code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A__ : def __init__( self : Any , a : Optional[Any] , a : int=13 , a : List[Any]=32 , a : Optional[int]=3 , a : List[str]=4 , a : List[Any]=[10, 20, 30, 40] , a : Optional[int]=[2, 2, 3, 2] , a : Any=True , a : Tuple=True , a : int=37 , a : List[str]="gelu" , a : Dict=10 , a : Optional[int]=0.0_2 , a : List[Any]=["stage2", "stage3", "stage4"] , a : Union[str, Any]=3 , a : Tuple=None , ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = parent lowerCAmelCase__ : Any = batch_size lowerCAmelCase__ : Tuple = image_size lowerCAmelCase__ : Optional[int] = num_channels lowerCAmelCase__ : Any = num_stages lowerCAmelCase__ : str = hidden_sizes lowerCAmelCase__ : Dict = depths lowerCAmelCase__ : int = is_training lowerCAmelCase__ : str = use_labels lowerCAmelCase__ : Dict = intermediate_size lowerCAmelCase__ : List[str] = hidden_act lowerCAmelCase__ : Optional[Any] = type_sequence_label_size lowerCAmelCase__ : str = initializer_range lowerCAmelCase__ : str = out_features lowerCAmelCase__ : List[Any] = num_labels lowerCAmelCase__ : Optional[int] = scope lowerCAmelCase__ : Any = num_stages def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ : List[str] = None if self.use_labels: lowerCAmelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ : int = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=a , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=a , loss_ignore_index=255 , num_labels=self.num_labels , ) def _lowerCamelCase ( self : Tuple , a : Tuple , a : Any , a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = UperNetForSemanticSegmentation(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Dict = model(a ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : Union[str, Any] = config_and_inputs lowerCAmelCase__ : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowercase = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = UperNetModelTester(self ) lowerCAmelCase__ : Optional[Any] = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=37 ) def _lowerCamelCase ( self : Any ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : Tuple = model_class(a ) lowerCAmelCase__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : Optional[int] = [*signature.parameters.keys()] lowerCAmelCase__ : Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a ) @unittest.skip(reason='UperNet does not use inputs_embeds' ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' pass @unittest.skip(reason='UperNet does not support input and output embeddings' ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' pass @unittest.skip(reason='UperNet does not have a base model' ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' pass @unittest.skip(reason='UperNet does not have a base model' ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _lowerCamelCase ( self : Any ): '''simple docstring''' pass def _lowerCamelCase ( self : Tuple ): '''simple docstring''' def check_hidden_states_output(a : str , a : Optional[Any] , a : Optional[Any] ): lowerCAmelCase__ : Optional[int] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): lowerCAmelCase__ : int = model(**self._prepare_for_class(a , a ) ) lowerCAmelCase__ : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase__ : Tuple = self.model_tester.num_stages self.assertEqual(len(a ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase__ , lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : Optional[int] = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ : List[str] = True check_hidden_states_output(a , a , a ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Union[str, Any] = _config_zero_init(a ) lowerCAmelCase__ : Union[str, Any] = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: lowerCAmelCase__ : int = model_class(config=a ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip(reason='UperNet does not have tied weights' ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' pass @slow def _lowerCamelCase ( self : int ): '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : int = UperNetForSemanticSegmentation.from_pretrained(a ) self.assertIsNotNone(a ) def lowerCAmelCase__ ( ) -> Optional[Any]: lowerCAmelCase__ : Optional[int] = hf_hub_download( repo_id='hf-internal-testing/fixtures_ade20k' , repo_type='dataset' , filename='ADE_val_00000001.jpg' ) lowerCAmelCase__ : int = Image.open(SCREAMING_SNAKE_CASE_ ).convert('RGB' ) return image @require_torch @require_vision @slow class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = AutoImageProcessor.from_pretrained('openmmlab/upernet-swin-tiny' ) lowerCAmelCase__ : Union[str, Any] = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-swin-tiny' ).to(a ) lowerCAmelCase__ : int = prepare_img() lowerCAmelCase__ : Optional[int] = processor(images=a , return_tensors='pt' ).to(a ) with torch.no_grad(): lowerCAmelCase__ : str = model(**a ) lowerCAmelCase__ : Optional[Any] = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , a ) lowerCAmelCase__ : Tuple = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , a , atol=1E-4 ) ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : int = AutoImageProcessor.from_pretrained('openmmlab/upernet-convnext-tiny' ) lowerCAmelCase__ : int = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-convnext-tiny' ).to(a ) lowerCAmelCase__ : str = prepare_img() lowerCAmelCase__ : Dict = processor(images=a , return_tensors='pt' ).to(a ) with torch.no_grad(): lowerCAmelCase__ : str = model(**a ) lowerCAmelCase__ : Union[str, Any] = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , a ) lowerCAmelCase__ : Any = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , a , atol=1E-4 ) )
307
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) lowerCamelCase__ = logging.getLogger(__name__) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: lowerCAmelCase__ : Dict = np.argmax(SCREAMING_SNAKE_CASE_ , axis=1 ) return np.sum(outputs == labels ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: with open(SCREAMING_SNAKE_CASE_ , encoding='utf_8' ) as f: lowerCAmelCase__ : Dict = csv.reader(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Dict = [] next(SCREAMING_SNAKE_CASE_ ) # skip the first line for line in tqdm(SCREAMING_SNAKE_CASE_ ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: lowerCAmelCase__ : Dict = [] for dataset in encoded_datasets: lowerCAmelCase__ : List[str] = len(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) lowerCAmelCase__ : Tuple = np.zeros((n_batch, 2) , dtype=np.intaa ) lowerCAmelCase__ : List[Any] = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) lowerCAmelCase__ : Tuple = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Tuple = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase__ : Any = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase__ : Optional[Any] = with_conta lowerCAmelCase__ : List[str] = with_conta lowerCAmelCase__ : List[Any] = len(SCREAMING_SNAKE_CASE_ ) - 1 lowerCAmelCase__ : Tuple = len(SCREAMING_SNAKE_CASE_ ) - 1 lowerCAmelCase__ : Tuple = with_conta lowerCAmelCase__ : Optional[int] = with_conta lowerCAmelCase__ : Optional[int] = mc_label lowerCAmelCase__ : Dict = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(SCREAMING_SNAKE_CASE_ ) for t in all_inputs ) ) return tensor_datasets def lowerCAmelCase__ ( ) -> int: lowerCAmelCase__ : int = argparse.ArgumentParser() parser.add_argument('--model_name' , type=SCREAMING_SNAKE_CASE_ , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=SCREAMING_SNAKE_CASE_ , default='' ) parser.add_argument('--eval_dataset' , type=SCREAMING_SNAKE_CASE_ , default='' ) parser.add_argument('--seed' , type=SCREAMING_SNAKE_CASE_ , default=42 ) parser.add_argument('--num_train_epochs' , type=SCREAMING_SNAKE_CASE_ , default=3 ) parser.add_argument('--train_batch_size' , type=SCREAMING_SNAKE_CASE_ , default=8 ) parser.add_argument('--eval_batch_size' , type=SCREAMING_SNAKE_CASE_ , default=16 ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=SCREAMING_SNAKE_CASE_ , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=SCREAMING_SNAKE_CASE_ , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=SCREAMING_SNAKE_CASE_ , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=SCREAMING_SNAKE_CASE_ , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=SCREAMING_SNAKE_CASE_ , default=6.25e-5 ) parser.add_argument('--warmup_steps' , default=0 , type=SCREAMING_SNAKE_CASE_ , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=SCREAMING_SNAKE_CASE_ , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=SCREAMING_SNAKE_CASE_ , default=0.01 ) parser.add_argument('--lm_coef' , type=SCREAMING_SNAKE_CASE_ , default=0.9 ) parser.add_argument('--n_valid' , type=SCREAMING_SNAKE_CASE_ , default=374 ) parser.add_argument('--server_ip' , type=SCREAMING_SNAKE_CASE_ , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=SCREAMING_SNAKE_CASE_ , default='' , help='Can be used for distant debugging.' ) lowerCAmelCase__ : List[str] = parser.parse_args() print(SCREAMING_SNAKE_CASE_ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE_ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) lowerCAmelCase__ : str = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) lowerCAmelCase__ : Dict = torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset lowerCAmelCase__ : Union[str, Any] = ['_start_', '_delimiter_', '_classify_'] lowerCAmelCase__ : Dict = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE_ ) ) model.to(SCREAMING_SNAKE_CASE_ ) # Load and encode the datasets def tokenize_and_encode(SCREAMING_SNAKE_CASE_ ): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return obj return [tokenize_and_encode(SCREAMING_SNAKE_CASE_ ) for o in obj] logger.info('Encoding dataset...' ) lowerCAmelCase__ : List[Any] = load_rocstories_dataset(args.train_dataset ) lowerCAmelCase__ : str = load_rocstories_dataset(args.eval_dataset ) lowerCAmelCase__ : Union[str, Any] = (train_dataset, eval_dataset) lowerCAmelCase__ : List[str] = tokenize_and_encode(SCREAMING_SNAKE_CASE_ ) # Compute the max input length for the Transformer lowerCAmelCase__ : Union[str, Any] = model.config.n_positions // 2 - 2 lowerCAmelCase__ : Tuple = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) lowerCAmelCase__ : Dict = min(SCREAMING_SNAKE_CASE_ , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders lowerCAmelCase__ : int = pre_process_datasets(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = tensor_datasets[0], tensor_datasets[1] lowerCAmelCase__ : str = TensorDataset(*SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Tuple = RandomSampler(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Tuple = DataLoader(SCREAMING_SNAKE_CASE_ , sampler=SCREAMING_SNAKE_CASE_ , batch_size=args.train_batch_size ) lowerCAmelCase__ : Optional[Any] = TensorDataset(*SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Dict = SequentialSampler(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = DataLoader(SCREAMING_SNAKE_CASE_ , sampler=SCREAMING_SNAKE_CASE_ , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: lowerCAmelCase__ : Union[str, Any] = args.max_steps lowerCAmelCase__ : int = args.max_steps // (len(SCREAMING_SNAKE_CASE_ ) // args.gradient_accumulation_steps) + 1 else: lowerCAmelCase__ : Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) // args.gradient_accumulation_steps * args.num_train_epochs lowerCAmelCase__ : Optional[int] = list(model.named_parameters() ) lowerCAmelCase__ : Tuple = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] lowerCAmelCase__ : str = [ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] lowerCAmelCase__ : Union[str, Any] = AdamW(SCREAMING_SNAKE_CASE_ , lr=args.learning_rate , eps=args.adam_epsilon ) lowerCAmelCase__ : int = get_linear_schedule_with_warmup( SCREAMING_SNAKE_CASE_ , num_warmup_steps=args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE_ ) if args.do_train: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): lowerCAmelCase__ : str = 0 lowerCAmelCase__ : int = 0 lowerCAmelCase__ : str = tqdm(SCREAMING_SNAKE_CASE_ , desc='Training' ) for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Union[str, Any] = tuple(t.to(SCREAMING_SNAKE_CASE_ ) for t in batch ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = batch lowerCAmelCase__ : Tuple = model(SCREAMING_SNAKE_CASE_ , mc_token_ids=SCREAMING_SNAKE_CASE_ , lm_labels=SCREAMING_SNAKE_CASE_ , mc_labels=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : str = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() lowerCAmelCase__ : Optional[int] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 lowerCAmelCase__ : List[str] = 'Training loss: {:.2e} lr: {:.2e}'.format(SCREAMING_SNAKE_CASE_ , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer lowerCAmelCase__ : Optional[int] = model.module if hasattr(SCREAMING_SNAKE_CASE_ , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` lowerCAmelCase__ : List[str] = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[str] = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE_ ) torch.save(model_to_save.state_dict() , SCREAMING_SNAKE_CASE_ ) model_to_save.config.to_json_file(SCREAMING_SNAKE_CASE_ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned lowerCAmelCase__ : Dict = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) lowerCAmelCase__ : List[Any] = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(SCREAMING_SNAKE_CASE_ ) if args.do_eval: model.eval() lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = 0, 0 lowerCAmelCase__ , lowerCAmelCase__ : Any = 0, 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , desc='Evaluating' ): lowerCAmelCase__ : str = tuple(t.to(SCREAMING_SNAKE_CASE_ ) for t in batch ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Tuple = batch with torch.no_grad(): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[str] = model( SCREAMING_SNAKE_CASE_ , mc_token_ids=SCREAMING_SNAKE_CASE_ , lm_labels=SCREAMING_SNAKE_CASE_ , mc_labels=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = mc_logits.detach().cpu().numpy() lowerCAmelCase__ : List[Any] = mc_labels.to('cpu' ).numpy() lowerCAmelCase__ : str = accuracy(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 lowerCAmelCase__ : Optional[int] = eval_loss / nb_eval_steps lowerCAmelCase__ : Any = eval_accuracy / nb_eval_examples lowerCAmelCase__ : Union[str, Any] = tr_loss / nb_tr_steps if args.do_train else None lowerCAmelCase__ : Tuple = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} lowerCAmelCase__ : Dict = os.path.join(args.output_dir , 'eval_results.txt' ) with open(SCREAMING_SNAKE_CASE_ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , SCREAMING_SNAKE_CASE_ , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
307
1
lowerCamelCase__ = """Input must be a string of 8 numbers plus letter""" lowerCamelCase__ = """TRWAGMYFPDXBNJZSQVHLCKE""" def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> bool: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : List[str] = F'''Expected string as input, found {type(SCREAMING_SNAKE_CASE_ ).__name__}''' raise TypeError(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = spanish_id.replace('-' , '' ).upper() if len(SCREAMING_SNAKE_CASE_ ) != 9: raise ValueError(SCREAMING_SNAKE_CASE_ ) try: lowerCAmelCase__ : Dict = int(spanish_id_clean[0:8] ) lowerCAmelCase__ : int = spanish_id_clean[8] except ValueError as ex: raise ValueError(SCREAMING_SNAKE_CASE_ ) from ex if letter.isdigit(): raise ValueError(SCREAMING_SNAKE_CASE_ ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
307
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCamelCase__ = """python tqdm regex requests packaging filelock numpy tokenizers""".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("""dataclasses""") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("""importlib_metadata""") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> int: require_version(deps[pkg] , SCREAMING_SNAKE_CASE_ )
307
1
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> bool: return str(SCREAMING_SNAKE_CASE_ ) == str(SCREAMING_SNAKE_CASE_ )[::-1] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> int: return int(SCREAMING_SNAKE_CASE_ ) + int(str(SCREAMING_SNAKE_CASE_ )[::-1] ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = 10_000 ) -> int: lowerCAmelCase__ : Union[str, Any] = [] for num in range(1 , SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : Any = num while iterations < 50: lowerCAmelCase__ : int = sum_reverse(SCREAMING_SNAKE_CASE_ ) iterations += 1 if is_palindrome(SCREAMING_SNAKE_CASE_ ): break else: lychrel_nums.append(SCREAMING_SNAKE_CASE_ ) return len(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": print(F"""{solution() = }""")
307
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class A__ ( __magic_name__ ): lowercase = (DPMSolverSDEScheduler,) lowercase = 10 def _lowerCamelCase ( self : Optional[int] , **a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = { 'num_train_timesteps': 1_100, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'noise_sampler_seed': 0, } config.update(**a ) return config def _lowerCamelCase ( self : Tuple ): '''simple docstring''' for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=a ) def _lowerCamelCase ( self : int ): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=a , beta_end=a ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=a ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : int = self.scheduler_classes[0] lowerCAmelCase__ : Tuple = self.get_scheduler_config() lowerCAmelCase__ : List[Any] = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ : Dict = self.dummy_model() lowerCAmelCase__ : int = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ : int = sample.to(a ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : List[Any] = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : str = model(a , a ) lowerCAmelCase__ : int = scheduler.step(a , a , a ) lowerCAmelCase__ : Any = output.prev_sample lowerCAmelCase__ : List[Any] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Optional[int] = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_7_8_2_1_0_4_4_9_2_1_8_7_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_7_8_7_0_5_9_6_4_5_6_5_2_7_7 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_2_1_1_1_8_1_6_4_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_6_8_9_2_2_9_9_6_5_2 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3 def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.scheduler_classes[0] lowerCAmelCase__ : List[str] = self.get_scheduler_config(prediction_type='v_prediction' ) lowerCAmelCase__ : Any = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ : Optional[int] = self.dummy_model() lowerCAmelCase__ : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ : Any = sample.to(a ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : str = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : str = model(a , a ) lowerCAmelCase__ : Dict = scheduler.step(a , a , a ) lowerCAmelCase__ : Tuple = output.prev_sample lowerCAmelCase__ : int = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Union[str, Any] = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_2_4.7_7_1_4_9_2_0_0_4_3_9_4_5_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_2_2_6_2_8_9_0_1_4_8_1_6_2_8_4 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_2_8.1_6_6_3_3_6_0_5_9_5_7_0_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_6_8_8_3_2_6_0_0_1_1_6_7_2_9_7 ) < 1E-3 else: assert abs(result_sum.item() - 1_1_9.8_4_8_7_5_4_8_8_2_8_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.1_5_6_0_5_3_0_6_6_2_5_3_6_6_2_1 ) < 1E-3 def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.scheduler_classes[0] lowerCAmelCase__ : Optional[int] = self.get_scheduler_config() lowerCAmelCase__ : int = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps , device=a ) lowerCAmelCase__ : Tuple = self.dummy_model() lowerCAmelCase__ : Any = self.dummy_sample_deter.to(a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowerCAmelCase__ : Dict = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : Optional[int] = model(a , a ) lowerCAmelCase__ : Tuple = scheduler.step(a , a , a ) lowerCAmelCase__ : Dict = output.prev_sample lowerCAmelCase__ : Union[str, Any] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Dict = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_6_9_5_7_3_9_7_4_6_0_9_3_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_8_0_5_9_3_4_6_0_7_9_8_2_6_3_5 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_3_6_3_7_6_9_5_3_1_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_8_3_8_2_4_1_5_7_7_1 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3 def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.scheduler_classes[0] lowerCAmelCase__ : Any = self.get_scheduler_config() lowerCAmelCase__ : Any = scheduler_class(**a , use_karras_sigmas=a ) scheduler.set_timesteps(self.num_inference_steps , device=a ) lowerCAmelCase__ : str = self.dummy_model() lowerCAmelCase__ : Any = self.dummy_sample_deter.to(a ) * scheduler.init_noise_sigma lowerCAmelCase__ : str = sample.to(a ) for t in scheduler.timesteps: lowerCAmelCase__ : Any = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : int = model(a , a ) lowerCAmelCase__ : Union[str, Any] = scheduler.step(a , a , a ) lowerCAmelCase__ : Union[str, Any] = output.prev_sample lowerCAmelCase__ : Optional[int] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Any = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_7_6.6_6_9_7_4_1_3_5_7_4_2_1_8_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_7.6_3_6_5_3_5_6_4_4_5_3_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2 else: assert abs(result_sum.item() - 1_7_0.3_1_3_5_2_2_3_3_8_8_6_7_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2
307
1
from typing import TYPE_CHECKING from ..utils import _LazyModule lowerCamelCase__ = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
import os import string import sys lowerCamelCase__ = 1 << 8 lowerCamelCase__ = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } lowerCamelCase__ = KEYMAP["""up"""] lowerCamelCase__ = KEYMAP["""left"""] if sys.platform == "win32": lowerCamelCase__ = [] lowerCamelCase__ = { b"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, b"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): lowerCamelCase__ = ord(str(i)) def lowerCAmelCase__ ( ) -> Dict: if os.name == "nt": import msvcrt lowerCAmelCase__ : Dict = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(SCREAMING_SNAKE_CASE_ ) == 0: # Read the keystroke lowerCAmelCase__ : Optional[Any] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCAmelCase__ : Dict = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCAmelCase__ : Dict = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(SCREAMING_SNAKE_CASE_ ) if ord(SCREAMING_SNAKE_CASE_ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) lowerCAmelCase__ : Dict = chr(KEYMAP['esc'] ) except KeyError: lowerCAmelCase__ : Dict = cha[1] else: lowerCAmelCase__ : List[Any] = ch.decode(SCREAMING_SNAKE_CASE_ ) else: lowerCAmelCase__ : Tuple = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCAmelCase__ : Tuple = sys.stdin.fileno() lowerCAmelCase__ : Any = termios.tcgetattr(SCREAMING_SNAKE_CASE_ ) try: tty.setraw(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = sys.stdin.read(1 ) finally: termios.tcsetattr(SCREAMING_SNAKE_CASE_ , termios.TCSADRAIN , SCREAMING_SNAKE_CASE_ ) return ch def lowerCAmelCase__ ( ) -> Union[str, Any]: lowerCAmelCase__ : Any = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(SCREAMING_SNAKE_CASE_ ) == KEYMAP["esc"]: lowerCAmelCase__ : Union[str, Any] = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) == KEYMAP["mod_int"]: lowerCAmelCase__ : str = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(SCREAMING_SNAKE_CASE_ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(SCREAMING_SNAKE_CASE_ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
307
1
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : def __init__( self : Optional[int] , a : Optional[Any] , a : Optional[int]=13 , a : Optional[int]=7 , a : Any=True , a : Tuple=True , a : int=True , a : List[str]=True , a : Dict=99 , a : Dict=16 , a : Dict=36 , a : str=6 , a : Union[str, Any]=6 , a : int=6 , a : Any=37 , a : Dict="gelu" , a : Union[str, Any]=0.1 , a : List[str]=0.1 , a : List[str]=512 , a : Dict=16 , a : Tuple=2 , a : List[Any]=0.0_2 , a : Optional[int]=3 , a : int=4 , a : Optional[Any]=None , ): '''simple docstring''' lowerCAmelCase__ : Any = parent lowerCAmelCase__ : Optional[Any] = batch_size lowerCAmelCase__ : Union[str, Any] = seq_length lowerCAmelCase__ : Any = is_training lowerCAmelCase__ : List[str] = use_input_mask lowerCAmelCase__ : List[str] = use_token_type_ids lowerCAmelCase__ : Union[str, Any] = use_labels lowerCAmelCase__ : Any = vocab_size lowerCAmelCase__ : Any = embedding_size lowerCAmelCase__ : Tuple = hidden_size lowerCAmelCase__ : Dict = num_hidden_layers lowerCAmelCase__ : Dict = num_hidden_groups lowerCAmelCase__ : Tuple = num_attention_heads lowerCAmelCase__ : str = intermediate_size lowerCAmelCase__ : List[Any] = hidden_act lowerCAmelCase__ : Tuple = hidden_dropout_prob lowerCAmelCase__ : str = attention_probs_dropout_prob lowerCAmelCase__ : Any = max_position_embeddings lowerCAmelCase__ : List[str] = type_vocab_size lowerCAmelCase__ : Tuple = type_sequence_label_size lowerCAmelCase__ : int = initializer_range lowerCAmelCase__ : Optional[int] = num_labels lowerCAmelCase__ : Tuple = num_choices lowerCAmelCase__ : Dict = scope def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ : Tuple = None if self.use_input_mask: lowerCAmelCase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ : Optional[int] = None if self.use_token_type_ids: lowerCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ : Dict = None lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : str = None if self.use_labels: lowerCAmelCase__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ : List[str] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : Dict ): '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def _lowerCamelCase ( self : Optional[Any] , a : Dict , a : int , a : Union[str, Any] , a : Any , a : Optional[int] , a : Dict , a : str ): '''simple docstring''' lowerCAmelCase__ : str = AlbertModel(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Dict = model(a , attention_mask=a , token_type_ids=a ) lowerCAmelCase__ : List[str] = model(a , token_type_ids=a ) lowerCAmelCase__ : Any = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowerCamelCase ( self : List[Any] , a : Optional[Any] , a : Any , a : int , a : int , a : Union[str, Any] , a : int , a : List[Any] ): '''simple docstring''' lowerCAmelCase__ : List[Any] = AlbertForPreTraining(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Optional[int] = model( a , attention_mask=a , token_type_ids=a , labels=a , sentence_order_label=a , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def _lowerCamelCase ( self : List[str] , a : int , a : Dict , a : Union[str, Any] , a : Optional[Any] , a : Optional[Any] , a : int , a : Tuple ): '''simple docstring''' lowerCAmelCase__ : List[Any] = AlbertForMaskedLM(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Tuple = model(a , attention_mask=a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : Tuple , a : Tuple , a : Any , a : Dict , a : Dict , a : List[str] , a : Union[str, Any] , a : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = AlbertForQuestionAnswering(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : str = model( a , attention_mask=a , token_type_ids=a , start_positions=a , end_positions=a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : Optional[Any] , a : Optional[Any] , a : List[Any] , a : str , a : Dict , a : Any , a : List[Any] , a : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.num_labels lowerCAmelCase__ : List[Any] = AlbertForSequenceClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : Optional[Any] = model(a , attention_mask=a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self : str , a : str , a : Dict , a : Dict , a : Dict , a : Union[str, Any] , a : Dict , a : int ): '''simple docstring''' lowerCAmelCase__ : Dict = self.num_labels lowerCAmelCase__ : Any = AlbertForTokenClassification(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : List[Any] = model(a , attention_mask=a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self : List[str] , a : int , a : Any , a : Tuple , a : Tuple , a : List[Any] , a : Dict , a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.num_choices lowerCAmelCase__ : Tuple = AlbertForMultipleChoice(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase__ : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase__ : str = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase__ : Union[str, Any] = model( a , attention_mask=a , token_type_ids=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : List[Any] = config_and_inputs lowerCAmelCase__ : int = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowercase = ( { 'feature-extraction': AlbertModel, 'fill-mask': AlbertForMaskedLM, 'question-answering': AlbertForQuestionAnswering, 'text-classification': AlbertForSequenceClassification, 'token-classification': AlbertForTokenClassification, 'zero-shot': AlbertForSequenceClassification, } if is_torch_available() else {} ) lowercase = True def _lowerCamelCase ( self : List[str] , a : Optional[Any] , a : List[Any] , a : List[Any]=False ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = super()._prepare_for_class(a , a , return_labels=a ) if return_labels: if model_class in get_values(a ): lowerCAmelCase__ : List[str] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=a ) lowerCAmelCase__ : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a ) return inputs_dict def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Any = AlbertModelTester(self ) lowerCAmelCase__ : Any = ConfigTester(self , config_class=a , hidden_size=37 ) def _lowerCamelCase ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*a ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase__ : Optional[Any] = type self.model_tester.create_and_check_model(*a ) @slow def _lowerCamelCase ( self : Any ): '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : str = AlbertModel.from_pretrained(a ) self.assertIsNotNone(a ) @require_torch class A__ ( unittest.TestCase ): @slow def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = AlbertModel.from_pretrained('albert-base-v2' ) lowerCAmelCase__ : Optional[Any] = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) lowerCAmelCase__ : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCAmelCase__ : Optional[Any] = model(a , attention_mask=a )[0] lowerCAmelCase__ : int = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , a ) lowerCAmelCase__ : Tuple = torch.tensor( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1E-4 ) )
307
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: return "".join([hex(SCREAMING_SNAKE_CASE_ )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE_ )] ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(SCREAMING_SNAKE_CASE_ ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE_ ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
307
1
from __future__ import annotations from math import gcd def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 2 , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 3 , ) -> int | None: # A value less than 2 can cause an infinite loop in the algorithm. if num < 2: raise ValueError('The input value cannot be less than 2' ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: return (pow(SCREAMING_SNAKE_CASE_ , 2 ) + step) % modulus for _ in range(SCREAMING_SNAKE_CASE_ ): # These track the position within the cycle detection logic. lowerCAmelCase__ : int = seed lowerCAmelCase__ : Dict = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. lowerCAmelCase__ : Dict = rand_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = rand_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Union[str, Any] = rand_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. lowerCAmelCase__ : List[str] = gcd(hare - tortoise , SCREAMING_SNAKE_CASE_ ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. lowerCAmelCase__ : List[Any] = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( """num""", type=int, help="""The value to find a divisor of""", ) parser.add_argument( """--attempts""", type=int, default=3, help="""The number of attempts before giving up""", ) lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F"""{args.num} is probably prime""") else: lowerCamelCase__ = args.num // divisor print(F"""{args.num} = {divisor} * {quotient}""")
307
from __future__ import annotations def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> list[list[int]]: lowerCAmelCase__ : list[list[int]] = [] create_all_state(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , [] , SCREAMING_SNAKE_CASE_ ) return result def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> None: if level == 0: total_list.append(current_list[:] ) return for i in range(SCREAMING_SNAKE_CASE_ , total_number - level + 2 ): current_list.append(SCREAMING_SNAKE_CASE_ ) create_all_state(i + 1 , SCREAMING_SNAKE_CASE_ , level - 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) current_list.pop() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> None: for i in total_list: print(*SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowerCamelCase__ = 4 lowerCamelCase__ = 2 lowerCamelCase__ = generate_all_combinations(n, k) print_all_state(total_list)
307
1
from __future__ import annotations def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> bool: lowerCAmelCase__ : Dict = len(SCREAMING_SNAKE_CASE_ ) # We need to create solution object to save path. lowerCAmelCase__ : Union[str, Any] = [[0 for _ in range(SCREAMING_SNAKE_CASE_ )] for _ in range(SCREAMING_SNAKE_CASE_ )] lowerCAmelCase__ : List[str] = run_maze(SCREAMING_SNAKE_CASE_ , 0 , 0 , SCREAMING_SNAKE_CASE_ ) if solved: print('\n'.join(str(SCREAMING_SNAKE_CASE_ ) for row in solutions ) ) else: print('No solution exists!' ) return solved def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> bool: lowerCAmelCase__ : Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) # Final check point. if i == j == (size - 1): lowerCAmelCase__ : Union[str, Any] = 1 return True lowerCAmelCase__ : int = (not i < 0) and (not j < 0) # Check lower bounds lowerCAmelCase__ : str = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. lowerCAmelCase__ : int = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited lowerCAmelCase__ : Union[str, Any] = 1 # check for directions if ( run_maze(SCREAMING_SNAKE_CASE_ , i + 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or run_maze(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , j + 1 , SCREAMING_SNAKE_CASE_ ) or run_maze(SCREAMING_SNAKE_CASE_ , i - 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or run_maze(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , j - 1 , SCREAMING_SNAKE_CASE_ ) ): return True lowerCAmelCase__ : Dict = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
307
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class A__ ( unittest.TestCase ): @parameterized.expand([(None,), ('foo.json',)] ) def _lowerCamelCase ( self : Dict , a : str ): '''simple docstring''' lowerCAmelCase__ : List[str] = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(a , config_name=a ) lowerCAmelCase__ : Tuple = GenerationConfig.from_pretrained(a , config_name=a ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , a ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , a ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Dict = AutoConfig.from_pretrained('gpt2' ) lowerCAmelCase__ : Any = GenerationConfig.from_model_config(a ) lowerCAmelCase__ : Any = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(a , a ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = GenerationConfig() lowerCAmelCase__ : Dict = { 'max_new_tokens': 1_024, 'foo': 'bar', } lowerCAmelCase__ : List[Any] = copy.deepcopy(a ) lowerCAmelCase__ : Dict = generation_config.update(**a ) # update_kwargs was not modified (no side effects) self.assertEqual(a , a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(a , {'foo': 'bar'} ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Dict = GenerationConfig() lowerCAmelCase__ : List[Any] = 'bar' with tempfile.TemporaryDirectory('test-generation-config' ) as tmp_dir: generation_config.save_pretrained(a ) lowerCAmelCase__ : List[Any] = GenerationConfig.from_pretrained(a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , 'bar' ) lowerCAmelCase__ : int = GenerationConfig.from_model_config(a ) assert not hasattr(a , 'foo' ) # no new kwargs should be initialized if from config def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , a ) self.assertEqual(default_config.num_beams , 1 ) lowerCAmelCase__ : List[Any] = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , a ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(a ) lowerCAmelCase__ : Any = GenerationConfig.from_pretrained(a , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , a ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class A__ ( unittest.TestCase ): @classmethod def _lowerCamelCase ( cls : int ): '''simple docstring''' lowerCAmelCase__ : List[str] = TOKEN HfFolder.save_token(a ) @classmethod def _lowerCamelCase ( cls : Optional[int] ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-generation-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-generation-config-org' ) except HTTPError: pass def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('test-generation-config' , use_auth_token=self._token ) lowerCAmelCase__ : Any = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) # Reset repo delete_repo(token=self._token , repo_id='test-generation-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( a , repo_id='test-generation-config' , push_to_hub=a , use_auth_token=self._token ) lowerCAmelCase__ : Tuple = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : int = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('valid_org/test-generation-config-org' , use_auth_token=self._token ) lowerCAmelCase__ : Dict = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-generation-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( a , repo_id='valid_org/test-generation-config-org' , push_to_hub=a , use_auth_token=self._token ) lowerCAmelCase__ : List[str] = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) )
307
1
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class A__ ( __magic_name__ ): lowercase = 'EncodecFeatureExtractor' lowercase = ('T5Tokenizer', 'T5TokenizerFast') def __init__( self : Optional[Any] , a : str , a : int ): '''simple docstring''' super().__init__(a , a ) lowerCAmelCase__ : List[str] = self.feature_extractor lowerCAmelCase__ : List[Any] = False def _lowerCamelCase ( self : Any , a : Union[str, Any]=None , a : List[str]=None , a : List[Any]=True ): '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=a , language=a , no_timestamps=a ) def __call__( self : Union[str, Any] , *a : str , **a : Union[str, Any] ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*a , **a ) lowerCAmelCase__ : Any = kwargs.pop('audio' , a ) lowerCAmelCase__ : int = kwargs.pop('sampling_rate' , a ) lowerCAmelCase__ : Optional[int] = kwargs.pop('text' , a ) if len(a ) > 0: lowerCAmelCase__ : List[str] = args[0] lowerCAmelCase__ : Dict = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if text is not None: lowerCAmelCase__ : List[str] = self.tokenizer(a , **a ) if audio is not None: lowerCAmelCase__ : Union[str, Any] = self.feature_extractor(a , *a , sampling_rate=a , **a ) if audio is None: return inputs elif text is None: return audio_inputs else: lowerCAmelCase__ : Dict = audio_inputs['input_values'] if "padding_mask" in audio_inputs: lowerCAmelCase__ : Tuple = audio_inputs['padding_mask'] return inputs def _lowerCamelCase ( self : Any , *a : List[Any] , **a : Tuple ): '''simple docstring''' lowerCAmelCase__ : int = kwargs.pop('audio' , a ) lowerCAmelCase__ : int = kwargs.pop('padding_mask' , a ) if len(a ) > 0: lowerCAmelCase__ : str = args[0] lowerCAmelCase__ : int = args[1:] if audio_values is not None: return self._decode_audio(a , padding_mask=a ) else: return self.tokenizer.batch_decode(*a , **a ) def _lowerCamelCase ( self : Optional[int] , *a : Tuple , **a : Union[str, Any] ): '''simple docstring''' return self.tokenizer.decode(*a , **a ) def _lowerCamelCase ( self : Union[str, Any] , a : Union[str, Any] , a : Optional = None ): '''simple docstring''' lowerCAmelCase__ : List[Any] = to_numpy(a ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = audio_values.shape if padding_mask is None: return list(a ) lowerCAmelCase__ : Optional[int] = to_numpy(a ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) lowerCAmelCase__ : List[str] = seq_len - padding_mask.shape[-1] lowerCAmelCase__ : Union[str, Any] = 1 - self.feature_extractor.padding_value lowerCAmelCase__ : Optional[int] = np.pad(a , ((0, 0), (0, difference)) , 'constant' , constant_values=a ) lowerCAmelCase__ : str = audio_values.tolist() for i in range(a ): lowerCAmelCase__ : int = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] lowerCAmelCase__ : int = sliced_audio.reshape(a , -1 ) return audio_values
307
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( __magic_name__ , unittest.TestCase ): lowercase = UnCLIPImageVariationPipeline lowercase = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} lowercase = IMAGE_VARIATION_BATCH_PARAMS lowercase = [ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] lowercase = False @property def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' return 32 @property def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' return 32 @property def _lowerCamelCase ( self : int ): '''simple docstring''' return self.time_input_dim @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.time_input_dim * 4 @property def _lowerCamelCase ( self : Any ): '''simple docstring''' return 100 @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def _lowerCamelCase ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(a ) @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : List[Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(a ) @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Union[str, Any] = { 'clip_embeddings_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'cross_attention_dim': self.cross_attention_dim, } lowerCAmelCase__ : Optional[Any] = UnCLIPTextProjModel(**a ) return model @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : str = { 'sample_size': 32, # RGB in channels 'in_channels': 3, # Out channels is double in channels because predicts mean and variance 'out_channels': 6, 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': 'identity', } lowerCAmelCase__ : str = UNetaDConditionModel(**a ) return model @property def _lowerCamelCase ( self : str ): '''simple docstring''' return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def _lowerCamelCase ( self : str ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Any = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def _lowerCamelCase ( self : int ): '''simple docstring''' torch.manual_seed(1 ) lowerCAmelCase__ : List[str] = UNetaDModel(**self.dummy_super_res_kwargs ) return model def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.dummy_decoder lowerCAmelCase__ : Optional[int] = self.dummy_text_proj lowerCAmelCase__ : Any = self.dummy_text_encoder lowerCAmelCase__ : Any = self.dummy_tokenizer lowerCAmelCase__ : Any = self.dummy_super_res_first lowerCAmelCase__ : Optional[int] = self.dummy_super_res_last lowerCAmelCase__ : Dict = UnCLIPScheduler( variance_type='learned_range' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) lowerCAmelCase__ : Any = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) lowerCAmelCase__ : Any = CLIPImageProcessor(crop_size=32 , size=32 ) lowerCAmelCase__ : Optional[int] = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def _lowerCamelCase ( self : Any , a : Dict , a : List[str]=0 , a : List[str]=True ): '''simple docstring''' lowerCAmelCase__ : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(a ) ).to(a ) if str(a ).startswith('mps' ): lowerCAmelCase__ : Optional[int] = torch.manual_seed(a ) else: lowerCAmelCase__ : str = torch.Generator(device=a ).manual_seed(a ) if pil_image: lowerCAmelCase__ : Optional[int] = input_image * 0.5 + 0.5 lowerCAmelCase__ : Dict = input_image.clamp(0 , 1 ) lowerCAmelCase__ : List[Any] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCAmelCase__ : Union[str, Any] = DiffusionPipeline.numpy_to_pil(a )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = 'cpu' lowerCAmelCase__ : Any = self.get_dummy_components() lowerCAmelCase__ : List[str] = self.pipeline_class(**a ) lowerCAmelCase__ : Dict = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Dict = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : str = pipe(**a ) lowerCAmelCase__ : Optional[Any] = output.images lowerCAmelCase__ : str = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Optional[int] = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : List[str] = np.array( [ 0.9_9_9_7, 0.0_0_0_2, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_6_9, 0.0_0_2_3, 0.9_9_9_7, 0.9_9_6_9, 0.9_9_7_0, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = 'cpu' lowerCAmelCase__ : Dict = self.get_dummy_components() lowerCAmelCase__ : Optional[int] = self.pipeline_class(**a ) lowerCAmelCase__ : int = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : List[Any] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : List[str] = pipe(**a ) lowerCAmelCase__ : Union[str, Any] = output.images lowerCAmelCase__ : int = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : int = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Tuple = image[0, -3:, -3:, -1] lowerCAmelCase__ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : str = np.array([0.9_9_9_7, 0.0_0_0_3, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_7_0, 0.0_0_2_4, 0.9_9_9_7, 0.9_9_7_1, 0.9_9_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Tuple = 'cpu' lowerCAmelCase__ : int = self.get_dummy_components() lowerCAmelCase__ : Tuple = self.pipeline_class(**a ) lowerCAmelCase__ : Union[str, Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Tuple = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : List[str] = [ pipeline_inputs['image'], pipeline_inputs['image'], ] lowerCAmelCase__ : Optional[int] = pipe(**a ) lowerCAmelCase__ : Tuple = output.images lowerCAmelCase__ : List[str] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Union[str, Any] = [ tuple_pipeline_inputs['image'], tuple_pipeline_inputs['image'], ] lowerCAmelCase__ : str = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) lowerCAmelCase__ : Union[str, Any] = np.array( [ 0.9_9_9_7, 0.9_9_8_9, 0.0_0_0_8, 0.0_0_2_1, 0.9_9_6_0, 0.0_0_1_8, 0.0_0_1_4, 0.0_0_0_2, 0.9_9_3_3, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch.device('cpu' ) class A__ : lowercase = 1 lowerCAmelCase__ : Optional[Any] = self.get_dummy_components() lowerCAmelCase__ : Dict = self.pipeline_class(**a ) lowerCAmelCase__ : Optional[Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Optional[int] = torch.Generator(device=a ).manual_seed(0 ) lowerCAmelCase__ : Optional[int] = pipe.decoder.dtype lowerCAmelCase__ : Union[str, Any] = 1 lowerCAmelCase__ : str = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) lowerCAmelCase__ : List[Any] = pipe.prepare_latents( a , dtype=a , device=a , generator=a , latents=a , scheduler=DummyScheduler() ) lowerCAmelCase__ : List[str] = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) lowerCAmelCase__ : Any = pipe.prepare_latents( a , dtype=a , device=a , generator=a , latents=a , scheduler=DummyScheduler() ) lowerCAmelCase__ : List[Any] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Optional[int] = pipe( **a , decoder_latents=a , super_res_latents=a ).images lowerCAmelCase__ : Optional[Any] = self.get_dummy_inputs(a , pil_image=a ) # Don't pass image, instead pass embedding lowerCAmelCase__ : Union[str, Any] = pipeline_inputs.pop('image' ) lowerCAmelCase__ : Union[str, Any] = pipe.image_encoder(a ).image_embeds lowerCAmelCase__ : List[Any] = pipe( **a , decoder_latents=a , super_res_latents=a , image_embeddings=a , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch_device == 'cpu' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor lowerCAmelCase__ : int = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=a , expected_max_diff=a ) @skip_mps def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = torch_device == 'cpu' lowerCAmelCase__ : Any = True lowerCAmelCase__ : Optional[Any] = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] self._test_inference_batch_single_identical( test_max_difference=a , relax_max_difference=a , additional_params_copy_to_batched_inputs=a , ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Tuple = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes lowerCAmelCase__ : List[str] = [2, 3] self._test_inference_batch_consistent( batch_sizes=a , additional_params_copy_to_batched_inputs=a , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=a ) @skip_mps def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return super().test_save_load_local() @skip_mps def _lowerCamelCase ( self : str ): '''simple docstring''' return super().test_save_load_optional_components() @slow @require_torch_gpu class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png' ) lowerCAmelCase__ : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/unclip/karlo_v1_alpha_cat_variation_fp16.npy' ) lowerCAmelCase__ : Tuple = UnCLIPImageVariationPipeline.from_pretrained( 'kakaobrain/karlo-v1-alpha-image-variations' , torch_dtype=torch.floataa ) lowerCAmelCase__ : Union[str, Any] = pipeline.to(a ) pipeline.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Dict = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase__ : List[str] = pipeline( a , generator=a , output_type='np' , ) lowerCAmelCase__ : Union[str, Any] = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(a , a , 15 )
307
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( __magic_name__ , unittest.TestCase ): lowercase = KandinskyImgaImgPipeline lowercase = ['prompt', 'image_embeds', 'negative_image_embeds', 'image'] lowercase = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', ] lowercase = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowercase = False @property def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return 32 @property def _lowerCamelCase ( self : int ): '''simple docstring''' return 32 @property def _lowerCamelCase ( self : int ): '''simple docstring''' return self.time_input_dim @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return self.time_input_dim * 4 @property def _lowerCamelCase ( self : int ): '''simple docstring''' return 100 @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : str = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_005 , ) lowerCAmelCase__ : str = MultilingualCLIP(a ) lowerCAmelCase__ : Optional[Any] = text_encoder.eval() return text_encoder @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Dict = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCAmelCase__ : List[str] = UNetaDConditionModel(**a ) return model @property def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : str = VQModel(**self.dummy_movq_kwargs ) return model def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : str = self.dummy_text_encoder lowerCAmelCase__ : List[str] = self.dummy_tokenizer lowerCAmelCase__ : Any = self.dummy_unet lowerCAmelCase__ : str = self.dummy_movq lowerCAmelCase__ : List[str] = { 'num_train_timesteps': 1_000, 'beta_schedule': 'linear', 'beta_start': 0.0_0_0_8_5, 'beta_end': 0.0_1_2, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } lowerCAmelCase__ : Dict = DDIMScheduler(**a ) lowerCAmelCase__ : Any = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def _lowerCamelCase ( self : str , a : Tuple , a : Optional[Any]=0 ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(a ) ).to(a ) lowerCAmelCase__ : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(a ) # create init_image lowerCAmelCase__ : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(a ) ).to(a ) lowerCAmelCase__ : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase__ : int = Image.fromarray(np.uinta(a ) ).convert('RGB' ).resize((256, 256) ) if str(a ).startswith('mps' ): lowerCAmelCase__ : Optional[Any] = torch.manual_seed(a ) else: lowerCAmelCase__ : int = torch.Generator(device=a ).manual_seed(a ) lowerCAmelCase__ : Union[str, Any] = { 'prompt': 'horse', 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = 'cpu' lowerCAmelCase__ : Dict = self.get_dummy_components() lowerCAmelCase__ : Tuple = self.pipeline_class(**a ) lowerCAmelCase__ : Dict = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Tuple = pipe(**self.get_dummy_inputs(a ) ) lowerCAmelCase__ : Tuple = output.images lowerCAmelCase__ : Optional[int] = pipe( **self.get_dummy_inputs(a ) , return_dict=a , )[0] lowerCAmelCase__ : Dict = image[0, -3:, -3:, -1] lowerCAmelCase__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : Tuple = np.array( [0.6_1_4_7_4_9_4_3, 0.6_0_7_3_5_3_9, 0.4_3_3_0_8_5_4_4, 0.5_9_2_8_2_6_9, 0.4_7_4_9_3_5_9_5, 0.4_6_7_5_5_9_7_3, 0.4_6_1_3_8_3_8, 0.4_5_3_6_8_7_9_7, 0.5_0_1_1_9_2_3_3] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : int ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_img2img_frog.npy' ) lowerCAmelCase__ : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowerCAmelCase__ : List[Any] = 'A red cartoon frog, 4k' lowerCAmelCase__ : Optional[Any] = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior' , torch_dtype=torch.floataa ) pipe_prior.to(a ) lowerCAmelCase__ : Union[str, Any] = KandinskyImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1' , torch_dtype=torch.floataa ) lowerCAmelCase__ : str = pipeline.to(a ) pipeline.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Tuple = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase__ , lowerCAmelCase__ : Tuple = pipe_prior( a , generator=a , num_inference_steps=5 , negative_prompt='' , ).to_tuple() lowerCAmelCase__ : List[Any] = pipeline( a , image=a , image_embeds=a , negative_image_embeds=a , generator=a , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='np' , ) lowerCAmelCase__ : List[Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(a , a )
307
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: stooge(SCREAMING_SNAKE_CASE_ , 0 , len(SCREAMING_SNAKE_CASE_ ) - 1 ) return arr def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: lowerCAmelCase__ , lowerCAmelCase__ : Tuple = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: lowerCAmelCase__ : Union[str, Any] = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (h - t) ) # Recursively sort last 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , i + t , (SCREAMING_SNAKE_CASE_) ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (h - t) ) if __name__ == "__main__": lowerCamelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCamelCase__ = [int(item) for item in user_input.split(""",""")] print(stooge_sort(unsorted))
307
1
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> List[str]: lowerCAmelCase__ : Optional[int] = [0] * len(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Union[str, Any] = [] lowerCAmelCase__ : List[Any] = [1] * len(SCREAMING_SNAKE_CASE_ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(SCREAMING_SNAKE_CASE_ ) ): if indegree[i] == 0: queue.append(SCREAMING_SNAKE_CASE_ ) while queue: lowerCAmelCase__ : int = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: lowerCAmelCase__ : Optional[int] = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(SCREAMING_SNAKE_CASE_ ) print(max(SCREAMING_SNAKE_CASE_ ) ) # Adjacency list of Graph lowerCamelCase__ = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
307
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) lowerCamelCase__ = { """configuration_speech_to_text""": ["""SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Speech2TextConfig"""], """processing_speech_to_text""": ["""Speech2TextProcessor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""Speech2TextTokenizer"""] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""Speech2TextFeatureExtractor"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSpeech2TextForConditionalGeneration""", """TFSpeech2TextModel""", """TFSpeech2TextPreTrainedModel""", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Speech2TextForConditionalGeneration""", """Speech2TextModel""", """Speech2TextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
1
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: print('\nThe shortest path matrix using Floyd Warshall algorithm\n' ) for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ ): if dist[i][j] != float('inf' ): print(int(dist[i][j] ) , end='\t' ) else: print('INF' , end='\t' ) print() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: lowerCAmelCase__ : Tuple = [[float('inf' ) for _ in range(SCREAMING_SNAKE_CASE_ )] for _ in range(SCREAMING_SNAKE_CASE_ )] for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : List[Any] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(SCREAMING_SNAKE_CASE_ ): # looping through rows of graph array for i in range(SCREAMING_SNAKE_CASE_ ): # looping through columns of graph array for j in range(SCREAMING_SNAKE_CASE_ ): if ( dist[i][k] != float('inf' ) and dist[k][j] != float('inf' ) and dist[i][k] + dist[k][j] < dist[i][j] ): lowerCAmelCase__ : int = dist[i][k] + dist[k][j] _print_dist(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return dist, v if __name__ == "__main__": lowerCamelCase__ = int(input("""Enter number of vertices: """)) lowerCamelCase__ = int(input("""Enter number of edges: """)) lowerCamelCase__ = [[float("""inf""") for i in range(v)] for j in range(v)] for i in range(v): lowerCamelCase__ = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("""\nEdge """, i + 1) lowerCamelCase__ = int(input("""Enter source:""")) lowerCamelCase__ = int(input("""Enter destination:""")) lowerCamelCase__ = float(input("""Enter weight:""")) lowerCamelCase__ = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
307
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } lowerCAmelCase__ : int = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 128, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 142, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(a ) , a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(a ) , x.transpose() ) ) lowerCAmelCase__ : List[str] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = np.random.randn(3 , 4 ) lowerCAmelCase__ : List[Any] = torch.tensor(a ) self.assertTrue(np.allclose(transpose(a ) , transpose(a ).numpy() ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : int = torch.tensor(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , transpose(a , axes=(1, 2, 0) ).numpy() ) ) @require_tf def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = np.random.randn(3 , 4 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(transpose(a ) , transpose(a ).numpy() ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : Dict = tf.constant(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , transpose(a , axes=(1, 2, 0) ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = np.random.randn(3 , 4 ) lowerCAmelCase__ : int = jnp.array(a ) self.assertTrue(np.allclose(transpose(a ) , np.asarray(transpose(a ) ) ) ) lowerCAmelCase__ : Any = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : str = jnp.array(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , np.asarray(transpose(a , axes=(1, 2, 0) ) ) ) ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Any = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , np.reshape(a , (4, 3) ) ) ) lowerCAmelCase__ : Tuple = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , np.reshape(a , (12, 5) ) ) ) @require_torch def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = np.random.randn(3 , 4 ) lowerCAmelCase__ : Dict = torch.tensor(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , reshape(a , (4, 3) ).numpy() ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : str = torch.tensor(a ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , reshape(a , (12, 5) ).numpy() ) ) @require_tf def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = np.random.randn(3 , 4 ) lowerCAmelCase__ : List[Any] = tf.constant(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , reshape(a , (4, 3) ).numpy() ) ) lowerCAmelCase__ : Dict = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , reshape(a , (12, 5) ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Dict = np.random.randn(3 , 4 ) lowerCAmelCase__ : List[str] = jnp.array(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , np.asarray(reshape(a , (4, 3) ) ) ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : Union[str, Any] = jnp.array(a ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , np.asarray(reshape(a , (12, 5) ) ) ) ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(a ) , np.squeeze(a ) ) ) lowerCAmelCase__ : int = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , np.squeeze(a , axis=2 ) ) ) @require_torch def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = np.random.randn(1 , 3 , 4 ) lowerCAmelCase__ : str = torch.tensor(a ) self.assertTrue(np.allclose(squeeze(a ) , squeeze(a ).numpy() ) ) lowerCAmelCase__ : Optional[Any] = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase__ : Dict = torch.tensor(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , squeeze(a , axis=2 ).numpy() ) ) @require_tf def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : List[str] = np.random.randn(1 , 3 , 4 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(squeeze(a ) , squeeze(a ).numpy() ) ) lowerCAmelCase__ : int = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase__ : str = tf.constant(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , squeeze(a , axis=2 ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : List[str] = np.random.randn(1 , 3 , 4 ) lowerCAmelCase__ : Union[str, Any] = jnp.array(a ) self.assertTrue(np.allclose(squeeze(a ) , np.asarray(squeeze(a ) ) ) ) lowerCAmelCase__ : str = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase__ : Optional[Any] = jnp.array(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , np.asarray(squeeze(a , axis=2 ) ) ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , np.expand_dims(a , axis=1 ) ) ) @require_torch def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : str = np.random.randn(3 , 4 ) lowerCAmelCase__ : str = torch.tensor(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , expand_dims(a , axis=1 ).numpy() ) ) @require_tf def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = np.random.randn(3 , 4 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , expand_dims(a , axis=1 ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : int = np.random.randn(3 , 4 ) lowerCAmelCase__ : Tuple = jnp.array(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , np.asarray(expand_dims(a , axis=1 ) ) ) )
307
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """microsoft/unispeech-large-1500h-cv""": ( """https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json""" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class A__ ( __magic_name__ ): lowercase = 'unispeech' def __init__( self : Any , a : List[Any]=32 , a : List[Any]=768 , a : Any=12 , a : List[str]=12 , a : List[Any]=3_072 , a : Any="gelu" , a : Dict=0.1 , a : List[str]=0.1 , a : List[str]=0.1 , a : Union[str, Any]=0.0 , a : str=0.0 , a : int=0.1 , a : List[str]=0.1 , a : List[Any]=0.0_2 , a : Optional[int]=1E-5 , a : Optional[int]="group" , a : Optional[Any]="gelu" , a : List[Any]=(512, 512, 512, 512, 512, 512, 512) , a : Optional[Any]=(5, 2, 2, 2, 2, 2, 2) , a : List[str]=(10, 3, 3, 3, 3, 2, 2) , a : Union[str, Any]=False , a : Union[str, Any]=128 , a : Tuple=16 , a : Dict=False , a : str=True , a : str=0.0_5 , a : Union[str, Any]=10 , a : Tuple=2 , a : int=0.0 , a : Optional[Any]=10 , a : List[str]=0 , a : str=320 , a : List[str]=2 , a : Optional[Any]=0.1 , a : Any=100 , a : Dict=256 , a : Any=256 , a : Dict=0.1 , a : List[Any]="mean" , a : Dict=False , a : str=False , a : Optional[int]=256 , a : Any=80 , a : List[Any]=0 , a : Optional[int]=1 , a : int=2 , a : List[Any]=0.5 , **a : int , ): '''simple docstring''' super().__init__(**a , pad_token_id=a , bos_token_id=a , eos_token_id=a ) lowerCAmelCase__ : List[str] = hidden_size lowerCAmelCase__ : List[str] = feat_extract_norm lowerCAmelCase__ : Optional[Any] = feat_extract_activation lowerCAmelCase__ : str = list(a ) lowerCAmelCase__ : List[str] = list(a ) lowerCAmelCase__ : Tuple = list(a ) lowerCAmelCase__ : Dict = conv_bias lowerCAmelCase__ : Optional[int] = num_conv_pos_embeddings lowerCAmelCase__ : Any = num_conv_pos_embedding_groups lowerCAmelCase__ : str = len(self.conv_dim ) lowerCAmelCase__ : Any = num_hidden_layers lowerCAmelCase__ : Dict = intermediate_size lowerCAmelCase__ : Dict = hidden_act lowerCAmelCase__ : Union[str, Any] = num_attention_heads lowerCAmelCase__ : Union[str, Any] = hidden_dropout lowerCAmelCase__ : Tuple = attention_dropout lowerCAmelCase__ : str = activation_dropout lowerCAmelCase__ : Any = feat_proj_dropout lowerCAmelCase__ : List[Any] = final_dropout lowerCAmelCase__ : Tuple = layerdrop lowerCAmelCase__ : Any = layer_norm_eps lowerCAmelCase__ : Dict = initializer_range lowerCAmelCase__ : Optional[Any] = num_ctc_classes lowerCAmelCase__ : Tuple = vocab_size lowerCAmelCase__ : Dict = do_stable_layer_norm lowerCAmelCase__ : List[Any] = use_weighted_layer_sum lowerCAmelCase__ : Any = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase__ : Union[str, Any] = apply_spec_augment lowerCAmelCase__ : Any = mask_time_prob lowerCAmelCase__ : Dict = mask_time_length lowerCAmelCase__ : Tuple = mask_time_min_masks lowerCAmelCase__ : Optional[int] = mask_feature_prob lowerCAmelCase__ : Optional[Any] = mask_feature_length lowerCAmelCase__ : int = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCAmelCase__ : int = num_codevectors_per_group lowerCAmelCase__ : Any = num_codevector_groups lowerCAmelCase__ : Any = contrastive_logits_temperature lowerCAmelCase__ : int = feat_quantizer_dropout lowerCAmelCase__ : List[Any] = num_negatives lowerCAmelCase__ : List[str] = codevector_dim lowerCAmelCase__ : Optional[int] = proj_codevector_dim lowerCAmelCase__ : Dict = diversity_loss_weight # ctc loss lowerCAmelCase__ : Any = ctc_loss_reduction lowerCAmelCase__ : Any = ctc_zero_infinity # pretraining loss lowerCAmelCase__ : Union[str, Any] = replace_prob @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
307
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position lowerCamelCase__ = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip lowerCamelCase__ = concatenate_datasets lowerCamelCase__ = DownloadConfig lowerCamelCase__ = DownloadManager lowerCamelCase__ = DownloadMode lowerCamelCase__ = DownloadConfig lowerCamelCase__ = DownloadMode lowerCamelCase__ = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
307
1
# using dfs for finding eulerian path traversal def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Any: lowerCAmelCase__ : int = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: lowerCAmelCase__ , lowerCAmelCase__ : List[str] = True, True lowerCAmelCase__ : List[Any] = dfs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return path def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: lowerCAmelCase__ : List[Any] = 0 lowerCAmelCase__ : str = -1 for i in range(SCREAMING_SNAKE_CASE_ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 lowerCAmelCase__ : List[str] = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: lowerCAmelCase__ : Optional[int] = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] lowerCAmelCase__ , lowerCAmelCase__ : Dict = check_circuit_or_path(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if check == 3: print('graph is not Eulerian' ) print('no path' ) return lowerCAmelCase__ : str = 1 if check == 2: lowerCAmelCase__ : Any = odd_node print('graph has a Euler path' ) if check == 1: print('graph has a Euler cycle' ) lowerCAmelCase__ : List[Any] = dfs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) print(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( ) -> List[Any]: lowerCAmelCase__ : Optional[Any] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} lowerCAmelCase__ : str = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} lowerCAmelCase__ : Union[str, Any] = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} lowerCAmelCase__ : Tuple = {1: [2, 3], 2: [1, 3], 3: [1, 2]} lowerCAmelCase__ : Optional[Any] = { 1: [], 2: [] # all degree is zero } lowerCAmelCase__ : Optional[int] = 10 check_euler(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) check_euler(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) check_euler(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) check_euler(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) check_euler(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
307
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( __magic_name__ , unittest.TestCase ): lowercase = DanceDiffusionPipeline lowercase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS lowercase = PipelineTesterMixin.required_optional_params - { 'callback', 'latents', 'callback_steps', 'output_type', 'num_images_per_prompt', } lowercase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS lowercase = False lowercase = False def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16_000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=a , use_timestep_embedding=a , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , ) lowerCAmelCase__ : Tuple = IPNDMScheduler() lowerCAmelCase__ : str = { 'unet': unet, 'scheduler': scheduler, } return components def _lowerCamelCase ( self : int , a : Dict , a : List[str]=0 ): '''simple docstring''' if str(a ).startswith('mps' ): lowerCAmelCase__ : Union[str, Any] = torch.manual_seed(a ) else: lowerCAmelCase__ : Optional[Any] = torch.Generator(device=a ).manual_seed(a ) lowerCAmelCase__ : Optional[Any] = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : int = self.get_dummy_components() lowerCAmelCase__ : List[str] = DanceDiffusionPipeline(**a ) lowerCAmelCase__ : Any = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : List[str] = self.get_dummy_inputs(a ) lowerCAmelCase__ : List[Any] = pipe(**a ) lowerCAmelCase__ : List[str] = output.audios lowerCAmelCase__ : Optional[Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) lowerCAmelCase__ : List[Any] = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def _lowerCamelCase ( self : str ): '''simple docstring''' return super().test_save_load_local() @skip_mps def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def _lowerCamelCase ( self : List[str] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch_device lowerCAmelCase__ : List[str] = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) lowerCAmelCase__ : List[str] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Optional[int] = torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = pipe(generator=a , num_inference_steps=100 , audio_length_in_s=4.0_9_6 ) lowerCAmelCase__ : int = output.audios lowerCAmelCase__ : List[Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase__ : Dict = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : str = torch_device lowerCAmelCase__ : List[Any] = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa ) lowerCAmelCase__ : Optional[int] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : str = torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = pipe(generator=a , num_inference_steps=100 , audio_length_in_s=4.0_9_6 ) lowerCAmelCase__ : str = output.audios lowerCAmelCase__ : Tuple = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase__ : int = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
307
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """ut/deta""": """https://huggingface.co/ut/deta/resolve/main/config.json""", } class A__ ( __magic_name__ ): lowercase = 'deta' lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Dict , a : Optional[Any]=None , a : List[str]=900 , a : Optional[Any]=2_048 , a : Tuple=6 , a : Union[str, Any]=2_048 , a : int=8 , a : Optional[int]=6 , a : Dict=1_024 , a : List[str]=8 , a : Dict=0.0 , a : Optional[int]=True , a : Optional[int]="relu" , a : Optional[int]=256 , a : str=0.1 , a : Union[str, Any]=0.0 , a : List[str]=0.0 , a : Any=0.0_2 , a : List[str]=1.0 , a : str=True , a : Dict=False , a : str="sine" , a : str=5 , a : Dict=4 , a : Dict=4 , a : Dict=True , a : Any=300 , a : str=True , a : List[str]=True , a : Dict=1 , a : int=5 , a : Any=2 , a : List[Any]=1 , a : Optional[int]=1 , a : List[str]=5 , a : Union[str, Any]=2 , a : Tuple=0.1 , a : Dict=0.2_5 , **a : Optional[int] , ): '''simple docstring''' if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowerCAmelCase__ : str = CONFIG_MAPPING['resnet'](out_features=['stage2', 'stage3', 'stage4'] ) else: if isinstance(a , a ): lowerCAmelCase__ : List[str] = backbone_config.pop('model_type' ) lowerCAmelCase__ : str = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase__ : Dict = config_class.from_dict(a ) lowerCAmelCase__ : Optional[Any] = backbone_config lowerCAmelCase__ : Optional[int] = num_queries lowerCAmelCase__ : Optional[int] = max_position_embeddings lowerCAmelCase__ : List[Any] = d_model lowerCAmelCase__ : Any = encoder_ffn_dim lowerCAmelCase__ : List[Any] = encoder_layers lowerCAmelCase__ : List[str] = encoder_attention_heads lowerCAmelCase__ : Optional[Any] = decoder_ffn_dim lowerCAmelCase__ : List[Any] = decoder_layers lowerCAmelCase__ : List[Any] = decoder_attention_heads lowerCAmelCase__ : List[str] = dropout lowerCAmelCase__ : Any = attention_dropout lowerCAmelCase__ : List[Any] = activation_dropout lowerCAmelCase__ : Optional[Any] = activation_function lowerCAmelCase__ : int = init_std lowerCAmelCase__ : List[str] = init_xavier_std lowerCAmelCase__ : str = encoder_layerdrop lowerCAmelCase__ : List[str] = auxiliary_loss lowerCAmelCase__ : str = position_embedding_type # deformable attributes lowerCAmelCase__ : Any = num_feature_levels lowerCAmelCase__ : Dict = encoder_n_points lowerCAmelCase__ : Dict = decoder_n_points lowerCAmelCase__ : str = two_stage lowerCAmelCase__ : Tuple = two_stage_num_proposals lowerCAmelCase__ : str = with_box_refine lowerCAmelCase__ : Dict = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher lowerCAmelCase__ : List[str] = class_cost lowerCAmelCase__ : Dict = bbox_cost lowerCAmelCase__ : Tuple = giou_cost # Loss coefficients lowerCAmelCase__ : Union[str, Any] = mask_loss_coefficient lowerCAmelCase__ : Union[str, Any] = dice_loss_coefficient lowerCAmelCase__ : str = bbox_loss_coefficient lowerCAmelCase__ : List[str] = giou_loss_coefficient lowerCAmelCase__ : Union[str, Any] = eos_coefficient lowerCAmelCase__ : List[str] = focal_alpha super().__init__(is_encoder_decoder=a , **a ) @property def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' return self.encoder_attention_heads @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' return self.d_model def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Any = copy.deepcopy(self.__dict__ ) lowerCAmelCase__ : Optional[Any] = self.backbone_config.to_dict() lowerCAmelCase__ : str = self.__class__.model_type return output
307
from ..utils import DummyObject, requires_backends class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : Any , *a : Any , **a : Any ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Union[str, Any] , *a : Optional[int] , **a : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : int , *a : List[Any] , **a : int ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : str , *a : Any , **a : Optional[Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : List[str] , **a : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , *a : Optional[Any] , **a : Any ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : Optional[int] , *a : List[Any] , **a : str ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : List[Any] , *a : List[str] , **a : List[str] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , *a : Union[str, Any] , **a : Optional[int] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *a : Dict , **a : List[str] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : Dict , **a : List[Any] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : List[str] , **a : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : Dict , *a : str , **a : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Any , *a : Any , **a : Any ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Any , *a : List[Any] , **a : str ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : str , *a : Union[str, Any] , **a : Optional[Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : int , *a : Union[str, Any] , **a : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : Tuple , **a : List[str] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] )
307
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """tanreinama/GPTSAN-2.8B-spout_is_uniform""": ( """https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json""" ), } class A__ ( __magic_name__ ): lowercase = 'gptsan-japanese' lowercase = [ 'past_key_values', ] lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Union[str, Any] , a : str=36_000 , a : Optional[Any]=1_280 , a : Union[str, Any]=1_024 , a : Any=8_192 , a : Dict=4_096 , a : List[str]=128 , a : int=10 , a : Dict=0 , a : int=16 , a : Dict=16 , a : str=128 , a : int=0.0 , a : Optional[int]=1E-5 , a : Union[str, Any]=False , a : Any=0.0 , a : Any="float32" , a : List[str]=False , a : Optional[int]=False , a : Dict=False , a : Dict=0.0_0_2 , a : str=False , a : List[str]=True , a : Dict=35_998 , a : Union[str, Any]=35_995 , a : Dict=35_999 , **a : Union[str, Any] , ): '''simple docstring''' lowerCAmelCase__ : List[Any] = vocab_size lowerCAmelCase__ : Union[str, Any] = max_position_embeddings lowerCAmelCase__ : Tuple = d_model lowerCAmelCase__ : Optional[Any] = d_ff lowerCAmelCase__ : str = d_ext lowerCAmelCase__ : str = d_spout lowerCAmelCase__ : Any = num_switch_layers lowerCAmelCase__ : List[Any] = num_ext_layers lowerCAmelCase__ : List[str] = num_switch_layers + num_ext_layers lowerCAmelCase__ : Union[str, Any] = num_heads lowerCAmelCase__ : Dict = num_experts lowerCAmelCase__ : int = expert_capacity lowerCAmelCase__ : List[str] = dropout_rate lowerCAmelCase__ : List[Any] = layer_norm_epsilon lowerCAmelCase__ : Dict = router_bias lowerCAmelCase__ : Union[str, Any] = router_jitter_noise lowerCAmelCase__ : Tuple = router_dtype lowerCAmelCase__ : Tuple = router_ignore_padding_tokens lowerCAmelCase__ : Optional[int] = output_hidden_states lowerCAmelCase__ : Union[str, Any] = output_attentions lowerCAmelCase__ : str = initializer_factor lowerCAmelCase__ : Optional[Any] = output_router_logits lowerCAmelCase__ : Optional[Any] = use_cache super().__init__( separator_token_id=a , pad_token_id=a , eos_token_id=a , **a , )
307
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class A__ : def __init__( self : List[str] , a : Any , a : Dict=13 , a : Optional[Any]=7 , a : Tuple=True , a : Tuple=True , a : Dict=False , a : Optional[Any]=True , a : Dict=99 , a : Tuple=32 , a : Optional[Any]=5 , a : str=4 , a : Union[str, Any]=37 , a : Any="gelu" , a : Dict=0.1 , a : Any=0.1 , a : Optional[int]=512 , a : Union[str, Any]=16 , a : Optional[int]=2 , a : Optional[Any]=0.0_2 , a : List[Any]=3 , a : Any=4 , a : Optional[int]=None , ): '''simple docstring''' lowerCAmelCase__ : List[str] = parent lowerCAmelCase__ : str = batch_size lowerCAmelCase__ : Optional[int] = seq_length lowerCAmelCase__ : Optional[Any] = is_training lowerCAmelCase__ : Tuple = use_input_mask lowerCAmelCase__ : List[Any] = use_token_type_ids lowerCAmelCase__ : str = use_labels lowerCAmelCase__ : Dict = vocab_size lowerCAmelCase__ : Union[str, Any] = hidden_size lowerCAmelCase__ : Optional[int] = num_hidden_layers lowerCAmelCase__ : List[Any] = num_attention_heads lowerCAmelCase__ : int = intermediate_size lowerCAmelCase__ : Union[str, Any] = hidden_act lowerCAmelCase__ : Union[str, Any] = hidden_dropout_prob lowerCAmelCase__ : Any = attention_probs_dropout_prob lowerCAmelCase__ : Dict = max_position_embeddings lowerCAmelCase__ : int = type_vocab_size lowerCAmelCase__ : int = type_sequence_label_size lowerCAmelCase__ : Dict = initializer_range lowerCAmelCase__ : List[str] = num_labels lowerCAmelCase__ : Any = num_choices lowerCAmelCase__ : List[Any] = scope def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ : Tuple = None if self.use_input_mask: lowerCAmelCase__ : str = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ : List[str] = None if self.use_token_type_ids: lowerCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : Dict = None lowerCAmelCase__ : str = None if self.use_labels: lowerCAmelCase__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self : Tuple , a : Dict , a : List[str] , a : str , a : Union[str, Any] , a : Optional[Any] , a : Dict , a : str ): '''simple docstring''' lowerCAmelCase__ : str = LlamaModel(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Dict = model(a , attention_mask=a ) lowerCAmelCase__ : Union[str, Any] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : int , a : Any , a : Union[str, Any] , a : Dict , a : Dict , a : List[Any] , a : Optional[Any] , a : int , a : Dict , a : Tuple , ): '''simple docstring''' lowerCAmelCase__ : int = True lowerCAmelCase__ : Dict = LlamaModel(a ) model.to(a ) model.eval() lowerCAmelCase__ : List[Any] = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , ) lowerCAmelCase__ : Optional[int] = model( a , attention_mask=a , encoder_hidden_states=a , ) lowerCAmelCase__ : Union[str, Any] = model(a , attention_mask=a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : Union[str, Any] , a : int , a : List[Any] , a : int , a : Tuple , a : List[Any] , a : Union[str, Any] , a : Any , a : List[str] , a : List[str] , ): '''simple docstring''' lowerCAmelCase__ : List[Any] = LlamaForCausalLM(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Tuple = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : str , a : Any , a : Tuple , a : str , a : Union[str, Any] , a : Optional[Any] , a : List[Any] , a : Optional[Any] , a : Optional[Any] , a : List[str] , ): '''simple docstring''' lowerCAmelCase__ : str = True lowerCAmelCase__ : Optional[int] = True lowerCAmelCase__ : List[Any] = LlamaForCausalLM(config=a ) model.to(a ) model.eval() # first forward pass lowerCAmelCase__ : List[str] = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , use_cache=a , ) lowerCAmelCase__ : List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase__ : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase__ : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase__ : int = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase__ : Any = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase__ : Union[str, Any] = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , output_hidden_states=a , )['hidden_states'][0] lowerCAmelCase__ : Union[str, Any] = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , past_key_values=a , output_hidden_states=a , )['hidden_states'][0] # select random slice lowerCAmelCase__ : Any = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase__ : Optional[int] = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a , a , atol=1E-3 ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : Any = config_and_inputs lowerCAmelCase__ : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () lowercase = (LlamaForCausalLM,) if is_torch_available() else () lowercase = ( { 'feature-extraction': LlamaModel, 'text-classification': LlamaForSequenceClassification, 'text-generation': LlamaForCausalLM, 'zero-shot': LlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Tuple = LlamaModelTester(self ) lowerCAmelCase__ : str = ConfigTester(self , config_class=a , hidden_size=37 ) def _lowerCamelCase ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase__ : int = type self.model_tester.create_and_check_model(*a ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : int = 3 lowerCAmelCase__ : Dict = input_dict['input_ids'] lowerCAmelCase__ : Optional[Any] = input_ids.ne(1 ).to(a ) lowerCAmelCase__ : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase__ : Tuple = LlamaForSequenceClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : str = model(a , attention_mask=a , labels=a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : List[Any] = 3 lowerCAmelCase__ : List[str] = 'single_label_classification' lowerCAmelCase__ : List[Any] = input_dict['input_ids'] lowerCAmelCase__ : List[Any] = input_ids.ne(1 ).to(a ) lowerCAmelCase__ : Optional[int] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase__ : int = LlamaForSequenceClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : Optional[int] = model(a , attention_mask=a , labels=a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Optional[Any] = 3 lowerCAmelCase__ : Optional[Any] = 'multi_label_classification' lowerCAmelCase__ : List[str] = input_dict['input_ids'] lowerCAmelCase__ : Tuple = input_ids.ne(1 ).to(a ) lowerCAmelCase__ : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase__ : Dict = LlamaForSequenceClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : Dict = model(a , attention_mask=a , labels=a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def _lowerCamelCase ( self : Optional[int] , a : Dict ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Tuple = ids_tensor([1, 10] , config.vocab_size ) lowerCAmelCase__ : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase__ : List[Any] = LlamaModel(a ) original_model.to(a ) original_model.eval() lowerCAmelCase__ : List[Any] = original_model(a ).last_hidden_state lowerCAmelCase__ : str = original_model(a ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase__ : Any = {'type': scaling_type, 'factor': 1_0.0} lowerCAmelCase__ : Union[str, Any] = LlamaModel(a ) scaled_model.to(a ) scaled_model.eval() lowerCAmelCase__ : Union[str, Any] = scaled_model(a ).last_hidden_state lowerCAmelCase__ : Optional[int] = scaled_model(a ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(a , a , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(a , a , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(a , a , atol=1E-5 ) ) @require_torch class A__ ( unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : int = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowerCAmelCase__ : List[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) lowerCAmelCase__ : Any = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 lowerCAmelCase__ : Dict = torch.tensor([[-6.6_5_5_0, -4.1_2_2_7, -4.9_8_5_9, -3.2_4_0_6, 0.8_2_6_2, -3.0_0_3_3, 1.2_9_6_4, -3.3_6_9_9]] ) torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase__ : List[Any] = torch.tensor([-1_2.8_2_8_1, -7.4_4_5_3, -0.4_6_3_9, -8.0_6_2_5, -7.2_5_0_0, -8.0_0_0_0, -6.4_8_8_3, -7.7_6_9_5, -7.8_4_3_8, -7.0_3_1_2, -6.2_1_8_8, -7.1_3_2_8, -1.8_4_9_6, 1.9_9_6_1, -8.6_2_5_0, -6.7_2_2_7, -1_2.8_2_8_1, -6.9_4_9_2, -7.0_7_4_2, -7.7_8_5_2, -7.5_8_2_0, -7.9_0_6_2, -6.9_3_7_5, -7.9_8_0_5, -8.3_4_3_8, -8.1_5_6_2, -8.0_4_6_9, -7.6_2_5_0, -7.7_4_2_2, -7.3_3_9_8,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : str = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowerCAmelCase__ : Optional[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) lowerCAmelCase__ : List[str] = model(torch.tensor(a ) ) # Expected mean on dim = -1 lowerCAmelCase__ : Union[str, Any] = torch.tensor([[-2.0_6_2_2, -1.2_7_9_4, -1.1_6_3_8, -0.9_7_8_8, -1.4_6_0_3, -1.0_2_3_8, -1.7_8_9_3, -1.4_4_1_1]] ) torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase__ : Any = torch.tensor([-8.1_4_0_6, -8.0_5_4_7, 2.7_4_6_1, -1.2_3_4_4, -0.1_4_4_8, -1.8_2_6_2, -1.0_0_2_0, -1.8_1_5_4, -1.6_8_9_5, -1.8_5_1_6, -2.3_5_7_4, -0.9_2_7_7, 3.7_5_9_8, 6.5_7_4_2, -1.2_9_9_8, -0.1_1_7_7, -8.1_4_0_6, -2.9_6_8_8, -2.9_1_9_9, -3.1_6_9_9, -3.5_2_5_4, -2.3_5_5_5, -2.7_9_8_8, -3.4_1_4_1, -2.8_2_6_2, -4.5_1_9_5, -3.3_3_7_9, -3.3_1_6_4, -2.7_8_3_2, -3.0_2_7_3] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : int = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowerCAmelCase__ : Optional[int] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) lowerCAmelCase__ : str = model(torch.tensor(a ) ) # Expected mean on dim = -1 lowerCAmelCase__ : str = torch.tensor([[-0.8_5_6_2, -1.8_5_2_0, -0.7_5_5_1, -0.4_1_6_2, -1.5_1_6_1, -1.2_0_3_8, -2.4_8_2_3, -2.3_2_5_4]] ) torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase__ : List[str] = torch.tensor([-2.2_2_2_7, 4.8_8_2_8, 0.9_0_2_3, -0.4_5_7_8, -0.7_8_7_1, -0.1_0_3_3, -0.6_2_2_1, -0.5_7_8_6, -0.7_8_0_3, -1.0_6_7_4, -1.2_9_2_0, -0.1_5_7_0, 0.8_0_0_8, 2.0_7_2_3, -0.9_4_9_7, 0.2_7_7_1, -2.2_2_2_7, -0.7_6_1_2, -1.4_3_4_6, -1.2_0_6_1, -1.6_4_2_6, -0.3_0_0_0, -0.7_1_3_9, -1.1_9_3_4, -1.8_6_9_1, -1.6_9_7_3, -1.5_9_4_7, -1.2_7_0_5, -0.3_5_2_3, -0.5_5_1_3] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowerCAmelCase__ : List[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) lowerCAmelCase__ : List[str] = model(torch.tensor(a ) ) lowerCAmelCase__ : int = torch.tensor( [[-4.2_3_2_7, -3.3_3_6_0, -4.6_6_6_5, -4.7_6_3_1, -1.8_1_8_0, -3.4_1_7_0, -1.4_2_1_1, -3.1_8_1_0]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) # fmt: off lowerCAmelCase__ : Optional[int] = torch.tensor([-9.4_9_2_2, -3.9_5_5_1, 1.7_9_9_8, -5.6_7_5_8, -5.1_0_5_5, -5.8_9_8_4, -4.8_3_2_0, -6.8_0_8_6, -6.5_3_9_1, -5.6_1_7_2, -5.5_8_2_0, -5.5_3_5_2, 1.7_8_8_1, 3.6_2_8_9, -6.5_1_1_7, -3.4_7_8_5, -9.5_0_0_0, -6.0_3_5_2, -6.8_1_2_5, -6.0_1_9_5, -6.6_8_3_6, -5.4_7_2_7, -6.2_8_1_2, -6.0_3_9_1, -7.3_3_9_8, -7.4_2_9_7, -7.4_8_4_4, -6.5_8_2_0, -5.8_7_8_9, -5.5_3_1_2] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Model is curently gated' ) @slow def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' lowerCAmelCase__ : Tuple = 'Simply put, the theory of relativity states that ' lowerCAmelCase__ : Dict = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) lowerCAmelCase__ : Dict = tokenizer.encode(a , return_tensors='pt' ) lowerCAmelCase__ : str = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=a ) # greedy generation outputs lowerCAmelCase__ : Optional[Any] = model.generate(a , max_new_tokens=64 , top_p=a , temperature=1 , do_sample=a ) lowerCAmelCase__ : Tuple = tokenizer.decode(generated_ids[0] , skip_special_tokens=a ) self.assertEqual(a , a )
307
1
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def lowerCAmelCase__ ( ) -> Union[str, Any]: lowerCAmelCase__ : str = ArgumentParser( description=( 'PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=SCREAMING_SNAKE_CASE_ , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=SCREAMING_SNAKE_CASE_ , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=SCREAMING_SNAKE_CASE_ ) return parser.parse_args() def lowerCAmelCase__ ( ) -> Any: lowerCAmelCase__ : Optional[int] = parse_args() # Import training_script as a module. lowerCAmelCase__ : List[str] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowerCAmelCase__ : List[Any] = script_fpath.stem lowerCAmelCase__ : Dict = importlib.import_module(SCREAMING_SNAKE_CASE_ ) # Patch sys.argv lowerCAmelCase__ : Optional[int] = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
307
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """microsoft/unispeech-large-1500h-cv""": ( """https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json""" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class A__ ( __magic_name__ ): lowercase = 'unispeech' def __init__( self : Any , a : List[Any]=32 , a : List[Any]=768 , a : Any=12 , a : List[str]=12 , a : List[Any]=3_072 , a : Any="gelu" , a : Dict=0.1 , a : List[str]=0.1 , a : List[str]=0.1 , a : Union[str, Any]=0.0 , a : str=0.0 , a : int=0.1 , a : List[str]=0.1 , a : List[Any]=0.0_2 , a : Optional[int]=1E-5 , a : Optional[int]="group" , a : Optional[Any]="gelu" , a : List[Any]=(512, 512, 512, 512, 512, 512, 512) , a : Optional[Any]=(5, 2, 2, 2, 2, 2, 2) , a : List[str]=(10, 3, 3, 3, 3, 2, 2) , a : Union[str, Any]=False , a : Union[str, Any]=128 , a : Tuple=16 , a : Dict=False , a : str=True , a : str=0.0_5 , a : Union[str, Any]=10 , a : Tuple=2 , a : int=0.0 , a : Optional[Any]=10 , a : List[str]=0 , a : str=320 , a : List[str]=2 , a : Optional[Any]=0.1 , a : Any=100 , a : Dict=256 , a : Any=256 , a : Dict=0.1 , a : List[Any]="mean" , a : Dict=False , a : str=False , a : Optional[int]=256 , a : Any=80 , a : List[Any]=0 , a : Optional[int]=1 , a : int=2 , a : List[Any]=0.5 , **a : int , ): '''simple docstring''' super().__init__(**a , pad_token_id=a , bos_token_id=a , eos_token_id=a ) lowerCAmelCase__ : List[str] = hidden_size lowerCAmelCase__ : List[str] = feat_extract_norm lowerCAmelCase__ : Optional[Any] = feat_extract_activation lowerCAmelCase__ : str = list(a ) lowerCAmelCase__ : List[str] = list(a ) lowerCAmelCase__ : Tuple = list(a ) lowerCAmelCase__ : Dict = conv_bias lowerCAmelCase__ : Optional[int] = num_conv_pos_embeddings lowerCAmelCase__ : Any = num_conv_pos_embedding_groups lowerCAmelCase__ : str = len(self.conv_dim ) lowerCAmelCase__ : Any = num_hidden_layers lowerCAmelCase__ : Dict = intermediate_size lowerCAmelCase__ : Dict = hidden_act lowerCAmelCase__ : Union[str, Any] = num_attention_heads lowerCAmelCase__ : Union[str, Any] = hidden_dropout lowerCAmelCase__ : Tuple = attention_dropout lowerCAmelCase__ : str = activation_dropout lowerCAmelCase__ : Any = feat_proj_dropout lowerCAmelCase__ : List[Any] = final_dropout lowerCAmelCase__ : Tuple = layerdrop lowerCAmelCase__ : Any = layer_norm_eps lowerCAmelCase__ : Dict = initializer_range lowerCAmelCase__ : Optional[Any] = num_ctc_classes lowerCAmelCase__ : Tuple = vocab_size lowerCAmelCase__ : Dict = do_stable_layer_norm lowerCAmelCase__ : List[Any] = use_weighted_layer_sum lowerCAmelCase__ : Any = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase__ : Union[str, Any] = apply_spec_augment lowerCAmelCase__ : Any = mask_time_prob lowerCAmelCase__ : Dict = mask_time_length lowerCAmelCase__ : Tuple = mask_time_min_masks lowerCAmelCase__ : Optional[int] = mask_feature_prob lowerCAmelCase__ : Optional[Any] = mask_feature_length lowerCAmelCase__ : int = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCAmelCase__ : int = num_codevectors_per_group lowerCAmelCase__ : Any = num_codevector_groups lowerCAmelCase__ : Any = contrastive_logits_temperature lowerCAmelCase__ : int = feat_quantizer_dropout lowerCAmelCase__ : List[Any] = num_negatives lowerCAmelCase__ : List[str] = codevector_dim lowerCAmelCase__ : Optional[int] = proj_codevector_dim lowerCAmelCase__ : Dict = diversity_loss_weight # ctc loss lowerCAmelCase__ : Any = ctc_loss_reduction lowerCAmelCase__ : Any = ctc_zero_infinity # pretraining loss lowerCAmelCase__ : Union[str, Any] = replace_prob @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
307
1
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A__ ( __magic_name__ , unittest.TestCase ): lowercase = OpenAIGPTTokenizer lowercase = OpenAIGPTTokenizerFast lowercase = True lowercase = False def _lowerCamelCase ( self : Dict ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase__ : Dict = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] lowerCAmelCase__ : List[Any] = dict(zip(a , range(len(a ) ) ) ) lowerCAmelCase__ : int = ['#version: 0.2', 'l o', 'lo w', 'e r</w>', ''] lowerCAmelCase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(a ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(a ) ) def _lowerCamelCase ( self : Optional[Any] , a : Union[str, Any] ): '''simple docstring''' return "lower newer", "lower newer" def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) lowerCAmelCase__ : Optional[int] = 'lower' lowerCAmelCase__ : Optional[Any] = ['low', 'er</w>'] lowerCAmelCase__ : Optional[Any] = tokenizer.tokenize(a ) self.assertListEqual(a , a ) lowerCAmelCase__ : Optional[int] = tokens + ['<unk>'] lowerCAmelCase__ : List[str] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(a ) , a ) def _lowerCamelCase ( self : Dict , a : List[Any]=15 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase__ : List[str] = self.rust_tokenizer_class.from_pretrained(a , **a ) # Simple input lowerCAmelCase__ : Optional[int] = 'This is a simple input' lowerCAmelCase__ : int = ['This is a simple input 1', 'This is a simple input 2'] lowerCAmelCase__ : int = ('This is a simple input', 'This is a pair') lowerCAmelCase__ : List[str] = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(a , tokenizer_r.encode , a , max_length=a , padding='max_length' ) # Simple input self.assertRaises(a , tokenizer_r.encode_plus , a , max_length=a , padding='max_length' ) # Simple input self.assertRaises( a , tokenizer_r.batch_encode_plus , a , max_length=a , padding='max_length' , ) # Pair input self.assertRaises(a , tokenizer_r.encode , a , max_length=a , padding='max_length' ) # Pair input self.assertRaises(a , tokenizer_r.encode_plus , a , max_length=a , padding='max_length' ) # Pair input self.assertRaises( a , tokenizer_r.batch_encode_plus , a , max_length=a , padding='max_length' , ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' pass @require_ftfy @require_spacy @require_tokenizers class A__ ( __magic_name__ ): pass
307
import torch from torch import nn class A__ ( nn.Module ): def __init__( self : Optional[int] , a : Union[str, Any] , a : str , a : str , a : List[Any] , a : List[Any]=1 , a : Tuple=False ): '''simple docstring''' super().__init__() lowerCAmelCase__ : Dict = n_token lowerCAmelCase__ : Any = d_embed lowerCAmelCase__ : str = d_proj lowerCAmelCase__ : int = cutoffs + [n_token] lowerCAmelCase__ : Union[str, Any] = [0] + self.cutoffs lowerCAmelCase__ : str = div_val lowerCAmelCase__ : Tuple = self.cutoffs[0] lowerCAmelCase__ : Dict = len(self.cutoffs ) - 1 lowerCAmelCase__ : Any = self.shortlist_size + self.n_clusters if self.n_clusters > 0: lowerCAmelCase__ : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) lowerCAmelCase__ : Optional[Any] = nn.Parameter(torch.zeros(self.n_clusters ) ) lowerCAmelCase__ : Optional[int] = nn.ModuleList() lowerCAmelCase__ : Tuple = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(a , a ) ) ) else: self.out_projs.append(a ) self.out_layers.append(nn.Linear(a , a ) ) else: for i in range(len(self.cutoffs ) ): lowerCAmelCase__ , lowerCAmelCase__ : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase__ : Optional[Any] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(a , a ) ) ) self.out_layers.append(nn.Linear(a , r_idx - l_idx ) ) lowerCAmelCase__ : Tuple = keep_order def _lowerCamelCase ( self : Optional[int] , a : List[str] , a : int , a : List[str] , a : str ): '''simple docstring''' if proj is None: lowerCAmelCase__ : Tuple = nn.functional.linear(a , a , bias=a ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: lowerCAmelCase__ : int = nn.functional.linear(a , proj.t().contiguous() ) lowerCAmelCase__ : Tuple = nn.functional.linear(a , a , bias=a ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def _lowerCamelCase ( self : List[str] , a : List[Any] , a : Optional[int]=None , a : Tuple=False ): '''simple docstring''' if labels is not None: # Shift so that tokens < n predict n lowerCAmelCase__ : str = hidden[..., :-1, :].contiguous() lowerCAmelCase__ : Optional[Any] = labels[..., 1:].contiguous() lowerCAmelCase__ : List[Any] = hidden.view(-1 , hidden.size(-1 ) ) lowerCAmelCase__ : Tuple = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('Input and labels should have the same size in the batch dimension.' ) else: lowerCAmelCase__ : Optional[Any] = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: lowerCAmelCase__ : Optional[Any] = self._compute_logit(a , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: lowerCAmelCase__ : str = labels != -100 lowerCAmelCase__ : int = torch.zeros_like(a , dtype=hidden.dtype , device=hidden.device ) lowerCAmelCase__ : List[str] = ( -nn.functional.log_softmax(a , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: lowerCAmelCase__ : Optional[Any] = nn.functional.log_softmax(a , dim=-1 ) else: # construct weights and biases lowerCAmelCase__ , lowerCAmelCase__ : int = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase__ : Any = self.out_layers[0].weight[l_idx:r_idx] lowerCAmelCase__ : Any = self.out_layers[0].bias[l_idx:r_idx] else: lowerCAmelCase__ : Optional[Any] = self.out_layers[i].weight lowerCAmelCase__ : Optional[int] = self.out_layers[i].bias if i == 0: lowerCAmelCase__ : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowerCAmelCase__ : Union[str, Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(a ) biases.append(a ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = weights[0], biases[0], self.out_projs[0] lowerCAmelCase__ : List[Any] = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : Union[str, Any] = nn.functional.log_softmax(a , dim=1 ) if labels is None: lowerCAmelCase__ : Tuple = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: lowerCAmelCase__ : Dict = torch.zeros_like(a , dtype=hidden.dtype , device=hidden.device ) lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : Union[str, Any] = [0] + self.cutoffs for i in range(len(a ) - 1 ): lowerCAmelCase__ , lowerCAmelCase__ : Tuple = cutoff_values[i], cutoff_values[i + 1] if labels is not None: lowerCAmelCase__ : Tuple = (labels >= l_idx) & (labels < r_idx) lowerCAmelCase__ : int = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue lowerCAmelCase__ : Tuple = labels.index_select(0 , a ) - l_idx lowerCAmelCase__ : Any = head_logprob.index_select(0 , a ) lowerCAmelCase__ : Optional[int] = hidden.index_select(0 , a ) else: lowerCAmelCase__ : Any = hidden if i == 0: if labels is not None: lowerCAmelCase__ : Union[str, Any] = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: lowerCAmelCase__ : List[str] = head_logprob[:, : self.cutoffs[0]] else: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = weights[i], biases[i], self.out_projs[i] lowerCAmelCase__ : Union[str, Any] = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : Optional[int] = nn.functional.log_softmax(a , dim=1 ) lowerCAmelCase__ : List[Any] = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: lowerCAmelCase__ : List[str] = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: lowerCAmelCase__ : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i lowerCAmelCase__ : Union[str, Any] = logprob_i if labels is not None: if (hasattr(self , 'keep_order' ) and self.keep_order) or keep_order: out.index_copy_(0 , a , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def _lowerCamelCase ( self : List[Any] , a : Any ): '''simple docstring''' if self.n_clusters == 0: lowerCAmelCase__ : Union[str, Any] = self._compute_logit(a , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(a , dim=-1 ) else: # construct weights and biases lowerCAmelCase__ , lowerCAmelCase__ : str = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase__ : str = self.out_layers[0].weight[l_idx:r_idx] lowerCAmelCase__ : Dict = self.out_layers[0].bias[l_idx:r_idx] else: lowerCAmelCase__ : int = self.out_layers[i].weight lowerCAmelCase__ : int = self.out_layers[i].bias if i == 0: lowerCAmelCase__ : Optional[int] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowerCAmelCase__ : Union[str, Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(a ) biases.append(a ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : str = weights[0], biases[0], self.out_projs[0] lowerCAmelCase__ : Dict = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : List[Any] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) lowerCAmelCase__ : Optional[Any] = nn.functional.log_softmax(a , dim=1 ) lowerCAmelCase__ : List[Any] = [0] + self.cutoffs for i in range(len(a ) - 1 ): lowerCAmelCase__ , lowerCAmelCase__ : str = cutoff_values[i], cutoff_values[i + 1] if i == 0: lowerCAmelCase__ : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = weights[i], biases[i], self.out_projs[i] lowerCAmelCase__ : Dict = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : List[str] = nn.functional.log_softmax(a , dim=1 ) lowerCAmelCase__ : Dict = head_logprob[:, -i] + tail_logprob_i lowerCAmelCase__ : List[str] = logprob_i return out
307
1
from __future__ import annotations import math import random from typing import Any class A__ : def __init__( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : list[Any] = [] lowerCAmelCase__ : int = 0 lowerCAmelCase__ : int = 0 def _lowerCamelCase ( self : int ): '''simple docstring''' return self.head == self.tail def _lowerCamelCase ( self : Tuple , a : Any ): '''simple docstring''' self.data.append(a ) lowerCAmelCase__ : int = self.tail + 1 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.data[self.head] lowerCAmelCase__ : Optional[int] = self.head + 1 return ret def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return self.tail - self.head def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' print(self.data ) print('**************' ) print(self.data[self.head : self.tail] ) class A__ : def __init__( self : List[Any] , a : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = data lowerCAmelCase__ : MyNode | None = None lowerCAmelCase__ : MyNode | None = None lowerCAmelCase__ : int = 1 def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' return self.data def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return self.left def _lowerCamelCase ( self : Any ): '''simple docstring''' return self.right def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.height def _lowerCamelCase ( self : List[Any] , a : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = data def _lowerCamelCase ( self : List[Any] , a : MyNode | None ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = node def _lowerCamelCase ( self : List[str] , a : MyNode | None ): '''simple docstring''' lowerCAmelCase__ : List[str] = node def _lowerCamelCase ( self : List[Any] , a : int ): '''simple docstring''' lowerCAmelCase__ : Dict = height def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> int: if node is None: return 0 return node.get_height() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: if a > b: return a return b def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> MyNode: print('left rotation node:' , node.get_data() ) lowerCAmelCase__ : Optional[Any] = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Union[str, Any] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Tuple = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(SCREAMING_SNAKE_CASE_ ) return ret def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> MyNode: print('right rotation node:' , node.get_data() ) lowerCAmelCase__ : str = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Dict = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(SCREAMING_SNAKE_CASE_ ) return ret def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> MyNode: lowerCAmelCase__ : Any = node.get_left() assert left_child is not None node.set_left(left_rotation(SCREAMING_SNAKE_CASE_ ) ) return right_rotation(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> MyNode: lowerCAmelCase__ : Dict = node.get_right() assert right_child is not None node.set_right(right_rotation(SCREAMING_SNAKE_CASE_ ) ) return left_rotation(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> MyNode | None: if node is None: return MyNode(SCREAMING_SNAKE_CASE_ ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , SCREAMING_SNAKE_CASE_ ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected lowerCAmelCase__ : Optional[int] = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child lowerCAmelCase__ : Tuple = right_rotation(SCREAMING_SNAKE_CASE_ ) else: lowerCAmelCase__ : str = lr_rotation(SCREAMING_SNAKE_CASE_ ) else: node.set_right(insert_node(node.get_right() , SCREAMING_SNAKE_CASE_ ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: lowerCAmelCase__ : Tuple = node.get_right() assert right_child is not None if data < right_child.get_data(): lowerCAmelCase__ : Tuple = rl_rotation(SCREAMING_SNAKE_CASE_ ) else: lowerCAmelCase__ : Union[str, Any] = left_rotation(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : int = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(SCREAMING_SNAKE_CASE_ ) return node def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Any: while True: lowerCAmelCase__ : Optional[int] = root.get_right() if right_child is None: break lowerCAmelCase__ : Optional[Any] = right_child return root.get_data() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Any: while True: lowerCAmelCase__ : Tuple = root.get_left() if left_child is None: break lowerCAmelCase__ : List[Any] = left_child return root.get_data() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> MyNode | None: lowerCAmelCase__ : str = root.get_left() lowerCAmelCase__ : Dict = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: lowerCAmelCase__ : Union[str, Any] = get_left_most(SCREAMING_SNAKE_CASE_ ) root.set_data(SCREAMING_SNAKE_CASE_ ) root.set_right(del_node(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) elif left_child is not None: lowerCAmelCase__ : Optional[Any] = left_child elif right_child is not None: lowerCAmelCase__ : Optional[int] = right_child else: return None elif root.get_data() > data: if left_child is None: print('No such data' ) return root else: root.set_left(del_node(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) if get_height(SCREAMING_SNAKE_CASE_ ) - get_height(SCREAMING_SNAKE_CASE_ ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): lowerCAmelCase__ : Dict = left_rotation(SCREAMING_SNAKE_CASE_ ) else: lowerCAmelCase__ : List[str] = rl_rotation(SCREAMING_SNAKE_CASE_ ) elif get_height(SCREAMING_SNAKE_CASE_ ) - get_height(SCREAMING_SNAKE_CASE_ ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): lowerCAmelCase__ : Optional[int] = right_rotation(SCREAMING_SNAKE_CASE_ ) else: lowerCAmelCase__ : Dict = lr_rotation(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : str = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(SCREAMING_SNAKE_CASE_ ) return root class A__ : def __init__( self : Any ): '''simple docstring''' lowerCAmelCase__ : MyNode | None = None def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' return get_height(self.root ) def _lowerCamelCase ( self : List[Any] , a : Any ): '''simple docstring''' print('insert:' + str(a ) ) lowerCAmelCase__ : Optional[Any] = insert_node(self.root , a ) def _lowerCamelCase ( self : Tuple , a : Any ): '''simple docstring''' print('delete:' + str(a ) ) if self.root is None: print('Tree is empty!' ) return lowerCAmelCase__ : List[str] = del_node(self.root , a ) def __str__( self : Dict , ): # a level traversale, gives a more intuitive look on the tree '''simple docstring''' lowerCAmelCase__ : int = '' lowerCAmelCase__ : int = MyQueue() q.push(self.root ) lowerCAmelCase__ : Any = self.get_height() if layer == 0: return output lowerCAmelCase__ : Optional[Any] = 0 while not q.is_empty(): lowerCAmelCase__ : Any = q.pop() lowerCAmelCase__ : str = ' ' * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(a ) q.push(a ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space lowerCAmelCase__ : str = cnt + 1 for i in range(100 ): if cnt == math.pow(2 , a ) - 1: lowerCAmelCase__ : Dict = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def lowerCAmelCase__ ( ) -> None: import doctest doctest.testmod() if __name__ == "__main__": _test() lowerCamelCase__ = AVLtree() lowerCamelCase__ = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
307
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowerCamelCase__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} lowerCamelCase__ = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", """emoji""": True, }, } ] lowerCamelCase__ = 0 for log in Path().glob("""*.log"""): lowerCamelCase__ = 0 with open(log, """r""") as f: for line in f: lowerCamelCase__ = json.loads(line) if line.get("""nodeid""", """""") != "": lowerCamelCase__ = line["""nodeid"""] if line.get("""duration""", None) is not None: lowerCamelCase__ = F"""{line["duration"]:.4f}""" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowerCamelCase__ = [] log.unlink() lowerCamelCase__ = """""" lowerCamelCase__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowerCamelCase__ = [] lowerCamelCase__ = {} for test in failed_tests: lowerCamelCase__ = test[0].split("""::""") lowerCamelCase__ = data[0].split("""/""")[-1] if data[0] not in filesafailed: lowerCamelCase__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowerCamelCase__ = [test[0] for test in failed_table] lowerCamelCase__ = list(set(files)) # Count number of instances in failed_tests lowerCamelCase__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowerCamelCase__ = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: lowerCamelCase__ = """Too many failed tests, please see the full report in the Action results.""" lowerCamelCase__ = len(err) + 10 lowerCamelCase__ = message[: 3000 - offset] + F"""\n...\n```\n{err}""" print(F"""### {message}""") else: lowerCamelCase__ = """No failed tests! 🤗""" print(F"""## {message}""") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient lowerCamelCase__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": lowerCamelCase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) lowerCamelCase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) lowerCamelCase__ = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) lowerCamelCase__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) lowerCamelCase__ = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowerCamelCase__ = """""" for i, row in enumerate(test_failures): if row[0] != test_class: lowerCamelCase__ = row[0] else: lowerCamelCase__ = """""" lowerCamelCase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
307
1
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: return "".join([hex(SCREAMING_SNAKE_CASE_ )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE_ )] ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(SCREAMING_SNAKE_CASE_ ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE_ ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
307
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCamelCase__ = imread(r"""digital_image_processing/image_data/lena_small.jpg""") lowerCamelCase__ = cvtColor(img, COLOR_BGR2GRAY) def lowerCAmelCase__ ( ) -> Dict: lowerCAmelCase__ : List[Any] = cn.convert_to_negative(SCREAMING_SNAKE_CASE_ ) # assert negative_img array for at least one True assert negative_img.any() def lowerCAmelCase__ ( ) -> Optional[Any]: with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(SCREAMING_SNAKE_CASE_ , 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def lowerCAmelCase__ ( ) -> Tuple: lowerCAmelCase__ : str = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def lowerCAmelCase__ ( ) -> Tuple: lowerCAmelCase__ : Tuple = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() lowerCAmelCase__ : Optional[Any] = canny.canny(SCREAMING_SNAKE_CASE_ ) # assert canny array for at least one True assert canny_array.any() def lowerCAmelCase__ ( ) -> Optional[int]: assert gg.gaussian_filter(SCREAMING_SNAKE_CASE_ , 5 , sigma=0.9 ).all() def lowerCAmelCase__ ( ) -> Dict: # laplace diagonals lowerCAmelCase__ : Union[str, Any] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowerCAmelCase__ : int = conv.img_convolve(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).astype(SCREAMING_SNAKE_CASE_ ) assert res.any() def lowerCAmelCase__ ( ) -> List[str]: assert med.median_filter(SCREAMING_SNAKE_CASE_ , 3 ).any() def lowerCAmelCase__ ( ) -> Any: lowerCAmelCase__ , lowerCAmelCase__ : str = sob.sobel_filter(SCREAMING_SNAKE_CASE_ ) assert grad.any() and theta.any() def lowerCAmelCase__ ( ) -> Any: lowerCAmelCase__ : int = sp.make_sepia(SCREAMING_SNAKE_CASE_ , 20 ) assert sepia.all() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = "digital_image_processing/image_data/lena_small.jpg" ) -> Optional[Any]: lowerCAmelCase__ : List[Any] = bs.Burkes(imread(SCREAMING_SNAKE_CASE_ , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = "digital_image_processing/image_data/lena_small.jpg" , ) -> Any: lowerCAmelCase__ : Dict = rs.NearestNeighbour(imread(SCREAMING_SNAKE_CASE_ , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def lowerCAmelCase__ ( ) -> int: lowerCAmelCase__ : int = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. lowerCAmelCase__ : List[str] = imread(SCREAMING_SNAKE_CASE_ , 0 ) # Test for get_neighbors_pixel function() return not None lowerCAmelCase__ : str = 0 lowerCAmelCase__ : str = 0 lowerCAmelCase__ : List[str] = image[x_coordinate][y_coordinate] lowerCAmelCase__ : Dict = lbp.get_neighbors_pixel( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCAmelCase__ : List[str] = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): lowerCAmelCase__ : Dict = lbp.local_binary_value(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert lbp_image.any()
307
1
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def lowerCAmelCase__ ( ) -> str: lowerCAmelCase__ : Any = HfArgumentParser(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Dict = parser.parse_args_into_dataclasses()[0] lowerCAmelCase__ : Optional[Any] = TensorFlowBenchmark(args=SCREAMING_SNAKE_CASE_ ) try: lowerCAmelCase__ : Union[str, Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowerCAmelCase__ : Tuple = 'Arg --no_{0} is no longer used, please use --no-{0} instead.' lowerCAmelCase__ : List[Any] = ' '.join(str(SCREAMING_SNAKE_CASE_ ).split(' ' )[:-1] ) lowerCAmelCase__ : List[Any] = '' lowerCAmelCase__ : List[str] = eval(str(SCREAMING_SNAKE_CASE_ ).split(' ' )[-1] ) lowerCAmelCase__ : List[Any] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: lowerCAmelCase__ : List[Any] = full_error_msg + begin_error_msg + str(SCREAMING_SNAKE_CASE_ ) raise ValueError(SCREAMING_SNAKE_CASE_ ) benchmark.run() if __name__ == "__main__": main()
307
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
1
from __future__ import annotations def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> bool: lowerCAmelCase__ : Optional[int] = get_failure_array(SCREAMING_SNAKE_CASE_ ) # 2) Step through text searching for pattern lowerCAmelCase__ , lowerCAmelCase__ : Dict = 0, 0 # index into text, pattern while i < len(SCREAMING_SNAKE_CASE_ ): if pattern[j] == text[i]: if j == (len(SCREAMING_SNAKE_CASE_ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: lowerCAmelCase__ : Union[str, Any] = failure[j - 1] continue i += 1 return False def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> list[int]: lowerCAmelCase__ : Any = [0] lowerCAmelCase__ : Optional[Any] = 0 lowerCAmelCase__ : Optional[int] = 1 while j < len(SCREAMING_SNAKE_CASE_ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: lowerCAmelCase__ : Optional[Any] = failure[i - 1] continue j += 1 failure.append(SCREAMING_SNAKE_CASE_ ) return failure if __name__ == "__main__": # Test 1) lowerCamelCase__ = """abc1abc12""" lowerCamelCase__ = """alskfjaldsabc1abc1abc12k23adsfabcabc""" lowerCamelCase__ = """alskfjaldsk23adsfabcabc""" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) lowerCamelCase__ = """ABABX""" lowerCamelCase__ = """ABABZABABYABABX""" assert kmp(pattern, text) # Test 3) lowerCamelCase__ = """AAAB""" lowerCamelCase__ = """ABAAAAAB""" assert kmp(pattern, text) # Test 4) lowerCamelCase__ = """abcdabcy""" lowerCamelCase__ = """abcxabcdabxabcdabcdabcy""" assert kmp(pattern, text) # Test 5) lowerCamelCase__ = """aabaabaaa""" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
307
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.999 , SCREAMING_SNAKE_CASE_="cosine" , ) -> Union[str, Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(SCREAMING_SNAKE_CASE_ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(SCREAMING_SNAKE_CASE_ ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) lowerCAmelCase__ : Tuple = [] for i in range(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : List[Any] = i / num_diffusion_timesteps lowerCAmelCase__ : str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) / alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ) return torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ) class A__ ( __magic_name__ , __magic_name__ ): lowercase = [e.name for e in KarrasDiffusionSchedulers] lowercase = 2 @register_to_config def __init__( self : Union[str, Any] , a : int = 1_000 , a : float = 0.0_0_0_8_5 , a : float = 0.0_1_2 , a : str = "linear" , a : Optional[Union[np.ndarray, List[float]]] = None , a : str = "epsilon" , a : Optional[bool] = False , a : Optional[bool] = False , a : float = 1.0 , a : str = "linspace" , a : int = 0 , ): '''simple docstring''' if trained_betas is not None: lowerCAmelCase__ : List[str] = torch.tensor(a , dtype=torch.floataa ) elif beta_schedule == "linear": lowerCAmelCase__ : List[str] = torch.linspace(a , a , a , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowerCAmelCase__ : Union[str, Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , a , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowerCAmelCase__ : int = betas_for_alpha_bar(a , alpha_transform_type='cosine' ) elif beta_schedule == "exp": lowerCAmelCase__ : List[str] = betas_for_alpha_bar(a , alpha_transform_type='exp' ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) lowerCAmelCase__ : int = 1.0 - self.betas lowerCAmelCase__ : Tuple = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(a , a , a ) lowerCAmelCase__ : Optional[Any] = use_karras_sigmas def _lowerCamelCase ( self : str , a : List[Any] , a : str=None ): '''simple docstring''' if schedule_timesteps is None: lowerCAmelCase__ : List[str] = self.timesteps lowerCAmelCase__ : int = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: lowerCAmelCase__ : List[str] = 1 if len(a ) > 1 else 0 else: lowerCAmelCase__ : Tuple = timestep.cpu().item() if torch.is_tensor(a ) else timestep lowerCAmelCase__ : Tuple = self._index_counter[timestep_int] return indices[pos].item() @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _lowerCamelCase ( self : Tuple , a : torch.FloatTensor , a : Union[float, torch.FloatTensor] , ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.index_for_timestep(a ) lowerCAmelCase__ : Any = self.sigmas[step_index] lowerCAmelCase__ : Optional[Any] = sample / ((sigma**2 + 1) ** 0.5) return sample def _lowerCamelCase ( self : List[str] , a : int , a : Union[str, torch.device] = None , a : Optional[int] = None , ): '''simple docstring''' lowerCAmelCase__ : Any = num_inference_steps lowerCAmelCase__ : Union[str, Any] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowerCAmelCase__ : Union[str, Any] = np.linspace(0 , num_train_timesteps - 1 , a , dtype=a )[::-1].copy() elif self.config.timestep_spacing == "leading": lowerCAmelCase__ : List[Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCAmelCase__ : Dict = (np.arange(0 , a ) * step_ratio).round()[::-1].copy().astype(a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowerCAmelCase__ : Tuple = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCAmelCase__ : int = (np.arange(a , 0 , -step_ratio )).round().copy().astype(a ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) lowerCAmelCase__ : str = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) lowerCAmelCase__ : List[Any] = np.log(a ) lowerCAmelCase__ : Optional[int] = np.interp(a , np.arange(0 , len(a ) ) , a ) if self.config.use_karras_sigmas: lowerCAmelCase__ : str = self._convert_to_karras(in_sigmas=a , num_inference_steps=self.num_inference_steps ) lowerCAmelCase__ : Union[str, Any] = np.array([self._sigma_to_t(a , a ) for sigma in sigmas] ) lowerCAmelCase__ : Tuple = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) lowerCAmelCase__ : Dict = torch.from_numpy(a ).to(device=a ) lowerCAmelCase__ : Union[str, Any] = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) lowerCAmelCase__ : Tuple = torch.from_numpy(a ) lowerCAmelCase__ : List[str] = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(a ).startswith('mps' ): # mps does not support float64 lowerCAmelCase__ : Optional[Any] = timesteps.to(a , dtype=torch.floataa ) else: lowerCAmelCase__ : Any = timesteps.to(device=a ) # empty dt and derivative lowerCAmelCase__ : str = None lowerCAmelCase__ : Optional[int] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowerCAmelCase__ : Optional[Any] = defaultdict(a ) def _lowerCamelCase ( self : Any , a : Dict , a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = np.log(a ) # get distribution lowerCAmelCase__ : Tuple = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range lowerCAmelCase__ : Optional[int] = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) lowerCAmelCase__ : List[str] = low_idx + 1 lowerCAmelCase__ : List[str] = log_sigmas[low_idx] lowerCAmelCase__ : Any = log_sigmas[high_idx] # interpolate sigmas lowerCAmelCase__ : Union[str, Any] = (low - log_sigma) / (low - high) lowerCAmelCase__ : List[Any] = np.clip(a , 0 , 1 ) # transform interpolation to time range lowerCAmelCase__ : List[Any] = (1 - w) * low_idx + w * high_idx lowerCAmelCase__ : Any = t.reshape(sigma.shape ) return t def _lowerCamelCase ( self : Tuple , a : torch.FloatTensor , a : Any ): '''simple docstring''' lowerCAmelCase__ : float = in_sigmas[-1].item() lowerCAmelCase__ : float = in_sigmas[0].item() lowerCAmelCase__ : Tuple = 7.0 # 7.0 is the value used in the paper lowerCAmelCase__ : Tuple = np.linspace(0 , 1 , a ) lowerCAmelCase__ : Any = sigma_min ** (1 / rho) lowerCAmelCase__ : Optional[Any] = sigma_max ** (1 / rho) lowerCAmelCase__ : Tuple = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _lowerCamelCase ( self : Any ): '''simple docstring''' return self.dt is None def _lowerCamelCase ( self : List[str] , a : Union[torch.FloatTensor, np.ndarray] , a : Union[float, torch.FloatTensor] , a : Union[torch.FloatTensor, np.ndarray] , a : bool = True , ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.index_for_timestep(a ) # advance index counter by 1 lowerCAmelCase__ : Tuple = timestep.cpu().item() if torch.is_tensor(a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowerCAmelCase__ : Union[str, Any] = self.sigmas[step_index] lowerCAmelCase__ : Union[str, Any] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method lowerCAmelCase__ : int = self.sigmas[step_index - 1] lowerCAmelCase__ : Any = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowerCAmelCase__ : Optional[int] = 0 lowerCAmelCase__ : Union[str, Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowerCAmelCase__ : int = sigma_hat if self.state_in_first_order else sigma_next lowerCAmelCase__ : Any = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowerCAmelCase__ : Dict = sigma_hat if self.state_in_first_order else sigma_next lowerCAmelCase__ : List[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": lowerCAmelCase__ : int = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.config.clip_sample: lowerCAmelCase__ : str = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowerCAmelCase__ : Dict = (sample - pred_original_sample) / sigma_hat # 3. delta timestep lowerCAmelCase__ : Optional[int] = sigma_next - sigma_hat # store for 2nd order step lowerCAmelCase__ : List[Any] = derivative lowerCAmelCase__ : str = dt lowerCAmelCase__ : Dict = sample else: # 2. 2nd order / Heun's method lowerCAmelCase__ : Union[str, Any] = (sample - pred_original_sample) / sigma_next lowerCAmelCase__ : Union[str, Any] = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample lowerCAmelCase__ : Dict = self.dt lowerCAmelCase__ : Optional[int] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" lowerCAmelCase__ : List[str] = None lowerCAmelCase__ : Tuple = None lowerCAmelCase__ : str = None lowerCAmelCase__ : Tuple = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=a ) def _lowerCamelCase ( self : int , a : torch.FloatTensor , a : torch.FloatTensor , a : torch.FloatTensor , ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(a ): # mps does not support float64 lowerCAmelCase__ : Optional[int] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) lowerCAmelCase__ : int = timesteps.to(original_samples.device , dtype=torch.floataa ) else: lowerCAmelCase__ : Union[str, Any] = self.timesteps.to(original_samples.device ) lowerCAmelCase__ : Optional[Any] = timesteps.to(original_samples.device ) lowerCAmelCase__ : List[Any] = [self.index_for_timestep(a , a ) for t in timesteps] lowerCAmelCase__ : List[str] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): lowerCAmelCase__ : Any = sigma.unsqueeze(-1 ) lowerCAmelCase__ : List[str] = original_samples + noise * sigma return noisy_samples def __len__( self : int ): '''simple docstring''' return self.config.num_train_timesteps
307
1
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: # Load configuration defined in the metadata file with open(SCREAMING_SNAKE_CASE_ ) as metadata_file: lowerCAmelCase__ : List[Any] = json.load(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[Any] = LukeConfig(use_entity_aware_attention=SCREAMING_SNAKE_CASE_ , **metadata['model_config'] ) # Load in the weights from the checkpoint_path lowerCAmelCase__ : Optional[int] = torch.load(SCREAMING_SNAKE_CASE_ , map_location='cpu' )['module'] # Load the entity vocab file lowerCAmelCase__ : Optional[Any] = load_original_entity_vocab(SCREAMING_SNAKE_CASE_ ) # add an entry for [MASK2] lowerCAmelCase__ : Any = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 lowerCAmelCase__ : Optional[Any] = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks lowerCAmelCase__ : Optional[int] = AddedToken('<ent>' , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[str] = AddedToken('<ent2>' , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , 'tokenizer_config.json' ) , 'r' ) as f: lowerCAmelCase__ : Dict = json.load(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Dict = 'MLukeTokenizer' with open(os.path.join(SCREAMING_SNAKE_CASE_ , 'tokenizer_config.json' ) , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : str = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Initialize the embeddings of the special tokens lowerCAmelCase__ : Optional[int] = tokenizer.convert_tokens_to_ids(['@'] )[0] lowerCAmelCase__ : Dict = tokenizer.convert_tokens_to_ids(['#'] )[0] lowerCAmelCase__ : Optional[int] = state_dict['embeddings.word_embeddings.weight'] lowerCAmelCase__ : Optional[int] = word_emb[ent_init_index].unsqueeze(0 ) lowerCAmelCase__ : List[Any] = word_emb[enta_init_index].unsqueeze(0 ) lowerCAmelCase__ : Optional[int] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: lowerCAmelCase__ : Union[str, Any] = state_dict[bias_name] lowerCAmelCase__ : Union[str, Any] = decoder_bias[ent_init_index].unsqueeze(0 ) lowerCAmelCase__ : Dict = decoder_bias[enta_init_index].unsqueeze(0 ) lowerCAmelCase__ : Tuple = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: lowerCAmelCase__ : List[Any] = F'''encoder.layer.{layer_index}.attention.self.''' lowerCAmelCase__ : Any = state_dict[prefix + matrix_name] lowerCAmelCase__ : Optional[Any] = state_dict[prefix + matrix_name] lowerCAmelCase__ : str = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks lowerCAmelCase__ : int = state_dict['entity_embeddings.entity_embeddings.weight'] lowerCAmelCase__ : Tuple = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 ) lowerCAmelCase__ : Tuple = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' lowerCAmelCase__ : List[str] = state_dict['entity_predictions.bias'] lowerCAmelCase__ : Optional[Any] = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 ) lowerCAmelCase__ : Optional[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) lowerCAmelCase__ : Optional[int] = LukeForMaskedLM(config=SCREAMING_SNAKE_CASE_ ).eval() state_dict.pop('entity_predictions.decoder.weight' ) state_dict.pop('lm_head.decoder.weight' ) state_dict.pop('lm_head.decoder.bias' ) lowerCAmelCase__ : str = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )): lowerCAmelCase__ : str = state_dict[key] else: lowerCAmelCase__ : Tuple = state_dict[key] lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) if set(SCREAMING_SNAKE_CASE_ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(SCREAMING_SNAKE_CASE_ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs lowerCAmelCase__ : Any = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ , task='entity_classification' ) lowerCAmelCase__ : Tuple = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).' lowerCAmelCase__ : Tuple = (0, 9) lowerCAmelCase__ : Optional[Any] = tokenizer(SCREAMING_SNAKE_CASE_ , entity_spans=[span] , return_tensors='pt' ) lowerCAmelCase__ : List[Any] = model(**SCREAMING_SNAKE_CASE_ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base lowerCAmelCase__ : Union[str, Any] = torch.Size((1, 33, 768) ) lowerCAmelCase__ : Tuple = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base lowerCAmelCase__ : List[Any] = torch.Size((1, 1, 768) ) lowerCAmelCase__ : Dict = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction lowerCAmelCase__ : int = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : str = 'Tokyo is the capital of <mask>.' lowerCAmelCase__ : str = (24, 30) lowerCAmelCase__ : Optional[int] = tokenizer(SCREAMING_SNAKE_CASE_ , entity_spans=[span] , return_tensors='pt' ) lowerCAmelCase__ : str = model(**SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[Any] = encoding['input_ids'][0].tolist() lowerCAmelCase__ : Tuple = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) ) lowerCAmelCase__ : List[str] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[Any] = outputs.entity_logits[0][0].argmax().item() lowerCAmelCase__ : str = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(SCREAMING_SNAKE_CASE_ ) ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: lowerCAmelCase__ : Optional[int] = ['[MASK]', '[PAD]', '[UNK]'] lowerCAmelCase__ : str = [json.loads(SCREAMING_SNAKE_CASE_ ) for line in open(SCREAMING_SNAKE_CASE_ )] lowerCAmelCase__ : Any = {} for entry in data: lowerCAmelCase__ : str = entry['id'] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: lowerCAmelCase__ : int = entity_id break lowerCAmelCase__ : Any = F'''{language}:{entity_name}''' lowerCAmelCase__ : List[Any] = entity_id return new_mapping if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) lowerCamelCase__ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
307
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: if isinstance(SCREAMING_SNAKE_CASE_ , collections.abc.Iterable ): return x return (x, x) @require_tf class A__ : def _lowerCamelCase ( self : List[Any] , a : List[str] , a : Optional[Any] ): '''simple docstring''' pass def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' pass def _lowerCamelCase ( self : Dict ): '''simple docstring''' pass def _lowerCamelCase ( self : Dict , a : int , a : str , a : List[Any] , a : Dict , a : List[str]=None , **a : Dict ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(a , a ) lowerCAmelCase__ : Tuple = TFVisionTextDualEncoderModel(a ) lowerCAmelCase__ : Tuple = model(input_ids=a , pixel_values=a , attention_mask=a ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) ) def _lowerCamelCase ( self : Union[str, Any] , a : Dict , a : Tuple , a : Dict , a : Union[str, Any] , a : List[Any]=None , **a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.get_vision_text_model(a , a ) lowerCAmelCase__ : List[Any] = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : Optional[int] = model(input_ids=a , pixel_values=a , attention_mask=a ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _lowerCamelCase ( self : List[str] , a : Optional[int] , a : Optional[int] , a : Union[str, Any] , a : List[Any] , a : Any=None , **a : Dict ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Optional[Any] = {'vision_model': vision_model, 'text_model': text_model} lowerCAmelCase__ : Tuple = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**a ) lowerCAmelCase__ : Union[str, Any] = model(input_ids=a , pixel_values=a , attention_mask=a ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _lowerCamelCase ( self : Any , a : Optional[int] , a : Optional[int] , a : Dict , a : Optional[int] , a : Optional[int]=None , **a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : int = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Dict = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : List[str] = model(input_ids=a , pixel_values=a , attention_mask=a ) lowerCAmelCase__ : Union[str, Any] = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(a ) lowerCAmelCase__ : Any = TFVisionTextDualEncoderModel.from_pretrained(a ) lowerCAmelCase__ : int = model(input_ids=a , pixel_values=a , attention_mask=a ) lowerCAmelCase__ : Union[str, Any] = after_output[0].numpy() lowerCAmelCase__ : Optional[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a , 1E-5 ) def _lowerCamelCase ( self : List[str] , a : Dict , a : Optional[int] , a : List[Any] , a : str , a : int=None , **a : Tuple ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Any = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : str = model( input_ids=a , pixel_values=a , attention_mask=a , output_attentions=a ) lowerCAmelCase__ : Union[str, Any] = output.vision_model_output.attentions self.assertEqual(len(a ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase__ : Optional[int] = to_atuple(vision_model.config.image_size ) lowerCAmelCase__ : Optional[Any] = to_atuple(vision_model.config.patch_size ) lowerCAmelCase__ : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCAmelCase__ : int = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCAmelCase__ : str = output.text_model_output.attentions self.assertEqual(len(a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCamelCase ( self : List[Any] , a : np.ndarray , a : np.ndarray , a : float ): '''simple docstring''' lowerCAmelCase__ : int = np.abs((a - b) ).max() self.assertLessEqual(a , a , f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**a ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Any = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**a ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : str = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() self.check_save_load(**a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**a ) @slow def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = self.get_pretrained_model_and_inputs() lowerCAmelCase__ : List[Any] = model_a(**a ) lowerCAmelCase__ : Optional[int] = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(a ) lowerCAmelCase__ : str = TFVisionTextDualEncoderModel.from_pretrained(a ) lowerCAmelCase__ : List[str] = model_a(**a ) lowerCAmelCase__ : int = after_outputs[0].numpy() lowerCAmelCase__ : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a , 1E-5 ) @require_tf class A__ ( __magic_name__ , unittest.TestCase ): def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-random-bert' ) lowerCAmelCase__ : int = 13 lowerCAmelCase__ : List[Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ : int = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ : Optional[Any] = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ : List[Any] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _lowerCamelCase ( self : List[Any] , a : Dict , a : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = TFViTModel(a , name='vision_model' ) lowerCAmelCase__ : str = TFBertModel(a , name='text_model' ) return vision_model, text_model def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = TFViTModelTester(self ) lowerCAmelCase__ : Tuple = TFBertModelTester(self ) lowerCAmelCase__ : Optional[int] = vit_model_tester.prepare_config_and_inputs() lowerCAmelCase__ : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : int = vision_config_and_inputs ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : str = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class A__ ( __magic_name__ , unittest.TestCase ): def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-deit-tf' , 'hf-internal-testing/tiny-random-roberta' ) lowerCAmelCase__ : Tuple = 13 lowerCAmelCase__ : Any = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ : Dict = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ : Any = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ : Tuple = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _lowerCamelCase ( self : str , a : Optional[Any] , a : Dict , a : Dict , a : Any , a : Any=None , **a : int ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Optional[int] = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : Any = model( input_ids=a , pixel_values=a , attention_mask=a , output_attentions=a ) lowerCAmelCase__ : Union[str, Any] = output.vision_model_output.attentions self.assertEqual(len(a ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowerCAmelCase__ : str = to_atuple(vision_model.config.image_size ) lowerCAmelCase__ : Union[str, Any] = to_atuple(vision_model.config.patch_size ) lowerCAmelCase__ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCAmelCase__ : int = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCAmelCase__ : List[str] = output.text_model_output.attentions self.assertEqual(len(a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCamelCase ( self : int , a : Optional[int] , a : int ): '''simple docstring''' lowerCAmelCase__ : Dict = TFDeiTModel(a , name='vision_model' ) lowerCAmelCase__ : List[Any] = TFRobertaModel(a , name='text_model' ) return vision_model, text_model def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Dict = TFDeiTModelTester(self ) lowerCAmelCase__ : List[str] = TFRobertaModelTester(self ) lowerCAmelCase__ : str = vit_model_tester.prepare_config_and_inputs() lowerCAmelCase__ : List[Any] = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[str] = vision_config_and_inputs ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : Any = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class A__ ( __magic_name__ , unittest.TestCase ): def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : int = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-clip-tf' , 'hf-internal-testing/tiny-random-bert' ) lowerCAmelCase__ : Dict = 13 lowerCAmelCase__ : str = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ : List[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ : Union[str, Any] = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ : Optional[int] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _lowerCamelCase ( self : str , a : int , a : List[str] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = TFCLIPVisionModel(a , name='vision_model' ) lowerCAmelCase__ : List[str] = TFBertModel(a , name='text_model' ) return vision_model, text_model def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Any = TFCLIPVisionModelTester(self ) lowerCAmelCase__ : Union[str, Any] = TFBertModelTester(self ) lowerCAmelCase__ : Any = clip_model_tester.prepare_config_and_inputs() lowerCAmelCase__ : Any = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = vision_config_and_inputs ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : str = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class A__ ( unittest.TestCase ): @slow def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Tuple = TFVisionTextDualEncoderModel.from_pretrained( 'clip-italian/clip-italian' , logit_scale_init_value=1.0 , from_pt=a ) lowerCAmelCase__ : List[Any] = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) lowerCAmelCase__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCAmelCase__ : Any = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=a , padding=a , return_tensors='np' ) lowerCAmelCase__ : Union[str, Any] = model(**a ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) lowerCAmelCase__ : List[str] = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , a , atol=1E-3 ) )
307
1
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar lowerCamelCase__ = TypeVar("""T""") class A__ ( Generic[T] ): def __init__( self : List[Any] , a : list[T] , a : Callable[[T, T], T] ): '''simple docstring''' lowerCAmelCase__ : Any | T = None lowerCAmelCase__ : int = len(a ) lowerCAmelCase__ : list[T] = [any_type for _ in range(self.N )] + arr lowerCAmelCase__ : List[Any] = fnc self.build() def _lowerCamelCase ( self : List[str] ): '''simple docstring''' for p in range(self.N - 1 , 0 , -1 ): lowerCAmelCase__ : List[Any] = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def _lowerCamelCase ( self : Dict , a : int , a : T ): '''simple docstring''' p += self.N lowerCAmelCase__ : Optional[int] = v while p > 1: lowerCAmelCase__ : Optional[int] = p // 2 lowerCAmelCase__ : Tuple = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def _lowerCamelCase ( self : Optional[Any] , a : int , a : int ): # noqa: E741 '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = l + self.N, r + self.N lowerCAmelCase__ : T | None = None while l <= r: if l % 2 == 1: lowerCAmelCase__ : int = self.st[l] if res is None else self.fn(a , self.st[l] ) if r % 2 == 0: lowerCAmelCase__ : Union[str, Any] = self.st[r] if res is None else self.fn(a , self.st[r] ) lowerCAmelCase__ , lowerCAmelCase__ : List[str] = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce lowerCamelCase__ = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] lowerCamelCase__ = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } lowerCamelCase__ = SegmentTree(test_array, min) lowerCamelCase__ = SegmentTree(test_array, max) lowerCamelCase__ = SegmentTree(test_array, lambda a, b: a + b) def lowerCAmelCase__ ( ) -> None: for i in range(len(SCREAMING_SNAKE_CASE_ ) ): for j in range(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ): lowerCAmelCase__ : str = reduce(SCREAMING_SNAKE_CASE_ , test_array[i : j + 1] ) lowerCAmelCase__ : str = reduce(SCREAMING_SNAKE_CASE_ , test_array[i : j + 1] ) lowerCAmelCase__ : Dict = reduce(lambda SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert max_range == max_segment_tree.query(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert sum_range == sum_segment_tree.query(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) test_all_segments() for index, value in test_updates.items(): lowerCamelCase__ = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
307
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) lowerCamelCase__ = logging.getLogger(__name__) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: lowerCAmelCase__ : Dict = np.argmax(SCREAMING_SNAKE_CASE_ , axis=1 ) return np.sum(outputs == labels ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: with open(SCREAMING_SNAKE_CASE_ , encoding='utf_8' ) as f: lowerCAmelCase__ : Dict = csv.reader(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Dict = [] next(SCREAMING_SNAKE_CASE_ ) # skip the first line for line in tqdm(SCREAMING_SNAKE_CASE_ ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: lowerCAmelCase__ : Dict = [] for dataset in encoded_datasets: lowerCAmelCase__ : List[str] = len(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) lowerCAmelCase__ : Tuple = np.zeros((n_batch, 2) , dtype=np.intaa ) lowerCAmelCase__ : List[Any] = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) lowerCAmelCase__ : Tuple = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Tuple = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase__ : Any = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase__ : Optional[Any] = with_conta lowerCAmelCase__ : List[str] = with_conta lowerCAmelCase__ : List[Any] = len(SCREAMING_SNAKE_CASE_ ) - 1 lowerCAmelCase__ : Tuple = len(SCREAMING_SNAKE_CASE_ ) - 1 lowerCAmelCase__ : Tuple = with_conta lowerCAmelCase__ : Optional[int] = with_conta lowerCAmelCase__ : Optional[int] = mc_label lowerCAmelCase__ : Dict = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(SCREAMING_SNAKE_CASE_ ) for t in all_inputs ) ) return tensor_datasets def lowerCAmelCase__ ( ) -> int: lowerCAmelCase__ : int = argparse.ArgumentParser() parser.add_argument('--model_name' , type=SCREAMING_SNAKE_CASE_ , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=SCREAMING_SNAKE_CASE_ , default='' ) parser.add_argument('--eval_dataset' , type=SCREAMING_SNAKE_CASE_ , default='' ) parser.add_argument('--seed' , type=SCREAMING_SNAKE_CASE_ , default=42 ) parser.add_argument('--num_train_epochs' , type=SCREAMING_SNAKE_CASE_ , default=3 ) parser.add_argument('--train_batch_size' , type=SCREAMING_SNAKE_CASE_ , default=8 ) parser.add_argument('--eval_batch_size' , type=SCREAMING_SNAKE_CASE_ , default=16 ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=SCREAMING_SNAKE_CASE_ , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=SCREAMING_SNAKE_CASE_ , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=SCREAMING_SNAKE_CASE_ , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=SCREAMING_SNAKE_CASE_ , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=SCREAMING_SNAKE_CASE_ , default=6.25e-5 ) parser.add_argument('--warmup_steps' , default=0 , type=SCREAMING_SNAKE_CASE_ , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=SCREAMING_SNAKE_CASE_ , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=SCREAMING_SNAKE_CASE_ , default=0.01 ) parser.add_argument('--lm_coef' , type=SCREAMING_SNAKE_CASE_ , default=0.9 ) parser.add_argument('--n_valid' , type=SCREAMING_SNAKE_CASE_ , default=374 ) parser.add_argument('--server_ip' , type=SCREAMING_SNAKE_CASE_ , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=SCREAMING_SNAKE_CASE_ , default='' , help='Can be used for distant debugging.' ) lowerCAmelCase__ : List[str] = parser.parse_args() print(SCREAMING_SNAKE_CASE_ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE_ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) lowerCAmelCase__ : str = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) lowerCAmelCase__ : Dict = torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset lowerCAmelCase__ : Union[str, Any] = ['_start_', '_delimiter_', '_classify_'] lowerCAmelCase__ : Dict = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE_ ) ) model.to(SCREAMING_SNAKE_CASE_ ) # Load and encode the datasets def tokenize_and_encode(SCREAMING_SNAKE_CASE_ ): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return obj return [tokenize_and_encode(SCREAMING_SNAKE_CASE_ ) for o in obj] logger.info('Encoding dataset...' ) lowerCAmelCase__ : List[Any] = load_rocstories_dataset(args.train_dataset ) lowerCAmelCase__ : str = load_rocstories_dataset(args.eval_dataset ) lowerCAmelCase__ : Union[str, Any] = (train_dataset, eval_dataset) lowerCAmelCase__ : List[str] = tokenize_and_encode(SCREAMING_SNAKE_CASE_ ) # Compute the max input length for the Transformer lowerCAmelCase__ : Union[str, Any] = model.config.n_positions // 2 - 2 lowerCAmelCase__ : Tuple = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) lowerCAmelCase__ : Dict = min(SCREAMING_SNAKE_CASE_ , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders lowerCAmelCase__ : int = pre_process_datasets(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = tensor_datasets[0], tensor_datasets[1] lowerCAmelCase__ : str = TensorDataset(*SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Tuple = RandomSampler(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Tuple = DataLoader(SCREAMING_SNAKE_CASE_ , sampler=SCREAMING_SNAKE_CASE_ , batch_size=args.train_batch_size ) lowerCAmelCase__ : Optional[Any] = TensorDataset(*SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Dict = SequentialSampler(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = DataLoader(SCREAMING_SNAKE_CASE_ , sampler=SCREAMING_SNAKE_CASE_ , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: lowerCAmelCase__ : Union[str, Any] = args.max_steps lowerCAmelCase__ : int = args.max_steps // (len(SCREAMING_SNAKE_CASE_ ) // args.gradient_accumulation_steps) + 1 else: lowerCAmelCase__ : Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) // args.gradient_accumulation_steps * args.num_train_epochs lowerCAmelCase__ : Optional[int] = list(model.named_parameters() ) lowerCAmelCase__ : Tuple = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] lowerCAmelCase__ : str = [ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] lowerCAmelCase__ : Union[str, Any] = AdamW(SCREAMING_SNAKE_CASE_ , lr=args.learning_rate , eps=args.adam_epsilon ) lowerCAmelCase__ : int = get_linear_schedule_with_warmup( SCREAMING_SNAKE_CASE_ , num_warmup_steps=args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE_ ) if args.do_train: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): lowerCAmelCase__ : str = 0 lowerCAmelCase__ : int = 0 lowerCAmelCase__ : str = tqdm(SCREAMING_SNAKE_CASE_ , desc='Training' ) for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Union[str, Any] = tuple(t.to(SCREAMING_SNAKE_CASE_ ) for t in batch ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = batch lowerCAmelCase__ : Tuple = model(SCREAMING_SNAKE_CASE_ , mc_token_ids=SCREAMING_SNAKE_CASE_ , lm_labels=SCREAMING_SNAKE_CASE_ , mc_labels=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : str = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() lowerCAmelCase__ : Optional[int] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 lowerCAmelCase__ : List[str] = 'Training loss: {:.2e} lr: {:.2e}'.format(SCREAMING_SNAKE_CASE_ , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer lowerCAmelCase__ : Optional[int] = model.module if hasattr(SCREAMING_SNAKE_CASE_ , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` lowerCAmelCase__ : List[str] = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[str] = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE_ ) torch.save(model_to_save.state_dict() , SCREAMING_SNAKE_CASE_ ) model_to_save.config.to_json_file(SCREAMING_SNAKE_CASE_ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned lowerCAmelCase__ : Dict = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) lowerCAmelCase__ : List[Any] = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(SCREAMING_SNAKE_CASE_ ) if args.do_eval: model.eval() lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = 0, 0 lowerCAmelCase__ , lowerCAmelCase__ : Any = 0, 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , desc='Evaluating' ): lowerCAmelCase__ : str = tuple(t.to(SCREAMING_SNAKE_CASE_ ) for t in batch ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Tuple = batch with torch.no_grad(): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[str] = model( SCREAMING_SNAKE_CASE_ , mc_token_ids=SCREAMING_SNAKE_CASE_ , lm_labels=SCREAMING_SNAKE_CASE_ , mc_labels=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = mc_logits.detach().cpu().numpy() lowerCAmelCase__ : List[Any] = mc_labels.to('cpu' ).numpy() lowerCAmelCase__ : str = accuracy(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 lowerCAmelCase__ : Optional[int] = eval_loss / nb_eval_steps lowerCAmelCase__ : Any = eval_accuracy / nb_eval_examples lowerCAmelCase__ : Union[str, Any] = tr_loss / nb_tr_steps if args.do_train else None lowerCAmelCase__ : Tuple = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} lowerCAmelCase__ : Dict = os.path.join(args.output_dir , 'eval_results.txt' ) with open(SCREAMING_SNAKE_CASE_ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , SCREAMING_SNAKE_CASE_ , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
307
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase__ = logging.get_logger(__name__) class A__ ( __magic_name__ ): lowercase = ['pixel_values'] def __init__( self : Dict , a : bool = True , a : Optional[Dict[str, int]] = None , a : PILImageResampling = PILImageResampling.BILINEAR , a : bool = True , a : Dict[str, int] = None , a : bool = True , a : Union[int, float] = 1 / 255 , a : bool = True , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , **a : Tuple , ): '''simple docstring''' super().__init__(**a ) lowerCAmelCase__ : List[Any] = size if size is not None else {'shortest_edge': 256} lowerCAmelCase__ : Optional[int] = get_size_dict(a , default_to_square=a ) lowerCAmelCase__ : Optional[int] = crop_size if crop_size is not None else {'height': 224, 'width': 224} lowerCAmelCase__ : List[str] = get_size_dict(a ) lowerCAmelCase__ : Any = do_resize lowerCAmelCase__ : Optional[Any] = size lowerCAmelCase__ : Optional[int] = resample lowerCAmelCase__ : Union[str, Any] = do_center_crop lowerCAmelCase__ : List[Any] = crop_size lowerCAmelCase__ : Union[str, Any] = do_rescale lowerCAmelCase__ : Any = rescale_factor lowerCAmelCase__ : List[str] = do_normalize lowerCAmelCase__ : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase__ : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCamelCase ( self : Optional[Any] , a : np.ndarray , a : Dict[str, int] , a : PILImageResampling = PILImageResampling.BICUBIC , a : Optional[Union[str, ChannelDimension]] = None , **a : Tuple , ): '''simple docstring''' lowerCAmelCase__ : Tuple = get_size_dict(a , default_to_square=a ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) lowerCAmelCase__ : Optional[Any] = get_resize_output_image_size(a , size=size['shortest_edge'] , default_to_square=a ) return resize(a , size=a , resample=a , data_format=a , **a ) def _lowerCamelCase ( self : Dict , a : np.ndarray , a : Dict[str, int] , a : Optional[Union[str, ChannelDimension]] = None , **a : Optional[int] , ): '''simple docstring''' lowerCAmelCase__ : str = get_size_dict(a ) return center_crop(a , size=(size['height'], size['width']) , data_format=a , **a ) def _lowerCamelCase ( self : str , a : np.ndarray , a : float , a : Optional[Union[str, ChannelDimension]] = None , **a : int ): '''simple docstring''' return rescale(a , scale=a , data_format=a , **a ) def _lowerCamelCase ( self : int , a : np.ndarray , a : Union[float, List[float]] , a : Union[float, List[float]] , a : Optional[Union[str, ChannelDimension]] = None , **a : Tuple , ): '''simple docstring''' return normalize(a , mean=a , std=a , data_format=a , **a ) def _lowerCamelCase ( self : Optional[int] , a : ImageInput , a : Optional[bool] = None , a : Dict[str, int] = None , a : PILImageResampling = None , a : bool = None , a : Dict[str, int] = None , a : Optional[bool] = None , a : Optional[float] = None , a : Optional[bool] = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[str, TensorType]] = None , a : Union[str, ChannelDimension] = ChannelDimension.FIRST , **a : Union[str, Any] , ): '''simple docstring''' lowerCAmelCase__ : List[Any] = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ : Tuple = size if size is not None else self.size lowerCAmelCase__ : Optional[int] = get_size_dict(a , default_to_square=a ) lowerCAmelCase__ : Union[str, Any] = resample if resample is not None else self.resample lowerCAmelCase__ : str = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase__ : Union[str, Any] = crop_size if crop_size is not None else self.crop_size lowerCAmelCase__ : List[Any] = get_size_dict(a ) lowerCAmelCase__ : Tuple = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ : Dict = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ : Optional[int] = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ : Union[str, Any] = image_std if image_std is not None else self.image_std lowerCAmelCase__ : str = make_list_of_images(a ) if not valid_images(a ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCAmelCase__ : Optional[Any] = [to_numpy_array(a ) for image in images] if do_resize: lowerCAmelCase__ : List[str] = [self.resize(image=a , size=a , resample=a ) for image in images] if do_center_crop: lowerCAmelCase__ : Union[str, Any] = [self.center_crop(image=a , size=a ) for image in images] if do_rescale: lowerCAmelCase__ : Any = [self.rescale(image=a , scale=a ) for image in images] if do_normalize: lowerCAmelCase__ : Dict = [self.normalize(image=a , mean=a , std=a ) for image in images] lowerCAmelCase__ : Tuple = [to_channel_dimension_format(a , a ) for image in images] lowerCAmelCase__ : int = {'pixel_values': images} return BatchFeature(data=a , tensor_type=a )
307
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCamelCase__ = """python tqdm regex requests packaging filelock numpy tokenizers""".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("""dataclasses""") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("""importlib_metadata""") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> int: require_version(deps[pkg] , SCREAMING_SNAKE_CASE_ )
307
1
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: while a != 0: lowerCAmelCase__ , lowerCAmelCase__ : str = b % a, a return b def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: if gcd(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) != 1: lowerCAmelCase__ : int = F'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = 1, 0, a lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = 0, 1, m while va != 0: lowerCAmelCase__ : Union[str, Any] = ua // va lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[str] = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
307
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class A__ ( __magic_name__ ): lowercase = (DPMSolverSDEScheduler,) lowercase = 10 def _lowerCamelCase ( self : Optional[int] , **a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = { 'num_train_timesteps': 1_100, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'noise_sampler_seed': 0, } config.update(**a ) return config def _lowerCamelCase ( self : Tuple ): '''simple docstring''' for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=a ) def _lowerCamelCase ( self : int ): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=a , beta_end=a ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=a ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : int = self.scheduler_classes[0] lowerCAmelCase__ : Tuple = self.get_scheduler_config() lowerCAmelCase__ : List[Any] = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ : Dict = self.dummy_model() lowerCAmelCase__ : int = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ : int = sample.to(a ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : List[Any] = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : str = model(a , a ) lowerCAmelCase__ : int = scheduler.step(a , a , a ) lowerCAmelCase__ : Any = output.prev_sample lowerCAmelCase__ : List[Any] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Optional[int] = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_7_8_2_1_0_4_4_9_2_1_8_7_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_7_8_7_0_5_9_6_4_5_6_5_2_7_7 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_2_1_1_1_8_1_6_4_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_6_8_9_2_2_9_9_6_5_2 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3 def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.scheduler_classes[0] lowerCAmelCase__ : List[str] = self.get_scheduler_config(prediction_type='v_prediction' ) lowerCAmelCase__ : Any = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ : Optional[int] = self.dummy_model() lowerCAmelCase__ : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ : Any = sample.to(a ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : str = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : str = model(a , a ) lowerCAmelCase__ : Dict = scheduler.step(a , a , a ) lowerCAmelCase__ : Tuple = output.prev_sample lowerCAmelCase__ : int = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Union[str, Any] = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_2_4.7_7_1_4_9_2_0_0_4_3_9_4_5_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_2_2_6_2_8_9_0_1_4_8_1_6_2_8_4 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_2_8.1_6_6_3_3_6_0_5_9_5_7_0_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_6_8_8_3_2_6_0_0_1_1_6_7_2_9_7 ) < 1E-3 else: assert abs(result_sum.item() - 1_1_9.8_4_8_7_5_4_8_8_2_8_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.1_5_6_0_5_3_0_6_6_2_5_3_6_6_2_1 ) < 1E-3 def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.scheduler_classes[0] lowerCAmelCase__ : Optional[int] = self.get_scheduler_config() lowerCAmelCase__ : int = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps , device=a ) lowerCAmelCase__ : Tuple = self.dummy_model() lowerCAmelCase__ : Any = self.dummy_sample_deter.to(a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowerCAmelCase__ : Dict = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : Optional[int] = model(a , a ) lowerCAmelCase__ : Tuple = scheduler.step(a , a , a ) lowerCAmelCase__ : Dict = output.prev_sample lowerCAmelCase__ : Union[str, Any] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Dict = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_6_9_5_7_3_9_7_4_6_0_9_3_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_8_0_5_9_3_4_6_0_7_9_8_2_6_3_5 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_3_6_3_7_6_9_5_3_1_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_8_3_8_2_4_1_5_7_7_1 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3 def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.scheduler_classes[0] lowerCAmelCase__ : Any = self.get_scheduler_config() lowerCAmelCase__ : Any = scheduler_class(**a , use_karras_sigmas=a ) scheduler.set_timesteps(self.num_inference_steps , device=a ) lowerCAmelCase__ : str = self.dummy_model() lowerCAmelCase__ : Any = self.dummy_sample_deter.to(a ) * scheduler.init_noise_sigma lowerCAmelCase__ : str = sample.to(a ) for t in scheduler.timesteps: lowerCAmelCase__ : Any = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : int = model(a , a ) lowerCAmelCase__ : Union[str, Any] = scheduler.step(a , a , a ) lowerCAmelCase__ : Union[str, Any] = output.prev_sample lowerCAmelCase__ : Optional[int] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Any = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_7_6.6_6_9_7_4_1_3_5_7_4_2_1_8_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_7.6_3_6_5_3_5_6_4_4_5_3_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2 else: assert abs(result_sum.item() - 1_7_0.3_1_3_5_2_2_3_3_8_8_6_7_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2
307
1
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = inspect.getfile(accelerate.test_utils ) lowerCAmelCase__ : Dict = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) lowerCAmelCase__ : str = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Dict = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() lowerCAmelCase__ : Tuple = [sys.executable] + distributed_args execute_subprocess_async(a , env=os.environ.copy() )
307
import os import string import sys lowerCamelCase__ = 1 << 8 lowerCamelCase__ = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } lowerCamelCase__ = KEYMAP["""up"""] lowerCamelCase__ = KEYMAP["""left"""] if sys.platform == "win32": lowerCamelCase__ = [] lowerCamelCase__ = { b"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, b"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): lowerCamelCase__ = ord(str(i)) def lowerCAmelCase__ ( ) -> Dict: if os.name == "nt": import msvcrt lowerCAmelCase__ : Dict = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(SCREAMING_SNAKE_CASE_ ) == 0: # Read the keystroke lowerCAmelCase__ : Optional[Any] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCAmelCase__ : Dict = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCAmelCase__ : Dict = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(SCREAMING_SNAKE_CASE_ ) if ord(SCREAMING_SNAKE_CASE_ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) lowerCAmelCase__ : Dict = chr(KEYMAP['esc'] ) except KeyError: lowerCAmelCase__ : Dict = cha[1] else: lowerCAmelCase__ : List[Any] = ch.decode(SCREAMING_SNAKE_CASE_ ) else: lowerCAmelCase__ : Tuple = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCAmelCase__ : Tuple = sys.stdin.fileno() lowerCAmelCase__ : Any = termios.tcgetattr(SCREAMING_SNAKE_CASE_ ) try: tty.setraw(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = sys.stdin.read(1 ) finally: termios.tcsetattr(SCREAMING_SNAKE_CASE_ , termios.TCSADRAIN , SCREAMING_SNAKE_CASE_ ) return ch def lowerCAmelCase__ ( ) -> Union[str, Any]: lowerCAmelCase__ : Any = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(SCREAMING_SNAKE_CASE_ ) == KEYMAP["esc"]: lowerCAmelCase__ : Union[str, Any] = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) == KEYMAP["mod_int"]: lowerCAmelCase__ : str = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(SCREAMING_SNAKE_CASE_ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(SCREAMING_SNAKE_CASE_ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
307
1
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES lowerCamelCase__ = """tiny-wmt19-en-ru""" # Build # borrowed from a test lowerCamelCase__ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] lowerCamelCase__ = dict(zip(vocab, range(len(vocab)))) lowerCamelCase__ = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase__ = Path(tmpdirname) lowerCamelCase__ = build_dir / VOCAB_FILES_NAMES["""src_vocab_file"""] lowerCamelCase__ = build_dir / VOCAB_FILES_NAMES["""tgt_vocab_file"""] lowerCamelCase__ = build_dir / VOCAB_FILES_NAMES["""merges_file"""] with open(src_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, """w""") as fp: fp.write("""\n""".join(merges)) lowerCamelCase__ = FSMTTokenizer( langs=["""en""", """ru"""], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) lowerCamelCase__ = FSMTConfig( langs=["""ru""", """en"""], src_vocab_size=1000, tgt_vocab_size=1000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) lowerCamelCase__ = FSMTForConditionalGeneration(config) print(F"""num of params {tiny_model.num_parameters()}""") # Test lowerCamelCase__ = tokenizer(["""Making tiny model"""], return_tensors="""pt""") lowerCamelCase__ = tiny_model(**batch) print("""test output:""", len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"""Generated {mname_tiny}""") # Upload # transformers-cli upload tiny-wmt19-en-ru
307
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: return "".join([hex(SCREAMING_SNAKE_CASE_ )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE_ )] ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(SCREAMING_SNAKE_CASE_ ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE_ ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
307
1
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(SCREAMING_SNAKE_CASE_ , n - 1 , SCREAMING_SNAKE_CASE_ ) * a) % mod else: lowerCAmelCase__ : str = binary_exponentiation(SCREAMING_SNAKE_CASE_ , n / 2 , SCREAMING_SNAKE_CASE_ ) return (b * b) % mod # a prime number lowerCamelCase__ = 701 lowerCamelCase__ = 10_0000_0000 lowerCamelCase__ = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
307
from __future__ import annotations def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> list[list[int]]: lowerCAmelCase__ : list[list[int]] = [] create_all_state(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , [] , SCREAMING_SNAKE_CASE_ ) return result def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> None: if level == 0: total_list.append(current_list[:] ) return for i in range(SCREAMING_SNAKE_CASE_ , total_number - level + 2 ): current_list.append(SCREAMING_SNAKE_CASE_ ) create_all_state(i + 1 , SCREAMING_SNAKE_CASE_ , level - 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) current_list.pop() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> None: for i in total_list: print(*SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowerCamelCase__ = 4 lowerCamelCase__ = 2 lowerCamelCase__ = generate_all_combinations(n, k) print_all_state(total_list)
307
1
from numpy import exp, pi, sqrt def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = 1.0 ) -> int: return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
307
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class A__ ( unittest.TestCase ): @parameterized.expand([(None,), ('foo.json',)] ) def _lowerCamelCase ( self : Dict , a : str ): '''simple docstring''' lowerCAmelCase__ : List[str] = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(a , config_name=a ) lowerCAmelCase__ : Tuple = GenerationConfig.from_pretrained(a , config_name=a ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , a ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , a ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Dict = AutoConfig.from_pretrained('gpt2' ) lowerCAmelCase__ : Any = GenerationConfig.from_model_config(a ) lowerCAmelCase__ : Any = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(a , a ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = GenerationConfig() lowerCAmelCase__ : Dict = { 'max_new_tokens': 1_024, 'foo': 'bar', } lowerCAmelCase__ : List[Any] = copy.deepcopy(a ) lowerCAmelCase__ : Dict = generation_config.update(**a ) # update_kwargs was not modified (no side effects) self.assertEqual(a , a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(a , {'foo': 'bar'} ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Dict = GenerationConfig() lowerCAmelCase__ : List[Any] = 'bar' with tempfile.TemporaryDirectory('test-generation-config' ) as tmp_dir: generation_config.save_pretrained(a ) lowerCAmelCase__ : List[Any] = GenerationConfig.from_pretrained(a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , 'bar' ) lowerCAmelCase__ : int = GenerationConfig.from_model_config(a ) assert not hasattr(a , 'foo' ) # no new kwargs should be initialized if from config def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , a ) self.assertEqual(default_config.num_beams , 1 ) lowerCAmelCase__ : List[Any] = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , a ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(a ) lowerCAmelCase__ : Any = GenerationConfig.from_pretrained(a , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , a ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class A__ ( unittest.TestCase ): @classmethod def _lowerCamelCase ( cls : int ): '''simple docstring''' lowerCAmelCase__ : List[str] = TOKEN HfFolder.save_token(a ) @classmethod def _lowerCamelCase ( cls : Optional[int] ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-generation-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-generation-config-org' ) except HTTPError: pass def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('test-generation-config' , use_auth_token=self._token ) lowerCAmelCase__ : Any = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) # Reset repo delete_repo(token=self._token , repo_id='test-generation-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( a , repo_id='test-generation-config' , push_to_hub=a , use_auth_token=self._token ) lowerCAmelCase__ : Tuple = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : int = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('valid_org/test-generation-config-org' , use_auth_token=self._token ) lowerCAmelCase__ : Dict = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-generation-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( a , repo_id='valid_org/test-generation-config-org' , push_to_hub=a , use_auth_token=self._token ) lowerCAmelCase__ : List[str] = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) )
307
1
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class A__ ( TensorFormatter[Mapping, 'torch.Tensor', Mapping] ): def __init__( self : List[str] , a : Union[str, Any]=None , **a : Union[str, Any] ): '''simple docstring''' super().__init__(features=a ) lowerCAmelCase__ : Any = torch_tensor_kwargs import torch # noqa import torch at initialization def _lowerCamelCase ( self : Dict , a : Tuple ): '''simple docstring''' import torch if isinstance(a , a ) and column: if all( isinstance(a , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(a ) return column def _lowerCamelCase ( self : Tuple , a : Tuple ): '''simple docstring''' import torch if isinstance(a , (str, bytes, type(a )) ): return value elif isinstance(a , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() lowerCAmelCase__ : List[str] = {} if isinstance(a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): lowerCAmelCase__ : List[str] = {'dtype': torch.intaa} elif isinstance(a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): lowerCAmelCase__ : Optional[int] = {'dtype': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(a , PIL.Image.Image ): lowerCAmelCase__ : Dict = np.asarray(a ) return torch.tensor(a , **{**default_dtype, **self.torch_tensor_kwargs} ) def _lowerCamelCase ( self : List[str] , a : Optional[int] ): '''simple docstring''' import torch # support for torch, tf, jax etc. if hasattr(a , '__array__' ) and not isinstance(a , torch.Tensor ): lowerCAmelCase__ : int = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(a , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(a ) for substruct in data_struct] ) elif isinstance(a , (list, tuple) ): return self._consolidate([self.recursive_tensorize(a ) for substruct in data_struct] ) return self._tensorize(a ) def _lowerCamelCase ( self : str , a : dict ): '''simple docstring''' return map_nested(self._recursive_tensorize , a , map_list=a ) def _lowerCamelCase ( self : str , a : pa.Table ): '''simple docstring''' lowerCAmelCase__ : int = self.numpy_arrow_extractor().extract_row(a ) lowerCAmelCase__ : Tuple = self.python_features_decoder.decode_row(a ) return self.recursive_tensorize(a ) def _lowerCamelCase ( self : Optional[Any] , a : pa.Table ): '''simple docstring''' lowerCAmelCase__ : List[Any] = self.numpy_arrow_extractor().extract_column(a ) lowerCAmelCase__ : Tuple = self.python_features_decoder.decode_column(a , pa_table.column_names[0] ) lowerCAmelCase__ : Optional[Any] = self.recursive_tensorize(a ) lowerCAmelCase__ : int = self._consolidate(a ) return column def _lowerCamelCase ( self : Dict , a : pa.Table ): '''simple docstring''' lowerCAmelCase__ : int = self.numpy_arrow_extractor().extract_batch(a ) lowerCAmelCase__ : List[Any] = self.python_features_decoder.decode_batch(a ) lowerCAmelCase__ : Optional[int] = self.recursive_tensorize(a ) for column_name in batch: lowerCAmelCase__ : Union[str, Any] = self._consolidate(batch[column_name] ) return batch
307
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( __magic_name__ , unittest.TestCase ): lowercase = UnCLIPImageVariationPipeline lowercase = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} lowercase = IMAGE_VARIATION_BATCH_PARAMS lowercase = [ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] lowercase = False @property def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' return 32 @property def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' return 32 @property def _lowerCamelCase ( self : int ): '''simple docstring''' return self.time_input_dim @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.time_input_dim * 4 @property def _lowerCamelCase ( self : Any ): '''simple docstring''' return 100 @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def _lowerCamelCase ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(a ) @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : List[Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(a ) @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Union[str, Any] = { 'clip_embeddings_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'cross_attention_dim': self.cross_attention_dim, } lowerCAmelCase__ : Optional[Any] = UnCLIPTextProjModel(**a ) return model @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : str = { 'sample_size': 32, # RGB in channels 'in_channels': 3, # Out channels is double in channels because predicts mean and variance 'out_channels': 6, 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': 'identity', } lowerCAmelCase__ : str = UNetaDConditionModel(**a ) return model @property def _lowerCamelCase ( self : str ): '''simple docstring''' return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def _lowerCamelCase ( self : str ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Any = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def _lowerCamelCase ( self : int ): '''simple docstring''' torch.manual_seed(1 ) lowerCAmelCase__ : List[str] = UNetaDModel(**self.dummy_super_res_kwargs ) return model def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.dummy_decoder lowerCAmelCase__ : Optional[int] = self.dummy_text_proj lowerCAmelCase__ : Any = self.dummy_text_encoder lowerCAmelCase__ : Any = self.dummy_tokenizer lowerCAmelCase__ : Any = self.dummy_super_res_first lowerCAmelCase__ : Optional[int] = self.dummy_super_res_last lowerCAmelCase__ : Dict = UnCLIPScheduler( variance_type='learned_range' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) lowerCAmelCase__ : Any = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) lowerCAmelCase__ : Any = CLIPImageProcessor(crop_size=32 , size=32 ) lowerCAmelCase__ : Optional[int] = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def _lowerCamelCase ( self : Any , a : Dict , a : List[str]=0 , a : List[str]=True ): '''simple docstring''' lowerCAmelCase__ : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(a ) ).to(a ) if str(a ).startswith('mps' ): lowerCAmelCase__ : Optional[int] = torch.manual_seed(a ) else: lowerCAmelCase__ : str = torch.Generator(device=a ).manual_seed(a ) if pil_image: lowerCAmelCase__ : Optional[int] = input_image * 0.5 + 0.5 lowerCAmelCase__ : Dict = input_image.clamp(0 , 1 ) lowerCAmelCase__ : List[Any] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCAmelCase__ : Union[str, Any] = DiffusionPipeline.numpy_to_pil(a )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = 'cpu' lowerCAmelCase__ : Any = self.get_dummy_components() lowerCAmelCase__ : List[str] = self.pipeline_class(**a ) lowerCAmelCase__ : Dict = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Dict = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : str = pipe(**a ) lowerCAmelCase__ : Optional[Any] = output.images lowerCAmelCase__ : str = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Optional[int] = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : List[str] = np.array( [ 0.9_9_9_7, 0.0_0_0_2, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_6_9, 0.0_0_2_3, 0.9_9_9_7, 0.9_9_6_9, 0.9_9_7_0, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = 'cpu' lowerCAmelCase__ : Dict = self.get_dummy_components() lowerCAmelCase__ : Optional[int] = self.pipeline_class(**a ) lowerCAmelCase__ : int = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : List[Any] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : List[str] = pipe(**a ) lowerCAmelCase__ : Union[str, Any] = output.images lowerCAmelCase__ : int = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : int = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Tuple = image[0, -3:, -3:, -1] lowerCAmelCase__ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : str = np.array([0.9_9_9_7, 0.0_0_0_3, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_7_0, 0.0_0_2_4, 0.9_9_9_7, 0.9_9_7_1, 0.9_9_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Tuple = 'cpu' lowerCAmelCase__ : int = self.get_dummy_components() lowerCAmelCase__ : Tuple = self.pipeline_class(**a ) lowerCAmelCase__ : Union[str, Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Tuple = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : List[str] = [ pipeline_inputs['image'], pipeline_inputs['image'], ] lowerCAmelCase__ : Optional[int] = pipe(**a ) lowerCAmelCase__ : Tuple = output.images lowerCAmelCase__ : List[str] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Union[str, Any] = [ tuple_pipeline_inputs['image'], tuple_pipeline_inputs['image'], ] lowerCAmelCase__ : str = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) lowerCAmelCase__ : Union[str, Any] = np.array( [ 0.9_9_9_7, 0.9_9_8_9, 0.0_0_0_8, 0.0_0_2_1, 0.9_9_6_0, 0.0_0_1_8, 0.0_0_1_4, 0.0_0_0_2, 0.9_9_3_3, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch.device('cpu' ) class A__ : lowercase = 1 lowerCAmelCase__ : Optional[Any] = self.get_dummy_components() lowerCAmelCase__ : Dict = self.pipeline_class(**a ) lowerCAmelCase__ : Optional[Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Optional[int] = torch.Generator(device=a ).manual_seed(0 ) lowerCAmelCase__ : Optional[int] = pipe.decoder.dtype lowerCAmelCase__ : Union[str, Any] = 1 lowerCAmelCase__ : str = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) lowerCAmelCase__ : List[Any] = pipe.prepare_latents( a , dtype=a , device=a , generator=a , latents=a , scheduler=DummyScheduler() ) lowerCAmelCase__ : List[str] = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) lowerCAmelCase__ : Any = pipe.prepare_latents( a , dtype=a , device=a , generator=a , latents=a , scheduler=DummyScheduler() ) lowerCAmelCase__ : List[Any] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Optional[int] = pipe( **a , decoder_latents=a , super_res_latents=a ).images lowerCAmelCase__ : Optional[Any] = self.get_dummy_inputs(a , pil_image=a ) # Don't pass image, instead pass embedding lowerCAmelCase__ : Union[str, Any] = pipeline_inputs.pop('image' ) lowerCAmelCase__ : Union[str, Any] = pipe.image_encoder(a ).image_embeds lowerCAmelCase__ : List[Any] = pipe( **a , decoder_latents=a , super_res_latents=a , image_embeddings=a , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch_device == 'cpu' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor lowerCAmelCase__ : int = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=a , expected_max_diff=a ) @skip_mps def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = torch_device == 'cpu' lowerCAmelCase__ : Any = True lowerCAmelCase__ : Optional[Any] = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] self._test_inference_batch_single_identical( test_max_difference=a , relax_max_difference=a , additional_params_copy_to_batched_inputs=a , ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Tuple = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes lowerCAmelCase__ : List[str] = [2, 3] self._test_inference_batch_consistent( batch_sizes=a , additional_params_copy_to_batched_inputs=a , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=a ) @skip_mps def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return super().test_save_load_local() @skip_mps def _lowerCamelCase ( self : str ): '''simple docstring''' return super().test_save_load_optional_components() @slow @require_torch_gpu class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png' ) lowerCAmelCase__ : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/unclip/karlo_v1_alpha_cat_variation_fp16.npy' ) lowerCAmelCase__ : Tuple = UnCLIPImageVariationPipeline.from_pretrained( 'kakaobrain/karlo-v1-alpha-image-variations' , torch_dtype=torch.floataa ) lowerCAmelCase__ : Union[str, Any] = pipeline.to(a ) pipeline.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Dict = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase__ : List[str] = pipeline( a , generator=a , output_type='np' , ) lowerCAmelCase__ : Union[str, Any] = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(a , a , 15 )
307
1
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: while second != 0: lowerCAmelCase__ : List[Any] = first & second first ^= second lowerCAmelCase__ : Any = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ = int(input("""Enter the first number: """).strip()) lowerCamelCase__ = int(input("""Enter the second number: """).strip()) print(F"""{add(first, second) = }""")
307
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: stooge(SCREAMING_SNAKE_CASE_ , 0 , len(SCREAMING_SNAKE_CASE_ ) - 1 ) return arr def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: lowerCAmelCase__ , lowerCAmelCase__ : Tuple = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: lowerCAmelCase__ : Union[str, Any] = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (h - t) ) # Recursively sort last 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , i + t , (SCREAMING_SNAKE_CASE_) ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (h - t) ) if __name__ == "__main__": lowerCamelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCamelCase__ = [int(item) for item in user_input.split(""",""")] print(stooge_sort(unsorted))
307
1
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--txt2img_unclip""", default="""kakaobrain/karlo-v1-alpha""", type=str, required=False, help="""The pretrained txt2img unclip.""", ) lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowerCamelCase__ = CLIPImageProcessor() lowerCamelCase__ = CLIPVisionModelWithProjection.from_pretrained("""openai/clip-vit-large-patch14""") lowerCamelCase__ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
307
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) lowerCamelCase__ = { """configuration_speech_to_text""": ["""SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Speech2TextConfig"""], """processing_speech_to_text""": ["""Speech2TextProcessor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""Speech2TextTokenizer"""] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""Speech2TextFeatureExtractor"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSpeech2TextForConditionalGeneration""", """TFSpeech2TextModel""", """TFSpeech2TextPreTrainedModel""", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Speech2TextForConditionalGeneration""", """Speech2TextModel""", """Speech2TextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
1
from math import isclose, sqrt def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> tuple[float, float, float]: lowerCAmelCase__ : Any = point_y / 4 / point_x lowerCAmelCase__ : str = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) lowerCAmelCase__ : List[Any] = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) lowerCAmelCase__ : str = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 lowerCAmelCase__ : List[Any] = outgoing_gradient**2 + 4 lowerCAmelCase__ : Dict = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) lowerCAmelCase__ : Dict = (point_y - outgoing_gradient * point_x) ** 2 - 100 lowerCAmelCase__ : Optional[Any] = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) lowerCAmelCase__ : Optional[int] = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point lowerCAmelCase__ : List[Any] = x_minus if isclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else x_plus lowerCAmelCase__ : Union[str, Any] = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = 1.4 , SCREAMING_SNAKE_CASE_ = -9.6 ) -> int: lowerCAmelCase__ : int = 0 lowerCAmelCase__ : float = first_x_coord lowerCAmelCase__ : float = first_y_coord lowerCAmelCase__ : float = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = next_point(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"""{solution() = }""")
307
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } lowerCAmelCase__ : int = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 128, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 142, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(a ) , a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(a ) , x.transpose() ) ) lowerCAmelCase__ : List[str] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = np.random.randn(3 , 4 ) lowerCAmelCase__ : List[Any] = torch.tensor(a ) self.assertTrue(np.allclose(transpose(a ) , transpose(a ).numpy() ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : int = torch.tensor(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , transpose(a , axes=(1, 2, 0) ).numpy() ) ) @require_tf def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = np.random.randn(3 , 4 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(transpose(a ) , transpose(a ).numpy() ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : Dict = tf.constant(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , transpose(a , axes=(1, 2, 0) ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = np.random.randn(3 , 4 ) lowerCAmelCase__ : int = jnp.array(a ) self.assertTrue(np.allclose(transpose(a ) , np.asarray(transpose(a ) ) ) ) lowerCAmelCase__ : Any = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : str = jnp.array(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , np.asarray(transpose(a , axes=(1, 2, 0) ) ) ) ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Any = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , np.reshape(a , (4, 3) ) ) ) lowerCAmelCase__ : Tuple = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , np.reshape(a , (12, 5) ) ) ) @require_torch def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = np.random.randn(3 , 4 ) lowerCAmelCase__ : Dict = torch.tensor(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , reshape(a , (4, 3) ).numpy() ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : str = torch.tensor(a ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , reshape(a , (12, 5) ).numpy() ) ) @require_tf def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = np.random.randn(3 , 4 ) lowerCAmelCase__ : List[Any] = tf.constant(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , reshape(a , (4, 3) ).numpy() ) ) lowerCAmelCase__ : Dict = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , reshape(a , (12, 5) ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Dict = np.random.randn(3 , 4 ) lowerCAmelCase__ : List[str] = jnp.array(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , np.asarray(reshape(a , (4, 3) ) ) ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : Union[str, Any] = jnp.array(a ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , np.asarray(reshape(a , (12, 5) ) ) ) ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(a ) , np.squeeze(a ) ) ) lowerCAmelCase__ : int = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , np.squeeze(a , axis=2 ) ) ) @require_torch def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = np.random.randn(1 , 3 , 4 ) lowerCAmelCase__ : str = torch.tensor(a ) self.assertTrue(np.allclose(squeeze(a ) , squeeze(a ).numpy() ) ) lowerCAmelCase__ : Optional[Any] = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase__ : Dict = torch.tensor(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , squeeze(a , axis=2 ).numpy() ) ) @require_tf def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : List[str] = np.random.randn(1 , 3 , 4 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(squeeze(a ) , squeeze(a ).numpy() ) ) lowerCAmelCase__ : int = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase__ : str = tf.constant(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , squeeze(a , axis=2 ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : List[str] = np.random.randn(1 , 3 , 4 ) lowerCAmelCase__ : Union[str, Any] = jnp.array(a ) self.assertTrue(np.allclose(squeeze(a ) , np.asarray(squeeze(a ) ) ) ) lowerCAmelCase__ : str = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase__ : Optional[Any] = jnp.array(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , np.asarray(squeeze(a , axis=2 ) ) ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , np.expand_dims(a , axis=1 ) ) ) @require_torch def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : str = np.random.randn(3 , 4 ) lowerCAmelCase__ : str = torch.tensor(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , expand_dims(a , axis=1 ).numpy() ) ) @require_tf def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = np.random.randn(3 , 4 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , expand_dims(a , axis=1 ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : int = np.random.randn(3 , 4 ) lowerCAmelCase__ : Tuple = jnp.array(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , np.asarray(expand_dims(a , axis=1 ) ) ) )
307
1
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """deepmind/language-perceiver""": """https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json""", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class A__ ( __magic_name__ ): lowercase = 'perceiver' def __init__( self : List[Any] , a : Dict=256 , a : List[Any]=1_280 , a : Dict=768 , a : Union[str, Any]=1 , a : Union[str, Any]=26 , a : Tuple=8 , a : str=8 , a : List[str]=None , a : str=None , a : List[Any]="kv" , a : int=1 , a : Any=1 , a : List[Any]="gelu" , a : Optional[Any]=0.1 , a : List[str]=0.0_2 , a : List[str]=1E-12 , a : List[str]=True , a : Optional[int]=262 , a : Dict=2_048 , a : Optional[Any]=56 , a : Dict=[368, 496] , a : List[str]=16 , a : int=1_920 , a : Any=16 , a : List[Any]=[1, 16, 224, 224] , **a : List[str] , ): '''simple docstring''' super().__init__(**a ) lowerCAmelCase__ : Dict = num_latents lowerCAmelCase__ : List[str] = d_latents lowerCAmelCase__ : Optional[int] = d_model lowerCAmelCase__ : List[str] = num_blocks lowerCAmelCase__ : Dict = num_self_attends_per_block lowerCAmelCase__ : Any = num_self_attention_heads lowerCAmelCase__ : Optional[Any] = num_cross_attention_heads lowerCAmelCase__ : Optional[Any] = qk_channels lowerCAmelCase__ : Optional[Any] = v_channels lowerCAmelCase__ : int = cross_attention_shape_for_attention lowerCAmelCase__ : int = self_attention_widening_factor lowerCAmelCase__ : int = cross_attention_widening_factor lowerCAmelCase__ : Tuple = hidden_act lowerCAmelCase__ : int = attention_probs_dropout_prob lowerCAmelCase__ : Union[str, Any] = initializer_range lowerCAmelCase__ : Dict = layer_norm_eps lowerCAmelCase__ : Optional[Any] = use_query_residual # masked language modeling attributes lowerCAmelCase__ : Tuple = vocab_size lowerCAmelCase__ : Optional[int] = max_position_embeddings # image classification attributes lowerCAmelCase__ : Tuple = image_size # flow attributes lowerCAmelCase__ : Dict = train_size # multimodal autoencoding attributes lowerCAmelCase__ : Union[str, Any] = num_frames lowerCAmelCase__ : Optional[Any] = audio_samples_per_frame lowerCAmelCase__ : int = samples_per_patch lowerCAmelCase__ : str = output_shape class A__ ( __magic_name__ ): @property def _lowerCamelCase ( self : int ): '''simple docstring''' if self.task == "multiple-choice": lowerCAmelCase__ : Any = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCAmelCase__ : List[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('inputs', dynamic_axis), ('attention_mask', dynamic_axis), ] ) @property def _lowerCamelCase ( self : str ): '''simple docstring''' return 1E-4 def _lowerCamelCase ( self : Optional[Any] , a : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , a : int = -1 , a : int = -1 , a : int = -1 , a : bool = False , a : Optional[TensorType] = None , a : int = 3 , a : int = 40 , a : int = 40 , ): '''simple docstring''' if isinstance(a , a ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowerCAmelCase__ : Optional[Any] = compute_effective_axis_dimension( a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCAmelCase__ : List[str] = preprocessor.num_special_tokens_to_add(a ) lowerCAmelCase__ : List[str] = compute_effective_axis_dimension( a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=a ) # Generate dummy inputs according to compute batch and sequence lowerCAmelCase__ : Dict = [' '.join(['a'] ) * seq_length] * batch_size lowerCAmelCase__ : int = dict(preprocessor(a , return_tensors=a ) ) lowerCAmelCase__ : Any = inputs.pop('input_ids' ) return inputs elif isinstance(a , a ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowerCAmelCase__ : Any = compute_effective_axis_dimension(a , fixed_dimension=OnnxConfig.default_fixed_batch ) lowerCAmelCase__ : str = self._generate_dummy_images(a , a , a , a ) lowerCAmelCase__ : List[Any] = dict(preprocessor(images=a , return_tensors=a ) ) lowerCAmelCase__ : Any = inputs.pop('pixel_values' ) return inputs else: raise ValueError( 'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
307
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position lowerCamelCase__ = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip lowerCamelCase__ = concatenate_datasets lowerCamelCase__ = DownloadConfig lowerCamelCase__ = DownloadManager lowerCamelCase__ = DownloadMode lowerCamelCase__ = DownloadConfig lowerCamelCase__ = DownloadMode lowerCamelCase__ = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
307
1
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class A__ ( ctypes.Structure ): # _fields is a specific attr expected by ctypes lowercase = [('size', ctypes.c_int), ('visible', ctypes.c_byte)] def lowerCAmelCase__ ( ) -> Optional[int]: if os.name == "nt": lowerCAmelCase__ : List[str] = CursorInfo() lowerCAmelCase__ : int = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(SCREAMING_SNAKE_CASE_ , ctypes.byref(SCREAMING_SNAKE_CASE_ ) ) lowerCAmelCase__ : Union[str, Any] = False ctypes.windll.kernelaa.SetConsoleCursorInfo(SCREAMING_SNAKE_CASE_ , ctypes.byref(SCREAMING_SNAKE_CASE_ ) ) elif os.name == "posix": sys.stdout.write('\033[?25l' ) sys.stdout.flush() def lowerCAmelCase__ ( ) -> List[Any]: if os.name == "nt": lowerCAmelCase__ : Any = CursorInfo() lowerCAmelCase__ : str = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(SCREAMING_SNAKE_CASE_ , ctypes.byref(SCREAMING_SNAKE_CASE_ ) ) lowerCAmelCase__ : List[str] = True ctypes.windll.kernelaa.SetConsoleCursorInfo(SCREAMING_SNAKE_CASE_ , ctypes.byref(SCREAMING_SNAKE_CASE_ ) ) elif os.name == "posix": sys.stdout.write('\033[?25h' ) sys.stdout.flush() @contextmanager def lowerCAmelCase__ ( ) -> List[Any]: try: hide_cursor() yield finally: show_cursor()
307
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( __magic_name__ , unittest.TestCase ): lowercase = DanceDiffusionPipeline lowercase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS lowercase = PipelineTesterMixin.required_optional_params - { 'callback', 'latents', 'callback_steps', 'output_type', 'num_images_per_prompt', } lowercase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS lowercase = False lowercase = False def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16_000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=a , use_timestep_embedding=a , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , ) lowerCAmelCase__ : Tuple = IPNDMScheduler() lowerCAmelCase__ : str = { 'unet': unet, 'scheduler': scheduler, } return components def _lowerCamelCase ( self : int , a : Dict , a : List[str]=0 ): '''simple docstring''' if str(a ).startswith('mps' ): lowerCAmelCase__ : Union[str, Any] = torch.manual_seed(a ) else: lowerCAmelCase__ : Optional[Any] = torch.Generator(device=a ).manual_seed(a ) lowerCAmelCase__ : Optional[Any] = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : int = self.get_dummy_components() lowerCAmelCase__ : List[str] = DanceDiffusionPipeline(**a ) lowerCAmelCase__ : Any = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : List[str] = self.get_dummy_inputs(a ) lowerCAmelCase__ : List[Any] = pipe(**a ) lowerCAmelCase__ : List[str] = output.audios lowerCAmelCase__ : Optional[Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) lowerCAmelCase__ : List[Any] = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def _lowerCamelCase ( self : str ): '''simple docstring''' return super().test_save_load_local() @skip_mps def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def _lowerCamelCase ( self : List[str] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch_device lowerCAmelCase__ : List[str] = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) lowerCAmelCase__ : List[str] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Optional[int] = torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = pipe(generator=a , num_inference_steps=100 , audio_length_in_s=4.0_9_6 ) lowerCAmelCase__ : int = output.audios lowerCAmelCase__ : List[Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase__ : Dict = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : str = torch_device lowerCAmelCase__ : List[Any] = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa ) lowerCAmelCase__ : Optional[int] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : str = torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = pipe(generator=a , num_inference_steps=100 , audio_length_in_s=4.0_9_6 ) lowerCAmelCase__ : str = output.audios lowerCAmelCase__ : Tuple = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase__ : int = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
307
1
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class A__ ( __magic_name__ ): lowercase = (DPMSolverSDEScheduler,) lowercase = 10 def _lowerCamelCase ( self : Optional[int] , **a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = { 'num_train_timesteps': 1_100, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'noise_sampler_seed': 0, } config.update(**a ) return config def _lowerCamelCase ( self : Tuple ): '''simple docstring''' for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=a ) def _lowerCamelCase ( self : int ): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=a , beta_end=a ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=a ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : int = self.scheduler_classes[0] lowerCAmelCase__ : Tuple = self.get_scheduler_config() lowerCAmelCase__ : List[Any] = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ : Dict = self.dummy_model() lowerCAmelCase__ : int = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ : int = sample.to(a ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : List[Any] = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : str = model(a , a ) lowerCAmelCase__ : int = scheduler.step(a , a , a ) lowerCAmelCase__ : Any = output.prev_sample lowerCAmelCase__ : List[Any] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Optional[int] = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_7_8_2_1_0_4_4_9_2_1_8_7_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_7_8_7_0_5_9_6_4_5_6_5_2_7_7 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_2_1_1_1_8_1_6_4_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_6_8_9_2_2_9_9_6_5_2 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3 def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.scheduler_classes[0] lowerCAmelCase__ : List[str] = self.get_scheduler_config(prediction_type='v_prediction' ) lowerCAmelCase__ : Any = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ : Optional[int] = self.dummy_model() lowerCAmelCase__ : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ : Any = sample.to(a ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : str = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : str = model(a , a ) lowerCAmelCase__ : Dict = scheduler.step(a , a , a ) lowerCAmelCase__ : Tuple = output.prev_sample lowerCAmelCase__ : int = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Union[str, Any] = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_2_4.7_7_1_4_9_2_0_0_4_3_9_4_5_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_2_2_6_2_8_9_0_1_4_8_1_6_2_8_4 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_2_8.1_6_6_3_3_6_0_5_9_5_7_0_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_6_8_8_3_2_6_0_0_1_1_6_7_2_9_7 ) < 1E-3 else: assert abs(result_sum.item() - 1_1_9.8_4_8_7_5_4_8_8_2_8_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.1_5_6_0_5_3_0_6_6_2_5_3_6_6_2_1 ) < 1E-3 def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.scheduler_classes[0] lowerCAmelCase__ : Optional[int] = self.get_scheduler_config() lowerCAmelCase__ : int = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps , device=a ) lowerCAmelCase__ : Tuple = self.dummy_model() lowerCAmelCase__ : Any = self.dummy_sample_deter.to(a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowerCAmelCase__ : Dict = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : Optional[int] = model(a , a ) lowerCAmelCase__ : Tuple = scheduler.step(a , a , a ) lowerCAmelCase__ : Dict = output.prev_sample lowerCAmelCase__ : Union[str, Any] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Dict = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_6_9_5_7_3_9_7_4_6_0_9_3_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_8_0_5_9_3_4_6_0_7_9_8_2_6_3_5 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_3_6_3_7_6_9_5_3_1_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_8_3_8_2_4_1_5_7_7_1 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3 def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.scheduler_classes[0] lowerCAmelCase__ : Any = self.get_scheduler_config() lowerCAmelCase__ : Any = scheduler_class(**a , use_karras_sigmas=a ) scheduler.set_timesteps(self.num_inference_steps , device=a ) lowerCAmelCase__ : str = self.dummy_model() lowerCAmelCase__ : Any = self.dummy_sample_deter.to(a ) * scheduler.init_noise_sigma lowerCAmelCase__ : str = sample.to(a ) for t in scheduler.timesteps: lowerCAmelCase__ : Any = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : int = model(a , a ) lowerCAmelCase__ : Union[str, Any] = scheduler.step(a , a , a ) lowerCAmelCase__ : Union[str, Any] = output.prev_sample lowerCAmelCase__ : Optional[int] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Any = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_7_6.6_6_9_7_4_1_3_5_7_4_2_1_8_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_7.6_3_6_5_3_5_6_4_4_5_3_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2 else: assert abs(result_sum.item() - 1_7_0.3_1_3_5_2_2_3_3_8_8_6_7_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2
307
from ..utils import DummyObject, requires_backends class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : Any , *a : Any , **a : Any ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Union[str, Any] , *a : Optional[int] , **a : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : int , *a : List[Any] , **a : int ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : str , *a : Any , **a : Optional[Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : List[str] , **a : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , *a : Optional[Any] , **a : Any ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : Optional[int] , *a : List[Any] , **a : str ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : List[Any] , *a : List[str] , **a : List[str] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , *a : Union[str, Any] , **a : Optional[int] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *a : Dict , **a : List[str] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : Dict , **a : List[Any] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : List[str] , **a : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : Dict , *a : str , **a : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Any , *a : Any , **a : Any ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Any , *a : List[Any] , **a : str ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : str , *a : Union[str, Any] , **a : Optional[Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : int , *a : Union[str, Any] , **a : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : Tuple , **a : List[str] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] )
307
1
from __future__ import annotations def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> set[str]: lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = set(SCREAMING_SNAKE_CASE_ ), [start] while stack: lowerCAmelCase__ : List[Any] = stack.pop() explored.add(SCREAMING_SNAKE_CASE_ ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(SCREAMING_SNAKE_CASE_ ) return explored lowerCamelCase__ = { """A""": ["""B""", """C""", """D"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F"""], """D""": ["""B""", """D"""], """E""": ["""B""", """F"""], """F""": ["""C""", """E""", """G"""], """G""": ["""F"""], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, """A"""))
307
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class A__ : def __init__( self : List[str] , a : Any , a : Dict=13 , a : Optional[Any]=7 , a : Tuple=True , a : Tuple=True , a : Dict=False , a : Optional[Any]=True , a : Dict=99 , a : Tuple=32 , a : Optional[Any]=5 , a : str=4 , a : Union[str, Any]=37 , a : Any="gelu" , a : Dict=0.1 , a : Any=0.1 , a : Optional[int]=512 , a : Union[str, Any]=16 , a : Optional[int]=2 , a : Optional[Any]=0.0_2 , a : List[Any]=3 , a : Any=4 , a : Optional[int]=None , ): '''simple docstring''' lowerCAmelCase__ : List[str] = parent lowerCAmelCase__ : str = batch_size lowerCAmelCase__ : Optional[int] = seq_length lowerCAmelCase__ : Optional[Any] = is_training lowerCAmelCase__ : Tuple = use_input_mask lowerCAmelCase__ : List[Any] = use_token_type_ids lowerCAmelCase__ : str = use_labels lowerCAmelCase__ : Dict = vocab_size lowerCAmelCase__ : Union[str, Any] = hidden_size lowerCAmelCase__ : Optional[int] = num_hidden_layers lowerCAmelCase__ : List[Any] = num_attention_heads lowerCAmelCase__ : int = intermediate_size lowerCAmelCase__ : Union[str, Any] = hidden_act lowerCAmelCase__ : Union[str, Any] = hidden_dropout_prob lowerCAmelCase__ : Any = attention_probs_dropout_prob lowerCAmelCase__ : Dict = max_position_embeddings lowerCAmelCase__ : int = type_vocab_size lowerCAmelCase__ : int = type_sequence_label_size lowerCAmelCase__ : Dict = initializer_range lowerCAmelCase__ : List[str] = num_labels lowerCAmelCase__ : Any = num_choices lowerCAmelCase__ : List[Any] = scope def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ : Tuple = None if self.use_input_mask: lowerCAmelCase__ : str = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ : List[str] = None if self.use_token_type_ids: lowerCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : Dict = None lowerCAmelCase__ : str = None if self.use_labels: lowerCAmelCase__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self : Tuple , a : Dict , a : List[str] , a : str , a : Union[str, Any] , a : Optional[Any] , a : Dict , a : str ): '''simple docstring''' lowerCAmelCase__ : str = LlamaModel(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Dict = model(a , attention_mask=a ) lowerCAmelCase__ : Union[str, Any] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : int , a : Any , a : Union[str, Any] , a : Dict , a : Dict , a : List[Any] , a : Optional[Any] , a : int , a : Dict , a : Tuple , ): '''simple docstring''' lowerCAmelCase__ : int = True lowerCAmelCase__ : Dict = LlamaModel(a ) model.to(a ) model.eval() lowerCAmelCase__ : List[Any] = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , ) lowerCAmelCase__ : Optional[int] = model( a , attention_mask=a , encoder_hidden_states=a , ) lowerCAmelCase__ : Union[str, Any] = model(a , attention_mask=a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : Union[str, Any] , a : int , a : List[Any] , a : int , a : Tuple , a : List[Any] , a : Union[str, Any] , a : Any , a : List[str] , a : List[str] , ): '''simple docstring''' lowerCAmelCase__ : List[Any] = LlamaForCausalLM(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Tuple = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : str , a : Any , a : Tuple , a : str , a : Union[str, Any] , a : Optional[Any] , a : List[Any] , a : Optional[Any] , a : Optional[Any] , a : List[str] , ): '''simple docstring''' lowerCAmelCase__ : str = True lowerCAmelCase__ : Optional[int] = True lowerCAmelCase__ : List[Any] = LlamaForCausalLM(config=a ) model.to(a ) model.eval() # first forward pass lowerCAmelCase__ : List[str] = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , use_cache=a , ) lowerCAmelCase__ : List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase__ : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase__ : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase__ : int = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase__ : Any = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase__ : Union[str, Any] = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , output_hidden_states=a , )['hidden_states'][0] lowerCAmelCase__ : Union[str, Any] = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , past_key_values=a , output_hidden_states=a , )['hidden_states'][0] # select random slice lowerCAmelCase__ : Any = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase__ : Optional[int] = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a , a , atol=1E-3 ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : Any = config_and_inputs lowerCAmelCase__ : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () lowercase = (LlamaForCausalLM,) if is_torch_available() else () lowercase = ( { 'feature-extraction': LlamaModel, 'text-classification': LlamaForSequenceClassification, 'text-generation': LlamaForCausalLM, 'zero-shot': LlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Tuple = LlamaModelTester(self ) lowerCAmelCase__ : str = ConfigTester(self , config_class=a , hidden_size=37 ) def _lowerCamelCase ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase__ : int = type self.model_tester.create_and_check_model(*a ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : int = 3 lowerCAmelCase__ : Dict = input_dict['input_ids'] lowerCAmelCase__ : Optional[Any] = input_ids.ne(1 ).to(a ) lowerCAmelCase__ : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase__ : Tuple = LlamaForSequenceClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : str = model(a , attention_mask=a , labels=a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : List[Any] = 3 lowerCAmelCase__ : List[str] = 'single_label_classification' lowerCAmelCase__ : List[Any] = input_dict['input_ids'] lowerCAmelCase__ : List[Any] = input_ids.ne(1 ).to(a ) lowerCAmelCase__ : Optional[int] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase__ : int = LlamaForSequenceClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : Optional[int] = model(a , attention_mask=a , labels=a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Optional[Any] = 3 lowerCAmelCase__ : Optional[Any] = 'multi_label_classification' lowerCAmelCase__ : List[str] = input_dict['input_ids'] lowerCAmelCase__ : Tuple = input_ids.ne(1 ).to(a ) lowerCAmelCase__ : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase__ : Dict = LlamaForSequenceClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : Dict = model(a , attention_mask=a , labels=a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def _lowerCamelCase ( self : Optional[int] , a : Dict ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Tuple = ids_tensor([1, 10] , config.vocab_size ) lowerCAmelCase__ : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase__ : List[Any] = LlamaModel(a ) original_model.to(a ) original_model.eval() lowerCAmelCase__ : List[Any] = original_model(a ).last_hidden_state lowerCAmelCase__ : str = original_model(a ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase__ : Any = {'type': scaling_type, 'factor': 1_0.0} lowerCAmelCase__ : Union[str, Any] = LlamaModel(a ) scaled_model.to(a ) scaled_model.eval() lowerCAmelCase__ : Union[str, Any] = scaled_model(a ).last_hidden_state lowerCAmelCase__ : Optional[int] = scaled_model(a ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(a , a , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(a , a , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(a , a , atol=1E-5 ) ) @require_torch class A__ ( unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : int = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowerCAmelCase__ : List[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) lowerCAmelCase__ : Any = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 lowerCAmelCase__ : Dict = torch.tensor([[-6.6_5_5_0, -4.1_2_2_7, -4.9_8_5_9, -3.2_4_0_6, 0.8_2_6_2, -3.0_0_3_3, 1.2_9_6_4, -3.3_6_9_9]] ) torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase__ : List[Any] = torch.tensor([-1_2.8_2_8_1, -7.4_4_5_3, -0.4_6_3_9, -8.0_6_2_5, -7.2_5_0_0, -8.0_0_0_0, -6.4_8_8_3, -7.7_6_9_5, -7.8_4_3_8, -7.0_3_1_2, -6.2_1_8_8, -7.1_3_2_8, -1.8_4_9_6, 1.9_9_6_1, -8.6_2_5_0, -6.7_2_2_7, -1_2.8_2_8_1, -6.9_4_9_2, -7.0_7_4_2, -7.7_8_5_2, -7.5_8_2_0, -7.9_0_6_2, -6.9_3_7_5, -7.9_8_0_5, -8.3_4_3_8, -8.1_5_6_2, -8.0_4_6_9, -7.6_2_5_0, -7.7_4_2_2, -7.3_3_9_8,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : str = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowerCAmelCase__ : Optional[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) lowerCAmelCase__ : List[str] = model(torch.tensor(a ) ) # Expected mean on dim = -1 lowerCAmelCase__ : Union[str, Any] = torch.tensor([[-2.0_6_2_2, -1.2_7_9_4, -1.1_6_3_8, -0.9_7_8_8, -1.4_6_0_3, -1.0_2_3_8, -1.7_8_9_3, -1.4_4_1_1]] ) torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase__ : Any = torch.tensor([-8.1_4_0_6, -8.0_5_4_7, 2.7_4_6_1, -1.2_3_4_4, -0.1_4_4_8, -1.8_2_6_2, -1.0_0_2_0, -1.8_1_5_4, -1.6_8_9_5, -1.8_5_1_6, -2.3_5_7_4, -0.9_2_7_7, 3.7_5_9_8, 6.5_7_4_2, -1.2_9_9_8, -0.1_1_7_7, -8.1_4_0_6, -2.9_6_8_8, -2.9_1_9_9, -3.1_6_9_9, -3.5_2_5_4, -2.3_5_5_5, -2.7_9_8_8, -3.4_1_4_1, -2.8_2_6_2, -4.5_1_9_5, -3.3_3_7_9, -3.3_1_6_4, -2.7_8_3_2, -3.0_2_7_3] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : int = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowerCAmelCase__ : Optional[int] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) lowerCAmelCase__ : str = model(torch.tensor(a ) ) # Expected mean on dim = -1 lowerCAmelCase__ : str = torch.tensor([[-0.8_5_6_2, -1.8_5_2_0, -0.7_5_5_1, -0.4_1_6_2, -1.5_1_6_1, -1.2_0_3_8, -2.4_8_2_3, -2.3_2_5_4]] ) torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase__ : List[str] = torch.tensor([-2.2_2_2_7, 4.8_8_2_8, 0.9_0_2_3, -0.4_5_7_8, -0.7_8_7_1, -0.1_0_3_3, -0.6_2_2_1, -0.5_7_8_6, -0.7_8_0_3, -1.0_6_7_4, -1.2_9_2_0, -0.1_5_7_0, 0.8_0_0_8, 2.0_7_2_3, -0.9_4_9_7, 0.2_7_7_1, -2.2_2_2_7, -0.7_6_1_2, -1.4_3_4_6, -1.2_0_6_1, -1.6_4_2_6, -0.3_0_0_0, -0.7_1_3_9, -1.1_9_3_4, -1.8_6_9_1, -1.6_9_7_3, -1.5_9_4_7, -1.2_7_0_5, -0.3_5_2_3, -0.5_5_1_3] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowerCAmelCase__ : List[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) lowerCAmelCase__ : List[str] = model(torch.tensor(a ) ) lowerCAmelCase__ : int = torch.tensor( [[-4.2_3_2_7, -3.3_3_6_0, -4.6_6_6_5, -4.7_6_3_1, -1.8_1_8_0, -3.4_1_7_0, -1.4_2_1_1, -3.1_8_1_0]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) # fmt: off lowerCAmelCase__ : Optional[int] = torch.tensor([-9.4_9_2_2, -3.9_5_5_1, 1.7_9_9_8, -5.6_7_5_8, -5.1_0_5_5, -5.8_9_8_4, -4.8_3_2_0, -6.8_0_8_6, -6.5_3_9_1, -5.6_1_7_2, -5.5_8_2_0, -5.5_3_5_2, 1.7_8_8_1, 3.6_2_8_9, -6.5_1_1_7, -3.4_7_8_5, -9.5_0_0_0, -6.0_3_5_2, -6.8_1_2_5, -6.0_1_9_5, -6.6_8_3_6, -5.4_7_2_7, -6.2_8_1_2, -6.0_3_9_1, -7.3_3_9_8, -7.4_2_9_7, -7.4_8_4_4, -6.5_8_2_0, -5.8_7_8_9, -5.5_3_1_2] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Model is curently gated' ) @slow def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' lowerCAmelCase__ : Tuple = 'Simply put, the theory of relativity states that ' lowerCAmelCase__ : Dict = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) lowerCAmelCase__ : Dict = tokenizer.encode(a , return_tensors='pt' ) lowerCAmelCase__ : str = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=a ) # greedy generation outputs lowerCAmelCase__ : Optional[Any] = model.generate(a , max_new_tokens=64 , top_p=a , temperature=1 , do_sample=a ) lowerCAmelCase__ : Tuple = tokenizer.decode(generated_ids[0] , skip_special_tokens=a ) self.assertEqual(a , a )
307
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = { """configuration_efficientformer""": [ """EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientFormerConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""EfficientFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientFormerForImageClassification""", """EfficientFormerForImageClassificationWithTeacher""", """EfficientFormerModel""", """EfficientFormerPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFEfficientFormerForImageClassification""", """TFEfficientFormerForImageClassificationWithTeacher""", """TFEfficientFormerModel""", """TFEfficientFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """microsoft/unispeech-large-1500h-cv""": ( """https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json""" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class A__ ( __magic_name__ ): lowercase = 'unispeech' def __init__( self : Any , a : List[Any]=32 , a : List[Any]=768 , a : Any=12 , a : List[str]=12 , a : List[Any]=3_072 , a : Any="gelu" , a : Dict=0.1 , a : List[str]=0.1 , a : List[str]=0.1 , a : Union[str, Any]=0.0 , a : str=0.0 , a : int=0.1 , a : List[str]=0.1 , a : List[Any]=0.0_2 , a : Optional[int]=1E-5 , a : Optional[int]="group" , a : Optional[Any]="gelu" , a : List[Any]=(512, 512, 512, 512, 512, 512, 512) , a : Optional[Any]=(5, 2, 2, 2, 2, 2, 2) , a : List[str]=(10, 3, 3, 3, 3, 2, 2) , a : Union[str, Any]=False , a : Union[str, Any]=128 , a : Tuple=16 , a : Dict=False , a : str=True , a : str=0.0_5 , a : Union[str, Any]=10 , a : Tuple=2 , a : int=0.0 , a : Optional[Any]=10 , a : List[str]=0 , a : str=320 , a : List[str]=2 , a : Optional[Any]=0.1 , a : Any=100 , a : Dict=256 , a : Any=256 , a : Dict=0.1 , a : List[Any]="mean" , a : Dict=False , a : str=False , a : Optional[int]=256 , a : Any=80 , a : List[Any]=0 , a : Optional[int]=1 , a : int=2 , a : List[Any]=0.5 , **a : int , ): '''simple docstring''' super().__init__(**a , pad_token_id=a , bos_token_id=a , eos_token_id=a ) lowerCAmelCase__ : List[str] = hidden_size lowerCAmelCase__ : List[str] = feat_extract_norm lowerCAmelCase__ : Optional[Any] = feat_extract_activation lowerCAmelCase__ : str = list(a ) lowerCAmelCase__ : List[str] = list(a ) lowerCAmelCase__ : Tuple = list(a ) lowerCAmelCase__ : Dict = conv_bias lowerCAmelCase__ : Optional[int] = num_conv_pos_embeddings lowerCAmelCase__ : Any = num_conv_pos_embedding_groups lowerCAmelCase__ : str = len(self.conv_dim ) lowerCAmelCase__ : Any = num_hidden_layers lowerCAmelCase__ : Dict = intermediate_size lowerCAmelCase__ : Dict = hidden_act lowerCAmelCase__ : Union[str, Any] = num_attention_heads lowerCAmelCase__ : Union[str, Any] = hidden_dropout lowerCAmelCase__ : Tuple = attention_dropout lowerCAmelCase__ : str = activation_dropout lowerCAmelCase__ : Any = feat_proj_dropout lowerCAmelCase__ : List[Any] = final_dropout lowerCAmelCase__ : Tuple = layerdrop lowerCAmelCase__ : Any = layer_norm_eps lowerCAmelCase__ : Dict = initializer_range lowerCAmelCase__ : Optional[Any] = num_ctc_classes lowerCAmelCase__ : Tuple = vocab_size lowerCAmelCase__ : Dict = do_stable_layer_norm lowerCAmelCase__ : List[Any] = use_weighted_layer_sum lowerCAmelCase__ : Any = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase__ : Union[str, Any] = apply_spec_augment lowerCAmelCase__ : Any = mask_time_prob lowerCAmelCase__ : Dict = mask_time_length lowerCAmelCase__ : Tuple = mask_time_min_masks lowerCAmelCase__ : Optional[int] = mask_feature_prob lowerCAmelCase__ : Optional[Any] = mask_feature_length lowerCAmelCase__ : int = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCAmelCase__ : int = num_codevectors_per_group lowerCAmelCase__ : Any = num_codevector_groups lowerCAmelCase__ : Any = contrastive_logits_temperature lowerCAmelCase__ : int = feat_quantizer_dropout lowerCAmelCase__ : List[Any] = num_negatives lowerCAmelCase__ : List[str] = codevector_dim lowerCAmelCase__ : Optional[int] = proj_codevector_dim lowerCAmelCase__ : Dict = diversity_loss_weight # ctc loss lowerCAmelCase__ : Any = ctc_loss_reduction lowerCAmelCase__ : Any = ctc_zero_infinity # pretraining loss lowerCAmelCase__ : Union[str, Any] = replace_prob @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
307
1
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = 1_000_000 ) -> int: lowerCAmelCase__ : Dict = set(range(3 , SCREAMING_SNAKE_CASE_ , 2 ) ) primes.add(2 ) for p in range(3 , SCREAMING_SNAKE_CASE_ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ) lowerCAmelCase__ : Union[str, Any] = [float(SCREAMING_SNAKE_CASE_ ) for n in range(limit + 1 )] for p in primes: for n in range(SCREAMING_SNAKE_CASE_ , limit + 1 , SCREAMING_SNAKE_CASE_ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F"""{solution() = }""")
307
import torch from torch import nn class A__ ( nn.Module ): def __init__( self : Optional[int] , a : Union[str, Any] , a : str , a : str , a : List[Any] , a : List[Any]=1 , a : Tuple=False ): '''simple docstring''' super().__init__() lowerCAmelCase__ : Dict = n_token lowerCAmelCase__ : Any = d_embed lowerCAmelCase__ : str = d_proj lowerCAmelCase__ : int = cutoffs + [n_token] lowerCAmelCase__ : Union[str, Any] = [0] + self.cutoffs lowerCAmelCase__ : str = div_val lowerCAmelCase__ : Tuple = self.cutoffs[0] lowerCAmelCase__ : Dict = len(self.cutoffs ) - 1 lowerCAmelCase__ : Any = self.shortlist_size + self.n_clusters if self.n_clusters > 0: lowerCAmelCase__ : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) lowerCAmelCase__ : Optional[Any] = nn.Parameter(torch.zeros(self.n_clusters ) ) lowerCAmelCase__ : Optional[int] = nn.ModuleList() lowerCAmelCase__ : Tuple = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(a , a ) ) ) else: self.out_projs.append(a ) self.out_layers.append(nn.Linear(a , a ) ) else: for i in range(len(self.cutoffs ) ): lowerCAmelCase__ , lowerCAmelCase__ : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase__ : Optional[Any] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(a , a ) ) ) self.out_layers.append(nn.Linear(a , r_idx - l_idx ) ) lowerCAmelCase__ : Tuple = keep_order def _lowerCamelCase ( self : Optional[int] , a : List[str] , a : int , a : List[str] , a : str ): '''simple docstring''' if proj is None: lowerCAmelCase__ : Tuple = nn.functional.linear(a , a , bias=a ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: lowerCAmelCase__ : int = nn.functional.linear(a , proj.t().contiguous() ) lowerCAmelCase__ : Tuple = nn.functional.linear(a , a , bias=a ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def _lowerCamelCase ( self : List[str] , a : List[Any] , a : Optional[int]=None , a : Tuple=False ): '''simple docstring''' if labels is not None: # Shift so that tokens < n predict n lowerCAmelCase__ : str = hidden[..., :-1, :].contiguous() lowerCAmelCase__ : Optional[Any] = labels[..., 1:].contiguous() lowerCAmelCase__ : List[Any] = hidden.view(-1 , hidden.size(-1 ) ) lowerCAmelCase__ : Tuple = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('Input and labels should have the same size in the batch dimension.' ) else: lowerCAmelCase__ : Optional[Any] = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: lowerCAmelCase__ : Optional[Any] = self._compute_logit(a , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: lowerCAmelCase__ : str = labels != -100 lowerCAmelCase__ : int = torch.zeros_like(a , dtype=hidden.dtype , device=hidden.device ) lowerCAmelCase__ : List[str] = ( -nn.functional.log_softmax(a , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: lowerCAmelCase__ : Optional[Any] = nn.functional.log_softmax(a , dim=-1 ) else: # construct weights and biases lowerCAmelCase__ , lowerCAmelCase__ : int = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase__ : Any = self.out_layers[0].weight[l_idx:r_idx] lowerCAmelCase__ : Any = self.out_layers[0].bias[l_idx:r_idx] else: lowerCAmelCase__ : Optional[Any] = self.out_layers[i].weight lowerCAmelCase__ : Optional[int] = self.out_layers[i].bias if i == 0: lowerCAmelCase__ : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowerCAmelCase__ : Union[str, Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(a ) biases.append(a ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = weights[0], biases[0], self.out_projs[0] lowerCAmelCase__ : List[Any] = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : Union[str, Any] = nn.functional.log_softmax(a , dim=1 ) if labels is None: lowerCAmelCase__ : Tuple = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: lowerCAmelCase__ : Dict = torch.zeros_like(a , dtype=hidden.dtype , device=hidden.device ) lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : Union[str, Any] = [0] + self.cutoffs for i in range(len(a ) - 1 ): lowerCAmelCase__ , lowerCAmelCase__ : Tuple = cutoff_values[i], cutoff_values[i + 1] if labels is not None: lowerCAmelCase__ : Tuple = (labels >= l_idx) & (labels < r_idx) lowerCAmelCase__ : int = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue lowerCAmelCase__ : Tuple = labels.index_select(0 , a ) - l_idx lowerCAmelCase__ : Any = head_logprob.index_select(0 , a ) lowerCAmelCase__ : Optional[int] = hidden.index_select(0 , a ) else: lowerCAmelCase__ : Any = hidden if i == 0: if labels is not None: lowerCAmelCase__ : Union[str, Any] = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: lowerCAmelCase__ : List[str] = head_logprob[:, : self.cutoffs[0]] else: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = weights[i], biases[i], self.out_projs[i] lowerCAmelCase__ : Union[str, Any] = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : Optional[int] = nn.functional.log_softmax(a , dim=1 ) lowerCAmelCase__ : List[Any] = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: lowerCAmelCase__ : List[str] = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: lowerCAmelCase__ : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i lowerCAmelCase__ : Union[str, Any] = logprob_i if labels is not None: if (hasattr(self , 'keep_order' ) and self.keep_order) or keep_order: out.index_copy_(0 , a , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def _lowerCamelCase ( self : List[Any] , a : Any ): '''simple docstring''' if self.n_clusters == 0: lowerCAmelCase__ : Union[str, Any] = self._compute_logit(a , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(a , dim=-1 ) else: # construct weights and biases lowerCAmelCase__ , lowerCAmelCase__ : str = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase__ : str = self.out_layers[0].weight[l_idx:r_idx] lowerCAmelCase__ : Dict = self.out_layers[0].bias[l_idx:r_idx] else: lowerCAmelCase__ : int = self.out_layers[i].weight lowerCAmelCase__ : int = self.out_layers[i].bias if i == 0: lowerCAmelCase__ : Optional[int] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowerCAmelCase__ : Union[str, Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(a ) biases.append(a ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : str = weights[0], biases[0], self.out_projs[0] lowerCAmelCase__ : Dict = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : List[Any] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) lowerCAmelCase__ : Optional[Any] = nn.functional.log_softmax(a , dim=1 ) lowerCAmelCase__ : List[Any] = [0] + self.cutoffs for i in range(len(a ) - 1 ): lowerCAmelCase__ , lowerCAmelCase__ : str = cutoff_values[i], cutoff_values[i + 1] if i == 0: lowerCAmelCase__ : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = weights[i], biases[i], self.out_projs[i] lowerCAmelCase__ : Dict = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : List[str] = nn.functional.log_softmax(a , dim=1 ) lowerCAmelCase__ : Dict = head_logprob[:, -i] + tail_logprob_i lowerCAmelCase__ : List[str] = logprob_i return out
307
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = { """configuration_jukebox""": [ """JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """JukeboxConfig""", """JukeboxPriorConfig""", """JukeboxVQVAEConfig""", ], """tokenization_jukebox""": ["""JukeboxTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """JukeboxModel""", """JukeboxPreTrainedModel""", """JukeboxVQVAE""", """JukeboxPrior""", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowerCamelCase__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} lowerCamelCase__ = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", """emoji""": True, }, } ] lowerCamelCase__ = 0 for log in Path().glob("""*.log"""): lowerCamelCase__ = 0 with open(log, """r""") as f: for line in f: lowerCamelCase__ = json.loads(line) if line.get("""nodeid""", """""") != "": lowerCamelCase__ = line["""nodeid"""] if line.get("""duration""", None) is not None: lowerCamelCase__ = F"""{line["duration"]:.4f}""" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowerCamelCase__ = [] log.unlink() lowerCamelCase__ = """""" lowerCamelCase__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowerCamelCase__ = [] lowerCamelCase__ = {} for test in failed_tests: lowerCamelCase__ = test[0].split("""::""") lowerCamelCase__ = data[0].split("""/""")[-1] if data[0] not in filesafailed: lowerCamelCase__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowerCamelCase__ = [test[0] for test in failed_table] lowerCamelCase__ = list(set(files)) # Count number of instances in failed_tests lowerCamelCase__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowerCamelCase__ = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: lowerCamelCase__ = """Too many failed tests, please see the full report in the Action results.""" lowerCamelCase__ = len(err) + 10 lowerCamelCase__ = message[: 3000 - offset] + F"""\n...\n```\n{err}""" print(F"""### {message}""") else: lowerCamelCase__ = """No failed tests! 🤗""" print(F"""## {message}""") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient lowerCamelCase__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": lowerCamelCase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) lowerCamelCase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) lowerCamelCase__ = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) lowerCamelCase__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) lowerCamelCase__ = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowerCamelCase__ = """""" for i, row in enumerate(test_failures): if row[0] != test_class: lowerCamelCase__ = row[0] else: lowerCamelCase__ = """""" lowerCamelCase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
307
1
from __future__ import annotations lowerCamelCase__ = [True] * 100_0001 lowerCamelCase__ = 2 while i * i <= 100_0000: if seive[i]: for j in range(i * i, 100_0001, i): lowerCamelCase__ = False i += 1 def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> bool: return seive[n] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> bool: return any(digit in '02468' for digit in str(SCREAMING_SNAKE_CASE_ ) ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = 1_000_000 ) -> list[int]: lowerCAmelCase__ : List[Any] = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(SCREAMING_SNAKE_CASE_ ) and not contains_an_even_digit(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : List[str] = str(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : str = [int(str_num[j:] + str_num[:j] ) for j in range(len(SCREAMING_SNAKE_CASE_ ) )] if all(is_prime(SCREAMING_SNAKE_CASE_ ) for i in list_nums ): result.append(SCREAMING_SNAKE_CASE_ ) return result def lowerCAmelCase__ ( ) -> int: return len(find_circular_primes() ) if __name__ == "__main__": print(F"""{len(find_circular_primes()) = }""")
307
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCamelCase__ = imread(r"""digital_image_processing/image_data/lena_small.jpg""") lowerCamelCase__ = cvtColor(img, COLOR_BGR2GRAY) def lowerCAmelCase__ ( ) -> Dict: lowerCAmelCase__ : List[Any] = cn.convert_to_negative(SCREAMING_SNAKE_CASE_ ) # assert negative_img array for at least one True assert negative_img.any() def lowerCAmelCase__ ( ) -> Optional[Any]: with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(SCREAMING_SNAKE_CASE_ , 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def lowerCAmelCase__ ( ) -> Tuple: lowerCAmelCase__ : str = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def lowerCAmelCase__ ( ) -> Tuple: lowerCAmelCase__ : Tuple = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() lowerCAmelCase__ : Optional[Any] = canny.canny(SCREAMING_SNAKE_CASE_ ) # assert canny array for at least one True assert canny_array.any() def lowerCAmelCase__ ( ) -> Optional[int]: assert gg.gaussian_filter(SCREAMING_SNAKE_CASE_ , 5 , sigma=0.9 ).all() def lowerCAmelCase__ ( ) -> Dict: # laplace diagonals lowerCAmelCase__ : Union[str, Any] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowerCAmelCase__ : int = conv.img_convolve(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).astype(SCREAMING_SNAKE_CASE_ ) assert res.any() def lowerCAmelCase__ ( ) -> List[str]: assert med.median_filter(SCREAMING_SNAKE_CASE_ , 3 ).any() def lowerCAmelCase__ ( ) -> Any: lowerCAmelCase__ , lowerCAmelCase__ : str = sob.sobel_filter(SCREAMING_SNAKE_CASE_ ) assert grad.any() and theta.any() def lowerCAmelCase__ ( ) -> Any: lowerCAmelCase__ : int = sp.make_sepia(SCREAMING_SNAKE_CASE_ , 20 ) assert sepia.all() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = "digital_image_processing/image_data/lena_small.jpg" ) -> Optional[Any]: lowerCAmelCase__ : List[Any] = bs.Burkes(imread(SCREAMING_SNAKE_CASE_ , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = "digital_image_processing/image_data/lena_small.jpg" , ) -> Any: lowerCAmelCase__ : Dict = rs.NearestNeighbour(imread(SCREAMING_SNAKE_CASE_ , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def lowerCAmelCase__ ( ) -> int: lowerCAmelCase__ : int = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. lowerCAmelCase__ : List[str] = imread(SCREAMING_SNAKE_CASE_ , 0 ) # Test for get_neighbors_pixel function() return not None lowerCAmelCase__ : str = 0 lowerCAmelCase__ : str = 0 lowerCAmelCase__ : List[str] = image[x_coordinate][y_coordinate] lowerCAmelCase__ : Dict = lbp.get_neighbors_pixel( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCAmelCase__ : List[str] = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): lowerCAmelCase__ : Dict = lbp.local_binary_value(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert lbp_image.any()
307
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.linear_k""": """encoder.layers.*.self_attn.linear_k""", """self_attn.linear_v""": """encoder.layers.*.self_attn.linear_v""", """self_attn.linear_q""": """encoder.layers.*.self_attn.linear_q""", """self_attn.pos_bias_u""": """encoder.layers.*.self_attn.pos_bias_u""", """self_attn.pos_bias_v""": """encoder.layers.*.self_attn.pos_bias_v""", """self_attn.linear_out""": """encoder.layers.*.self_attn.linear_out""", """self_attn.linear_pos""": """encoder.layers.*.self_attn.linear_pos""", """self_attn.rotary_emb""": """encoder.embed_positions""", """self_attn_layer_norm""": """encoder.layers.*.self_attn_layer_norm""", """conv_module.pointwise_conv1""": """encoder.layers.*.conv_module.pointwise_conv1""", """conv_module.pointwise_conv2""": """encoder.layers.*.conv_module.pointwise_conv2""", """conv_module.depthwise_conv""": """encoder.layers.*.conv_module.depthwise_conv""", """conv_module.batch_norm""": """encoder.layers.*.conv_module.batch_norm""", """conv_module.layer_norm""": """encoder.layers.*.conv_module.layer_norm""", """ffn1.w_1""": """encoder.layers.*.ffn1.intermediate_dense""", """ffn1.w_2""": """encoder.layers.*.ffn1.output_dense""", """ffn1.layer_norm""": """encoder.layers.*.ffn1_layer_norm""", """ffn2.w_1""": """encoder.layers.*.ffn2.intermediate_dense""", """ffn2.w_2""": """encoder.layers.*.ffn2.output_dense""", """ffn2.layer_norm""": """encoder.layers.*.ffn2_layer_norm""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } lowerCamelCase__ = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: for attribute in key.split('.' ): lowerCAmelCase__ : int = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if weight_type is not None: lowerCAmelCase__ : Any = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).shape else: lowerCAmelCase__ : str = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowerCAmelCase__ : Optional[Any] = value elif weight_type == "weight_g": lowerCAmelCase__ : str = value elif weight_type == "weight_v": lowerCAmelCase__ : List[Any] = value elif weight_type == "bias": lowerCAmelCase__ : List[Any] = value elif weight_type == "running_mean": lowerCAmelCase__ : Dict = value elif weight_type == "running_var": lowerCAmelCase__ : List[Any] = value elif weight_type == "num_batches_tracked": lowerCAmelCase__ : Optional[int] = value elif weight_type == "inv_freq": lowerCAmelCase__ : Tuple = value else: lowerCAmelCase__ : List[str] = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: lowerCAmelCase__ : Any = [] lowerCAmelCase__ : int = fairseq_model.state_dict() lowerCAmelCase__ : Optional[int] = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): lowerCAmelCase__ : List[str] = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , hf_model.config.feat_extract_norm == 'group' , ) lowerCAmelCase__ : Optional[int] = True else: for key, mapped_key in MAPPING.items(): lowerCAmelCase__ : Union[str, Any] = 'wav2vec2_conformer.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: lowerCAmelCase__ : Tuple = True if "*" in mapped_key: lowerCAmelCase__ : Optional[int] = name.split(SCREAMING_SNAKE_CASE_ )[0].split('.' )[-2] lowerCAmelCase__ : Optional[int] = mapped_key.replace('*' , SCREAMING_SNAKE_CASE_ ) if "pos_bias_u" in name: lowerCAmelCase__ : Dict = None elif "pos_bias_v" in name: lowerCAmelCase__ : int = None elif "weight_g" in name: lowerCAmelCase__ : Optional[int] = 'weight_g' elif "weight_v" in name: lowerCAmelCase__ : str = 'weight_v' elif "bias" in name: lowerCAmelCase__ : Union[str, Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCAmelCase__ : int = 'weight' elif "running_mean" in name: lowerCAmelCase__ : List[str] = 'running_mean' elif "inv_freq" in name: lowerCAmelCase__ : Tuple = 'inv_freq' elif "running_var" in name: lowerCAmelCase__ : Optional[Any] = 'running_var' elif "num_batches_tracked" in name: lowerCAmelCase__ : int = 'num_batches_tracked' else: lowerCAmelCase__ : Tuple = None set_recursively(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: lowerCAmelCase__ : List[Any] = full_name.split('conv_layers.' )[-1] lowerCAmelCase__ : List[str] = name.split('.' ) lowerCAmelCase__ : Tuple = int(items[0] ) lowerCAmelCase__ : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowerCAmelCase__ : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowerCAmelCase__ : Optional[Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) lowerCAmelCase__ : Dict = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) lowerCAmelCase__ : List[str] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True ) -> int: if config_path is not None: lowerCAmelCase__ : List[str] = WavaVecaConformerConfig.from_pretrained(SCREAMING_SNAKE_CASE_ , hidden_act='swish' ) else: lowerCAmelCase__ : List[Any] = WavaVecaConformerConfig() if "rope" in checkpoint_path: lowerCAmelCase__ : Any = 'rotary' if is_finetuned: if dict_path: lowerCAmelCase__ : str = Dictionary.load(SCREAMING_SNAKE_CASE_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCAmelCase__ : Optional[Any] = target_dict.pad_index lowerCAmelCase__ : str = target_dict.bos_index lowerCAmelCase__ : int = target_dict.eos_index lowerCAmelCase__ : str = len(target_dict.symbols ) lowerCAmelCase__ : List[str] = os.path.join(SCREAMING_SNAKE_CASE_ , 'vocab.json' ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(SCREAMING_SNAKE_CASE_ ) ) return os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[Any] = target_dict.indices # fairseq has the <pad> and <s> switched lowerCAmelCase__ : str = 0 lowerCAmelCase__ : Optional[int] = 1 with open(SCREAMING_SNAKE_CASE_ , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Union[str, Any] = WavaVecaCTCTokenizer( SCREAMING_SNAKE_CASE_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=SCREAMING_SNAKE_CASE_ , ) lowerCAmelCase__ : Dict = True if config.feat_extract_norm == 'layer' else False lowerCAmelCase__ : Any = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , ) lowerCAmelCase__ : Optional[Any] = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : int = WavaVecaConformerForCTC(SCREAMING_SNAKE_CASE_ ) else: lowerCAmelCase__ : Any = WavaVecaConformerForPreTraining(SCREAMING_SNAKE_CASE_ ) if is_finetuned: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: lowerCAmelCase__ : str = argparse.Namespace(task='audio_pretraining' ) lowerCAmelCase__ : Union[str, Any] = fairseq.tasks.setup_task(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Tuple = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , not is_finetuned ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) lowerCamelCase__ = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
307
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class A__ ( unittest.TestCase ): def __init__( self : Any , a : Tuple , a : Optional[int]=7 , a : Dict=3 , a : Any=18 , a : Optional[Any]=30 , a : List[str]=400 , a : int=True , a : Optional[Any]=None , a : Tuple=True , a : int=None , a : Dict=True , a : List[str]=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , a : List[Any]=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , a : List[str]=True , ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = size if size is not None else {'height': 224, 'width': 224} lowerCAmelCase__ : Optional[int] = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCAmelCase__ : Optional[int] = parent lowerCAmelCase__ : Tuple = batch_size lowerCAmelCase__ : Optional[Any] = num_channels lowerCAmelCase__ : List[Any] = image_size lowerCAmelCase__ : Dict = min_resolution lowerCAmelCase__ : Dict = max_resolution lowerCAmelCase__ : List[str] = do_resize lowerCAmelCase__ : Tuple = size lowerCAmelCase__ : Union[str, Any] = do_center_crop lowerCAmelCase__ : int = crop_size lowerCAmelCase__ : str = do_normalize lowerCAmelCase__ : Any = image_mean lowerCAmelCase__ : List[str] = image_std lowerCAmelCase__ : Optional[Any] = do_convert_rgb def _lowerCamelCase ( self : str ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def _lowerCamelCase ( self : List[Any] , a : Optional[int]=False , a : Tuple=False , a : Union[str, Any]=False ): '''simple docstring''' assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: lowerCAmelCase__ : int = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: lowerCAmelCase__ : List[str] = [] for i in range(self.batch_size ): lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension lowerCAmelCase__ : int = [Image.fromarray(np.moveaxis(a , 0 , -1 ) ) for x in image_inputs] if torchify: lowerCAmelCase__ : List[str] = [torch.from_numpy(a ) for x in image_inputs] return image_inputs @require_torch @require_vision class A__ ( __magic_name__ , unittest.TestCase ): lowercase = ChineseCLIPImageProcessor if is_vision_available() else None def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = ChineseCLIPImageProcessingTester(self , do_center_crop=a ) @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , 'do_resize' ) ) self.assertTrue(hasattr(a , 'size' ) ) self.assertTrue(hasattr(a , 'do_center_crop' ) ) self.assertTrue(hasattr(a , 'center_crop' ) ) self.assertTrue(hasattr(a , 'do_normalize' ) ) self.assertTrue(hasattr(a , 'image_mean' ) ) self.assertTrue(hasattr(a , 'image_std' ) ) self.assertTrue(hasattr(a , 'do_convert_rgb' ) ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 224, 'width': 224} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) lowerCAmelCase__ : str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' pass def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase__ : Union[str, Any] = self.image_processor_tester.prepare_inputs(equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input lowerCAmelCase__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase__ : List[Any] = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase__ : Optional[int] = self.image_processor_tester.prepare_inputs(equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input lowerCAmelCase__ : List[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase__ : Optional[Any] = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase__ : Optional[Any] = self.image_processor_tester.prepare_inputs(equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input lowerCAmelCase__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase__ : Dict = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) @require_torch @require_vision class A__ ( __magic_name__ , unittest.TestCase ): lowercase = ChineseCLIPImageProcessor if is_vision_available() else None def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=a ) lowerCAmelCase__ : str = 3 @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , 'do_resize' ) ) self.assertTrue(hasattr(a , 'size' ) ) self.assertTrue(hasattr(a , 'do_center_crop' ) ) self.assertTrue(hasattr(a , 'center_crop' ) ) self.assertTrue(hasattr(a , 'do_normalize' ) ) self.assertTrue(hasattr(a , 'image_mean' ) ) self.assertTrue(hasattr(a , 'image_std' ) ) self.assertTrue(hasattr(a , 'do_convert_rgb' ) ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' pass def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase__ : Any = self.image_processor_tester.prepare_inputs(equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input lowerCAmelCase__ : List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase__ : List[str] = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
307
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.999 , SCREAMING_SNAKE_CASE_="cosine" , ) -> Union[str, Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(SCREAMING_SNAKE_CASE_ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(SCREAMING_SNAKE_CASE_ ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) lowerCAmelCase__ : Tuple = [] for i in range(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : List[Any] = i / num_diffusion_timesteps lowerCAmelCase__ : str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) / alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ) return torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ) class A__ ( __magic_name__ , __magic_name__ ): lowercase = [e.name for e in KarrasDiffusionSchedulers] lowercase = 2 @register_to_config def __init__( self : Union[str, Any] , a : int = 1_000 , a : float = 0.0_0_0_8_5 , a : float = 0.0_1_2 , a : str = "linear" , a : Optional[Union[np.ndarray, List[float]]] = None , a : str = "epsilon" , a : Optional[bool] = False , a : Optional[bool] = False , a : float = 1.0 , a : str = "linspace" , a : int = 0 , ): '''simple docstring''' if trained_betas is not None: lowerCAmelCase__ : List[str] = torch.tensor(a , dtype=torch.floataa ) elif beta_schedule == "linear": lowerCAmelCase__ : List[str] = torch.linspace(a , a , a , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowerCAmelCase__ : Union[str, Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , a , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowerCAmelCase__ : int = betas_for_alpha_bar(a , alpha_transform_type='cosine' ) elif beta_schedule == "exp": lowerCAmelCase__ : List[str] = betas_for_alpha_bar(a , alpha_transform_type='exp' ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) lowerCAmelCase__ : int = 1.0 - self.betas lowerCAmelCase__ : Tuple = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(a , a , a ) lowerCAmelCase__ : Optional[Any] = use_karras_sigmas def _lowerCamelCase ( self : str , a : List[Any] , a : str=None ): '''simple docstring''' if schedule_timesteps is None: lowerCAmelCase__ : List[str] = self.timesteps lowerCAmelCase__ : int = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: lowerCAmelCase__ : List[str] = 1 if len(a ) > 1 else 0 else: lowerCAmelCase__ : Tuple = timestep.cpu().item() if torch.is_tensor(a ) else timestep lowerCAmelCase__ : Tuple = self._index_counter[timestep_int] return indices[pos].item() @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _lowerCamelCase ( self : Tuple , a : torch.FloatTensor , a : Union[float, torch.FloatTensor] , ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.index_for_timestep(a ) lowerCAmelCase__ : Any = self.sigmas[step_index] lowerCAmelCase__ : Optional[Any] = sample / ((sigma**2 + 1) ** 0.5) return sample def _lowerCamelCase ( self : List[str] , a : int , a : Union[str, torch.device] = None , a : Optional[int] = None , ): '''simple docstring''' lowerCAmelCase__ : Any = num_inference_steps lowerCAmelCase__ : Union[str, Any] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowerCAmelCase__ : Union[str, Any] = np.linspace(0 , num_train_timesteps - 1 , a , dtype=a )[::-1].copy() elif self.config.timestep_spacing == "leading": lowerCAmelCase__ : List[Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCAmelCase__ : Dict = (np.arange(0 , a ) * step_ratio).round()[::-1].copy().astype(a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowerCAmelCase__ : Tuple = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCAmelCase__ : int = (np.arange(a , 0 , -step_ratio )).round().copy().astype(a ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) lowerCAmelCase__ : str = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) lowerCAmelCase__ : List[Any] = np.log(a ) lowerCAmelCase__ : Optional[int] = np.interp(a , np.arange(0 , len(a ) ) , a ) if self.config.use_karras_sigmas: lowerCAmelCase__ : str = self._convert_to_karras(in_sigmas=a , num_inference_steps=self.num_inference_steps ) lowerCAmelCase__ : Union[str, Any] = np.array([self._sigma_to_t(a , a ) for sigma in sigmas] ) lowerCAmelCase__ : Tuple = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) lowerCAmelCase__ : Dict = torch.from_numpy(a ).to(device=a ) lowerCAmelCase__ : Union[str, Any] = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) lowerCAmelCase__ : Tuple = torch.from_numpy(a ) lowerCAmelCase__ : List[str] = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(a ).startswith('mps' ): # mps does not support float64 lowerCAmelCase__ : Optional[Any] = timesteps.to(a , dtype=torch.floataa ) else: lowerCAmelCase__ : Any = timesteps.to(device=a ) # empty dt and derivative lowerCAmelCase__ : str = None lowerCAmelCase__ : Optional[int] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowerCAmelCase__ : Optional[Any] = defaultdict(a ) def _lowerCamelCase ( self : Any , a : Dict , a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = np.log(a ) # get distribution lowerCAmelCase__ : Tuple = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range lowerCAmelCase__ : Optional[int] = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) lowerCAmelCase__ : List[str] = low_idx + 1 lowerCAmelCase__ : List[str] = log_sigmas[low_idx] lowerCAmelCase__ : Any = log_sigmas[high_idx] # interpolate sigmas lowerCAmelCase__ : Union[str, Any] = (low - log_sigma) / (low - high) lowerCAmelCase__ : List[Any] = np.clip(a , 0 , 1 ) # transform interpolation to time range lowerCAmelCase__ : List[Any] = (1 - w) * low_idx + w * high_idx lowerCAmelCase__ : Any = t.reshape(sigma.shape ) return t def _lowerCamelCase ( self : Tuple , a : torch.FloatTensor , a : Any ): '''simple docstring''' lowerCAmelCase__ : float = in_sigmas[-1].item() lowerCAmelCase__ : float = in_sigmas[0].item() lowerCAmelCase__ : Tuple = 7.0 # 7.0 is the value used in the paper lowerCAmelCase__ : Tuple = np.linspace(0 , 1 , a ) lowerCAmelCase__ : Any = sigma_min ** (1 / rho) lowerCAmelCase__ : Optional[Any] = sigma_max ** (1 / rho) lowerCAmelCase__ : Tuple = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _lowerCamelCase ( self : Any ): '''simple docstring''' return self.dt is None def _lowerCamelCase ( self : List[str] , a : Union[torch.FloatTensor, np.ndarray] , a : Union[float, torch.FloatTensor] , a : Union[torch.FloatTensor, np.ndarray] , a : bool = True , ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.index_for_timestep(a ) # advance index counter by 1 lowerCAmelCase__ : Tuple = timestep.cpu().item() if torch.is_tensor(a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowerCAmelCase__ : Union[str, Any] = self.sigmas[step_index] lowerCAmelCase__ : Union[str, Any] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method lowerCAmelCase__ : int = self.sigmas[step_index - 1] lowerCAmelCase__ : Any = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowerCAmelCase__ : Optional[int] = 0 lowerCAmelCase__ : Union[str, Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowerCAmelCase__ : int = sigma_hat if self.state_in_first_order else sigma_next lowerCAmelCase__ : Any = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowerCAmelCase__ : Dict = sigma_hat if self.state_in_first_order else sigma_next lowerCAmelCase__ : List[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": lowerCAmelCase__ : int = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.config.clip_sample: lowerCAmelCase__ : str = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowerCAmelCase__ : Dict = (sample - pred_original_sample) / sigma_hat # 3. delta timestep lowerCAmelCase__ : Optional[int] = sigma_next - sigma_hat # store for 2nd order step lowerCAmelCase__ : List[Any] = derivative lowerCAmelCase__ : str = dt lowerCAmelCase__ : Dict = sample else: # 2. 2nd order / Heun's method lowerCAmelCase__ : Union[str, Any] = (sample - pred_original_sample) / sigma_next lowerCAmelCase__ : Union[str, Any] = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample lowerCAmelCase__ : Dict = self.dt lowerCAmelCase__ : Optional[int] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" lowerCAmelCase__ : List[str] = None lowerCAmelCase__ : Tuple = None lowerCAmelCase__ : str = None lowerCAmelCase__ : Tuple = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=a ) def _lowerCamelCase ( self : int , a : torch.FloatTensor , a : torch.FloatTensor , a : torch.FloatTensor , ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(a ): # mps does not support float64 lowerCAmelCase__ : Optional[int] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) lowerCAmelCase__ : int = timesteps.to(original_samples.device , dtype=torch.floataa ) else: lowerCAmelCase__ : Union[str, Any] = self.timesteps.to(original_samples.device ) lowerCAmelCase__ : Optional[Any] = timesteps.to(original_samples.device ) lowerCAmelCase__ : List[Any] = [self.index_for_timestep(a , a ) for t in timesteps] lowerCAmelCase__ : List[str] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): lowerCAmelCase__ : Any = sigma.unsqueeze(-1 ) lowerCAmelCase__ : List[str] = original_samples + noise * sigma return noisy_samples def __len__( self : int ): '''simple docstring''' return self.config.num_train_timesteps
307
1
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask lowerCamelCase__ = logging.getLogger(__name__) class A__ ( __magic_name__ ): lowercase = 'token-classification' def __init__( self : Optional[int] , a : List[str] ): '''simple docstring''' if type(a ) == dict: lowerCAmelCase__ : List[str] = Namespace(**a ) lowerCAmelCase__ : int = import_module('tasks' ) try: lowerCAmelCase__ : Any = getattr(a , hparams.task_type ) lowerCAmelCase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) lowerCAmelCase__ : List[str] = self.token_classification_task.get_labels(hparams.labels ) lowerCAmelCase__ : Optional[int] = CrossEntropyLoss().ignore_index super().__init__(a , len(self.labels ) , self.mode ) def _lowerCamelCase ( self : Union[str, Any] , **a : Optional[int] ): '''simple docstring''' return self.model(**a ) def _lowerCamelCase ( self : Any , a : Any , a : int ): '''simple docstring''' lowerCAmelCase__ : int = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type != "distilbert": lowerCAmelCase__ : int = ( batch[2] if self.config.model_type in ['bert', 'xlnet'] else None ) # XLM and RoBERTa don"t use token_type_ids lowerCAmelCase__ : List[Any] = self(**a ) lowerCAmelCase__ : Union[str, Any] = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.hparams for mode in ["train", "dev", "test"]: lowerCAmelCase__ : int = self._feature_file(a ) if os.path.exists(a ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , a ) lowerCAmelCase__ : Any = torch.load(a ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) lowerCAmelCase__ : str = self.token_classification_task.read_examples_from_file(args.data_dir , a ) lowerCAmelCase__ : str = self.token_classification_task.convert_examples_to_features( a , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['xlnet'] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['xlnet'] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=a , pad_on_left=bool(self.config.model_type in ['xlnet'] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('Saving features into cached file %s' , a ) torch.save(a , a ) def _lowerCamelCase ( self : str , a : int , a : int , a : bool = False ): '''simple docstring''' lowerCAmelCase__ : Dict = self._feature_file(a ) logger.info('Loading features from cached file %s' , a ) lowerCAmelCase__ : str = torch.load(a ) lowerCAmelCase__ : Optional[Any] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowerCAmelCase__ : Dict = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: lowerCAmelCase__ : List[str] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: lowerCAmelCase__ : Union[str, Any] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) lowerCAmelCase__ : Dict = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(a , a , a , a ) , batch_size=a ) def _lowerCamelCase ( self : int , a : Union[str, Any] , a : Optional[int] ): '''simple docstring''' """Compute validation""" "" lowerCAmelCase__ : Optional[int] = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type != "distilbert": lowerCAmelCase__ : str = ( batch[2] if self.config.model_type in ['bert', 'xlnet'] else None ) # XLM and RoBERTa don"t use token_type_ids lowerCAmelCase__ : Tuple = self(**a ) lowerCAmelCase__ , lowerCAmelCase__ : Tuple = outputs[:2] lowerCAmelCase__ : Dict = logits.detach().cpu().numpy() lowerCAmelCase__ : List[str] = inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _lowerCamelCase ( self : List[Any] , a : str ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch.stack([x['val_loss'] for x in outputs] ).mean() lowerCAmelCase__ : Optional[Any] = np.concatenate([x['pred'] for x in outputs] , axis=0 ) lowerCAmelCase__ : Dict = np.argmax(a , axis=2 ) lowerCAmelCase__ : str = np.concatenate([x['target'] for x in outputs] , axis=0 ) lowerCAmelCase__ : Optional[Any] = dict(enumerate(self.labels ) ) lowerCAmelCase__ : Tuple = [[] for _ in range(out_label_ids.shape[0] )] lowerCAmelCase__ : List[Any] = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) lowerCAmelCase__ : int = { 'val_loss': val_loss_mean, 'accuracy_score': accuracy_score(a , a ), 'precision': precision_score(a , a ), 'recall': recall_score(a , a ), 'f1': fa_score(a , a ), } lowerCAmelCase__ : Optional[Any] = dict(results.items() ) lowerCAmelCase__ : Optional[Any] = results return ret, preds_list, out_label_list def _lowerCamelCase ( self : Any , a : Tuple ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : str = self._eval_end(a ) lowerCAmelCase__ : Any = ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _lowerCamelCase ( self : List[str] , a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = self._eval_end(a ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 lowerCAmelCase__ : int = ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _lowerCamelCase ( a : List[Any] , a : Optional[Any] ): '''simple docstring''' BaseTransformer.add_model_specific_args(a , a ) parser.add_argument( '--task_type' , default='NER' , type=a , help='Task type to fine tune in training (e.g. NER, POS, etc)' ) parser.add_argument( '--max_seq_length' , default=128 , type=a , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--labels' , default='' , type=a , help='Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.' , ) parser.add_argument( '--gpus' , default=0 , type=a , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) lowerCamelCase__ = NERTransformer.add_model_specific_args(parser, os.getcwd()) lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = NERTransformer(args) lowerCamelCase__ = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 lowerCamelCase__ = sorted(glob.glob(os.path.join(args.output_dir, """checkpoint-epoch=*.ckpt"""), recursive=True)) lowerCamelCase__ = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
307
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: if isinstance(SCREAMING_SNAKE_CASE_ , collections.abc.Iterable ): return x return (x, x) @require_tf class A__ : def _lowerCamelCase ( self : List[Any] , a : List[str] , a : Optional[Any] ): '''simple docstring''' pass def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' pass def _lowerCamelCase ( self : Dict ): '''simple docstring''' pass def _lowerCamelCase ( self : Dict , a : int , a : str , a : List[Any] , a : Dict , a : List[str]=None , **a : Dict ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(a , a ) lowerCAmelCase__ : Tuple = TFVisionTextDualEncoderModel(a ) lowerCAmelCase__ : Tuple = model(input_ids=a , pixel_values=a , attention_mask=a ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) ) def _lowerCamelCase ( self : Union[str, Any] , a : Dict , a : Tuple , a : Dict , a : Union[str, Any] , a : List[Any]=None , **a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.get_vision_text_model(a , a ) lowerCAmelCase__ : List[Any] = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : Optional[int] = model(input_ids=a , pixel_values=a , attention_mask=a ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _lowerCamelCase ( self : List[str] , a : Optional[int] , a : Optional[int] , a : Union[str, Any] , a : List[Any] , a : Any=None , **a : Dict ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Optional[Any] = {'vision_model': vision_model, 'text_model': text_model} lowerCAmelCase__ : Tuple = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**a ) lowerCAmelCase__ : Union[str, Any] = model(input_ids=a , pixel_values=a , attention_mask=a ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _lowerCamelCase ( self : Any , a : Optional[int] , a : Optional[int] , a : Dict , a : Optional[int] , a : Optional[int]=None , **a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : int = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Dict = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : List[str] = model(input_ids=a , pixel_values=a , attention_mask=a ) lowerCAmelCase__ : Union[str, Any] = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(a ) lowerCAmelCase__ : Any = TFVisionTextDualEncoderModel.from_pretrained(a ) lowerCAmelCase__ : int = model(input_ids=a , pixel_values=a , attention_mask=a ) lowerCAmelCase__ : Union[str, Any] = after_output[0].numpy() lowerCAmelCase__ : Optional[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a , 1E-5 ) def _lowerCamelCase ( self : List[str] , a : Dict , a : Optional[int] , a : List[Any] , a : str , a : int=None , **a : Tuple ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Any = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : str = model( input_ids=a , pixel_values=a , attention_mask=a , output_attentions=a ) lowerCAmelCase__ : Union[str, Any] = output.vision_model_output.attentions self.assertEqual(len(a ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase__ : Optional[int] = to_atuple(vision_model.config.image_size ) lowerCAmelCase__ : Optional[Any] = to_atuple(vision_model.config.patch_size ) lowerCAmelCase__ : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCAmelCase__ : int = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCAmelCase__ : str = output.text_model_output.attentions self.assertEqual(len(a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCamelCase ( self : List[Any] , a : np.ndarray , a : np.ndarray , a : float ): '''simple docstring''' lowerCAmelCase__ : int = np.abs((a - b) ).max() self.assertLessEqual(a , a , f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**a ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Any = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**a ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : str = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() self.check_save_load(**a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**a ) @slow def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = self.get_pretrained_model_and_inputs() lowerCAmelCase__ : List[Any] = model_a(**a ) lowerCAmelCase__ : Optional[int] = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(a ) lowerCAmelCase__ : str = TFVisionTextDualEncoderModel.from_pretrained(a ) lowerCAmelCase__ : List[str] = model_a(**a ) lowerCAmelCase__ : int = after_outputs[0].numpy() lowerCAmelCase__ : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a , 1E-5 ) @require_tf class A__ ( __magic_name__ , unittest.TestCase ): def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-random-bert' ) lowerCAmelCase__ : int = 13 lowerCAmelCase__ : List[Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ : int = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ : Optional[Any] = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ : List[Any] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _lowerCamelCase ( self : List[Any] , a : Dict , a : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = TFViTModel(a , name='vision_model' ) lowerCAmelCase__ : str = TFBertModel(a , name='text_model' ) return vision_model, text_model def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = TFViTModelTester(self ) lowerCAmelCase__ : Tuple = TFBertModelTester(self ) lowerCAmelCase__ : Optional[int] = vit_model_tester.prepare_config_and_inputs() lowerCAmelCase__ : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : int = vision_config_and_inputs ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : str = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class A__ ( __magic_name__ , unittest.TestCase ): def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-deit-tf' , 'hf-internal-testing/tiny-random-roberta' ) lowerCAmelCase__ : Tuple = 13 lowerCAmelCase__ : Any = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ : Dict = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ : Any = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ : Tuple = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _lowerCamelCase ( self : str , a : Optional[Any] , a : Dict , a : Dict , a : Any , a : Any=None , **a : int ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Optional[int] = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : Any = model( input_ids=a , pixel_values=a , attention_mask=a , output_attentions=a ) lowerCAmelCase__ : Union[str, Any] = output.vision_model_output.attentions self.assertEqual(len(a ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowerCAmelCase__ : str = to_atuple(vision_model.config.image_size ) lowerCAmelCase__ : Union[str, Any] = to_atuple(vision_model.config.patch_size ) lowerCAmelCase__ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCAmelCase__ : int = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCAmelCase__ : List[str] = output.text_model_output.attentions self.assertEqual(len(a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCamelCase ( self : int , a : Optional[int] , a : int ): '''simple docstring''' lowerCAmelCase__ : Dict = TFDeiTModel(a , name='vision_model' ) lowerCAmelCase__ : List[Any] = TFRobertaModel(a , name='text_model' ) return vision_model, text_model def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Dict = TFDeiTModelTester(self ) lowerCAmelCase__ : List[str] = TFRobertaModelTester(self ) lowerCAmelCase__ : str = vit_model_tester.prepare_config_and_inputs() lowerCAmelCase__ : List[Any] = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[str] = vision_config_and_inputs ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : Any = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class A__ ( __magic_name__ , unittest.TestCase ): def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : int = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-clip-tf' , 'hf-internal-testing/tiny-random-bert' ) lowerCAmelCase__ : Dict = 13 lowerCAmelCase__ : str = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ : List[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ : Union[str, Any] = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ : Optional[int] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _lowerCamelCase ( self : str , a : int , a : List[str] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = TFCLIPVisionModel(a , name='vision_model' ) lowerCAmelCase__ : List[str] = TFBertModel(a , name='text_model' ) return vision_model, text_model def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Any = TFCLIPVisionModelTester(self ) lowerCAmelCase__ : Union[str, Any] = TFBertModelTester(self ) lowerCAmelCase__ : Any = clip_model_tester.prepare_config_and_inputs() lowerCAmelCase__ : Any = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = vision_config_and_inputs ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : str = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class A__ ( unittest.TestCase ): @slow def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Tuple = TFVisionTextDualEncoderModel.from_pretrained( 'clip-italian/clip-italian' , logit_scale_init_value=1.0 , from_pt=a ) lowerCAmelCase__ : List[Any] = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) lowerCAmelCase__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCAmelCase__ : Any = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=a , padding=a , return_tensors='np' ) lowerCAmelCase__ : Union[str, Any] = model(**a ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) lowerCAmelCase__ : List[str] = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , a , atol=1E-3 ) )
307
1
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A__ : @staticmethod def _lowerCamelCase ( *a : Any , **a : Any ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class A__ ( unittest.TestCase ): lowercase = MODEL_FOR_OBJECT_DETECTION_MAPPING def _lowerCamelCase ( self : Tuple , a : Union[str, Any] , a : Optional[Any] , a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = ObjectDetectionPipeline(model=a , image_processor=a ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def _lowerCamelCase ( self : Union[str, Any] , a : Optional[int] , a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png' , threshold=0.0 ) self.assertGreater(len(a ) , 0 ) for detected_object in outputs: self.assertEqual( a , { 'score': ANY(a ), 'label': ANY(a ), 'box': {'xmin': ANY(a ), 'ymin': ANY(a ), 'xmax': ANY(a ), 'ymax': ANY(a )}, } , ) import datasets lowerCAmelCase__ : Tuple = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) lowerCAmelCase__ : List[str] = [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] lowerCAmelCase__ : Optional[Any] = object_detector(a , threshold=0.0 ) self.assertEqual(len(a ) , len(a ) ) for outputs in batch_outputs: self.assertGreater(len(a ) , 0 ) for detected_object in outputs: self.assertEqual( a , { 'score': ANY(a ), 'label': ANY(a ), 'box': {'xmin': ANY(a ), 'ymin': ANY(a ), 'xmax': ANY(a ), 'ymax': ANY(a )}, } , ) @require_tf @unittest.skip('Object detection not implemented in TF' ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' pass @require_torch def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : str = 'hf-internal-testing/tiny-detr-mobilenetsv3' lowerCAmelCase__ : List[str] = AutoModelForObjectDetection.from_pretrained(a ) lowerCAmelCase__ : Dict = AutoFeatureExtractor.from_pretrained(a ) lowerCAmelCase__ : Union[str, Any] = ObjectDetectionPipeline(model=a , feature_extractor=a ) lowerCAmelCase__ : Any = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' , threshold=0.0 ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ] , ) lowerCAmelCase__ : List[str] = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] , threshold=0.0 , ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], ] , ) @require_torch @slow def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Any = 'facebook/detr-resnet-50' lowerCAmelCase__ : Optional[int] = AutoModelForObjectDetection.from_pretrained(a ) lowerCAmelCase__ : Tuple = AutoFeatureExtractor.from_pretrained(a ) lowerCAmelCase__ : int = ObjectDetectionPipeline(model=a , feature_extractor=a ) lowerCAmelCase__ : Union[str, Any] = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ] , ) lowerCAmelCase__ : str = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ] , ) @require_torch @slow def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : str = 'facebook/detr-resnet-50' lowerCAmelCase__ : Union[str, Any] = pipeline('object-detection' , model=a ) lowerCAmelCase__ : Union[str, Any] = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ] , ) lowerCAmelCase__ : int = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ] , ) @require_torch @slow def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Any = 0.9_9_8_5 lowerCAmelCase__ : List[str] = 'facebook/detr-resnet-50' lowerCAmelCase__ : Dict = pipeline('object-detection' , model=a ) lowerCAmelCase__ : Union[str, Any] = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' , threshold=a ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ] , ) @require_torch @require_pytesseract @slow def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = 'Narsil/layoutlmv3-finetuned-funsd' lowerCAmelCase__ : Tuple = 0.9_9_9_3 lowerCAmelCase__ : Optional[int] = pipeline('object-detection' , model=a , threshold=a ) lowerCAmelCase__ : Optional[Any] = object_detector( 'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, ] , )
307
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) lowerCamelCase__ = logging.getLogger(__name__) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: lowerCAmelCase__ : Dict = np.argmax(SCREAMING_SNAKE_CASE_ , axis=1 ) return np.sum(outputs == labels ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: with open(SCREAMING_SNAKE_CASE_ , encoding='utf_8' ) as f: lowerCAmelCase__ : Dict = csv.reader(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Dict = [] next(SCREAMING_SNAKE_CASE_ ) # skip the first line for line in tqdm(SCREAMING_SNAKE_CASE_ ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: lowerCAmelCase__ : Dict = [] for dataset in encoded_datasets: lowerCAmelCase__ : List[str] = len(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) lowerCAmelCase__ : Tuple = np.zeros((n_batch, 2) , dtype=np.intaa ) lowerCAmelCase__ : List[Any] = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) lowerCAmelCase__ : Tuple = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Tuple = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase__ : Any = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase__ : Optional[Any] = with_conta lowerCAmelCase__ : List[str] = with_conta lowerCAmelCase__ : List[Any] = len(SCREAMING_SNAKE_CASE_ ) - 1 lowerCAmelCase__ : Tuple = len(SCREAMING_SNAKE_CASE_ ) - 1 lowerCAmelCase__ : Tuple = with_conta lowerCAmelCase__ : Optional[int] = with_conta lowerCAmelCase__ : Optional[int] = mc_label lowerCAmelCase__ : Dict = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(SCREAMING_SNAKE_CASE_ ) for t in all_inputs ) ) return tensor_datasets def lowerCAmelCase__ ( ) -> int: lowerCAmelCase__ : int = argparse.ArgumentParser() parser.add_argument('--model_name' , type=SCREAMING_SNAKE_CASE_ , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=SCREAMING_SNAKE_CASE_ , default='' ) parser.add_argument('--eval_dataset' , type=SCREAMING_SNAKE_CASE_ , default='' ) parser.add_argument('--seed' , type=SCREAMING_SNAKE_CASE_ , default=42 ) parser.add_argument('--num_train_epochs' , type=SCREAMING_SNAKE_CASE_ , default=3 ) parser.add_argument('--train_batch_size' , type=SCREAMING_SNAKE_CASE_ , default=8 ) parser.add_argument('--eval_batch_size' , type=SCREAMING_SNAKE_CASE_ , default=16 ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=SCREAMING_SNAKE_CASE_ , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=SCREAMING_SNAKE_CASE_ , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=SCREAMING_SNAKE_CASE_ , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=SCREAMING_SNAKE_CASE_ , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=SCREAMING_SNAKE_CASE_ , default=6.25e-5 ) parser.add_argument('--warmup_steps' , default=0 , type=SCREAMING_SNAKE_CASE_ , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=SCREAMING_SNAKE_CASE_ , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=SCREAMING_SNAKE_CASE_ , default=0.01 ) parser.add_argument('--lm_coef' , type=SCREAMING_SNAKE_CASE_ , default=0.9 ) parser.add_argument('--n_valid' , type=SCREAMING_SNAKE_CASE_ , default=374 ) parser.add_argument('--server_ip' , type=SCREAMING_SNAKE_CASE_ , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=SCREAMING_SNAKE_CASE_ , default='' , help='Can be used for distant debugging.' ) lowerCAmelCase__ : List[str] = parser.parse_args() print(SCREAMING_SNAKE_CASE_ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE_ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) lowerCAmelCase__ : str = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) lowerCAmelCase__ : Dict = torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset lowerCAmelCase__ : Union[str, Any] = ['_start_', '_delimiter_', '_classify_'] lowerCAmelCase__ : Dict = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE_ ) ) model.to(SCREAMING_SNAKE_CASE_ ) # Load and encode the datasets def tokenize_and_encode(SCREAMING_SNAKE_CASE_ ): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return obj return [tokenize_and_encode(SCREAMING_SNAKE_CASE_ ) for o in obj] logger.info('Encoding dataset...' ) lowerCAmelCase__ : List[Any] = load_rocstories_dataset(args.train_dataset ) lowerCAmelCase__ : str = load_rocstories_dataset(args.eval_dataset ) lowerCAmelCase__ : Union[str, Any] = (train_dataset, eval_dataset) lowerCAmelCase__ : List[str] = tokenize_and_encode(SCREAMING_SNAKE_CASE_ ) # Compute the max input length for the Transformer lowerCAmelCase__ : Union[str, Any] = model.config.n_positions // 2 - 2 lowerCAmelCase__ : Tuple = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) lowerCAmelCase__ : Dict = min(SCREAMING_SNAKE_CASE_ , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders lowerCAmelCase__ : int = pre_process_datasets(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = tensor_datasets[0], tensor_datasets[1] lowerCAmelCase__ : str = TensorDataset(*SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Tuple = RandomSampler(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Tuple = DataLoader(SCREAMING_SNAKE_CASE_ , sampler=SCREAMING_SNAKE_CASE_ , batch_size=args.train_batch_size ) lowerCAmelCase__ : Optional[Any] = TensorDataset(*SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Dict = SequentialSampler(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = DataLoader(SCREAMING_SNAKE_CASE_ , sampler=SCREAMING_SNAKE_CASE_ , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: lowerCAmelCase__ : Union[str, Any] = args.max_steps lowerCAmelCase__ : int = args.max_steps // (len(SCREAMING_SNAKE_CASE_ ) // args.gradient_accumulation_steps) + 1 else: lowerCAmelCase__ : Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) // args.gradient_accumulation_steps * args.num_train_epochs lowerCAmelCase__ : Optional[int] = list(model.named_parameters() ) lowerCAmelCase__ : Tuple = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] lowerCAmelCase__ : str = [ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] lowerCAmelCase__ : Union[str, Any] = AdamW(SCREAMING_SNAKE_CASE_ , lr=args.learning_rate , eps=args.adam_epsilon ) lowerCAmelCase__ : int = get_linear_schedule_with_warmup( SCREAMING_SNAKE_CASE_ , num_warmup_steps=args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE_ ) if args.do_train: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): lowerCAmelCase__ : str = 0 lowerCAmelCase__ : int = 0 lowerCAmelCase__ : str = tqdm(SCREAMING_SNAKE_CASE_ , desc='Training' ) for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Union[str, Any] = tuple(t.to(SCREAMING_SNAKE_CASE_ ) for t in batch ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = batch lowerCAmelCase__ : Tuple = model(SCREAMING_SNAKE_CASE_ , mc_token_ids=SCREAMING_SNAKE_CASE_ , lm_labels=SCREAMING_SNAKE_CASE_ , mc_labels=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : str = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() lowerCAmelCase__ : Optional[int] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 lowerCAmelCase__ : List[str] = 'Training loss: {:.2e} lr: {:.2e}'.format(SCREAMING_SNAKE_CASE_ , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer lowerCAmelCase__ : Optional[int] = model.module if hasattr(SCREAMING_SNAKE_CASE_ , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` lowerCAmelCase__ : List[str] = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[str] = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE_ ) torch.save(model_to_save.state_dict() , SCREAMING_SNAKE_CASE_ ) model_to_save.config.to_json_file(SCREAMING_SNAKE_CASE_ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned lowerCAmelCase__ : Dict = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) lowerCAmelCase__ : List[Any] = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(SCREAMING_SNAKE_CASE_ ) if args.do_eval: model.eval() lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = 0, 0 lowerCAmelCase__ , lowerCAmelCase__ : Any = 0, 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , desc='Evaluating' ): lowerCAmelCase__ : str = tuple(t.to(SCREAMING_SNAKE_CASE_ ) for t in batch ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Tuple = batch with torch.no_grad(): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[str] = model( SCREAMING_SNAKE_CASE_ , mc_token_ids=SCREAMING_SNAKE_CASE_ , lm_labels=SCREAMING_SNAKE_CASE_ , mc_labels=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = mc_logits.detach().cpu().numpy() lowerCAmelCase__ : List[Any] = mc_labels.to('cpu' ).numpy() lowerCAmelCase__ : str = accuracy(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 lowerCAmelCase__ : Optional[int] = eval_loss / nb_eval_steps lowerCAmelCase__ : Any = eval_accuracy / nb_eval_examples lowerCAmelCase__ : Union[str, Any] = tr_loss / nb_tr_steps if args.do_train else None lowerCAmelCase__ : Tuple = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} lowerCAmelCase__ : Dict = os.path.join(args.output_dir , 'eval_results.txt' ) with open(SCREAMING_SNAKE_CASE_ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , SCREAMING_SNAKE_CASE_ , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
307
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase__ = {"""configuration_yolos""": ["""YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """YolosConfig""", """YolosOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""YolosFeatureExtractor"""] lowerCamelCase__ = ["""YolosImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST""", """YolosForObjectDetection""", """YolosModel""", """YolosPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCamelCase__ = """python tqdm regex requests packaging filelock numpy tokenizers""".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("""dataclasses""") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("""importlib_metadata""") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> int: require_version(deps[pkg] , SCREAMING_SNAKE_CASE_ )
307
1
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class A__ ( unittest.TestCase ): lowercase = inspect.getfile(accelerate.test_utils ) lowercase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_cli.py'] ) lowercase = ['accelerate', 'launch'] lowercase = Path.home() / '.cache/huggingface/accelerate' lowercase = 'default_config.yaml' lowercase = config_folder / config_file lowercase = config_folder / '_default_config.yaml' lowercase = Path('tests/test_configs' ) @classmethod def _lowerCamelCase ( cls : Dict ): '''simple docstring''' if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def _lowerCamelCase ( cls : List[Any] ): '''simple docstring''' if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Dict = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' for config in sorted(self.test_config_path.glob('**/*.yaml' ) ): with self.subTest(config_file=a ): execute_subprocess_async( self.base_cmd + ['--config_file', str(a ), self.test_file_path] , env=os.environ.copy() ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' execute_subprocess_async(['accelerate', 'test'] , env=os.environ.copy() ) class A__ ( unittest.TestCase ): lowercase = 'test-tpu' lowercase = 'us-central1-a' lowercase = 'ls' lowercase = ['accelerate', 'tpu-config'] lowercase = 'cd /usr/share' lowercase = 'tests/test_samples/test_command_file.sh' lowercase = 'Running gcloud compute tpus tpu-vm ssh' def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Any = run_command( self.cmd + ['--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug'] , return_stdout=a , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , a , ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Any = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=a , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , a , ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--debug'] , return_stdout=a ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , a , ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Any = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--debug'] , return_stdout=a , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , a , ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : str = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--command', 'echo "Hello World"', '--debug', ] , return_stdout=a , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all''' , a , ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command_file', self.command_file, '--debug'] , return_stdout=a , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , a , ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Tuple = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command_file', self.command_file, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=a , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , a , ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--debug'] , return_stdout=a , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all''' , a , ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--accelerate_version', '12.0.0', '--debug', ] , return_stdout=a , ) self.assertIn( f'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all''' , a , )
307
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class A__ ( __magic_name__ ): lowercase = (DPMSolverSDEScheduler,) lowercase = 10 def _lowerCamelCase ( self : Optional[int] , **a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = { 'num_train_timesteps': 1_100, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'noise_sampler_seed': 0, } config.update(**a ) return config def _lowerCamelCase ( self : Tuple ): '''simple docstring''' for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=a ) def _lowerCamelCase ( self : int ): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=a , beta_end=a ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=a ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : int = self.scheduler_classes[0] lowerCAmelCase__ : Tuple = self.get_scheduler_config() lowerCAmelCase__ : List[Any] = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ : Dict = self.dummy_model() lowerCAmelCase__ : int = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ : int = sample.to(a ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : List[Any] = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : str = model(a , a ) lowerCAmelCase__ : int = scheduler.step(a , a , a ) lowerCAmelCase__ : Any = output.prev_sample lowerCAmelCase__ : List[Any] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Optional[int] = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_7_8_2_1_0_4_4_9_2_1_8_7_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_7_8_7_0_5_9_6_4_5_6_5_2_7_7 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_2_1_1_1_8_1_6_4_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_6_8_9_2_2_9_9_6_5_2 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3 def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.scheduler_classes[0] lowerCAmelCase__ : List[str] = self.get_scheduler_config(prediction_type='v_prediction' ) lowerCAmelCase__ : Any = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ : Optional[int] = self.dummy_model() lowerCAmelCase__ : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ : Any = sample.to(a ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : str = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : str = model(a , a ) lowerCAmelCase__ : Dict = scheduler.step(a , a , a ) lowerCAmelCase__ : Tuple = output.prev_sample lowerCAmelCase__ : int = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Union[str, Any] = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_2_4.7_7_1_4_9_2_0_0_4_3_9_4_5_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_2_2_6_2_8_9_0_1_4_8_1_6_2_8_4 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_2_8.1_6_6_3_3_6_0_5_9_5_7_0_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_6_8_8_3_2_6_0_0_1_1_6_7_2_9_7 ) < 1E-3 else: assert abs(result_sum.item() - 1_1_9.8_4_8_7_5_4_8_8_2_8_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.1_5_6_0_5_3_0_6_6_2_5_3_6_6_2_1 ) < 1E-3 def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.scheduler_classes[0] lowerCAmelCase__ : Optional[int] = self.get_scheduler_config() lowerCAmelCase__ : int = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps , device=a ) lowerCAmelCase__ : Tuple = self.dummy_model() lowerCAmelCase__ : Any = self.dummy_sample_deter.to(a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowerCAmelCase__ : Dict = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : Optional[int] = model(a , a ) lowerCAmelCase__ : Tuple = scheduler.step(a , a , a ) lowerCAmelCase__ : Dict = output.prev_sample lowerCAmelCase__ : Union[str, Any] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Dict = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_6_9_5_7_3_9_7_4_6_0_9_3_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_8_0_5_9_3_4_6_0_7_9_8_2_6_3_5 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_3_6_3_7_6_9_5_3_1_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_8_3_8_2_4_1_5_7_7_1 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3 def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.scheduler_classes[0] lowerCAmelCase__ : Any = self.get_scheduler_config() lowerCAmelCase__ : Any = scheduler_class(**a , use_karras_sigmas=a ) scheduler.set_timesteps(self.num_inference_steps , device=a ) lowerCAmelCase__ : str = self.dummy_model() lowerCAmelCase__ : Any = self.dummy_sample_deter.to(a ) * scheduler.init_noise_sigma lowerCAmelCase__ : str = sample.to(a ) for t in scheduler.timesteps: lowerCAmelCase__ : Any = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : int = model(a , a ) lowerCAmelCase__ : Union[str, Any] = scheduler.step(a , a , a ) lowerCAmelCase__ : Union[str, Any] = output.prev_sample lowerCAmelCase__ : Optional[int] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Any = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_7_6.6_6_9_7_4_1_3_5_7_4_2_1_8_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_7.6_3_6_5_3_5_6_4_4_5_3_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2 else: assert abs(result_sum.item() - 1_7_0.3_1_3_5_2_2_3_3_8_8_6_7_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2
307
1
from __future__ import annotations from typing import Any def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> None: create_state_space_tree(SCREAMING_SNAKE_CASE_ , [] , 0 ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: if index == len(SCREAMING_SNAKE_CASE_ ): print(SCREAMING_SNAKE_CASE_ ) return create_state_space_tree(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": lowerCamelCase__ = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["""A""", """B""", """C"""]) generate_all_subsequences(seq)
307
import os import string import sys lowerCamelCase__ = 1 << 8 lowerCamelCase__ = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } lowerCamelCase__ = KEYMAP["""up"""] lowerCamelCase__ = KEYMAP["""left"""] if sys.platform == "win32": lowerCamelCase__ = [] lowerCamelCase__ = { b"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, b"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): lowerCamelCase__ = ord(str(i)) def lowerCAmelCase__ ( ) -> Dict: if os.name == "nt": import msvcrt lowerCAmelCase__ : Dict = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(SCREAMING_SNAKE_CASE_ ) == 0: # Read the keystroke lowerCAmelCase__ : Optional[Any] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCAmelCase__ : Dict = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCAmelCase__ : Dict = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(SCREAMING_SNAKE_CASE_ ) if ord(SCREAMING_SNAKE_CASE_ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) lowerCAmelCase__ : Dict = chr(KEYMAP['esc'] ) except KeyError: lowerCAmelCase__ : Dict = cha[1] else: lowerCAmelCase__ : List[Any] = ch.decode(SCREAMING_SNAKE_CASE_ ) else: lowerCAmelCase__ : Tuple = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCAmelCase__ : Tuple = sys.stdin.fileno() lowerCAmelCase__ : Any = termios.tcgetattr(SCREAMING_SNAKE_CASE_ ) try: tty.setraw(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = sys.stdin.read(1 ) finally: termios.tcsetattr(SCREAMING_SNAKE_CASE_ , termios.TCSADRAIN , SCREAMING_SNAKE_CASE_ ) return ch def lowerCAmelCase__ ( ) -> Union[str, Any]: lowerCAmelCase__ : Any = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(SCREAMING_SNAKE_CASE_ ) == KEYMAP["esc"]: lowerCAmelCase__ : Union[str, Any] = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) == KEYMAP["mod_int"]: lowerCAmelCase__ : str = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(SCREAMING_SNAKE_CASE_ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(SCREAMING_SNAKE_CASE_ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
307
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCamelCase__ = { """configuration_longt5""": ["""LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LongT5Config""", """LongT5OnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST""", """LongT5EncoderModel""", """LongT5ForConditionalGeneration""", """LongT5Model""", """LongT5PreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """FlaxLongT5ForConditionalGeneration""", """FlaxLongT5Model""", """FlaxLongT5PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: return "".join([hex(SCREAMING_SNAKE_CASE_ )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE_ )] ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(SCREAMING_SNAKE_CASE_ ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE_ ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
307
1
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class A__ ( __magic_name__ , __magic_name__ ): lowercase = 1 @register_to_config def __init__( self : List[str] , a : int=2_000 , a : int=0.1 , a : Tuple=20 , a : Optional[int]=1E-3 ): '''simple docstring''' lowerCAmelCase__ : Any = None lowerCAmelCase__ : Tuple = None lowerCAmelCase__ : int = None def _lowerCamelCase ( self : List[Any] , a : str , a : Union[str, torch.device] = None ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch.linspace(1 , self.config.sampling_eps , a , device=a ) def _lowerCamelCase ( self : Dict , a : Optional[Any] , a : Any , a : int , a : List[str]=None ): '''simple docstring''' if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score lowerCAmelCase__ : str = ( -0.2_5 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) lowerCAmelCase__ : List[Any] = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) lowerCAmelCase__ : List[Any] = std.flatten() while len(std.shape ) < len(score.shape ): lowerCAmelCase__ : Optional[int] = std.unsqueeze(-1 ) lowerCAmelCase__ : Optional[Any] = -score / std # compute lowerCAmelCase__ : Optional[int] = -1.0 / len(self.timesteps ) lowerCAmelCase__ : Any = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) lowerCAmelCase__ : Optional[int] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): lowerCAmelCase__ : Tuple = beta_t.unsqueeze(-1 ) lowerCAmelCase__ : List[str] = -0.5 * beta_t * x lowerCAmelCase__ : Dict = torch.sqrt(a ) lowerCAmelCase__ : str = drift - diffusion**2 * score lowerCAmelCase__ : Tuple = x + drift * dt # add noise lowerCAmelCase__ : Optional[Any] = randn_tensor(x.shape , layout=x.layout , generator=a , device=x.device , dtype=x.dtype ) lowerCAmelCase__ : Union[str, Any] = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Union[str, Any] ): '''simple docstring''' return self.config.num_train_timesteps
307
from __future__ import annotations def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> list[list[int]]: lowerCAmelCase__ : list[list[int]] = [] create_all_state(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , [] , SCREAMING_SNAKE_CASE_ ) return result def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> None: if level == 0: total_list.append(current_list[:] ) return for i in range(SCREAMING_SNAKE_CASE_ , total_number - level + 2 ): current_list.append(SCREAMING_SNAKE_CASE_ ) create_all_state(i + 1 , SCREAMING_SNAKE_CASE_ , level - 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) current_list.pop() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> None: for i in total_list: print(*SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowerCamelCase__ = 4 lowerCamelCase__ = 2 lowerCamelCase__ = generate_all_combinations(n, k) print_all_state(total_list)
307
1
from ..utils import DummyObject, requires_backends class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'scipy'] def __init__( self : str , *a : Union[str, Any] , **a : str ): '''simple docstring''' requires_backends(self , ['torch', 'scipy'] ) @classmethod def _lowerCamelCase ( cls : int , *a : List[Any] , **a : int ): '''simple docstring''' requires_backends(cls , ['torch', 'scipy'] ) @classmethod def _lowerCamelCase ( cls : Any , *a : List[Any] , **a : List[str] ): '''simple docstring''' requires_backends(cls , ['torch', 'scipy'] )
307
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class A__ ( unittest.TestCase ): @parameterized.expand([(None,), ('foo.json',)] ) def _lowerCamelCase ( self : Dict , a : str ): '''simple docstring''' lowerCAmelCase__ : List[str] = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(a , config_name=a ) lowerCAmelCase__ : Tuple = GenerationConfig.from_pretrained(a , config_name=a ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , a ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , a ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Dict = AutoConfig.from_pretrained('gpt2' ) lowerCAmelCase__ : Any = GenerationConfig.from_model_config(a ) lowerCAmelCase__ : Any = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(a , a ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = GenerationConfig() lowerCAmelCase__ : Dict = { 'max_new_tokens': 1_024, 'foo': 'bar', } lowerCAmelCase__ : List[Any] = copy.deepcopy(a ) lowerCAmelCase__ : Dict = generation_config.update(**a ) # update_kwargs was not modified (no side effects) self.assertEqual(a , a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(a , {'foo': 'bar'} ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Dict = GenerationConfig() lowerCAmelCase__ : List[Any] = 'bar' with tempfile.TemporaryDirectory('test-generation-config' ) as tmp_dir: generation_config.save_pretrained(a ) lowerCAmelCase__ : List[Any] = GenerationConfig.from_pretrained(a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , 'bar' ) lowerCAmelCase__ : int = GenerationConfig.from_model_config(a ) assert not hasattr(a , 'foo' ) # no new kwargs should be initialized if from config def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , a ) self.assertEqual(default_config.num_beams , 1 ) lowerCAmelCase__ : List[Any] = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , a ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(a ) lowerCAmelCase__ : Any = GenerationConfig.from_pretrained(a , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , a ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class A__ ( unittest.TestCase ): @classmethod def _lowerCamelCase ( cls : int ): '''simple docstring''' lowerCAmelCase__ : List[str] = TOKEN HfFolder.save_token(a ) @classmethod def _lowerCamelCase ( cls : Optional[int] ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-generation-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-generation-config-org' ) except HTTPError: pass def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('test-generation-config' , use_auth_token=self._token ) lowerCAmelCase__ : Any = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) # Reset repo delete_repo(token=self._token , repo_id='test-generation-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( a , repo_id='test-generation-config' , push_to_hub=a , use_auth_token=self._token ) lowerCAmelCase__ : Tuple = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : int = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('valid_org/test-generation-config-org' , use_auth_token=self._token ) lowerCAmelCase__ : Dict = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-generation-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( a , repo_id='valid_org/test-generation-config-org' , push_to_hub=a , use_auth_token=self._token ) lowerCAmelCase__ : List[str] = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) )
307
1
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency lowerCamelCase__ = { """E""": 12.70, """T""": 9.06, """A""": 8.17, """O""": 7.51, """I""": 6.97, """N""": 6.75, """S""": 6.33, """H""": 6.09, """R""": 5.99, """D""": 4.25, """L""": 4.03, """C""": 2.78, """U""": 2.76, """M""": 2.41, """W""": 2.36, """F""": 2.23, """G""": 2.02, """Y""": 1.97, """P""": 1.93, """B""": 1.29, """V""": 0.98, """K""": 0.77, """J""": 0.15, """X""": 0.15, """Q""": 0.10, """Z""": 0.07, } lowerCamelCase__ = """ETAOINSHRDLCUMWFGYPBVKJXQZ""" lowerCamelCase__ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> dict[str, int]: lowerCAmelCase__ : Optional[Any] = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: return x[0] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: lowerCAmelCase__ : int = get_letter_count(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[str] = ''.join(freq_to_letter[freq] ) lowerCAmelCase__ : List[str] = list(freq_to_letter_str.items() ) freq_pairs.sort(key=SCREAMING_SNAKE_CASE_ , reverse=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> int: lowerCAmelCase__ : Optional[int] = get_frequency_order(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
307
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( __magic_name__ , unittest.TestCase ): lowercase = UnCLIPImageVariationPipeline lowercase = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} lowercase = IMAGE_VARIATION_BATCH_PARAMS lowercase = [ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] lowercase = False @property def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' return 32 @property def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' return 32 @property def _lowerCamelCase ( self : int ): '''simple docstring''' return self.time_input_dim @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.time_input_dim * 4 @property def _lowerCamelCase ( self : Any ): '''simple docstring''' return 100 @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def _lowerCamelCase ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(a ) @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : List[Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(a ) @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Union[str, Any] = { 'clip_embeddings_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'cross_attention_dim': self.cross_attention_dim, } lowerCAmelCase__ : Optional[Any] = UnCLIPTextProjModel(**a ) return model @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : str = { 'sample_size': 32, # RGB in channels 'in_channels': 3, # Out channels is double in channels because predicts mean and variance 'out_channels': 6, 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': 'identity', } lowerCAmelCase__ : str = UNetaDConditionModel(**a ) return model @property def _lowerCamelCase ( self : str ): '''simple docstring''' return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def _lowerCamelCase ( self : str ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Any = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def _lowerCamelCase ( self : int ): '''simple docstring''' torch.manual_seed(1 ) lowerCAmelCase__ : List[str] = UNetaDModel(**self.dummy_super_res_kwargs ) return model def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.dummy_decoder lowerCAmelCase__ : Optional[int] = self.dummy_text_proj lowerCAmelCase__ : Any = self.dummy_text_encoder lowerCAmelCase__ : Any = self.dummy_tokenizer lowerCAmelCase__ : Any = self.dummy_super_res_first lowerCAmelCase__ : Optional[int] = self.dummy_super_res_last lowerCAmelCase__ : Dict = UnCLIPScheduler( variance_type='learned_range' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) lowerCAmelCase__ : Any = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) lowerCAmelCase__ : Any = CLIPImageProcessor(crop_size=32 , size=32 ) lowerCAmelCase__ : Optional[int] = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def _lowerCamelCase ( self : Any , a : Dict , a : List[str]=0 , a : List[str]=True ): '''simple docstring''' lowerCAmelCase__ : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(a ) ).to(a ) if str(a ).startswith('mps' ): lowerCAmelCase__ : Optional[int] = torch.manual_seed(a ) else: lowerCAmelCase__ : str = torch.Generator(device=a ).manual_seed(a ) if pil_image: lowerCAmelCase__ : Optional[int] = input_image * 0.5 + 0.5 lowerCAmelCase__ : Dict = input_image.clamp(0 , 1 ) lowerCAmelCase__ : List[Any] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCAmelCase__ : Union[str, Any] = DiffusionPipeline.numpy_to_pil(a )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = 'cpu' lowerCAmelCase__ : Any = self.get_dummy_components() lowerCAmelCase__ : List[str] = self.pipeline_class(**a ) lowerCAmelCase__ : Dict = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Dict = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : str = pipe(**a ) lowerCAmelCase__ : Optional[Any] = output.images lowerCAmelCase__ : str = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Optional[int] = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : List[str] = np.array( [ 0.9_9_9_7, 0.0_0_0_2, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_6_9, 0.0_0_2_3, 0.9_9_9_7, 0.9_9_6_9, 0.9_9_7_0, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = 'cpu' lowerCAmelCase__ : Dict = self.get_dummy_components() lowerCAmelCase__ : Optional[int] = self.pipeline_class(**a ) lowerCAmelCase__ : int = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : List[Any] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : List[str] = pipe(**a ) lowerCAmelCase__ : Union[str, Any] = output.images lowerCAmelCase__ : int = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : int = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Tuple = image[0, -3:, -3:, -1] lowerCAmelCase__ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : str = np.array([0.9_9_9_7, 0.0_0_0_3, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_7_0, 0.0_0_2_4, 0.9_9_9_7, 0.9_9_7_1, 0.9_9_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Tuple = 'cpu' lowerCAmelCase__ : int = self.get_dummy_components() lowerCAmelCase__ : Tuple = self.pipeline_class(**a ) lowerCAmelCase__ : Union[str, Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Tuple = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : List[str] = [ pipeline_inputs['image'], pipeline_inputs['image'], ] lowerCAmelCase__ : Optional[int] = pipe(**a ) lowerCAmelCase__ : Tuple = output.images lowerCAmelCase__ : List[str] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Union[str, Any] = [ tuple_pipeline_inputs['image'], tuple_pipeline_inputs['image'], ] lowerCAmelCase__ : str = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) lowerCAmelCase__ : Union[str, Any] = np.array( [ 0.9_9_9_7, 0.9_9_8_9, 0.0_0_0_8, 0.0_0_2_1, 0.9_9_6_0, 0.0_0_1_8, 0.0_0_1_4, 0.0_0_0_2, 0.9_9_3_3, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch.device('cpu' ) class A__ : lowercase = 1 lowerCAmelCase__ : Optional[Any] = self.get_dummy_components() lowerCAmelCase__ : Dict = self.pipeline_class(**a ) lowerCAmelCase__ : Optional[Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Optional[int] = torch.Generator(device=a ).manual_seed(0 ) lowerCAmelCase__ : Optional[int] = pipe.decoder.dtype lowerCAmelCase__ : Union[str, Any] = 1 lowerCAmelCase__ : str = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) lowerCAmelCase__ : List[Any] = pipe.prepare_latents( a , dtype=a , device=a , generator=a , latents=a , scheduler=DummyScheduler() ) lowerCAmelCase__ : List[str] = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) lowerCAmelCase__ : Any = pipe.prepare_latents( a , dtype=a , device=a , generator=a , latents=a , scheduler=DummyScheduler() ) lowerCAmelCase__ : List[Any] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Optional[int] = pipe( **a , decoder_latents=a , super_res_latents=a ).images lowerCAmelCase__ : Optional[Any] = self.get_dummy_inputs(a , pil_image=a ) # Don't pass image, instead pass embedding lowerCAmelCase__ : Union[str, Any] = pipeline_inputs.pop('image' ) lowerCAmelCase__ : Union[str, Any] = pipe.image_encoder(a ).image_embeds lowerCAmelCase__ : List[Any] = pipe( **a , decoder_latents=a , super_res_latents=a , image_embeddings=a , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch_device == 'cpu' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor lowerCAmelCase__ : int = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=a , expected_max_diff=a ) @skip_mps def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = torch_device == 'cpu' lowerCAmelCase__ : Any = True lowerCAmelCase__ : Optional[Any] = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] self._test_inference_batch_single_identical( test_max_difference=a , relax_max_difference=a , additional_params_copy_to_batched_inputs=a , ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Tuple = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes lowerCAmelCase__ : List[str] = [2, 3] self._test_inference_batch_consistent( batch_sizes=a , additional_params_copy_to_batched_inputs=a , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=a ) @skip_mps def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return super().test_save_load_local() @skip_mps def _lowerCamelCase ( self : str ): '''simple docstring''' return super().test_save_load_optional_components() @slow @require_torch_gpu class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png' ) lowerCAmelCase__ : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/unclip/karlo_v1_alpha_cat_variation_fp16.npy' ) lowerCAmelCase__ : Tuple = UnCLIPImageVariationPipeline.from_pretrained( 'kakaobrain/karlo-v1-alpha-image-variations' , torch_dtype=torch.floataa ) lowerCAmelCase__ : Union[str, Any] = pipeline.to(a ) pipeline.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Dict = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase__ : List[str] = pipeline( a , generator=a , output_type='np' , ) lowerCAmelCase__ : Union[str, Any] = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(a , a , 15 )
307
1
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class A__ ( unittest.TestCase ): @require_torch def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : int = pipeline( task='zero-shot-audio-classification' , model='hf-internal-testing/tiny-clap-htsat-unfused' ) lowerCAmelCase__ : int = load_dataset('ashraq/esc50' ) lowerCAmelCase__ : List[str] = dataset['train']['audio'][-1]['array'] lowerCAmelCase__ : Any = audio_classifier(a , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(a ) , [{'score': 0.5_0_1, 'label': 'Sound of a dog'}, {'score': 0.4_9_9, 'label': 'Sound of vaccum cleaner'}] , ) @unittest.skip('No models are available in TF' ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' pass @slow @require_torch def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Any = pipeline( task='zero-shot-audio-classification' , model='laion/clap-htsat-unfused' , ) # This is an audio of a dog lowerCAmelCase__ : Union[str, Any] = load_dataset('ashraq/esc50' ) lowerCAmelCase__ : int = dataset['train']['audio'][-1]['array'] lowerCAmelCase__ : List[str] = audio_classifier(a , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(a ) , [ {'score': 0.9_9_9, 'label': 'Sound of a dog'}, {'score': 0.0_0_1, 'label': 'Sound of vaccum cleaner'}, ] , ) lowerCAmelCase__ : Tuple = audio_classifier([audio] * 5 , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(a ) , [ [ {'score': 0.9_9_9, 'label': 'Sound of a dog'}, {'score': 0.0_0_1, 'label': 'Sound of vaccum cleaner'}, ], ] * 5 , ) lowerCAmelCase__ : Dict = audio_classifier( [audio] * 5 , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] , batch_size=5 ) self.assertEqual( nested_simplify(a ) , [ [ {'score': 0.9_9_9, 'label': 'Sound of a dog'}, {'score': 0.0_0_1, 'label': 'Sound of vaccum cleaner'}, ], ] * 5 , ) @unittest.skip('No models are available in TF' ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' pass
307
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: stooge(SCREAMING_SNAKE_CASE_ , 0 , len(SCREAMING_SNAKE_CASE_ ) - 1 ) return arr def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: lowerCAmelCase__ , lowerCAmelCase__ : Tuple = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: lowerCAmelCase__ : Union[str, Any] = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (h - t) ) # Recursively sort last 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , i + t , (SCREAMING_SNAKE_CASE_) ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (h - t) ) if __name__ == "__main__": lowerCamelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCamelCase__ = [int(item) for item in user_input.split(""",""")] print(stooge_sort(unsorted))
307
1
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class A__ ( __magic_name__ ): lowercase = (DDPMScheduler,) def _lowerCamelCase ( self : Dict , **a : Dict ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = { 'num_train_timesteps': 1_000, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**a ) return config def _lowerCamelCase ( self : Tuple ): '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=a ) def _lowerCamelCase ( self : Any ): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=a , beta_end=a ) def _lowerCamelCase ( self : Any ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=a ) def _lowerCamelCase ( self : int ): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=a ) def _lowerCamelCase ( self : Any ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' self.check_over_configs(thresholding=a ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=a , prediction_type=a , sample_max_value=a , ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=a ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=a ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.scheduler_classes[0] lowerCAmelCase__ : Optional[int] = self.get_scheduler_config() lowerCAmelCase__ : Any = scheduler_class(**a ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1E-5 def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : int = self.scheduler_classes[0] lowerCAmelCase__ : Dict = self.get_scheduler_config() lowerCAmelCase__ : Tuple = scheduler_class(**a ) lowerCAmelCase__ : Optional[int] = len(a ) lowerCAmelCase__ : List[str] = self.dummy_model() lowerCAmelCase__ : Union[str, Any] = self.dummy_sample_deter lowerCAmelCase__ : int = torch.manual_seed(0 ) for t in reversed(range(a ) ): # 1. predict noise residual lowerCAmelCase__ : List[str] = model(a , a ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase__ : Optional[Any] = scheduler.step(a , a , a , generator=a ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase__ : Optional[int] = pred_prev_sample lowerCAmelCase__ : Optional[int] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : str = torch.mean(torch.abs(a ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1E-3 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : str = self.scheduler_classes[0] lowerCAmelCase__ : str = self.get_scheduler_config(prediction_type='v_prediction' ) lowerCAmelCase__ : List[Any] = scheduler_class(**a ) lowerCAmelCase__ : List[Any] = len(a ) lowerCAmelCase__ : Optional[Any] = self.dummy_model() lowerCAmelCase__ : int = self.dummy_sample_deter lowerCAmelCase__ : Any = torch.manual_seed(0 ) for t in reversed(range(a ) ): # 1. predict noise residual lowerCAmelCase__ : int = model(a , a ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase__ : Tuple = scheduler.step(a , a , a , generator=a ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase__ : int = pred_prev_sample lowerCAmelCase__ : Optional[Any] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Union[str, Any] = torch.mean(torch.abs(a ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1E-3 def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.scheduler_classes[0] lowerCAmelCase__ : str = self.get_scheduler_config() lowerCAmelCase__ : Tuple = scheduler_class(**a ) lowerCAmelCase__ : List[Any] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=a ) lowerCAmelCase__ : List[str] = scheduler.timesteps for i, timestep in enumerate(a ): if i == len(a ) - 1: lowerCAmelCase__ : Dict = -1 else: lowerCAmelCase__ : Any = timesteps[i + 1] lowerCAmelCase__ : List[Any] = scheduler.previous_timestep(a ) lowerCAmelCase__ : Tuple = prev_t.item() self.assertEqual(a , a ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.scheduler_classes[0] lowerCAmelCase__ : Dict = self.get_scheduler_config() lowerCAmelCase__ : Union[str, Any] = scheduler_class(**a ) lowerCAmelCase__ : int = [100, 87, 50, 51, 0] with self.assertRaises(a , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=a ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.scheduler_classes[0] lowerCAmelCase__ : List[Any] = self.get_scheduler_config() lowerCAmelCase__ : str = scheduler_class(**a ) lowerCAmelCase__ : Dict = [100, 87, 50, 1, 0] lowerCAmelCase__ : List[str] = len(a ) with self.assertRaises(a , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=a , timesteps=a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : str = self.scheduler_classes[0] lowerCAmelCase__ : List[Any] = self.get_scheduler_config() lowerCAmelCase__ : Optional[int] = scheduler_class(**a ) lowerCAmelCase__ : str = [scheduler.config.num_train_timesteps] with self.assertRaises( a , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=a )
307
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) lowerCamelCase__ = { """configuration_speech_to_text""": ["""SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Speech2TextConfig"""], """processing_speech_to_text""": ["""Speech2TextProcessor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""Speech2TextTokenizer"""] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""Speech2TextFeatureExtractor"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSpeech2TextForConditionalGeneration""", """TFSpeech2TextModel""", """TFSpeech2TextPreTrainedModel""", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Speech2TextForConditionalGeneration""", """Speech2TextModel""", """Speech2TextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
1
from __future__ import annotations from random import choice def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: return choice(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: lowerCAmelCase__ : List[Any] = random_pivot(SCREAMING_SNAKE_CASE_ ) # partition based on pivot # linear time lowerCAmelCase__ : List[Any] = [e for e in lst if e < pivot] lowerCAmelCase__ : Union[str, Any] = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(SCREAMING_SNAKE_CASE_ ) == k - 1: return pivot # pivot is in elements bigger than k elif len(SCREAMING_SNAKE_CASE_ ) < k - 1: return kth_number(SCREAMING_SNAKE_CASE_ , k - len(SCREAMING_SNAKE_CASE_ ) - 1 ) # pivot is in elements smaller than k else: return kth_number(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod()
307
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } lowerCAmelCase__ : int = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 128, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 142, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(a ) , a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(a ) , x.transpose() ) ) lowerCAmelCase__ : List[str] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = np.random.randn(3 , 4 ) lowerCAmelCase__ : List[Any] = torch.tensor(a ) self.assertTrue(np.allclose(transpose(a ) , transpose(a ).numpy() ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : int = torch.tensor(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , transpose(a , axes=(1, 2, 0) ).numpy() ) ) @require_tf def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = np.random.randn(3 , 4 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(transpose(a ) , transpose(a ).numpy() ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : Dict = tf.constant(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , transpose(a , axes=(1, 2, 0) ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = np.random.randn(3 , 4 ) lowerCAmelCase__ : int = jnp.array(a ) self.assertTrue(np.allclose(transpose(a ) , np.asarray(transpose(a ) ) ) ) lowerCAmelCase__ : Any = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : str = jnp.array(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , np.asarray(transpose(a , axes=(1, 2, 0) ) ) ) ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Any = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , np.reshape(a , (4, 3) ) ) ) lowerCAmelCase__ : Tuple = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , np.reshape(a , (12, 5) ) ) ) @require_torch def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = np.random.randn(3 , 4 ) lowerCAmelCase__ : Dict = torch.tensor(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , reshape(a , (4, 3) ).numpy() ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : str = torch.tensor(a ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , reshape(a , (12, 5) ).numpy() ) ) @require_tf def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = np.random.randn(3 , 4 ) lowerCAmelCase__ : List[Any] = tf.constant(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , reshape(a , (4, 3) ).numpy() ) ) lowerCAmelCase__ : Dict = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , reshape(a , (12, 5) ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Dict = np.random.randn(3 , 4 ) lowerCAmelCase__ : List[str] = jnp.array(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , np.asarray(reshape(a , (4, 3) ) ) ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : Union[str, Any] = jnp.array(a ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , np.asarray(reshape(a , (12, 5) ) ) ) ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(a ) , np.squeeze(a ) ) ) lowerCAmelCase__ : int = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , np.squeeze(a , axis=2 ) ) ) @require_torch def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = np.random.randn(1 , 3 , 4 ) lowerCAmelCase__ : str = torch.tensor(a ) self.assertTrue(np.allclose(squeeze(a ) , squeeze(a ).numpy() ) ) lowerCAmelCase__ : Optional[Any] = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase__ : Dict = torch.tensor(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , squeeze(a , axis=2 ).numpy() ) ) @require_tf def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : List[str] = np.random.randn(1 , 3 , 4 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(squeeze(a ) , squeeze(a ).numpy() ) ) lowerCAmelCase__ : int = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase__ : str = tf.constant(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , squeeze(a , axis=2 ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : List[str] = np.random.randn(1 , 3 , 4 ) lowerCAmelCase__ : Union[str, Any] = jnp.array(a ) self.assertTrue(np.allclose(squeeze(a ) , np.asarray(squeeze(a ) ) ) ) lowerCAmelCase__ : str = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase__ : Optional[Any] = jnp.array(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , np.asarray(squeeze(a , axis=2 ) ) ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , np.expand_dims(a , axis=1 ) ) ) @require_torch def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : str = np.random.randn(3 , 4 ) lowerCAmelCase__ : str = torch.tensor(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , expand_dims(a , axis=1 ).numpy() ) ) @require_tf def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = np.random.randn(3 , 4 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , expand_dims(a , axis=1 ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : int = np.random.randn(3 , 4 ) lowerCAmelCase__ : Tuple = jnp.array(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , np.asarray(expand_dims(a , axis=1 ) ) ) )
307
1
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class A__ ( __magic_name__ ): lowercase = 42 lowercase = jnp.floataa lowercase = True def _lowerCamelCase ( self : List[str] ): '''simple docstring''' super().setup() lowerCAmelCase__ : int = nn.Dense(5 , dtype=self.dtype ) def __call__( self : Dict , *a : Optional[int] , **a : Dict ): '''simple docstring''' lowerCAmelCase__ : int = super().__call__(*a , **a ) lowerCAmelCase__ : Optional[Any] = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class A__ ( __magic_name__ ): lowercase = FlaxBigBirdForNaturalQuestionsModule def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: def cross_entropy(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ): lowerCAmelCase__ : int = logits.shape[-1] lowerCAmelCase__ : Dict = (labels[..., None] == jnp.arange(SCREAMING_SNAKE_CASE_ )[None]).astype('f4' ) lowerCAmelCase__ : Any = jax.nn.log_softmax(SCREAMING_SNAKE_CASE_ , axis=-1 ) lowerCAmelCase__ : str = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowerCAmelCase__ : Any = reduction(SCREAMING_SNAKE_CASE_ ) return loss lowerCAmelCase__ : Optional[int] = partial(SCREAMING_SNAKE_CASE_ , reduction=jnp.mean ) lowerCAmelCase__ : Any = cross_entropy(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : int = cross_entropy(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = cross_entropy(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class A__ : lowercase = "google/bigbird-roberta-base" lowercase = 3000 lowercase = 10500 lowercase = 128 lowercase = 3 lowercase = 1 lowercase = 5 # tx_args lowercase = 3E-5 lowercase = 0.0 lowercase = 20000 lowercase = 0.00_95 lowercase = "bigbird-roberta-natural-questions" lowercase = "training-expt" lowercase = "data/nq-training.jsonl" lowercase = "data/nq-validation.jsonl" def _lowerCamelCase ( self : Any ): '''simple docstring''' os.makedirs(self.base_dir , exist_ok=a ) lowerCAmelCase__ : List[str] = os.path.join(self.base_dir , self.save_dir ) lowerCAmelCase__ : str = self.batch_size_per_device * jax.device_count() @dataclass class A__ : lowercase = 42 lowercase = 4096 # no dynamic padding on TPUs def __call__( self : List[str] , a : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.collate_fn(a ) lowerCAmelCase__ : List[Any] = jax.tree_util.tree_map(a , a ) return batch def _lowerCamelCase ( self : int , a : Any ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : str = self.fetch_inputs(features['input_ids'] ) lowerCAmelCase__ : Optional[Any] = { 'input_ids': jnp.array(a , dtype=jnp.intaa ), 'attention_mask': jnp.array(a , dtype=jnp.intaa ), 'start_labels': jnp.array(features['start_token'] , dtype=jnp.intaa ), 'end_labels': jnp.array(features['end_token'] , dtype=jnp.intaa ), 'pooled_labels': jnp.array(features['category'] , dtype=jnp.intaa ), } return batch def _lowerCamelCase ( self : Optional[Any] , a : list ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = [self._fetch_inputs(a ) for ids in input_ids] return zip(*a ) def _lowerCamelCase ( self : List[Any] , a : list ): '''simple docstring''' lowerCAmelCase__ : int = [1 for _ in range(len(a ) )] while len(a ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Dict: if seed is not None: lowerCAmelCase__ : List[Any] = dataset.shuffle(seed=SCREAMING_SNAKE_CASE_ ) for i in range(len(SCREAMING_SNAKE_CASE_ ) // batch_size ): lowerCAmelCase__ : Optional[int] = dataset[i * batch_size : (i + 1) * batch_size] yield dict(SCREAMING_SNAKE_CASE_ ) @partial(jax.pmap , axis_name='batch' ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: def loss_fn(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : str = model_inputs.pop('start_labels' ) lowerCAmelCase__ : Union[str, Any] = model_inputs.pop('end_labels' ) lowerCAmelCase__ : Tuple = model_inputs.pop('pooled_labels' ) lowerCAmelCase__ : Union[str, Any] = state.apply_fn(**SCREAMING_SNAKE_CASE_ , params=SCREAMING_SNAKE_CASE_ , dropout_rng=SCREAMING_SNAKE_CASE_ , train=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Dict = outputs return state.loss_fn( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) lowerCAmelCase__ , lowerCAmelCase__ : int = jax.random.split(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Union[str, Any] = jax.value_and_grad(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ , lowerCAmelCase__ : Dict = grad_fn(state.params ) lowerCAmelCase__ : Any = jax.lax.pmean({'loss': loss} , axis_name='batch' ) lowerCAmelCase__ : int = jax.lax.pmean(SCREAMING_SNAKE_CASE_ , 'batch' ) lowerCAmelCase__ : Dict = state.apply_gradients(grads=SCREAMING_SNAKE_CASE_ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name='batch' ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Optional[int]: lowerCAmelCase__ : Tuple = model_inputs.pop('start_labels' ) lowerCAmelCase__ : int = model_inputs.pop('end_labels' ) lowerCAmelCase__ : Union[str, Any] = model_inputs.pop('pooled_labels' ) lowerCAmelCase__ : List[str] = state.apply_fn(**SCREAMING_SNAKE_CASE_ , params=state.params , train=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = outputs lowerCAmelCase__ : Optional[Any] = state.loss_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[str] = jax.lax.pmean({'loss': loss} , axis_name='batch' ) return metrics class A__ ( train_state.TrainState ): lowercase = struct.field(pytree_node=__magic_name__ ) @dataclass class A__ : lowercase = 42 lowercase = 42 lowercase = 42 lowercase = 42 lowercase = 42 lowercase = 42 lowercase = None def _lowerCamelCase ( self : List[Any] , a : Optional[int] , a : List[Any] , a : Union[str, Any] , a : Dict=None ): '''simple docstring''' lowerCAmelCase__ : str = model.params lowerCAmelCase__ : Dict = TrainState.create( apply_fn=model.__call__ , params=a , tx=a , loss_fn=a , ) if ckpt_dir is not None: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = restore_checkpoint(a , a ) lowerCAmelCase__ : Any = { 'lr': args.lr, 'init_lr': args.init_lr, 'warmup_steps': args.warmup_steps, 'num_train_steps': num_train_steps, 'weight_decay': args.weight_decay, } lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = build_tx(**a ) lowerCAmelCase__ : Optional[Any] = train_state.TrainState( step=a , apply_fn=model.__call__ , params=a , tx=a , opt_state=a , ) lowerCAmelCase__ : int = args lowerCAmelCase__ : Optional[int] = data_collator lowerCAmelCase__ : int = lr lowerCAmelCase__ : str = params lowerCAmelCase__ : List[Any] = jax_utils.replicate(a ) return state def _lowerCamelCase ( self : Optional[Any] , a : Union[str, Any] , a : Optional[int] , a : Tuple ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.args lowerCAmelCase__ : List[str] = len(a ) // args.batch_size lowerCAmelCase__ : List[str] = jax.random.PRNGKey(0 ) lowerCAmelCase__ : Tuple = jax.random.split(a , jax.device_count() ) for epoch in range(args.max_epochs ): lowerCAmelCase__ : Optional[Any] = jnp.array(0 , dtype=jnp.floataa ) lowerCAmelCase__ : Optional[int] = get_batched_dataset(a , args.batch_size , seed=a ) lowerCAmelCase__ : int = 0 for batch in tqdm(a , total=a , desc=f'''Running EPOCH-{epoch}''' ): lowerCAmelCase__ : Optional[int] = self.data_collator(a ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = self.train_step_fn(a , a , **a ) running_loss += jax_utils.unreplicate(metrics['loss'] ) i += 1 if i % args.logging_steps == 0: lowerCAmelCase__ : Union[str, Any] = jax_utils.unreplicate(state.step ) lowerCAmelCase__ : Dict = running_loss.item() / i lowerCAmelCase__ : List[Any] = self.scheduler_fn(state_step - 1 ) lowerCAmelCase__ : List[str] = self.evaluate(a , a ) lowerCAmelCase__ : int = { 'step': state_step.item(), 'eval_loss': eval_loss.item(), 'tr_loss': tr_loss, 'lr': lr.item(), } tqdm.write(str(a ) ) self.logger.log(a , commit=a ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'''-e{epoch}-s{i}''' , state=a ) def _lowerCamelCase ( self : Optional[int] , a : Optional[int] , a : str ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = get_batched_dataset(a , self.args.batch_size ) lowerCAmelCase__ : str = len(a ) // self.args.batch_size lowerCAmelCase__ : Any = jnp.array(0 , dtype=jnp.floataa ) lowerCAmelCase__ : Any = 0 for batch in tqdm(a , total=a , desc='Evaluating ... ' ): lowerCAmelCase__ : Union[str, Any] = self.data_collator(a ) lowerCAmelCase__ : str = self.val_step_fn(a , **a ) running_loss += jax_utils.unreplicate(metrics['loss'] ) i += 1 return running_loss / i def _lowerCamelCase ( self : Tuple , a : Dict , a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = jax_utils.unreplicate(a ) print(f'''SAVING CHECKPOINT IN {save_dir}''' , end=' ... ' ) self.model_save_fn(a , params=state.params ) with open(os.path.join(a , 'opt_state.msgpack' ) , 'wb' ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(a , 'args.joblib' ) ) joblib.dump(self.data_collator , os.path.join(a , 'data_collator.joblib' ) ) with open(os.path.join(a , 'training_state.json' ) , 'w' ) as f: json.dump({'step': state.step.item()} , a ) print('DONE' ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: print(F'''RESTORING CHECKPOINT FROM {save_dir}''' , end=' ... ' ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , 'flax_model.msgpack' ) , 'rb' ) as f: lowerCAmelCase__ : List[str] = from_bytes(state.params , f.read() ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , 'opt_state.msgpack' ) , 'rb' ) as f: lowerCAmelCase__ : str = from_bytes(state.opt_state , f.read() ) lowerCAmelCase__ : int = joblib.load(os.path.join(SCREAMING_SNAKE_CASE_ , 'args.joblib' ) ) lowerCAmelCase__ : Dict = joblib.load(os.path.join(SCREAMING_SNAKE_CASE_ , 'data_collator.joblib' ) ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , 'training_state.json' ) , 'r' ) as f: lowerCAmelCase__ : Optional[int] = json.load(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : int = training_state['step'] print('DONE' ) return params, opt_state, step, args, data_collator def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: lowerCAmelCase__ : Optional[Any] = num_train_steps - warmup_steps lowerCAmelCase__ : Dict = optax.linear_schedule(init_value=SCREAMING_SNAKE_CASE_ , end_value=SCREAMING_SNAKE_CASE_ , transition_steps=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[Any] = optax.linear_schedule(init_value=SCREAMING_SNAKE_CASE_ , end_value=1e-7 , transition_steps=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: def weight_decay_mask(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : int = traverse_util.flatten_dict(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : int = {k: (v[-1] != 'bias' and v[-2:] != ('LayerNorm', 'scale')) for k, v in params.items()} return traverse_util.unflatten_dict(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = scheduler_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : str = optax.adamw(learning_rate=SCREAMING_SNAKE_CASE_ , weight_decay=SCREAMING_SNAKE_CASE_ , mask=SCREAMING_SNAKE_CASE_ ) return tx, lr
307
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position lowerCamelCase__ = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip lowerCamelCase__ = concatenate_datasets lowerCamelCase__ = DownloadConfig lowerCamelCase__ = DownloadManager lowerCamelCase__ = DownloadMode lowerCamelCase__ = DownloadConfig lowerCamelCase__ = DownloadMode lowerCamelCase__ = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
307
1
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate lowerCamelCase__ = trt.Logger(trt.Logger.WARNING) lowerCamelCase__ = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) lowerCamelCase__ = logging.getLogger(__name__) lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--onnx_model_path""", default=None, type=str, required=True, help="""Path to ONNX model: """, ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""The output directory where the model checkpoints and predictions will be written.""", ) # Other parameters parser.add_argument( """--tokenizer_name""", default="""""", type=str, required=True, help="""Pretrained tokenizer name or path if not the same as model_name""", ) parser.add_argument( """--version_2_with_negative""", action="""store_true""", help="""If true, the SQuAD examples contain some that do not have an answer.""", ) parser.add_argument( """--null_score_diff_threshold""", type=float, default=0.0, help="""If null_score - best_non_null is greater than the threshold predict null.""", ) parser.add_argument( """--max_seq_length""", default=384, type=int, help=( """The maximum total input sequence length after WordPiece tokenization. Sequences """ """longer than this will be truncated, and sequences shorter than this will be padded.""" ), ) parser.add_argument( """--doc_stride""", default=128, type=int, help="""When splitting up a long document into chunks, how much stride to take between chunks.""", ) parser.add_argument("""--per_device_eval_batch_size""", default=8, type=int, help="""Batch size per GPU/CPU for evaluation.""") parser.add_argument( """--n_best_size""", default=20, type=int, help="""The total number of n-best predictions to generate in the nbest_predictions.json output file.""", ) parser.add_argument( """--max_answer_length""", default=30, type=int, help=( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ), ) parser.add_argument("""--seed""", type=int, default=42, help="""random seed for initialization""") parser.add_argument( """--dataset_name""", type=str, default=None, required=True, help="""The name of the dataset to use (via the datasets library).""", ) parser.add_argument( """--dataset_config_name""", type=str, default=None, help="""The configuration name of the dataset to use (via the datasets library).""", ) parser.add_argument( """--preprocessing_num_workers""", type=int, default=4, help="""A csv or a json file containing the training data.""" ) parser.add_argument("""--overwrite_cache""", action="""store_true""", help="""Overwrite the cached training and evaluation sets""") parser.add_argument( """--fp16""", action="""store_true""", help="""Whether to use 16-bit (mixed) precision instead of 32-bit""", ) parser.add_argument( """--int8""", action="""store_true""", help="""Whether to use INT8""", ) lowerCamelCase__ = parser.parse_args() if args.tokenizer_name: lowerCamelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported by this script.""" """You can do it from another script, save it, and load it from here, using --tokenizer_name.""" ) logger.info("""Training/evaluation parameters %s""", args) lowerCamelCase__ = args.per_device_eval_batch_size lowerCamelCase__ = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties lowerCamelCase__ = True lowerCamelCase__ = """temp_engine/bert-fp32.engine""" if args.fpaa: lowerCamelCase__ = """temp_engine/bert-fp16.engine""" if args.inta: lowerCamelCase__ = """temp_engine/bert-int8.engine""" # import ONNX file if not os.path.exists("""temp_engine"""): os.makedirs("""temp_engine""") lowerCamelCase__ = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, """rb""") as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network lowerCamelCase__ = [network.get_input(i) for i in range(network.num_inputs)] lowerCamelCase__ = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: lowerCamelCase__ = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) lowerCamelCase__ = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) lowerCamelCase__ = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, """wb""") as f: f.write(engine.serialize()) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: lowerCAmelCase__ : List[Any] = np.asarray(inputs['input_ids'] , dtype=np.intaa ) lowerCAmelCase__ : Tuple = np.asarray(inputs['attention_mask'] , dtype=np.intaa ) lowerCAmelCase__ : Any = np.asarray(inputs['token_type_ids'] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , SCREAMING_SNAKE_CASE_ ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , SCREAMING_SNAKE_CASE_ ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , SCREAMING_SNAKE_CASE_ ) # start time lowerCAmelCase__ : Optional[Any] = time.time() # Run inference context.execute_async( bindings=[int(SCREAMING_SNAKE_CASE_ ) for d_inp in d_inputs] + [int(SCREAMING_SNAKE_CASE_ ), int(SCREAMING_SNAKE_CASE_ )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) cuda.memcpy_dtoh_async(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Synchronize the stream and take time stream.synchronize() # end time lowerCAmelCase__ : List[Any] = time.time() lowerCAmelCase__ : str = end_time - start_time lowerCAmelCase__ : Dict = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. lowerCamelCase__ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase__ = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError("""Evaluation requires a dataset name""") # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. lowerCamelCase__ = raw_datasets["""validation"""].column_names lowerCamelCase__ = """question""" if """question""" in column_names else column_names[0] lowerCamelCase__ = """context""" if """context""" in column_names else column_names[1] lowerCamelCase__ = """answers""" if """answers""" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). lowerCamelCase__ = tokenizer.padding_side == """right""" if args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) lowerCamelCase__ = min(args.max_seq_length, tokenizer.model_max_length) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Any: # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace lowerCAmelCase__ : Tuple = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. lowerCAmelCase__ : str = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation='only_second' if pad_on_right else 'only_first' , max_length=SCREAMING_SNAKE_CASE_ , stride=args.doc_stride , return_overflowing_tokens=SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , padding='max_length' , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. lowerCAmelCase__ : str = tokenized_examples.pop('overflow_to_sample_mapping' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. lowerCAmelCase__ : Union[str, Any] = [] for i in range(len(tokenized_examples['input_ids'] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). lowerCAmelCase__ : int = tokenized_examples.sequence_ids(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[Any] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. lowerCAmelCase__ : Union[str, Any] = sample_mapping[i] tokenized_examples["example_id"].append(examples['id'][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. lowerCAmelCase__ : List[str] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['offset_mapping'][i] ) ] return tokenized_examples lowerCamelCase__ = raw_datasets["""validation"""] # Validation Feature Creation lowerCamelCase__ = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="""Running tokenizer on validation dataset""", ) lowerCamelCase__ = default_data_collator lowerCamelCase__ = eval_dataset.remove_columns(["""example_id""", """offset_mapping"""]) lowerCamelCase__ = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="eval" ) -> List[str]: # Post-processing: we match the start logits and end logits to answers in the original context. lowerCAmelCase__ : Tuple = postprocess_qa_predictions( examples=SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ , predictions=SCREAMING_SNAKE_CASE_ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=SCREAMING_SNAKE_CASE_ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: lowerCAmelCase__ : Tuple = [ {'id': k, 'prediction_text': v, 'no_answer_probability': 0.0} for k, v in predictions.items() ] else: lowerCAmelCase__ : Optional[Any] = [{'id': k, 'prediction_text': v} for k, v in predictions.items()] lowerCAmelCase__ : List[str] = [{'id': ex['id'], 'answers': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=SCREAMING_SNAKE_CASE_ , label_ids=SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = load_metric("""squad_v2""" if args.version_2_with_negative else """squad""") # Evaluation! logger.info("""Loading ONNX model %s for evaluation""", args.onnx_model_path) with open(engine_name, """rb""") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Any: return trt.volume(engine.get_binding_shape(SCREAMING_SNAKE_CASE_ ) ) * engine.get_binding_dtype(SCREAMING_SNAKE_CASE_ ).itemsize # Allocate device memory for inputs and outputs. lowerCamelCase__ = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer lowerCamelCase__ = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) lowerCamelCase__ = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) lowerCamelCase__ = cuda.mem_alloc(h_outputa.nbytes) lowerCamelCase__ = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. lowerCamelCase__ = cuda.Stream() # Evaluation logger.info("""***** Running Evaluation *****""") logger.info(F""" Num examples = {len(eval_dataset)}""") logger.info(F""" Batch size = {args.per_device_eval_batch_size}""") lowerCamelCase__ = 0.0 lowerCamelCase__ = 0 lowerCamelCase__ = timeit.default_timer() lowerCamelCase__ = None for step, batch in enumerate(eval_dataloader): lowerCamelCase__ , lowerCamelCase__ = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 lowerCamelCase__ , lowerCamelCase__ = outputs lowerCamelCase__ = torch.tensor(start_logits) lowerCamelCase__ = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered lowerCamelCase__ = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) lowerCamelCase__ = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) lowerCamelCase__ = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) lowerCamelCase__ = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: lowerCamelCase__ = nested_truncate(all_preds, len(eval_dataset)) lowerCamelCase__ = timeit.default_timer() - start_time logger.info(""" Evaluation done in total %f secs (%f sec per example)""", evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info("""Average Inference Time = {:.3f} ms""".format(total_time * 1000 / niter)) logger.info("""Total Inference Time = {:.3f} ms""".format(total_time * 1000)) logger.info("""Total Number of Inference = %d""", niter) lowerCamelCase__ = post_processing_function(eval_examples, eval_dataset, all_preds) lowerCamelCase__ = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F"""Evaluation metrics: {eval_metric}""")
307
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( __magic_name__ , unittest.TestCase ): lowercase = DanceDiffusionPipeline lowercase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS lowercase = PipelineTesterMixin.required_optional_params - { 'callback', 'latents', 'callback_steps', 'output_type', 'num_images_per_prompt', } lowercase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS lowercase = False lowercase = False def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16_000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=a , use_timestep_embedding=a , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , ) lowerCAmelCase__ : Tuple = IPNDMScheduler() lowerCAmelCase__ : str = { 'unet': unet, 'scheduler': scheduler, } return components def _lowerCamelCase ( self : int , a : Dict , a : List[str]=0 ): '''simple docstring''' if str(a ).startswith('mps' ): lowerCAmelCase__ : Union[str, Any] = torch.manual_seed(a ) else: lowerCAmelCase__ : Optional[Any] = torch.Generator(device=a ).manual_seed(a ) lowerCAmelCase__ : Optional[Any] = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : int = self.get_dummy_components() lowerCAmelCase__ : List[str] = DanceDiffusionPipeline(**a ) lowerCAmelCase__ : Any = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : List[str] = self.get_dummy_inputs(a ) lowerCAmelCase__ : List[Any] = pipe(**a ) lowerCAmelCase__ : List[str] = output.audios lowerCAmelCase__ : Optional[Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) lowerCAmelCase__ : List[Any] = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def _lowerCamelCase ( self : str ): '''simple docstring''' return super().test_save_load_local() @skip_mps def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def _lowerCamelCase ( self : List[str] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch_device lowerCAmelCase__ : List[str] = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) lowerCAmelCase__ : List[str] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Optional[int] = torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = pipe(generator=a , num_inference_steps=100 , audio_length_in_s=4.0_9_6 ) lowerCAmelCase__ : int = output.audios lowerCAmelCase__ : List[Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase__ : Dict = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : str = torch_device lowerCAmelCase__ : List[Any] = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa ) lowerCAmelCase__ : Optional[int] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : str = torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = pipe(generator=a , num_inference_steps=100 , audio_length_in_s=4.0_9_6 ) lowerCAmelCase__ : str = output.audios lowerCAmelCase__ : Tuple = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase__ : int = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
307
1
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCamelCase__ = logging.get_logger(__name__) @add_end_docstrings(__magic_name__ ) class A__ ( __magic_name__ ): def __init__( self : List[Any] , **a : Any ): '''simple docstring''' super().__init__(**a ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Optional[Any] , a : Union[str, List[str], "Image", List["Image"]] , **a : Optional[int] ): '''simple docstring''' return super().__call__(a , **a ) def _lowerCamelCase ( self : Union[str, Any] , **a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = {} if "candidate_labels" in kwargs: lowerCAmelCase__ : Dict = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: lowerCAmelCase__ : Optional[Any] = kwargs['hypothesis_template'] return preprocess_params, {}, {} def _lowerCamelCase ( self : Dict , a : Union[str, Any] , a : Any=None , a : Union[str, Any]="This is a photo of {}." ): '''simple docstring''' lowerCAmelCase__ : Any = load_image(a ) lowerCAmelCase__ : Dict = self.image_processor(images=[image] , return_tensors=self.framework ) lowerCAmelCase__ : Optional[Any] = candidate_labels lowerCAmelCase__ : int = [hypothesis_template.format(a ) for x in candidate_labels] lowerCAmelCase__ : List[str] = self.tokenizer(a , return_tensors=self.framework , padding=a ) lowerCAmelCase__ : Tuple = [text_inputs] return inputs def _lowerCamelCase ( self : Tuple , a : int ): '''simple docstring''' lowerCAmelCase__ : Tuple = model_inputs.pop('candidate_labels' ) lowerCAmelCase__ : List[Any] = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , a ): lowerCAmelCase__ : Tuple = text_inputs[0] else: # Batching case. lowerCAmelCase__ : int = text_inputs[0][0] lowerCAmelCase__ : Any = self.model(**a , **a ) lowerCAmelCase__ : int = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def _lowerCamelCase ( self : int , a : Dict ): '''simple docstring''' lowerCAmelCase__ : Any = model_outputs.pop('candidate_labels' ) lowerCAmelCase__ : List[Any] = model_outputs['logits'][0] if self.framework == "pt": lowerCAmelCase__ : Union[str, Any] = logits.softmax(dim=-1 ).squeeze(-1 ) lowerCAmelCase__ : Tuple = probs.tolist() if not isinstance(a , a ): lowerCAmelCase__ : int = [scores] elif self.framework == "tf": lowerCAmelCase__ : Tuple = stable_softmax(a , axis=-1 ) lowerCAmelCase__ : List[Any] = probs.numpy().tolist() else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) lowerCAmelCase__ : Any = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(a , a ) , key=lambda a : -x[0] ) ] return result
307
from ..utils import DummyObject, requires_backends class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : Any , *a : Any , **a : Any ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Union[str, Any] , *a : Optional[int] , **a : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : int , *a : List[Any] , **a : int ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : str , *a : Any , **a : Optional[Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : List[str] , **a : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , *a : Optional[Any] , **a : Any ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : Optional[int] , *a : List[Any] , **a : str ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : List[Any] , *a : List[str] , **a : List[str] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , *a : Union[str, Any] , **a : Optional[int] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *a : Dict , **a : List[str] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : Dict , **a : List[Any] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : List[str] , **a : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : Dict , *a : str , **a : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Any , *a : Any , **a : Any ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Any , *a : List[Any] , **a : str ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : str , *a : Union[str, Any] , **a : Optional[Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : int , *a : Union[str, Any] , **a : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : Tuple , **a : List[str] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] )
307
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """funnel-transformer/small""": """https://huggingface.co/funnel-transformer/small/resolve/main/config.json""", """funnel-transformer/small-base""": """https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json""", """funnel-transformer/medium""": """https://huggingface.co/funnel-transformer/medium/resolve/main/config.json""", """funnel-transformer/medium-base""": """https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json""", """funnel-transformer/intermediate""": ( """https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json""" ), """funnel-transformer/intermediate-base""": ( """https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json""" ), """funnel-transformer/large""": """https://huggingface.co/funnel-transformer/large/resolve/main/config.json""", """funnel-transformer/large-base""": """https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json""", """funnel-transformer/xlarge""": """https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json""", """funnel-transformer/xlarge-base""": """https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json""", } class A__ ( __magic_name__ ): lowercase = 'funnel' lowercase = { 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', } def __init__( self : Optional[Any] , a : Optional[int]=30_522 , a : Any=[4, 4, 4] , a : int=None , a : Optional[int]=2 , a : int=768 , a : Dict=12 , a : Dict=64 , a : Union[str, Any]=3_072 , a : Any="gelu_new" , a : List[str]=0.1 , a : Optional[int]=0.1 , a : Optional[int]=0.0 , a : Optional[int]=0.1 , a : Optional[int]=None , a : Union[str, Any]=1E-9 , a : Dict="mean" , a : Tuple="relative_shift" , a : Any=True , a : List[str]=True , a : Tuple=True , **a : Optional[Any] , ): '''simple docstring''' lowerCAmelCase__ : List[str] = vocab_size lowerCAmelCase__ : Optional[int] = block_sizes lowerCAmelCase__ : str = [1] * len(a ) if block_repeats is None else block_repeats assert len(a ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." lowerCAmelCase__ : Union[str, Any] = num_decoder_layers lowerCAmelCase__ : Dict = d_model lowerCAmelCase__ : int = n_head lowerCAmelCase__ : Tuple = d_head lowerCAmelCase__ : Union[str, Any] = d_inner lowerCAmelCase__ : Tuple = hidden_act lowerCAmelCase__ : Dict = hidden_dropout lowerCAmelCase__ : Dict = attention_dropout lowerCAmelCase__ : Union[str, Any] = activation_dropout lowerCAmelCase__ : Any = initializer_range lowerCAmelCase__ : Optional[Any] = initializer_std lowerCAmelCase__ : Any = layer_norm_eps assert pooling_type in [ "mean", "max", ], f'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.''' lowerCAmelCase__ : Any = pooling_type assert attention_type in [ "relative_shift", "factorized", ], f'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.''' lowerCAmelCase__ : Dict = attention_type lowerCAmelCase__ : Any = separate_cls lowerCAmelCase__ : Union[str, Any] = truncate_seq lowerCAmelCase__ : List[str] = pool_q_only super().__init__(**a ) @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return sum(self.block_sizes ) @num_hidden_layers.setter def _lowerCamelCase ( self : str , a : Dict ): '''simple docstring''' raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.' ) @property def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' return len(self.block_sizes ) @num_blocks.setter def _lowerCamelCase ( self : Dict , a : Tuple ): '''simple docstring''' raise NotImplementedError('This model does not support the setting of `num_blocks`. Please set `block_sizes`.' )
307
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class A__ : def __init__( self : List[str] , a : Any , a : Dict=13 , a : Optional[Any]=7 , a : Tuple=True , a : Tuple=True , a : Dict=False , a : Optional[Any]=True , a : Dict=99 , a : Tuple=32 , a : Optional[Any]=5 , a : str=4 , a : Union[str, Any]=37 , a : Any="gelu" , a : Dict=0.1 , a : Any=0.1 , a : Optional[int]=512 , a : Union[str, Any]=16 , a : Optional[int]=2 , a : Optional[Any]=0.0_2 , a : List[Any]=3 , a : Any=4 , a : Optional[int]=None , ): '''simple docstring''' lowerCAmelCase__ : List[str] = parent lowerCAmelCase__ : str = batch_size lowerCAmelCase__ : Optional[int] = seq_length lowerCAmelCase__ : Optional[Any] = is_training lowerCAmelCase__ : Tuple = use_input_mask lowerCAmelCase__ : List[Any] = use_token_type_ids lowerCAmelCase__ : str = use_labels lowerCAmelCase__ : Dict = vocab_size lowerCAmelCase__ : Union[str, Any] = hidden_size lowerCAmelCase__ : Optional[int] = num_hidden_layers lowerCAmelCase__ : List[Any] = num_attention_heads lowerCAmelCase__ : int = intermediate_size lowerCAmelCase__ : Union[str, Any] = hidden_act lowerCAmelCase__ : Union[str, Any] = hidden_dropout_prob lowerCAmelCase__ : Any = attention_probs_dropout_prob lowerCAmelCase__ : Dict = max_position_embeddings lowerCAmelCase__ : int = type_vocab_size lowerCAmelCase__ : int = type_sequence_label_size lowerCAmelCase__ : Dict = initializer_range lowerCAmelCase__ : List[str] = num_labels lowerCAmelCase__ : Any = num_choices lowerCAmelCase__ : List[Any] = scope def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ : Tuple = None if self.use_input_mask: lowerCAmelCase__ : str = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ : List[str] = None if self.use_token_type_ids: lowerCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : Dict = None lowerCAmelCase__ : str = None if self.use_labels: lowerCAmelCase__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self : Tuple , a : Dict , a : List[str] , a : str , a : Union[str, Any] , a : Optional[Any] , a : Dict , a : str ): '''simple docstring''' lowerCAmelCase__ : str = LlamaModel(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Dict = model(a , attention_mask=a ) lowerCAmelCase__ : Union[str, Any] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : int , a : Any , a : Union[str, Any] , a : Dict , a : Dict , a : List[Any] , a : Optional[Any] , a : int , a : Dict , a : Tuple , ): '''simple docstring''' lowerCAmelCase__ : int = True lowerCAmelCase__ : Dict = LlamaModel(a ) model.to(a ) model.eval() lowerCAmelCase__ : List[Any] = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , ) lowerCAmelCase__ : Optional[int] = model( a , attention_mask=a , encoder_hidden_states=a , ) lowerCAmelCase__ : Union[str, Any] = model(a , attention_mask=a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : Union[str, Any] , a : int , a : List[Any] , a : int , a : Tuple , a : List[Any] , a : Union[str, Any] , a : Any , a : List[str] , a : List[str] , ): '''simple docstring''' lowerCAmelCase__ : List[Any] = LlamaForCausalLM(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Tuple = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : str , a : Any , a : Tuple , a : str , a : Union[str, Any] , a : Optional[Any] , a : List[Any] , a : Optional[Any] , a : Optional[Any] , a : List[str] , ): '''simple docstring''' lowerCAmelCase__ : str = True lowerCAmelCase__ : Optional[int] = True lowerCAmelCase__ : List[Any] = LlamaForCausalLM(config=a ) model.to(a ) model.eval() # first forward pass lowerCAmelCase__ : List[str] = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , use_cache=a , ) lowerCAmelCase__ : List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase__ : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase__ : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase__ : int = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase__ : Any = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase__ : Union[str, Any] = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , output_hidden_states=a , )['hidden_states'][0] lowerCAmelCase__ : Union[str, Any] = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , past_key_values=a , output_hidden_states=a , )['hidden_states'][0] # select random slice lowerCAmelCase__ : Any = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase__ : Optional[int] = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a , a , atol=1E-3 ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : Any = config_and_inputs lowerCAmelCase__ : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () lowercase = (LlamaForCausalLM,) if is_torch_available() else () lowercase = ( { 'feature-extraction': LlamaModel, 'text-classification': LlamaForSequenceClassification, 'text-generation': LlamaForCausalLM, 'zero-shot': LlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Tuple = LlamaModelTester(self ) lowerCAmelCase__ : str = ConfigTester(self , config_class=a , hidden_size=37 ) def _lowerCamelCase ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase__ : int = type self.model_tester.create_and_check_model(*a ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : int = 3 lowerCAmelCase__ : Dict = input_dict['input_ids'] lowerCAmelCase__ : Optional[Any] = input_ids.ne(1 ).to(a ) lowerCAmelCase__ : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase__ : Tuple = LlamaForSequenceClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : str = model(a , attention_mask=a , labels=a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : List[Any] = 3 lowerCAmelCase__ : List[str] = 'single_label_classification' lowerCAmelCase__ : List[Any] = input_dict['input_ids'] lowerCAmelCase__ : List[Any] = input_ids.ne(1 ).to(a ) lowerCAmelCase__ : Optional[int] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase__ : int = LlamaForSequenceClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : Optional[int] = model(a , attention_mask=a , labels=a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Optional[Any] = 3 lowerCAmelCase__ : Optional[Any] = 'multi_label_classification' lowerCAmelCase__ : List[str] = input_dict['input_ids'] lowerCAmelCase__ : Tuple = input_ids.ne(1 ).to(a ) lowerCAmelCase__ : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase__ : Dict = LlamaForSequenceClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : Dict = model(a , attention_mask=a , labels=a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def _lowerCamelCase ( self : Optional[int] , a : Dict ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Tuple = ids_tensor([1, 10] , config.vocab_size ) lowerCAmelCase__ : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase__ : List[Any] = LlamaModel(a ) original_model.to(a ) original_model.eval() lowerCAmelCase__ : List[Any] = original_model(a ).last_hidden_state lowerCAmelCase__ : str = original_model(a ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase__ : Any = {'type': scaling_type, 'factor': 1_0.0} lowerCAmelCase__ : Union[str, Any] = LlamaModel(a ) scaled_model.to(a ) scaled_model.eval() lowerCAmelCase__ : Union[str, Any] = scaled_model(a ).last_hidden_state lowerCAmelCase__ : Optional[int] = scaled_model(a ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(a , a , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(a , a , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(a , a , atol=1E-5 ) ) @require_torch class A__ ( unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : int = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowerCAmelCase__ : List[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) lowerCAmelCase__ : Any = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 lowerCAmelCase__ : Dict = torch.tensor([[-6.6_5_5_0, -4.1_2_2_7, -4.9_8_5_9, -3.2_4_0_6, 0.8_2_6_2, -3.0_0_3_3, 1.2_9_6_4, -3.3_6_9_9]] ) torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase__ : List[Any] = torch.tensor([-1_2.8_2_8_1, -7.4_4_5_3, -0.4_6_3_9, -8.0_6_2_5, -7.2_5_0_0, -8.0_0_0_0, -6.4_8_8_3, -7.7_6_9_5, -7.8_4_3_8, -7.0_3_1_2, -6.2_1_8_8, -7.1_3_2_8, -1.8_4_9_6, 1.9_9_6_1, -8.6_2_5_0, -6.7_2_2_7, -1_2.8_2_8_1, -6.9_4_9_2, -7.0_7_4_2, -7.7_8_5_2, -7.5_8_2_0, -7.9_0_6_2, -6.9_3_7_5, -7.9_8_0_5, -8.3_4_3_8, -8.1_5_6_2, -8.0_4_6_9, -7.6_2_5_0, -7.7_4_2_2, -7.3_3_9_8,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : str = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowerCAmelCase__ : Optional[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) lowerCAmelCase__ : List[str] = model(torch.tensor(a ) ) # Expected mean on dim = -1 lowerCAmelCase__ : Union[str, Any] = torch.tensor([[-2.0_6_2_2, -1.2_7_9_4, -1.1_6_3_8, -0.9_7_8_8, -1.4_6_0_3, -1.0_2_3_8, -1.7_8_9_3, -1.4_4_1_1]] ) torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase__ : Any = torch.tensor([-8.1_4_0_6, -8.0_5_4_7, 2.7_4_6_1, -1.2_3_4_4, -0.1_4_4_8, -1.8_2_6_2, -1.0_0_2_0, -1.8_1_5_4, -1.6_8_9_5, -1.8_5_1_6, -2.3_5_7_4, -0.9_2_7_7, 3.7_5_9_8, 6.5_7_4_2, -1.2_9_9_8, -0.1_1_7_7, -8.1_4_0_6, -2.9_6_8_8, -2.9_1_9_9, -3.1_6_9_9, -3.5_2_5_4, -2.3_5_5_5, -2.7_9_8_8, -3.4_1_4_1, -2.8_2_6_2, -4.5_1_9_5, -3.3_3_7_9, -3.3_1_6_4, -2.7_8_3_2, -3.0_2_7_3] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : int = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowerCAmelCase__ : Optional[int] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) lowerCAmelCase__ : str = model(torch.tensor(a ) ) # Expected mean on dim = -1 lowerCAmelCase__ : str = torch.tensor([[-0.8_5_6_2, -1.8_5_2_0, -0.7_5_5_1, -0.4_1_6_2, -1.5_1_6_1, -1.2_0_3_8, -2.4_8_2_3, -2.3_2_5_4]] ) torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase__ : List[str] = torch.tensor([-2.2_2_2_7, 4.8_8_2_8, 0.9_0_2_3, -0.4_5_7_8, -0.7_8_7_1, -0.1_0_3_3, -0.6_2_2_1, -0.5_7_8_6, -0.7_8_0_3, -1.0_6_7_4, -1.2_9_2_0, -0.1_5_7_0, 0.8_0_0_8, 2.0_7_2_3, -0.9_4_9_7, 0.2_7_7_1, -2.2_2_2_7, -0.7_6_1_2, -1.4_3_4_6, -1.2_0_6_1, -1.6_4_2_6, -0.3_0_0_0, -0.7_1_3_9, -1.1_9_3_4, -1.8_6_9_1, -1.6_9_7_3, -1.5_9_4_7, -1.2_7_0_5, -0.3_5_2_3, -0.5_5_1_3] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowerCAmelCase__ : List[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) lowerCAmelCase__ : List[str] = model(torch.tensor(a ) ) lowerCAmelCase__ : int = torch.tensor( [[-4.2_3_2_7, -3.3_3_6_0, -4.6_6_6_5, -4.7_6_3_1, -1.8_1_8_0, -3.4_1_7_0, -1.4_2_1_1, -3.1_8_1_0]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) # fmt: off lowerCAmelCase__ : Optional[int] = torch.tensor([-9.4_9_2_2, -3.9_5_5_1, 1.7_9_9_8, -5.6_7_5_8, -5.1_0_5_5, -5.8_9_8_4, -4.8_3_2_0, -6.8_0_8_6, -6.5_3_9_1, -5.6_1_7_2, -5.5_8_2_0, -5.5_3_5_2, 1.7_8_8_1, 3.6_2_8_9, -6.5_1_1_7, -3.4_7_8_5, -9.5_0_0_0, -6.0_3_5_2, -6.8_1_2_5, -6.0_1_9_5, -6.6_8_3_6, -5.4_7_2_7, -6.2_8_1_2, -6.0_3_9_1, -7.3_3_9_8, -7.4_2_9_7, -7.4_8_4_4, -6.5_8_2_0, -5.8_7_8_9, -5.5_3_1_2] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Model is curently gated' ) @slow def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' lowerCAmelCase__ : Tuple = 'Simply put, the theory of relativity states that ' lowerCAmelCase__ : Dict = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) lowerCAmelCase__ : Dict = tokenizer.encode(a , return_tensors='pt' ) lowerCAmelCase__ : str = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=a ) # greedy generation outputs lowerCAmelCase__ : Optional[Any] = model.generate(a , max_new_tokens=64 , top_p=a , temperature=1 , do_sample=a ) lowerCAmelCase__ : Tuple = tokenizer.decode(generated_ids[0] , skip_special_tokens=a ) self.assertEqual(a , a )
307
1
import os import pytest from attr import dataclass lowerCamelCase__ = """us-east-1""" # defaults region @dataclass class A__ : lowercase = 42 lowercase = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' lowercase = { 'task_name': 'mnli', 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 500, 'save_steps': 5500, } lowercase = {**hyperparameters, 'max_steps': 1000} @property def _lowerCamelCase ( self : str ): '''simple docstring''' if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' return f'''{self.framework}-transfromers-test''' @property def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' return f'''./tests/sagemaker/scripts/{self.framework}''' @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class' ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: lowerCAmelCase__ : Any = SageMakerTestEnvironment(framework=request.cls.framework )
307
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """microsoft/unispeech-large-1500h-cv""": ( """https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json""" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class A__ ( __magic_name__ ): lowercase = 'unispeech' def __init__( self : Any , a : List[Any]=32 , a : List[Any]=768 , a : Any=12 , a : List[str]=12 , a : List[Any]=3_072 , a : Any="gelu" , a : Dict=0.1 , a : List[str]=0.1 , a : List[str]=0.1 , a : Union[str, Any]=0.0 , a : str=0.0 , a : int=0.1 , a : List[str]=0.1 , a : List[Any]=0.0_2 , a : Optional[int]=1E-5 , a : Optional[int]="group" , a : Optional[Any]="gelu" , a : List[Any]=(512, 512, 512, 512, 512, 512, 512) , a : Optional[Any]=(5, 2, 2, 2, 2, 2, 2) , a : List[str]=(10, 3, 3, 3, 3, 2, 2) , a : Union[str, Any]=False , a : Union[str, Any]=128 , a : Tuple=16 , a : Dict=False , a : str=True , a : str=0.0_5 , a : Union[str, Any]=10 , a : Tuple=2 , a : int=0.0 , a : Optional[Any]=10 , a : List[str]=0 , a : str=320 , a : List[str]=2 , a : Optional[Any]=0.1 , a : Any=100 , a : Dict=256 , a : Any=256 , a : Dict=0.1 , a : List[Any]="mean" , a : Dict=False , a : str=False , a : Optional[int]=256 , a : Any=80 , a : List[Any]=0 , a : Optional[int]=1 , a : int=2 , a : List[Any]=0.5 , **a : int , ): '''simple docstring''' super().__init__(**a , pad_token_id=a , bos_token_id=a , eos_token_id=a ) lowerCAmelCase__ : List[str] = hidden_size lowerCAmelCase__ : List[str] = feat_extract_norm lowerCAmelCase__ : Optional[Any] = feat_extract_activation lowerCAmelCase__ : str = list(a ) lowerCAmelCase__ : List[str] = list(a ) lowerCAmelCase__ : Tuple = list(a ) lowerCAmelCase__ : Dict = conv_bias lowerCAmelCase__ : Optional[int] = num_conv_pos_embeddings lowerCAmelCase__ : Any = num_conv_pos_embedding_groups lowerCAmelCase__ : str = len(self.conv_dim ) lowerCAmelCase__ : Any = num_hidden_layers lowerCAmelCase__ : Dict = intermediate_size lowerCAmelCase__ : Dict = hidden_act lowerCAmelCase__ : Union[str, Any] = num_attention_heads lowerCAmelCase__ : Union[str, Any] = hidden_dropout lowerCAmelCase__ : Tuple = attention_dropout lowerCAmelCase__ : str = activation_dropout lowerCAmelCase__ : Any = feat_proj_dropout lowerCAmelCase__ : List[Any] = final_dropout lowerCAmelCase__ : Tuple = layerdrop lowerCAmelCase__ : Any = layer_norm_eps lowerCAmelCase__ : Dict = initializer_range lowerCAmelCase__ : Optional[Any] = num_ctc_classes lowerCAmelCase__ : Tuple = vocab_size lowerCAmelCase__ : Dict = do_stable_layer_norm lowerCAmelCase__ : List[Any] = use_weighted_layer_sum lowerCAmelCase__ : Any = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase__ : Union[str, Any] = apply_spec_augment lowerCAmelCase__ : Any = mask_time_prob lowerCAmelCase__ : Dict = mask_time_length lowerCAmelCase__ : Tuple = mask_time_min_masks lowerCAmelCase__ : Optional[int] = mask_feature_prob lowerCAmelCase__ : Optional[Any] = mask_feature_length lowerCAmelCase__ : int = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCAmelCase__ : int = num_codevectors_per_group lowerCAmelCase__ : Any = num_codevector_groups lowerCAmelCase__ : Any = contrastive_logits_temperature lowerCAmelCase__ : int = feat_quantizer_dropout lowerCAmelCase__ : List[Any] = num_negatives lowerCAmelCase__ : List[str] = codevector_dim lowerCAmelCase__ : Optional[int] = proj_codevector_dim lowerCAmelCase__ : Dict = diversity_loss_weight # ctc loss lowerCAmelCase__ : Any = ctc_loss_reduction lowerCAmelCase__ : Any = ctc_zero_infinity # pretraining loss lowerCAmelCase__ : Union[str, Any] = replace_prob @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
307
1
import math def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> bool: lowerCAmelCase__ : List[str] = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = 1 / 12_345 ) -> int: lowerCAmelCase__ : int = 0 lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : int = 3 while True: lowerCAmelCase__ : Union[str, Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : List[Any] = int(SCREAMING_SNAKE_CASE_ ) total_partitions += 1 if check_partition_perfect(SCREAMING_SNAKE_CASE_ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(SCREAMING_SNAKE_CASE_ ) integer += 1 if __name__ == "__main__": print(F"""{solution() = }""")
307
import torch from torch import nn class A__ ( nn.Module ): def __init__( self : Optional[int] , a : Union[str, Any] , a : str , a : str , a : List[Any] , a : List[Any]=1 , a : Tuple=False ): '''simple docstring''' super().__init__() lowerCAmelCase__ : Dict = n_token lowerCAmelCase__ : Any = d_embed lowerCAmelCase__ : str = d_proj lowerCAmelCase__ : int = cutoffs + [n_token] lowerCAmelCase__ : Union[str, Any] = [0] + self.cutoffs lowerCAmelCase__ : str = div_val lowerCAmelCase__ : Tuple = self.cutoffs[0] lowerCAmelCase__ : Dict = len(self.cutoffs ) - 1 lowerCAmelCase__ : Any = self.shortlist_size + self.n_clusters if self.n_clusters > 0: lowerCAmelCase__ : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) lowerCAmelCase__ : Optional[Any] = nn.Parameter(torch.zeros(self.n_clusters ) ) lowerCAmelCase__ : Optional[int] = nn.ModuleList() lowerCAmelCase__ : Tuple = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(a , a ) ) ) else: self.out_projs.append(a ) self.out_layers.append(nn.Linear(a , a ) ) else: for i in range(len(self.cutoffs ) ): lowerCAmelCase__ , lowerCAmelCase__ : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase__ : Optional[Any] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(a , a ) ) ) self.out_layers.append(nn.Linear(a , r_idx - l_idx ) ) lowerCAmelCase__ : Tuple = keep_order def _lowerCamelCase ( self : Optional[int] , a : List[str] , a : int , a : List[str] , a : str ): '''simple docstring''' if proj is None: lowerCAmelCase__ : Tuple = nn.functional.linear(a , a , bias=a ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: lowerCAmelCase__ : int = nn.functional.linear(a , proj.t().contiguous() ) lowerCAmelCase__ : Tuple = nn.functional.linear(a , a , bias=a ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def _lowerCamelCase ( self : List[str] , a : List[Any] , a : Optional[int]=None , a : Tuple=False ): '''simple docstring''' if labels is not None: # Shift so that tokens < n predict n lowerCAmelCase__ : str = hidden[..., :-1, :].contiguous() lowerCAmelCase__ : Optional[Any] = labels[..., 1:].contiguous() lowerCAmelCase__ : List[Any] = hidden.view(-1 , hidden.size(-1 ) ) lowerCAmelCase__ : Tuple = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('Input and labels should have the same size in the batch dimension.' ) else: lowerCAmelCase__ : Optional[Any] = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: lowerCAmelCase__ : Optional[Any] = self._compute_logit(a , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: lowerCAmelCase__ : str = labels != -100 lowerCAmelCase__ : int = torch.zeros_like(a , dtype=hidden.dtype , device=hidden.device ) lowerCAmelCase__ : List[str] = ( -nn.functional.log_softmax(a , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: lowerCAmelCase__ : Optional[Any] = nn.functional.log_softmax(a , dim=-1 ) else: # construct weights and biases lowerCAmelCase__ , lowerCAmelCase__ : int = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase__ : Any = self.out_layers[0].weight[l_idx:r_idx] lowerCAmelCase__ : Any = self.out_layers[0].bias[l_idx:r_idx] else: lowerCAmelCase__ : Optional[Any] = self.out_layers[i].weight lowerCAmelCase__ : Optional[int] = self.out_layers[i].bias if i == 0: lowerCAmelCase__ : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowerCAmelCase__ : Union[str, Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(a ) biases.append(a ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = weights[0], biases[0], self.out_projs[0] lowerCAmelCase__ : List[Any] = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : Union[str, Any] = nn.functional.log_softmax(a , dim=1 ) if labels is None: lowerCAmelCase__ : Tuple = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: lowerCAmelCase__ : Dict = torch.zeros_like(a , dtype=hidden.dtype , device=hidden.device ) lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : Union[str, Any] = [0] + self.cutoffs for i in range(len(a ) - 1 ): lowerCAmelCase__ , lowerCAmelCase__ : Tuple = cutoff_values[i], cutoff_values[i + 1] if labels is not None: lowerCAmelCase__ : Tuple = (labels >= l_idx) & (labels < r_idx) lowerCAmelCase__ : int = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue lowerCAmelCase__ : Tuple = labels.index_select(0 , a ) - l_idx lowerCAmelCase__ : Any = head_logprob.index_select(0 , a ) lowerCAmelCase__ : Optional[int] = hidden.index_select(0 , a ) else: lowerCAmelCase__ : Any = hidden if i == 0: if labels is not None: lowerCAmelCase__ : Union[str, Any] = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: lowerCAmelCase__ : List[str] = head_logprob[:, : self.cutoffs[0]] else: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = weights[i], biases[i], self.out_projs[i] lowerCAmelCase__ : Union[str, Any] = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : Optional[int] = nn.functional.log_softmax(a , dim=1 ) lowerCAmelCase__ : List[Any] = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: lowerCAmelCase__ : List[str] = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: lowerCAmelCase__ : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i lowerCAmelCase__ : Union[str, Any] = logprob_i if labels is not None: if (hasattr(self , 'keep_order' ) and self.keep_order) or keep_order: out.index_copy_(0 , a , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def _lowerCamelCase ( self : List[Any] , a : Any ): '''simple docstring''' if self.n_clusters == 0: lowerCAmelCase__ : Union[str, Any] = self._compute_logit(a , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(a , dim=-1 ) else: # construct weights and biases lowerCAmelCase__ , lowerCAmelCase__ : str = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase__ : str = self.out_layers[0].weight[l_idx:r_idx] lowerCAmelCase__ : Dict = self.out_layers[0].bias[l_idx:r_idx] else: lowerCAmelCase__ : int = self.out_layers[i].weight lowerCAmelCase__ : int = self.out_layers[i].bias if i == 0: lowerCAmelCase__ : Optional[int] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowerCAmelCase__ : Union[str, Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(a ) biases.append(a ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : str = weights[0], biases[0], self.out_projs[0] lowerCAmelCase__ : Dict = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : List[Any] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) lowerCAmelCase__ : Optional[Any] = nn.functional.log_softmax(a , dim=1 ) lowerCAmelCase__ : List[Any] = [0] + self.cutoffs for i in range(len(a ) - 1 ): lowerCAmelCase__ , lowerCAmelCase__ : str = cutoff_values[i], cutoff_values[i + 1] if i == 0: lowerCAmelCase__ : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = weights[i], biases[i], self.out_projs[i] lowerCAmelCase__ : Dict = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : List[str] = nn.functional.log_softmax(a , dim=1 ) lowerCAmelCase__ : Dict = head_logprob[:, -i] + tail_logprob_i lowerCAmelCase__ : List[str] = logprob_i return out
307
1
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCamelCase__ = imread(r"""digital_image_processing/image_data/lena_small.jpg""") lowerCamelCase__ = cvtColor(img, COLOR_BGR2GRAY) def lowerCAmelCase__ ( ) -> Dict: lowerCAmelCase__ : List[Any] = cn.convert_to_negative(SCREAMING_SNAKE_CASE_ ) # assert negative_img array for at least one True assert negative_img.any() def lowerCAmelCase__ ( ) -> Optional[Any]: with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(SCREAMING_SNAKE_CASE_ , 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def lowerCAmelCase__ ( ) -> Tuple: lowerCAmelCase__ : str = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def lowerCAmelCase__ ( ) -> Tuple: lowerCAmelCase__ : Tuple = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() lowerCAmelCase__ : Optional[Any] = canny.canny(SCREAMING_SNAKE_CASE_ ) # assert canny array for at least one True assert canny_array.any() def lowerCAmelCase__ ( ) -> Optional[int]: assert gg.gaussian_filter(SCREAMING_SNAKE_CASE_ , 5 , sigma=0.9 ).all() def lowerCAmelCase__ ( ) -> Dict: # laplace diagonals lowerCAmelCase__ : Union[str, Any] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowerCAmelCase__ : int = conv.img_convolve(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).astype(SCREAMING_SNAKE_CASE_ ) assert res.any() def lowerCAmelCase__ ( ) -> List[str]: assert med.median_filter(SCREAMING_SNAKE_CASE_ , 3 ).any() def lowerCAmelCase__ ( ) -> Any: lowerCAmelCase__ , lowerCAmelCase__ : str = sob.sobel_filter(SCREAMING_SNAKE_CASE_ ) assert grad.any() and theta.any() def lowerCAmelCase__ ( ) -> Any: lowerCAmelCase__ : int = sp.make_sepia(SCREAMING_SNAKE_CASE_ , 20 ) assert sepia.all() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = "digital_image_processing/image_data/lena_small.jpg" ) -> Optional[Any]: lowerCAmelCase__ : List[Any] = bs.Burkes(imread(SCREAMING_SNAKE_CASE_ , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = "digital_image_processing/image_data/lena_small.jpg" , ) -> Any: lowerCAmelCase__ : Dict = rs.NearestNeighbour(imread(SCREAMING_SNAKE_CASE_ , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def lowerCAmelCase__ ( ) -> int: lowerCAmelCase__ : int = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. lowerCAmelCase__ : List[str] = imread(SCREAMING_SNAKE_CASE_ , 0 ) # Test for get_neighbors_pixel function() return not None lowerCAmelCase__ : str = 0 lowerCAmelCase__ : str = 0 lowerCAmelCase__ : List[str] = image[x_coordinate][y_coordinate] lowerCAmelCase__ : Dict = lbp.get_neighbors_pixel( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCAmelCase__ : List[str] = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): lowerCAmelCase__ : Dict = lbp.local_binary_value(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert lbp_image.any()
307
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowerCamelCase__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} lowerCamelCase__ = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", """emoji""": True, }, } ] lowerCamelCase__ = 0 for log in Path().glob("""*.log"""): lowerCamelCase__ = 0 with open(log, """r""") as f: for line in f: lowerCamelCase__ = json.loads(line) if line.get("""nodeid""", """""") != "": lowerCamelCase__ = line["""nodeid"""] if line.get("""duration""", None) is not None: lowerCamelCase__ = F"""{line["duration"]:.4f}""" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowerCamelCase__ = [] log.unlink() lowerCamelCase__ = """""" lowerCamelCase__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowerCamelCase__ = [] lowerCamelCase__ = {} for test in failed_tests: lowerCamelCase__ = test[0].split("""::""") lowerCamelCase__ = data[0].split("""/""")[-1] if data[0] not in filesafailed: lowerCamelCase__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowerCamelCase__ = [test[0] for test in failed_table] lowerCamelCase__ = list(set(files)) # Count number of instances in failed_tests lowerCamelCase__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowerCamelCase__ = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: lowerCamelCase__ = """Too many failed tests, please see the full report in the Action results.""" lowerCamelCase__ = len(err) + 10 lowerCamelCase__ = message[: 3000 - offset] + F"""\n...\n```\n{err}""" print(F"""### {message}""") else: lowerCamelCase__ = """No failed tests! 🤗""" print(F"""## {message}""") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient lowerCamelCase__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": lowerCamelCase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) lowerCamelCase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) lowerCamelCase__ = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) lowerCamelCase__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) lowerCamelCase__ = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowerCamelCase__ = """""" for i, row in enumerate(test_failures): if row[0] != test_class: lowerCamelCase__ = row[0] else: lowerCamelCase__ = """""" lowerCamelCase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
307
1
import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class A__ ( __magic_name__ , unittest.TestCase ): lowercase = WavaVecaPhonemeCTCTokenizer lowercase = False def _lowerCamelCase ( self : str ): '''simple docstring''' super().setUp() lowerCAmelCase__ : str = ( '<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː ' 'ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː ' 'ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 ' 'oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ ' 'pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ ' 'yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ ' 'əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ ' 'ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ ' 'ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ ' 'uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ ' 'ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ ' 'ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ ' 'ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4' ).split(' ' ) lowerCAmelCase__ : Dict = dict(zip(a , range(len(a ) ) ) ) lowerCAmelCase__ : Optional[int] = {'pad_token': '<pad>', 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>'} lowerCAmelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(a ) + '\n' ) def _lowerCamelCase ( self : Tuple , a : str , a : Any=False , a : int=20 , a : str=5 ): '''simple docstring''' lowerCAmelCase__ : List[str] = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=a )) for i in range(len(a ) )] lowerCAmelCase__ : Dict = list(filter(lambda a : [t[0]] == tokenizer.encode(t[1] , do_phonemize=a ) , a ) ) if max_length is not None and len(a ) > max_length: lowerCAmelCase__ : List[Any] = toks[:max_length] if min_length is not None and len(a ) < min_length and len(a ) > 0: while len(a ) < min_length: lowerCAmelCase__ : Any = toks + toks # toks_str = [t[1] for t in toks] lowerCAmelCase__ : str = [t[0] for t in toks] # Ensure consistency lowerCAmelCase__ : List[str] = tokenizer.decode(a , clean_up_tokenization_spaces=a ) if " " not in output_txt and len(a ) > 1: lowerCAmelCase__ : str = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=a ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=a ) ) if with_prefix_space: lowerCAmelCase__ : int = ' ' + output_txt lowerCAmelCase__ : List[Any] = tokenizer.encode(a , add_special_tokens=a ) return output_txt, output_ids def _lowerCamelCase ( self : Optional[Any] , **a : Dict ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **a ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) # check adding a single token tokenizer.add_tokens('xxx' ) lowerCAmelCase__ : Tuple = tokenizer('m xxx ɪ' , do_phonemize=a ).input_ids self.assertEqual(a , [13, 392, 17] ) # xxx should be last token tokenizer.add_tokens(['aaa', 'bbb', 'ccc'] ) lowerCAmelCase__ : Optional[int] = tokenizer('m aaa ɪ ccc' , do_phonemize=a ).input_ids self.assertEqual(a , [13, 393, 17, 395] ) # aaa and ccc should be after xxx and 2 after aaa lowerCAmelCase__ : Dict = tokenizer('maɪ c' , do_phonemize=a ).input_ids self.assertEqual(a , [3, 200] ) # mai should be <unk> (=3) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : int = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) lowerCAmelCase__ : int = 'Hello how are you' lowerCAmelCase__ : Any = tokenizer.phonemize(a , phonemizer_lang='en-us' ) self.assertEqual(a , 'h ə l oʊ h aʊ ɑːɹ j uː' ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) lowerCAmelCase__ : Optional[Any] = 'Hello how are you' lowerCAmelCase__ : str = tokenizer.phonemize(a , phonemizer_lang='en-us' ) self.assertEqual(tokenizer(a ).input_ids , tokenizer(a , do_phonemize=a ).input_ids ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) lowerCAmelCase__ : str = 'Hello how are you' lowerCAmelCase__ : Optional[Any] = tokenizer.phonemize(a , phonemizer_lang='en-us' ) lowerCAmelCase__ : int = tokenizer.decode(tokenizer(a ).input_ids ) self.assertEqual(a , a ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : List[Any] = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) lowerCAmelCase__ : Tuple = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] lowerCAmelCase__ : Tuple = tokenizer.decode(sample_ids[0] ) lowerCAmelCase__ : List[str] = tokenizer.batch_decode(a ) self.assertEqual(a , batch_tokens[0] ) self.assertEqual(a , ['k s ɾ ɾ l ɭʲ', 'j ð s j ð s oːɹ'] ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Any = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) lowerCAmelCase__ : Optional[int] = 'Hello how are you' lowerCAmelCase__ : List[Any] = tokenizer.phonemize(a , phonemizer_lang='en-us' ) self.assertEqual(a , 'h ə l oʊ | h aʊ | ɑːɹ | j uː |' ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) lowerCAmelCase__ : List[str] = 'Hello how are you' lowerCAmelCase__ : List[str] = tokenizer.phonemize(a , phonemizer_lang='en-us' ) self.assertEqual(tokenizer(a ).input_ids , tokenizer(a , do_phonemize=a ).input_ids ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) # fmt: off lowerCAmelCase__ : int = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter lowerCAmelCase__ : List[str] = tokenizer.decode(sample_ids[0] ) lowerCAmelCase__ : Optional[Any] = tokenizer.batch_decode(a ) self.assertEqual(a , batch_tokens[0] ) self.assertEqual(a , ['k s ɾ ɾ l ɭʲ', 'j ð s j ð s oːɹ'] ) # decode with no word_del_token filter lowerCAmelCase__ : str = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=a ) lowerCAmelCase__ : Any = tokenizer.batch_decode(a , filter_word_delimiter_token=a ) self.assertEqual(a , batch_tokens[0] ) self.assertEqual(a , ['k s ɾ | ɾ l | ɭʲ', '| j ð | s j ð s oːɹ'] ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : str = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) lowerCAmelCase__ : Optional[Any] = 'Hello how are you' lowerCAmelCase__ : List[Any] = tokenizer.phonemize(a , phonemizer_lang='en-us' ) lowerCAmelCase__ : int = tokenizer.decode(tokenizer(a ).input_ids , filter_word_delimiter_token=a ) self.assertEqual(a , a ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Dict = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token='|' ) tokenizer.add_tokens('|' ) lowerCAmelCase__ : Tuple = 'Hello how are you' lowerCAmelCase__ : Any = tokenizer.phonemize(a , phonemizer_lang='en-us' ) lowerCAmelCase__ : Optional[Any] = tokenizer.decode(tokenizer(a ).input_ids , filter_word_delimiter_token=a ) self.assertEqual(' '.join([p.strip() for p in phonemes.split(' |' )] ).strip() , a ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft' , word_delimiter_token=a ) lowerCAmelCase__ : int = 'Hello how are you' lowerCAmelCase__ : Union[str, Any] = tokenizer(a , phonemizer_lang='en-us' ).input_ids lowerCAmelCase__ : List[str] = tokenizer(a , phonemizer_lang='fr-fr' ).input_ids self.assertNotEqual(a , a ) lowerCAmelCase__ : Any = tokenizer.decode(a ) lowerCAmelCase__ : int = tokenizer.decode(a ) self.assertEqual(a , 'h ə l oʊ h aʊ ɑːɹ j uː' ) self.assertEqual(a , 'ɛ l o h aʊ a ʁ j u' ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) lowerCAmelCase__ : Optional[int] = 'Hello how Are you' lowerCAmelCase__ : str = 'hello how are you' lowerCAmelCase__ : Optional[int] = tokenizer(a ).input_ids lowerCAmelCase__ : int = tokenizer(a ).input_ids self.assertEqual(a , a ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Any = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) tokenizer.add_tokens(['!', '?'] ) tokenizer.add_special_tokens({'cls_token': '$$$'} ) # fmt: off lowerCAmelCase__ : Optional[int] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 392, 392, 393, 392, 392, 393, 394, 394], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 394, 394], ] # fmt: on lowerCAmelCase__ : Union[str, Any] = tokenizer.batch_decode(a ) self.assertEqual(a , ['k s ɾ ɾ l ɭʲ!?!? $$$', 'j ð s j ð s oːɹ $$$'] ) @staticmethod def _lowerCamelCase ( a : Optional[Any] , a : Any ): '''simple docstring''' lowerCAmelCase__ : str = [d[key] for d in offsets] return retrieved_list def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : List[Any] = self.get_tokenizer(word_delimiter_token='|' ) tokenizer.add_tokens('|' ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" lowerCAmelCase__ : List[str] = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on lowerCAmelCase__ : Dict = tokenizer.decode(a , output_char_offsets=a , filter_word_delimiter_token=a ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue('text' in outputs ) self.assertTrue('char_offsets' in outputs ) self.assertTrue(isinstance(a , a ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(' '.join(self.get_from_offsets(outputs['char_offsets'] , 'char' ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'char' ) , ['k', 's', 'ɾ', 'ɾ', '|', 'ɾ', 'l', '|', 'ɭʲ'] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'start_offset' ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs['char_offsets'] , 'end_offset' ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.get_tokenizer(word_delimiter_token='|' ) def check_list_tuples_equal(a : Optional[Any] , a : str ): self.assertTrue(isinstance(a , a ) ) self.assertTrue(isinstance(outputs_list[0] , a ) ) # transform list to ModelOutput lowerCAmelCase__ : Union[str, Any] = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch['text'] , outputs_batch_a['text'] ) def recursive_check(a : List[Any] , a : Dict ): if isinstance(a , a ): [recursive_check(a , a ) for la, la in zip(a , a )] self.assertEqual(a , a ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch['char_offsets'] , outputs_batch_a['char_offsets'] ) # fmt: off lowerCAmelCase__ : Optional[int] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char lowerCAmelCase__ : int = tokenizer.batch_decode(a , output_char_offsets=a ) lowerCAmelCase__ : Optional[Any] = [tokenizer.decode(a , output_char_offsets=a ) for ids in sample_ids] check_list_tuples_equal(a , a ) @unittest.skip('Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes' ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip('Wav2Vec2PhonemeTokenizer always puts spaces between phonemes' ) def _lowerCamelCase ( self : Any ): '''simple docstring''' pass @unittest.skip('encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency' ) def _lowerCamelCase ( self : int ): '''simple docstring''' pass @unittest.skip('Wav2Vec2PhonemeModel has no max model length => no testing' ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' pass def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.get_tokenizers(do_lower_case=a ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCAmelCase__ : Union[str, Any] = tokenizer.vocab_size lowerCAmelCase__ : str = len(a ) self.assertNotEqual(a , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) lowerCAmelCase__ : Dict = ['aaaaa bbbbbb', 'cccccccccdddddddd'] lowerCAmelCase__ : Dict = tokenizer.add_tokens(a ) lowerCAmelCase__ : Tuple = tokenizer.vocab_size lowerCAmelCase__ : int = len(a ) self.assertNotEqual(a , 0 ) self.assertEqual(a , a ) self.assertEqual(a , len(a ) ) self.assertEqual(a , all_size + len(a ) ) lowerCAmelCase__ : str = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=a ) self.assertGreaterEqual(len(a ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) lowerCAmelCase__ : Optional[Any] = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} lowerCAmelCase__ : str = tokenizer.add_special_tokens(a ) lowerCAmelCase__ : Optional[Any] = tokenizer.vocab_size lowerCAmelCase__ : Dict = len(a ) self.assertNotEqual(a , 0 ) self.assertEqual(a , a ) self.assertEqual(a , len(a ) ) self.assertEqual(a , all_size_a + len(a ) ) lowerCAmelCase__ : Tuple = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=a ) self.assertGreaterEqual(len(a ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip('The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.' ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' pass @unittest.skip('The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.' ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' pass def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.get_tokenizers(fast=a , do_lower_case=a ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCAmelCase__ : Optional[int] = ['ð', 'ɪ', 's', 'ɪ', 'z', 'ɐ', 't', 'ɛ', 'k', 's', 't'] lowerCAmelCase__ : List[Any] = tokenizer.convert_tokens_to_string(a ) self.assertIsInstance(output['text'] , a )
307
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCamelCase__ = imread(r"""digital_image_processing/image_data/lena_small.jpg""") lowerCamelCase__ = cvtColor(img, COLOR_BGR2GRAY) def lowerCAmelCase__ ( ) -> Dict: lowerCAmelCase__ : List[Any] = cn.convert_to_negative(SCREAMING_SNAKE_CASE_ ) # assert negative_img array for at least one True assert negative_img.any() def lowerCAmelCase__ ( ) -> Optional[Any]: with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(SCREAMING_SNAKE_CASE_ , 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def lowerCAmelCase__ ( ) -> Tuple: lowerCAmelCase__ : str = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def lowerCAmelCase__ ( ) -> Tuple: lowerCAmelCase__ : Tuple = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() lowerCAmelCase__ : Optional[Any] = canny.canny(SCREAMING_SNAKE_CASE_ ) # assert canny array for at least one True assert canny_array.any() def lowerCAmelCase__ ( ) -> Optional[int]: assert gg.gaussian_filter(SCREAMING_SNAKE_CASE_ , 5 , sigma=0.9 ).all() def lowerCAmelCase__ ( ) -> Dict: # laplace diagonals lowerCAmelCase__ : Union[str, Any] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowerCAmelCase__ : int = conv.img_convolve(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).astype(SCREAMING_SNAKE_CASE_ ) assert res.any() def lowerCAmelCase__ ( ) -> List[str]: assert med.median_filter(SCREAMING_SNAKE_CASE_ , 3 ).any() def lowerCAmelCase__ ( ) -> Any: lowerCAmelCase__ , lowerCAmelCase__ : str = sob.sobel_filter(SCREAMING_SNAKE_CASE_ ) assert grad.any() and theta.any() def lowerCAmelCase__ ( ) -> Any: lowerCAmelCase__ : int = sp.make_sepia(SCREAMING_SNAKE_CASE_ , 20 ) assert sepia.all() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = "digital_image_processing/image_data/lena_small.jpg" ) -> Optional[Any]: lowerCAmelCase__ : List[Any] = bs.Burkes(imread(SCREAMING_SNAKE_CASE_ , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = "digital_image_processing/image_data/lena_small.jpg" , ) -> Any: lowerCAmelCase__ : Dict = rs.NearestNeighbour(imread(SCREAMING_SNAKE_CASE_ , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def lowerCAmelCase__ ( ) -> int: lowerCAmelCase__ : int = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. lowerCAmelCase__ : List[str] = imread(SCREAMING_SNAKE_CASE_ , 0 ) # Test for get_neighbors_pixel function() return not None lowerCAmelCase__ : str = 0 lowerCAmelCase__ : str = 0 lowerCAmelCase__ : List[str] = image[x_coordinate][y_coordinate] lowerCAmelCase__ : Dict = lbp.get_neighbors_pixel( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCAmelCase__ : List[str] = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): lowerCAmelCase__ : Dict = lbp.local_binary_value(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert lbp_image.any()
307
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class A__ ( unittest.TestCase ): def __init__( self : List[Any] , a : List[Any] , a : Union[str, Any]=7 , a : str=3 , a : Optional[Any]=18 , a : int=30 , a : int=400 , a : Dict=True , a : Optional[int]=None , a : Optional[Any]=True , a : Dict=None , a : List[str]=True , a : Tuple=[0.5, 0.5, 0.5] , a : List[str]=[0.5, 0.5, 0.5] , ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = size if size is not None else {'shortest_edge': 18} lowerCAmelCase__ : Optional[Any] = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCAmelCase__ : int = parent lowerCAmelCase__ : Optional[int] = batch_size lowerCAmelCase__ : Union[str, Any] = num_channels lowerCAmelCase__ : Optional[Any] = image_size lowerCAmelCase__ : Optional[int] = min_resolution lowerCAmelCase__ : str = max_resolution lowerCAmelCase__ : List[str] = do_resize lowerCAmelCase__ : List[str] = size lowerCAmelCase__ : int = do_center_crop lowerCAmelCase__ : Union[str, Any] = crop_size lowerCAmelCase__ : Tuple = do_normalize lowerCAmelCase__ : Optional[int] = image_mean lowerCAmelCase__ : Union[str, Any] = image_std def _lowerCamelCase ( self : Dict ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class A__ ( __magic_name__ , unittest.TestCase ): lowercase = LevitImageProcessor if is_vision_available() else None def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : int = LevitImageProcessingTester(self ) @property def _lowerCamelCase ( self : str ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , 'image_mean' ) ) self.assertTrue(hasattr(a , 'image_std' ) ) self.assertTrue(hasattr(a , 'do_normalize' ) ) self.assertTrue(hasattr(a , 'do_resize' ) ) self.assertTrue(hasattr(a , 'do_center_crop' ) ) self.assertTrue(hasattr(a , 'size' ) ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) lowerCAmelCase__ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' pass def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input lowerCAmelCase__ : Any = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase__ : Optional[int] = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input lowerCAmelCase__ : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase__ : int = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input lowerCAmelCase__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCAmelCase__ : Tuple = image_processing(a , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
307
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
1
from __future__ import annotations def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> list[list[int]]: lowerCAmelCase__ : list[list[int]] = [] create_all_state(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , [] , SCREAMING_SNAKE_CASE_ ) return result def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> None: if level == 0: total_list.append(current_list[:] ) return for i in range(SCREAMING_SNAKE_CASE_ , total_number - level + 2 ): current_list.append(SCREAMING_SNAKE_CASE_ ) create_all_state(i + 1 , SCREAMING_SNAKE_CASE_ , level - 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) current_list.pop() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> None: for i in total_list: print(*SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowerCamelCase__ = 4 lowerCamelCase__ = 2 lowerCamelCase__ = generate_all_combinations(n, k) print_all_state(total_list)
307
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.999 , SCREAMING_SNAKE_CASE_="cosine" , ) -> Union[str, Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(SCREAMING_SNAKE_CASE_ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(SCREAMING_SNAKE_CASE_ ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) lowerCAmelCase__ : Tuple = [] for i in range(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : List[Any] = i / num_diffusion_timesteps lowerCAmelCase__ : str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) / alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ) return torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ) class A__ ( __magic_name__ , __magic_name__ ): lowercase = [e.name for e in KarrasDiffusionSchedulers] lowercase = 2 @register_to_config def __init__( self : Union[str, Any] , a : int = 1_000 , a : float = 0.0_0_0_8_5 , a : float = 0.0_1_2 , a : str = "linear" , a : Optional[Union[np.ndarray, List[float]]] = None , a : str = "epsilon" , a : Optional[bool] = False , a : Optional[bool] = False , a : float = 1.0 , a : str = "linspace" , a : int = 0 , ): '''simple docstring''' if trained_betas is not None: lowerCAmelCase__ : List[str] = torch.tensor(a , dtype=torch.floataa ) elif beta_schedule == "linear": lowerCAmelCase__ : List[str] = torch.linspace(a , a , a , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowerCAmelCase__ : Union[str, Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , a , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowerCAmelCase__ : int = betas_for_alpha_bar(a , alpha_transform_type='cosine' ) elif beta_schedule == "exp": lowerCAmelCase__ : List[str] = betas_for_alpha_bar(a , alpha_transform_type='exp' ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) lowerCAmelCase__ : int = 1.0 - self.betas lowerCAmelCase__ : Tuple = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(a , a , a ) lowerCAmelCase__ : Optional[Any] = use_karras_sigmas def _lowerCamelCase ( self : str , a : List[Any] , a : str=None ): '''simple docstring''' if schedule_timesteps is None: lowerCAmelCase__ : List[str] = self.timesteps lowerCAmelCase__ : int = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: lowerCAmelCase__ : List[str] = 1 if len(a ) > 1 else 0 else: lowerCAmelCase__ : Tuple = timestep.cpu().item() if torch.is_tensor(a ) else timestep lowerCAmelCase__ : Tuple = self._index_counter[timestep_int] return indices[pos].item() @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _lowerCamelCase ( self : Tuple , a : torch.FloatTensor , a : Union[float, torch.FloatTensor] , ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.index_for_timestep(a ) lowerCAmelCase__ : Any = self.sigmas[step_index] lowerCAmelCase__ : Optional[Any] = sample / ((sigma**2 + 1) ** 0.5) return sample def _lowerCamelCase ( self : List[str] , a : int , a : Union[str, torch.device] = None , a : Optional[int] = None , ): '''simple docstring''' lowerCAmelCase__ : Any = num_inference_steps lowerCAmelCase__ : Union[str, Any] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowerCAmelCase__ : Union[str, Any] = np.linspace(0 , num_train_timesteps - 1 , a , dtype=a )[::-1].copy() elif self.config.timestep_spacing == "leading": lowerCAmelCase__ : List[Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCAmelCase__ : Dict = (np.arange(0 , a ) * step_ratio).round()[::-1].copy().astype(a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowerCAmelCase__ : Tuple = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCAmelCase__ : int = (np.arange(a , 0 , -step_ratio )).round().copy().astype(a ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) lowerCAmelCase__ : str = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) lowerCAmelCase__ : List[Any] = np.log(a ) lowerCAmelCase__ : Optional[int] = np.interp(a , np.arange(0 , len(a ) ) , a ) if self.config.use_karras_sigmas: lowerCAmelCase__ : str = self._convert_to_karras(in_sigmas=a , num_inference_steps=self.num_inference_steps ) lowerCAmelCase__ : Union[str, Any] = np.array([self._sigma_to_t(a , a ) for sigma in sigmas] ) lowerCAmelCase__ : Tuple = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) lowerCAmelCase__ : Dict = torch.from_numpy(a ).to(device=a ) lowerCAmelCase__ : Union[str, Any] = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) lowerCAmelCase__ : Tuple = torch.from_numpy(a ) lowerCAmelCase__ : List[str] = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(a ).startswith('mps' ): # mps does not support float64 lowerCAmelCase__ : Optional[Any] = timesteps.to(a , dtype=torch.floataa ) else: lowerCAmelCase__ : Any = timesteps.to(device=a ) # empty dt and derivative lowerCAmelCase__ : str = None lowerCAmelCase__ : Optional[int] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowerCAmelCase__ : Optional[Any] = defaultdict(a ) def _lowerCamelCase ( self : Any , a : Dict , a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = np.log(a ) # get distribution lowerCAmelCase__ : Tuple = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range lowerCAmelCase__ : Optional[int] = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) lowerCAmelCase__ : List[str] = low_idx + 1 lowerCAmelCase__ : List[str] = log_sigmas[low_idx] lowerCAmelCase__ : Any = log_sigmas[high_idx] # interpolate sigmas lowerCAmelCase__ : Union[str, Any] = (low - log_sigma) / (low - high) lowerCAmelCase__ : List[Any] = np.clip(a , 0 , 1 ) # transform interpolation to time range lowerCAmelCase__ : List[Any] = (1 - w) * low_idx + w * high_idx lowerCAmelCase__ : Any = t.reshape(sigma.shape ) return t def _lowerCamelCase ( self : Tuple , a : torch.FloatTensor , a : Any ): '''simple docstring''' lowerCAmelCase__ : float = in_sigmas[-1].item() lowerCAmelCase__ : float = in_sigmas[0].item() lowerCAmelCase__ : Tuple = 7.0 # 7.0 is the value used in the paper lowerCAmelCase__ : Tuple = np.linspace(0 , 1 , a ) lowerCAmelCase__ : Any = sigma_min ** (1 / rho) lowerCAmelCase__ : Optional[Any] = sigma_max ** (1 / rho) lowerCAmelCase__ : Tuple = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _lowerCamelCase ( self : Any ): '''simple docstring''' return self.dt is None def _lowerCamelCase ( self : List[str] , a : Union[torch.FloatTensor, np.ndarray] , a : Union[float, torch.FloatTensor] , a : Union[torch.FloatTensor, np.ndarray] , a : bool = True , ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.index_for_timestep(a ) # advance index counter by 1 lowerCAmelCase__ : Tuple = timestep.cpu().item() if torch.is_tensor(a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowerCAmelCase__ : Union[str, Any] = self.sigmas[step_index] lowerCAmelCase__ : Union[str, Any] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method lowerCAmelCase__ : int = self.sigmas[step_index - 1] lowerCAmelCase__ : Any = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowerCAmelCase__ : Optional[int] = 0 lowerCAmelCase__ : Union[str, Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowerCAmelCase__ : int = sigma_hat if self.state_in_first_order else sigma_next lowerCAmelCase__ : Any = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowerCAmelCase__ : Dict = sigma_hat if self.state_in_first_order else sigma_next lowerCAmelCase__ : List[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": lowerCAmelCase__ : int = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.config.clip_sample: lowerCAmelCase__ : str = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowerCAmelCase__ : Dict = (sample - pred_original_sample) / sigma_hat # 3. delta timestep lowerCAmelCase__ : Optional[int] = sigma_next - sigma_hat # store for 2nd order step lowerCAmelCase__ : List[Any] = derivative lowerCAmelCase__ : str = dt lowerCAmelCase__ : Dict = sample else: # 2. 2nd order / Heun's method lowerCAmelCase__ : Union[str, Any] = (sample - pred_original_sample) / sigma_next lowerCAmelCase__ : Union[str, Any] = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample lowerCAmelCase__ : Dict = self.dt lowerCAmelCase__ : Optional[int] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" lowerCAmelCase__ : List[str] = None lowerCAmelCase__ : Tuple = None lowerCAmelCase__ : str = None lowerCAmelCase__ : Tuple = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=a ) def _lowerCamelCase ( self : int , a : torch.FloatTensor , a : torch.FloatTensor , a : torch.FloatTensor , ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(a ): # mps does not support float64 lowerCAmelCase__ : Optional[int] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) lowerCAmelCase__ : int = timesteps.to(original_samples.device , dtype=torch.floataa ) else: lowerCAmelCase__ : Union[str, Any] = self.timesteps.to(original_samples.device ) lowerCAmelCase__ : Optional[Any] = timesteps.to(original_samples.device ) lowerCAmelCase__ : List[Any] = [self.index_for_timestep(a , a ) for t in timesteps] lowerCAmelCase__ : List[str] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): lowerCAmelCase__ : Any = sigma.unsqueeze(-1 ) lowerCAmelCase__ : List[str] = original_samples + noise * sigma return noisy_samples def __len__( self : int ): '''simple docstring''' return self.config.num_train_timesteps
307
1
import numpy as np from PIL import Image def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> np.ndarray: lowerCAmelCase__ : Optional[Any] = np.array(SCREAMING_SNAKE_CASE_ ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) lowerCAmelCase__ : Any = 0 lowerCAmelCase__ : Optional[int] = 0 lowerCAmelCase__ : Union[str, Any] = 0 lowerCAmelCase__ : Union[str, Any] = 0 # compute the shape of the output matrix lowerCAmelCase__ : Optional[Any] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape lowerCAmelCase__ : Tuple = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix lowerCAmelCase__ : int = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase__ : Union[str, Any] = 0 lowerCAmelCase__ : Union[str, Any] = 0 return updated_arr def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> np.ndarray: lowerCAmelCase__ : List[str] = np.array(SCREAMING_SNAKE_CASE_ ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) lowerCAmelCase__ : str = 0 lowerCAmelCase__ : int = 0 lowerCAmelCase__ : Optional[int] = 0 lowerCAmelCase__ : Optional[int] = 0 # compute the shape of the output matrix lowerCAmelCase__ : Tuple = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape lowerCAmelCase__ : Optional[Any] = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix lowerCAmelCase__ : int = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : int = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="""avgpooling""", verbose=True) # Loading the image lowerCamelCase__ = Image.open("""path_to_image""") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
307
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: if isinstance(SCREAMING_SNAKE_CASE_ , collections.abc.Iterable ): return x return (x, x) @require_tf class A__ : def _lowerCamelCase ( self : List[Any] , a : List[str] , a : Optional[Any] ): '''simple docstring''' pass def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' pass def _lowerCamelCase ( self : Dict ): '''simple docstring''' pass def _lowerCamelCase ( self : Dict , a : int , a : str , a : List[Any] , a : Dict , a : List[str]=None , **a : Dict ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(a , a ) lowerCAmelCase__ : Tuple = TFVisionTextDualEncoderModel(a ) lowerCAmelCase__ : Tuple = model(input_ids=a , pixel_values=a , attention_mask=a ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) ) def _lowerCamelCase ( self : Union[str, Any] , a : Dict , a : Tuple , a : Dict , a : Union[str, Any] , a : List[Any]=None , **a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.get_vision_text_model(a , a ) lowerCAmelCase__ : List[Any] = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : Optional[int] = model(input_ids=a , pixel_values=a , attention_mask=a ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _lowerCamelCase ( self : List[str] , a : Optional[int] , a : Optional[int] , a : Union[str, Any] , a : List[Any] , a : Any=None , **a : Dict ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Optional[Any] = {'vision_model': vision_model, 'text_model': text_model} lowerCAmelCase__ : Tuple = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**a ) lowerCAmelCase__ : Union[str, Any] = model(input_ids=a , pixel_values=a , attention_mask=a ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _lowerCamelCase ( self : Any , a : Optional[int] , a : Optional[int] , a : Dict , a : Optional[int] , a : Optional[int]=None , **a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : int = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Dict = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : List[str] = model(input_ids=a , pixel_values=a , attention_mask=a ) lowerCAmelCase__ : Union[str, Any] = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(a ) lowerCAmelCase__ : Any = TFVisionTextDualEncoderModel.from_pretrained(a ) lowerCAmelCase__ : int = model(input_ids=a , pixel_values=a , attention_mask=a ) lowerCAmelCase__ : Union[str, Any] = after_output[0].numpy() lowerCAmelCase__ : Optional[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a , 1E-5 ) def _lowerCamelCase ( self : List[str] , a : Dict , a : Optional[int] , a : List[Any] , a : str , a : int=None , **a : Tuple ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Any = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : str = model( input_ids=a , pixel_values=a , attention_mask=a , output_attentions=a ) lowerCAmelCase__ : Union[str, Any] = output.vision_model_output.attentions self.assertEqual(len(a ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase__ : Optional[int] = to_atuple(vision_model.config.image_size ) lowerCAmelCase__ : Optional[Any] = to_atuple(vision_model.config.patch_size ) lowerCAmelCase__ : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCAmelCase__ : int = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCAmelCase__ : str = output.text_model_output.attentions self.assertEqual(len(a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCamelCase ( self : List[Any] , a : np.ndarray , a : np.ndarray , a : float ): '''simple docstring''' lowerCAmelCase__ : int = np.abs((a - b) ).max() self.assertLessEqual(a , a , f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**a ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Any = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**a ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : str = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() self.check_save_load(**a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**a ) @slow def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = self.get_pretrained_model_and_inputs() lowerCAmelCase__ : List[Any] = model_a(**a ) lowerCAmelCase__ : Optional[int] = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(a ) lowerCAmelCase__ : str = TFVisionTextDualEncoderModel.from_pretrained(a ) lowerCAmelCase__ : List[str] = model_a(**a ) lowerCAmelCase__ : int = after_outputs[0].numpy() lowerCAmelCase__ : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a , 1E-5 ) @require_tf class A__ ( __magic_name__ , unittest.TestCase ): def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-random-bert' ) lowerCAmelCase__ : int = 13 lowerCAmelCase__ : List[Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ : int = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ : Optional[Any] = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ : List[Any] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _lowerCamelCase ( self : List[Any] , a : Dict , a : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = TFViTModel(a , name='vision_model' ) lowerCAmelCase__ : str = TFBertModel(a , name='text_model' ) return vision_model, text_model def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = TFViTModelTester(self ) lowerCAmelCase__ : Tuple = TFBertModelTester(self ) lowerCAmelCase__ : Optional[int] = vit_model_tester.prepare_config_and_inputs() lowerCAmelCase__ : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : int = vision_config_and_inputs ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : str = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class A__ ( __magic_name__ , unittest.TestCase ): def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-deit-tf' , 'hf-internal-testing/tiny-random-roberta' ) lowerCAmelCase__ : Tuple = 13 lowerCAmelCase__ : Any = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ : Dict = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ : Any = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ : Tuple = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _lowerCamelCase ( self : str , a : Optional[Any] , a : Dict , a : Dict , a : Any , a : Any=None , **a : int ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Optional[int] = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : Any = model( input_ids=a , pixel_values=a , attention_mask=a , output_attentions=a ) lowerCAmelCase__ : Union[str, Any] = output.vision_model_output.attentions self.assertEqual(len(a ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowerCAmelCase__ : str = to_atuple(vision_model.config.image_size ) lowerCAmelCase__ : Union[str, Any] = to_atuple(vision_model.config.patch_size ) lowerCAmelCase__ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCAmelCase__ : int = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCAmelCase__ : List[str] = output.text_model_output.attentions self.assertEqual(len(a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCamelCase ( self : int , a : Optional[int] , a : int ): '''simple docstring''' lowerCAmelCase__ : Dict = TFDeiTModel(a , name='vision_model' ) lowerCAmelCase__ : List[Any] = TFRobertaModel(a , name='text_model' ) return vision_model, text_model def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Dict = TFDeiTModelTester(self ) lowerCAmelCase__ : List[str] = TFRobertaModelTester(self ) lowerCAmelCase__ : str = vit_model_tester.prepare_config_and_inputs() lowerCAmelCase__ : List[Any] = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[str] = vision_config_and_inputs ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : Any = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class A__ ( __magic_name__ , unittest.TestCase ): def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : int = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-clip-tf' , 'hf-internal-testing/tiny-random-bert' ) lowerCAmelCase__ : Dict = 13 lowerCAmelCase__ : str = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ : List[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ : Union[str, Any] = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ : Optional[int] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _lowerCamelCase ( self : str , a : int , a : List[str] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = TFCLIPVisionModel(a , name='vision_model' ) lowerCAmelCase__ : List[str] = TFBertModel(a , name='text_model' ) return vision_model, text_model def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Any = TFCLIPVisionModelTester(self ) lowerCAmelCase__ : Union[str, Any] = TFBertModelTester(self ) lowerCAmelCase__ : Any = clip_model_tester.prepare_config_and_inputs() lowerCAmelCase__ : Any = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = vision_config_and_inputs ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : str = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class A__ ( unittest.TestCase ): @slow def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Tuple = TFVisionTextDualEncoderModel.from_pretrained( 'clip-italian/clip-italian' , logit_scale_init_value=1.0 , from_pt=a ) lowerCAmelCase__ : List[Any] = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) lowerCAmelCase__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCAmelCase__ : Any = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=a , padding=a , return_tensors='np' ) lowerCAmelCase__ : Union[str, Any] = model(**a ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) lowerCAmelCase__ : List[str] = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , a , atol=1E-3 ) )
307
1
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = StableDiffusionDiffEditPipeline lowercase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'} lowercase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'} lowercase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowercase = frozenset([] ) def _lowerCamelCase ( self : int ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=a , ) lowerCAmelCase__ : Tuple = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=a , set_alpha_to_one=a , ) lowerCAmelCase__ : str = DDIMInverseScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=a , set_alpha_to_zero=a , ) torch.manual_seed(0 ) lowerCAmelCase__ : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCAmelCase__ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='gelu' , projection_dim=512 , ) lowerCAmelCase__ : str = CLIPTextModel(a ) lowerCAmelCase__ : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase__ : List[Any] = { 'unet': unet, 'scheduler': scheduler, 'inverse_scheduler': inverse_scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _lowerCamelCase ( self : Any , a : Tuple , a : Optional[int]=0 ): '''simple docstring''' lowerCAmelCase__ : Any = floats_tensor((1, 16, 16) , rng=random.Random(a ) ).to(a ) lowerCAmelCase__ : Optional[Any] = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(a ) ).to(a ) if str(a ).startswith('mps' ): lowerCAmelCase__ : Optional[Any] = torch.manual_seed(a ) else: lowerCAmelCase__ : Tuple = torch.Generator(device=a ).manual_seed(a ) lowerCAmelCase__ : Any = { 'prompt': 'a dog and a newt', 'mask_image': mask, 'image_latents': latents, 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def _lowerCamelCase ( self : Dict , a : str , a : Dict=0 ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(a ) ).to(a ) lowerCAmelCase__ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase__ : Union[str, Any] = Image.fromarray(np.uinta(a ) ).convert('RGB' ) if str(a ).startswith('mps' ): lowerCAmelCase__ : Tuple = torch.manual_seed(a ) else: lowerCAmelCase__ : Any = torch.Generator(device=a ).manual_seed(a ) lowerCAmelCase__ : List[Any] = { 'image': image, 'source_prompt': 'a cat and a frog', 'target_prompt': 'a dog and a newt', 'generator': generator, 'num_inference_steps': 2, 'num_maps_per_mask': 2, 'mask_encode_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def _lowerCamelCase ( self : Any , a : Dict , a : List[Any]=0 ): '''simple docstring''' lowerCAmelCase__ : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(a ) ).to(a ) lowerCAmelCase__ : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase__ : Dict = Image.fromarray(np.uinta(a ) ).convert('RGB' ) if str(a ).startswith('mps' ): lowerCAmelCase__ : Tuple = torch.manual_seed(a ) else: lowerCAmelCase__ : int = torch.Generator(device=a ).manual_seed(a ) lowerCAmelCase__ : List[str] = { 'image': image, 'prompt': 'a cat and a frog', 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'decode_latents': True, 'output_type': 'numpy', } return inputs def _lowerCamelCase ( self : str ): '''simple docstring''' if not hasattr(self.pipeline_class , '_optional_components' ): return lowerCAmelCase__ : str = self.get_dummy_components() lowerCAmelCase__ : Union[str, Any] = self.pipeline_class(**a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(a , a , a ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowerCAmelCase__ : Any = self.get_dummy_inputs(a ) lowerCAmelCase__ : Any = pipe(**a )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(a ) lowerCAmelCase__ : Tuple = self.pipeline_class.from_pretrained(a ) pipe_loaded.to(a ) pipe_loaded.set_progress_bar_config(disable=a ) for optional_component in pipe._optional_components: self.assertTrue( getattr(a , a ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) lowerCAmelCase__ : Tuple = self.get_dummy_inputs(a ) lowerCAmelCase__ : Optional[Any] = pipe_loaded(**a )[0] lowerCAmelCase__ : Dict = np.abs(output - output_loaded ).max() self.assertLess(a , 1E-4 ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : int = 'cpu' lowerCAmelCase__ : int = self.get_dummy_components() lowerCAmelCase__ : Dict = self.pipeline_class(**a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Union[str, Any] = self.get_dummy_mask_inputs(a ) lowerCAmelCase__ : Tuple = pipe.generate_mask(**a ) lowerCAmelCase__ : str = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowerCAmelCase__ : int = np.array([0] * 9 ) lowerCAmelCase__ : int = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(a , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = 'cpu' lowerCAmelCase__ : int = self.get_dummy_components() lowerCAmelCase__ : str = self.pipeline_class(**a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Union[str, Any] = self.get_dummy_inversion_inputs(a ) lowerCAmelCase__ : Tuple = pipe.invert(**a ).images lowerCAmelCase__ : List[str] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowerCAmelCase__ : Optional[int] = np.array( [0.5_1_5_0, 0.5_1_3_4, 0.5_0_4_3, 0.5_3_7_6, 0.4_6_9_4, 0.5_1_0_5_0, 0.5_0_1_5, 0.4_4_0_7, 0.4_7_9_9] , ) lowerCAmelCase__ : Tuple = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a , 1E-3 ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Any = 'cpu' lowerCAmelCase__ : List[str] = self.get_dummy_components() lowerCAmelCase__ : Dict = {'beta_start': 0.0_0_0_8_5, 'beta_end': 0.0_1_2, 'beta_schedule': 'scaled_linear'} lowerCAmelCase__ : List[str] = DPMSolverMultistepScheduler(**a ) lowerCAmelCase__ : List[Any] = DPMSolverMultistepInverseScheduler(**a ) lowerCAmelCase__ : Tuple = self.pipeline_class(**a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : int = self.get_dummy_inversion_inputs(a ) lowerCAmelCase__ : List[str] = pipe.invert(**a ).images lowerCAmelCase__ : List[Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowerCAmelCase__ : List[Any] = np.array( [0.5_1_5_0, 0.5_1_3_4, 0.5_0_4_3, 0.5_3_7_6, 0.4_6_9_4, 0.5_1_0_5_0, 0.5_0_1_5, 0.4_4_0_7, 0.4_7_9_9] , ) lowerCAmelCase__ : Union[str, Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a , 1E-3 ) @require_torch_gpu @slow class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def _lowerCamelCase ( cls : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' ) lowerCAmelCase__ : str = raw_image.convert('RGB' ).resize((768, 768) ) lowerCAmelCase__ : int = raw_image def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : List[Any] = torch.manual_seed(0 ) lowerCAmelCase__ : List[str] = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1' , safety_checker=a , torch_dtype=torch.floataa ) lowerCAmelCase__ : int = DDIMScheduler.from_config(pipe.scheduler.config ) lowerCAmelCase__ : Optional[int] = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Tuple = 'a bowl of fruit' lowerCAmelCase__ : Dict = 'a bowl of pears' lowerCAmelCase__ : str = pipe.generate_mask( image=self.raw_image , source_prompt=a , target_prompt=a , generator=a , ) lowerCAmelCase__ : Optional[Any] = pipe.invert( prompt=a , image=self.raw_image , inpaint_strength=0.7 , generator=a ).latents lowerCAmelCase__ : Optional[Any] = pipe( prompt=a , mask_image=a , image_latents=a , generator=a , negative_prompt=a , inpaint_strength=0.7 , output_type='numpy' , ).images[0] lowerCAmelCase__ : Tuple = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = torch.manual_seed(0 ) lowerCAmelCase__ : List[Any] = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1' , safety_checker=a , torch_dtype=torch.floataa ) lowerCAmelCase__ : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowerCAmelCase__ : Tuple = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Tuple = 'a bowl of fruit' lowerCAmelCase__ : List[Any] = 'a bowl of pears' lowerCAmelCase__ : Any = pipe.generate_mask( image=self.raw_image , source_prompt=a , target_prompt=a , generator=a , ) lowerCAmelCase__ : Dict = pipe.invert( prompt=a , image=self.raw_image , inpaint_strength=0.7 , generator=a , num_inference_steps=25 , ).latents lowerCAmelCase__ : Dict = pipe( prompt=a , mask_image=a , image_latents=a , generator=a , negative_prompt=a , inpaint_strength=0.7 , num_inference_steps=25 , output_type='numpy' , ).images[0] lowerCAmelCase__ : Union[str, Any] = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
307
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) lowerCamelCase__ = logging.getLogger(__name__) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: lowerCAmelCase__ : Dict = np.argmax(SCREAMING_SNAKE_CASE_ , axis=1 ) return np.sum(outputs == labels ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: with open(SCREAMING_SNAKE_CASE_ , encoding='utf_8' ) as f: lowerCAmelCase__ : Dict = csv.reader(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Dict = [] next(SCREAMING_SNAKE_CASE_ ) # skip the first line for line in tqdm(SCREAMING_SNAKE_CASE_ ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: lowerCAmelCase__ : Dict = [] for dataset in encoded_datasets: lowerCAmelCase__ : List[str] = len(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) lowerCAmelCase__ : Tuple = np.zeros((n_batch, 2) , dtype=np.intaa ) lowerCAmelCase__ : List[Any] = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) lowerCAmelCase__ : Tuple = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Tuple = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase__ : Any = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase__ : Optional[Any] = with_conta lowerCAmelCase__ : List[str] = with_conta lowerCAmelCase__ : List[Any] = len(SCREAMING_SNAKE_CASE_ ) - 1 lowerCAmelCase__ : Tuple = len(SCREAMING_SNAKE_CASE_ ) - 1 lowerCAmelCase__ : Tuple = with_conta lowerCAmelCase__ : Optional[int] = with_conta lowerCAmelCase__ : Optional[int] = mc_label lowerCAmelCase__ : Dict = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(SCREAMING_SNAKE_CASE_ ) for t in all_inputs ) ) return tensor_datasets def lowerCAmelCase__ ( ) -> int: lowerCAmelCase__ : int = argparse.ArgumentParser() parser.add_argument('--model_name' , type=SCREAMING_SNAKE_CASE_ , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=SCREAMING_SNAKE_CASE_ , default='' ) parser.add_argument('--eval_dataset' , type=SCREAMING_SNAKE_CASE_ , default='' ) parser.add_argument('--seed' , type=SCREAMING_SNAKE_CASE_ , default=42 ) parser.add_argument('--num_train_epochs' , type=SCREAMING_SNAKE_CASE_ , default=3 ) parser.add_argument('--train_batch_size' , type=SCREAMING_SNAKE_CASE_ , default=8 ) parser.add_argument('--eval_batch_size' , type=SCREAMING_SNAKE_CASE_ , default=16 ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=SCREAMING_SNAKE_CASE_ , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=SCREAMING_SNAKE_CASE_ , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=SCREAMING_SNAKE_CASE_ , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=SCREAMING_SNAKE_CASE_ , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=SCREAMING_SNAKE_CASE_ , default=6.25e-5 ) parser.add_argument('--warmup_steps' , default=0 , type=SCREAMING_SNAKE_CASE_ , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=SCREAMING_SNAKE_CASE_ , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=SCREAMING_SNAKE_CASE_ , default=0.01 ) parser.add_argument('--lm_coef' , type=SCREAMING_SNAKE_CASE_ , default=0.9 ) parser.add_argument('--n_valid' , type=SCREAMING_SNAKE_CASE_ , default=374 ) parser.add_argument('--server_ip' , type=SCREAMING_SNAKE_CASE_ , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=SCREAMING_SNAKE_CASE_ , default='' , help='Can be used for distant debugging.' ) lowerCAmelCase__ : List[str] = parser.parse_args() print(SCREAMING_SNAKE_CASE_ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE_ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) lowerCAmelCase__ : str = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) lowerCAmelCase__ : Dict = torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset lowerCAmelCase__ : Union[str, Any] = ['_start_', '_delimiter_', '_classify_'] lowerCAmelCase__ : Dict = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE_ ) ) model.to(SCREAMING_SNAKE_CASE_ ) # Load and encode the datasets def tokenize_and_encode(SCREAMING_SNAKE_CASE_ ): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return obj return [tokenize_and_encode(SCREAMING_SNAKE_CASE_ ) for o in obj] logger.info('Encoding dataset...' ) lowerCAmelCase__ : List[Any] = load_rocstories_dataset(args.train_dataset ) lowerCAmelCase__ : str = load_rocstories_dataset(args.eval_dataset ) lowerCAmelCase__ : Union[str, Any] = (train_dataset, eval_dataset) lowerCAmelCase__ : List[str] = tokenize_and_encode(SCREAMING_SNAKE_CASE_ ) # Compute the max input length for the Transformer lowerCAmelCase__ : Union[str, Any] = model.config.n_positions // 2 - 2 lowerCAmelCase__ : Tuple = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) lowerCAmelCase__ : Dict = min(SCREAMING_SNAKE_CASE_ , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders lowerCAmelCase__ : int = pre_process_datasets(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = tensor_datasets[0], tensor_datasets[1] lowerCAmelCase__ : str = TensorDataset(*SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Tuple = RandomSampler(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Tuple = DataLoader(SCREAMING_SNAKE_CASE_ , sampler=SCREAMING_SNAKE_CASE_ , batch_size=args.train_batch_size ) lowerCAmelCase__ : Optional[Any] = TensorDataset(*SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Dict = SequentialSampler(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = DataLoader(SCREAMING_SNAKE_CASE_ , sampler=SCREAMING_SNAKE_CASE_ , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: lowerCAmelCase__ : Union[str, Any] = args.max_steps lowerCAmelCase__ : int = args.max_steps // (len(SCREAMING_SNAKE_CASE_ ) // args.gradient_accumulation_steps) + 1 else: lowerCAmelCase__ : Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) // args.gradient_accumulation_steps * args.num_train_epochs lowerCAmelCase__ : Optional[int] = list(model.named_parameters() ) lowerCAmelCase__ : Tuple = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] lowerCAmelCase__ : str = [ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] lowerCAmelCase__ : Union[str, Any] = AdamW(SCREAMING_SNAKE_CASE_ , lr=args.learning_rate , eps=args.adam_epsilon ) lowerCAmelCase__ : int = get_linear_schedule_with_warmup( SCREAMING_SNAKE_CASE_ , num_warmup_steps=args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE_ ) if args.do_train: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): lowerCAmelCase__ : str = 0 lowerCAmelCase__ : int = 0 lowerCAmelCase__ : str = tqdm(SCREAMING_SNAKE_CASE_ , desc='Training' ) for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Union[str, Any] = tuple(t.to(SCREAMING_SNAKE_CASE_ ) for t in batch ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = batch lowerCAmelCase__ : Tuple = model(SCREAMING_SNAKE_CASE_ , mc_token_ids=SCREAMING_SNAKE_CASE_ , lm_labels=SCREAMING_SNAKE_CASE_ , mc_labels=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : str = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() lowerCAmelCase__ : Optional[int] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 lowerCAmelCase__ : List[str] = 'Training loss: {:.2e} lr: {:.2e}'.format(SCREAMING_SNAKE_CASE_ , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer lowerCAmelCase__ : Optional[int] = model.module if hasattr(SCREAMING_SNAKE_CASE_ , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` lowerCAmelCase__ : List[str] = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[str] = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE_ ) torch.save(model_to_save.state_dict() , SCREAMING_SNAKE_CASE_ ) model_to_save.config.to_json_file(SCREAMING_SNAKE_CASE_ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned lowerCAmelCase__ : Dict = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) lowerCAmelCase__ : List[Any] = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(SCREAMING_SNAKE_CASE_ ) if args.do_eval: model.eval() lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = 0, 0 lowerCAmelCase__ , lowerCAmelCase__ : Any = 0, 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , desc='Evaluating' ): lowerCAmelCase__ : str = tuple(t.to(SCREAMING_SNAKE_CASE_ ) for t in batch ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Tuple = batch with torch.no_grad(): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[str] = model( SCREAMING_SNAKE_CASE_ , mc_token_ids=SCREAMING_SNAKE_CASE_ , lm_labels=SCREAMING_SNAKE_CASE_ , mc_labels=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = mc_logits.detach().cpu().numpy() lowerCAmelCase__ : List[Any] = mc_labels.to('cpu' ).numpy() lowerCAmelCase__ : str = accuracy(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 lowerCAmelCase__ : Optional[int] = eval_loss / nb_eval_steps lowerCAmelCase__ : Any = eval_accuracy / nb_eval_examples lowerCAmelCase__ : Union[str, Any] = tr_loss / nb_tr_steps if args.do_train else None lowerCAmelCase__ : Tuple = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} lowerCAmelCase__ : Dict = os.path.join(args.output_dir , 'eval_results.txt' ) with open(SCREAMING_SNAKE_CASE_ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , SCREAMING_SNAKE_CASE_ , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
307
1
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = """Hello, World!""" lowerCamelCase__ = """en_XX""" def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: lowerCAmelCase__ : Optional[int] = Path('data_bin' ) lowerCAmelCase__ : str = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(SCREAMING_SNAKE_CASE_ ).parent ) , checkpoint_file=Path(SCREAMING_SNAKE_CASE_ ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(SCREAMING_SNAKE_CASE_ ) , bpe='sentencepiece' , sentencepiece_model=str(Path(SCREAMING_SNAKE_CASE_ ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , ) xmod.eval() # disable dropout print(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = xmod.model.encoder.sentence_encoder lowerCAmelCase__ : Any = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: lowerCAmelCase__ : Optional[Any] = xmod.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our X-MOD config:' , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Tuple = XmodForSequenceClassification(SCREAMING_SNAKE_CASE_ ) if classification_head else XmodForMaskedLM(SCREAMING_SNAKE_CASE_ ) model.eval() # Now let's copy all the weights. # Embeddings lowerCAmelCase__ : str = xmod_sent_encoder.embed_tokens.weight lowerCAmelCase__ : List[Any] = xmod_sent_encoder.embed_positions.weight lowerCAmelCase__ : Dict = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. lowerCAmelCase__ : List[Any] = xmod_sent_encoder.layernorm_embedding.weight lowerCAmelCase__ : Optional[Any] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowerCAmelCase__ : int = model.roberta.encoder.layer[i] lowerCAmelCase__ : int = xmod_sent_encoder.layers[i] # self attention lowerCAmelCase__ : Any = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('Dimensions of self-attention weights do not match.' ) lowerCAmelCase__ : Tuple = xmod_layer.self_attn.q_proj.weight lowerCAmelCase__ : List[str] = xmod_layer.self_attn.q_proj.bias lowerCAmelCase__ : Tuple = xmod_layer.self_attn.k_proj.weight lowerCAmelCase__ : int = xmod_layer.self_attn.k_proj.bias lowerCAmelCase__ : str = xmod_layer.self_attn.v_proj.weight lowerCAmelCase__ : Union[str, Any] = xmod_layer.self_attn.v_proj.bias # self-attention output lowerCAmelCase__ : Optional[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('Dimensions of self-attention output weights do not match.' ) lowerCAmelCase__ : List[str] = xmod_layer.self_attn.out_proj.weight lowerCAmelCase__ : List[str] = xmod_layer.self_attn.out_proj.bias lowerCAmelCase__ : Optional[Any] = xmod_layer.self_attn_layer_norm.weight lowerCAmelCase__ : List[str] = xmod_layer.self_attn_layer_norm.bias # intermediate lowerCAmelCase__ : str = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of intermediate weights do not match.' ) lowerCAmelCase__ : List[str] = xmod_layer.fca.weight lowerCAmelCase__ : Optional[int] = xmod_layer.fca.bias # output lowerCAmelCase__ : List[Any] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of feed-forward weights do not match.' ) lowerCAmelCase__ : Union[str, Any] = xmod_layer.fca.weight lowerCAmelCase__ : List[str] = xmod_layer.fca.bias lowerCAmelCase__ : List[Any] = xmod_layer.final_layer_norm.weight lowerCAmelCase__ : int = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: lowerCAmelCase__ : List[Any] = xmod_layer.adapter_layer_norm.weight lowerCAmelCase__ : Any = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('Lists of language adapters do not match.' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): lowerCAmelCase__ : List[str] = bert_output.adapter_modules[lang_code] lowerCAmelCase__ : int = xmod_layer.adapter_modules[lang_code] lowerCAmelCase__ : str = from_adapter.fca.weight lowerCAmelCase__ : int = from_adapter.fca.bias lowerCAmelCase__ : str = from_adapter.fca.weight lowerCAmelCase__ : List[str] = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: lowerCAmelCase__ : Any = xmod_sent_encoder.layer_norm.weight lowerCAmelCase__ : int = xmod_sent_encoder.layer_norm.bias if classification_head: lowerCAmelCase__ : str = xmod.model.classification_heads['mnli'].dense.weight lowerCAmelCase__ : Any = xmod.model.classification_heads['mnli'].dense.bias lowerCAmelCase__ : Union[str, Any] = xmod.model.classification_heads['mnli'].out_proj.weight lowerCAmelCase__ : Tuple = xmod.model.classification_heads['mnli'].out_proj.bias else: # LM Head lowerCAmelCase__ : str = xmod.model.encoder.lm_head.dense.weight lowerCAmelCase__ : List[Any] = xmod.model.encoder.lm_head.dense.bias lowerCAmelCase__ : Any = xmod.model.encoder.lm_head.layer_norm.weight lowerCAmelCase__ : str = xmod.model.encoder.lm_head.layer_norm.bias lowerCAmelCase__ : Dict = xmod.model.encoder.lm_head.weight lowerCAmelCase__ : str = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCAmelCase__ : int = xmod.encode(SCREAMING_SNAKE_CASE_ ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : int = model(SCREAMING_SNAKE_CASE_ )[0] if classification_head: lowerCAmelCase__ : Union[str, Any] = xmod.model.classification_heads['mnli'](xmod.extract_features(SCREAMING_SNAKE_CASE_ ) ) else: lowerCAmelCase__ : List[str] = xmod.model(SCREAMING_SNAKE_CASE_ , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) lowerCAmelCase__ : str = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 lowerCAmelCase__ : int = torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(parents=SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) lowerCamelCase__ = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
307
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCamelCase__ = """python tqdm regex requests packaging filelock numpy tokenizers""".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("""dataclasses""") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("""importlib_metadata""") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> int: require_version(deps[pkg] , SCREAMING_SNAKE_CASE_ )
307
1
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False ) -> str: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Tuple = F'''Expected string as input, found {type(SCREAMING_SNAKE_CASE_ )}''' raise ValueError(SCREAMING_SNAKE_CASE_ ) if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : List[Any] = F'''Expected boolean as use_pascal parameter, found {type(SCREAMING_SNAKE_CASE_ )}''' raise ValueError(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[Any] = input_str.split('_' ) lowerCAmelCase__ : Any = 0 if use_pascal else 1 lowerCAmelCase__ : Union[str, Any] = words[start_index:] lowerCAmelCase__ : List[str] = [word[0].upper() + word[1:] for word in words_to_capitalize] lowerCAmelCase__ : Optional[int] = '' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
307
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class A__ ( __magic_name__ ): lowercase = (DPMSolverSDEScheduler,) lowercase = 10 def _lowerCamelCase ( self : Optional[int] , **a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = { 'num_train_timesteps': 1_100, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'noise_sampler_seed': 0, } config.update(**a ) return config def _lowerCamelCase ( self : Tuple ): '''simple docstring''' for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=a ) def _lowerCamelCase ( self : int ): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=a , beta_end=a ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=a ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : int = self.scheduler_classes[0] lowerCAmelCase__ : Tuple = self.get_scheduler_config() lowerCAmelCase__ : List[Any] = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ : Dict = self.dummy_model() lowerCAmelCase__ : int = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ : int = sample.to(a ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : List[Any] = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : str = model(a , a ) lowerCAmelCase__ : int = scheduler.step(a , a , a ) lowerCAmelCase__ : Any = output.prev_sample lowerCAmelCase__ : List[Any] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Optional[int] = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_7_8_2_1_0_4_4_9_2_1_8_7_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_7_8_7_0_5_9_6_4_5_6_5_2_7_7 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_2_1_1_1_8_1_6_4_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_6_8_9_2_2_9_9_6_5_2 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3 def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.scheduler_classes[0] lowerCAmelCase__ : List[str] = self.get_scheduler_config(prediction_type='v_prediction' ) lowerCAmelCase__ : Any = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ : Optional[int] = self.dummy_model() lowerCAmelCase__ : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ : Any = sample.to(a ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : str = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : str = model(a , a ) lowerCAmelCase__ : Dict = scheduler.step(a , a , a ) lowerCAmelCase__ : Tuple = output.prev_sample lowerCAmelCase__ : int = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Union[str, Any] = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_2_4.7_7_1_4_9_2_0_0_4_3_9_4_5_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_2_2_6_2_8_9_0_1_4_8_1_6_2_8_4 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_2_8.1_6_6_3_3_6_0_5_9_5_7_0_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_6_8_8_3_2_6_0_0_1_1_6_7_2_9_7 ) < 1E-3 else: assert abs(result_sum.item() - 1_1_9.8_4_8_7_5_4_8_8_2_8_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.1_5_6_0_5_3_0_6_6_2_5_3_6_6_2_1 ) < 1E-3 def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.scheduler_classes[0] lowerCAmelCase__ : Optional[int] = self.get_scheduler_config() lowerCAmelCase__ : int = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps , device=a ) lowerCAmelCase__ : Tuple = self.dummy_model() lowerCAmelCase__ : Any = self.dummy_sample_deter.to(a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowerCAmelCase__ : Dict = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : Optional[int] = model(a , a ) lowerCAmelCase__ : Tuple = scheduler.step(a , a , a ) lowerCAmelCase__ : Dict = output.prev_sample lowerCAmelCase__ : Union[str, Any] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Dict = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_6_9_5_7_3_9_7_4_6_0_9_3_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_8_0_5_9_3_4_6_0_7_9_8_2_6_3_5 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_3_6_3_7_6_9_5_3_1_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_8_3_8_2_4_1_5_7_7_1 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3 def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.scheduler_classes[0] lowerCAmelCase__ : Any = self.get_scheduler_config() lowerCAmelCase__ : Any = scheduler_class(**a , use_karras_sigmas=a ) scheduler.set_timesteps(self.num_inference_steps , device=a ) lowerCAmelCase__ : str = self.dummy_model() lowerCAmelCase__ : Any = self.dummy_sample_deter.to(a ) * scheduler.init_noise_sigma lowerCAmelCase__ : str = sample.to(a ) for t in scheduler.timesteps: lowerCAmelCase__ : Any = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : int = model(a , a ) lowerCAmelCase__ : Union[str, Any] = scheduler.step(a , a , a ) lowerCAmelCase__ : Union[str, Any] = output.prev_sample lowerCAmelCase__ : Optional[int] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Any = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_7_6.6_6_9_7_4_1_3_5_7_4_2_1_8_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_7.6_3_6_5_3_5_6_4_4_5_3_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2 else: assert abs(result_sum.item() - 1_7_0.3_1_3_5_2_2_3_3_8_8_6_7_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2
307
1
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser lowerCamelCase__ = logging.getLogger(__name__) torch.set_grad_enabled(False) lowerCamelCase__ = """cuda""" if torch.cuda.is_available() else """cpu""" def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=100 , SCREAMING_SNAKE_CASE_=" " ) -> List[str]: lowerCAmelCase__ : Optional[Any] = text.split(SCREAMING_SNAKE_CASE_ ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> dict: lowerCAmelCase__ , lowerCAmelCase__ : Tuple = [], [] for title, text in zip(documents['title'] , documents['text'] ): if text is not None: for passage in split_text(SCREAMING_SNAKE_CASE_ ): titles.append(title if title is not None else '' ) texts.append(SCREAMING_SNAKE_CASE_ ) return {"title": titles, "text": texts} def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> dict: lowerCAmelCase__ : Union[str, Any] = ctx_tokenizer( documents['title'] , documents['text'] , truncation=SCREAMING_SNAKE_CASE_ , padding='longest' , return_tensors='pt' )['input_ids'] lowerCAmelCase__ : Union[str, Any] = ctx_encoder(input_ids.to(device=SCREAMING_SNAKE_CASE_ ) , return_dict=SCREAMING_SNAKE_CASE_ ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> Optional[int]: ###################################### logger.info('Step 1 - Create the dataset' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way lowerCAmelCase__ : Optional[int] = load_dataset( 'csv' , data_files=[rag_example_args.csv_path] , split='train' , delimiter='\t' , column_names=['title', 'text'] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words lowerCAmelCase__ : List[Any] = dataset.map(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , num_proc=processing_args.num_proc ) # And compute the embeddings lowerCAmelCase__ : Any = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) lowerCAmelCase__ : Union[str, Any] = Features( {'text': Value('string' ), 'title': Value('string' ), 'embeddings': Sequence(Value('float32' ) )} ) # optional, save as float32 instead of float64 to save space lowerCAmelCase__ : Any = dataset.map( partial(SCREAMING_SNAKE_CASE_ , ctx_encoder=SCREAMING_SNAKE_CASE_ , ctx_tokenizer=SCREAMING_SNAKE_CASE_ ) , batched=SCREAMING_SNAKE_CASE_ , batch_size=processing_args.batch_size , features=SCREAMING_SNAKE_CASE_ , ) # And finally save your dataset lowerCAmelCase__ : Optional[int] = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset' ) dataset.save_to_disk(SCREAMING_SNAKE_CASE_ ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('Step 2 - Index the dataset' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search lowerCAmelCase__ : Tuple = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('embeddings' , custom_index=SCREAMING_SNAKE_CASE_ ) # And save the index lowerCAmelCase__ : str = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset_hnsw_index.faiss' ) dataset.get_index('embeddings' ).save(SCREAMING_SNAKE_CASE_ ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class A__ : lowercase = field( default=str(Path(__magic_name__ ).parent / 'test_run' / 'dummy-kb' / 'my_knowledge_dataset.csv' ) , metadata={'help': 'Path to a tab-separated csv file with columns \'title\' and \'text\''} , ) lowercase = field( default=__magic_name__ , metadata={'help': 'Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'} , ) lowercase = field( default='facebook/rag-sequence-nq' , metadata={'help': 'The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''} , ) lowercase = field( default='facebook/dpr-ctx_encoder-multiset-base' , metadata={ 'help': ( 'The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or' ' \'facebook/dpr-ctx_encoder-multiset-base\'' ) } , ) lowercase = field( default=str(Path(__magic_name__ ).parent / 'test_run' / 'dummy-kb' ) , metadata={'help': 'Path to a directory where the dataset passages and the index will be saved'} , ) @dataclass class A__ : lowercase = field( default=__magic_name__ , metadata={ 'help': 'The number of processes to use to split the documents into passages. Default is single process.' } , ) lowercase = field( default=16 , metadata={ 'help': 'The batch size to use when computing the passages embeddings using the DPR context encoder.' } , ) @dataclass class A__ : lowercase = field( default=768 , metadata={'help': 'The dimension of the embeddings to pass to the HNSW Faiss index.'} , ) lowercase = field( default=128 , metadata={ 'help': ( 'The number of bi-directional links created for every new element during the HNSW index construction.' ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) lowerCamelCase__ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: lowerCamelCase__ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
307
import os import string import sys lowerCamelCase__ = 1 << 8 lowerCamelCase__ = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } lowerCamelCase__ = KEYMAP["""up"""] lowerCamelCase__ = KEYMAP["""left"""] if sys.platform == "win32": lowerCamelCase__ = [] lowerCamelCase__ = { b"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, b"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): lowerCamelCase__ = ord(str(i)) def lowerCAmelCase__ ( ) -> Dict: if os.name == "nt": import msvcrt lowerCAmelCase__ : Dict = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(SCREAMING_SNAKE_CASE_ ) == 0: # Read the keystroke lowerCAmelCase__ : Optional[Any] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCAmelCase__ : Dict = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCAmelCase__ : Dict = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(SCREAMING_SNAKE_CASE_ ) if ord(SCREAMING_SNAKE_CASE_ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) lowerCAmelCase__ : Dict = chr(KEYMAP['esc'] ) except KeyError: lowerCAmelCase__ : Dict = cha[1] else: lowerCAmelCase__ : List[Any] = ch.decode(SCREAMING_SNAKE_CASE_ ) else: lowerCAmelCase__ : Tuple = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCAmelCase__ : Tuple = sys.stdin.fileno() lowerCAmelCase__ : Any = termios.tcgetattr(SCREAMING_SNAKE_CASE_ ) try: tty.setraw(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = sys.stdin.read(1 ) finally: termios.tcsetattr(SCREAMING_SNAKE_CASE_ , termios.TCSADRAIN , SCREAMING_SNAKE_CASE_ ) return ch def lowerCAmelCase__ ( ) -> Union[str, Any]: lowerCAmelCase__ : Any = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(SCREAMING_SNAKE_CASE_ ) == KEYMAP["esc"]: lowerCAmelCase__ : Union[str, Any] = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) == KEYMAP["mod_int"]: lowerCAmelCase__ : str = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(SCREAMING_SNAKE_CASE_ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(SCREAMING_SNAKE_CASE_ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
307
1
import re def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> bool: lowerCAmelCase__ : Any = re.compile( r'^(?:0|94|\+94|0{2}94)' r'7(0|1|2|4|5|6|7|8)' r'(-| |)' r'\d{7}$' ) return bool(re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": lowerCamelCase__ = """0094702343221""" print(is_sri_lankan_phone_number(phone))
307
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: return "".join([hex(SCREAMING_SNAKE_CASE_ )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE_ )] ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(SCREAMING_SNAKE_CASE_ ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE_ ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
307
1
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(""">=""", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType lowerCamelCase__ = get_logger(__name__) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 ) -> Optional[Any]: os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) with FSDP.state_dict_type( SCREAMING_SNAKE_CASE_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): lowerCAmelCase__ : int = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: lowerCAmelCase__ : Tuple = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' lowerCAmelCase__ : Dict = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if accelerator.process_index == 0: logger.info(F'''Saving model to {output_model_file}''' ) torch.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: lowerCAmelCase__ : Any = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) lowerCAmelCase__ : List[str] = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F'''Saving model to {output_model_file}''' ) torch.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: lowerCAmelCase__ : int = os.path.join(SCREAMING_SNAKE_CASE_ , F'''{MODEL_NAME}_{model_index}''' ) os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) logger.info(F'''Saving model to {ckpt_dir}''' ) lowerCAmelCase__ : int = {'model': state_dict} dist_cp.save_state_dict( state_dict=SCREAMING_SNAKE_CASE_ , storage_writer=dist_cp.FileSystemWriter(SCREAMING_SNAKE_CASE_ ) , planner=DefaultSavePlanner() , ) logger.info(F'''Model saved to {ckpt_dir}''' ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 ) -> Union[str, Any]: accelerator.wait_for_everyone() with FSDP.state_dict_type( SCREAMING_SNAKE_CASE_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(SCREAMING_SNAKE_CASE_ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object' ) return lowerCAmelCase__ : List[str] = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' lowerCAmelCase__ : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F'''Loading model from {input_model_file}''' ) lowerCAmelCase__ : str = torch.load(SCREAMING_SNAKE_CASE_ ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: lowerCAmelCase__ : Any = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) lowerCAmelCase__ : List[str] = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F'''Loading model from {input_model_file}''' ) lowerCAmelCase__ : Tuple = torch.load(SCREAMING_SNAKE_CASE_ ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: lowerCAmelCase__ : Union[str, Any] = ( os.path.join(SCREAMING_SNAKE_CASE_ , F'''{MODEL_NAME}_{model_index}''' ) if F'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading model from {ckpt_dir}''' ) lowerCAmelCase__ : List[str] = {'model': model.state_dict()} dist_cp.load_state_dict( state_dict=SCREAMING_SNAKE_CASE_ , storage_reader=dist_cp.FileSystemReader(SCREAMING_SNAKE_CASE_ ) , planner=DefaultLoadPlanner() , ) lowerCAmelCase__ : List[str] = state_dict['model'] logger.info(F'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 ) -> Optional[int]: os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) with FSDP.state_dict_type( SCREAMING_SNAKE_CASE_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): lowerCAmelCase__ : List[Any] = FSDP.optim_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: lowerCAmelCase__ : Tuple = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) lowerCAmelCase__ : str = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F'''Optimizer state saved in {output_optimizer_file}''' ) else: lowerCAmelCase__ : Any = os.path.join(SCREAMING_SNAKE_CASE_ , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) logger.info(F'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(SCREAMING_SNAKE_CASE_ ) , planner=DefaultSavePlanner() , ) logger.info(F'''Optimizer state saved in {ckpt_dir}''' ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 ) -> Any: accelerator.wait_for_everyone() with FSDP.state_dict_type( SCREAMING_SNAKE_CASE_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: lowerCAmelCase__ : List[str] = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: lowerCAmelCase__ : Any = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) lowerCAmelCase__ : Tuple = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F'''Loading Optimizer state from {input_optimizer_file}''' ) lowerCAmelCase__ : Tuple = torch.load(SCREAMING_SNAKE_CASE_ ) logger.info(F'''Optimizer state loaded from {input_optimizer_file}''' ) else: lowerCAmelCase__ : List[str] = ( os.path.join(SCREAMING_SNAKE_CASE_ , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if F'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading Optimizer from {ckpt_dir}''' ) lowerCAmelCase__ : Optional[Any] = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(SCREAMING_SNAKE_CASE_ ) , ) lowerCAmelCase__ : Dict = optim_state['optimizer'] logger.info(F'''Optimizer loaded from {ckpt_dir}''' ) lowerCAmelCase__ : List[str] = FSDP.optim_state_dict_to_load(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) optimizer.load_state_dict(SCREAMING_SNAKE_CASE_ )
307
from __future__ import annotations def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> list[list[int]]: lowerCAmelCase__ : list[list[int]] = [] create_all_state(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , [] , SCREAMING_SNAKE_CASE_ ) return result def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> None: if level == 0: total_list.append(current_list[:] ) return for i in range(SCREAMING_SNAKE_CASE_ , total_number - level + 2 ): current_list.append(SCREAMING_SNAKE_CASE_ ) create_all_state(i + 1 , SCREAMING_SNAKE_CASE_ , level - 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) current_list.pop() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> None: for i in total_list: print(*SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowerCamelCase__ = 4 lowerCamelCase__ = 2 lowerCamelCase__ = generate_all_combinations(n, k) print_all_state(total_list)
307
1
import os import string import sys lowerCamelCase__ = 1 << 8 lowerCamelCase__ = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } lowerCamelCase__ = KEYMAP["""up"""] lowerCamelCase__ = KEYMAP["""left"""] if sys.platform == "win32": lowerCamelCase__ = [] lowerCamelCase__ = { b"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, b"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): lowerCamelCase__ = ord(str(i)) def lowerCAmelCase__ ( ) -> Dict: if os.name == "nt": import msvcrt lowerCAmelCase__ : Dict = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(SCREAMING_SNAKE_CASE_ ) == 0: # Read the keystroke lowerCAmelCase__ : Optional[Any] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCAmelCase__ : Dict = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCAmelCase__ : Dict = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(SCREAMING_SNAKE_CASE_ ) if ord(SCREAMING_SNAKE_CASE_ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) lowerCAmelCase__ : Dict = chr(KEYMAP['esc'] ) except KeyError: lowerCAmelCase__ : Dict = cha[1] else: lowerCAmelCase__ : List[Any] = ch.decode(SCREAMING_SNAKE_CASE_ ) else: lowerCAmelCase__ : Tuple = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCAmelCase__ : Tuple = sys.stdin.fileno() lowerCAmelCase__ : Any = termios.tcgetattr(SCREAMING_SNAKE_CASE_ ) try: tty.setraw(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = sys.stdin.read(1 ) finally: termios.tcsetattr(SCREAMING_SNAKE_CASE_ , termios.TCSADRAIN , SCREAMING_SNAKE_CASE_ ) return ch def lowerCAmelCase__ ( ) -> Union[str, Any]: lowerCAmelCase__ : Any = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(SCREAMING_SNAKE_CASE_ ) == KEYMAP["esc"]: lowerCAmelCase__ : Union[str, Any] = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) == KEYMAP["mod_int"]: lowerCAmelCase__ : str = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(SCREAMING_SNAKE_CASE_ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(SCREAMING_SNAKE_CASE_ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
307
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class A__ ( unittest.TestCase ): @parameterized.expand([(None,), ('foo.json',)] ) def _lowerCamelCase ( self : Dict , a : str ): '''simple docstring''' lowerCAmelCase__ : List[str] = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(a , config_name=a ) lowerCAmelCase__ : Tuple = GenerationConfig.from_pretrained(a , config_name=a ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , a ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , a ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Dict = AutoConfig.from_pretrained('gpt2' ) lowerCAmelCase__ : Any = GenerationConfig.from_model_config(a ) lowerCAmelCase__ : Any = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(a , a ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = GenerationConfig() lowerCAmelCase__ : Dict = { 'max_new_tokens': 1_024, 'foo': 'bar', } lowerCAmelCase__ : List[Any] = copy.deepcopy(a ) lowerCAmelCase__ : Dict = generation_config.update(**a ) # update_kwargs was not modified (no side effects) self.assertEqual(a , a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(a , {'foo': 'bar'} ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Dict = GenerationConfig() lowerCAmelCase__ : List[Any] = 'bar' with tempfile.TemporaryDirectory('test-generation-config' ) as tmp_dir: generation_config.save_pretrained(a ) lowerCAmelCase__ : List[Any] = GenerationConfig.from_pretrained(a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , 'bar' ) lowerCAmelCase__ : int = GenerationConfig.from_model_config(a ) assert not hasattr(a , 'foo' ) # no new kwargs should be initialized if from config def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , a ) self.assertEqual(default_config.num_beams , 1 ) lowerCAmelCase__ : List[Any] = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , a ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(a ) lowerCAmelCase__ : Any = GenerationConfig.from_pretrained(a , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , a ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class A__ ( unittest.TestCase ): @classmethod def _lowerCamelCase ( cls : int ): '''simple docstring''' lowerCAmelCase__ : List[str] = TOKEN HfFolder.save_token(a ) @classmethod def _lowerCamelCase ( cls : Optional[int] ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-generation-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-generation-config-org' ) except HTTPError: pass def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('test-generation-config' , use_auth_token=self._token ) lowerCAmelCase__ : Any = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) # Reset repo delete_repo(token=self._token , repo_id='test-generation-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( a , repo_id='test-generation-config' , push_to_hub=a , use_auth_token=self._token ) lowerCAmelCase__ : Tuple = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : int = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('valid_org/test-generation-config-org' , use_auth_token=self._token ) lowerCAmelCase__ : Dict = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-generation-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( a , repo_id='valid_org/test-generation-config-org' , push_to_hub=a , use_auth_token=self._token ) lowerCAmelCase__ : List[str] = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) )
307
1
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class A__ : def __init__( self : List[Any] , a : Optional[int] , a : Tuple=13 , a : Union[str, Any]=7 , a : str=True , a : Optional[Any]=True , a : int=True , a : int=True , a : Tuple=99 , a : List[str]=64 , a : str=32 , a : Optional[Any]=5 , a : List[Any]=4 , a : Tuple=37 , a : str="gelu" , a : Union[str, Any]=0.1 , a : Dict=0.1 , a : List[Any]=512 , a : Optional[int]=16 , a : Optional[Any]=2 , a : Dict=0.0_2 , a : int=3 , a : Optional[Any]=4 , a : Union[str, Any]=None , ): '''simple docstring''' lowerCAmelCase__ : Tuple = parent lowerCAmelCase__ : int = batch_size lowerCAmelCase__ : int = seq_length lowerCAmelCase__ : Union[str, Any] = is_training lowerCAmelCase__ : Optional[Any] = use_input_mask lowerCAmelCase__ : List[str] = use_token_type_ids lowerCAmelCase__ : str = use_labels lowerCAmelCase__ : int = vocab_size lowerCAmelCase__ : int = hidden_size lowerCAmelCase__ : str = embedding_size lowerCAmelCase__ : int = num_hidden_layers lowerCAmelCase__ : Any = num_attention_heads lowerCAmelCase__ : List[str] = intermediate_size lowerCAmelCase__ : str = hidden_act lowerCAmelCase__ : Union[str, Any] = hidden_dropout_prob lowerCAmelCase__ : List[str] = attention_probs_dropout_prob lowerCAmelCase__ : Optional[int] = max_position_embeddings lowerCAmelCase__ : Union[str, Any] = type_vocab_size lowerCAmelCase__ : Any = type_sequence_label_size lowerCAmelCase__ : Optional[int] = initializer_range lowerCAmelCase__ : List[str] = num_labels lowerCAmelCase__ : List[str] = num_choices lowerCAmelCase__ : Any = scope def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ : Optional[int] = None if self.use_input_mask: lowerCAmelCase__ : int = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ : int = None if self.use_token_type_ids: lowerCAmelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ : int = None lowerCAmelCase__ : Tuple = None lowerCAmelCase__ : Dict = None if self.use_labels: lowerCAmelCase__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self : Any , a : str , a : Any , a : Union[str, Any] , a : Any , a : List[str] , a : Tuple , a : Any ): '''simple docstring''' lowerCAmelCase__ : Dict = MobileBertModel(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Any = model(a , attention_mask=a , token_type_ids=a ) lowerCAmelCase__ : Any = model(a , token_type_ids=a ) lowerCAmelCase__ : int = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowerCamelCase ( self : Optional[Any] , a : Any , a : List[str] , a : Optional[Any] , a : List[str] , a : List[str] , a : List[Any] , a : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : str = MobileBertForMaskedLM(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : str = model(a , attention_mask=a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : Tuple , a : Optional[Any] , a : Tuple , a : Optional[int] , a : Dict , a : List[Any] , a : List[Any] , a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = MobileBertForNextSentencePrediction(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Optional[Any] = model( a , attention_mask=a , token_type_ids=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _lowerCamelCase ( self : str , a : str , a : Union[str, Any] , a : List[Any] , a : List[str] , a : Any , a : Any , a : List[str] ): '''simple docstring''' lowerCAmelCase__ : str = MobileBertForPreTraining(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Dict = model( a , attention_mask=a , token_type_ids=a , labels=a , next_sentence_label=a , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _lowerCamelCase ( self : Tuple , a : Dict , a : List[str] , a : Any , a : int , a : List[str] , a : str , a : Any ): '''simple docstring''' lowerCAmelCase__ : Tuple = MobileBertForQuestionAnswering(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Union[str, Any] = model( a , attention_mask=a , token_type_ids=a , start_positions=a , end_positions=a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : List[str] , a : List[str] , a : List[str] , a : List[Any] , a : Dict , a : List[Any] , a : Tuple , a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.num_labels lowerCAmelCase__ : int = MobileBertForSequenceClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : Union[str, Any] = model(a , attention_mask=a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self : str , a : Any , a : List[Any] , a : Optional[int] , a : List[Any] , a : Optional[int] , a : List[Any] , a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : List[Any] = self.num_labels lowerCAmelCase__ : Any = MobileBertForTokenClassification(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Optional[Any] = model(a , attention_mask=a , token_type_ids=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self : Optional[int] , a : List[str] , a : Any , a : Union[str, Any] , a : Optional[int] , a : Any , a : Optional[int] , a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : int = self.num_choices lowerCAmelCase__ : List[Any] = MobileBertForMultipleChoice(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase__ : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase__ : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase__ : Any = model( a , attention_mask=a , token_type_ids=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : List[str] = config_and_inputs lowerCAmelCase__ : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) lowercase = ( { 'feature-extraction': MobileBertModel, 'fill-mask': MobileBertForMaskedLM, 'question-answering': MobileBertForQuestionAnswering, 'text-classification': MobileBertForSequenceClassification, 'token-classification': MobileBertForTokenClassification, 'zero-shot': MobileBertForSequenceClassification, } if is_torch_available() else {} ) lowercase = True def _lowerCamelCase ( self : Optional[Any] , a : Dict , a : Optional[Any] , a : str=False ): '''simple docstring''' lowerCAmelCase__ : List[Any] = super()._prepare_for_class(a , a , return_labels=a ) if return_labels: if model_class in get_values(a ): lowerCAmelCase__ : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=a ) lowerCAmelCase__ : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a ) return inputs_dict def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : List[str] = MobileBertModelTester(self ) lowerCAmelCase__ : Optional[Any] = ConfigTester(self , config_class=a , hidden_size=37 ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*a ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*a ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*a ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*a ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*a ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> List[Any]: return torch.tensor( SCREAMING_SNAKE_CASE_ , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ , ) lowerCamelCase__ = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase ): @slow def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Tuple = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(a ) lowerCAmelCase__ : Any = _long_tensor([[101, 7_110, 1_005, 1_056, 2_023, 11_333, 17_413, 1_029, 102]] ) with torch.no_grad(): lowerCAmelCase__ : List[Any] = model(a )[0] lowerCAmelCase__ : Dict = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , a ) lowerCAmelCase__ : Any = torch.tensor( [ [ [-2.4736526E07, 8.2691656E04, 1.6521838E05], [-5.7541704E-01, 3.9056022E00, 4.4011507E00], [2.6047359E00, 1.5677652E00, -1.7324188E-01], ] ] , device=a , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowerCAmelCase__ : List[Any] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowerCAmelCase__ : Optional[Any] = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
307
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( __magic_name__ , unittest.TestCase ): lowercase = UnCLIPImageVariationPipeline lowercase = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} lowercase = IMAGE_VARIATION_BATCH_PARAMS lowercase = [ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] lowercase = False @property def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' return 32 @property def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' return 32 @property def _lowerCamelCase ( self : int ): '''simple docstring''' return self.time_input_dim @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.time_input_dim * 4 @property def _lowerCamelCase ( self : Any ): '''simple docstring''' return 100 @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def _lowerCamelCase ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(a ) @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : List[Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(a ) @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Union[str, Any] = { 'clip_embeddings_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'cross_attention_dim': self.cross_attention_dim, } lowerCAmelCase__ : Optional[Any] = UnCLIPTextProjModel(**a ) return model @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : str = { 'sample_size': 32, # RGB in channels 'in_channels': 3, # Out channels is double in channels because predicts mean and variance 'out_channels': 6, 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': 'identity', } lowerCAmelCase__ : str = UNetaDConditionModel(**a ) return model @property def _lowerCamelCase ( self : str ): '''simple docstring''' return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def _lowerCamelCase ( self : str ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Any = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def _lowerCamelCase ( self : int ): '''simple docstring''' torch.manual_seed(1 ) lowerCAmelCase__ : List[str] = UNetaDModel(**self.dummy_super_res_kwargs ) return model def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.dummy_decoder lowerCAmelCase__ : Optional[int] = self.dummy_text_proj lowerCAmelCase__ : Any = self.dummy_text_encoder lowerCAmelCase__ : Any = self.dummy_tokenizer lowerCAmelCase__ : Any = self.dummy_super_res_first lowerCAmelCase__ : Optional[int] = self.dummy_super_res_last lowerCAmelCase__ : Dict = UnCLIPScheduler( variance_type='learned_range' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) lowerCAmelCase__ : Any = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) lowerCAmelCase__ : Any = CLIPImageProcessor(crop_size=32 , size=32 ) lowerCAmelCase__ : Optional[int] = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def _lowerCamelCase ( self : Any , a : Dict , a : List[str]=0 , a : List[str]=True ): '''simple docstring''' lowerCAmelCase__ : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(a ) ).to(a ) if str(a ).startswith('mps' ): lowerCAmelCase__ : Optional[int] = torch.manual_seed(a ) else: lowerCAmelCase__ : str = torch.Generator(device=a ).manual_seed(a ) if pil_image: lowerCAmelCase__ : Optional[int] = input_image * 0.5 + 0.5 lowerCAmelCase__ : Dict = input_image.clamp(0 , 1 ) lowerCAmelCase__ : List[Any] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCAmelCase__ : Union[str, Any] = DiffusionPipeline.numpy_to_pil(a )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = 'cpu' lowerCAmelCase__ : Any = self.get_dummy_components() lowerCAmelCase__ : List[str] = self.pipeline_class(**a ) lowerCAmelCase__ : Dict = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Dict = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : str = pipe(**a ) lowerCAmelCase__ : Optional[Any] = output.images lowerCAmelCase__ : str = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Optional[int] = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : List[str] = np.array( [ 0.9_9_9_7, 0.0_0_0_2, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_6_9, 0.0_0_2_3, 0.9_9_9_7, 0.9_9_6_9, 0.9_9_7_0, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = 'cpu' lowerCAmelCase__ : Dict = self.get_dummy_components() lowerCAmelCase__ : Optional[int] = self.pipeline_class(**a ) lowerCAmelCase__ : int = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : List[Any] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : List[str] = pipe(**a ) lowerCAmelCase__ : Union[str, Any] = output.images lowerCAmelCase__ : int = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : int = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Tuple = image[0, -3:, -3:, -1] lowerCAmelCase__ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : str = np.array([0.9_9_9_7, 0.0_0_0_3, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_7_0, 0.0_0_2_4, 0.9_9_9_7, 0.9_9_7_1, 0.9_9_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Tuple = 'cpu' lowerCAmelCase__ : int = self.get_dummy_components() lowerCAmelCase__ : Tuple = self.pipeline_class(**a ) lowerCAmelCase__ : Union[str, Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Tuple = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : List[str] = [ pipeline_inputs['image'], pipeline_inputs['image'], ] lowerCAmelCase__ : Optional[int] = pipe(**a ) lowerCAmelCase__ : Tuple = output.images lowerCAmelCase__ : List[str] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Union[str, Any] = [ tuple_pipeline_inputs['image'], tuple_pipeline_inputs['image'], ] lowerCAmelCase__ : str = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) lowerCAmelCase__ : Union[str, Any] = np.array( [ 0.9_9_9_7, 0.9_9_8_9, 0.0_0_0_8, 0.0_0_2_1, 0.9_9_6_0, 0.0_0_1_8, 0.0_0_1_4, 0.0_0_0_2, 0.9_9_3_3, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch.device('cpu' ) class A__ : lowercase = 1 lowerCAmelCase__ : Optional[Any] = self.get_dummy_components() lowerCAmelCase__ : Dict = self.pipeline_class(**a ) lowerCAmelCase__ : Optional[Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Optional[int] = torch.Generator(device=a ).manual_seed(0 ) lowerCAmelCase__ : Optional[int] = pipe.decoder.dtype lowerCAmelCase__ : Union[str, Any] = 1 lowerCAmelCase__ : str = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) lowerCAmelCase__ : List[Any] = pipe.prepare_latents( a , dtype=a , device=a , generator=a , latents=a , scheduler=DummyScheduler() ) lowerCAmelCase__ : List[str] = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) lowerCAmelCase__ : Any = pipe.prepare_latents( a , dtype=a , device=a , generator=a , latents=a , scheduler=DummyScheduler() ) lowerCAmelCase__ : List[Any] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Optional[int] = pipe( **a , decoder_latents=a , super_res_latents=a ).images lowerCAmelCase__ : Optional[Any] = self.get_dummy_inputs(a , pil_image=a ) # Don't pass image, instead pass embedding lowerCAmelCase__ : Union[str, Any] = pipeline_inputs.pop('image' ) lowerCAmelCase__ : Union[str, Any] = pipe.image_encoder(a ).image_embeds lowerCAmelCase__ : List[Any] = pipe( **a , decoder_latents=a , super_res_latents=a , image_embeddings=a , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch_device == 'cpu' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor lowerCAmelCase__ : int = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=a , expected_max_diff=a ) @skip_mps def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = torch_device == 'cpu' lowerCAmelCase__ : Any = True lowerCAmelCase__ : Optional[Any] = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] self._test_inference_batch_single_identical( test_max_difference=a , relax_max_difference=a , additional_params_copy_to_batched_inputs=a , ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Tuple = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes lowerCAmelCase__ : List[str] = [2, 3] self._test_inference_batch_consistent( batch_sizes=a , additional_params_copy_to_batched_inputs=a , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=a ) @skip_mps def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return super().test_save_load_local() @skip_mps def _lowerCamelCase ( self : str ): '''simple docstring''' return super().test_save_load_optional_components() @slow @require_torch_gpu class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png' ) lowerCAmelCase__ : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/unclip/karlo_v1_alpha_cat_variation_fp16.npy' ) lowerCAmelCase__ : Tuple = UnCLIPImageVariationPipeline.from_pretrained( 'kakaobrain/karlo-v1-alpha-image-variations' , torch_dtype=torch.floataa ) lowerCAmelCase__ : Union[str, Any] = pipeline.to(a ) pipeline.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Dict = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase__ : List[str] = pipeline( a , generator=a , output_type='np' , ) lowerCAmelCase__ : Union[str, Any] = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(a , a , 15 )
307
1
from __future__ import annotations def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> list[int]: lowerCAmelCase__ : Optional[int] = [True] * limit lowerCAmelCase__ : Optional[Any] = False lowerCAmelCase__ : Tuple = False lowerCAmelCase__ : Dict = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): lowerCAmelCase__ : int = i * 2 while index < limit: lowerCAmelCase__ : List[str] = False lowerCAmelCase__ : List[Any] = index + i lowerCAmelCase__ : List[Any] = [2] for i in range(3 , SCREAMING_SNAKE_CASE_ , 2 ): if is_prime[i]: primes.append(SCREAMING_SNAKE_CASE_ ) return primes def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = 1_000_000 ) -> int: lowerCAmelCase__ : List[Any] = prime_sieve(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = 0 lowerCAmelCase__ : Optional[int] = 0 for i in range(len(SCREAMING_SNAKE_CASE_ ) ): for j in range(i + length , len(SCREAMING_SNAKE_CASE_ ) ): lowerCAmelCase__ : Union[str, Any] = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: lowerCAmelCase__ : int = j - i lowerCAmelCase__ : Optional[Any] = sol return largest if __name__ == "__main__": print(F"""{solution() = }""")
307
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: stooge(SCREAMING_SNAKE_CASE_ , 0 , len(SCREAMING_SNAKE_CASE_ ) - 1 ) return arr def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: lowerCAmelCase__ , lowerCAmelCase__ : Tuple = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: lowerCAmelCase__ : Union[str, Any] = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (h - t) ) # Recursively sort last 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , i + t , (SCREAMING_SNAKE_CASE_) ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (h - t) ) if __name__ == "__main__": lowerCamelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCamelCase__ = [int(item) for item in user_input.split(""",""")] print(stooge_sort(unsorted))
307
1
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed lowerCamelCase__ = logging.getLogger(__name__) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_ = 10 , SCREAMING_SNAKE_CASE_ = 2 ) -> int: def get_dataset(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : str = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(SCREAMING_SNAKE_CASE_ , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) lowerCAmelCase__ : Dict = get_dataset(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Dict = get_dataset(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Tuple = DataLoader(SCREAMING_SNAKE_CASE_ , shuffle=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , num_workers=4 ) lowerCAmelCase__ : List[str] = DataLoader(SCREAMING_SNAKE_CASE_ , shuffle=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , num_workers=4 ) return (train_dataloader, valid_dataloader) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Any: lowerCAmelCase__ : Any = [] for epoch in range(SCREAMING_SNAKE_CASE_ ): # Train quickly model.train() for batch in dataloader: lowerCAmelCase__ , lowerCAmelCase__ : Dict = batch lowerCAmelCase__ : str = model(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : int = torch.nn.functional.mse_loss(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.backward(SCREAMING_SNAKE_CASE_ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class A__ ( nn.Module ): def __init__( self : Any ): '''simple docstring''' super().__init__() lowerCAmelCase__ : Optional[Any] = nn.Parameter(torch.randn(1 ) ) lowerCAmelCase__ : Optional[int] = nn.Parameter(torch.randn(1 ) ) def _lowerCamelCase ( self : Optional[Any] , a : Optional[int] ): '''simple docstring''' return x * self.a + self.b class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowerCAmelCase__ : Dict = DummyModel() lowerCAmelCase__ : List[str] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = dummy_dataloaders() lowerCAmelCase__ : Tuple = ProjectConfiguration(total_limit=1 , project_dir=a , automatic_checkpoint_naming=a ) # Train baseline lowerCAmelCase__ : Optional[int] = Accelerator(project_config=a ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : int = accelerator.prepare( a , a , a , a ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def _lowerCamelCase ( self : int ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowerCAmelCase__ : str = DummyModel() lowerCAmelCase__ : List[str] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) lowerCAmelCase__ , lowerCAmelCase__ : int = dummy_dataloaders() # Train baseline lowerCAmelCase__ : Dict = Accelerator() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : str = accelerator.prepare( a , a , a , a ) # Save initial lowerCAmelCase__ : Dict = os.path.join(a , 'initial' ) accelerator.save_state(a ) ((lowerCAmelCase__) , (lowerCAmelCase__)) : str = model.a.item(), model.b.item() lowerCAmelCase__ : Any = optimizer.state_dict() lowerCAmelCase__ : str = train(3 , a , a , a , a ) ((lowerCAmelCase__) , (lowerCAmelCase__)) : Union[str, Any] = model.a.item(), model.b.item() lowerCAmelCase__ : List[Any] = optimizer.state_dict() # Train partially set_seed(42 ) lowerCAmelCase__ : Any = DummyModel() lowerCAmelCase__ : Optional[Any] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) lowerCAmelCase__ , lowerCAmelCase__ : Dict = dummy_dataloaders() lowerCAmelCase__ : List[Any] = Accelerator() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = accelerator.prepare( a , a , a , a ) accelerator.load_state(a ) ((lowerCAmelCase__) , (lowerCAmelCase__)) : Any = model.a.item(), model.b.item() lowerCAmelCase__ : Tuple = optimizer.state_dict() self.assertEqual(a , a ) self.assertEqual(a , a ) self.assertEqual(a , a ) lowerCAmelCase__ : Optional[Any] = train(2 , a , a , a , a ) # Save everything lowerCAmelCase__ : Optional[Any] = os.path.join(a , 'checkpoint' ) accelerator.save_state(a ) # Load everything back in and make sure all states work accelerator.load_state(a ) test_rands += train(1 , a , a , a , a ) ((lowerCAmelCase__) , (lowerCAmelCase__)) : int = model.a.item(), model.b.item() lowerCAmelCase__ : Optional[Any] = optimizer.state_dict() self.assertEqual(a , a ) self.assertEqual(a , a ) self.assertEqual(a , a ) self.assertEqual(a , a ) def _lowerCamelCase ( self : Any ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowerCAmelCase__ : Any = DummyModel() lowerCAmelCase__ : Optional[Any] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) lowerCAmelCase__ , lowerCAmelCase__ : int = dummy_dataloaders() lowerCAmelCase__ : str = ProjectConfiguration(automatic_checkpoint_naming=a ) # Train baseline lowerCAmelCase__ : int = Accelerator(project_dir=a , project_config=a ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = accelerator.prepare( a , a , a , a ) # Save initial accelerator.save_state() ((lowerCAmelCase__) , (lowerCAmelCase__)) : Optional[int] = model.a.item(), model.b.item() lowerCAmelCase__ : Dict = optimizer.state_dict() lowerCAmelCase__ : Tuple = train(3 , a , a , a , a ) ((lowerCAmelCase__) , (lowerCAmelCase__)) : str = model.a.item(), model.b.item() lowerCAmelCase__ : Optional[Any] = optimizer.state_dict() # Train partially set_seed(42 ) lowerCAmelCase__ : Tuple = DummyModel() lowerCAmelCase__ : Tuple = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = dummy_dataloaders() lowerCAmelCase__ : str = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=a ) lowerCAmelCase__ : str = Accelerator(project_dir=a , project_config=a ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : int = accelerator.prepare( a , a , a , a ) accelerator.load_state(os.path.join(a , 'checkpoints' , 'checkpoint_0' ) ) ((lowerCAmelCase__) , (lowerCAmelCase__)) : Any = model.a.item(), model.b.item() lowerCAmelCase__ : Union[str, Any] = optimizer.state_dict() self.assertEqual(a , a ) self.assertEqual(a , a ) self.assertEqual(a , a ) lowerCAmelCase__ : Optional[int] = train(2 , a , a , a , a ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(a , 'checkpoints' , 'checkpoint_1' ) ) test_rands += train(1 , a , a , a , a ) ((lowerCAmelCase__) , (lowerCAmelCase__)) : str = model.a.item(), model.b.item() lowerCAmelCase__ : Tuple = optimizer.state_dict() self.assertEqual(a , a ) self.assertEqual(a , a ) self.assertEqual(a , a ) self.assertEqual(a , a ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : int = torch.tensor([1, 2, 3] ) lowerCAmelCase__ : Optional[int] = torch.tensor([2, 3, 4] ) lowerCAmelCase__ : Union[str, Any] = DummyModel() lowerCAmelCase__ : Dict = torch.optim.Adam(net.parameters() ) lowerCAmelCase__ : List[Any] = Accelerator() with self.assertRaises(a ) as ve: accelerator.register_for_checkpointing(a , a , a , a ) lowerCAmelCase__ : List[Any] = str(ve.exception ) self.assertTrue('Item at index 0' in message ) self.assertTrue('Item at index 1' in message ) self.assertFalse('Item at index 2' in message ) self.assertFalse('Item at index 3' in message ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowerCAmelCase__ : Optional[int] = DummyModel() lowerCAmelCase__ : List[str] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) lowerCAmelCase__ : Any = torch.optim.lr_scheduler.StepLR(a , step_size=1 , gamma=0.9_9 ) lowerCAmelCase__ , lowerCAmelCase__ : List[str] = dummy_dataloaders() lowerCAmelCase__ : List[str] = ProjectConfiguration(automatic_checkpoint_naming=a ) # Train baseline lowerCAmelCase__ : int = Accelerator(project_dir=a , project_config=a ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = accelerator.prepare( a , a , a , a , a ) # Save initial accelerator.save_state() lowerCAmelCase__ : Tuple = scheduler.state_dict() train(3 , a , a , a , a , a ) self.assertNotEqual(a , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(a , 'checkpoints' , 'checkpoint_0' ) ) self.assertEqual(a , scheduler.state_dict() ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowerCAmelCase__ : Any = DummyModel() lowerCAmelCase__ : List[Any] = ProjectConfiguration(automatic_checkpoint_naming=a , total_limit=2 ) # Train baseline lowerCAmelCase__ : Optional[int] = Accelerator(project_dir=a , project_config=a ) lowerCAmelCase__ : Optional[Any] = accelerator.prepare(a ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(a , 'checkpoints' , 'checkpoint_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(a , 'checkpoints' , 'checkpoint_9' ) ) ) self.assertTrue(os.path.exists(os.path.join(a , 'checkpoints' , 'checkpoint_10' ) ) ) @require_cuda def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : List[Any] = ['torchrun', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(a , env=os.environ.copy() ) if __name__ == "__main__": lowerCamelCase__ = """/tmp/accelerate/state_checkpointing""" lowerCamelCase__ = DummyModel() lowerCamelCase__ = torch.optim.Adam(params=model.parameters(), lr=1E-3) lowerCamelCase__ = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) lowerCamelCase__ , lowerCamelCase__ = dummy_dataloaders() lowerCamelCase__ = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline lowerCamelCase__ = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="""no""") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) lowerCamelCase__ , lowerCamelCase__ = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: lowerCamelCase__ = group["""params"""][0].device break assert param_device.type == accelerator.device.type lowerCamelCase__ = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""cpu""") for group in optimizer.param_groups: lowerCamelCase__ = group["""params"""][0].device break assert ( param_device.type == torch.device("""cpu""").type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""on_device""") for group in optimizer.param_groups: lowerCamelCase__ = group["""params"""][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="""Unsupported optimizer map location passed"""): accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""invalid""") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
307
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) lowerCamelCase__ = { """configuration_speech_to_text""": ["""SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Speech2TextConfig"""], """processing_speech_to_text""": ["""Speech2TextProcessor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""Speech2TextTokenizer"""] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""Speech2TextFeatureExtractor"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSpeech2TextForConditionalGeneration""", """TFSpeech2TextModel""", """TFSpeech2TextPreTrainedModel""", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Speech2TextForConditionalGeneration""", """Speech2TextModel""", """Speech2TextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
1
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = "x" , SCREAMING_SNAKE_CASE_ = 10**-10 , SCREAMING_SNAKE_CASE_ = 1 , ) -> complex: lowerCAmelCase__ : Dict = symbols(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = lambdify(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : int = lambdify(SCREAMING_SNAKE_CASE_ , diff(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) lowerCAmelCase__ : List[str] = starting_point while True: if diff_function(SCREAMING_SNAKE_CASE_ ) != 0: lowerCAmelCase__ : Optional[Any] = prev_guess - multiplicity * func(SCREAMING_SNAKE_CASE_ ) / diff_function( SCREAMING_SNAKE_CASE_ ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess lowerCAmelCase__ : Tuple = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(F"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( """The root of log(y) - 1 = 0 is """, F"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( """The root of exp(x) - 1 = 0 is""", F"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(F"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
307
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } lowerCAmelCase__ : int = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 128, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 142, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(a ) , a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(a ) , x.transpose() ) ) lowerCAmelCase__ : List[str] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = np.random.randn(3 , 4 ) lowerCAmelCase__ : List[Any] = torch.tensor(a ) self.assertTrue(np.allclose(transpose(a ) , transpose(a ).numpy() ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : int = torch.tensor(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , transpose(a , axes=(1, 2, 0) ).numpy() ) ) @require_tf def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = np.random.randn(3 , 4 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(transpose(a ) , transpose(a ).numpy() ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : Dict = tf.constant(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , transpose(a , axes=(1, 2, 0) ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = np.random.randn(3 , 4 ) lowerCAmelCase__ : int = jnp.array(a ) self.assertTrue(np.allclose(transpose(a ) , np.asarray(transpose(a ) ) ) ) lowerCAmelCase__ : Any = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : str = jnp.array(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , np.asarray(transpose(a , axes=(1, 2, 0) ) ) ) ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Any = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , np.reshape(a , (4, 3) ) ) ) lowerCAmelCase__ : Tuple = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , np.reshape(a , (12, 5) ) ) ) @require_torch def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = np.random.randn(3 , 4 ) lowerCAmelCase__ : Dict = torch.tensor(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , reshape(a , (4, 3) ).numpy() ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : str = torch.tensor(a ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , reshape(a , (12, 5) ).numpy() ) ) @require_tf def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = np.random.randn(3 , 4 ) lowerCAmelCase__ : List[Any] = tf.constant(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , reshape(a , (4, 3) ).numpy() ) ) lowerCAmelCase__ : Dict = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , reshape(a , (12, 5) ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Dict = np.random.randn(3 , 4 ) lowerCAmelCase__ : List[str] = jnp.array(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , np.asarray(reshape(a , (4, 3) ) ) ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : Union[str, Any] = jnp.array(a ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , np.asarray(reshape(a , (12, 5) ) ) ) ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(a ) , np.squeeze(a ) ) ) lowerCAmelCase__ : int = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , np.squeeze(a , axis=2 ) ) ) @require_torch def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = np.random.randn(1 , 3 , 4 ) lowerCAmelCase__ : str = torch.tensor(a ) self.assertTrue(np.allclose(squeeze(a ) , squeeze(a ).numpy() ) ) lowerCAmelCase__ : Optional[Any] = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase__ : Dict = torch.tensor(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , squeeze(a , axis=2 ).numpy() ) ) @require_tf def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : List[str] = np.random.randn(1 , 3 , 4 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(squeeze(a ) , squeeze(a ).numpy() ) ) lowerCAmelCase__ : int = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase__ : str = tf.constant(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , squeeze(a , axis=2 ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : List[str] = np.random.randn(1 , 3 , 4 ) lowerCAmelCase__ : Union[str, Any] = jnp.array(a ) self.assertTrue(np.allclose(squeeze(a ) , np.asarray(squeeze(a ) ) ) ) lowerCAmelCase__ : str = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase__ : Optional[Any] = jnp.array(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , np.asarray(squeeze(a , axis=2 ) ) ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , np.expand_dims(a , axis=1 ) ) ) @require_torch def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : str = np.random.randn(3 , 4 ) lowerCAmelCase__ : str = torch.tensor(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , expand_dims(a , axis=1 ).numpy() ) ) @require_tf def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = np.random.randn(3 , 4 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , expand_dims(a , axis=1 ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : int = np.random.randn(3 , 4 ) lowerCAmelCase__ : Tuple = jnp.array(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , np.asarray(expand_dims(a , axis=1 ) ) ) )
307
1
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : List[str] ): '''simple docstring''' super().tearDown() gc.collect() def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) lowerCAmelCase__ : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) lowerCAmelCase__ : Any = 'xvjiarui/stable-diffusion-2-inpainting' lowerCAmelCase__ , lowerCAmelCase__ : str = FlaxStableDiffusionInpaintPipeline.from_pretrained(a , safety_checker=a ) lowerCAmelCase__ : int = 'Face of a yellow cat, high resolution, sitting on a park bench' lowerCAmelCase__ : str = jax.random.PRNGKey(0 ) lowerCAmelCase__ : int = 50 lowerCAmelCase__ : int = jax.device_count() lowerCAmelCase__ : Optional[Any] = num_samples * [prompt] lowerCAmelCase__ : List[str] = num_samples * [init_image] lowerCAmelCase__ : int = num_samples * [mask_image] lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = pipeline.prepare_inputs(a , a , a ) # shard inputs and rng lowerCAmelCase__ : int = replicate(a ) lowerCAmelCase__ : str = jax.random.split(a , jax.device_count() ) lowerCAmelCase__ : Any = shard(a ) lowerCAmelCase__ : List[Any] = shard(a ) lowerCAmelCase__ : int = shard(a ) lowerCAmelCase__ : List[Any] = pipeline( a , a , a , a , a , a , jit=a ) lowerCAmelCase__ : Any = output.images.reshape(a , 512 , 512 , 3 ) lowerCAmelCase__ : Union[str, Any] = images[0, 253:256, 253:256, -1] lowerCAmelCase__ : Optional[Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCAmelCase__ : str = jnp.array( [0.3_6_1_1_3_0_7, 0.3_7_6_4_9_7_3_6, 0.3_7_5_7_4_0_8, 0.3_8_2_1_3_9_5_3, 0.3_9_2_9_5_1_6_7, 0.3_8_4_1_6_3_1, 0.4_1_5_5_4_9_7_8, 0.4_1_3_7_4_7_5, 0.4_2_1_7_0_8_4] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
307
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position lowerCamelCase__ = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip lowerCamelCase__ = concatenate_datasets lowerCamelCase__ = DownloadConfig lowerCamelCase__ = DownloadManager lowerCamelCase__ = DownloadMode lowerCamelCase__ = DownloadConfig lowerCamelCase__ = DownloadMode lowerCamelCase__ = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
307
1
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class A__ ( __magic_name__ ): def __init__( self : Dict , a : Optional[Any] , a : Union[str, Any]=13 , a : Optional[Any]=7 , a : Tuple=True , a : Any=True , a : List[Any]=False , a : Dict=True , a : int=99 , a : Optional[Any]=32 , a : Union[str, Any]=5 , a : List[str]=4 , a : Dict=37 , a : Optional[int]="gelu" , a : Dict=0.1 , a : Dict=0.1 , a : Optional[int]=512 , a : Any=16 , a : int=2 , a : List[str]=0.0_2 , a : List[Any]=3 , a : Any=4 , a : Any=None , ): '''simple docstring''' lowerCAmelCase__ : List[str] = parent lowerCAmelCase__ : Any = batch_size lowerCAmelCase__ : List[str] = seq_length lowerCAmelCase__ : str = is_training lowerCAmelCase__ : Any = use_input_mask lowerCAmelCase__ : List[Any] = use_token_type_ids lowerCAmelCase__ : List[Any] = use_labels lowerCAmelCase__ : str = vocab_size lowerCAmelCase__ : Tuple = hidden_size lowerCAmelCase__ : Optional[Any] = num_hidden_layers lowerCAmelCase__ : int = num_attention_heads lowerCAmelCase__ : Optional[Any] = intermediate_size lowerCAmelCase__ : List[str] = hidden_act lowerCAmelCase__ : List[Any] = hidden_dropout_prob lowerCAmelCase__ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase__ : str = max_position_embeddings lowerCAmelCase__ : Optional[Any] = type_vocab_size lowerCAmelCase__ : Dict = type_sequence_label_size lowerCAmelCase__ : int = initializer_range lowerCAmelCase__ : Any = num_labels lowerCAmelCase__ : Optional[Any] = num_choices lowerCAmelCase__ : Optional[int] = scope def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ : Union[str, Any] = None if self.use_input_mask: lowerCAmelCase__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ : int = None lowerCAmelCase__ : List[Any] = None lowerCAmelCase__ : str = None if self.use_labels: lowerCAmelCase__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ : List[str] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ : Any = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : int ): '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self : Union[str, Any] , a : Any , a : Dict , a : int , a : Union[str, Any] , a : Any , a : List[Any] ): '''simple docstring''' lowerCAmelCase__ : List[Any] = DistilBertModel(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : int = model(a , a ) lowerCAmelCase__ : Optional[Any] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : List[Any] , a : Tuple , a : Union[str, Any] , a : Optional[int] , a : Any , a : List[str] , a : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = DistilBertForMaskedLM(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : List[Any] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : Optional[int] , a : Union[str, Any] , a : List[Any] , a : int , a : Optional[Any] , a : Optional[Any] , a : Tuple ): '''simple docstring''' lowerCAmelCase__ : List[Any] = DistilBertForQuestionAnswering(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Tuple = model( a , attention_mask=a , start_positions=a , end_positions=a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : str , a : List[Any] , a : Any , a : int , a : Optional[Any] , a : int , a : List[str] ): '''simple docstring''' lowerCAmelCase__ : str = self.num_labels lowerCAmelCase__ : int = DistilBertForSequenceClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : Optional[Any] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self : Optional[int] , a : Dict , a : Any , a : List[Any] , a : str , a : str , a : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : List[Any] = self.num_labels lowerCAmelCase__ : Optional[Any] = DistilBertForTokenClassification(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Optional[int] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self : Any , a : str , a : str , a : Any , a : Optional[Any] , a : int , a : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.num_choices lowerCAmelCase__ : Tuple = DistilBertForMultipleChoice(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase__ : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase__ : Dict = model( a , attention_mask=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() ((lowerCAmelCase__) , (lowerCAmelCase__) , (lowerCAmelCase__) , (lowerCAmelCase__) , (lowerCAmelCase__) , (lowerCAmelCase__)) : Optional[Any] = config_and_inputs lowerCAmelCase__ : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowercase = ( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowercase = True lowercase = True lowercase = True lowercase = True def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : int = DistilBertModelTester(self ) lowerCAmelCase__ : Union[str, Any] = ConfigTester(self , config_class=a , dim=37 ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a ) @slow def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : Union[str, Any] = DistilBertModel.from_pretrained(a ) self.assertIsNotNone(a ) @slow @require_torch_gpu def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return lowerCAmelCase__ : str = True lowerCAmelCase__ : List[str] = model_class(config=a ) lowerCAmelCase__ : Optional[Any] = self._prepare_for_class(a , a ) lowerCAmelCase__ : Optional[int] = torch.jit.trace( a , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , 'traced_model.pt' ) ) lowerCAmelCase__ : Tuple = torch.jit.load(os.path.join(a , 'traced_model.pt' ) , map_location=a ) loaded(inputs_dict['input_ids'].to(a ) , inputs_dict['attention_mask'].to(a ) ) @require_torch class A__ ( unittest.TestCase ): @slow def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : str = DistilBertModel.from_pretrained('distilbert-base-uncased' ) lowerCAmelCase__ : int = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) lowerCAmelCase__ : str = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCAmelCase__ : Any = model(a , attention_mask=a )[0] lowerCAmelCase__ : Tuple = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , a ) lowerCAmelCase__ : Optional[int] = torch.tensor( [[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1E-4 ) )
307
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( __magic_name__ , unittest.TestCase ): lowercase = DanceDiffusionPipeline lowercase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS lowercase = PipelineTesterMixin.required_optional_params - { 'callback', 'latents', 'callback_steps', 'output_type', 'num_images_per_prompt', } lowercase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS lowercase = False lowercase = False def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=16_000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=a , use_timestep_embedding=a , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , ) lowerCAmelCase__ : Tuple = IPNDMScheduler() lowerCAmelCase__ : str = { 'unet': unet, 'scheduler': scheduler, } return components def _lowerCamelCase ( self : int , a : Dict , a : List[str]=0 ): '''simple docstring''' if str(a ).startswith('mps' ): lowerCAmelCase__ : Union[str, Any] = torch.manual_seed(a ) else: lowerCAmelCase__ : Optional[Any] = torch.Generator(device=a ).manual_seed(a ) lowerCAmelCase__ : Optional[Any] = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : int = self.get_dummy_components() lowerCAmelCase__ : List[str] = DanceDiffusionPipeline(**a ) lowerCAmelCase__ : Any = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : List[str] = self.get_dummy_inputs(a ) lowerCAmelCase__ : List[Any] = pipe(**a ) lowerCAmelCase__ : List[str] = output.audios lowerCAmelCase__ : Optional[Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) lowerCAmelCase__ : List[Any] = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def _lowerCamelCase ( self : str ): '''simple docstring''' return super().test_save_load_local() @skip_mps def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def _lowerCamelCase ( self : List[str] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch_device lowerCAmelCase__ : List[str] = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) lowerCAmelCase__ : List[str] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Optional[int] = torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = pipe(generator=a , num_inference_steps=100 , audio_length_in_s=4.0_9_6 ) lowerCAmelCase__ : int = output.audios lowerCAmelCase__ : List[Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase__ : Dict = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : str = torch_device lowerCAmelCase__ : List[Any] = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa ) lowerCAmelCase__ : Optional[int] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : str = torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = pipe(generator=a , num_inference_steps=100 , audio_length_in_s=4.0_9_6 ) lowerCAmelCase__ : str = output.audios lowerCAmelCase__ : Tuple = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase__ : int = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
307
1
import functools def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: # Validation if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not all(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(SCREAMING_SNAKE_CASE_ ) != 3 or not all(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(SCREAMING_SNAKE_CASE_ ) == 0: return 0 if min(SCREAMING_SNAKE_CASE_ ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(SCREAMING_SNAKE_CASE_ ) >= 366: raise ValueError('All days elements should be less than 366' ) lowerCAmelCase__ : str = set(SCREAMING_SNAKE_CASE_ ) @functools.cache def dynamic_programming(SCREAMING_SNAKE_CASE_ ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
307
from ..utils import DummyObject, requires_backends class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : Any , *a : Any , **a : Any ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Union[str, Any] , *a : Optional[int] , **a : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : int , *a : List[Any] , **a : int ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : str , *a : Any , **a : Optional[Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : List[str] , **a : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , *a : Optional[Any] , **a : Any ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : Optional[int] , *a : List[Any] , **a : str ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : List[Any] , *a : List[str] , **a : List[str] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , *a : Union[str, Any] , **a : Optional[int] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *a : Dict , **a : List[str] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : Dict , **a : List[Any] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : List[str] , **a : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : Dict , *a : str , **a : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Any , *a : Any , **a : Any ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Any , *a : List[Any] , **a : str ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : str , *a : Union[str, Any] , **a : Optional[Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : int , *a : Union[str, Any] , **a : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : Tuple , **a : List[str] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] )
307
1
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = 600_851_475_143 ) -> int: try: lowerCAmelCase__ : Union[str, Any] = int(SCREAMING_SNAKE_CASE_ ) except (TypeError, ValueError): raise TypeError('Parameter n must be int or castable to int.' ) if n <= 0: raise ValueError('Parameter n must be greater than or equal to one.' ) lowerCAmelCase__ : List[Any] = 2 lowerCAmelCase__ : int = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 lowerCAmelCase__ : List[Any] = i while n % i == 0: lowerCAmelCase__ : Optional[int] = n // i i += 1 return int(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": print(F"""{solution() = }""")
307
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class A__ : def __init__( self : List[str] , a : Any , a : Dict=13 , a : Optional[Any]=7 , a : Tuple=True , a : Tuple=True , a : Dict=False , a : Optional[Any]=True , a : Dict=99 , a : Tuple=32 , a : Optional[Any]=5 , a : str=4 , a : Union[str, Any]=37 , a : Any="gelu" , a : Dict=0.1 , a : Any=0.1 , a : Optional[int]=512 , a : Union[str, Any]=16 , a : Optional[int]=2 , a : Optional[Any]=0.0_2 , a : List[Any]=3 , a : Any=4 , a : Optional[int]=None , ): '''simple docstring''' lowerCAmelCase__ : List[str] = parent lowerCAmelCase__ : str = batch_size lowerCAmelCase__ : Optional[int] = seq_length lowerCAmelCase__ : Optional[Any] = is_training lowerCAmelCase__ : Tuple = use_input_mask lowerCAmelCase__ : List[Any] = use_token_type_ids lowerCAmelCase__ : str = use_labels lowerCAmelCase__ : Dict = vocab_size lowerCAmelCase__ : Union[str, Any] = hidden_size lowerCAmelCase__ : Optional[int] = num_hidden_layers lowerCAmelCase__ : List[Any] = num_attention_heads lowerCAmelCase__ : int = intermediate_size lowerCAmelCase__ : Union[str, Any] = hidden_act lowerCAmelCase__ : Union[str, Any] = hidden_dropout_prob lowerCAmelCase__ : Any = attention_probs_dropout_prob lowerCAmelCase__ : Dict = max_position_embeddings lowerCAmelCase__ : int = type_vocab_size lowerCAmelCase__ : int = type_sequence_label_size lowerCAmelCase__ : Dict = initializer_range lowerCAmelCase__ : List[str] = num_labels lowerCAmelCase__ : Any = num_choices lowerCAmelCase__ : List[Any] = scope def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ : Tuple = None if self.use_input_mask: lowerCAmelCase__ : str = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ : List[str] = None if self.use_token_type_ids: lowerCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : Dict = None lowerCAmelCase__ : str = None if self.use_labels: lowerCAmelCase__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self : Tuple , a : Dict , a : List[str] , a : str , a : Union[str, Any] , a : Optional[Any] , a : Dict , a : str ): '''simple docstring''' lowerCAmelCase__ : str = LlamaModel(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Dict = model(a , attention_mask=a ) lowerCAmelCase__ : Union[str, Any] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : int , a : Any , a : Union[str, Any] , a : Dict , a : Dict , a : List[Any] , a : Optional[Any] , a : int , a : Dict , a : Tuple , ): '''simple docstring''' lowerCAmelCase__ : int = True lowerCAmelCase__ : Dict = LlamaModel(a ) model.to(a ) model.eval() lowerCAmelCase__ : List[Any] = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , ) lowerCAmelCase__ : Optional[int] = model( a , attention_mask=a , encoder_hidden_states=a , ) lowerCAmelCase__ : Union[str, Any] = model(a , attention_mask=a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : Union[str, Any] , a : int , a : List[Any] , a : int , a : Tuple , a : List[Any] , a : Union[str, Any] , a : Any , a : List[str] , a : List[str] , ): '''simple docstring''' lowerCAmelCase__ : List[Any] = LlamaForCausalLM(config=a ) model.to(a ) model.eval() lowerCAmelCase__ : Tuple = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : str , a : Any , a : Tuple , a : str , a : Union[str, Any] , a : Optional[Any] , a : List[Any] , a : Optional[Any] , a : Optional[Any] , a : List[str] , ): '''simple docstring''' lowerCAmelCase__ : str = True lowerCAmelCase__ : Optional[int] = True lowerCAmelCase__ : List[Any] = LlamaForCausalLM(config=a ) model.to(a ) model.eval() # first forward pass lowerCAmelCase__ : List[str] = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , use_cache=a , ) lowerCAmelCase__ : List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase__ : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase__ : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase__ : int = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase__ : Any = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase__ : Union[str, Any] = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , output_hidden_states=a , )['hidden_states'][0] lowerCAmelCase__ : Union[str, Any] = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , past_key_values=a , output_hidden_states=a , )['hidden_states'][0] # select random slice lowerCAmelCase__ : Any = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase__ : Optional[int] = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a , a , atol=1E-3 ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : Any = config_and_inputs lowerCAmelCase__ : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () lowercase = (LlamaForCausalLM,) if is_torch_available() else () lowercase = ( { 'feature-extraction': LlamaModel, 'text-classification': LlamaForSequenceClassification, 'text-generation': LlamaForCausalLM, 'zero-shot': LlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Tuple = LlamaModelTester(self ) lowerCAmelCase__ : str = ConfigTester(self , config_class=a , hidden_size=37 ) def _lowerCamelCase ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase__ : int = type self.model_tester.create_and_check_model(*a ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : int = 3 lowerCAmelCase__ : Dict = input_dict['input_ids'] lowerCAmelCase__ : Optional[Any] = input_ids.ne(1 ).to(a ) lowerCAmelCase__ : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase__ : Tuple = LlamaForSequenceClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : str = model(a , attention_mask=a , labels=a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : List[Any] = 3 lowerCAmelCase__ : List[str] = 'single_label_classification' lowerCAmelCase__ : List[Any] = input_dict['input_ids'] lowerCAmelCase__ : List[Any] = input_ids.ne(1 ).to(a ) lowerCAmelCase__ : Optional[int] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase__ : int = LlamaForSequenceClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : Optional[int] = model(a , attention_mask=a , labels=a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Optional[Any] = 3 lowerCAmelCase__ : Optional[Any] = 'multi_label_classification' lowerCAmelCase__ : List[str] = input_dict['input_ids'] lowerCAmelCase__ : Tuple = input_ids.ne(1 ).to(a ) lowerCAmelCase__ : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase__ : Dict = LlamaForSequenceClassification(a ) model.to(a ) model.eval() lowerCAmelCase__ : Dict = model(a , attention_mask=a , labels=a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def _lowerCamelCase ( self : Optional[int] , a : Dict ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Tuple = ids_tensor([1, 10] , config.vocab_size ) lowerCAmelCase__ : List[str] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase__ : List[Any] = LlamaModel(a ) original_model.to(a ) original_model.eval() lowerCAmelCase__ : List[Any] = original_model(a ).last_hidden_state lowerCAmelCase__ : str = original_model(a ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase__ : Any = {'type': scaling_type, 'factor': 1_0.0} lowerCAmelCase__ : Union[str, Any] = LlamaModel(a ) scaled_model.to(a ) scaled_model.eval() lowerCAmelCase__ : Union[str, Any] = scaled_model(a ).last_hidden_state lowerCAmelCase__ : Optional[int] = scaled_model(a ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(a , a , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(a , a , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(a , a , atol=1E-5 ) ) @require_torch class A__ ( unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : int = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowerCAmelCase__ : List[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) lowerCAmelCase__ : Any = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 lowerCAmelCase__ : Dict = torch.tensor([[-6.6_5_5_0, -4.1_2_2_7, -4.9_8_5_9, -3.2_4_0_6, 0.8_2_6_2, -3.0_0_3_3, 1.2_9_6_4, -3.3_6_9_9]] ) torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase__ : List[Any] = torch.tensor([-1_2.8_2_8_1, -7.4_4_5_3, -0.4_6_3_9, -8.0_6_2_5, -7.2_5_0_0, -8.0_0_0_0, -6.4_8_8_3, -7.7_6_9_5, -7.8_4_3_8, -7.0_3_1_2, -6.2_1_8_8, -7.1_3_2_8, -1.8_4_9_6, 1.9_9_6_1, -8.6_2_5_0, -6.7_2_2_7, -1_2.8_2_8_1, -6.9_4_9_2, -7.0_7_4_2, -7.7_8_5_2, -7.5_8_2_0, -7.9_0_6_2, -6.9_3_7_5, -7.9_8_0_5, -8.3_4_3_8, -8.1_5_6_2, -8.0_4_6_9, -7.6_2_5_0, -7.7_4_2_2, -7.3_3_9_8,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : str = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowerCAmelCase__ : Optional[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) lowerCAmelCase__ : List[str] = model(torch.tensor(a ) ) # Expected mean on dim = -1 lowerCAmelCase__ : Union[str, Any] = torch.tensor([[-2.0_6_2_2, -1.2_7_9_4, -1.1_6_3_8, -0.9_7_8_8, -1.4_6_0_3, -1.0_2_3_8, -1.7_8_9_3, -1.4_4_1_1]] ) torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase__ : Any = torch.tensor([-8.1_4_0_6, -8.0_5_4_7, 2.7_4_6_1, -1.2_3_4_4, -0.1_4_4_8, -1.8_2_6_2, -1.0_0_2_0, -1.8_1_5_4, -1.6_8_9_5, -1.8_5_1_6, -2.3_5_7_4, -0.9_2_7_7, 3.7_5_9_8, 6.5_7_4_2, -1.2_9_9_8, -0.1_1_7_7, -8.1_4_0_6, -2.9_6_8_8, -2.9_1_9_9, -3.1_6_9_9, -3.5_2_5_4, -2.3_5_5_5, -2.7_9_8_8, -3.4_1_4_1, -2.8_2_6_2, -4.5_1_9_5, -3.3_3_7_9, -3.3_1_6_4, -2.7_8_3_2, -3.0_2_7_3] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : int = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowerCAmelCase__ : Optional[int] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) lowerCAmelCase__ : str = model(torch.tensor(a ) ) # Expected mean on dim = -1 lowerCAmelCase__ : str = torch.tensor([[-0.8_5_6_2, -1.8_5_2_0, -0.7_5_5_1, -0.4_1_6_2, -1.5_1_6_1, -1.2_0_3_8, -2.4_8_2_3, -2.3_2_5_4]] ) torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase__ : List[str] = torch.tensor([-2.2_2_2_7, 4.8_8_2_8, 0.9_0_2_3, -0.4_5_7_8, -0.7_8_7_1, -0.1_0_3_3, -0.6_2_2_1, -0.5_7_8_6, -0.7_8_0_3, -1.0_6_7_4, -1.2_9_2_0, -0.1_5_7_0, 0.8_0_0_8, 2.0_7_2_3, -0.9_4_9_7, 0.2_7_7_1, -2.2_2_2_7, -0.7_6_1_2, -1.4_3_4_6, -1.2_0_6_1, -1.6_4_2_6, -0.3_0_0_0, -0.7_1_3_9, -1.1_9_3_4, -1.8_6_9_1, -1.6_9_7_3, -1.5_9_4_7, -1.2_7_0_5, -0.3_5_2_3, -0.5_5_1_3] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] lowerCAmelCase__ : List[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) lowerCAmelCase__ : List[str] = model(torch.tensor(a ) ) lowerCAmelCase__ : int = torch.tensor( [[-4.2_3_2_7, -3.3_3_6_0, -4.6_6_6_5, -4.7_6_3_1, -1.8_1_8_0, -3.4_1_7_0, -1.4_2_1_1, -3.1_8_1_0]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , a , atol=1E-2 , rtol=1E-2 ) # fmt: off lowerCAmelCase__ : Optional[int] = torch.tensor([-9.4_9_2_2, -3.9_5_5_1, 1.7_9_9_8, -5.6_7_5_8, -5.1_0_5_5, -5.8_9_8_4, -4.8_3_2_0, -6.8_0_8_6, -6.5_3_9_1, -5.6_1_7_2, -5.5_8_2_0, -5.5_3_5_2, 1.7_8_8_1, 3.6_2_8_9, -6.5_1_1_7, -3.4_7_8_5, -9.5_0_0_0, -6.0_3_5_2, -6.8_1_2_5, -6.0_1_9_5, -6.6_8_3_6, -5.4_7_2_7, -6.2_8_1_2, -6.0_3_9_1, -7.3_3_9_8, -7.4_2_9_7, -7.4_8_4_4, -6.5_8_2_0, -5.8_7_8_9, -5.5_3_1_2] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Model is curently gated' ) @slow def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' lowerCAmelCase__ : Tuple = 'Simply put, the theory of relativity states that ' lowerCAmelCase__ : Dict = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) lowerCAmelCase__ : Dict = tokenizer.encode(a , return_tensors='pt' ) lowerCAmelCase__ : str = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=a ) # greedy generation outputs lowerCAmelCase__ : Optional[Any] = model.generate(a , max_new_tokens=64 , top_p=a , temperature=1 , do_sample=a ) lowerCAmelCase__ : Tuple = tokenizer.decode(generated_ids[0] , skip_special_tokens=a ) self.assertEqual(a , a )
307
1
from __future__ import annotations def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> list[int]: lowerCAmelCase__ : Any = 0 lowerCAmelCase__ : Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: lowerCAmelCase__ : str = i + 1 else: lowerCAmelCase__ : int = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F"""{two_pointer([2, 7, 11, 15], 9) = }""")
307
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """microsoft/unispeech-large-1500h-cv""": ( """https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json""" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class A__ ( __magic_name__ ): lowercase = 'unispeech' def __init__( self : Any , a : List[Any]=32 , a : List[Any]=768 , a : Any=12 , a : List[str]=12 , a : List[Any]=3_072 , a : Any="gelu" , a : Dict=0.1 , a : List[str]=0.1 , a : List[str]=0.1 , a : Union[str, Any]=0.0 , a : str=0.0 , a : int=0.1 , a : List[str]=0.1 , a : List[Any]=0.0_2 , a : Optional[int]=1E-5 , a : Optional[int]="group" , a : Optional[Any]="gelu" , a : List[Any]=(512, 512, 512, 512, 512, 512, 512) , a : Optional[Any]=(5, 2, 2, 2, 2, 2, 2) , a : List[str]=(10, 3, 3, 3, 3, 2, 2) , a : Union[str, Any]=False , a : Union[str, Any]=128 , a : Tuple=16 , a : Dict=False , a : str=True , a : str=0.0_5 , a : Union[str, Any]=10 , a : Tuple=2 , a : int=0.0 , a : Optional[Any]=10 , a : List[str]=0 , a : str=320 , a : List[str]=2 , a : Optional[Any]=0.1 , a : Any=100 , a : Dict=256 , a : Any=256 , a : Dict=0.1 , a : List[Any]="mean" , a : Dict=False , a : str=False , a : Optional[int]=256 , a : Any=80 , a : List[Any]=0 , a : Optional[int]=1 , a : int=2 , a : List[Any]=0.5 , **a : int , ): '''simple docstring''' super().__init__(**a , pad_token_id=a , bos_token_id=a , eos_token_id=a ) lowerCAmelCase__ : List[str] = hidden_size lowerCAmelCase__ : List[str] = feat_extract_norm lowerCAmelCase__ : Optional[Any] = feat_extract_activation lowerCAmelCase__ : str = list(a ) lowerCAmelCase__ : List[str] = list(a ) lowerCAmelCase__ : Tuple = list(a ) lowerCAmelCase__ : Dict = conv_bias lowerCAmelCase__ : Optional[int] = num_conv_pos_embeddings lowerCAmelCase__ : Any = num_conv_pos_embedding_groups lowerCAmelCase__ : str = len(self.conv_dim ) lowerCAmelCase__ : Any = num_hidden_layers lowerCAmelCase__ : Dict = intermediate_size lowerCAmelCase__ : Dict = hidden_act lowerCAmelCase__ : Union[str, Any] = num_attention_heads lowerCAmelCase__ : Union[str, Any] = hidden_dropout lowerCAmelCase__ : Tuple = attention_dropout lowerCAmelCase__ : str = activation_dropout lowerCAmelCase__ : Any = feat_proj_dropout lowerCAmelCase__ : List[Any] = final_dropout lowerCAmelCase__ : Tuple = layerdrop lowerCAmelCase__ : Any = layer_norm_eps lowerCAmelCase__ : Dict = initializer_range lowerCAmelCase__ : Optional[Any] = num_ctc_classes lowerCAmelCase__ : Tuple = vocab_size lowerCAmelCase__ : Dict = do_stable_layer_norm lowerCAmelCase__ : List[Any] = use_weighted_layer_sum lowerCAmelCase__ : Any = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase__ : Union[str, Any] = apply_spec_augment lowerCAmelCase__ : Any = mask_time_prob lowerCAmelCase__ : Dict = mask_time_length lowerCAmelCase__ : Tuple = mask_time_min_masks lowerCAmelCase__ : Optional[int] = mask_feature_prob lowerCAmelCase__ : Optional[Any] = mask_feature_length lowerCAmelCase__ : int = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCAmelCase__ : int = num_codevectors_per_group lowerCAmelCase__ : Any = num_codevector_groups lowerCAmelCase__ : Any = contrastive_logits_temperature lowerCAmelCase__ : int = feat_quantizer_dropout lowerCAmelCase__ : List[Any] = num_negatives lowerCAmelCase__ : List[str] = codevector_dim lowerCAmelCase__ : Optional[int] = proj_codevector_dim lowerCAmelCase__ : Dict = diversity_loss_weight # ctc loss lowerCAmelCase__ : Any = ctc_loss_reduction lowerCAmelCase__ : Any = ctc_zero_infinity # pretraining loss lowerCAmelCase__ : Union[str, Any] = replace_prob @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
307
1
lowerCamelCase__ = [0, 2, 4, 6, 8] lowerCamelCase__ = [1, 3, 5, 7, 9] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 lowerCAmelCase__ : Tuple = 0 for digit in range(10 ): lowerCAmelCase__ : str = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return result lowerCAmelCase__ : List[str] = 0 for digita in range(10 ): lowerCAmelCase__ : Any = digita if (remainder + digita) % 2 == 0: lowerCAmelCase__ : Any = ODD_DIGITS else: lowerCAmelCase__ : Any = EVEN_DIGITS for digita in other_parity_digits: lowerCAmelCase__ : Any = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) return result def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = 9 ) -> int: lowerCAmelCase__ : Union[str, Any] = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(SCREAMING_SNAKE_CASE_ , 0 , [0] * length , SCREAMING_SNAKE_CASE_ ) return result if __name__ == "__main__": print(F"""{solution() = }""")
307
import torch from torch import nn class A__ ( nn.Module ): def __init__( self : Optional[int] , a : Union[str, Any] , a : str , a : str , a : List[Any] , a : List[Any]=1 , a : Tuple=False ): '''simple docstring''' super().__init__() lowerCAmelCase__ : Dict = n_token lowerCAmelCase__ : Any = d_embed lowerCAmelCase__ : str = d_proj lowerCAmelCase__ : int = cutoffs + [n_token] lowerCAmelCase__ : Union[str, Any] = [0] + self.cutoffs lowerCAmelCase__ : str = div_val lowerCAmelCase__ : Tuple = self.cutoffs[0] lowerCAmelCase__ : Dict = len(self.cutoffs ) - 1 lowerCAmelCase__ : Any = self.shortlist_size + self.n_clusters if self.n_clusters > 0: lowerCAmelCase__ : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) lowerCAmelCase__ : Optional[Any] = nn.Parameter(torch.zeros(self.n_clusters ) ) lowerCAmelCase__ : Optional[int] = nn.ModuleList() lowerCAmelCase__ : Tuple = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(a , a ) ) ) else: self.out_projs.append(a ) self.out_layers.append(nn.Linear(a , a ) ) else: for i in range(len(self.cutoffs ) ): lowerCAmelCase__ , lowerCAmelCase__ : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase__ : Optional[Any] = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(a , a ) ) ) self.out_layers.append(nn.Linear(a , r_idx - l_idx ) ) lowerCAmelCase__ : Tuple = keep_order def _lowerCamelCase ( self : Optional[int] , a : List[str] , a : int , a : List[str] , a : str ): '''simple docstring''' if proj is None: lowerCAmelCase__ : Tuple = nn.functional.linear(a , a , bias=a ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: lowerCAmelCase__ : int = nn.functional.linear(a , proj.t().contiguous() ) lowerCAmelCase__ : Tuple = nn.functional.linear(a , a , bias=a ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def _lowerCamelCase ( self : List[str] , a : List[Any] , a : Optional[int]=None , a : Tuple=False ): '''simple docstring''' if labels is not None: # Shift so that tokens < n predict n lowerCAmelCase__ : str = hidden[..., :-1, :].contiguous() lowerCAmelCase__ : Optional[Any] = labels[..., 1:].contiguous() lowerCAmelCase__ : List[Any] = hidden.view(-1 , hidden.size(-1 ) ) lowerCAmelCase__ : Tuple = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('Input and labels should have the same size in the batch dimension.' ) else: lowerCAmelCase__ : Optional[Any] = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: lowerCAmelCase__ : Optional[Any] = self._compute_logit(a , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: lowerCAmelCase__ : str = labels != -100 lowerCAmelCase__ : int = torch.zeros_like(a , dtype=hidden.dtype , device=hidden.device ) lowerCAmelCase__ : List[str] = ( -nn.functional.log_softmax(a , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: lowerCAmelCase__ : Optional[Any] = nn.functional.log_softmax(a , dim=-1 ) else: # construct weights and biases lowerCAmelCase__ , lowerCAmelCase__ : int = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase__ : Any = self.out_layers[0].weight[l_idx:r_idx] lowerCAmelCase__ : Any = self.out_layers[0].bias[l_idx:r_idx] else: lowerCAmelCase__ : Optional[Any] = self.out_layers[i].weight lowerCAmelCase__ : Optional[int] = self.out_layers[i].bias if i == 0: lowerCAmelCase__ : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowerCAmelCase__ : Union[str, Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(a ) biases.append(a ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = weights[0], biases[0], self.out_projs[0] lowerCAmelCase__ : List[Any] = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : Union[str, Any] = nn.functional.log_softmax(a , dim=1 ) if labels is None: lowerCAmelCase__ : Tuple = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: lowerCAmelCase__ : Dict = torch.zeros_like(a , dtype=hidden.dtype , device=hidden.device ) lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : Union[str, Any] = [0] + self.cutoffs for i in range(len(a ) - 1 ): lowerCAmelCase__ , lowerCAmelCase__ : Tuple = cutoff_values[i], cutoff_values[i + 1] if labels is not None: lowerCAmelCase__ : Tuple = (labels >= l_idx) & (labels < r_idx) lowerCAmelCase__ : int = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue lowerCAmelCase__ : Tuple = labels.index_select(0 , a ) - l_idx lowerCAmelCase__ : Any = head_logprob.index_select(0 , a ) lowerCAmelCase__ : Optional[int] = hidden.index_select(0 , a ) else: lowerCAmelCase__ : Any = hidden if i == 0: if labels is not None: lowerCAmelCase__ : Union[str, Any] = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: lowerCAmelCase__ : List[str] = head_logprob[:, : self.cutoffs[0]] else: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = weights[i], biases[i], self.out_projs[i] lowerCAmelCase__ : Union[str, Any] = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : Optional[int] = nn.functional.log_softmax(a , dim=1 ) lowerCAmelCase__ : List[Any] = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: lowerCAmelCase__ : List[str] = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: lowerCAmelCase__ : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i lowerCAmelCase__ : Union[str, Any] = logprob_i if labels is not None: if (hasattr(self , 'keep_order' ) and self.keep_order) or keep_order: out.index_copy_(0 , a , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def _lowerCamelCase ( self : List[Any] , a : Any ): '''simple docstring''' if self.n_clusters == 0: lowerCAmelCase__ : Union[str, Any] = self._compute_logit(a , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(a , dim=-1 ) else: # construct weights and biases lowerCAmelCase__ , lowerCAmelCase__ : str = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase__ : str = self.out_layers[0].weight[l_idx:r_idx] lowerCAmelCase__ : Dict = self.out_layers[0].bias[l_idx:r_idx] else: lowerCAmelCase__ : int = self.out_layers[i].weight lowerCAmelCase__ : int = self.out_layers[i].bias if i == 0: lowerCAmelCase__ : Optional[int] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) lowerCAmelCase__ : Union[str, Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(a ) biases.append(a ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : str = weights[0], biases[0], self.out_projs[0] lowerCAmelCase__ : Dict = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : List[Any] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) lowerCAmelCase__ : Optional[Any] = nn.functional.log_softmax(a , dim=1 ) lowerCAmelCase__ : List[Any] = [0] + self.cutoffs for i in range(len(a ) - 1 ): lowerCAmelCase__ , lowerCAmelCase__ : str = cutoff_values[i], cutoff_values[i + 1] if i == 0: lowerCAmelCase__ : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = weights[i], biases[i], self.out_projs[i] lowerCAmelCase__ : Dict = self._compute_logit(a , a , a , a ) lowerCAmelCase__ : List[str] = nn.functional.log_softmax(a , dim=1 ) lowerCAmelCase__ : Dict = head_logprob[:, -i] + tail_logprob_i lowerCAmelCase__ : List[str] = logprob_i return out
307
1
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser lowerCamelCase__ = re.compile(r"""\s+""") def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Tuple: return {"hash": hashlib.mda(re.sub(SCREAMING_SNAKE_CASE_ , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Dict: lowerCAmelCase__ : List[Any] = [len(SCREAMING_SNAKE_CASE_ ) for line in example['content'].splitlines()] return {"line_mean": np.mean(SCREAMING_SNAKE_CASE_ ), "line_max": max(SCREAMING_SNAKE_CASE_ )} def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> List[Any]: lowerCAmelCase__ : Optional[Any] = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=5 ) -> str: lowerCAmelCase__ : Union[str, Any] = ['auto-generated', 'autogenerated', 'automatically generated'] lowerCAmelCase__ : Any = example['content'].splitlines() for _, line in zip(range(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=0.05 ) -> Dict: lowerCAmelCase__ : int = ['unit tests', 'test file', 'configuration file'] lowerCAmelCase__ : Optional[Any] = example['content'].splitlines() lowerCAmelCase__ : Union[str, Any] = 0 lowerCAmelCase__ : List[str] = 0 # first test for _, line in zip(range(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test lowerCAmelCase__ : Union[str, Any] = example['content'].count('\n' ) lowerCAmelCase__ : Any = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> List[Any]: lowerCAmelCase__ : Any = ['def ', 'class ', 'for ', 'while '] lowerCAmelCase__ : Union[str, Any] = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=4 ) -> Dict: lowerCAmelCase__ : Union[str, Any] = example['content'].splitlines() lowerCAmelCase__ : Optional[Any] = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: lowerCAmelCase__ : List[str] = tokenizer(example['content'] , truncation=SCREAMING_SNAKE_CASE_ )['input_ids'] lowerCAmelCase__ : str = len(example['content'] ) / len(SCREAMING_SNAKE_CASE_ ) return {"ratio": ratio} def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Tuple: lowerCAmelCase__ : List[Any] = {} results.update(get_hash(SCREAMING_SNAKE_CASE_ ) ) results.update(line_stats(SCREAMING_SNAKE_CASE_ ) ) results.update(alpha_stats(SCREAMING_SNAKE_CASE_ ) ) results.update(char_token_ratio(SCREAMING_SNAKE_CASE_ ) ) results.update(is_autogenerated(SCREAMING_SNAKE_CASE_ ) ) results.update(is_config_or_test(SCREAMING_SNAKE_CASE_ ) ) results.update(has_no_keywords(SCREAMING_SNAKE_CASE_ ) ) results.update(has_few_assignments(SCREAMING_SNAKE_CASE_ ) ) return results def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: if not check_uniques(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: with open(SCREAMING_SNAKE_CASE_ , 'rb' ) as f_in: with gzip.open(str(SCREAMING_SNAKE_CASE_ ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) os.unlink(SCREAMING_SNAKE_CASE_ ) # Settings lowerCamelCase__ = HfArgumentParser(PreprocessingArguments) lowerCamelCase__ = parser.parse_args() if args.num_workers is None: lowerCamelCase__ = multiprocessing.cpu_count() lowerCamelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset lowerCamelCase__ = time.time() lowerCamelCase__ = load_dataset(args.dataset_name, split="""train""") print(F"""Time to load dataset: {time.time()-t_start:.2f}""") # Run preprocessing lowerCamelCase__ = time.time() lowerCamelCase__ = ds.map(preprocess, num_proc=args.num_workers) print(F"""Time to preprocess dataset: {time.time()-t_start:.2f}""") # Deduplicate hashes lowerCamelCase__ = set(ds.unique("""hash""")) lowerCamelCase__ = len(uniques) / len(ds) print(F"""Fraction of duplicates: {1-frac:.2%}""") # Deduplicate data and apply heuristics lowerCamelCase__ = time.time() lowerCamelCase__ = ds.filter(filter, fn_kwargs={"""uniques""": uniques, """args""": args}) print(F"""Time to filter dataset: {time.time()-t_start:.2f}""") print(F"""Size of filtered dataset: {len(ds_filter)}""") # Deduplicate with minhash and jaccard similarity if args.near_deduplication: lowerCamelCase__ = time.time() lowerCamelCase__ , lowerCamelCase__ = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F"""Time to deduplicate dataset: {time.time()-t_start:.2f}""") print(F"""Size of deduplicate dataset: {len(ds_filter)}""") # Save data in batches of samples_per_file lowerCamelCase__ = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / """duplicate_clusters.json""", """w""") as f: json.dump(duplicate_clusters, f) lowerCamelCase__ = output_dir / """data""" data_dir.mkdir(exist_ok=True) lowerCamelCase__ = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): lowerCamelCase__ = str(data_dir / F"""file-{file_number+1:012}.json""") lowerCamelCase__ = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F"""Time to save dataset: {time.time()-t_start:.2f}""")
307
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowerCamelCase__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} lowerCamelCase__ = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", """emoji""": True, }, } ] lowerCamelCase__ = 0 for log in Path().glob("""*.log"""): lowerCamelCase__ = 0 with open(log, """r""") as f: for line in f: lowerCamelCase__ = json.loads(line) if line.get("""nodeid""", """""") != "": lowerCamelCase__ = line["""nodeid"""] if line.get("""duration""", None) is not None: lowerCamelCase__ = F"""{line["duration"]:.4f}""" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowerCamelCase__ = [] log.unlink() lowerCamelCase__ = """""" lowerCamelCase__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowerCamelCase__ = [] lowerCamelCase__ = {} for test in failed_tests: lowerCamelCase__ = test[0].split("""::""") lowerCamelCase__ = data[0].split("""/""")[-1] if data[0] not in filesafailed: lowerCamelCase__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowerCamelCase__ = [test[0] for test in failed_table] lowerCamelCase__ = list(set(files)) # Count number of instances in failed_tests lowerCamelCase__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowerCamelCase__ = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: lowerCamelCase__ = """Too many failed tests, please see the full report in the Action results.""" lowerCamelCase__ = len(err) + 10 lowerCamelCase__ = message[: 3000 - offset] + F"""\n...\n```\n{err}""" print(F"""### {message}""") else: lowerCamelCase__ = """No failed tests! 🤗""" print(F"""## {message}""") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient lowerCamelCase__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": lowerCamelCase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) lowerCamelCase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) lowerCamelCase__ = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) lowerCamelCase__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) lowerCamelCase__ = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowerCamelCase__ = """""" for i, row in enumerate(test_failures): if row[0] != test_class: lowerCamelCase__ = row[0] else: lowerCamelCase__ = """""" lowerCamelCase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
307
1
from ... import PretrainedConfig lowerCamelCase__ = { """sijunhe/nezha-cn-base""": """https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json""", } class A__ ( __magic_name__ ): lowercase = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP lowercase = 'nezha' def __init__( self : Union[str, Any] , a : Tuple=21_128 , a : int=768 , a : Dict=12 , a : Dict=12 , a : Optional[Any]=3_072 , a : List[Any]="gelu" , a : Optional[Any]=0.1 , a : int=0.1 , a : str=512 , a : int=64 , a : int=2 , a : List[str]=0.0_2 , a : Tuple=1E-12 , a : int=0.1 , a : Union[str, Any]=0 , a : Optional[Any]=2 , a : Tuple=3 , a : Union[str, Any]=True , **a : Dict , ): '''simple docstring''' super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a ) lowerCAmelCase__ : Optional[int] = vocab_size lowerCAmelCase__ : Optional[int] = hidden_size lowerCAmelCase__ : Dict = num_hidden_layers lowerCAmelCase__ : List[str] = num_attention_heads lowerCAmelCase__ : Tuple = hidden_act lowerCAmelCase__ : int = intermediate_size lowerCAmelCase__ : Optional[Any] = hidden_dropout_prob lowerCAmelCase__ : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase__ : Union[str, Any] = max_position_embeddings lowerCAmelCase__ : str = max_relative_position lowerCAmelCase__ : Optional[int] = type_vocab_size lowerCAmelCase__ : List[str] = initializer_range lowerCAmelCase__ : Optional[int] = layer_norm_eps lowerCAmelCase__ : Any = classifier_dropout lowerCAmelCase__ : Optional[Any] = use_cache
307
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCamelCase__ = imread(r"""digital_image_processing/image_data/lena_small.jpg""") lowerCamelCase__ = cvtColor(img, COLOR_BGR2GRAY) def lowerCAmelCase__ ( ) -> Dict: lowerCAmelCase__ : List[Any] = cn.convert_to_negative(SCREAMING_SNAKE_CASE_ ) # assert negative_img array for at least one True assert negative_img.any() def lowerCAmelCase__ ( ) -> Optional[Any]: with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(SCREAMING_SNAKE_CASE_ , 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def lowerCAmelCase__ ( ) -> Tuple: lowerCAmelCase__ : str = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def lowerCAmelCase__ ( ) -> Tuple: lowerCAmelCase__ : Tuple = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() lowerCAmelCase__ : Optional[Any] = canny.canny(SCREAMING_SNAKE_CASE_ ) # assert canny array for at least one True assert canny_array.any() def lowerCAmelCase__ ( ) -> Optional[int]: assert gg.gaussian_filter(SCREAMING_SNAKE_CASE_ , 5 , sigma=0.9 ).all() def lowerCAmelCase__ ( ) -> Dict: # laplace diagonals lowerCAmelCase__ : Union[str, Any] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowerCAmelCase__ : int = conv.img_convolve(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).astype(SCREAMING_SNAKE_CASE_ ) assert res.any() def lowerCAmelCase__ ( ) -> List[str]: assert med.median_filter(SCREAMING_SNAKE_CASE_ , 3 ).any() def lowerCAmelCase__ ( ) -> Any: lowerCAmelCase__ , lowerCAmelCase__ : str = sob.sobel_filter(SCREAMING_SNAKE_CASE_ ) assert grad.any() and theta.any() def lowerCAmelCase__ ( ) -> Any: lowerCAmelCase__ : int = sp.make_sepia(SCREAMING_SNAKE_CASE_ , 20 ) assert sepia.all() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = "digital_image_processing/image_data/lena_small.jpg" ) -> Optional[Any]: lowerCAmelCase__ : List[Any] = bs.Burkes(imread(SCREAMING_SNAKE_CASE_ , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ = "digital_image_processing/image_data/lena_small.jpg" , ) -> Any: lowerCAmelCase__ : Dict = rs.NearestNeighbour(imread(SCREAMING_SNAKE_CASE_ , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def lowerCAmelCase__ ( ) -> int: lowerCAmelCase__ : int = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. lowerCAmelCase__ : List[str] = imread(SCREAMING_SNAKE_CASE_ , 0 ) # Test for get_neighbors_pixel function() return not None lowerCAmelCase__ : str = 0 lowerCAmelCase__ : str = 0 lowerCAmelCase__ : List[str] = image[x_coordinate][y_coordinate] lowerCAmelCase__ : Dict = lbp.get_neighbors_pixel( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCAmelCase__ : List[str] = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): lowerCAmelCase__ : Dict = lbp.local_binary_value(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert lbp_image.any()
307
1
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> list: lowerCAmelCase__ : Dict = len(SCREAMING_SNAKE_CASE_ ) for i in range(1 , SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : str = collection[i] lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : Optional[int] = i - 1 while low <= high: lowerCAmelCase__ : Union[str, Any] = (low + high) // 2 if val < collection[mid]: lowerCAmelCase__ : Tuple = mid - 1 else: lowerCAmelCase__ : Optional[int] = mid + 1 for j in range(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , -1 ): lowerCAmelCase__ : Optional[Any] = collection[j - 1] lowerCAmelCase__ : List[str] = val return collection if __name__ == "__main__": lowerCamelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCamelCase__ = [int(item) for item in user_input.split(""",""")] print(binary_insertion_sort(unsorted))
307
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase__ = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
1
import os import sys import unittest lowerCamelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowerCamelCase__ = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""") lowerCamelCase__ = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""") class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Any = get_test_to_tester_mapping(a ) lowerCAmelCase__ : Any = get_test_to_tester_mapping(a ) lowerCAmelCase__ : Optional[Any] = {'BertModelTest': 'BertModelTester'} lowerCAmelCase__ : List[str] = { 'BlipModelTest': 'BlipModelTester', 'BlipTextImageModelTest': 'BlipTextImageModelsModelTester', 'BlipTextModelTest': 'BlipTextModelTester', 'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester', 'BlipVQAModelTest': 'BlipVQAModelTester', 'BlipVisionModelTest': 'BlipVisionModelTester', } self.assertEqual(get_test_info.to_json(a ) , a ) self.assertEqual(get_test_info.to_json(a ) , a ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : str = get_model_to_test_mapping(a ) lowerCAmelCase__ : Dict = get_model_to_test_mapping(a ) lowerCAmelCase__ : str = { 'BertForMaskedLM': ['BertModelTest'], 'BertForMultipleChoice': ['BertModelTest'], 'BertForNextSentencePrediction': ['BertModelTest'], 'BertForPreTraining': ['BertModelTest'], 'BertForQuestionAnswering': ['BertModelTest'], 'BertForSequenceClassification': ['BertModelTest'], 'BertForTokenClassification': ['BertModelTest'], 'BertLMHeadModel': ['BertModelTest'], 'BertModel': ['BertModelTest'], } lowerCAmelCase__ : List[str] = { 'BlipForConditionalGeneration': ['BlipTextImageModelTest'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'], 'BlipForQuestionAnswering': ['BlipVQAModelTest'], 'BlipModel': ['BlipModelTest'], 'BlipTextModel': ['BlipTextModelTest'], 'BlipVisionModel': ['BlipVisionModelTest'], } self.assertEqual(get_test_info.to_json(a ) , a ) self.assertEqual(get_test_info.to_json(a ) , a ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = get_model_to_tester_mapping(a ) lowerCAmelCase__ : Union[str, Any] = get_model_to_tester_mapping(a ) lowerCAmelCase__ : Union[str, Any] = { 'BertForMaskedLM': ['BertModelTester'], 'BertForMultipleChoice': ['BertModelTester'], 'BertForNextSentencePrediction': ['BertModelTester'], 'BertForPreTraining': ['BertModelTester'], 'BertForQuestionAnswering': ['BertModelTester'], 'BertForSequenceClassification': ['BertModelTester'], 'BertForTokenClassification': ['BertModelTester'], 'BertLMHeadModel': ['BertModelTester'], 'BertModel': ['BertModelTester'], } lowerCAmelCase__ : List[str] = { 'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'], 'BlipForQuestionAnswering': ['BlipVQAModelTester'], 'BlipModel': ['BlipModelTester'], 'BlipTextModel': ['BlipTextModelTester'], 'BlipVisionModel': ['BlipVisionModelTester'], } self.assertEqual(get_test_info.to_json(a ) , a ) self.assertEqual(get_test_info.to_json(a ) , a )
307
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.999 , SCREAMING_SNAKE_CASE_="cosine" , ) -> Union[str, Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(SCREAMING_SNAKE_CASE_ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(SCREAMING_SNAKE_CASE_ ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) lowerCAmelCase__ : Tuple = [] for i in range(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : List[Any] = i / num_diffusion_timesteps lowerCAmelCase__ : str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) / alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ) return torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ) class A__ ( __magic_name__ , __magic_name__ ): lowercase = [e.name for e in KarrasDiffusionSchedulers] lowercase = 2 @register_to_config def __init__( self : Union[str, Any] , a : int = 1_000 , a : float = 0.0_0_0_8_5 , a : float = 0.0_1_2 , a : str = "linear" , a : Optional[Union[np.ndarray, List[float]]] = None , a : str = "epsilon" , a : Optional[bool] = False , a : Optional[bool] = False , a : float = 1.0 , a : str = "linspace" , a : int = 0 , ): '''simple docstring''' if trained_betas is not None: lowerCAmelCase__ : List[str] = torch.tensor(a , dtype=torch.floataa ) elif beta_schedule == "linear": lowerCAmelCase__ : List[str] = torch.linspace(a , a , a , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowerCAmelCase__ : Union[str, Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , a , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowerCAmelCase__ : int = betas_for_alpha_bar(a , alpha_transform_type='cosine' ) elif beta_schedule == "exp": lowerCAmelCase__ : List[str] = betas_for_alpha_bar(a , alpha_transform_type='exp' ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) lowerCAmelCase__ : int = 1.0 - self.betas lowerCAmelCase__ : Tuple = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(a , a , a ) lowerCAmelCase__ : Optional[Any] = use_karras_sigmas def _lowerCamelCase ( self : str , a : List[Any] , a : str=None ): '''simple docstring''' if schedule_timesteps is None: lowerCAmelCase__ : List[str] = self.timesteps lowerCAmelCase__ : int = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: lowerCAmelCase__ : List[str] = 1 if len(a ) > 1 else 0 else: lowerCAmelCase__ : Tuple = timestep.cpu().item() if torch.is_tensor(a ) else timestep lowerCAmelCase__ : Tuple = self._index_counter[timestep_int] return indices[pos].item() @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _lowerCamelCase ( self : Tuple , a : torch.FloatTensor , a : Union[float, torch.FloatTensor] , ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.index_for_timestep(a ) lowerCAmelCase__ : Any = self.sigmas[step_index] lowerCAmelCase__ : Optional[Any] = sample / ((sigma**2 + 1) ** 0.5) return sample def _lowerCamelCase ( self : List[str] , a : int , a : Union[str, torch.device] = None , a : Optional[int] = None , ): '''simple docstring''' lowerCAmelCase__ : Any = num_inference_steps lowerCAmelCase__ : Union[str, Any] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowerCAmelCase__ : Union[str, Any] = np.linspace(0 , num_train_timesteps - 1 , a , dtype=a )[::-1].copy() elif self.config.timestep_spacing == "leading": lowerCAmelCase__ : List[Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCAmelCase__ : Dict = (np.arange(0 , a ) * step_ratio).round()[::-1].copy().astype(a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowerCAmelCase__ : Tuple = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCAmelCase__ : int = (np.arange(a , 0 , -step_ratio )).round().copy().astype(a ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) lowerCAmelCase__ : str = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) lowerCAmelCase__ : List[Any] = np.log(a ) lowerCAmelCase__ : Optional[int] = np.interp(a , np.arange(0 , len(a ) ) , a ) if self.config.use_karras_sigmas: lowerCAmelCase__ : str = self._convert_to_karras(in_sigmas=a , num_inference_steps=self.num_inference_steps ) lowerCAmelCase__ : Union[str, Any] = np.array([self._sigma_to_t(a , a ) for sigma in sigmas] ) lowerCAmelCase__ : Tuple = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) lowerCAmelCase__ : Dict = torch.from_numpy(a ).to(device=a ) lowerCAmelCase__ : Union[str, Any] = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) lowerCAmelCase__ : Tuple = torch.from_numpy(a ) lowerCAmelCase__ : List[str] = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(a ).startswith('mps' ): # mps does not support float64 lowerCAmelCase__ : Optional[Any] = timesteps.to(a , dtype=torch.floataa ) else: lowerCAmelCase__ : Any = timesteps.to(device=a ) # empty dt and derivative lowerCAmelCase__ : str = None lowerCAmelCase__ : Optional[int] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowerCAmelCase__ : Optional[Any] = defaultdict(a ) def _lowerCamelCase ( self : Any , a : Dict , a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = np.log(a ) # get distribution lowerCAmelCase__ : Tuple = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range lowerCAmelCase__ : Optional[int] = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) lowerCAmelCase__ : List[str] = low_idx + 1 lowerCAmelCase__ : List[str] = log_sigmas[low_idx] lowerCAmelCase__ : Any = log_sigmas[high_idx] # interpolate sigmas lowerCAmelCase__ : Union[str, Any] = (low - log_sigma) / (low - high) lowerCAmelCase__ : List[Any] = np.clip(a , 0 , 1 ) # transform interpolation to time range lowerCAmelCase__ : List[Any] = (1 - w) * low_idx + w * high_idx lowerCAmelCase__ : Any = t.reshape(sigma.shape ) return t def _lowerCamelCase ( self : Tuple , a : torch.FloatTensor , a : Any ): '''simple docstring''' lowerCAmelCase__ : float = in_sigmas[-1].item() lowerCAmelCase__ : float = in_sigmas[0].item() lowerCAmelCase__ : Tuple = 7.0 # 7.0 is the value used in the paper lowerCAmelCase__ : Tuple = np.linspace(0 , 1 , a ) lowerCAmelCase__ : Any = sigma_min ** (1 / rho) lowerCAmelCase__ : Optional[Any] = sigma_max ** (1 / rho) lowerCAmelCase__ : Tuple = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _lowerCamelCase ( self : Any ): '''simple docstring''' return self.dt is None def _lowerCamelCase ( self : List[str] , a : Union[torch.FloatTensor, np.ndarray] , a : Union[float, torch.FloatTensor] , a : Union[torch.FloatTensor, np.ndarray] , a : bool = True , ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.index_for_timestep(a ) # advance index counter by 1 lowerCAmelCase__ : Tuple = timestep.cpu().item() if torch.is_tensor(a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowerCAmelCase__ : Union[str, Any] = self.sigmas[step_index] lowerCAmelCase__ : Union[str, Any] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method lowerCAmelCase__ : int = self.sigmas[step_index - 1] lowerCAmelCase__ : Any = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowerCAmelCase__ : Optional[int] = 0 lowerCAmelCase__ : Union[str, Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowerCAmelCase__ : int = sigma_hat if self.state_in_first_order else sigma_next lowerCAmelCase__ : Any = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowerCAmelCase__ : Dict = sigma_hat if self.state_in_first_order else sigma_next lowerCAmelCase__ : List[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": lowerCAmelCase__ : int = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.config.clip_sample: lowerCAmelCase__ : str = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowerCAmelCase__ : Dict = (sample - pred_original_sample) / sigma_hat # 3. delta timestep lowerCAmelCase__ : Optional[int] = sigma_next - sigma_hat # store for 2nd order step lowerCAmelCase__ : List[Any] = derivative lowerCAmelCase__ : str = dt lowerCAmelCase__ : Dict = sample else: # 2. 2nd order / Heun's method lowerCAmelCase__ : Union[str, Any] = (sample - pred_original_sample) / sigma_next lowerCAmelCase__ : Union[str, Any] = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample lowerCAmelCase__ : Dict = self.dt lowerCAmelCase__ : Optional[int] = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" lowerCAmelCase__ : List[str] = None lowerCAmelCase__ : Tuple = None lowerCAmelCase__ : str = None lowerCAmelCase__ : Tuple = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=a ) def _lowerCamelCase ( self : int , a : torch.FloatTensor , a : torch.FloatTensor , a : torch.FloatTensor , ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(a ): # mps does not support float64 lowerCAmelCase__ : Optional[int] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) lowerCAmelCase__ : int = timesteps.to(original_samples.device , dtype=torch.floataa ) else: lowerCAmelCase__ : Union[str, Any] = self.timesteps.to(original_samples.device ) lowerCAmelCase__ : Optional[Any] = timesteps.to(original_samples.device ) lowerCAmelCase__ : List[Any] = [self.index_for_timestep(a , a ) for t in timesteps] lowerCAmelCase__ : List[str] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): lowerCAmelCase__ : Any = sigma.unsqueeze(-1 ) lowerCAmelCase__ : List[str] = original_samples + noise * sigma return noisy_samples def __len__( self : int ): '''simple docstring''' return self.config.num_train_timesteps
307
1
from __future__ import annotations lowerCamelCase__ = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] lowerCamelCase__ = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> list[float]: lowerCAmelCase__ : Dict = [] lowerCAmelCase__ : List[str] = len(SCREAMING_SNAKE_CASE_ ) for i in range(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : float = -1 for j in range(i + 1 , SCREAMING_SNAKE_CASE_ ): if arr[i] < arr[j]: lowerCAmelCase__ : List[Any] = arr[j] break result.append(SCREAMING_SNAKE_CASE_ ) return result def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> list[float]: lowerCAmelCase__ : Tuple = [] for i, outer in enumerate(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : float = -1 for inner in arr[i + 1 :]: if outer < inner: lowerCAmelCase__ : Any = inner break result.append(SCREAMING_SNAKE_CASE_ ) return result def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> list[float]: lowerCAmelCase__ : List[Any] = len(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : list[float] = [] lowerCAmelCase__ : list[float] = [-1] * arr_size for index in reversed(range(SCREAMING_SNAKE_CASE_ ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: lowerCAmelCase__ : Optional[Any] = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) lowerCamelCase__ = ( """from __main__ import arr, next_greatest_element_slow, """ """next_greatest_element_fast, next_greatest_element""" ) print( """next_greatest_element_slow():""", timeit("""next_greatest_element_slow(arr)""", setup=setup), ) print( """next_greatest_element_fast():""", timeit("""next_greatest_element_fast(arr)""", setup=setup), ) print( """ next_greatest_element():""", timeit("""next_greatest_element(arr)""", setup=setup), )
307
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: if isinstance(SCREAMING_SNAKE_CASE_ , collections.abc.Iterable ): return x return (x, x) @require_tf class A__ : def _lowerCamelCase ( self : List[Any] , a : List[str] , a : Optional[Any] ): '''simple docstring''' pass def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' pass def _lowerCamelCase ( self : Dict ): '''simple docstring''' pass def _lowerCamelCase ( self : Dict , a : int , a : str , a : List[Any] , a : Dict , a : List[str]=None , **a : Dict ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(a , a ) lowerCAmelCase__ : Tuple = TFVisionTextDualEncoderModel(a ) lowerCAmelCase__ : Tuple = model(input_ids=a , pixel_values=a , attention_mask=a ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) ) def _lowerCamelCase ( self : Union[str, Any] , a : Dict , a : Tuple , a : Dict , a : Union[str, Any] , a : List[Any]=None , **a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : List[str] = self.get_vision_text_model(a , a ) lowerCAmelCase__ : List[Any] = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : Optional[int] = model(input_ids=a , pixel_values=a , attention_mask=a ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _lowerCamelCase ( self : List[str] , a : Optional[int] , a : Optional[int] , a : Union[str, Any] , a : List[Any] , a : Any=None , **a : Dict ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Optional[Any] = {'vision_model': vision_model, 'text_model': text_model} lowerCAmelCase__ : Tuple = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**a ) lowerCAmelCase__ : Union[str, Any] = model(input_ids=a , pixel_values=a , attention_mask=a ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _lowerCamelCase ( self : Any , a : Optional[int] , a : Optional[int] , a : Dict , a : Optional[int] , a : Optional[int]=None , **a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : int = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Dict = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : List[str] = model(input_ids=a , pixel_values=a , attention_mask=a ) lowerCAmelCase__ : Union[str, Any] = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(a ) lowerCAmelCase__ : Any = TFVisionTextDualEncoderModel.from_pretrained(a ) lowerCAmelCase__ : int = model(input_ids=a , pixel_values=a , attention_mask=a ) lowerCAmelCase__ : Union[str, Any] = after_output[0].numpy() lowerCAmelCase__ : Optional[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a , 1E-5 ) def _lowerCamelCase ( self : List[str] , a : Dict , a : Optional[int] , a : List[Any] , a : str , a : int=None , **a : Tuple ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Any = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : str = model( input_ids=a , pixel_values=a , attention_mask=a , output_attentions=a ) lowerCAmelCase__ : Union[str, Any] = output.vision_model_output.attentions self.assertEqual(len(a ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase__ : Optional[int] = to_atuple(vision_model.config.image_size ) lowerCAmelCase__ : Optional[Any] = to_atuple(vision_model.config.patch_size ) lowerCAmelCase__ : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCAmelCase__ : int = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCAmelCase__ : str = output.text_model_output.attentions self.assertEqual(len(a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCamelCase ( self : List[Any] , a : np.ndarray , a : np.ndarray , a : float ): '''simple docstring''' lowerCAmelCase__ : int = np.abs((a - b) ).max() self.assertLessEqual(a , a , f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**a ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Any = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**a ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : str = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.prepare_config_and_inputs() self.check_save_load(**a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**a ) @slow def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = self.get_pretrained_model_and_inputs() lowerCAmelCase__ : List[Any] = model_a(**a ) lowerCAmelCase__ : Optional[int] = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(a ) lowerCAmelCase__ : str = TFVisionTextDualEncoderModel.from_pretrained(a ) lowerCAmelCase__ : List[str] = model_a(**a ) lowerCAmelCase__ : int = after_outputs[0].numpy() lowerCAmelCase__ : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a , 1E-5 ) @require_tf class A__ ( __magic_name__ , unittest.TestCase ): def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-random-bert' ) lowerCAmelCase__ : int = 13 lowerCAmelCase__ : List[Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ : int = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ : Optional[Any] = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ : List[Any] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _lowerCamelCase ( self : List[Any] , a : Dict , a : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = TFViTModel(a , name='vision_model' ) lowerCAmelCase__ : str = TFBertModel(a , name='text_model' ) return vision_model, text_model def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = TFViTModelTester(self ) lowerCAmelCase__ : Tuple = TFBertModelTester(self ) lowerCAmelCase__ : Optional[int] = vit_model_tester.prepare_config_and_inputs() lowerCAmelCase__ : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : int = vision_config_and_inputs ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : str = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class A__ ( __magic_name__ , unittest.TestCase ): def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-deit-tf' , 'hf-internal-testing/tiny-random-roberta' ) lowerCAmelCase__ : Tuple = 13 lowerCAmelCase__ : Any = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ : Dict = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ : Any = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ : Tuple = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _lowerCamelCase ( self : str , a : Optional[Any] , a : Dict , a : Dict , a : Any , a : Any=None , **a : int ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Dict = self.get_vision_text_model(a , a ) lowerCAmelCase__ : Optional[int] = TFVisionTextDualEncoderModel(vision_model=a , text_model=a ) lowerCAmelCase__ : Any = model( input_ids=a , pixel_values=a , attention_mask=a , output_attentions=a ) lowerCAmelCase__ : Union[str, Any] = output.vision_model_output.attentions self.assertEqual(len(a ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowerCAmelCase__ : str = to_atuple(vision_model.config.image_size ) lowerCAmelCase__ : Union[str, Any] = to_atuple(vision_model.config.patch_size ) lowerCAmelCase__ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCAmelCase__ : int = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCAmelCase__ : List[str] = output.text_model_output.attentions self.assertEqual(len(a ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCamelCase ( self : int , a : Optional[int] , a : int ): '''simple docstring''' lowerCAmelCase__ : Dict = TFDeiTModel(a , name='vision_model' ) lowerCAmelCase__ : List[Any] = TFRobertaModel(a , name='text_model' ) return vision_model, text_model def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Dict = TFDeiTModelTester(self ) lowerCAmelCase__ : List[str] = TFRobertaModelTester(self ) lowerCAmelCase__ : str = vit_model_tester.prepare_config_and_inputs() lowerCAmelCase__ : List[Any] = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[str] = vision_config_and_inputs ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : Any = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class A__ ( __magic_name__ , unittest.TestCase ): def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : int = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-clip-tf' , 'hf-internal-testing/tiny-random-bert' ) lowerCAmelCase__ : Dict = 13 lowerCAmelCase__ : str = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCAmelCase__ : List[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCAmelCase__ : Union[str, Any] = random_attention_mask([batch_size, 4] ) lowerCAmelCase__ : Optional[int] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def _lowerCamelCase ( self : str , a : int , a : List[str] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = TFCLIPVisionModel(a , name='vision_model' ) lowerCAmelCase__ : List[str] = TFBertModel(a , name='text_model' ) return vision_model, text_model def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Any = TFCLIPVisionModelTester(self ) lowerCAmelCase__ : Union[str, Any] = TFBertModelTester(self ) lowerCAmelCase__ : Any = clip_model_tester.prepare_config_and_inputs() lowerCAmelCase__ : Any = bert_model_tester.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = vision_config_and_inputs ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : str = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class A__ ( unittest.TestCase ): @slow def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Tuple = TFVisionTextDualEncoderModel.from_pretrained( 'clip-italian/clip-italian' , logit_scale_init_value=1.0 , from_pt=a ) lowerCAmelCase__ : List[Any] = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) lowerCAmelCase__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) lowerCAmelCase__ : Any = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=a , padding=a , return_tensors='np' ) lowerCAmelCase__ : Union[str, Any] = model(**a ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) lowerCAmelCase__ : List[str] = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , a , atol=1E-3 ) )
307
1
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap lowerCamelCase__ = """Usage of script: script_name <size_of_canvas:int>""" lowerCamelCase__ = [0] * 100 + [1] * 10 random.shuffle(choice) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> list[list[bool]]: lowerCAmelCase__ : List[Any] = [[False for i in range(SCREAMING_SNAKE_CASE_ )] for j in range(SCREAMING_SNAKE_CASE_ )] return canvas def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> None: for i, row in enumerate(SCREAMING_SNAKE_CASE_ ): for j, _ in enumerate(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : List[str] = bool(random.getrandbits(1 ) ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> list[list[bool]]: lowerCAmelCase__ : List[Any] = np.array(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : int = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(SCREAMING_SNAKE_CASE_ ): for c, pt in enumerate(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : List[str] = __judge_point( SCREAMING_SNAKE_CASE_ , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) lowerCAmelCase__ : Any = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. lowerCAmelCase__ : list[list[bool]] = current_canvas.tolist() return return_canvas def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> bool: lowerCAmelCase__ : List[str] = 0 lowerCAmelCase__ : List[Any] = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. lowerCAmelCase__ : int = pt if pt: if alive < 2: lowerCAmelCase__ : List[str] = False elif alive == 2 or alive == 3: lowerCAmelCase__ : int = True elif alive > 3: lowerCAmelCase__ : str = False else: if alive == 3: lowerCAmelCase__ : Dict = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) lowerCamelCase__ = int(sys.argv[1]) # main working structure of this module. lowerCamelCase__ = create_canvas(canvas_size) seed(c) lowerCamelCase__ , lowerCamelCase__ = plt.subplots() fig.show() lowerCamelCase__ = ListedColormap(["""w""", """k"""]) try: while True: lowerCamelCase__ = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
307
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) lowerCamelCase__ = logging.getLogger(__name__) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: lowerCAmelCase__ : Dict = np.argmax(SCREAMING_SNAKE_CASE_ , axis=1 ) return np.sum(outputs == labels ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: with open(SCREAMING_SNAKE_CASE_ , encoding='utf_8' ) as f: lowerCAmelCase__ : Dict = csv.reader(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Dict = [] next(SCREAMING_SNAKE_CASE_ ) # skip the first line for line in tqdm(SCREAMING_SNAKE_CASE_ ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: lowerCAmelCase__ : Dict = [] for dataset in encoded_datasets: lowerCAmelCase__ : List[str] = len(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) lowerCAmelCase__ : Tuple = np.zeros((n_batch, 2) , dtype=np.intaa ) lowerCAmelCase__ : List[Any] = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) lowerCAmelCase__ : Tuple = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Tuple = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase__ : Any = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase__ : Optional[Any] = with_conta lowerCAmelCase__ : List[str] = with_conta lowerCAmelCase__ : List[Any] = len(SCREAMING_SNAKE_CASE_ ) - 1 lowerCAmelCase__ : Tuple = len(SCREAMING_SNAKE_CASE_ ) - 1 lowerCAmelCase__ : Tuple = with_conta lowerCAmelCase__ : Optional[int] = with_conta lowerCAmelCase__ : Optional[int] = mc_label lowerCAmelCase__ : Dict = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(SCREAMING_SNAKE_CASE_ ) for t in all_inputs ) ) return tensor_datasets def lowerCAmelCase__ ( ) -> int: lowerCAmelCase__ : int = argparse.ArgumentParser() parser.add_argument('--model_name' , type=SCREAMING_SNAKE_CASE_ , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=SCREAMING_SNAKE_CASE_ , default='' ) parser.add_argument('--eval_dataset' , type=SCREAMING_SNAKE_CASE_ , default='' ) parser.add_argument('--seed' , type=SCREAMING_SNAKE_CASE_ , default=42 ) parser.add_argument('--num_train_epochs' , type=SCREAMING_SNAKE_CASE_ , default=3 ) parser.add_argument('--train_batch_size' , type=SCREAMING_SNAKE_CASE_ , default=8 ) parser.add_argument('--eval_batch_size' , type=SCREAMING_SNAKE_CASE_ , default=16 ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=SCREAMING_SNAKE_CASE_ , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=SCREAMING_SNAKE_CASE_ , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=SCREAMING_SNAKE_CASE_ , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=SCREAMING_SNAKE_CASE_ , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=SCREAMING_SNAKE_CASE_ , default=6.25e-5 ) parser.add_argument('--warmup_steps' , default=0 , type=SCREAMING_SNAKE_CASE_ , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=SCREAMING_SNAKE_CASE_ , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=SCREAMING_SNAKE_CASE_ , default=0.01 ) parser.add_argument('--lm_coef' , type=SCREAMING_SNAKE_CASE_ , default=0.9 ) parser.add_argument('--n_valid' , type=SCREAMING_SNAKE_CASE_ , default=374 ) parser.add_argument('--server_ip' , type=SCREAMING_SNAKE_CASE_ , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=SCREAMING_SNAKE_CASE_ , default='' , help='Can be used for distant debugging.' ) lowerCAmelCase__ : List[str] = parser.parse_args() print(SCREAMING_SNAKE_CASE_ ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE_ ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) lowerCAmelCase__ : str = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) lowerCAmelCase__ : Dict = torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset lowerCAmelCase__ : Union[str, Any] = ['_start_', '_delimiter_', '_classify_'] lowerCAmelCase__ : Dict = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE_ ) ) model.to(SCREAMING_SNAKE_CASE_ ) # Load and encode the datasets def tokenize_and_encode(SCREAMING_SNAKE_CASE_ ): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return obj return [tokenize_and_encode(SCREAMING_SNAKE_CASE_ ) for o in obj] logger.info('Encoding dataset...' ) lowerCAmelCase__ : List[Any] = load_rocstories_dataset(args.train_dataset ) lowerCAmelCase__ : str = load_rocstories_dataset(args.eval_dataset ) lowerCAmelCase__ : Union[str, Any] = (train_dataset, eval_dataset) lowerCAmelCase__ : List[str] = tokenize_and_encode(SCREAMING_SNAKE_CASE_ ) # Compute the max input length for the Transformer lowerCAmelCase__ : Union[str, Any] = model.config.n_positions // 2 - 2 lowerCAmelCase__ : Tuple = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) lowerCAmelCase__ : Dict = min(SCREAMING_SNAKE_CASE_ , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders lowerCAmelCase__ : int = pre_process_datasets(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = tensor_datasets[0], tensor_datasets[1] lowerCAmelCase__ : str = TensorDataset(*SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Tuple = RandomSampler(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Tuple = DataLoader(SCREAMING_SNAKE_CASE_ , sampler=SCREAMING_SNAKE_CASE_ , batch_size=args.train_batch_size ) lowerCAmelCase__ : Optional[Any] = TensorDataset(*SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Dict = SequentialSampler(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = DataLoader(SCREAMING_SNAKE_CASE_ , sampler=SCREAMING_SNAKE_CASE_ , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: lowerCAmelCase__ : Union[str, Any] = args.max_steps lowerCAmelCase__ : int = args.max_steps // (len(SCREAMING_SNAKE_CASE_ ) // args.gradient_accumulation_steps) + 1 else: lowerCAmelCase__ : Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) // args.gradient_accumulation_steps * args.num_train_epochs lowerCAmelCase__ : Optional[int] = list(model.named_parameters() ) lowerCAmelCase__ : Tuple = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] lowerCAmelCase__ : str = [ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] lowerCAmelCase__ : Union[str, Any] = AdamW(SCREAMING_SNAKE_CASE_ , lr=args.learning_rate , eps=args.adam_epsilon ) lowerCAmelCase__ : int = get_linear_schedule_with_warmup( SCREAMING_SNAKE_CASE_ , num_warmup_steps=args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE_ ) if args.do_train: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): lowerCAmelCase__ : str = 0 lowerCAmelCase__ : int = 0 lowerCAmelCase__ : str = tqdm(SCREAMING_SNAKE_CASE_ , desc='Training' ) for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : Union[str, Any] = tuple(t.to(SCREAMING_SNAKE_CASE_ ) for t in batch ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = batch lowerCAmelCase__ : Tuple = model(SCREAMING_SNAKE_CASE_ , mc_token_ids=SCREAMING_SNAKE_CASE_ , lm_labels=SCREAMING_SNAKE_CASE_ , mc_labels=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : str = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() lowerCAmelCase__ : Optional[int] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 lowerCAmelCase__ : List[str] = 'Training loss: {:.2e} lr: {:.2e}'.format(SCREAMING_SNAKE_CASE_ , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer lowerCAmelCase__ : Optional[int] = model.module if hasattr(SCREAMING_SNAKE_CASE_ , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` lowerCAmelCase__ : List[str] = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[str] = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE_ ) torch.save(model_to_save.state_dict() , SCREAMING_SNAKE_CASE_ ) model_to_save.config.to_json_file(SCREAMING_SNAKE_CASE_ ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned lowerCAmelCase__ : Dict = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) lowerCAmelCase__ : List[Any] = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(SCREAMING_SNAKE_CASE_ ) if args.do_eval: model.eval() lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = 0, 0 lowerCAmelCase__ , lowerCAmelCase__ : Any = 0, 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , desc='Evaluating' ): lowerCAmelCase__ : str = tuple(t.to(SCREAMING_SNAKE_CASE_ ) for t in batch ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Tuple = batch with torch.no_grad(): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[str] = model( SCREAMING_SNAKE_CASE_ , mc_token_ids=SCREAMING_SNAKE_CASE_ , lm_labels=SCREAMING_SNAKE_CASE_ , mc_labels=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = mc_logits.detach().cpu().numpy() lowerCAmelCase__ : List[Any] = mc_labels.to('cpu' ).numpy() lowerCAmelCase__ : str = accuracy(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 lowerCAmelCase__ : Optional[int] = eval_loss / nb_eval_steps lowerCAmelCase__ : Any = eval_accuracy / nb_eval_examples lowerCAmelCase__ : Union[str, Any] = tr_loss / nb_tr_steps if args.do_train else None lowerCAmelCase__ : Tuple = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} lowerCAmelCase__ : Dict = os.path.join(args.output_dir , 'eval_results.txt' ) with open(SCREAMING_SNAKE_CASE_ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , SCREAMING_SNAKE_CASE_ , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
307
1
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_sentencepiece_available(): import sentencepiece as sp lowerCamelCase__ = 5 lowerCamelCase__ = 10 @require_sentencepiece @require_tokenizers class A__ ( __magic_name__ , unittest.TestCase ): lowercase = SpeechaTextTokenizer lowercase = False lowercase = True def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' super().setUp() lowerCAmelCase__ : Any = sp.SentencePieceProcessor() spm_model.Load(a ) lowerCAmelCase__ : List[str] = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(a ) )] lowerCAmelCase__ : Optional[int] = dict(zip(a , range(len(a ) ) ) ) lowerCAmelCase__ : str = Path(self.tmpdirname ) save_json(a , save_dir / VOCAB_FILES_NAMES['vocab_file'] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(a , save_dir / VOCAB_FILES_NAMES['spm_file'] ) lowerCAmelCase__ : Optional[Any] = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = '<pad>' lowerCAmelCase__ : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a ) , a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a ) , a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(a ) , 1_001 ) def _lowerCamelCase ( self : str ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_001 ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) lowerCAmelCase__ : str = tokenizer.tokenize('This is a test' ) self.assertListEqual(a , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a ) , [289, 50, 14, 174, 386] , ) lowerCAmelCase__ : List[str] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( a , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) lowerCAmelCase__ : List[str] = tokenizer.convert_tokens_to_ids(a ) self.assertListEqual(a , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) lowerCAmelCase__ : Union[str, Any] = tokenizer.convert_ids_to_tokens(a ) self.assertListEqual( a , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Any = {'input_ids': [[3_791, 797, 31, 11, 64, 797, 31, 2_429, 433, 12, 1_176, 12, 20, 786, 915, 142, 2_413, 240, 37, 3_238, 797, 31, 11, 35, 93, 915, 142, 2_413, 240, 37, 5_540, 567, 1_276, 93, 37, 610, 40, 62, 455, 657, 1_042, 123, 780, 177, 37, 309, 241, 1_298, 514, 20, 292, 2_737, 114, 2_469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3_388, 511, 459, 4, 3_555, 40, 321, 302, 705, 4, 3_388, 511, 583, 326, 5, 5, 5, 62, 3_310, 560, 177, 2_680, 217, 1_508, 32, 31, 853, 418, 64, 583, 511, 1_605, 62, 35, 93, 560, 177, 2_680, 217, 1_508, 1_521, 64, 583, 511, 519, 62, 20, 1_515, 764, 20, 149, 261, 5_625, 7_972, 20, 5_540, 567, 1_276, 93, 3_925, 1_675, 11, 15, 802, 7_972, 576, 217, 1_508, 11, 35, 93, 1_253, 2_441, 15, 289, 652, 31, 416, 321, 3_842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2_681, 1_153, 3_434, 20, 5_540, 37, 567, 126, 1_253, 2_441, 3_376, 449, 210, 431, 1_563, 177, 767, 5_540, 11, 1_203, 472, 11, 2_953, 685, 285, 364, 706, 1_153, 20, 6_799, 20, 2_869, 20, 4_464, 126, 40, 2_429, 20, 1_040, 866, 2_664, 418, 20, 318, 20, 1_726, 186, 20, 265, 522, 35, 93, 2_191, 4_634, 20, 1_040, 12, 6_799, 15, 228, 2_356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_575, 2_666, 684, 1_582, 1_176, 12, 627, 149, 619, 20, 4_902, 563, 11, 20, 149, 261, 3_420, 2_356, 174, 142, 4_714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , ) @require_sentencepiece class A__ ( unittest.TestCase ): lowercase = 'valhalla/s2t_mustc_multilinguial_medium' lowercase = 'C\'est trop cool' lowercase = 'Esto es genial' @classmethod def _lowerCamelCase ( cls : Tuple ): '''simple docstring''' lowerCAmelCase__ : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def _lowerCamelCase ( self : str ): '''simple docstring''' self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11 ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' self.assertEqual(self.tokenizer.vocab_size , 10_000 ) def _lowerCamelCase ( self : str ): '''simple docstring''' self.assertIn(a , self.tokenizer.all_special_ids ) lowerCAmelCase__ : Optional[int] = [ES_CODE, 4, 1_601, 47, 7_647, 2] lowerCAmelCase__ : Optional[Any] = self.tokenizer.decode(a , skip_special_tokens=a ) lowerCAmelCase__ : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=a ) self.assertEqual(a , a ) self.assertNotIn(self.tokenizer.eos_token , a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Dict = 'fr' lowerCAmelCase__ : Tuple = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , a ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Dict = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) lowerCAmelCase__ : Any = 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
307
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCamelCase__ = """python tqdm regex requests packaging filelock numpy tokenizers""".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("""dataclasses""") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("""importlib_metadata""") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> int: require_version(deps[pkg] , SCREAMING_SNAKE_CASE_ )
307
1
from __future__ import annotations def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> dict[str, float]: if (voltage, current, resistance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance < 0: raise ValueError('Resistance cannot be negative' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
307
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class A__ ( __magic_name__ ): lowercase = (DPMSolverSDEScheduler,) lowercase = 10 def _lowerCamelCase ( self : Optional[int] , **a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = { 'num_train_timesteps': 1_100, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'noise_sampler_seed': 0, } config.update(**a ) return config def _lowerCamelCase ( self : Tuple ): '''simple docstring''' for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=a ) def _lowerCamelCase ( self : int ): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=a , beta_end=a ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=a ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : int = self.scheduler_classes[0] lowerCAmelCase__ : Tuple = self.get_scheduler_config() lowerCAmelCase__ : List[Any] = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ : Dict = self.dummy_model() lowerCAmelCase__ : int = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ : int = sample.to(a ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : List[Any] = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : str = model(a , a ) lowerCAmelCase__ : int = scheduler.step(a , a , a ) lowerCAmelCase__ : Any = output.prev_sample lowerCAmelCase__ : List[Any] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Optional[int] = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_7_8_2_1_0_4_4_9_2_1_8_7_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_7_8_7_0_5_9_6_4_5_6_5_2_7_7 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_2_1_1_1_8_1_6_4_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_6_8_9_2_2_9_9_6_5_2 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3 def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.scheduler_classes[0] lowerCAmelCase__ : List[str] = self.get_scheduler_config(prediction_type='v_prediction' ) lowerCAmelCase__ : Any = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ : Optional[int] = self.dummy_model() lowerCAmelCase__ : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ : Any = sample.to(a ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ : str = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : str = model(a , a ) lowerCAmelCase__ : Dict = scheduler.step(a , a , a ) lowerCAmelCase__ : Tuple = output.prev_sample lowerCAmelCase__ : int = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Union[str, Any] = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_2_4.7_7_1_4_9_2_0_0_4_3_9_4_5_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_2_2_6_2_8_9_0_1_4_8_1_6_2_8_4 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_2_8.1_6_6_3_3_6_0_5_9_5_7_0_3 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_6_8_8_3_2_6_0_0_1_1_6_7_2_9_7 ) < 1E-3 else: assert abs(result_sum.item() - 1_1_9.8_4_8_7_5_4_8_8_2_8_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.1_5_6_0_5_3_0_6_6_2_5_3_6_6_2_1 ) < 1E-3 def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.scheduler_classes[0] lowerCAmelCase__ : Optional[int] = self.get_scheduler_config() lowerCAmelCase__ : int = scheduler_class(**a ) scheduler.set_timesteps(self.num_inference_steps , device=a ) lowerCAmelCase__ : Tuple = self.dummy_model() lowerCAmelCase__ : Any = self.dummy_sample_deter.to(a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowerCAmelCase__ : Dict = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : Optional[int] = model(a , a ) lowerCAmelCase__ : Tuple = scheduler.step(a , a , a ) lowerCAmelCase__ : Dict = output.prev_sample lowerCAmelCase__ : Union[str, Any] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Dict = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_6_7.4_6_9_5_7_3_9_7_4_6_0_9_3_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_8_0_5_9_3_4_6_0_7_9_8_2_6_3_5 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_1.5_9_3_5_3_6_3_7_6_9_5_3_1_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_4_2_9_0_8_3_8_2_4_1_5_7_7_1 ) < 1E-3 else: assert abs(result_sum.item() - 1_6_2.5_2_3_8_3_4_2_2_8_5_1_5_6_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_1_1_6_1_9_5_7_0_8_5_1_3_2_6 ) < 1E-3 def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.scheduler_classes[0] lowerCAmelCase__ : Any = self.get_scheduler_config() lowerCAmelCase__ : Any = scheduler_class(**a , use_karras_sigmas=a ) scheduler.set_timesteps(self.num_inference_steps , device=a ) lowerCAmelCase__ : str = self.dummy_model() lowerCAmelCase__ : Any = self.dummy_sample_deter.to(a ) * scheduler.init_noise_sigma lowerCAmelCase__ : str = sample.to(a ) for t in scheduler.timesteps: lowerCAmelCase__ : Any = scheduler.scale_model_input(a , a ) lowerCAmelCase__ : int = model(a , a ) lowerCAmelCase__ : Union[str, Any] = scheduler.step(a , a , a ) lowerCAmelCase__ : Union[str, Any] = output.prev_sample lowerCAmelCase__ : Optional[int] = torch.sum(torch.abs(a ) ) lowerCAmelCase__ : Any = torch.mean(torch.abs(a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 1_7_6.6_6_9_7_4_1_3_5_7_4_2_1_8_8 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 1_7_7.6_3_6_5_3_5_6_4_4_5_3_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2 else: assert abs(result_sum.item() - 1_7_0.3_1_3_5_2_2_3_3_8_8_6_7_2 ) < 1E-2 assert abs(result_mean.item() - 0.2_3_0_0_3_8_7_2_7_3_0_9_8_1_8_1_1 ) < 1E-2
307
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {"""tokenizer_file""": """tokenizer.json"""} lowerCamelCase__ = { """tokenizer_file""": { """bigscience/tokenizer""": """https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json""", """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json""", }, } class A__ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = ['input_ids', 'attention_mask'] lowercase = None def __init__( self : Optional[Any] , a : Tuple=None , a : int=None , a : int=None , a : Any="<unk>" , a : Tuple="<s>" , a : Optional[Any]="</s>" , a : Optional[int]="<pad>" , a : Dict=False , a : Union[str, Any]=False , **a : List[Any] , ): '''simple docstring''' super().__init__( a , a , tokenizer_file=a , unk_token=a , bos_token=a , eos_token=a , pad_token=a , add_prefix_space=a , clean_up_tokenization_spaces=a , **a , ) lowerCAmelCase__ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , a ) != add_prefix_space: lowerCAmelCase__ : Any = getattr(a , pre_tok_state.pop('type' ) ) lowerCAmelCase__ : Union[str, Any] = add_prefix_space lowerCAmelCase__ : Dict = pre_tok_class(**a ) lowerCAmelCase__ : List[str] = add_prefix_space def _lowerCamelCase ( self : List[str] , *a : List[Any] , **a : str ): '''simple docstring''' lowerCAmelCase__ : List[str] = kwargs.get('is_split_into_words' , a ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ' pretokenized inputs.' ) return super()._batch_encode_plus(*a , **a ) def _lowerCamelCase ( self : List[str] , *a : Optional[Any] , **a : Tuple ): '''simple docstring''' lowerCAmelCase__ : int = kwargs.get('is_split_into_words' , a ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ' pretokenized inputs.' ) return super()._encode_plus(*a , **a ) def _lowerCamelCase ( self : Any , a : str , a : Optional[str] = None ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self._tokenizer.model.save(a , name=a ) return tuple(a ) def _lowerCamelCase ( self : List[Any] , a : "Conversation" ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(a , add_special_tokens=a ) + [self.eos_token_id] ) if len(a ) > self.model_max_length: lowerCAmelCase__ : Any = input_ids[-self.model_max_length :] return input_ids
307
import os import string import sys lowerCamelCase__ = 1 << 8 lowerCamelCase__ = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } lowerCamelCase__ = KEYMAP["""up"""] lowerCamelCase__ = KEYMAP["""left"""] if sys.platform == "win32": lowerCamelCase__ = [] lowerCamelCase__ = { b"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, b"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): lowerCamelCase__ = ord(str(i)) def lowerCAmelCase__ ( ) -> Dict: if os.name == "nt": import msvcrt lowerCAmelCase__ : Dict = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(SCREAMING_SNAKE_CASE_ ) == 0: # Read the keystroke lowerCAmelCase__ : Optional[Any] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCAmelCase__ : Dict = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCAmelCase__ : Dict = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(SCREAMING_SNAKE_CASE_ ) if ord(SCREAMING_SNAKE_CASE_ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) lowerCAmelCase__ : Dict = chr(KEYMAP['esc'] ) except KeyError: lowerCAmelCase__ : Dict = cha[1] else: lowerCAmelCase__ : List[Any] = ch.decode(SCREAMING_SNAKE_CASE_ ) else: lowerCAmelCase__ : Tuple = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCAmelCase__ : Tuple = sys.stdin.fileno() lowerCAmelCase__ : Any = termios.tcgetattr(SCREAMING_SNAKE_CASE_ ) try: tty.setraw(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = sys.stdin.read(1 ) finally: termios.tcsetattr(SCREAMING_SNAKE_CASE_ , termios.TCSADRAIN , SCREAMING_SNAKE_CASE_ ) return ch def lowerCAmelCase__ ( ) -> Union[str, Any]: lowerCAmelCase__ : Any = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(SCREAMING_SNAKE_CASE_ ) == KEYMAP["esc"]: lowerCAmelCase__ : Union[str, Any] = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) == KEYMAP["mod_int"]: lowerCAmelCase__ : str = get_raw_chars() if ord(SCREAMING_SNAKE_CASE_ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(SCREAMING_SNAKE_CASE_ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(SCREAMING_SNAKE_CASE_ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
307
1
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets lowerCamelCase__ = """\ @inproceedings{lin-2004-rouge, title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\", author = \"Lin, Chin-Yew\", booktitle = \"Text Summarization Branches Out\", month = jul, year = \"2004\", address = \"Barcelona, Spain\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W04-1013\", pages = \"74--81\", } """ lowerCamelCase__ = """\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge """ lowerCamelCase__ = """ Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring, `\"rougeL\"`: Longest common subsequence based scoring. `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric('rouge') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] >>> print(results[\"rouge1\"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results[\"rouge1\"].mid.fmeasure) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def _lowerCamelCase ( self : Optional[Any] , a : List[Any] , a : List[Any] , a : Tuple=None , a : Union[str, Any]=True , a : Dict=False ): '''simple docstring''' if rouge_types is None: lowerCAmelCase__ : Optional[Any] = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] lowerCAmelCase__ : List[Any] = rouge_scorer.RougeScorer(rouge_types=a , use_stemmer=a ) if use_aggregator: lowerCAmelCase__ : Optional[int] = scoring.BootstrapAggregator() else: lowerCAmelCase__ : str = [] for ref, pred in zip(a , a ): lowerCAmelCase__ : Optional[Any] = scorer.score(a , a ) if use_aggregator: aggregator.add_scores(a ) else: scores.append(a ) if use_aggregator: lowerCAmelCase__ : Dict = aggregator.aggregate() else: lowerCAmelCase__ : Dict = {} for key in scores[0]: lowerCAmelCase__ : List[Any] = [score[key] for score in scores] return result
307
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: return "".join([hex(SCREAMING_SNAKE_CASE_ )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE_ )] ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(SCREAMING_SNAKE_CASE_ ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE_ ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
307
1
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: if index == r: for j in range(SCREAMING_SNAKE_CASE_ ): print(data[j] , end=' ' ) print(' ' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location lowerCAmelCase__ : Union[str, Any] = arr[i] combination_util(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , index + 1 , SCREAMING_SNAKE_CASE_ , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: # A temporary array to store all combination one by one lowerCAmelCase__ : List[str] = [0] * r # Print all combination using temporary array 'data[]' combination_util(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 0 , SCREAMING_SNAKE_CASE_ , 0 ) if __name__ == "__main__": # Driver code to check the function above lowerCamelCase__ = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
307
from __future__ import annotations def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> list[list[int]]: lowerCAmelCase__ : list[list[int]] = [] create_all_state(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , [] , SCREAMING_SNAKE_CASE_ ) return result def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> None: if level == 0: total_list.append(current_list[:] ) return for i in range(SCREAMING_SNAKE_CASE_ , total_number - level + 2 ): current_list.append(SCREAMING_SNAKE_CASE_ ) create_all_state(i + 1 , SCREAMING_SNAKE_CASE_ , level - 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) current_list.pop() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> None: for i in total_list: print(*SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowerCamelCase__ = 4 lowerCamelCase__ = 2 lowerCamelCase__ = generate_all_combinations(n, k) print_all_state(total_list)
307
1
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {"""vocab_file""": """spiece.model"""} lowerCamelCase__ = { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", } } # TODO(PVP) - this should be removed in Transformers v5 lowerCamelCase__ = { """t5-small""": 512, """t5-base""": 512, """t5-large""": 512, """t5-3b""": 512, """t5-11b""": 512, } lowerCamelCase__ = """▁""" class A__ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] def __init__( self : Any , a : List[Any] , a : Dict="</s>" , a : Tuple="<unk>" , a : Optional[int]="<pad>" , a : Any=100 , a : List[Any]=None , a : Optional[Dict[str, Any]] = None , a : Optional[int]=True , **a : Union[str, Any] , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: lowerCAmelCase__ : str = [f'''<extra_id_{i}>''' for i in range(a )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens lowerCAmelCase__ : Optional[int] = len(set(filter(lambda a : bool('extra_id' in str(a ) ) , a ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) if legacy: logger.warning_once( f'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' ' read the related pull request available at https://github.com/huggingface/transformers/pull/24565' ) lowerCAmelCase__ : Optional[Any] = legacy lowerCAmelCase__ : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=a , unk_token=a , pad_token=a , extra_ids=a , additional_special_tokens=a , sp_model_kwargs=self.sp_model_kwargs , legacy=a , **a , ) lowerCAmelCase__ : Tuple = vocab_file lowerCAmelCase__ : Dict = extra_ids lowerCAmelCase__ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a ) @staticmethod def _lowerCamelCase ( a : Optional[Any] , a : str , a : List[Any] ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: lowerCAmelCase__ : Optional[int] = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , a , ) return max_model_length @property def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' return self.sp_model.get_piece_size() + self._extra_ids def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = {self.convert_ids_to_tokens(a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowerCamelCase ( self : Dict , a : List[int] , a : Optional[List[int]] = None , a : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(a )) + [1] return ([0] * len(a )) + [1] + ([0] * len(a )) + [1] def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' return list( set(filter(lambda a : bool(re.search(R'<extra_id_\d+>' , a ) ) is not None , self.additional_special_tokens ) ) ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return [self._convert_token_to_id(a ) for token in self.get_sentinel_tokens()] def _lowerCamelCase ( self : Optional[Any] , a : List[int] ): '''simple docstring''' if len(a ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def _lowerCamelCase ( self : str , a : List[int] , a : Optional[List[int]] = None ): '''simple docstring''' lowerCAmelCase__ : List[str] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _lowerCamelCase ( self : Any , a : List[int] , a : Optional[List[int]] = None ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self._add_eos_if_not_present(a ) if token_ids_a is None: return token_ids_a else: lowerCAmelCase__ : int = self._add_eos_if_not_present(a ) return token_ids_a + token_ids_a def __getstate__( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.__dict__.copy() lowerCAmelCase__ : Union[str, Any] = None return state def __setstate__( self : str , a : Tuple ): '''simple docstring''' lowerCAmelCase__ : int = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCAmelCase__ : Union[str, Any] = {} lowerCAmelCase__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCamelCase ( self : List[str] , a : "TextInput" , **a : int ): '''simple docstring''' if not self.legacy: lowerCAmelCase__ : Any = SPIECE_UNDERLINE + text.replace(a , ' ' ) return super().tokenize(a , **a ) def _lowerCamelCase ( self : Union[str, Any] , a : Optional[Any] , **a : Tuple ): '''simple docstring''' if not self.legacy: lowerCAmelCase__ : Dict = text.startswith(a ) if is_first: lowerCAmelCase__ : Union[str, Any] = text[1:] lowerCAmelCase__ : Tuple = self.sp_model.encode(a , out_type=a ) if not self.legacy and not is_first and not text.startswith(' ' ) and tokens[0].startswith(a ): lowerCAmelCase__ : Union[str, Any] = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def _lowerCamelCase ( self : List[Any] , a : List[str] ): '''simple docstring''' if token.startswith('<extra_id_' ): lowerCAmelCase__ : Any = re.match(R'<extra_id_(\d+)>' , a ) lowerCAmelCase__ : Optional[Any] = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(a ) def _lowerCamelCase ( self : List[str] , a : int ): '''simple docstring''' if index < self.sp_model.get_piece_size(): lowerCAmelCase__ : int = self.sp_model.IdToPiece(a ) else: lowerCAmelCase__ : Optional[int] = f'''<extra_id_{self.vocab_size - 1 - index}>''' return token def _lowerCamelCase ( self : str , a : str ): '''simple docstring''' lowerCAmelCase__ : Any = [] lowerCAmelCase__ : str = '' lowerCAmelCase__ : Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a ) + token lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : List[str] = [] else: current_sub_tokens.append(a ) lowerCAmelCase__ : Tuple = False out_string += self.sp_model.decode(a ) return out_string.strip() def _lowerCamelCase ( self : Union[str, Any] , a : str , a : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase__ : Optional[Any] = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a ) elif not os.path.isfile(self.vocab_file ): with open(a , 'wb' ) as fi: lowerCAmelCase__ : str = self.sp_model.serialized_model_proto() fi.write(a ) return (out_vocab_file,)
307
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class A__ ( unittest.TestCase ): @parameterized.expand([(None,), ('foo.json',)] ) def _lowerCamelCase ( self : Dict , a : str ): '''simple docstring''' lowerCAmelCase__ : List[str] = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(a , config_name=a ) lowerCAmelCase__ : Tuple = GenerationConfig.from_pretrained(a , config_name=a ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , a ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , a ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Dict = AutoConfig.from_pretrained('gpt2' ) lowerCAmelCase__ : Any = GenerationConfig.from_model_config(a ) lowerCAmelCase__ : Any = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(a , a ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = GenerationConfig() lowerCAmelCase__ : Dict = { 'max_new_tokens': 1_024, 'foo': 'bar', } lowerCAmelCase__ : List[Any] = copy.deepcopy(a ) lowerCAmelCase__ : Dict = generation_config.update(**a ) # update_kwargs was not modified (no side effects) self.assertEqual(a , a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(a , {'foo': 'bar'} ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Dict = GenerationConfig() lowerCAmelCase__ : List[Any] = 'bar' with tempfile.TemporaryDirectory('test-generation-config' ) as tmp_dir: generation_config.save_pretrained(a ) lowerCAmelCase__ : List[Any] = GenerationConfig.from_pretrained(a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , 'bar' ) lowerCAmelCase__ : int = GenerationConfig.from_model_config(a ) assert not hasattr(a , 'foo' ) # no new kwargs should be initialized if from config def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , a ) self.assertEqual(default_config.num_beams , 1 ) lowerCAmelCase__ : List[Any] = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , a ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(a ) lowerCAmelCase__ : Any = GenerationConfig.from_pretrained(a , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , a ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class A__ ( unittest.TestCase ): @classmethod def _lowerCamelCase ( cls : int ): '''simple docstring''' lowerCAmelCase__ : List[str] = TOKEN HfFolder.save_token(a ) @classmethod def _lowerCamelCase ( cls : Optional[int] ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-generation-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-generation-config-org' ) except HTTPError: pass def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('test-generation-config' , use_auth_token=self._token ) lowerCAmelCase__ : Any = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) # Reset repo delete_repo(token=self._token , repo_id='test-generation-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( a , repo_id='test-generation-config' , push_to_hub=a , use_auth_token=self._token ) lowerCAmelCase__ : Tuple = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : int = GenerationConfig( do_sample=a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('valid_org/test-generation-config-org' , use_auth_token=self._token ) lowerCAmelCase__ : Dict = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-generation-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( a , repo_id='valid_org/test-generation-config-org' , push_to_hub=a , use_auth_token=self._token ) lowerCAmelCase__ : List[str] = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(a , getattr(a , a ) )
307
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Dict = tempfile.mkdtemp() lowerCAmelCase__ : Optional[int] = BlipImageProcessor() lowerCAmelCase__ : Optional[int] = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) lowerCAmelCase__ : Optional[int] = BertTokenizerFast.from_pretrained('hf-internal-testing/tiny-random-bert' ) lowerCAmelCase__ : Optional[int] = InstructBlipProcessor(a , a , a ) processor.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self : int , **a : Optional[int] ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **a ).tokenizer def _lowerCamelCase ( self : Tuple , **a : List[str] ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **a ).image_processor def _lowerCamelCase ( self : Union[str, Any] , **a : str ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **a ).qformer_tokenizer def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase__ : Union[str, Any] = [Image.fromarray(np.moveaxis(a , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : int = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ : List[Any] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCAmelCase__ : Dict = self.get_image_processor(do_normalize=a , padding_value=1.0 ) lowerCAmelCase__ : Optional[Any] = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , a ) self.assertIsInstance(processor.qformer_tokenizer , a ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : int = self.get_image_processor() lowerCAmelCase__ : int = self.get_tokenizer() lowerCAmelCase__ : str = self.get_qformer_tokenizer() lowerCAmelCase__ : Optional[Any] = InstructBlipProcessor( tokenizer=a , image_processor=a , qformer_tokenizer=a ) lowerCAmelCase__ : Any = self.prepare_image_inputs() lowerCAmelCase__ : List[str] = image_processor(a , return_tensors='np' ) lowerCAmelCase__ : Any = processor(images=a , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.get_image_processor() lowerCAmelCase__ : Union[str, Any] = self.get_tokenizer() lowerCAmelCase__ : Union[str, Any] = self.get_qformer_tokenizer() lowerCAmelCase__ : Optional[int] = InstructBlipProcessor( tokenizer=a , image_processor=a , qformer_tokenizer=a ) lowerCAmelCase__ : Tuple = 'lower newer' lowerCAmelCase__ : Any = processor(text=a ) lowerCAmelCase__ : List[str] = tokenizer(a , return_token_type_ids=a ) lowerCAmelCase__ : str = qformer_tokenizer(a , return_token_type_ids=a ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['qformer_' + key] ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : List[Any] = self.get_image_processor() lowerCAmelCase__ : Optional[int] = self.get_tokenizer() lowerCAmelCase__ : List[str] = self.get_qformer_tokenizer() lowerCAmelCase__ : Union[str, Any] = InstructBlipProcessor( tokenizer=a , image_processor=a , qformer_tokenizer=a ) lowerCAmelCase__ : Tuple = 'lower newer' lowerCAmelCase__ : Dict = self.prepare_image_inputs() lowerCAmelCase__ : List[str] = processor(text=a , images=a ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , ) # test if it raises when no input is passed with pytest.raises(a ): processor() def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : int = self.get_image_processor() lowerCAmelCase__ : int = self.get_tokenizer() lowerCAmelCase__ : str = self.get_qformer_tokenizer() lowerCAmelCase__ : str = InstructBlipProcessor( tokenizer=a , image_processor=a , qformer_tokenizer=a ) lowerCAmelCase__ : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase__ : str = processor.batch_decode(a ) lowerCAmelCase__ : Optional[int] = tokenizer.batch_decode(a ) self.assertListEqual(a , a ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.get_image_processor() lowerCAmelCase__ : Any = self.get_tokenizer() lowerCAmelCase__ : Optional[Any] = self.get_qformer_tokenizer() lowerCAmelCase__ : Dict = InstructBlipProcessor( tokenizer=a , image_processor=a , qformer_tokenizer=a ) lowerCAmelCase__ : List[str] = 'lower newer' lowerCAmelCase__ : Optional[Any] = self.prepare_image_inputs() lowerCAmelCase__ : str = processor(text=a , images=a ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , )
307
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( __magic_name__ , unittest.TestCase ): lowercase = UnCLIPImageVariationPipeline lowercase = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} lowercase = IMAGE_VARIATION_BATCH_PARAMS lowercase = [ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] lowercase = False @property def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' return 32 @property def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' return 32 @property def _lowerCamelCase ( self : int ): '''simple docstring''' return self.time_input_dim @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.time_input_dim * 4 @property def _lowerCamelCase ( self : Any ): '''simple docstring''' return 100 @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def _lowerCamelCase ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(a ) @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : List[Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(a ) @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Union[str, Any] = { 'clip_embeddings_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'cross_attention_dim': self.cross_attention_dim, } lowerCAmelCase__ : Optional[Any] = UnCLIPTextProjModel(**a ) return model @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : str = { 'sample_size': 32, # RGB in channels 'in_channels': 3, # Out channels is double in channels because predicts mean and variance 'out_channels': 6, 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': 'identity', } lowerCAmelCase__ : str = UNetaDConditionModel(**a ) return model @property def _lowerCamelCase ( self : str ): '''simple docstring''' return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def _lowerCamelCase ( self : str ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Any = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def _lowerCamelCase ( self : int ): '''simple docstring''' torch.manual_seed(1 ) lowerCAmelCase__ : List[str] = UNetaDModel(**self.dummy_super_res_kwargs ) return model def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.dummy_decoder lowerCAmelCase__ : Optional[int] = self.dummy_text_proj lowerCAmelCase__ : Any = self.dummy_text_encoder lowerCAmelCase__ : Any = self.dummy_tokenizer lowerCAmelCase__ : Any = self.dummy_super_res_first lowerCAmelCase__ : Optional[int] = self.dummy_super_res_last lowerCAmelCase__ : Dict = UnCLIPScheduler( variance_type='learned_range' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) lowerCAmelCase__ : Any = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) lowerCAmelCase__ : Any = CLIPImageProcessor(crop_size=32 , size=32 ) lowerCAmelCase__ : Optional[int] = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def _lowerCamelCase ( self : Any , a : Dict , a : List[str]=0 , a : List[str]=True ): '''simple docstring''' lowerCAmelCase__ : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(a ) ).to(a ) if str(a ).startswith('mps' ): lowerCAmelCase__ : Optional[int] = torch.manual_seed(a ) else: lowerCAmelCase__ : str = torch.Generator(device=a ).manual_seed(a ) if pil_image: lowerCAmelCase__ : Optional[int] = input_image * 0.5 + 0.5 lowerCAmelCase__ : Dict = input_image.clamp(0 , 1 ) lowerCAmelCase__ : List[Any] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCAmelCase__ : Union[str, Any] = DiffusionPipeline.numpy_to_pil(a )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = 'cpu' lowerCAmelCase__ : Any = self.get_dummy_components() lowerCAmelCase__ : List[str] = self.pipeline_class(**a ) lowerCAmelCase__ : Dict = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Dict = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : str = pipe(**a ) lowerCAmelCase__ : Optional[Any] = output.images lowerCAmelCase__ : str = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Optional[int] = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : List[str] = np.array( [ 0.9_9_9_7, 0.0_0_0_2, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_6_9, 0.0_0_2_3, 0.9_9_9_7, 0.9_9_6_9, 0.9_9_7_0, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = 'cpu' lowerCAmelCase__ : Dict = self.get_dummy_components() lowerCAmelCase__ : Optional[int] = self.pipeline_class(**a ) lowerCAmelCase__ : int = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : List[Any] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : List[str] = pipe(**a ) lowerCAmelCase__ : Union[str, Any] = output.images lowerCAmelCase__ : int = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : int = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Tuple = image[0, -3:, -3:, -1] lowerCAmelCase__ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : str = np.array([0.9_9_9_7, 0.0_0_0_3, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_7_0, 0.0_0_2_4, 0.9_9_9_7, 0.9_9_7_1, 0.9_9_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Tuple = 'cpu' lowerCAmelCase__ : int = self.get_dummy_components() lowerCAmelCase__ : Tuple = self.pipeline_class(**a ) lowerCAmelCase__ : Union[str, Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Tuple = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : List[str] = [ pipeline_inputs['image'], pipeline_inputs['image'], ] lowerCAmelCase__ : Optional[int] = pipe(**a ) lowerCAmelCase__ : Tuple = output.images lowerCAmelCase__ : List[str] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Union[str, Any] = [ tuple_pipeline_inputs['image'], tuple_pipeline_inputs['image'], ] lowerCAmelCase__ : str = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) lowerCAmelCase__ : Union[str, Any] = np.array( [ 0.9_9_9_7, 0.9_9_8_9, 0.0_0_0_8, 0.0_0_2_1, 0.9_9_6_0, 0.0_0_1_8, 0.0_0_1_4, 0.0_0_0_2, 0.9_9_3_3, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch.device('cpu' ) class A__ : lowercase = 1 lowerCAmelCase__ : Optional[Any] = self.get_dummy_components() lowerCAmelCase__ : Dict = self.pipeline_class(**a ) lowerCAmelCase__ : Optional[Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Optional[int] = torch.Generator(device=a ).manual_seed(0 ) lowerCAmelCase__ : Optional[int] = pipe.decoder.dtype lowerCAmelCase__ : Union[str, Any] = 1 lowerCAmelCase__ : str = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) lowerCAmelCase__ : List[Any] = pipe.prepare_latents( a , dtype=a , device=a , generator=a , latents=a , scheduler=DummyScheduler() ) lowerCAmelCase__ : List[str] = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) lowerCAmelCase__ : Any = pipe.prepare_latents( a , dtype=a , device=a , generator=a , latents=a , scheduler=DummyScheduler() ) lowerCAmelCase__ : List[Any] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Optional[int] = pipe( **a , decoder_latents=a , super_res_latents=a ).images lowerCAmelCase__ : Optional[Any] = self.get_dummy_inputs(a , pil_image=a ) # Don't pass image, instead pass embedding lowerCAmelCase__ : Union[str, Any] = pipeline_inputs.pop('image' ) lowerCAmelCase__ : Union[str, Any] = pipe.image_encoder(a ).image_embeds lowerCAmelCase__ : List[Any] = pipe( **a , decoder_latents=a , super_res_latents=a , image_embeddings=a , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch_device == 'cpu' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor lowerCAmelCase__ : int = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=a , expected_max_diff=a ) @skip_mps def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = torch_device == 'cpu' lowerCAmelCase__ : Any = True lowerCAmelCase__ : Optional[Any] = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] self._test_inference_batch_single_identical( test_max_difference=a , relax_max_difference=a , additional_params_copy_to_batched_inputs=a , ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Tuple = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes lowerCAmelCase__ : List[str] = [2, 3] self._test_inference_batch_consistent( batch_sizes=a , additional_params_copy_to_batched_inputs=a , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=a ) @skip_mps def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return super().test_save_load_local() @skip_mps def _lowerCamelCase ( self : str ): '''simple docstring''' return super().test_save_load_optional_components() @slow @require_torch_gpu class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png' ) lowerCAmelCase__ : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/unclip/karlo_v1_alpha_cat_variation_fp16.npy' ) lowerCAmelCase__ : Tuple = UnCLIPImageVariationPipeline.from_pretrained( 'kakaobrain/karlo-v1-alpha-image-variations' , torch_dtype=torch.floataa ) lowerCAmelCase__ : Union[str, Any] = pipeline.to(a ) pipeline.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Dict = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase__ : List[str] = pipeline( a , generator=a , output_type='np' , ) lowerCAmelCase__ : Union[str, Any] = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(a , a , 15 )
307
1
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A__ ( __magic_name__ , unittest.TestCase ): lowercase = GPTSanJapaneseTokenizer lowercase = False lowercase = {'do_clean_text': False, 'add_prefix_space': False} def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' super().setUp() # fmt: off lowerCAmelCase__ : int = ['こん', 'こんに', 'にちは', 'ばんは', '世界,㔺界', '、', '。', '<BR>', '<SP>', '<TAB>', '<URL>', '<EMAIL>', '<TEL>', '<DATE>', '<PRICE>', '<BLOCK>', '<KIGOU>', '<U2000U2BFF>', '<|emoji1|>', '<unk>', '<|bagoftoken|>', '<|endoftext|>'] # fmt: on lowerCAmelCase__ : Tuple = {'emoji': {'\ud83d\ude00': '<|emoji1|>'}, 'emoji_inv': {'<|emoji1|>': '\ud83d\ude00'}} # 😀 lowerCAmelCase__ : Union[str, Any] = {'unk_token': '<unk>'} lowerCAmelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['emoji_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.emoji_file , 'w' ) as emoji_writer: emoji_writer.write(json.dumps(a ) ) def _lowerCamelCase ( self : Tuple , **a : Tuple ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **a ) def _lowerCamelCase ( self : Optional[int] , a : Dict ): '''simple docstring''' lowerCAmelCase__ : Tuple = 'こんにちは、世界。 \nこんばんは、㔺界。😀' lowerCAmelCase__ : List[str] = 'こんにちは、世界。 \nこんばんは、世界。😀' return input_text, output_text def _lowerCamelCase ( self : Any , a : Tuple ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ : Tuple = self.get_input_output_texts(a ) lowerCAmelCase__ : Tuple = tokenizer.encode(a , add_special_tokens=a ) lowerCAmelCase__ : Any = tokenizer.decode(a , clean_up_tokenization_spaces=a ) return text, ids def _lowerCamelCase ( self : Dict ): '''simple docstring''' pass # TODO add if relevant def _lowerCamelCase ( self : List[str] ): '''simple docstring''' pass # TODO add if relevant def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' pass # TODO add if relevant def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = self.get_tokenizer() # Testing tokenization lowerCAmelCase__ : List[Any] = 'こんにちは、世界。 こんばんは、㔺界。' lowerCAmelCase__ : List[Any] = ['こん', 'にちは', '、', '世界', '。', '<SP>', 'こん', 'ばんは', '、', '㔺界', '。'] lowerCAmelCase__ : Dict = tokenizer.tokenize(a ) self.assertListEqual(a , a ) # Testing conversion to ids without special tokens lowerCAmelCase__ : Dict = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] lowerCAmelCase__ : Tuple = tokenizer.convert_tokens_to_ids(a ) self.assertListEqual(a , a ) # Testing conversion to ids with special tokens lowerCAmelCase__ : Any = tokens + [tokenizer.unk_token] lowerCAmelCase__ : Optional[int] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] lowerCAmelCase__ : Any = tokenizer.convert_tokens_to_ids(a ) self.assertListEqual(a , a ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Dict = self.get_tokenizer() # Testing tokenization lowerCAmelCase__ : str = 'こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。' lowerCAmelCase__ : Dict = 'こんにちは、、、、世界。こんばんは、、、、世界。' lowerCAmelCase__ : int = tokenizer.encode(a ) lowerCAmelCase__ : Dict = tokenizer.decode(a ) self.assertEqual(a , a ) @slow def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : int = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization lowerCAmelCase__ : int = 'こんにちは、世界。' lowerCAmelCase__ : Optional[int] = 'こんばんは、㔺界。😀' lowerCAmelCase__ : Dict = 'こんにちは、世界。こんばんは、世界。😀' lowerCAmelCase__ : int = tokenizer.encode(prefix_text + input_text ) lowerCAmelCase__ : Optional[Any] = tokenizer.encode('' , prefix_text=prefix_text + input_text ) lowerCAmelCase__ : Any = tokenizer.encode(a , prefix_text=a ) lowerCAmelCase__ : List[Any] = tokenizer.decode(a ) lowerCAmelCase__ : Optional[Any] = tokenizer.decode(a ) lowerCAmelCase__ : Tuple = tokenizer.decode(a ) self.assertEqual(a , a ) self.assertEqual(a , a ) self.assertEqual(a , a ) @slow def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Any = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization lowerCAmelCase__ : Optional[Any] = 'こんにちは、世界。' lowerCAmelCase__ : int = 'こんばんは、㔺界。😀' lowerCAmelCase__ : Dict = len(tokenizer.encode(a ) ) - 2 lowerCAmelCase__ : Optional[Any] = len(tokenizer.encode(a ) ) - 2 lowerCAmelCase__ : int = [1] + [0] * (len_prefix + len_text + 1) lowerCAmelCase__ : List[str] = [1] * (len_prefix + len_text + 1) + [0] lowerCAmelCase__ : Optional[Any] = [1] + [1] * (len_prefix) + [0] * (len_text + 1) lowerCAmelCase__ : str = tokenizer(prefix_text + input_text ).token_type_ids lowerCAmelCase__ : List[Any] = tokenizer('' , prefix_text=prefix_text + input_text ).token_type_ids lowerCAmelCase__ : Any = tokenizer(a , prefix_text=a ).token_type_ids self.assertListEqual(a , a ) self.assertListEqual(a , a ) self.assertListEqual(a , a ) @slow def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : List[Any] = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) lowerCAmelCase__ : str = tokenizer.encode('あンいワ' ) lowerCAmelCase__ : Dict = tokenizer.encode('' , prefix_text='あンいワ' ) lowerCAmelCase__ : List[str] = tokenizer.encode('いワ' , prefix_text='あン' ) self.assertEqual(tokenizer.decode(a ) , tokenizer.decode(a ) ) self.assertEqual(tokenizer.decode(a ) , tokenizer.decode(a ) ) self.assertNotEqual(a , a ) self.assertNotEqual(a , a ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : str = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) lowerCAmelCase__ : List[str] = [['武田信玄', 'は、'], ['織田信長', 'の配下の、']] lowerCAmelCase__ : Any = tokenizer(a , padding=a ) lowerCAmelCase__ : Union[str, Any] = tokenizer.batch_encode_plus(a , padding=a ) # fmt: off lowerCAmelCase__ : Union[str, Any] = [[35_993, 8_640, 25_948, 35_998, 30_647, 35_675, 35_999, 35_999], [35_993, 10_382, 9_868, 35_998, 30_646, 9_459, 30_646, 35_675]] lowerCAmelCase__ : int = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] lowerCAmelCase__ : Optional[Any] = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , a ) self.assertListEqual(x_token.token_type_ids , a ) self.assertListEqual(x_token.attention_mask , a ) self.assertListEqual(x_token_a.input_ids , a ) self.assertListEqual(x_token_a.token_type_ids , a ) self.assertListEqual(x_token_a.attention_mask , a ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' pass def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' pass
307
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: stooge(SCREAMING_SNAKE_CASE_ , 0 , len(SCREAMING_SNAKE_CASE_ ) - 1 ) return arr def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: lowerCAmelCase__ , lowerCAmelCase__ : Tuple = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: lowerCAmelCase__ : Union[str, Any] = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (h - t) ) # Recursively sort last 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , i + t , (SCREAMING_SNAKE_CASE_) ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (h - t) ) if __name__ == "__main__": lowerCamelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCamelCase__ = [int(item) for item in user_input.split(""",""")] print(stooge_sort(unsorted))
307
1
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: lowerCAmelCase__ , lowerCAmelCase__ : Dict = image.size lowerCAmelCase__ , lowerCAmelCase__ : Dict = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 lowerCAmelCase__ : Any = image.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) lowerCAmelCase__ : Dict = np.array(SCREAMING_SNAKE_CASE_ ).astype(np.floataa ) / 255.0 lowerCAmelCase__ : Optional[int] = image[None].transpose(0 , 3 , 1 , 2 ) lowerCAmelCase__ : Optional[int] = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) return 2.0 * image - 1.0 class A__ ( __magic_name__ ): def __init__( self : Optional[int] , a : VQModel , a : UNetaDModel , a : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ): '''simple docstring''' super().__init__() self.register_modules(vqvae=a , unet=a , scheduler=a ) @torch.no_grad() def __call__( self : List[str] , a : Union[torch.Tensor, PIL.Image.Image] = None , a : Optional[int] = 1 , a : Optional[int] = 100 , a : Optional[float] = 0.0 , a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , a : Optional[str] = "pil" , a : bool = True , ): '''simple docstring''' if isinstance(a , PIL.Image.Image ): lowerCAmelCase__ : Any = 1 elif isinstance(a , torch.Tensor ): lowerCAmelCase__ : Union[str, Any] = image.shape[0] else: raise ValueError(f'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(a )}''' ) if isinstance(a , PIL.Image.Image ): lowerCAmelCase__ : List[str] = preprocess(a ) lowerCAmelCase__ , lowerCAmelCase__ : str = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image lowerCAmelCase__ : Union[str, Any] = (batch_size, self.unet.config.in_channels // 2, height, width) lowerCAmelCase__ : int = next(self.unet.parameters() ).dtype lowerCAmelCase__ : Tuple = randn_tensor(a , generator=a , device=self.device , dtype=a ) lowerCAmelCase__ : Tuple = image.to(device=self.device , dtype=a ) # set timesteps and move to the correct device self.scheduler.set_timesteps(a , device=self.device ) lowerCAmelCase__ : Dict = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase__ : List[str] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCAmelCase__ : List[Any] = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase__ : Optional[int] = {} if accepts_eta: lowerCAmelCase__ : List[Any] = eta for t in self.progress_bar(a ): # concat latents and low resolution image in the channel dimension. lowerCAmelCase__ : str = torch.cat([latents, image] , dim=1 ) lowerCAmelCase__ : List[Any] = self.scheduler.scale_model_input(a , a ) # predict the noise residual lowerCAmelCase__ : List[Any] = self.unet(a , a ).sample # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase__ : Optional[int] = self.scheduler.step(a , a , a , **a ).prev_sample # decode the image latents with the VQVAE lowerCAmelCase__ : List[Any] = self.vqvae.decode(a ).sample lowerCAmelCase__ : Dict = torch.clamp(a , -1.0 , 1.0 ) lowerCAmelCase__ : Optional[int] = image / 2 + 0.5 lowerCAmelCase__ : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase__ : List[str] = self.numpy_to_pil(a ) if not return_dict: return (image,) return ImagePipelineOutput(images=a )
307
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) lowerCamelCase__ = { """configuration_speech_to_text""": ["""SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Speech2TextConfig"""], """processing_speech_to_text""": ["""Speech2TextProcessor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""Speech2TextTokenizer"""] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["""Speech2TextFeatureExtractor"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSpeech2TextForConditionalGeneration""", """TFSpeech2TextModel""", """TFSpeech2TextPreTrainedModel""", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Speech2TextForConditionalGeneration""", """Speech2TextModel""", """Speech2TextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
1
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: return 1 if input_a == input_a else 0 def lowerCAmelCase__ ( ) -> None: assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
307
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } lowerCAmelCase__ : int = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 128, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 142, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(a ) , a ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(a ) , x.transpose() ) ) lowerCAmelCase__ : List[str] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = np.random.randn(3 , 4 ) lowerCAmelCase__ : List[Any] = torch.tensor(a ) self.assertTrue(np.allclose(transpose(a ) , transpose(a ).numpy() ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : int = torch.tensor(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , transpose(a , axes=(1, 2, 0) ).numpy() ) ) @require_tf def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = np.random.randn(3 , 4 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(transpose(a ) , transpose(a ).numpy() ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : Dict = tf.constant(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , transpose(a , axes=(1, 2, 0) ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = np.random.randn(3 , 4 ) lowerCAmelCase__ : int = jnp.array(a ) self.assertTrue(np.allclose(transpose(a ) , np.asarray(transpose(a ) ) ) ) lowerCAmelCase__ : Any = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : str = jnp.array(a ) self.assertTrue(np.allclose(transpose(a , axes=(1, 2, 0) ) , np.asarray(transpose(a , axes=(1, 2, 0) ) ) ) ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Any = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , np.reshape(a , (4, 3) ) ) ) lowerCAmelCase__ : Tuple = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , np.reshape(a , (12, 5) ) ) ) @require_torch def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = np.random.randn(3 , 4 ) lowerCAmelCase__ : Dict = torch.tensor(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , reshape(a , (4, 3) ).numpy() ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : str = torch.tensor(a ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , reshape(a , (12, 5) ).numpy() ) ) @require_tf def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Dict = np.random.randn(3 , 4 ) lowerCAmelCase__ : List[Any] = tf.constant(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , reshape(a , (4, 3) ).numpy() ) ) lowerCAmelCase__ : Dict = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , reshape(a , (12, 5) ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Dict = np.random.randn(3 , 4 ) lowerCAmelCase__ : List[str] = jnp.array(a ) self.assertTrue(np.allclose(reshape(a , (4, 3) ) , np.asarray(reshape(a , (4, 3) ) ) ) ) lowerCAmelCase__ : str = np.random.randn(3 , 4 , 5 ) lowerCAmelCase__ : Union[str, Any] = jnp.array(a ) self.assertTrue(np.allclose(reshape(a , (12, 5) ) , np.asarray(reshape(a , (12, 5) ) ) ) ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(a ) , np.squeeze(a ) ) ) lowerCAmelCase__ : int = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , np.squeeze(a , axis=2 ) ) ) @require_torch def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = np.random.randn(1 , 3 , 4 ) lowerCAmelCase__ : str = torch.tensor(a ) self.assertTrue(np.allclose(squeeze(a ) , squeeze(a ).numpy() ) ) lowerCAmelCase__ : Optional[Any] = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase__ : Dict = torch.tensor(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , squeeze(a , axis=2 ).numpy() ) ) @require_tf def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : List[str] = np.random.randn(1 , 3 , 4 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(squeeze(a ) , squeeze(a ).numpy() ) ) lowerCAmelCase__ : int = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase__ : str = tf.constant(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , squeeze(a , axis=2 ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : List[str] = np.random.randn(1 , 3 , 4 ) lowerCAmelCase__ : Union[str, Any] = jnp.array(a ) self.assertTrue(np.allclose(squeeze(a ) , np.asarray(squeeze(a ) ) ) ) lowerCAmelCase__ : str = np.random.randn(1 , 4 , 1 , 5 ) lowerCAmelCase__ : Optional[Any] = jnp.array(a ) self.assertTrue(np.allclose(squeeze(a , axis=2 ) , np.asarray(squeeze(a , axis=2 ) ) ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , np.expand_dims(a , axis=1 ) ) ) @require_torch def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : str = np.random.randn(3 , 4 ) lowerCAmelCase__ : str = torch.tensor(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , expand_dims(a , axis=1 ).numpy() ) ) @require_tf def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = np.random.randn(3 , 4 ) lowerCAmelCase__ : Any = tf.constant(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , expand_dims(a , axis=1 ).numpy() ) ) @require_flax def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : int = np.random.randn(3 , 4 ) lowerCAmelCase__ : Tuple = jnp.array(a ) self.assertTrue(np.allclose(expand_dims(a , axis=1 ) , np.asarray(expand_dims(a , axis=1 ) ) ) )
307
1
import re import string import numpy as np import datasets lowerCamelCase__ = """ Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. """ lowerCamelCase__ = """ Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 25.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 50.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 75.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results[\"exact_match\"], 1)) 100.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"] >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 33.3 """ lowerCamelCase__ = """ """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def _lowerCamelCase ( self : str ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , reference_urls=[] , ) def _lowerCamelCase ( self : Optional[Any] , a : Tuple , a : Any , a : Tuple=None , a : Any=False , a : Optional[Any]=False , a : List[Any]=False , ): '''simple docstring''' if regexes_to_ignore is not None: for s in regexes_to_ignore: lowerCAmelCase__ : int = np.array([re.sub(a , '' , a ) for x in predictions] ) lowerCAmelCase__ : List[Any] = np.array([re.sub(a , '' , a ) for x in references] ) else: lowerCAmelCase__ : int = np.asarray(a ) lowerCAmelCase__ : Tuple = np.asarray(a ) if ignore_case: lowerCAmelCase__ : List[str] = np.char.lower(a ) lowerCAmelCase__ : Optional[int] = np.char.lower(a ) if ignore_punctuation: lowerCAmelCase__ : Optional[int] = string.punctuation.maketrans('' , '' , string.punctuation ) lowerCAmelCase__ : Optional[int] = np.char.translate(a , table=a ) lowerCAmelCase__ : Dict = np.char.translate(a , table=a ) if ignore_numbers: lowerCAmelCase__ : int = string.digits.maketrans('' , '' , string.digits ) lowerCAmelCase__ : Union[str, Any] = np.char.translate(a , table=a ) lowerCAmelCase__ : List[str] = np.char.translate(a , table=a ) lowerCAmelCase__ : Union[str, Any] = predictions == references return {"exact_match": np.mean(a ) * 100}
307
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position lowerCamelCase__ = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip lowerCamelCase__ = concatenate_datasets lowerCamelCase__ = DownloadConfig lowerCamelCase__ = DownloadManager lowerCamelCase__ = DownloadMode lowerCamelCase__ = DownloadConfig lowerCamelCase__ = DownloadMode lowerCamelCase__ = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
307
1