_dense/kernel"""].T return new def snake_case_ ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : bool ): __lowercase : Any = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __lowercase : int = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __lowercase : Optional[Any] = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) __lowercase : Dict = state_dict["""shared.weight"""] return state_dict def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any ): __lowercase : List[Any] = checkpoints.load_tax_checkpoint(lowerCAmelCase_ ) __lowercase : Tuple = convert_tax_to_pytorch( lowerCAmelCase_ , num_layers=config.num_layers , is_encoder_only=lowerCAmelCase_ , scalable_attention=lowerCAmelCase_ ) __lowercase : int = make_state_dict(lowerCAmelCase_ , lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ , strict=lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , ): __lowercase : Union[str, Any] = MTaConfig.from_json_file(lowerCAmelCase_ ) print(F"Building PyTorch model from configuration: {config}" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __lowercase : Tuple = UMTaEncoderModel(lowerCAmelCase_ ) else: __lowercase : Union[str, Any] = UMTaForConditionalGeneration(lowerCAmelCase_ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(lowerCAmelCase_ ) # Verify that we can load the checkpoint. model.from_pretrained(lowerCAmelCase_ ) print("""Done""" ) if __name__ == "__main__": lowerCamelCase : Optional[int] = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) lowerCamelCase : List[str] = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
306
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = ['''pixel_values'''] def __init__( self : Any , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : bool = True , __a : Dict[str, int] = None , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = True , **__a : str , ) -> None: """simple docstring""" super().__init__(**__a ) __lowercase : Dict = size if size is not None else {"""shortest_edge""": 224} __lowercase : Union[str, Any] = get_size_dict(__a , default_to_square=__a ) __lowercase : int = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __lowercase : Any = get_size_dict(__a , default_to_square=__a , param_name="""crop_size""" ) __lowercase : Optional[int] = do_resize __lowercase : Union[str, Any] = size __lowercase : List[Any] = resample __lowercase : Any = do_center_crop __lowercase : Dict = crop_size __lowercase : int = do_rescale __lowercase : Tuple = rescale_factor __lowercase : List[Any] = do_normalize __lowercase : Union[str, Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowercase : int = image_std if image_std is not None else OPENAI_CLIP_STD __lowercase : Union[str, Any] = do_convert_rgb def lowerCAmelCase ( self : Union[str, Any] , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[Any] , ) -> np.ndarray: """simple docstring""" __lowercase : Dict = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) __lowercase : str = get_resize_output_image_size(__a , size=size["""shortest_edge"""] , default_to_square=__a ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Any , ) -> np.ndarray: """simple docstring""" __lowercase : Tuple = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(__a , size=(size["""height"""], size["""width"""]) , data_format=__a , **__a ) def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : Union[int, float] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[Any] , ) -> List[str]: """simple docstring""" return rescale(__a , scale=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Optional[int] , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : List[str] , ) -> np.ndarray: """simple docstring""" return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def lowerCAmelCase ( self : Optional[int] , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : int = None , __a : bool = None , __a : float = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = None , __a : Optional[Union[str, TensorType]] = None , __a : Optional[ChannelDimension] = ChannelDimension.FIRST , **__a : List[Any] , ) -> PIL.Image.Image: """simple docstring""" __lowercase : List[Any] = do_resize if do_resize is not None else self.do_resize __lowercase : Dict = size if size is not None else self.size __lowercase : Tuple = get_size_dict(__a , param_name="""size""" , default_to_square=__a ) __lowercase : int = resample if resample is not None else self.resample __lowercase : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase : List[Any] = crop_size if crop_size is not None else self.crop_size __lowercase : List[str] = get_size_dict(__a , param_name="""crop_size""" , default_to_square=__a ) __lowercase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale __lowercase : str = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase : Dict = do_normalize if do_normalize is not None else self.do_normalize __lowercase : Tuple = image_mean if image_mean is not None else self.image_mean __lowercase : str = image_std if image_std is not None else self.image_std __lowercase : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase : Union[str, Any] = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase : Union[str, Any] = [convert_to_rgb(__a ) for image in images] # All transformations expect numpy arrays. __lowercase : Any = [to_numpy_array(__a ) for image in images] if do_resize: __lowercase : str = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: __lowercase : str = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: __lowercase : Dict = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: __lowercase : Optional[Any] = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] __lowercase : Any = [to_channel_dimension_format(__a , __a ) for image in images] __lowercase : Optional[int] = {"""pixel_values""": images} return BatchFeature(data=__a , tensor_type=__a )
306
1
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowerCamelCase : Optional[Any] = '''src/diffusers''' lowerCamelCase : List[str] = '''.''' # This is to make sure the diffusers module imported is the one in the repo. lowerCamelCase : Tuple = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) lowerCamelCase : List[Any] = spec.loader.load_module() def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] ): return line.startswith(lowerCAmelCase_ ) or len(lowerCAmelCase_ ) <= 1 or re.search(r"""^\s*\)(\s*->.*:|:)\s*$""" , lowerCAmelCase_ ) is not None def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : Union[str, Any] = object_name.split(""".""" ) __lowercase : Any = 0 # First let's find the module where our object lives. __lowercase : List[Any] = parts[i] while i < len(lowerCAmelCase_ ) and not os.path.isfile(os.path.join(lowerCAmelCase_ , F"{module}.py" ) ): i += 1 if i < len(lowerCAmelCase_ ): __lowercase : List[str] = os.path.join(lowerCAmelCase_ , parts[i] ) if i >= len(lowerCAmelCase_ ): raise ValueError(F"`object_name` should begin with the name of a module of diffusers but got {object_name}." ) with open(os.path.join(lowerCAmelCase_ , F"{module}.py" ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __lowercase : Optional[int] = f.readlines() # Now let's find the class / func in the code! __lowercase : List[str] = """""" __lowercase : Dict = 0 for name in parts[i + 1 :]: while ( line_index < len(lowerCAmelCase_ ) and re.search(rF"^{indent}(class|def)\s+{name}(\(|\:)" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(lowerCAmelCase_ ): raise ValueError(F" {object_name} does not match any function or class in {module}." ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). __lowercase : List[Any] = line_index while line_index < len(lowerCAmelCase_ ) and _should_continue(lines[line_index] , lowerCAmelCase_ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __lowercase : Tuple = lines[start_index:line_index] return "".join(lowerCAmelCase_ ) lowerCamelCase : int = re.compile(r'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') lowerCamelCase : Any = re.compile(r'''^\s*(\S+)->(\S+)(\s+.*|$)''') lowerCamelCase : Any = re.compile(r'''<FILL\s+[^>]*>''') def snake_case_ ( lowerCAmelCase_ : Any ): __lowercase : int = code.split("""\n""" ) __lowercase : str = 0 while idx < len(lowerCAmelCase_ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(lowerCAmelCase_ ): return re.search(r"""^(\s*)\S""" , lines[idx] ).groups()[0] return "" def snake_case_ ( lowerCAmelCase_ : List[Any] ): __lowercase : Union[str, Any] = len(get_indent(lowerCAmelCase_ ) ) > 0 if has_indent: __lowercase : Optional[Any] = F"class Bla:\n{code}" __lowercase : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=lowerCAmelCase_ ) __lowercase : Optional[Any] = black.format_str(lowerCAmelCase_ , mode=lowerCAmelCase_ ) __lowercase , __lowercase : Optional[Any] = style_docstrings_in_code(lowerCAmelCase_ ) return result[len("""class Bla:\n""" ) :] if has_indent else result def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any]=False ): with open(lowerCAmelCase_ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __lowercase : List[Any] = f.readlines() __lowercase : Optional[int] = [] __lowercase : str = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(lowerCAmelCase_ ): __lowercase : str = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. __lowercase , __lowercase , __lowercase : List[str] = search.groups() __lowercase : int = find_code_in_diffusers(lowerCAmelCase_ ) __lowercase : Dict = get_indent(lowerCAmelCase_ ) __lowercase : Union[str, Any] = line_index + 1 if indent == theoretical_indent else line_index + 2 __lowercase : Any = theoretical_indent __lowercase : List[str] = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. __lowercase : Any = True while line_index < len(lowerCAmelCase_ ) and should_continue: line_index += 1 if line_index >= len(lowerCAmelCase_ ): break __lowercase : int = lines[line_index] __lowercase : Union[str, Any] = _should_continue(lowerCAmelCase_ , lowerCAmelCase_ ) and re.search(F"^{indent}# End copy" , lowerCAmelCase_ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __lowercase : Optional[int] = lines[start_index:line_index] __lowercase : Dict = """""".join(lowerCAmelCase_ ) # Remove any nested `Copied from` comments to avoid circular copies __lowercase : Union[str, Any] = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(lowerCAmelCase_ ) is None] __lowercase : Optional[Any] = """\n""".join(lowerCAmelCase_ ) # Before comparing, use the `replace_pattern` on the original code. if len(lowerCAmelCase_ ) > 0: __lowercase : Tuple = replace_pattern.replace("""with""" , """""" ).split(""",""" ) __lowercase : int = [_re_replace_pattern.search(lowerCAmelCase_ ) for p in patterns] for pattern in patterns: if pattern is None: continue __lowercase , __lowercase , __lowercase : Dict = pattern.groups() __lowercase : Optional[Any] = re.sub(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if option.strip() == "all-casing": __lowercase : Optional[Any] = re.sub(obja.lower() , obja.lower() , lowerCAmelCase_ ) __lowercase : List[str] = re.sub(obja.upper() , obja.upper() , lowerCAmelCase_ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line __lowercase : List[Any] = blackify(lines[start_index - 1] + theoretical_code ) __lowercase : Optional[int] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: __lowercase : Optional[int] = lines[:start_index] + [theoretical_code] + lines[line_index:] __lowercase : Optional[int] = start_index + 1 if overwrite and len(lowerCAmelCase_ ) > 0: # Warn the user a file has been modified. print(F"Detected changes, rewriting {filename}." ) with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lowerCAmelCase_ ) return diffs def snake_case_ ( lowerCAmelCase_ : bool = False ): __lowercase : Dict = glob.glob(os.path.join(lowerCAmelCase_ , """**/*.py""" ) , recursive=lowerCAmelCase_ ) __lowercase : List[str] = [] for filename in all_files: __lowercase : Any = is_copy_consistent(lowerCAmelCase_ , lowerCAmelCase_ ) diffs += [F"- {filename}: copy does not match {d[0]} at line {d[1]}" for d in new_diffs] if not overwrite and len(lowerCAmelCase_ ) > 0: __lowercase : Dict = """\n""".join(lowerCAmelCase_ ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') lowerCamelCase : Optional[Any] = parser.parse_args() check_copies(args.fix_and_overwrite)
306
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : str ): __lowercase : Tuple = s.rsplit(lowerCAmelCase_ , lowerCAmelCase_ ) return new.join(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : List[Any] ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : List[str] = {} __lowercase : Tuple = ["""group_1""", """group_2""", """group_3""", """group_4"""] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __lowercase : List[str] = key.replace(F"{group_key}." , F"{group_key}.group." ) if "res_path" in key: __lowercase : List[Any] = key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): __lowercase : Union[str, Any] = rreplace(lowerCAmelCase_ , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): __lowercase : Tuple = rreplace(lowerCAmelCase_ , """.b""" , """.bias""" , 1 ) __lowercase : Dict = value.float() return upgrade @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=True ): from dall_e import Encoder __lowercase : Any = Encoder() if os.path.exists(lowerCAmelCase_ ): __lowercase : List[Any] = torch.load(lowerCAmelCase_ ) else: __lowercase : List[Any] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : int = ckpt.state_dict() encoder.load_state_dict(lowerCAmelCase_ ) if config_path is not None: __lowercase : Optional[int] = FlavaImageCodebookConfig.from_pretrained(lowerCAmelCase_ ) else: __lowercase : List[str] = FlavaImageCodebookConfig() __lowercase : Optional[Any] = FlavaImageCodebook(lowerCAmelCase_ ).eval() __lowercase : List[Any] = encoder.state_dict() __lowercase : Union[str, Any] = upgrade_state_dict(lowerCAmelCase_ ) hf_model.load_state_dict(lowerCAmelCase_ ) __lowercase : Dict = hf_model.state_dict() __lowercase : Tuple = count_parameters(lowerCAmelCase_ ) __lowercase : Tuple = count_parameters(lowerCAmelCase_ ) assert torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(lowerCAmelCase_ ) else: return hf_state_dict if __name__ == "__main__": lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowerCamelCase : Union[str, Any] = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
306
1
import heapq import sys import numpy as np lowerCamelCase : Dict = tuple[int, int] class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase : Any = [] __lowercase : Optional[Any] = set() def lowerCAmelCase ( self : str ) -> int: """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float("""inf""" ) def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" return len(self.elements ) == 0 def lowerCAmelCase ( self : Any , __a : Union[str, Any] , __a : Any ) -> Dict: """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(__a ) else: # update # print("update", item) __lowercase : List[str] = [] ((__lowercase) , (__lowercase)) : str = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__lowercase) , (__lowercase)) : str = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def lowerCAmelCase ( self : Tuple , __a : List[Any] ) -> int: """simple docstring""" if item in self.set: self.set.remove(__a ) __lowercase : List[str] = [] ((__lowercase) , (__lowercase)) : Optional[Any] = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__lowercase) , (__lowercase)) : Optional[int] = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return self.elements[0][1] def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" ((__lowercase) , (__lowercase)) : Union[str, Any] = heapq.heappop(self.elements ) self.set.remove(__a ) return (priority, item) def snake_case_ ( lowerCAmelCase_ : TPos , lowerCAmelCase_ : TPos ): # euclidean distance __lowercase : Union[str, Any] = np.array(lowerCAmelCase_ ) __lowercase : int = np.array(lowerCAmelCase_ ) return np.linalg.norm(a - b ) def snake_case_ ( lowerCAmelCase_ : TPos , lowerCAmelCase_ : TPos ): # integer division by time variable return consistent_heuristic(lowerCAmelCase_ , lowerCAmelCase_ ) // t def snake_case_ ( lowerCAmelCase_ : TPos , lowerCAmelCase_ : TPos ): # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def snake_case_ ( lowerCAmelCase_ : TPos , lowerCAmelCase_ : int , lowerCAmelCase_ : TPos , lowerCAmelCase_ : dict[TPos, float] ): __lowercase : Optional[Any] = g_function[start] + Wa * heuristics[i](lowerCAmelCase_ , lowerCAmelCase_ ) return ans def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] ): __lowercase : Optional[int] = np.chararray((n, n) ) for i in range(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ ): __lowercase : Union[str, Any] = """*""" for i in range(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ ): if (j, (n - 1) - i) in blocks: __lowercase : Tuple = """#""" __lowercase : int = """-""" __lowercase : List[str] = back_pointer[goal] while x != start: ((__lowercase) , (__lowercase)) : Optional[Any] = x # print(x) __lowercase : Union[str, Any] = """-""" __lowercase : int = back_pointer[x] __lowercase : List[str] = """-""" for i in range(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=""" """ ) print("""<-- End position""" , end=""" """ ) else: print(grid[i][j] , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) print("""PATH TAKEN BY THE ALGORITHM IS:-""" ) __lowercase : List[str] = back_pointer[goal] while x != start: print(lowerCAmelCase_ , end=""" """ ) __lowercase : Any = back_pointer[x] print(lowerCAmelCase_ ) sys.exit() def snake_case_ ( lowerCAmelCase_ : TPos ): if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] , ): for itera in range(lowerCAmelCase_ ): open_list[itera].remove_element(lowerCAmelCase_ ) # print("s", s) # print("j", j) ((__lowercase) , (__lowercase)) : Any = s __lowercase : List[str] = (x - 1, y) __lowercase : Dict = (x + 1, y) __lowercase : Optional[Any] = (x, y + 1) __lowercase : Optional[int] = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(lowerCAmelCase_ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(lowerCAmelCase_ ) __lowercase : Optional[Any] = -1 __lowercase : Dict = float("""inf""" ) if valid(lowerCAmelCase_ ) and g_function[neighbours] > g_function[s] + 1: __lowercase : Dict = g_function[s] + 1 __lowercase : Dict = s if neighbours not in close_list_anchor: open_list[0].put(lowerCAmelCase_ , key(lowerCAmelCase_ , 0 , lowerCAmelCase_ , lowerCAmelCase_ ) ) if neighbours not in close_list_inad: for var in range(1 , lowerCAmelCase_ ): if key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) <= Wa * key( lowerCAmelCase_ , 0 , lowerCAmelCase_ , lowerCAmelCase_ ): open_list[j].put( lowerCAmelCase_ , key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ) def snake_case_ ( ): __lowercase : Tuple = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list lowerCamelCase : int = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} lowerCamelCase : Optional[int] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] lowerCamelCase : int = make_common_ground() lowerCamelCase : List[str] = blocks_blk # hyper parameters lowerCamelCase : List[str] = 1 lowerCamelCase : Dict = 1 lowerCamelCase : Any = 20 lowerCamelCase : Union[str, Any] = 3 # one consistent and two other inconsistent # start and end destination lowerCamelCase : Tuple = (0, 0) lowerCamelCase : str = (n - 1, n - 1) lowerCamelCase : List[str] = 1 def snake_case_ ( lowerCAmelCase_ : TPos , lowerCAmelCase_ : TPos , lowerCAmelCase_ : int ): __lowercase : Any = {start: 0, goal: float("""inf""" )} __lowercase : List[Any] = {start: -1, goal: -1} __lowercase : Tuple = [] __lowercase : Dict = set() for i in range(lowerCAmelCase_ ): open_list.append(PriorityQueue() ) open_list[i].put(lowerCAmelCase_ , key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ) __lowercase : list[int] = [] __lowercase : list[int] = [] while open_list[0].minkey() < float("""inf""" ): for i in range(1 , lowerCAmelCase_ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: __lowercase , __lowercase : Tuple = open_list[i].top_show() visited.add(lowerCAmelCase_ ) expand_state( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) close_list_inad.append(lowerCAmelCase_ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("""inf""" ): do_something(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: __lowercase : List[str] = open_list[0].top_show() visited.add(lowerCAmelCase_ ) expand_state( lowerCAmelCase_ , 0 , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) close_list_anchor.append(lowerCAmelCase_ ) print("""No path found to goal""" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(lowerCAmelCase_ ): if (j, i) in blocks: print("""#""" , end=""" """ ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("""*""" , end=""" """ ) else: print("""-""" , end=""" """ ) else: print("""*""" , end=""" """ ) if (j, i) == (n - 1, n - 1): print("""<-- End position""" , end=""" """ ) print() print("""^""" ) print("""Start position""" ) print() print("""# is an obstacle""" ) print("""- is the path taken by algorithm""" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
306
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging lowerCamelCase : Tuple = logging.get_logger(__name__) logging.set_verbosity_info() def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): if "xprophetnet" in prophetnet_checkpoint_path: __lowercase : List[str] = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) __lowercase , __lowercase : int = XLMProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) else: __lowercase : List[Any] = ProphetNetForConditionalGenerationOld.from_pretrained(lowerCAmelCase_ ) __lowercase , __lowercase : Optional[Any] = ProphetNetForConditionalGeneration.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ ) __lowercase : List[str] = ["""key_proj""", """value_proj""", """query_proj"""] __lowercase : Optional[int] = { """self_attn""": """ngram_self_attn""", """cross_attn""": """encoder_attn""", """cross_attn_layer_norm""": """encoder_attn_layer_norm""", """feed_forward_layer_norm""": """final_layer_norm""", """feed_forward""": """""", """intermediate""": """fc1""", """output""": """fc2""", """key_proj""": """k_proj""", """query_proj""": """q_proj""", """value_proj""": """v_proj""", """word_embeddings""": """embed_tokens""", """embeddings_layer_norm""": """emb_layer_norm""", """relative_pos_embeddings""": """relative_linear""", """ngram_embeddings""": """ngram_input_embed""", """position_embeddings""": """embed_positions""", } for key in loading_info["missing_keys"]: __lowercase : Tuple = key.split(""".""" ) if attributes[0] == "lm_head": __lowercase : str = prophet __lowercase : List[str] = prophet_old else: __lowercase : Tuple = prophet.prophetnet __lowercase : Union[str, Any] = prophet_old.model __lowercase : Optional[Any] = False for attribute in attributes: if attribute in mapping: __lowercase : Optional[int] = mapping[attribute] if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) > 0: __lowercase : str = attribute elif hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase : List[Any] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" __lowercase : Any = old_model.weight logger.info(F"{attribute} is initialized." ) __lowercase : Any = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" __lowercase : Dict = old_model.bias logger.info(F"{attribute} is initialized" ) __lowercase : int = True break elif attribute in special_keys and hasattr(lowerCAmelCase_ , """in_proj_weight""" ): __lowercase : Dict = old_model.in_proj_weight.shape[0] // 3 __lowercase : Tuple = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": __lowercase : Union[str, Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) __lowercase : int = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": __lowercase : Any = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) __lowercase : List[Any] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": __lowercase : Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) __lowercase : int = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) __lowercase : int = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." __lowercase : Optional[Any] = nn.Parameter(old_model.embed_positions.weight[:512, :] ) __lowercase : int = True break if attribute.isdigit(): __lowercase : Tuple = model[int(lowerCAmelCase_ )] __lowercase : int = old_model[int(lowerCAmelCase_ )] else: __lowercase : Union[str, Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if old_attribute == "": __lowercase : int = old_model else: if not hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError(F"{old_model} does not have {old_attribute}" ) __lowercase : List[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if not is_key_init: raise ValueError(F"{key} was not correctly initialized!" ) print(F"Saving model to {pytorch_dump_folder_path}" ) prophet.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCamelCase : Any = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
306
1
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): return int((input_a, input_a).count(1 ) != 0 ) def snake_case_ ( ): assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
306
def snake_case_ ( lowerCAmelCase_ : int = 200 ): __lowercase : List[str] = [1, 2, 5, 10, 20, 50, 100, 200] __lowercase : List[str] = [0] * (pence + 1) __lowercase : Optional[Any] = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowerCAmelCase_ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
306
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" __lowercase : List[Any] = 1 __lowercase : int = 3 __lowercase : Any = (32, 32) __lowercase : Optional[int] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__a ) return image @property def lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" torch.manual_seed(0 ) __lowercase : List[str] = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=__a , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" torch.manual_seed(0 ) __lowercase : Optional[int] = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" torch.manual_seed(0 ) __lowercase : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) return CLIPTextModel(__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowercase : List[str] = self.dummy_cond_unet_upscale __lowercase : Optional[int] = DDPMScheduler() __lowercase : str = DDIMScheduler(prediction_type="""v_prediction""" ) __lowercase : Optional[Any] = self.dummy_vae __lowercase : Optional[int] = self.dummy_text_encoder __lowercase : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowercase : List[Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowercase : Optional[Any] = Image.fromarray(np.uinta(__a ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk __lowercase : Any = StableDiffusionUpscalePipeline( unet=__a , low_res_scheduler=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , max_noise_level=350 , ) __lowercase : Any = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) __lowercase : List[str] = """A painting of a squirrel eating a burger""" __lowercase : str = torch.Generator(device=__a ).manual_seed(0 ) __lowercase : Optional[Any] = sd_pipe( [prompt] , image=__a , generator=__a , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) __lowercase : Dict = output.images __lowercase : List[str] = torch.Generator(device=__a ).manual_seed(0 ) __lowercase : Union[str, Any] = sd_pipe( [prompt] , image=__a , generator=__a , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , return_dict=__a , )[0] __lowercase : Optional[Any] = image[0, -3:, -3:, -1] __lowercase : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] __lowercase : Tuple = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) __lowercase : List[Any] = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : str = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowercase : Any = self.dummy_cond_unet_upscale __lowercase : Dict = DDPMScheduler() __lowercase : str = DDIMScheduler(prediction_type="""v_prediction""" ) __lowercase : Union[str, Any] = self.dummy_vae __lowercase : Union[str, Any] = self.dummy_text_encoder __lowercase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowercase : List[str] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowercase : Optional[Any] = Image.fromarray(np.uinta(__a ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk __lowercase : str = StableDiffusionUpscalePipeline( unet=__a , low_res_scheduler=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , max_noise_level=350 , ) __lowercase : List[Any] = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) __lowercase : Union[str, Any] = """A painting of a squirrel eating a burger""" __lowercase : List[Any] = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) __lowercase : Optional[int] = output.images assert image.shape[0] == 2 __lowercase : List[Any] = torch.Generator(device=__a ).manual_seed(0 ) __lowercase : Any = sd_pipe( [prompt] , image=__a , generator=__a , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) __lowercase : Optional[Any] = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def lowerCAmelCase ( self : int ) -> str: """simple docstring""" __lowercase : List[Any] = self.dummy_cond_unet_upscale __lowercase : str = DDPMScheduler() __lowercase : Optional[Any] = DDIMScheduler(prediction_type="""v_prediction""" ) __lowercase : Any = self.dummy_vae __lowercase : Dict = self.dummy_text_encoder __lowercase : List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowercase : Optional[int] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowercase : Tuple = Image.fromarray(np.uinta(__a ) ).convert("""RGB""" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 __lowercase : Dict = unet.half() __lowercase : Optional[Any] = text_encoder.half() # make sure here that pndm scheduler skips prk __lowercase : List[str] = StableDiffusionUpscalePipeline( unet=__a , low_res_scheduler=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , max_noise_level=350 , ) __lowercase : Optional[Any] = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) __lowercase : Dict = """A painting of a squirrel eating a burger""" __lowercase : List[str] = torch.manual_seed(0 ) __lowercase : str = sd_pipe( [prompt] , image=__a , generator=__a , num_inference_steps=2 , output_type="""np""" , ).images __lowercase : Union[str, Any] = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : int ) -> str: """simple docstring""" __lowercase : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) __lowercase : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat.npy""" ) __lowercase : List[Any] = """stabilityai/stable-diffusion-x4-upscaler""" __lowercase : Optional[Any] = StableDiffusionUpscalePipeline.from_pretrained(__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() __lowercase : Any = """a cat sitting on a park bench""" __lowercase : int = torch.manual_seed(0 ) __lowercase : Any = pipe( prompt=__a , image=__a , generator=__a , output_type="""np""" , ) __lowercase : Any = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-3 def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" __lowercase : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) __lowercase : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat_fp16.npy""" ) __lowercase : Optional[int] = """stabilityai/stable-diffusion-x4-upscaler""" __lowercase : int = StableDiffusionUpscalePipeline.from_pretrained( __a , torch_dtype=torch.floataa , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() __lowercase : Optional[Any] = """a cat sitting on a park bench""" __lowercase : int = torch.manual_seed(0 ) __lowercase : Tuple = pipe( prompt=__a , image=__a , generator=__a , output_type="""np""" , ) __lowercase : str = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowercase : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) __lowercase : Union[str, Any] = """stabilityai/stable-diffusion-x4-upscaler""" __lowercase : Any = StableDiffusionUpscalePipeline.from_pretrained( __a , torch_dtype=torch.floataa , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __lowercase : str = """a cat sitting on a park bench""" __lowercase : Tuple = torch.manual_seed(0 ) __lowercase : int = pipe( prompt=__a , image=__a , generator=__a , num_inference_steps=5 , output_type="""np""" , ) __lowercase : Union[str, Any] = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
306
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , __a : Dict , __a : List[str]=None , __a : Optional[Any]=None , __a : Union[str, Any]=None , __a : int="resnet50" , __a : List[str]=3 , __a : Tuple=32 , __a : Dict=3 , __a : List[str]=True , __a : Union[str, Any]=True , ) -> Any: """simple docstring""" __lowercase : Optional[int] = parent __lowercase : List[str] = out_indices if out_indices is not None else [4] __lowercase : Optional[int] = stage_names __lowercase : Any = out_features __lowercase : Optional[Any] = backbone __lowercase : Optional[Any] = batch_size __lowercase : Union[str, Any] = image_size __lowercase : List[str] = num_channels __lowercase : str = use_pretrained_backbone __lowercase : str = is_training def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : str = self.get_config() return config, pixel_values def lowerCAmelCase ( self : int ) -> str: """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowerCAmelCase ( self : Optional[int] , __a : Dict , __a : Any ) -> Dict: """simple docstring""" __lowercase : Dict = TimmBackbone(config=__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Optional[Any] = model(__a ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.prepare_config_and_inputs() __lowercase , __lowercase : str = config_and_inputs __lowercase : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch @require_timm class lowerCAmelCase ( __a , __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[Any] = (TimmBackbone,) if is_torch_available() else () _A : Dict = {'''feature-extraction''': TimmBackbone} if is_torch_available() else {} _A : List[Any] = False _A : List[str] = False _A : Any = False _A : Optional[Any] = False def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : str = TimmBackboneModelTester(self ) __lowercase : Any = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" __lowercase : Tuple = """resnet18""" __lowercase : Optional[int] = """microsoft/resnet-18""" __lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a ) __lowercase : Dict = AutoBackbone.from_pretrained(__a ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a , out_indices=[1, 2, 3] ) __lowercase : Optional[Any] = AutoBackbone.from_pretrained(__a , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("""TimmBackbone doesn't support feed forward chunking""" ) def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""" ) def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""" ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't support output_attentions.""" ) def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Safetensors is not supported by timm.""" ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Optional[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : List[str] = [*signature.parameters.keys()] __lowercase : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Optional[Any] = True __lowercase : Union[str, Any] = self.has_attentions # no need to test all models as different heads yield the same functionality __lowercase : Union[str, Any] = self.all_model_classes[0] __lowercase : List[Any] = model_class(__a ) model.to(__a ) __lowercase : Optional[Any] = self._prepare_for_class(__a , __a ) __lowercase : Union[str, Any] = model(**__a ) __lowercase : Optional[int] = outputs[0][-1] # Encoder-/Decoder-only models __lowercase : Any = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowercase : Optional[int] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__a ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() __lowercase : int = model(**__a ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowercase : Any = copy.deepcopy(__a ) __lowercase : Dict = None __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() __lowercase : Optional[int] = model(**__a ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowercase : List[str] = copy.deepcopy(__a ) __lowercase : Optional[Any] = False __lowercase : str = model_class(__a ) model.to(__a ) model.eval() __lowercase : List[Any] = model(**__a )
306
1
import os import pytest from transformers.dynamic_module_utils import get_imports lowerCamelCase : Optional[Any] = ''' import os ''' lowerCamelCase : Optional[int] = ''' def foo(): import os return False ''' lowerCamelCase : Dict = ''' def foo(): def bar(): if True: import os return False return bar() ''' lowerCamelCase : List[Any] = ''' import os try: import bar except ImportError: raise ValueError() ''' lowerCamelCase : Any = ''' import os def foo(): try: import bar except ImportError: raise ValueError() ''' lowerCamelCase : str = ''' import os try: import bar except (ImportError, AttributeError): raise ValueError() ''' lowerCamelCase : List[Any] = ''' import os try: import bar except ImportError as e: raise ValueError() ''' lowerCamelCase : Optional[int] = ''' import os try: import bar except: raise ValueError() ''' lowerCamelCase : List[str] = ''' import os try: import bar import baz except ImportError: raise ValueError() ''' lowerCamelCase : Optional[int] = ''' import os try: import bar import baz except ImportError: x = 1 raise ValueError() ''' lowerCamelCase : Dict = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize("""case""" , lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple ): __lowercase : int = os.path.join(lowerCAmelCase_ , """test_file.py""" ) with open(lowerCAmelCase_ , """w""" ) as _tmp_file: _tmp_file.write(lowerCAmelCase_ ) __lowercase : int = get_imports(lowerCAmelCase_ ) assert parsed_imports == ["os"]
306
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : str = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } lowerCamelCase : Optional[Any] = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): for attribute in key.split(""".""" ): __lowercase : List[str] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if weight_type is not None: __lowercase : Union[str, Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ).shape else: __lowercase : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": __lowercase : Dict = value elif weight_type == "weight_g": __lowercase : Union[str, Any] = value elif weight_type == "weight_v": __lowercase : List[Any] = value elif weight_type == "bias": __lowercase : int = value elif weight_type == "running_mean": __lowercase : List[Any] = value elif weight_type == "running_var": __lowercase : int = value elif weight_type == "num_batches_tracked": __lowercase : int = value elif weight_type == "inv_freq": __lowercase : Optional[Any] = value else: __lowercase : Any = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] ): __lowercase : str = [] __lowercase : Any = fairseq_model.state_dict() __lowercase : List[str] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): __lowercase : Optional[Any] = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , hf_model.config.feat_extract_norm == """group""" , ) __lowercase : List[str] = True else: for key, mapped_key in MAPPING.items(): __lowercase : Any = """wav2vec2_conformer.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __lowercase : Tuple = True if "*" in mapped_key: __lowercase : List[Any] = name.split(lowerCAmelCase_ )[0].split(""".""" )[-2] __lowercase : Any = mapped_key.replace("""*""" , lowerCAmelCase_ ) if "pos_bias_u" in name: __lowercase : Any = None elif "pos_bias_v" in name: __lowercase : Tuple = None elif "weight_g" in name: __lowercase : Union[str, Any] = """weight_g""" elif "weight_v" in name: __lowercase : Dict = """weight_v""" elif "bias" in name: __lowercase : Union[str, Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowercase : str = """weight""" elif "running_mean" in name: __lowercase : str = """running_mean""" elif "inv_freq" in name: __lowercase : List[Any] = """inv_freq""" elif "running_var" in name: __lowercase : Any = """running_var""" elif "num_batches_tracked" in name: __lowercase : Any = """num_batches_tracked""" else: __lowercase : Optional[int] = None set_recursively(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) continue if not is_used: unused_weights.append(lowerCAmelCase_ ) logger.warning(F"Unused weights: {unused_weights}" ) def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] ): __lowercase : List[Any] = full_name.split("""conv_layers.""" )[-1] __lowercase : int = name.split(""".""" ) __lowercase : Optional[Any] = int(items[0] ) __lowercase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __lowercase : Union[str, Any] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __lowercase : List[str] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) __lowercase : Union[str, Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) __lowercase : Dict = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(lowerCAmelCase_ ) @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Dict=True ): if config_path is not None: __lowercase : List[Any] = WavaVecaConformerConfig.from_pretrained(lowerCAmelCase_ , hidden_act="""swish""" ) else: __lowercase : List[Any] = WavaVecaConformerConfig() if "rope" in checkpoint_path: __lowercase : Tuple = """rotary""" if is_finetuned: if dict_path: __lowercase : Any = Dictionary.load(lowerCAmelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __lowercase : List[Any] = target_dict.pad_index __lowercase : Optional[int] = target_dict.bos_index __lowercase : List[Any] = target_dict.eos_index __lowercase : List[str] = len(target_dict.symbols ) __lowercase : Union[str, Any] = os.path.join(lowerCAmelCase_ , """vocab.json""" ) if not os.path.isdir(lowerCAmelCase_ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowerCAmelCase_ ) ) return os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) __lowercase : Tuple = target_dict.indices # fairseq has the <pad> and <s> switched __lowercase : int = 0 __lowercase : Any = 1 with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase : Dict = WavaVecaCTCTokenizer( lowerCAmelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowerCAmelCase_ , ) __lowercase : List[Any] = True if config.feat_extract_norm == """layer""" else False __lowercase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) __lowercase : Optional[int] = WavaVecaProcessor(feature_extractor=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) __lowercase : Union[str, Any] = WavaVecaConformerForCTC(lowerCAmelCase_ ) else: __lowercase : Optional[Any] = WavaVecaConformerForPreTraining(lowerCAmelCase_ ) if is_finetuned: __lowercase , __lowercase , __lowercase : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __lowercase : List[Any] = argparse.Namespace(task="""audio_pretraining""" ) __lowercase : Optional[Any] = fairseq.tasks.setup_task(lowerCAmelCase_ ) __lowercase , __lowercase , __lowercase : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase_ ) __lowercase : Dict = model[0].eval() recursively_load_weights(lowerCAmelCase_ , lowerCAmelCase_ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) lowerCamelCase : Any = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
306
1
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , __a : Optional[Any] , __a : Tuple=13 , __a : str=64 , __a : List[Any]=2 , __a : int=3 , __a : Union[str, Any]=True , __a : Tuple=True , __a : Tuple=32 , __a : Dict=5 , __a : str=4 , __a : List[str]=37 , __a : int="gelu" , __a : Union[str, Any]=0.1 , __a : List[Any]=0.1 , __a : Optional[int]=10 , __a : int=0.02 , __a : List[str]=[1, 16, 4, 4] , __a : Tuple=None , ) -> int: """simple docstring""" __lowercase : Union[str, Any] = parent __lowercase : str = batch_size __lowercase : Tuple = image_size __lowercase : Any = patch_size __lowercase : int = num_channels __lowercase : List[str] = is_training __lowercase : List[Any] = use_labels __lowercase : Optional[Any] = hidden_size __lowercase : Tuple = num_hidden_layers __lowercase : List[str] = num_attention_heads __lowercase : Optional[Any] = intermediate_size __lowercase : Optional[int] = hidden_act __lowercase : str = hidden_dropout_prob __lowercase : Tuple = attention_probs_dropout_prob __lowercase : Optional[Any] = type_sequence_label_size __lowercase : Dict = initializer_range __lowercase : Optional[Any] = scope __lowercase : int = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size __lowercase : List[Any] = (self.image_size // 32) ** 2 __lowercase : Tuple = num_patches + 1 def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : int = None if self.use_labels: __lowercase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : Optional[Any] = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self : str ) -> int: """simple docstring""" __lowercase : str = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [4, 8, 16, 32], """num_groups""": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=__a , ) def lowerCAmelCase ( self : List[Any] , __a : Any , __a : List[Any] , __a : Tuple ) -> str: """simple docstring""" __lowercase : str = ViTHybridModel(config=__a ) model.to(__a ) model.eval() __lowercase : Any = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : List[str] , __a : int , __a : Any , __a : List[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : Optional[int] = self.type_sequence_label_size __lowercase : List[str] = ViTHybridForImageClassification(__a ) model.to(__a ) model.eval() __lowercase : Tuple = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" __lowercase : Optional[int] = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase : List[Any] = config_and_inputs __lowercase : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Dict = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () _A : Optional[int] = ( {'''feature-extraction''': ViTHybridModel, '''image-classification''': ViTHybridForImageClassification} if is_torch_available() else {} ) _A : Any = False _A : List[str] = False _A : Any = False def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase : Dict = ViTHybridModelTester(self ) __lowercase : Optional[int] = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def lowerCAmelCase ( self : int ) -> int: """simple docstring""" pass def lowerCAmelCase ( self : str ) -> int: """simple docstring""" __lowercase , __lowercase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Union[str, Any] = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowercase : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" __lowercase , __lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Optional[int] = model_class(__a ) __lowercase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : List[str] = [*signature.parameters.keys()] __lowercase : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase , __lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : List[Any] = _config_zero_init(__a ) for model_class in self.all_model_classes: __lowercase : Union[str, Any] = model_class(config=__a ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": __lowercase : Optional[Any] = [F"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @slow def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : Optional[Any] = ViTHybridModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def snake_case_ ( ): __lowercase : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase : Dict = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __a ) __lowercase : Union[str, Any] = self.default_image_processor __lowercase : List[str] = prepare_img() __lowercase : str = image_processor(images=__a , return_tensors="""pt""" ).to(__a ) # forward pass with torch.no_grad(): __lowercase : Any = model(**__a ) # verify the logits __lowercase : str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __a ) __lowercase : Optional[int] = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) ) @slow @require_accelerate def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" __lowercase : List[str] = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" ) __lowercase : List[str] = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""" , device_map="""auto""" ) __lowercase : int = prepare_img() __lowercase : Tuple = image_processor(images=__a , return_tensors="""pt""" ) __lowercase : Any = model(**__a ) __lowercase : Dict = outputs.logits # model predicts one of the 1000 ImageNet classes __lowercase : str = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , """tabby, tabby cat""" )
306
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError("""String lengths must match!""" ) __lowercase : str = 0 for chara, chara in zip(lowerCAmelCase_ , lowerCAmelCase_ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
306
1
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] , __a : Dict , __a : List[str]=None , __a : Optional[Any]=None , __a : Union[str, Any]=None , __a : int="resnet50" , __a : List[str]=3 , __a : Tuple=32 , __a : Dict=3 , __a : List[str]=True , __a : Union[str, Any]=True , ) -> Any: """simple docstring""" __lowercase : Optional[int] = parent __lowercase : List[str] = out_indices if out_indices is not None else [4] __lowercase : Optional[int] = stage_names __lowercase : Any = out_features __lowercase : Optional[Any] = backbone __lowercase : Optional[Any] = batch_size __lowercase : Union[str, Any] = image_size __lowercase : List[str] = num_channels __lowercase : str = use_pretrained_backbone __lowercase : str = is_training def lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : str = self.get_config() return config, pixel_values def lowerCAmelCase ( self : int ) -> str: """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowerCAmelCase ( self : Optional[int] , __a : Dict , __a : Any ) -> Dict: """simple docstring""" __lowercase : Dict = TimmBackbone(config=__a ) model.to(__a ) model.eval() with torch.no_grad(): __lowercase : Optional[Any] = model(__a ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowerCAmelCase ( self : Any ) -> int: """simple docstring""" __lowercase : Union[str, Any] = self.prepare_config_and_inputs() __lowercase , __lowercase : str = config_and_inputs __lowercase : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch @require_timm class lowerCAmelCase ( __a , __a , __a , unittest.TestCase ): '''simple docstring''' _A : List[Any] = (TimmBackbone,) if is_torch_available() else () _A : Dict = {'''feature-extraction''': TimmBackbone} if is_torch_available() else {} _A : List[Any] = False _A : List[str] = False _A : Any = False _A : Optional[Any] = False def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : str = TimmBackboneModelTester(self ) __lowercase : Any = ConfigTester(self , config_class=__a , has_text_modality=__a ) def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" __lowercase : Tuple = """resnet18""" __lowercase : Optional[int] = """microsoft/resnet-18""" __lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a ) __lowercase : Dict = AutoBackbone.from_pretrained(__a ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __lowercase : Union[str, Any] = AutoBackbone.from_pretrained(__a , use_timm_backbone=__a , out_indices=[1, 2, 3] ) __lowercase : Optional[Any] = AutoBackbone.from_pretrained(__a , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("""TimmBackbone doesn't support feed forward chunking""" ) def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""" ) def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""" ) def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""" ) def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" ) def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""" ) def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't support output_attentions.""" ) def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Safetensors is not supported by timm.""" ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" pass def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Optional[Any] = model_class(__a ) __lowercase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : List[str] = [*signature.parameters.keys()] __lowercase : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" __lowercase , __lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Optional[Any] = True __lowercase : Union[str, Any] = self.has_attentions # no need to test all models as different heads yield the same functionality __lowercase : Union[str, Any] = self.all_model_classes[0] __lowercase : List[Any] = model_class(__a ) model.to(__a ) __lowercase : Optional[Any] = self._prepare_for_class(__a , __a ) __lowercase : Union[str, Any] = model(**__a ) __lowercase : Optional[int] = outputs[0][-1] # Encoder-/Decoder-only models __lowercase : Any = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __lowercase : Optional[int] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__a ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : List[str] = model_class(__a ) model.to(__a ) model.eval() __lowercase : int = model(**__a ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __lowercase : Any = copy.deepcopy(__a ) __lowercase : Dict = None __lowercase : Tuple = model_class(__a ) model.to(__a ) model.eval() __lowercase : Optional[int] = model(**__a ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __lowercase : List[str] = copy.deepcopy(__a ) __lowercase : Optional[Any] = False __lowercase : str = model_class(__a ) model.to(__a ) model.eval() __lowercase : List[Any] = model(**__a )
306
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def snake_case_ ( lowerCAmelCase_ : Tuple ): if isinstance(lowerCAmelCase_ , collections.abc.Iterable ): return x return (x, x) @require_flax class lowerCAmelCase : '''simple docstring''' def lowerCAmelCase ( self : Any , __a : Any , __a : List[Any] ) -> Optional[Any]: """simple docstring""" pass def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass def lowerCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" pass def lowerCAmelCase ( self : Tuple , __a : np.ndarray , __a : np.ndarray , __a : float ) -> List[Any]: """simple docstring""" __lowercase : List[str] = np.abs((a - b) ).max() self.assertLessEqual(__a , __a , F"Difference between torch and flax is {diff} (>= {tol})." ) def lowerCAmelCase ( self : Tuple , __a : int , __a : str , __a : Union[str, Any] , __a : Optional[Any] , __a : Optional[Any]=None , **__a : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : str = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : str = FlaxVisionTextDualEncoderModel(__a ) __lowercase : Optional[Any] = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def lowerCAmelCase ( self : Optional[int] , __a : Optional[int] , __a : Dict , __a : Dict , __a : List[str] , __a : Optional[Any]=None , **__a : str ) -> str: """simple docstring""" __lowercase , __lowercase : List[str] = self.get_vision_text_model(__a , __a ) __lowercase : Union[str, Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : Any = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : Union[str, Any] , __a : Union[str, Any] , __a : Dict , __a : int=None , **__a : int ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : Tuple = self.get_vision_text_model(__a , __a ) __lowercase : Union[str, Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : List[str] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : List[Any] = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) __lowercase : int = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a ) __lowercase : int = FlaxVisionTextDualEncoderModel.from_pretrained(__a ) __lowercase : Tuple = model(input_ids=__a , pixel_values=__a , attention_mask=__a ) __lowercase : int = after_output[0] __lowercase : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__a , 1E-3 ) def lowerCAmelCase ( self : List[Any] , __a : Any , __a : Tuple , __a : Optional[int] , __a : str , __a : Optional[Any]=None , **__a : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase , __lowercase : str = self.get_vision_text_model(__a , __a ) __lowercase : Optional[Any] = {"""vision_model""": vision_model, """text_model""": text_model} __lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__a ) __lowercase : Union[str, Any] = model( input_ids=__a , pixel_values=__a , attention_mask=__a , output_attentions=__a ) __lowercase : Optional[int] = output.vision_model_output.attentions self.assertEqual(len(__a ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase : Optional[int] = to_atuple(vision_model.config.image_size ) __lowercase : List[str] = to_atuple(vision_model.config.patch_size ) __lowercase : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowercase : int = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __lowercase : Dict = output.text_model_output.attentions self.assertEqual(len(__a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowerCAmelCase ( self : Optional[int] , __a : List[str] , __a : List[Any] , __a : Optional[Any] ) -> Optional[int]: """simple docstring""" pt_model.to(__a ) pt_model.eval() # prepare inputs __lowercase : Union[str, Any] = inputs_dict __lowercase : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): __lowercase : Union[str, Any] = pt_model(**__a ).to_tuple() __lowercase : Tuple = fx_model(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(__a , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__a ) __lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained(__a , from_pt=__a ) __lowercase : Dict = fx_model_loaded(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(__a , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__a ) __lowercase : str = VisionTextDualEncoderModel.from_pretrained(__a , from_flax=__a ) pt_model_loaded.to(__a ) pt_model_loaded.eval() with torch.no_grad(): __lowercase : List[Any] = pt_model_loaded(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(__a , pt_output_loaded.numpy() , 4E-2 ) def lowerCAmelCase ( self : Optional[int] , __a : List[Any] , __a : int , __a : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase : Union[str, Any] = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : str = VisionTextDualEncoderModel(__a ) __lowercase : Union[str, Any] = FlaxVisionTextDualEncoderModel(__a ) __lowercase : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __a ) __lowercase : Any = fx_state self.check_pt_flax_equivalence(__a , __a , __a ) def lowerCAmelCase ( self : Any , __a : Any , __a : Dict , __a : Tuple ) -> str: """simple docstring""" __lowercase : int = VisionTextDualEncoderConfig.from_vision_text_configs(__a , __a ) __lowercase : Union[str, Any] = VisionTextDualEncoderModel(__a ) __lowercase : Dict = FlaxVisionTextDualEncoderModel(__a ) __lowercase : Tuple = load_flax_weights_in_pytorch_model(__a , fx_model.params ) self.check_pt_flax_equivalence(__a , __a , __a ) def lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase : Optional[Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__a ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase : int = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__a ) def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() self.check_save_load(**__a ) def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" __lowercase : str = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__a ) @is_pt_flax_cross_test def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : Optional[Any] = self.prepare_config_and_inputs() __lowercase : Optional[int] = config_inputs_dict.pop("""vision_config""" ) __lowercase : Optional[int] = config_inputs_dict.pop("""text_config""" ) __lowercase : Dict = config_inputs_dict self.check_equivalence_pt_to_flax(__a , __a , __a ) self.check_equivalence_flax_to_pt(__a , __a , __a ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase , __lowercase : List[Any] = self.get_pretrained_model_and_inputs() __lowercase : Dict = model_a(**__a ) __lowercase : Any = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__a ) __lowercase : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(__a ) __lowercase : Optional[int] = model_a(**__a ) __lowercase : Tuple = after_outputs[0] __lowercase : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__a , 1E-5 ) @require_flax class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" __lowercase : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=__a , text_from_pt=__a , ) __lowercase : int = 13 __lowercase : Union[str, Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowercase : Dict = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __lowercase : Tuple = random_attention_mask([batch_size, 4] ) __lowercase : str = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCAmelCase ( self : Optional[Any] , __a : Union[str, Any] , __a : int ) -> Dict: """simple docstring""" __lowercase : int = FlaxViTModel(__a ) __lowercase : List[Any] = FlaxBertModel(__a ) return vision_model, text_model def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowercase : Tuple = FlaxViTModelTester(self ) __lowercase : str = FlaxBertModelTester(self ) __lowercase : List[str] = vit_model_tester.prepare_config_and_inputs() __lowercase : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase : Optional[int] = vision_config_and_inputs __lowercase , __lowercase , __lowercase , __lowercase : Any = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class lowerCAmelCase ( __a , unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=__a , text_from_pt=__a , ) __lowercase : Tuple = 13 __lowercase : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __lowercase : Tuple = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __lowercase : List[Any] = random_attention_mask([batch_size, 4] ) __lowercase : int = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCAmelCase ( self : str , __a : str , __a : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : Dict = FlaxCLIPVisionModel(__a ) __lowercase : Optional[Any] = FlaxBertModel(__a ) return vision_model, text_model def lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" __lowercase : List[Any] = FlaxCLIPVisionModelTester(self ) __lowercase : Optional[Any] = FlaxBertModelTester(self ) __lowercase : Any = clip_model_tester.prepare_config_and_inputs() __lowercase : Optional[Any] = bert_model_tester.prepare_config_and_inputs() __lowercase , __lowercase : Dict = vision_config_and_inputs __lowercase , __lowercase , __lowercase , __lowercase : Optional[int] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 ) __lowercase : int = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) __lowercase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __lowercase : Tuple = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=__a , padding=__a , return_tensors="""np""" ) __lowercase : Optional[int] = model(**__a ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowercase : Optional[Any] = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , __a , atol=1E-3 ) )
306
1